
Computer Physics Communications 297 (2024) 109065

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

Clinamen2: Functional-style evolutionary optimization in Python for

atomistic structure searches ✩

Ralf Wanzenböck a, Florian Buchner a, Péter Kovács a, Georg K.H. Madsen a, Jesús Carrete b,a,∗

a Institute of Materials Chemistry, TU Wien, A-1060 Vienna, Austria
b Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain

A R T I C L E I N F O A B S T R A C T

Dataset link: https://github .com /Madsen -s -
research -group /clinamen2 -public -releases

Dataset link: https://
doi .org /10 .5281 /zenodo .10143313

Keywords:

CMA-ES
Optimization
Python
Atomistic calculations
Structure search

Clinamen2 is a versatile functional-style Python implementation of the covariance matrix adaptation evolution
strategy (CMA-ES) utilizing Cholesky decomposition. On top of a problem-agnostic core algorithm, the software
package offers a suite of utilities and library code enabling applications to important atomistic structure searches.
Features include massively distributed computation and the BI-Population restart scheme. This article details
the general code structure and introduces examples that illustrate some relevant applications for the materials
science and chemistry worlds, including interfacing to density-functional-theory codes and machine-learned
surrogate models. The functional design renders the code modular and adaptable, and makes the creation of
interfaces to other atomistic software straightforward.

Program summary

Program Title: Clinamen2
CPC Library link to program files: https://doi .org /10 .17632 /x7syr2txsd .1
Developer’s repository link: https://github .com /Madsen -s -research -group /clinamen2 -public -releases
Code Ocean capsule: https://codeocean .com /capsule /4950229
Licensing provisions: Apache-2.0
Programming language: Python
Supplementary material:

Nature of problem: Find optimal atomistic structures retaining full flexibility in the choice of the optimization
target, the methodological approach and its implementation (e.g. CPU- vs. GPU-heavy calculations). Enable
interfacing with relevant software, including but not limited to density-functional-theory (DFT) codes and
machine-learning (ML) solutions.
Solution method: The covariance matrix adaptation evolution strategy (CMA-ES) algorithm is implemented using
Cholesky decompositions for efficiency. The core algorithm and application examples for specific problems are
implemented in functional-style Python free of side effects, with data classes to keep track of the state of the
evolution. Dask is used for job control to enable highly distributed workflows. Advanced strategies like BI-
Population CMA-ES are easy to implement and illustrated in the examples.
1. Introduction

The covariance matrix adaptation evolution strategy (CMA-ES) [1–
3] is a powerful and efficient tool for gradient-free optimization of
high-dimensional problems, with a limited set of problem-specific hy-
perparameters. The main algorithm is based on drawing samples from
a continuously updated multivariate normal distribution and has been

✩ The review of this paper was arranged by Prof. Weigel Martin.
* Corresponding author at: Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.

extended and refined following different approaches, e.g., focusing on
restarts with varying population and step sizes for optimizing multi-
modal functions [4–10]. Furthermore, much effort has gone into the
advancement of the fundamental update scheme and the comparison of
different implementations [6,8,11–14]. There are several CMA-ES codes
available [15–22], often tailored to specific problems, and numerous
applications to different subject matters [18,23–28].
Available online 21 December 2023
0010-4655/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
nc-nd/4.0/).

E-mail address: jcarrete@unizar.es (J. Carrete).

https://doi.org/10.1016/j.cpc.2023.109065
Received 7 June 2023; Received in revised form 16 November 2023; Accepted 13 D
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ecember 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://github.com/Madsen-s-research-group/clinamen2-public-releases
https://github.com/Madsen-s-research-group/clinamen2-public-releases
https://doi.org/10.5281/zenodo.10143313
https://doi.org/10.5281/zenodo.10143313
https://doi.org/10.17632/x7syr2txsd.1
https://github.com/Madsen-s-research-group/clinamen2-public-releases
https://codeocean.com/capsule/4950229
mailto:jcarrete@unizar.es
https://doi.org/10.1016/j.cpc.2023.109065
https://doi.org/10.1016/j.cpc.2023.109065
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.109065&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Wanzenböck, F. Buchner, P. Kovács et al.

The Python package Clinamen2 was developed to provide a versatile
and extensible implementation of the CMA-ES. The wider aim was to
offer the building blocks needed for a wide range of problems. The pack-
age follows a functional programming approach with building-block
functions including the main algorithm, the encoding and decoding of
structures as input vectors (degrees of freedom), interfaces to various
codes for loss evaluation, as well as a number of convenience functions.

While aiming at a flexible code where any Python function with a
compatible signature can be used for loss evaluation, we kept materials-
science-related applications in focus. Finding minima of energy or free
energy landscapes is a central problem when trying to describe the
structure and dynamics of systems of atoms, whether periodic (derived
from crystals), nonperiodic (molecules or clusters) or mixed (surfaces,
both cleaved and with adsorbates, crystals with imperfections and so
on). Given the extremely large number of minima involved in such
searches, evolutionary algorithms are particularly appealing because of
their ability to balance exploration and exploitation. Clinamen2 is the
spiritual successor of Clinamen [18], an earlier Python code used for
studying defect structures. It has been rewritten from scratch with an
emphasis on adaptability. To illustrate its flexibility, example applica-
tions are included with the code and available on GitHub. Clinamen2
can interface to density-functional-theory (DFT) codes that are compat-
ible with the atomic simulation environment (ASE) [29]. Interfaces to
GPAW [30], NWChem [31] and VASP [32] are included with the soft-
ware. Additionally, we provide a direct interface to a neural-network
force field (NNFF) surrogate model, exemplified by a search of defect
structures in silicon bulk, an evolution run of Lennard-Jones (LJ) clus-
ters, and an evaluation of standard benchmark functions. In addition
to the main CMA-ES algorithm, Clinamen2 implements several use-
ful features such as covariance matrix decomposition [6,8] and the
BI-Population restart scheme [5]. Clinamen2 utilizes the Dask Python
library [33,34] for distributed computation on CPU and GPU clusters.
We have included an example application that demonstrates the combi-
nation of Dask and the DFT codes NWChem and VASP for investigating
atomistic structures of small silver clusters. Additionally, Clinamen2
provides convenience functions aimed at facilitating the implementa-
tion of applications and the quick evaluation of results, e.g., through
the visualization of the loss trajectory.

2. Background

2.1. Covariance matrix adaptation evolution strategy

At its core, the original CMA-ES samples a population of 𝜆 individ-
uals 𝒙𝑔

𝑘
, 𝑘 = 1, .., 𝜆 for every generation 𝑔 from the multivariate normal

distribution

𝒙
(𝑔)
𝑘

∼

(
𝒎

(𝑔−1),
[
𝜎(𝑔−1)

]2
𝑪

(𝑔−1)
)
, (1)

with distribution mean 𝒎, step size 𝜎 and covariance matrix 𝑪 . Typ-
ically, the user-defined input is limited to the initial mean (founder)
𝒎

(0), step size 𝜎(0) and population size 𝜆, and should be tuned for the
specific problem [3]. Following Ref. [3], the default population size is
set to 𝜆 = 4 + ⌊3 log 𝑑⌋ based on the dimension 𝑑 of the problem. The
advantage of increasing the population size for the investigation of mul-
timodal functions has been demonstrated and different variations have
been proposed [4,35–37].

