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Clinamen2 is a versatile functional-style Python implementation of the covariance matrix adaptation evolution 
strategy (CMA-ES) utilizing Cholesky decomposition. On top of a problem-agnostic core algorithm, the software 
package offers a suite of utilities and library code enabling applications to important atomistic structure searches. 
Features include massively distributed computation and the BI-Population restart scheme. This article details 
the general code structure and introduces examples that illustrate some relevant applications for the materials 
science and chemistry worlds, including interfacing to density-functional-theory codes and machine-learned 
surrogate models. The functional design renders the code modular and adaptable, and makes the creation of 
interfaces to other atomistic software straightforward.

Program summary

Program Title: Clinamen2
CPC Library link to program files: https://doi .org /10 .17632 /x7syr2txsd .1
Developer’s repository link: https://github .com /Madsen -s -research -group /clinamen2 -public -releases
Code Ocean capsule: https://codeocean .com /capsule /4950229
Licensing provisions: Apache-2.0
Programming language: Python
Supplementary material:

Nature of problem: Find optimal atomistic structures retaining full flexibility in the choice of the optimization 
target, the methodological approach and its implementation (e.g. CPU- vs. GPU-heavy calculations). Enable 
interfacing with relevant software, including but not limited to density-functional-theory (DFT) codes and 
machine-learning (ML) solutions.
Solution method: The covariance matrix adaptation evolution strategy (CMA-ES) algorithm is implemented using 
Cholesky decompositions for efficiency. The core algorithm and application examples for specific problems are 
implemented in functional-style Python free of side effects, with data classes to keep track of the state of the 
evolution. Dask is used for job control to enable highly distributed workflows. Advanced strategies like BI-
Population CMA-ES are easy to implement and illustrated in the examples.
1. Introduction

The covariance matrix adaptation evolution strategy (CMA-ES) [1–
3] is a powerful and efficient tool for gradient-free optimization of 
high-dimensional problems, with a limited set of problem-specific hy-
perparameters. The main algorithm is based on drawing samples from 
a continuously updated multivariate normal distribution and has been 
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extended and refined following different approaches, e.g., focusing on 
restarts with varying population and step sizes for optimizing multi-
modal functions [4–10]. Furthermore, much effort has gone into the 
advancement of the fundamental update scheme and the comparison of 
different implementations [6,8,11–14]. There are several CMA-ES codes 
available [15–22], often tailored to specific problems, and numerous 
applications to different subject matters [18,23–28].
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The Python package Clinamen2 was developed to provide a versatile 
and extensible implementation of the CMA-ES. The wider aim was to 
offer the building blocks needed for a wide range of problems. The pack-
age follows a functional programming approach with building-block 
functions including the main algorithm, the encoding and decoding of 
structures as input vectors (degrees of freedom), interfaces to various 
codes for loss evaluation, as well as a number of convenience functions.

While aiming at a flexible code where any Python function with a 
compatible signature can be used for loss evaluation, we kept materials-
science-related applications in focus. Finding minima of energy or free 
energy landscapes is a central problem when trying to describe the 
structure and dynamics of systems of atoms, whether periodic (derived 
from crystals), nonperiodic (molecules or clusters) or mixed (surfaces, 
both cleaved and with adsorbates, crystals with imperfections and so 
on). Given the extremely large number of minima involved in such 
searches, evolutionary algorithms are particularly appealing because of 
their ability to balance exploration and exploitation. Clinamen2 is the 
spiritual successor of Clinamen [18], an earlier Python code used for 
studying defect structures. It has been rewritten from scratch with an 
emphasis on adaptability. To illustrate its flexibility, example applica-
tions are included with the code and available on GitHub. Clinamen2 
can interface to density-functional-theory (DFT) codes that are compat-
ible with the atomic simulation environment (ASE) [29]. Interfaces to 
GPAW [30], NWChem [31] and VASP [32] are included with the soft-
ware. Additionally, we provide a direct interface to a neural-network 
force field (NNFF) surrogate model, exemplified by a search of defect 
structures in silicon bulk, an evolution run of Lennard-Jones (LJ) clus-
ters, and an evaluation of standard benchmark functions. In addition 
to the main CMA-ES algorithm, Clinamen2 implements several use-
ful features such as covariance matrix decomposition [6,8] and the 
BI-Population restart scheme [5]. Clinamen2 utilizes the Dask Python 
library [33,34] for distributed computation on CPU and GPU clusters. 
We have included an example application that demonstrates the combi-
nation of Dask and the DFT codes NWChem and VASP for investigating 
atomistic structures of small silver clusters. Additionally, Clinamen2 
provides convenience functions aimed at facilitating the implementa-
tion of applications and the quick evaluation of results, e.g., through 
the visualization of the loss trajectory.

