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Abstract
In this paper, we address the essential yet complex task of evaluating Recommender Systems (RecSys)
across multiple datasets. This is critical for gauging their overall performance and applicability in
various contexts. Owing to the unique characteristics of each dataset and the variability in algorithm
performance, we propose the adoption of effect-size-based meta-analysis, a proven tool in comparative
research. This approach enables us to compare a “treatment model” and a “control model” across multiple
datasets, offering a comprehensive evaluation of their performance. Through two case studies, we
highlight the flexibility and effectiveness of this method in multi-dataset evaluations, irrespective of the
metric utilized. The power of forest plots in providing an intuitive and concise summarization of our
analysis is also demonstrated, which significantly aids in the communication of research findings. Our
work provides valuable insights into leveraging these methodologies to draw more reliable and validated
conclusions on the generalizability and robustness of RecSys models.
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1. Introduction

Within the fast-evolving domain of Recommender Systems (RecSys), broad adoption across
various industries has prompted researchers to strive for improvements in general-purpose
methods. Often, however, the effectiveness of improvements introduced by these novel methods
is confined to highly specific experimental settings, encompassing particular datasets, evalua-
tion measures, and baselines. As such, these enhancements do not necessarily translate into
broad applicability across different contexts or problem domains [1]. Therefore, it’s absolutely
critical to evaluate recommender systems over multiple datasets to gain a more comprehensive
understanding of their robustness and generalizability.
Evaluating recommender systems using multiple datasets is a complex process due to each

dataset’s unique characteristics and the algorithms’ variability. The performance of an algorithm
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can vary greatly, excelling in one dataset while falling short in another, particularly when
there are significant differences in the properties of the datasets, such as the ratio of users
to items or the density of ratings [2, 3]. This variation in performance complicates drawing
reliable conclusions, introducing potential subjective biases and the problematic comparison
or aggregation of incompatible metrics or scenarios. Meanwhile, disciplines like social and
medical sciences have already established robust tools and norms for such meta-analysis [4, 5].
Researchers in Information Retrieval (IR) and Natural Language Processing (NLP) have started
to adopt these methodologies for multi-task evaluation [6, 5], underscoring the necessity and
significance of such an approach for recommender systems.

In this study, we examine the value of effect-size-based meta-analysis as a tool for comparative
research [4]. This method allows us to assess the implications of adopting a “treatment model”,
which could be a novel update or unique architectural design, compared to a “control model”,
possibly a baseline strategy or the current state-of-the-art. By using this technique across
multiple datasets, we can better understand the broader performance and generalizability of
these models. Furthermore, effect-size-based meta-analysis not only examines the impact
on individual datasets but also consolidates the effects across various datasets into a unified
statistical evaluation. This provides a reliable measure of the model’s capacity to generalize
across different datasets and reveals the significance or contribution of each dataset to the
overall effect. It is important to note that this analytical method requires the availability of
pairwise metrics - for treatment and control - for each sample in the datasets under consideration.
However, it is versatile and not limited to any specific metric and can accommodate experiments
that provide a variety of metrics, including accuracy or beyond-accuracy metrics. The results of
the effect-size-based meta-analysis can be concisely visualized using forest plots [7], enhancing
the interpretation and communication of the findings (refer to Figure 1).
In summary, this paper makes the following key contributions:

• We propose the use of effect-size-based meta-analysis as a robust approach for multi-
dataset evaluations.

• We demonstrate the practical utility of this approach through two case studies, one
involving an incremental treatment model and the other involving a more sophisticated
update.

• We provide code and data of our experiments publicy available under:
https://github.com/MeteSertkan/meta-analysis-based-recsys-eval

2. Related Work

Evaluating recommender systems poses inherent challenges, including varying algorithm
performance across different datasets, divergent evaluation goals, and the complexity of choosing
appropriate metrics for comparison [2, 3]. Among the three main evaluation types - offline
experiments, user studies, and online evaluation - offline experiments are commonly preferred
due to cost efficiency [8, 9, 10, 11]. However, the risk lies in using selectively curated datasets to
demonstrate improvements, which may overemphasize the importance of quantitative measures
in offline experimentation and distort the actual impact of our research [1, 3].

https://github.com/MeteSertkan/meta-analysis-based-recsys-eval


Yet, offline experiments still serve as a crucial initial step towards comprehensive evaluation.
Several toolkits like RecPack [12], Elliot [13], Cornac [14], and RecBole [15] have been introduced
for reproducible experimentation and evaluation. These tools provide the capabilities for easy,
reproducible experiments, offer built-in baselines, models, data, and facilitate the evaluation and
comparison of models using various metrics. Evaluating recommender systems over multiple
datasets is essential for a comprehensive understanding of their robustness and generalizability.
However, the unique characteristics of datasets, metrics, and performance variations across
datasets complicate drawing reliable conclusions and can introduce subjective biases. For
example, it’s not valid to average 𝑁𝐷𝐶𝐺 scores across multiple datasets as 𝑁𝐷𝐶𝐺 scores are
task-dependent and can only be compared within one task.