The covariance matrix is updated by performing the so-called rank-
one and rank-𝜇 updates utilizing evolution paths [3]. As explained in
Ref. [6], direct computation and storage of the covariance matrix 𝐂 can
be avoided by instead performing updates on its decomposition, e.g.,
on the triangular Cholesky factor 𝑨 such that 𝑪 = 𝑨𝑨

𝑇 . In order to
accomplish this, the rank-𝜇 update needs to be decomposed into a series
of rank-one updates. To that end, we follow Ref. [8] and implement the
2

algorithms “Cholesky-CMA-ES” and “rankOneUpdate” defined therein.
Computer Physics Communications 297 (2024) 109065

Fig. 1. The Clinamen2 package structure is divided into CMAES (core algorithm),
RUNNER (functions for distributed computation), UTILS (utilities and tools for
application implementation) with a set of TEST FUNCTIONS and EXAMPLES that
are built utilizing the aforementioned code.

2.2. BI-population restart

In the context of the CMA-ES, a “restart” is a new evolution run,
starting from either the same founder structure, i.e., the initial mean
𝒎

(0) in Eq. (1), as the original run or another randomly generated one
with some parameters changed, e.g., the population size. Here, we uti-
lize the BI-Population CMA-ES (BIPOP-CMA-ES) restart scheme [5,7].
This restart scheme includes two regimes that increase or decrease the
population size with each restart, respectively, starting from the same
founder structure. The first (“large”) restart regime always doubles the
population size to 𝜆large = 2𝑖restart𝜆init , where 𝜆init is the initial popula-
tion size chosen for the problem. The second (“small”) restart scheme,
in contrast, changes the population size to

𝜆small =
⎢⎢⎢⎣𝜆init

(
1
2
𝜆large

𝜆init

)𝑈 [0,1]2⎥⎥⎥⎦ , (2)

and the step size to 𝜎(0)small = 10−2𝑈 [0,1]𝜎(0)init . Here, 𝑈 [0,1] is a random
number uniformly drawn from [0,1].

For every subsequent restart the scheme chooses the regime that
has so far required the smaller number of total loss evaluations, with
each restart running for a set number of generations or function eval-
uations or until one of the defined termination criteria is fulfilled.
Usually, a maximum number of nine restarts in the “large” regime is
performed [5].

3. General structure of Clinamen2

Fig. 1 illustrates the package structure of the Clinamen2 code, which
is divided into four parts: CMA-ES core algorithm (CMAES), distributed
computation (RUNNER), additional functionality (UTILS) and example
applications. The implementation of the CMA-ES core algorithm is prob-
lem agnostic, i.e., an input vector and parameters are passed in and
where these input values come from is of no relevance. Additional
functions provide utilities and tools that can be used to apply the al-

gorithm. A number of examples demonstrating the use of the algorithm

R. Wanzenböck, F. Buchner, P. Kovács et al.

in conjunction with the additional functions is included on GitHub and
described in section 4.

This implementation largely sticks to the principles of functional
programming [38] re-popularized by modern ML frameworks. The two
basic elements are frozen instances of data classes and free-floating pure
functions operating on them. As the name suggests, data classes describe
and hold data in a convenient, structured way. By freezing an instance
of a data class, it becomes immutable. For brevity and in keeping with
common Python usage, we refer to data classes whose instances are au-
tomatically frozen as “frozen data classes”. Pure functions take those
objects as strictly input parameters and, if necessary, construct and re-
turn new objects. The key feature of such functions is that they lack
side effects. Therefore, state keeping and information flow are made
explicit, which greatly simplifies optimization and parallelism. A third
ubiquitous kind of entity, derived from those two, is a closure, i.e., the
combination of a function with a frozen set of environment data con-
trolling its behavior. Closures are typically returned by other functions.

3.1. CMA-ES algorithm

The frozen data classes ALGORITHMPARAMETERS and ALGORITHM-
STATE and related free-floating functions are at the core of the imple-
mentation of the main CMA-ES algorithm. While the ALGORITHMPARA-
METERS are fixed over the course of an evolution, a new instance of
ALGORITHMSTATE, reflecting any changes, including the state of a ran-
dom number generator, is returned by every function operating on it.
For example,

def create_sample_from_state(

parameters: AlgorithmParameters

) -> Callable:

returns a closure with access to all attributes of an ALGORITHMPARAME-
TERS instance. The function created this way then returns a population
of individuals from an ALGORITHMSTATE and the new state reflecting
the sampling when called.

Since the main algorithm is problem agnostic, the means for loss
evaluation have to be made available, e.g., constructed from the pro-
vided building blocks, when setting up an application. Clinamen2
includes a number of functions that create compatible closures to
be used with the CMA-ES implementation. Each of these functions
(CREATE_SAMPLE_AND_*) is tailored to a specific use case, with some
of them utilized in the examples in section 4. For each new generation
a population of individuals needs to be sampled from the ALGORITHM-
STATE and evaluated. This might involve transformations of the input
vector to make it compatible with the provided loss-evaluation func-
tion, which can be as simple as reshaping the input vector or arbitrarily
complex. The simplest way to create sampling and evaluation closures
is

def create_sample_and_sequential_evaluate(

sample_individuals: Callable,

evaluate_loss: Callable,

input_pipeline: Callable = lambda x: x,

) -> Callable:

where in most applications SAMPLE_INDIVIDUALS is the standard func-
tion provided in Clinamen2, EVALUATE_LOSS can be any Python function
with a compatible signature and INPUT_PIPELINE transforms the input
vector as needed. Convenient functions for updating the ALGORITHM-
3

STATE and selected termination criteria are also available.
Computer Physics Communications 297 (2024) 109065

Fig. 2. The code structure of a basic Clinamen2 application. Colored rectan-
gles represent objects or direct user input (arguments), hexagon-like elements
are Python functions and document-style elements are files (either additional
input or output). Red highlights are provided by the user, blue indicates main
algorithm features, and utilities are shown in gray.

For an overview of the code structure of a basic Clinamen2 example
application see Fig. 2. To start with, input has to be provided. This in-
cludes CMA-ES parameters, a founder structure, a function for input
transformation, e.g., reshaping of the degrees of freedom into atom
positions, and a function for loss evaluation. Depending on the use
case the founder structure might be randomly generated at run-time
or read from a file. Next, the building blocks of the core algorithm are
used to set up all objects and closures needed to perform the evolu-
tion. With this, the evolution loop can be started and, again depending
on the problem, the final result, every generation or every nth gener-
ation, is saved. Together with the evolution data saved during setup,
any generation file can be used to continue the evolution from. During
post-processing, the results of the evolution and any additional infor-
mation can be printed to the shell or saved to files. It is often useful to
generate simple trajectory figures to get an idea of how the evolution
progressed. Relevant functions are provided in UTILS.PLOT_FUNCTIONS.