2. Background

2.1. Covariance matrix adaptation evolution strategy

At its core, the original CMA-ES samples a population of 𝜆 individ-
uals 𝒙𝑔

𝑘
, 𝑘 = 1, .., 𝜆 for every generation 𝑔 from the multivariate normal 

distribution

𝒙
(𝑔)
𝑘

∼

(
𝒎

(𝑔−1),
[
𝜎(𝑔−1)

]2
𝑪

(𝑔−1)
)
, (1)

with distribution mean 𝒎, step size 𝜎 and covariance matrix 𝑪 . Typ-
ically, the user-defined input is limited to the initial mean (founder) 
𝒎

(0), step size 𝜎(0) and population size 𝜆, and should be tuned for the 
specific problem [3]. Following Ref. [3], the default population size is 
set to 𝜆 = 4 + ⌊3 log 𝑑⌋ based on the dimension 𝑑 of the problem. The 
advantage of increasing the population size for the investigation of mul-
timodal functions has been demonstrated and different variations have 
been proposed [4,35–37].

The covariance matrix is updated by performing the so-called rank-
one and rank-𝜇 updates utilizing evolution paths [3]. As explained in 
Ref. [6], direct computation and storage of the covariance matrix 𝐂 can 
be avoided by instead performing updates on its decomposition, e.g., 
on the triangular Cholesky factor 𝑨 such that 𝑪 = 𝑨𝑨

𝑇 . In order to 
accomplish this, the rank-𝜇 update needs to be decomposed into a series 
of rank-one updates. To that end, we follow Ref. [8] and implement the 
2

algorithms “Cholesky-CMA-ES” and “rankOneUpdate” defined therein.
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Fig. 1. The Clinamen2 package structure is divided into CMAES (core algorithm),
RUNNER (functions for distributed computation), UTILS (utilities and tools for 
application implementation) with a set of TEST FUNCTIONS and EXAMPLES that 
are built utilizing the aforementioned code.

2.2. BI-population restart

In the context of the CMA-ES, a “restart” is a new evolution run, 
starting from either the same founder structure, i.e., the initial mean 
𝒎

(0) in Eq. (1), as the original run or another randomly generated one 
with some parameters changed, e.g., the population size. Here, we uti-
lize the BI-Population CMA-ES (BIPOP-CMA-ES) restart scheme [5,7]. 
This restart scheme includes two regimes that increase or decrease the 
population size with each restart, respectively, starting from the same 
founder structure. The first (“large”) restart regime always doubles the 
population size to 𝜆large = 2𝑖restart𝜆init , where 𝜆init is the initial popula-
tion size chosen for the problem. The second (“small”) restart scheme, 
in contrast, changes the population size to

𝜆small =
⎢⎢⎢⎣𝜆init

(
1
2
𝜆large

𝜆init

)𝑈 [0,1]2⎥⎥⎥⎦ , (2)

and the step size to 𝜎(0)small = 10−2𝑈 [0,1]𝜎(0)init . Here, 𝑈 [0,1] is a random 
number uniformly drawn from [0,1].

For every subsequent restart the scheme chooses the regime that 
has so far required the smaller number of total loss evaluations, with 
each restart running for a set number of generations or function eval-
uations or until one of the defined termination criteria is fulfilled. 
Usually, a maximum number of nine restarts in the “large” regime is 
performed [5].

3. General structure of Clinamen2

Fig. 1 illustrates the package structure of the Clinamen2 code, which 
is divided into four parts: CMA-ES core algorithm (CMAES), distributed 
computation (RUNNER), additional functionality (UTILS) and example 
applications. The implementation of the CMA-ES core algorithm is prob-
lem agnostic, i.e., an input vector and parameters are passed in and 
where these input values come from is of no relevance. Additional 
functions provide utilities and tools that can be used to apply the al-

gorithm. A number of examples demonstrating the use of the algorithm 
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in conjunction with the additional functions is included on GitHub and 
described in section 4.

