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1. Introduction

The investigators sought to explore and examine the impact of varied remote sensing inputs for species 
identification using machine learning.  The foundation of the research was a multi-class support vector 
machine (SVM) learning adaptation originally developed in 2012.  The latter used LiDAR as the 
exclusive input for species identification and leveraged spatial density, trunk & branch geometry, and 
the intensity attribute.  In the new effort, the team attempted to adapt and incorporate spectral as well as 
land form information to the SVM descriptor list.  251 new descriptors were created and ranked 
alongside the existing 847 descriptors.  The research team sought to determine the optimal combination 
of descriptors for species identification accuracy.  The result was an increase in stem accuracy in a cross-
fold validation test of between 8% and 13% for a mix of 13 conifer and deciduous species. 

1.1 Background 

The Tree Species Identifier (TSI) system uses a bottom-up approach where metrics are measured and 
predicted first at the individual tree level. The individual tree process captures height, canopy 
characteristics, and species from the LiDAR.  From those inputs, the system can calculate estimates of 
the diameter at breast height (DBH) as well as volume. Once the analysis has been completed at the 
single tree level, the outputs can be rolled up to larger reporting units.  The results individual tree 
inventory can also be used for statistical adjustments across the land base using and area-based enhanced 
forest inventory approach. 
First developed in 2012, the process has successfully analysed over 2 billion trees and produced 
operational inventories derived from hundreds of terabytes of LiDAR across millions of forested 
hectares.  

1.2 Tree Species Identifier Process 

First the LAS is reviewed, cleaned, and prepared for analysis.  Analysts review an array of factors 
including the consistency of point density, the intensity calibration, and any gaps in the coverage.  Then 
TSI segments the individual trees from the point cloud and produces an area shapefile for each tree.  The 
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system calculates a number of attributes including height, slope, crown area, aspect, local density, and 
live crown percentage.  Each tree also receives a unique ID at this point in the process.   

The segmentation parameters used are selected based on a variety of stand characteristics using a blend 
of classic watershed techniques and point finding routines.  Individual tree inventories from LIDAR 
tend to underestimate the number of stems as the software can only include what the sensor sees.  Missed 
stems are typically smaller ones hiding under larger ones or those in tight clumps with a common height. 
Conversely, leaning trees can sometimes be segmented into multiple trees.  As LiDAR point densities 
increase, say above 16-20 pts/m2, the segmentation algorithm is able to adapt resulting in higher overall 
tree segmentation accuracy as well as understory segmentation. 

Figure 1: Tree Species Identifier Process 

The next step in the species identification process is the collection of ground truth trees to be used in the 
TSI species prediction model.  Trees are collected based on species, height, and location within the 
project area of interest by field crews and/or photo-interpretation.  The goal is to acquire 100 to 300 
samples of each species in the project area.  The required number of samples per species varies project 
to project based on the complexity of the species mix and the size of the area under consideration.    
Using methods refined over 9 years, a trained 2-person field crew can collect 800 trees over 5 days.  

Once the trees are captured, analysts attempt to match up the field or photo-interpretation collects with 
the correct tree in the LiDAR point cloud.  The quality control success rates vary depending primarily 
on canopy density and GPS signal strength.  Next the tree samples that have passed quality control are 
translated into machine-learning numeric “descriptors” in TSI.  The software translates the information 
in each tree’s point cloud into numeric descriptors based on geometry, density, and reflectivity.  This 
step is at the heart of the TSI capability and the focus of the research.  The model validation proceeds 
with the derived descriptors and the resulting model is used to perform a discrete analysis of each 
segmented tree.  

Diameter at breast height (DBH) is derived from the tree height and species using established biometric 
models.  The DBH is then used to calculate gross and merchantable volume for each tree.  

2.0 Descriptor Research 

The research team collected remote sensing inputs over forest areas in the Canadian province of British 
Columbia.  The imagery data included 30 cm resolution 4-band RGB-NIR ortho-photo as well as 10 m 
resolution satellite Sentinel-2 multispectral.  Terrain data included 2m resolution wetness and sunlight 
maps derived from the LiDAR.  The Provincial Forestry Ministry also provides ecosite information and 
predictive ecosystem mapping, land base metrics that provide broad soil and moisture information, both 
of which were incorporated.  The LiDAR was flown with a 10-12 pts/m2 point density. 

6 descriptor test combinations were tested: 
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1. Baseline: 10-12 ppm LiDAR only
2. Baseline plus LiDAR-derived intensity images from two channels
3. Baseline plus 4-band RGB-NIR
4. Baseline plus terrain characteristics
5. Baseline plus 4-band RGB-NIR & terrain characteristics
6. Baseline plus 4-band RGB-NIR & terrain characteristics & LiDAR-derived intensity images

The descriptors were run against a ground truth set of 4,395 trees including 13 species. 

FD Douglas Fir CW Western Red Cedar 

LW Western Larch AC Black Cottonwood 

BL Balsam Fir AT Trembling Aspen 

PY Ponderosa Pine EP Paper Birch 

PL Lodgepole Pine DP Lodgepole Pine (Dead) 

SX Spruce (hybrid) SN Snag 

RP Lodgepole Pine (Red - Dying) 

Table 1: Species included in the test 

Figure 2: Species Results by descriptor set 

The general trend evidenced by the trials was that as the descriptor sets added additional remote sensing 
and terrain input information, species accuracy improved.  This trend held for conifer and deciduous 
classes broadly as well as dead or stressed trees.  The largest improvement was seen for dying lodgepole 
pine (red) while the highest accuracies were recorded for the deciduous species.   
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Table 2: Baseline Species Accuracy Confusion Matrix 

Table 3: Final Species Accuracy Confusion matrix 

The most significant improvement was in dying lodgepole pine (SR).  A working hypothesis was that 
SR would improve as a result of the addition of spectral descriptors.  While true, SR accuracy also 
improved with the addition of terrain characteristics in the absence of spectral data.  Douglas fir and 
ponderosa pine confusion was reduced from 89 direct errors to 73 direct errors.  The latter improvement 
fell short of expectations as the two species have distinct spectral signatures.  Those distinct signatures 
enable rigorous accuracies in photo-interpretation and so more improvement was expected.  One 
possible explanation is that the geometry and density descriptors derived from the point cloud may have 
some embedded biases that need to be addressed in future research.  Another possible explanation is the 
introduction of noise by the imagery due to parallax offsets that degraded the predictive power of the 
descriptor. 
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