3.2. Distributed computation

For distributed computation, e.g., running CPU-heavy DFT calcu-
lations on a cluster, we rely on the Dask [33,34] Python package. In
that framework, clients register with and submit jobs to a scheduler.
The scheduler then distributes these jobs to suitable workers. Fig. 3
shows a schematic of this interplay between components. The calcula-
tion jobs themselves are implemented utilizing Jinja2 template scripts.
Clinamen2 provides RUNNER.BASIC_RUNNER.FUNCTIONRUNNER, which
runs generic function calls, and RUNNER.BASIC_RUNNER.SCRIPTRUNNER,
which is able to handle the execution of external programs.

The Dask scheduler is started from the command line, with output
and errors written to LOG and LOGERR, respectively:

dask-scheduler

-scheduler-file scheduler_nwchem.json

-interface em2 1>LOG 2>LOGERR

Each worker is then usually submitted to a queuing system, e.g., Slurm,
including the bash command:

dask-worker

-nthreads 1 -nworkers 1

R. Wanzenböck, F. Buchner, P. Kovács et al.

Fig. 3. A schematic of the interplay between components when performing
distributed calculations with Dask. Those provided by the user are highlighted
in red, and blue indicates main algorithm features, with the runner components
in green and utilities shown in gray.

-local-directory ${SOME_SCRATCH_SPACE}

-scheduler-file scheduler_nwchem.json

The Dask client can be also instantiated from Python:

import dask.distributed

dask_client = dask.distributed.Client(

scheduler_file="scheduler_nwchem.json",

)

For an end-to-end example of how Dask is used in Clinamen2, see sec-
tion 4.2 and the associated online documentation and code example in
the GitHub repository.

3.3. Utils

The Clinamen2 code features a suite of utilities (see gray rectangles
in Fig. 1), some directed towards general convenience, while others are
specific to problems or applications. UTILS.FILE_HANDLING provides the
CMAFILEHANDLER with functions for the saving and loading of evolu-
tion and generation data. Utilizing these functions, UTILS.PLOT_FUNC-
TIONS offers an interface to load data pertaining to an evolution run
and a selection of default plots, e.g., loss trajectories.

Additional UTILS packages include STRUCTURE_SETUP, BIPOP_RE-
START and SCRIPT_FUNCTIONS containing, e.g., a default parser for com-
mand line arguments. For more details see the online documentation
and the examples in section 4.

3.4. Checkpointing

In case an evolution was interrupted or additional generations are
desired, a run can easily be resumed from the initial evolution data and
any generation that has been saved to file. The checkpointing feature is
used in the function-trial and LJ examples.

3.5. Interfaces and portability

The modular architecture of Clinamen2 greatly simplifies the use of
individual components or subsets of those. Among other scenarios, this
enables the easy development of new distributed backends, integration
with workflow managers and use of arbitrary calculators. We briefly
explore those possibilities in this subsection.

Although Dask can be deployed on a wide range of HPC and
4

cloud infrastructure, it is conceivable that a different package such as
Computer Physics Communications 297 (2024) 109065

Ray [39] or a lower-level queue manager is already available and op-
timized to run distributed jobs on a given target and that installing a
second one is undesirable. Conveniently for this sort of situation, all the
interaction with Dask is handled through the interface provided by the
abstract RUNNER base class, so to create a different backend it is enough
to subclass it. Moreover, the basic required interface consists in a single
method to submit a new job and another one to fetch a result, meaning
that the new implementation can be completed in a few hundred lines
of code. Note, in particular, that Clinamen2 does not rely on the Dask
features dealing with seamlessly distributed arrays or dataframes.

A more general use case is the inclusion of a Clinamen2 calculation
as a step in a larger workflow, be it a high-throughput exploration of
a library of materials or a single optimization effort. The functional,
stateless design of the package facilitates the integration of individ-
ual components with object-oriented software keeping track of state.
For instance, Clinamen2 can be used to add support for CMA-ES to
the global optimization package AGOX [40] by creating a Clinamen2-
backed SAMPLER class and letting either package handle the evaluation
of configurations. Likewise, integration with workflow managers like
AiiDA [41] or Fireworks [42] can be achieved at different levels: from
using Clinamen2 as a standalone component in charge of the full opti-
mization step to running individual CMA-ES through the corresponding
component’s interface and letting the workflow manager’s queue sys-
tem handle the distributed calculations.

Finally, although we have included very general RUNNER subclasses
to deal with functions and scripts, and we provide an example of use
of the popular ASE [29] CALCULATOR interface available for a plethora
of atomistic programs, other communication channels are easily imple-
mented. A new RUNNER subclass that completes its job through, e.g.,
interprocess communication mechanisms (sockets or pipes) or even an
HTTP request to a REST interface can be quickly written and, as long
as it complies with the interface of the basic class, will be seamlessly
integrated in Clinamen2.

4. Example applications

In the following we exemplify the features of Clinamen2 using stan-
dard benchmark functions and the structures of small silver clusters,
defects in silicon bulk and LJ clusters. The examples can be found
on GitHub and the technical details on the implementation of the ex-
amples in the online documentation. The silicon bulk (section 4.3)
and LJ-cluster (section 4.4) examples require Google JAX [43]. The
DFT code utilized in the investigation of silver clusters (section 4.2)
is NWChem [31], which needs to be installed separately (a variation on
this example using VASP [32] instead is also provided with Clinamen2).

4.1. Benchmark functions

In order to test the validity of the presented CMA-ES implementa-
tion, optimization is performed on benchmark functions following the
choices of Krause et al. in Ref. [8]. The function definitions are given in
Table 1, and Fig. 4 shows the average number of generations required to
arrive at 𝑓 (𝑥) < 10−14 for 50 trial runs per function. Each function was
evaluated for all input dimensions 𝑑 ∈ {4,8,16,32,64,128,256} with
default population size and initial step size 𝜎(0) = 1.0. The initial mean
𝐱 for each run was randomly drawn as 𝑥𝑖 ∈ (0, 𝕀) for the sphere func-
tion and 𝑥𝑖 ∈ [0, 1] for all others.

Furthermore, the Ackley function [44]

𝑓 (𝐱) = − 𝑎 exp
⎛⎜⎜⎝−𝑏

√√√√ 1
𝑑

𝑑∑
𝑖=0

𝑥2
𝑖

⎞⎟⎟⎠
− exp

(
1

𝑑∑
cos

(
𝑐𝑥

))
+ 𝑎+ exp (1) ,

(3)
𝑑
𝑖=0

𝑖

R. Wanzenböck, F. Buchner, P. Kovács et al.

Table 1

Benchmark functions reproduced from Ref. [8].