This implementation largely sticks to the principles of functional 
programming [38] re-popularized by modern ML frameworks. The two 
basic elements are frozen instances of data classes and free-floating pure 
functions operating on them. As the name suggests, data classes describe 
and hold data in a convenient, structured way. By freezing an instance 
of a data class, it becomes immutable. For brevity and in keeping with 
common Python usage, we refer to data classes whose instances are au-
tomatically frozen as “frozen data classes”. Pure functions take those 
objects as strictly input parameters and, if necessary, construct and re-
turn new objects. The key feature of such functions is that they lack 
side effects. Therefore, state keeping and information flow are made 
explicit, which greatly simplifies optimization and parallelism. A third 
ubiquitous kind of entity, derived from those two, is a closure, i.e., the 
combination of a function with a frozen set of environment data con-
trolling its behavior. Closures are typically returned by other functions.

3.1. CMA-ES algorithm

The frozen data classes ALGORITHMPARAMETERS and ALGORITHM-
STATE and related free-floating functions are at the core of the imple-
mentation of the main CMA-ES algorithm. While the ALGORITHMPARA-
METERS are fixed over the course of an evolution, a new instance of
ALGORITHMSTATE, reflecting any changes, including the state of a ran-
dom number generator, is returned by every function operating on it. 
For example,

def create_sample_from_state(

parameters: AlgorithmParameters

) -> Callable:

returns a closure with access to all attributes of an ALGORITHMPARAME-
TERS instance. The function created this way then returns a population 
of individuals from an ALGORITHMSTATE and the new state reflecting 
the sampling when called.

Since the main algorithm is problem agnostic, the means for loss 
evaluation have to be made available, e.g., constructed from the pro-
vided building blocks, when setting up an application. Clinamen2 
includes a number of functions that create compatible closures to 
be used with the CMA-ES implementation. Each of these functions 
(CREATE_SAMPLE_AND_*) is tailored to a specific use case, with some 
of them utilized in the examples in section 4. For each new generation 
a population of individuals needs to be sampled from the ALGORITHM-
STATE and evaluated. This might involve transformations of the input 
vector to make it compatible with the provided loss-evaluation func-
tion, which can be as simple as reshaping the input vector or arbitrarily 
complex. The simplest way to create sampling and evaluation closures 
is

def create_sample_and_sequential_evaluate(

sample_individuals: Callable,

evaluate_loss: Callable,

input_pipeline: Callable = lambda x: x,

) -> Callable:

where in most applications SAMPLE_INDIVIDUALS is the standard func-
tion provided in Clinamen2, EVALUATE_LOSS can be any Python function 
with a compatible signature and INPUT_PIPELINE transforms the input 
vector as needed. Convenient functions for updating the ALGORITHM-
3

STATE and selected termination criteria are also available.
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Fig. 2. The code structure of a basic Clinamen2 application. Colored rectan-
gles represent objects or direct user input (arguments), hexagon-like elements 
are Python functions and document-style elements are files (either additional 
input or output). Red highlights are provided by the user, blue indicates main 
algorithm features, and utilities are shown in gray.

For an overview of the code structure of a basic Clinamen2 example 
application see Fig. 2. To start with, input has to be provided. This in-
cludes CMA-ES parameters, a founder structure, a function for input 
transformation, e.g., reshaping of the degrees of freedom into atom 
positions, and a function for loss evaluation. Depending on the use 
case the founder structure might be randomly generated at run-time 
or read from a file. Next, the building blocks of the core algorithm are 
used to set up all objects and closures needed to perform the evolu-
tion. With this, the evolution loop can be started and, again depending 
on the problem, the final result, every generation or every nth gener-
ation, is saved. Together with the evolution data saved during setup, 
any generation file can be used to continue the evolution from. During 
post-processing, the results of the evolution and any additional infor-
mation can be printed to the shell or saved to files. It is often useful to 
generate simple trajectory figures to get an idea of how the evolution 
progressed. Relevant functions are provided in UTILS.PLOT_FUNCTIONS.

3.2. Distributed computation

For distributed computation, e.g., running CPU-heavy DFT calcu-
lations on a cluster, we rely on the Dask [33,34] Python package. In 
that framework, clients register with and submit jobs to a scheduler. 
The scheduler then distributes these jobs to suitable workers. Fig. 3
shows a schematic of this interplay between components. The calcula-
tion jobs themselves are implemented utilizing Jinja2 template scripts. 
Clinamen2 provides RUNNER.BASIC_RUNNER.FUNCTIONRUNNER, which 
runs generic function calls, and RUNNER.BASIC_RUNNER.SCRIPTRUNNER, 
which is able to handle the execution of external programs.