Label 𝑓 (𝑥)

Cigar 10−6𝑥20 +
𝑑∑
𝑖=1

𝑥2
𝑖

Different Powers
𝑑∑
𝑖=0

|𝑥𝑖|(2+ 10𝑖
𝑑−1

)

Discus 𝑥20 +
𝑑∑
𝑖=1

10−6𝑥2
𝑖

Ellipsoid
𝑑∑
𝑖=0

10
−6𝑖
𝑑−1 𝑥2

𝑖

Rosenbrock
𝑑−1∑
𝑖=0

[
100

(
𝑥𝑖+1 − 𝑥2

𝑖

)2 + (
1 − 𝑥

𝑖

)]
Sphere ||𝐱||2

Fig. 4. The average number of generations required to reach a function value
𝑓 (𝑥) < 10−14 over the dimension of the input vector. The benchmark functions
are listed in Tbl. 1. 50 runs were performed for each combination.

with the common parametrization 𝑎 = 20, 𝑏 = 0.2 and 𝑐 = 2𝜋, was
evaluated for 𝑑 ∈ {128,256,512} and the default population size [3],
performing 50 trial runs for each combination. Twice the default pop-
ulation size was used when the success rate failed to reach 100% for
a problem dimension and, additionally, a third trial was performed for
𝑑 = 512 and 𝜆512 = 3𝜆default .

Here, the founder configurations 𝐱 were generated with the usual
random drawing of 𝑥𝑖 ∈ [−32.768,32.768] and an initial step size of
𝜎(0) = 12.5 was used, i.e. a fifth of the value range [5]. Fig. 5 shows
the success rates and average number of function evaluations for each
investigated combination of dimension and population size. Additional
runs were performed for smaller problem dimensions, all arriving at
100% success rate for default population size. While the CMA-ES per-
forms very well for the small default population sizes, these results
indicate the benefit of larger population sizes on the global optimiza-
tion performance at least for multimodal functions [4]. For example,
the default population size for dimension 𝑑 = 512 is 𝜆512 = 22, with
the success rate of this combination being zero for the presented trial
function. Consequently, increasing the population size parameter can
be a powerful tool for exploring complex loss surfaces, as long as ef-
ficient evaluation is feasible, e.g., by incorporating machine-learned
approaches. From the average number of function evaluations of suc-
cessful runs it can be surmised that fewer generations are needed with
a larger population size, 1485 generations for 𝜆512 = 66 compared to
1900 for 𝜆512 = 44. Therefore, even for the same success rate, the larger
population size may be the more efficient choice, depending on the de-
5

gree of parallelization of the function evaluations.
Computer Physics Communications 297 (2024) 109065

Fig. 5. The success rate for finding the global minimum of the Ackley func-
tion for given input dimensions and population sizes. Lighter colors indicate a
higher success rate. Empty squares indicate that these combinations were not
performed. The small numbers in parentheses show the average loss evaluations
needed to arrive at a successful run. For success rate 0.00 the average over all
runs is shown instead.

4.2. Ag cluster with DFT

To demonstrate how to interface to a DFT code and utilize the dis-
tributed computation capabilities of Dask [33,34], the structure of small
silver clusters is investigated using NWChem [31] and VASP [32] for
loss evaluation. This is not aimed at comparing the performance of the
DFT codes, but at illustrating how different loss-calculation backends
can be interchanged and used analogously.

We employ the workflow described in section 3.2, running as many
worker processes as there are individuals in a generation, with each
worker utilizing 16 CPU cores. This pool of workers registers with the
scheduler which takes care of utilization and job distribution. In the ex-
ample, which can be found on the GitHub repository, the evolution uses
the worker pool exclusively and, while it is also possible to share the
pool amongst evolution runs, this leads to a trade-off between reduced
idle time and increased waiting periods.

Starting from configurations with atoms randomly placed evolution
runs are performed for the Ag5, Ag6 and Ag7 clusters. Running for 350
generations with the default population size, initial step size 𝜎(0) = 1.0Å
and no additional local optimization stable structures in good agree-
ment with literature [45–47] are found. Fig. 6 shows a selection of
results: Ag5 and Ag7 clusters evolved with NWChem starting from ran-
dom positions in a sphere and two configurations of Ag6 utilizing VASP,
starting from random positions within a cube, uniformly distributed and
utilizing PACKMOL, respectively.

4.3. Si bulk with neural-network force field

This example includes the use of a surrogate model for ab-initio cal-
culations, in particular a neural-network force field (NNFF), and biasing
of the initial covariance matrix. In Ref. [18] the authors perform a CMA-
ES evolution on a supercell of pristine Si bulk utilizing DFT and observe
different meta-stable defect structures along the evolution trajectory.
They utilize unsupervised learning to cluster all sampled structures
to then relax a representative selection with DFT. To reproduce these
results, we train a NeuralIL committee [48,49] on a subset of this tra-
jectory data and use it to drive an evolution for 1000 generations on
the same Si supercell containing 64 atoms, with the degrees of freedom
restricted to a sphere with a cutoff radius of 4.0Å. The initial step size
was 𝜎(0) = 0.1Å. The initial covariance matrix 𝑪 (0) was biased accord-
ing to Ref. [18], such that atoms closest to the center of this sphere, the
focus 𝒙𝑓 , are the most volatile()

𝑪

(0) = 𝕀+ diag 𝑐2
𝑟

, (4)

R. Wanzenböck, F. Buchner, P. Kovács et al.

Fig. 6. Low-energy cluster configurations as identified via CMA-ES evolution
without further local optimization. Ag5 (a) and Ag7 (b) starting from random
positions within a sphere and evaluated with NWChem. Ag6 in (c) and (d) eval-
uated with VASP and starting from PACKMOL-generated and uniformly-random
sampled positions within a cube, respectively.

Fig. 7. Both figures show a trajectory (orange solid line) of the average loss,
i.e. the energy per atom, of a population over 350 generations, for the Si
bulk treated with a neural-network force field. The standard deviation within
each generation is highlighted in blue and the CMA-ES step size 𝜎 shown as a
dark-gray dashed line. In the top panel the initial covariance matrix was biased
by a factor ∝ 𝑟−2 and in the lower panel by a Gaussian.

𝑐𝑟(𝑖) =
𝑐𝑟[

1 + ||𝒙(0)
𝑖

− 𝒙
𝑓
||2∕(1Å

)]2 . (5)

We set the hyperparameter 𝑐𝑟 = 20.0. With this, an evolution over 1000
generations completes in a matter of minutes utilizing a laptop and a
single GPU. This statistic highlights the advantage of an accelerated
machine-learning surrogate model with respect to direct DFT calcu-
lations for each configuration, a context in which energy evaluations
overwhelmingly dominate the cost of the optimization process.

For comparison, with all other parameters unchanged, a second evo-
lution run is performed with 𝑪 (0) biased by

𝑐𝑟(𝑖) = 𝑐𝑟 ⋅ exp
⎛⎜⎜⎝−

||𝒙(0)
𝑖

− 𝒙
𝑓
||22

2𝜎2bias

⎞⎟⎟⎠ , (6)

with 𝜎bias = 1.25Å controlling the strength of the decay around focus
𝒙𝑓 . The trajectories of mean loss and step size 𝜎 over the first 350 gen-
erations of both runs are shown in the top and bottom panels of Fig. 7,
respectively. By running a fast local relaxation with the same trained
NNFF and the FIRE [50] algorithm as implemented in the atomic simu-
lation environment (ASE) [29], the extra step of clustering all sampled
6

individuals can be forgone. Instead, the lowest-loss individual of each of
Computer Physics Communications 297 (2024) 109065

Fig. 8. Defects in stoichiometric Si supercells identified by local optimization
of individuals along the evolution trajectory. (a) shows the FFCD configuration
and (b) a Frenkel pair.

Fig. 9. Trajectory (orange solid line) of the average loss of a population over
1092 generations. The standard deviation within each generation is highlighted
in blue and the CMA-ES step size 𝜎 shown as a dark-gray dashed line. The y-axis
focuses on a comparably narrow range to filter outliers and better illustrate the
smaller oscillations in later generations. The structure on the left side is a local
relaxation of generation 553 where the step size is at its lowest. The right-hand-
side structure is the global optimum at generation 1092, without additional
relaxation.

the first 350 generations of the two runs is optimized. We see that both
evolution runs contain structures that belong to loss basins of known
defects, including the four-fold coordinated defect (FFCD) and Frenkel
pair structures (see Fig. 8).

The two biasing functions BIAS_COVARIANCE_MATRIX_R and BIAS_CO-
VARIANCE_MATRIX_GAUSS used in this example are included in UTILS.
STRUCTURE_SETUP, along with additional functions utilizing ASE to cal-
culate distances between atoms. The biased 𝑪 (0) is then transformed by
calling SCIPY.LINALG.CHOLESKY [51].

4.4. Lennard-Jones cluster

LJ clusters [52] are some of the most studied model energy land-
scapes. They combine a formal simplicity and richness of features that
make them ideal candidates for benchmarking optimization algorithms,
including implementations of the CMA-ES [53,54]. In this work we use
the 19-atom LJ cluster to illustrate the use of the implemented BIPOP
restart [5,7] feature as described in section 2.2. For evaluating the
LJ potential we repurpose code used in Ref. [55]. Reference values
are taken from Ref. [52] and the implemented options for generating
founder structures include PACKMOL [56].

We performed a number of evolution runs for different cluster sizes,
varying algorithm settings, founder structures and restart parameters.
The loss trajectory for one of these runs for an LJ cluster of 19 atoms
is shown in Fig. 9. We chose this particular cluster because the number
of degrees of freedom together with the rugged energy landscape pose

a sufficiently difficult problem to necessitate a restart scheme. This spe-

R. Wanzenböck, F. Buchner, P. Kovács et al.

cific evolution arrived at the global minimum [52] for population size
𝜆 = 166, step size 𝜎(0) = 0.0201 (in dimensionless LJ units) and random
seed 45214. The widening of the standard deviation around generation
600 indicates that the algorithm managed to switch to a different loss
basin. To further illustrate this, Fig. 9 shows two structures: the local
relaxation of the best individual in generation 553 (left) and the global
minimum in generation 1092 without further optimization (right). Up-
wards of generation 600 the best individuals predominately relax to the
global minimum.

To get there, the BIPOP evolution performed ten restarts in total,
with the highest population size for restart nine at 𝜆large = 480, i.e. the
fourth of the large restarts. Overall, with the number of large restarts
limited to five, one ninth (5/45) of the BIPOP evolution runs arrived at
the global minimum. Restart strategies are especially useful when ex-
ploring multimodal loss landscapes as demonstrated here. The repeated
searches start from different founder configurations and apply varied
population- and step-size parameters, and greatly increase the diversity
of visited structures by balancing exploration and exploitation [7].

5. Conclusions

We have presented Clinamen2, a versatile implementation of the
Cholesky CMA-ES that provides convenient building block functions for
applying the problem-agnostic core algorithm to various problems. Be-
sides interfacing to, e.g., DFT codes or surrogate models like NNFFs,
any Python function with a compatible signature may be used for loss
evaluation and, therefore, to drive an evolution.

The GitHub repository contains example applications presented in
this manuscript that - together with built-in utilities - enable the user to
apply Clinamen2 to their specific use cases.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The latest version of Clinamen2, along with its documentation, is
available at https://github .com /Madsen -s -research -group /clinamen2 -
public -releases. The version used for this manuscript is registered on
Zenodo with https://doi .org /10 .5281 /zenodo .10143313. Both contain
all the examples and the associated data files.

Acknowledgements

This work was supported by the Austrian Science Fund (FWF) (SFB
F81 TACO).

References

[1] N. Hansen, A. Ostermeier, Adapting arbitrary normal mutation distributions in evo-
lution strategies: the covariance matrix adaptation, in: Proceedings of IEEE Interna-
tional Conference on Evolutionary Computation, 1996, pp. 312–317.

[2] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolu-
tion strategies, Evol. Comput. 9 (2) (2001) 159–195, https://doi .org /10 .1162 /
106365601750190398.

[3] N. Hansen, The CMA evolution strategy: a tutorial, arXiv :1604 .00772, Apr. 2016.
[4] A. Auger, N. Hansen, A restart CMA evolution strategy with increasing popula-

tion size, in: 2005 IEEE Congress on Evolutionary Computation, Vol. 2, 2005,
pp. 1769–1776, vol. 2, iSSN: 1941-0026.

[5] N. Hansen, Benchmarking a BI-population CMA-ES on the BBOB-2009 noisy testbed,
in: Proceedings of the 11th Annual Conference Companion on Genetic and Evolu-
tionary Computation Conference: Late Breaking Papers, GECCO ’09, Association for
Computing Machinery, New York, NY, USA, 2009, pp. 2397–2402.

[6] T. Suttorp, N. Hansen, C. Igel, Efficient covariance matrix update for variable metric
evolution strategies, Mach. Learn. 75 (2) (2009) 167–197, https://doi .org /10 .1007 /
7

s10994 -009 -5102 -1.
Computer Physics Communications 297 (2024) 109065

[7] I. Loshchilov, CMA-ES with restarts for solving CEC 2013 benchmark problems, in:
2013 IEEE Congress on Evolutionary Computation, 2013, pp. 369–376, iSSN: 1941-
0026.

[8] O. Krause, D.R. Arbonès, C. Igel, CMA-ES with optimal covariance update and stor-
age complexity, in: Advances in Neural Information Processing Systems, Vol. 29,
Curran Associates Inc., 2016.

[9] G. Arampatzis, D. Wälchli, P. Weber, H. Rästas, P. Koumoutsakos, (𝜇,𝜆)-CCMA-ES
for constrained optimization with an application in pharmacodynamics, in: Pro-
ceedings of the Platform for Advanced Scientific Computing Conference, PASC ’19,
Association for Computing Machinery, New York, NY, USA, 2019.