The Dask scheduler is started from the command line, with output 
and errors written to LOG and LOGERR, respectively:

dask-scheduler

-scheduler-file scheduler_nwchem.json

-interface em2 1>LOG 2>LOGERR

Each worker is then usually submitted to a queuing system, e.g., Slurm, 
including the bash command:

dask-worker

-nthreads 1 -nworkers 1
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Fig. 3. A schematic of the interplay between components when performing 
distributed calculations with Dask. Those provided by the user are highlighted 
in red, and blue indicates main algorithm features, with the runner components 
in green and utilities shown in gray.

-local-directory ${SOME_SCRATCH_SPACE}

-scheduler-file scheduler_nwchem.json

The Dask client can be also instantiated from Python:

import dask.distributed

dask_client = dask.distributed.Client(

scheduler_file="scheduler_nwchem.json",

)

For an end-to-end example of how Dask is used in Clinamen2, see sec-
tion 4.2 and the associated online documentation and code example in 
the GitHub repository.

3.3. Utils

The Clinamen2 code features a suite of utilities (see gray rectangles 
in Fig. 1), some directed towards general convenience, while others are 
specific to problems or applications. UTILS.FILE_HANDLING provides the
CMAFILEHANDLER with functions for the saving and loading of evolu-
tion and generation data. Utilizing these functions, UTILS.PLOT_FUNC-
TIONS offers an interface to load data pertaining to an evolution run 
and a selection of default plots, e.g., loss trajectories.

Additional UTILS packages include STRUCTURE_SETUP, BIPOP_RE-
START and SCRIPT_FUNCTIONS containing, e.g., a default parser for com-
mand line arguments. For more details see the online documentation 
and the examples in section 4.

3.4. Checkpointing

In case an evolution was interrupted or additional generations are 
desired, a run can easily be resumed from the initial evolution data and 
any generation that has been saved to file. The checkpointing feature is 
used in the function-trial and LJ examples.

3.5. Interfaces and portability

The modular architecture of Clinamen2 greatly simplifies the use of 
individual components or subsets of those. Among other scenarios, this 
enables the easy development of new distributed backends, integration 
with workflow managers and use of arbitrary calculators. We briefly 
explore those possibilities in this subsection.

Although Dask can be deployed on a wide range of HPC and 
4

cloud infrastructure, it is conceivable that a different package such as 
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Ray [39] or a lower-level queue manager is already available and op-
timized to run distributed jobs on a given target and that installing a 
second one is undesirable. Conveniently for this sort of situation, all the 
interaction with Dask is handled through the interface provided by the 
abstract RUNNER base class, so to create a different backend it is enough 
to subclass it. Moreover, the basic required interface consists in a single 
method to submit a new job and another one to fetch a result, meaning 
that the new implementation can be completed in a few hundred lines 
of code. Note, in particular, that Clinamen2 does not rely on the Dask 
features dealing with seamlessly distributed arrays or dataframes.

A more general use case is the inclusion of a Clinamen2 calculation 
as a step in a larger workflow, be it a high-throughput exploration of 
a library of materials or a single optimization effort. The functional, 
stateless design of the package facilitates the integration of individ-
ual components with object-oriented software keeping track of state. 
For instance, Clinamen2 can be used to add support for CMA-ES to 
the global optimization package AGOX [40] by creating a Clinamen2-
backed SAMPLER class and letting either package handle the evaluation 
of configurations. Likewise, integration with workflow managers like 
AiiDA [41] or Fireworks [42] can be achieved at different levels: from 
using Clinamen2 as a standalone component in charge of the full opti-
mization step to running individual CMA-ES through the corresponding 
component’s interface and letting the workflow manager’s queue sys-
tem handle the distributed calculations.

Finally, although we have included very general RUNNER subclasses 
to deal with functions and scripts, and we provide an example of use 
of the popular ASE [29] CALCULATOR interface available for a plethora 
of atomistic programs, other communication channels are easily imple-
mented. A new RUNNER subclass that completes its job through, e.g., 
interprocess communication mechanisms (sockets or pipes) or even an 
HTTP request to a REST interface can be quickly written and, as long 
as it complies with the interface of the basic class, will be seamlessly 
integrated in Clinamen2.

4. Example applications

In the following we exemplify the features of Clinamen2 using stan-
dard benchmark functions and the structures of small silver clusters, 
defects in silicon bulk and LJ clusters. The examples can be found 
on GitHub and the technical details on the implementation of the ex-
amples in the online documentation. The silicon bulk (section 4.3) 
and LJ-cluster (section 4.4) examples require Google JAX [43]. The 
DFT code utilized in the investigation of silver clusters (section 4.2) 
is NWChem [31], which needs to be installed separately (a variation on 
this example using VASP [32] instead is also provided with Clinamen2).

4.1. Benchmark functions

In order to test the validity of the presented CMA-ES implementa-
tion, optimization is performed on benchmark functions following the 
choices of Krause et al. in Ref. [8]. The function definitions are given in 
Table 1, and Fig. 4 shows the average number of generations required to 
arrive at 𝑓 (𝑥) < 10−14 for 50 trial runs per function. Each function was 
evaluated for all input dimensions 𝑑 ∈ {4,8,16,32,64,128,256} with 
default population size and initial step size 𝜎(0) = 1.0. The initial mean 
𝐱 for each run was randomly drawn as 𝑥𝑖 ∈ (0, 𝕀) for the sphere func-
tion and 𝑥𝑖 ∈ [0, 1] for all others.

Furthermore, the Ackley function [44]

𝑓 (𝐱) = − 𝑎 exp
⎛⎜⎜⎝−𝑏

√√√√ 1
𝑑

𝑑∑
𝑖=0

𝑥2
𝑖

⎞⎟⎟⎠
− exp

(
1

𝑑∑
cos

(
𝑐𝑥

))
+ 𝑎+ exp (1) ,

(3)
𝑑
𝑖=0

𝑖
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Table 1

Benchmark functions reproduced from Ref. [8].

Label 𝑓 (𝑥)

Cigar 10−6𝑥20 +
𝑑∑
𝑖=1

𝑥2
𝑖

Different Powers
𝑑∑
𝑖=0

|𝑥𝑖|(2+ 10𝑖
𝑑−1

)

Discus 𝑥20 +
𝑑∑
𝑖=1

10−6𝑥2
𝑖

Ellipsoid
𝑑∑
𝑖=0

10
−6𝑖
𝑑−1 𝑥2

𝑖

Rosenbrock
𝑑−1∑
𝑖=0

[
100

(
𝑥𝑖+1 − 𝑥2

𝑖

)2 + (
1 − 𝑥

𝑖

)]
Sphere ||𝐱||2

Fig. 4. The average number of generations required to reach a function value 
𝑓 (𝑥) < 10−14 over the dimension of the input vector. The benchmark functions 
are listed in Tbl. 1. 50 runs were performed for each combination.

with the common parametrization 𝑎 = 20, 𝑏 = 0.2 and 𝑐 = 2𝜋, was 
evaluated for 𝑑 ∈ {128,256,512} and the default population size [3], 
performing 50 trial runs for each combination. Twice the default pop-
ulation size was used when the success rate failed to reach 100% for 
a problem dimension and, additionally, a third trial was performed for 
𝑑 = 512 and 𝜆512 = 3𝜆default .

Here, the founder configurations 𝐱 were generated with the usual 
random drawing of 𝑥𝑖 ∈ [−32.768,32.768] and an initial step size of 
𝜎(0) = 12.5 was used, i.e. a fifth of the value range [5]. Fig. 5 shows 
the success rates and average number of function evaluations for each 
investigated combination of dimension and population size. Additional 
runs were performed for smaller problem dimensions, all arriving at 
100% success rate for default population size. While the CMA-ES per-
forms very well for the small default population sizes, these results 
indicate the benefit of larger population sizes on the global optimiza-
tion performance at least for multimodal functions [4]. For example, 
the default population size for dimension 𝑑 = 512 is 𝜆512 = 22, with 
the success rate of this combination being zero for the presented trial 
function. Consequently, increasing the population size parameter can 
be a powerful tool for exploring complex loss surfaces, as long as ef-
ficient evaluation is feasible, e.g., by incorporating machine-learned 
approaches. From the average number of function evaluations of suc-
cessful runs it can be surmised that fewer generations are needed with 
a larger population size, 1485 generations for 𝜆512 = 66 compared to 
1900 for 𝜆512 = 44. Therefore, even for the same success rate, the larger 
population size may be the more efficient choice, depending on the de-
5

gree of parallelization of the function evaluations.
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Fig. 5. The success rate for finding the global minimum of the Ackley func-
tion for given input dimensions and population sizes. Lighter colors indicate a 
higher success rate. Empty squares indicate that these combinations were not 
performed. The small numbers in parentheses show the average loss evaluations 
needed to arrive at a successful run. For success rate 0.00 the average over all 
runs is shown instead.