[10] Z. Li, Q. Zhang, Variable metric evolution strategies by mutation matrix adaptation,
Inf. Sci. 541 (2020) 136–151, https://doi .org /10 .1016 /j .ins .2020 .05 .091.

[11] R. Ros, N. Hansen, A simple modification in CMA-ES achieving linear time and
space complexity, in: Proceedings of the 10th International Conference on Parallel
Problem Solving from Nature — PPSN X - Volume 5199, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 296–305.

[12] I. Loshchilov, A computationally efficient limited memory CMA-ES for large scale
optimization, in: Proceedings of the 2014 Annual Conference on Genetic and Evolu-
tionary Computation, GECCO ’14, Association for Computing Machinery, New York,
NY, USA, 2014, pp. 397–404.

[13] O. Krause, C. Igel, A more efficient rank-one covariance matrix update for evolution
strategies, in: Proceedings of the 2015 ACM Conference on Foundations of Genetic
Algorithms XIII, Association for Computing Machinery, 2015, pp. 129–136, Confer-
ence date: 17-01-2015 Through 20-01-2015.

[14] R. Biedrzycki, On equivalence of algorithm’s implementations: the CMA-ES algo-
rithm and its five implementations, in: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO ’19, Association for Computing Ma-
chinery, New York, NY, USA, 2019, pp. 247–248.

[15] N. Hansen, Y. Akimoto, P. Baudis, CMA-ES/pycma on Github, Zenodo, https://doi .
org /10 .5281 /zenodo .2559634, Feb. 2019.

[16] N.E. Toklu, T. Atkinson, V. Micka, P. Liskowski, R.K. Srivastava, EvoTorch: scalable
evolutionary computation in Python, arXiv preprint Https://arxiv .org /abs /2302 .
12600, 2023.

[17] R. Hamano, S. Saito, M. Nomura, S. Shirakawa, CMA-ES with margin: lower-
bounding marginal probability for mixed-integer black-box optimization, in: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO ’22,
Association for Computing Machinery, New York, NY, USA, 2022, pp. 639–647.

[18] M. Arrigoni, G.K.H. Madsen, Evolutionary computing and machine learning for dis-
covering of low-energy defect configurations, npj Comput. Mater. 7 (1) (2021) 1–13,
https://doi .org /10 .1038 /s41524 -021 -00537 -1.

[19] J. Blank, K. Deb, pymoo: multi-objective optimization in python, IEEE Access 8
(2020) 89497–89509.

[20] C. Igel, V. Heidrich-Meisner, T. Glasmachers Shark, J. Mach. Learn. Res. 9 (2008)
993–996.

[21] N. Khan, A parallel implementation of the covariance matrix adaptation evolution
strategy, Tech. Rep. arXiv :1805 .11201 [cs .math], May 2018, type: article, https://
doi .org /10 .48550 /arXiv .1805 .11201.

[22] M.K. Heris, CMA-ES in MATLAB, 2015.
[23] A.M. Vincent, P. Jidesh, An improved hyperparameter optimization framework

for AutoML systems using evolutionary algorithms, Sci. Rep. 13 (1) (2023) 4737,
https://doi .org /10 .1038 /s41598 -023 -32027 -3.

[24] T. Sato, K. Watanabe, An evolutional topology optimization of electric machines for
local shape modification and visualization of sensitivity distribution based on CMA-
ES, IEEJ Trans. Electr. Electron. Eng. 18 (2) (2023) 286–293, https://doi .org /10 .
1002 /tee .23721.

[25] E.R. Claussen, P.D. Renfrew, C.L. Müller, K. Drew, CMA-ES-Rosetta: blackbox opti-
mization algorithm traverses rugged peptide docking energy landscapes, Tech. Rep.,
type: article, https://doi .org /10 .1101 /2022 .12 .19 .521113, Dec. 2022.

[26] R. Wanzenböck, M. Arrigoni, S. Bichelmaier, F. Buchner, J. Carrete, G.K.H. Madsen,
Neural-network-backed evolutionary search for srtio3(110) surface reconstructions,
Digit. Discov. 1 (2022) 703–710, https://doi .org /10 .1039 /D2DD00072E.

[27] T.P. Baldão, M.R.O.A. Maximo, T. Yoneyama, Optimizing univector field navigation
parameters using cma-es, in: 2021 Latin American Robotics Symposium (LARS),
2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in
Education (WRE), 2021, pp. 318–323.

[28] Y. Nagata, The lens design using the CMA-ES algorithm, in: K. Deb (Ed.), Genetic and
Evolutionary Computation – GECCO 2004, in: Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2004, pp. 1189–1200.

[29] A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, J.
Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P.B. Jensen,
J. Kermode, J.R. Kitchin, E.L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J.B.
Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz,
O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng,
K.W. Jacobsen, The atomic simulation environment—a Python library for working
with atoms, J. Phys. Condens. Matter 29 (27) (2017) 273002, https://doi .org /10 .
1088 /1361 -648X /aa680e.

[30] A.H. Larsen, M. Vanin, J.J. Mortensen, K.S. Thygesen, K.W. Jacobsen, Localized
atomic basis set in the projector augmented wave method, Phys. Rev. B 80 (19)

(2009) 195112, https://doi .org /10 .1103 /PhysRevB .80 .195112.