4.2. Ag cluster with DFT

To demonstrate how to interface to a DFT code and utilize the dis-
tributed computation capabilities of Dask [33,34], the structure of small 
silver clusters is investigated using NWChem [31] and VASP [32] for 
loss evaluation. This is not aimed at comparing the performance of the 
DFT codes, but at illustrating how different loss-calculation backends 
can be interchanged and used analogously.

We employ the workflow described in section 3.2, running as many 
worker processes as there are individuals in a generation, with each 
worker utilizing 16 CPU cores. This pool of workers registers with the 
scheduler which takes care of utilization and job distribution. In the ex-
ample, which can be found on the GitHub repository, the evolution uses 
the worker pool exclusively and, while it is also possible to share the 
pool amongst evolution runs, this leads to a trade-off between reduced 
idle time and increased waiting periods.

Starting from configurations with atoms randomly placed evolution 
runs are performed for the Ag5, Ag6 and Ag7 clusters. Running for 350 
generations with the default population size, initial step size 𝜎(0) = 1.0Å
and no additional local optimization stable structures in good agree-
ment with literature [45–47] are found. Fig. 6 shows a selection of 
results: Ag5 and Ag7 clusters evolved with NWChem starting from ran-
dom positions in a sphere and two configurations of Ag6 utilizing VASP, 
starting from random positions within a cube, uniformly distributed and 
utilizing PACKMOL, respectively.

4.3. Si bulk with neural-network force field

This example includes the use of a surrogate model for ab-initio cal-
culations, in particular a neural-network force field (NNFF), and biasing 
of the initial covariance matrix. In Ref. [18] the authors perform a CMA-
ES evolution on a supercell of pristine Si bulk utilizing DFT and observe 
different meta-stable defect structures along the evolution trajectory. 
They utilize unsupervised learning to cluster all sampled structures 
to then relax a representative selection with DFT. To reproduce these 
results, we train a NeuralIL committee [48,49] on a subset of this tra-
jectory data and use it to drive an evolution for 1000 generations on 
the same Si supercell containing 64 atoms, with the degrees of freedom 
restricted to a sphere with a cutoff radius of 4.0Å. The initial step size 
was 𝜎(0) = 0.1Å. The initial covariance matrix 𝑪 (0) was biased accord-
ing to Ref. [18], such that atoms closest to the center of this sphere, the 
focus 𝒙𝑓 , are the most volatile( )

𝑪

(0) = 𝕀+ diag 𝑐2
𝑟

, (4)
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Fig. 6. Low-energy cluster configurations as identified via CMA-ES evolution 
without further local optimization. Ag5 (a) and Ag7 (b) starting from random 
positions within a sphere and evaluated with NWChem. Ag6 in (c) and (d) eval-
uated with VASP and starting from PACKMOL-generated and uniformly-random 
sampled positions within a cube, respectively.

Fig. 7. Both figures show a trajectory (orange solid line) of the average loss, 
i.e. the energy per atom, of a population over 350 generations, for the Si 
bulk treated with a neural-network force field. The standard deviation within 
each generation is highlighted in blue and the CMA-ES step size 𝜎 shown as a 
dark-gray dashed line. In the top panel the initial covariance matrix was biased 
by a factor ∝ 𝑟−2 and in the lower panel by a Gaussian.

𝑐𝑟(𝑖) =
𝑐𝑟[

1 + ||𝒙(0)
𝑖

− 𝒙
𝑓
||2∕(1Å

)]2 . (5)

We set the hyperparameter 𝑐𝑟 = 20.0. With this, an evolution over 1000 
generations completes in a matter of minutes utilizing a laptop and a 
single GPU. This statistic highlights the advantage of an accelerated 
machine-learning surrogate model with respect to direct DFT calcu-
lations for each configuration, a context in which energy evaluations 
overwhelmingly dominate the cost of the optimization process.

For comparison, with all other parameters unchanged, a second evo-
lution run is performed with 𝑪 (0) biased by

𝑐𝑟(𝑖) = 𝑐𝑟 ⋅ exp
⎛⎜⎜⎝−

||𝒙(0)
𝑖

− 𝒙
𝑓
||22

2𝜎2bias

⎞⎟⎟⎠ , (6)

with 𝜎bias = 1.25Å controlling the strength of the decay around focus 
𝒙𝑓 . The trajectories of mean loss and step size 𝜎 over the first 350 gen-
erations of both runs are shown in the top and bottom panels of Fig. 7, 
respectively. By running a fast local relaxation with the same trained 
NNFF and the FIRE [50] algorithm as implemented in the atomic simu-
lation environment (ASE) [29], the extra step of clustering all sampled 
6

individuals can be forgone. Instead, the lowest-loss individual of each of 
Computer Physics Communications 297 (2024) 109065

Fig. 8. Defects in stoichiometric Si supercells identified by local optimization 
of individuals along the evolution trajectory. (a) shows the FFCD configuration 
and (b) a Frenkel pair.