https://github.com/Madsen-s-research-group/clinamen2-public-releases
https://github.com/Madsen-s-research-group/clinamen2-public-releases
https://doi.org/10.5281/zenodo.10143313
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib52B6EF7BBB6DFF429E8C361819D2677Bs1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib52B6EF7BBB6DFF429E8C361819D2677Bs1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib52B6EF7BBB6DFF429E8C361819D2677Bs1
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib51CFA5BAB50D8704E433E942BB1D9447s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibFC68CAED639F67FA6C439AC71D26ED8Ds1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibFC68CAED639F67FA6C439AC71D26ED8Ds1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibFC68CAED639F67FA6C439AC71D26ED8Ds1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib2E8BE339387441A4367E2CE572A955C5s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib2E8BE339387441A4367E2CE572A955C5s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib2E8BE339387441A4367E2CE572A955C5s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib2E8BE339387441A4367E2CE572A955C5s1
https://doi.org/10.1007/s10994-009-5102-1
https://doi.org/10.1007/s10994-009-5102-1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibCD24E346081F8990C177643A27B3082Ds1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibCD24E346081F8990C177643A27B3082Ds1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibCD24E346081F8990C177643A27B3082Ds1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib98B943D64D82C6B6F78304FD4592345As1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib98B943D64D82C6B6F78304FD4592345As1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib98B943D64D82C6B6F78304FD4592345As1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibC1B276F5BCDB8876A280FF7CDE6155A8s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibC1B276F5BCDB8876A280FF7CDE6155A8s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibC1B276F5BCDB8876A280FF7CDE6155A8s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibC1B276F5BCDB8876A280FF7CDE6155A8s1
https://doi.org/10.1016/j.ins.2020.05.091
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib44118529CF6966CCC0BCABF7EA7BFD9Bs1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib44118529CF6966CCC0BCABF7EA7BFD9Bs1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib44118529CF6966CCC0BCABF7EA7BFD9Bs1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib44118529CF6966CCC0BCABF7EA7BFD9Bs1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib252D88AD16F076E2A9A0D9A054FEFA49s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib252D88AD16F076E2A9A0D9A054FEFA49s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib252D88AD16F076E2A9A0D9A054FEFA49s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib252D88AD16F076E2A9A0D9A054FEFA49s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibB25A5797ED8B22A2B1F3CC18AFC27776s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibB25A5797ED8B22A2B1F3CC18AFC27776s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibB25A5797ED8B22A2B1F3CC18AFC27776s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibB25A5797ED8B22A2B1F3CC18AFC27776s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib089D6A3176E6D8D9DFC1154E4A6EB630s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib089D6A3176E6D8D9DFC1154E4A6EB630s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib089D6A3176E6D8D9DFC1154E4A6EB630s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib089D6A3176E6D8D9DFC1154E4A6EB630s1
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://arxiv.org/abs/2302.12600
https://arxiv.org/abs/2302.12600
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib0377C9CEBDDFD9BF64DC4DAA03A14482s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib0377C9CEBDDFD9BF64DC4DAA03A14482s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib0377C9CEBDDFD9BF64DC4DAA03A14482s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib0377C9CEBDDFD9BF64DC4DAA03A14482s1
https://doi.org/10.1038/s41524-021-00537-1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib27EE8C61A4479A6BF526E4BE8AAF53BDs1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib27EE8C61A4479A6BF526E4BE8AAF53BDs1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib6928F92F0F2EE9D04D9D204B4D733AFEs1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib6928F92F0F2EE9D04D9D204B4D733AFEs1
https://doi.org/10.48550/arXiv.1805.11201
https://doi.org/10.48550/arXiv.1805.11201
https://doi.org/10.1038/s41598-023-32027-3
https://doi.org/10.1002/tee.23721
https://doi.org/10.1002/tee.23721
https://doi.org/10.1101/2022.12.19.521113
https://doi.org/10.1039/D2DD00072E
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib55F7F64C5E536A5EEB71C80C1E4245C7s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib55F7F64C5E536A5EEB71C80C1E4245C7s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib55F7F64C5E536A5EEB71C80C1E4245C7s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib55F7F64C5E536A5EEB71C80C1E4245C7s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib67A97DEAABD3ECAFB4B61A855BDDD372s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib67A97DEAABD3ECAFB4B61A855BDDD372s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib67A97DEAABD3ECAFB4B61A855BDDD372s1
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1103/PhysRevB.80.195112

R. Wanzenböck, F. Buchner, P. Kovács et al.

[31] E. Aprà, E.J. Bylaska, W.A. de Jong, N. Govind, K. Kowalski, T.P. Straatsma, M.
Valiev, H.J.J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F.W. Aquino, R. Atta-
Fynn, J. Autschbach, N.P. Bauman, J.C. Becca, D.E. Bernholdt, K. Bhaskaran-Nair,
S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cauët, Y. Chen, G.N.
Chuev, C.J. Cramer, J. Daily, M.J.O. Deegan, T.H. Dunning, M. Dupuis, K.G. Dyall,
G.I. Fann, S.A. Fischer, A. Fonari, H. Früchtl, L. Gagliardi, J. Garza, N. Gawande, S.
Ghosh, K. Glaesemann, A.W. Götz, J. Hammond, V. Helms, E.D. Hermes, K. Hirao, S.
Hirata, M. Jacquelin, L. Jensen, B.G. Johnson, H. Jónsson, R.A. Kendall, M. Klemm,
R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Krishnan, Z. Lin, R.D. Lins, R.J.
Littlefield, A.J. Logsdail, K. Lopata, W. Ma, A.V. Marenich, J. Martin del Campo,
D. Mejia-Rodriguez, J.E. Moore, J.M. Mullin, T. Nakajima, D.R. Nascimento, J.A.
Nichols, P.J. Nichols, J. Nieplocha, A. Otero-de-la Roza, B. Palmer, A. Panyala, T.
Pirojsirikul, B. Peng, R. Peverati, J. Pittner, L. Pollack, R.M. Richard, P. Sadayappan,
G.C. Schatz, W.A. Shelton, D.W. Silverstein, D.M.A. Smith, T.A. Soares, D. Song, M.
Swart, H.L. Taylor, G.S. Thomas, V. Tipparaju, D.G. Truhlar, K. Tsemekhman, T.
Van Voorhis, A. Vázquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K.D. Vogiatzis,
D. Wang, J.H. Weare, M.J. Williamson, T.L. Windus, K. Woliński, A.T. Wong, Q.
Wu, C. Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, R.J. Harrison, Nwchem: past,
present, and future, J. Chem. Phys. 152 (18) (2020) 184102, https://doi .org /10 .
1063 /5 .0004997.

[32] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy cal-
culations using a plane-wave basis set, Phys. Rev. B 54 (16) (1996) 11169–11186,
https://doi .org /10 .1103 /PhysRevB .54 .11169.

[33] M. Rocklin, Dask: parallel computation with blocked algorithms and task schedul-
ing, in: K. Huff, J. Bergstra (Eds.), Proceedings of the 14th Python in Science
Conference, 2015, pp. 130–136.

[34] Dask Development Team, Dask: Library for dynamic task scheduling, 2016.
[35] G. Jastrebski, D. Arnold, Improving evolution strategies through active covariance

matrix adaptation, in: 2006 IEEE International Conference on Evolutionary Compu-
tation, 2006, pp. 2814–2821, iSSN: 1941-0026.

[36] M. Preuss, Niching the CMA-ES via nearest-better clustering, in: Proceedings of
the 12th Annual Conference Companion on Genetic and Evolutionary Computa-
tion, GECCO ’10, Association for Computing Machinery, New York, NY, USA, 2010,
pp. 1711–1718.

[37] I. Loshchilov, M. Schoenauer, M. Sebag, Alternative restart strategies for CMA-ES, in:
C.A.C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, M. Pavone (Eds.), Parallel
Problem Solving from Nature - PPSN XII, in: Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2012, pp. 296–305.

[38] D. Mertz, Functional Programming in Python, O’Reilly Media, Inc., Sebastopol,
2015.

[39] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, W. Paul, M.I.
Jordan, I. Stoica, Ray: a distributed framework for emerging AI applications, arXiv
preprint Https://arxiv .org /abs /1712 .05889, 2017.

[40] M.-P.V. Christiansen, N. Rønne, B. Hammer, Atomistic global optimization X: a
Python package for optimization of atomistic structures, J. Chem. Phys. 157 (2022)
054701, https://doi .org /10 .1063 /5 .0094165.

[41] M. Uhrin, S.P. Huber, J. Yu, N. Marzari, G. Pizzi, Workflows in AiiDA: engineer-
ing a high-throughput, event-based engine for robust and modular computational
workflows, Comput. Mater. Sci. 187 (2021) 110086, https://doi .org /10 .1016 /j .
commatsci .2020 .110086.