Fig. 9. Trajectory (orange solid line) of the average loss of a population over 
1092 generations. The standard deviation within each generation is highlighted 
in blue and the CMA-ES step size 𝜎 shown as a dark-gray dashed line. The y-axis 
focuses on a comparably narrow range to filter outliers and better illustrate the 
smaller oscillations in later generations. The structure on the left side is a local 
relaxation of generation 553 where the step size is at its lowest. The right-hand-
side structure is the global optimum at generation 1092, without additional 
relaxation.

the first 350 generations of the two runs is optimized. We see that both 
evolution runs contain structures that belong to loss basins of known 
defects, including the four-fold coordinated defect (FFCD) and Frenkel 
pair structures (see Fig. 8).

The two biasing functions BIAS_COVARIANCE_MATRIX_R and BIAS_CO-
VARIANCE_MATRIX_GAUSS used in this example are included in UTILS.
STRUCTURE_SETUP, along with additional functions utilizing ASE to cal-
culate distances between atoms. The biased 𝑪 (0) is then transformed by 
calling SCIPY.LINALG.CHOLESKY [51].

4.4. Lennard-Jones cluster

LJ clusters [52] are some of the most studied model energy land-
scapes. They combine a formal simplicity and richness of features that 
make them ideal candidates for benchmarking optimization algorithms, 
including implementations of the CMA-ES [53,54]. In this work we use 
the 19-atom LJ cluster to illustrate the use of the implemented BIPOP 
restart [5,7] feature as described in section 2.2. For evaluating the 
LJ potential we repurpose code used in Ref. [55]. Reference values 
are taken from Ref. [52] and the implemented options for generating 
founder structures include PACKMOL [56].

We performed a number of evolution runs for different cluster sizes, 
varying algorithm settings, founder structures and restart parameters. 
The loss trajectory for one of these runs for an LJ cluster of 19 atoms 
is shown in Fig. 9. We chose this particular cluster because the number 
of degrees of freedom together with the rugged energy landscape pose 

a sufficiently difficult problem to necessitate a restart scheme. This spe-
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cific evolution arrived at the global minimum [52] for population size 
𝜆 = 166, step size 𝜎(0) = 0.0201 (in dimensionless LJ units) and random 
seed 45214. The widening of the standard deviation around generation 
600 indicates that the algorithm managed to switch to a different loss 
basin. To further illustrate this, Fig. 9 shows two structures: the local 
relaxation of the best individual in generation 553 (left) and the global 
minimum in generation 1092 without further optimization (right). Up-
wards of generation 600 the best individuals predominately relax to the 
global minimum.

To get there, the BIPOP evolution performed ten restarts in total, 
with the highest population size for restart nine at 𝜆large = 480, i.e. the 
fourth of the large restarts. Overall, with the number of large restarts 
limited to five, one ninth (5/45) of the BIPOP evolution runs arrived at 
the global minimum. Restart strategies are especially useful when ex-
ploring multimodal loss landscapes as demonstrated here. The repeated 
searches start from different founder configurations and apply varied 
population- and step-size parameters, and greatly increase the diversity 
of visited structures by balancing exploration and exploitation [7].

5. Conclusions

We have presented Clinamen2, a versatile implementation of the 
Cholesky CMA-ES that provides convenient building block functions for 
applying the problem-agnostic core algorithm to various problems. Be-
sides interfacing to, e.g., DFT codes or surrogate models like NNFFs, 
any Python function with a compatible signature may be used for loss 
evaluation and, therefore, to drive an evolution.

The GitHub repository contains example applications presented in 
this manuscript that - together with built-in utilities - enable the user to 
apply Clinamen2 to their specific use cases.
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Wu, C. Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, R.J. Harrison, Nwchem: past, 
present, and future, J. Chem. Phys. 152 (18) (2020) 184102, https://doi .org /10 .
1063 /5 .0004997.

[32] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy cal-
culations using a plane-wave basis set, Phys. Rev. B 54 (16) (1996) 11169–11186, 
https://doi .org /10 .1103 /PhysRevB .54 .11169.