[42] A. Jain, S.P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto,
G.-M. Rignanese, G. Hautier, D. Gunter, K.A. Persson, FireWorks: a dynamic work-
flow system designed for high-throughput applications, Concurr. Comput., Pract.
Exp. 27 (2015) 5037–5059, https://doi .org /10 .1002 /cpe .3505.
8

Computer Physics Communications 297 (2024) 109065

[43] J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Nec-
ula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: composable
transformations of Python+NumPy programs, 2018.

[44] D.H. Ackley, The model, in: A Connectionist Machine for Genetic Hillclimbing,
Springer, 1987, pp. 29–70.

[45] R. Fournier, Theoretical study of the structure of silver clusters, J. Chem. Phys.
115 (5) (2001) 2165–2177, https://doi .org /10 .1063 /1 .1383288.

[46] S. Garg, N. Kaur, N. Goel, M. Molayem, V.G. Grigoryan, M. Springborg, Properties
of naked silver clusters with up to 100 atoms as found with embedded-atom and
density-functional calculations, Molecules 28 (7) (2023), https://doi .org /10 .3390 /
molecules28073266.

[47] S. Manna, Y. Wang, A. Hernandez, P. Lile, S. Liu, T. Mueller, A database of low-
energy atomically precise nanoclusters, Sci. Data 10 (1) (2023) 308, https://doi .
org /10 .1038 /s41597 -023 -02200 -4, Publisher: Nature Publishing Group.

[48] H. Montes-Campos, J. Carrete, S. Bichelmaier, L.M. Varela, G.K.H. Madsen, A dif-
ferentiable neural-network force field for ionic liquids, J. Chem. Inf. Model. 62 (1)
(2022) 88–101, https://doi .org /10 .1021 /acs .jcim .1c01380.

[49] J. Carrete, H. Montes-Campos, R. Wanzenböck, E. Heid, G.K.H. Madsen, Deep en-
sembles vs committees for uncertainty estimation in neural-network force fields:
comparison and application to active learning, J. Chem. Phys. 158 (2023) 204801,
https://doi .org /10 .1063 /5 .0146905.

[50] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural relaxation
made simple, Phys. Rev. Lett. 97 (17) (2006) 170201, https://doi .org /10 .1103 /
PhysRevLett .97 .170201.

[51] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E.
Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wil-
son, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J.
Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R.
Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro,
F. Pedregosa, P. van Mulbregt, SciPy 1.0 contributors, SciPy 1.0: fundamental algo-
rithms for scientific computing in Python, Nat. Methods 17 (2020) 261–272, https://
doi .org /10 .1038 /s41592 -019 -0686 -2.

[52] D.J. Wales, J.P.K. Doye, Global optimization by basin-hopping and the lowest energy
structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A
101 (28) (1997) 5111–5116, https://doi .org /10 .1021 /jp970984n.

[53] T. Schaul, T. Glasmachers, J. Schmidhuber, High dimensions and heavy tails for nat-
ural evolution strategies, in: Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’11, Association for Computing Machinery,
New York, NY, USA, 2011, pp. 845–852.

[54] C.L. Müller, I.F. Sbalzarini, Energy landscapes of atomic clusters as black box op-
timization benchmarks, Evol. Comput. 20 (4) (2012) 543–573, https://doi .org /10 .
1162 /EVCO _a _00086.

[55] S. Bichelmaier, J. Carrete, G.K.H. Madsen, Evaluating the efficiency of power-series
expansions as model potentials for finite-temperature atomistic calculations, Int. J.
Quant. Chem. 123 (11) (2023) e27095, https://doi .org /10 .1002 /qua .27095.

[56] L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for build-
ing initial configurations for molecular dynamics simulations, J. Comput. Chem.
30 (13) (2009) 2157–2164, https://doi .org /10 .1002 /jcc .21224.

https://doi.org/10.1063/5.0004997
https://doi.org/10.1063/5.0004997
https://doi.org/10.1103/PhysRevB.54.11169
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib1E11E0566D038C9EC698F7095948828Es1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib1E11E0566D038C9EC698F7095948828Es1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib1E11E0566D038C9EC698F7095948828Es1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibD3F505FE764DD8ADB3E5513128CB4BE7s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibD3F505FE764DD8ADB3E5513128CB4BE7s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibD3F505FE764DD8ADB3E5513128CB4BE7s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibD9FABB1028263940AC46327DD5F61113s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibD9FABB1028263940AC46327DD5F61113s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibD9FABB1028263940AC46327DD5F61113s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibD9FABB1028263940AC46327DD5F61113s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib570EF3E00F0DEEBFE3093FE713AAD225s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib570EF3E00F0DEEBFE3093FE713AAD225s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib570EF3E00F0DEEBFE3093FE713AAD225s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib570EF3E00F0DEEBFE3093FE713AAD225s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib2638C313F8D3BBDB7576ABBA0366445Fs1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bib2638C313F8D3BBDB7576ABBA0366445Fs1
https://arxiv.org/abs/1712.05889
https://doi.org/10.1063/5.0094165
https://doi.org/10.1016/j.commatsci.2020.110086
https://doi.org/10.1016/j.commatsci.2020.110086
https://doi.org/10.1002/cpe.3505
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibA3718DB7CB40F95EF9460B0D135BC57Fs1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibA3718DB7CB40F95EF9460B0D135BC57Fs1
https://doi.org/10.1063/1.1383288
https://doi.org/10.3390/molecules28073266
https://doi.org/10.3390/molecules28073266
https://doi.org/10.1038/s41597-023-02200-4
https://doi.org/10.1038/s41597-023-02200-4
https://doi.org/10.1021/acs.jcim.1c01380
https://doi.org/10.1063/5.0146905
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1021/jp970984n
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibA0F9A1A3A82289B865C36FB791064111s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibA0F9A1A3A82289B865C36FB791064111s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibA0F9A1A3A82289B865C36FB791064111s1
http://refhub.elsevier.com/S0010-4655(23)00410-1/bibA0F9A1A3A82289B865C36FB791064111s1
https://doi.org/10.1162/EVCO_a_00086
https://doi.org/10.1162/EVCO_a_00086
https://doi.org/10.1002/qua.27095
https://doi.org/10.1002/jcc.21224

	Clinamen2: Functional-style evolutionary optimization in Python for atomistic structure searches
	1 Introduction
	2 Background
	2.1 Covariance matrix adaptation evolution strategy
	2.2 BI-population restart

	3 General structure of Clinamen2
	3.1 CMA-ES algorithm
	3.2 Distributed computation
	3.3 Utils
	3.4 Checkpointing
	3.5 Interfaces and portability

	4 Example applications
	4.1 Benchmark functions
	4.2 Ag cluster with DFT
	4.3 Si bulk with neural-network force field
	4.4 Lennard-Jones cluster

	5 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