[33] M. Rocklin, Dask: parallel computation with blocked algorithms and task schedul-
ing, in: K. Huff, J. Bergstra (Eds.), Proceedings of the 14th Python in Science 
Conference, 2015, pp. 130–136.

[34] Dask Development Team, Dask: Library for dynamic task scheduling, 2016.
[35] G. Jastrebski, D. Arnold, Improving evolution strategies through active covariance 

matrix adaptation, in: 2006 IEEE International Conference on Evolutionary Compu-
tation, 2006, pp. 2814–2821, iSSN: 1941-0026.

[36] M. Preuss, Niching the CMA-ES via nearest-better clustering, in: Proceedings of 
the 12th Annual Conference Companion on Genetic and Evolutionary Computa-
tion, GECCO ’10, Association for Computing Machinery, New York, NY, USA, 2010, 
pp. 1711–1718.

[37] I. Loshchilov, M. Schoenauer, M. Sebag, Alternative restart strategies for CMA-ES, in: 
C.A.C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, M. Pavone (Eds.), Parallel 
Problem Solving from Nature - PPSN XII, in: Lecture Notes in Computer Science, 
Springer, Berlin, Heidelberg, 2012, pp. 296–305.

[38] D. Mertz, Functional Programming in Python, O’Reilly Media, Inc., Sebastopol, 
2015.

[39] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, W. Paul, M.I. 
Jordan, I. Stoica, Ray: a distributed framework for emerging AI applications, arXiv 
preprint Https://arxiv .org /abs /1712 .05889, 2017.

[40] M.-P.V. Christiansen, N. Rønne, B. Hammer, Atomistic global optimization X: a 
Python package for optimization of atomistic structures, J. Chem. Phys. 157 (2022) 
054701, https://doi .org /10 .1063 /5 .0094165.

[41] M. Uhrin, S.P. Huber, J. Yu, N. Marzari, G. Pizzi, Workflows in AiiDA: engineer-
ing a high-throughput, event-based engine for robust and modular computational 
workflows, Comput. Mater. Sci. 187 (2021) 110086, https://doi .org /10 .1016 /j .
commatsci .2020 .110086.

[42] A. Jain, S.P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto, 
G.-M. Rignanese, G. Hautier, D. Gunter, K.A. Persson, FireWorks: a dynamic work-
flow system designed for high-throughput applications, Concurr. Comput., Pract. 
Exp. 27 (2015) 5037–5059, https://doi .org /10 .1002 /cpe .3505.
8

Computer Physics Communications 297 (2024) 109065

[43] J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Nec-
ula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: composable 
transformations of Python+NumPy programs, 2018.

[44] D.H. Ackley, The model, in: A Connectionist Machine for Genetic Hillclimbing, 
Springer, 1987, pp. 29–70.

[45] R. Fournier, Theoretical study of the structure of silver clusters, J. Chem. Phys. 
115 (5) (2001) 2165–2177, https://doi .org /10 .1063 /1 .1383288.

[46] S. Garg, N. Kaur, N. Goel, M. Molayem, V.G. Grigoryan, M. Springborg, Properties 
of naked silver clusters with up to 100 atoms as found with embedded-atom and 
density-functional calculations, Molecules 28 (7) (2023), https://doi .org /10 .3390 /
molecules28073266.

[47] S. Manna, Y. Wang, A. Hernandez, P. Lile, S. Liu, T. Mueller, A database of low-
energy atomically precise nanoclusters, Sci. Data 10 (1) (2023) 308, https://doi .
org /10 .1038 /s41597 -023 -02200 -4, Publisher: Nature Publishing Group.

[48] H. Montes-Campos, J. Carrete, S. Bichelmaier, L.M. Varela, G.K.H. Madsen, A dif-
ferentiable neural-network force field for ionic liquids, J. Chem. Inf. Model. 62 (1) 
(2022) 88–101, https://doi .org /10 .1021 /acs .jcim .1c01380.

[49] J. Carrete, H. Montes-Campos, R. Wanzenböck, E. Heid, G.K.H. Madsen, Deep en-
sembles vs committees for uncertainty estimation in neural-network force fields: 
comparison and application to active learning, J. Chem. Phys. 158 (2023) 204801, 
https://doi .org /10 .1063 /5 .0146905.

[50] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural relaxation 
made simple, Phys. Rev. Lett. 97 (17) (2006) 170201, https://doi .org /10 .1103 /
PhysRevLett .97 .170201.

[51] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. 
Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wil-
son, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. 
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