Despite their invaluable contributions, these tools do not fully address the need for statistically
robust comparison and aggregation methods across diverse datasets and scenarios. This work
proposes the use of effect-size-based meta-analysis [4] for this purpose, and we demonstrate its
utility through two use cases.

3. Methods

We utilize effect-size-based meta-analysis to contrast the efficacy of a treatment model with a
control model across multiple datasets. The treatment model could be an updated version of the
control model, a new model, or one trained with additional data, while the control model acts
as the standard for comparison. We consider the raw mean difference 𝐷 and the standardized
mean difference 𝑑, as defined by Borenstein et al. [4] and implemented in Ranger [5], to compute
the effect-sizes and, in turn, the summary effect.

Raw Mean Difference 𝐷. In RecSys experiments, performance metrics are typically calcu-
lated for each user, item, or session. Averaging the metrics enable researchers to compare the
effectiveness of different models. Thus, the mean difference, a direct and intuitive measurement
of effect-size, aligns with the scale of the underlying metric. We compute the raw mean dif-
ference 𝐷 by averaging the pairwise differences between treatment 𝑋𝑇 and control metric 𝑋𝐶
and use the standard deviation (𝑆diff) of the pairwise differences to compute its corresponding
variance 𝑉𝐷 as follows (𝑛 is the number of compared pairs):

𝐷 =
𝑋𝑇 − 𝑋𝐶

𝑛
, 𝑉𝐷 =

𝑆2diff
𝑛

, (1)

Standardized Mean Difference 𝑑. We might consider standardizing the mean difference
(i.e., convert it into a “unitless” form) to make the effect-size comparable and combinable across
studies, for example, in case of 𝑅𝑀𝑆𝐸 and different ratings scales. The standardized mean
difference 𝑑 is computed by dividing the raw mean difference 𝐷 by the within-group standard
deviation 𝑆within calculated across the treatment and control metrics.

𝑑 = 𝐷
𝑆within

(2)

𝑆within is determined by the standard deviation of the pairwise differences 𝑆diff and the correlation



of the corresponding pairs 𝑟 as follows:

𝑆within =
𝑆diff

√2(1 − 𝑟)
(3)

The variance of standardized mean difference 𝑑 is

𝑉𝑑 = (1
𝑛
+ 𝑑2

2𝑛
)2(1 − 𝑟), (4)

where 𝑛 is the number of compared pairs. In small samples, 𝑑 tends to overestimate the absolute
value of the true standardized mean difference 𝛿, which can be corrected by factor 𝐽 to obtain
an unbiased estimate called Hedges’ 𝑔 [16, 4] and its corresponding variance 𝑉𝑔:

𝐽 = 1 − 3
4𝑑𝑓 − 1

, 𝑔 = 𝐽 × 𝑑, 𝑉𝑔 = 𝐽 2 × 𝑉𝑑, (5)

where 𝑑𝑓 is degrees of freedom which is 𝑛 − 1 in the paired study setting with 𝑛 number of pairs.
Combined Effect 𝑀∗. After calculating the individual effect-sizes (𝑌𝑖) and corresponding

variances (𝑉𝑌𝑖) for 𝑘 experiments (i.e., datasets), the final step is to synthesize them into one
combined effect. We assume, as in [6, 5], that the effect-size variance varies across the used
datasets, i.e., heterogeneity. Therefore, we employ the random-effects model as defined in [4]
to consider the between-study variance 𝑇 2 for the summary effect computation. We use the
DerSimonian and Laird method [17] to estimate 𝑇 2:

𝑇 2 =
𝑄 − 𝑑𝑓

𝐶
,

𝑄 =
𝑘
∑
𝑖=1

𝑊𝑖𝑌 2𝑖 −
(∑𝑘

𝑖=1𝑊𝑖𝑌 2𝑖 )2

∑𝑘
𝑖=1𝑊𝑖

,

𝑑𝑓 = 𝑘 − 1,

𝐶 = ∑𝑊𝑖 −
∑𝑊 2

𝑖
∑𝑊𝑖

.

(6)

where the weight of the individual experiments 𝑊𝑖 = 1/𝑉𝑌𝑖 . We adjust the weights by 𝑇 2 and
compute the weighted average of the individual effect-sizes, i.e., the summary effect𝑀∗, and its
corresponding variance 𝑉𝑀∗ as follows:

𝑊 ∗
𝑖 = 1

𝑉𝑌𝑖 + 𝑇 2
, 𝑀∗ =

∑𝑘
𝑖=1𝑊

∗
𝑖 𝑌𝑖

∑𝑘
𝑖=1𝑊

∗
𝑖

, 𝑉𝑀∗ = 1
∑𝑘

𝑖=1𝑊
∗
𝑖

. (7)

Confidence Interval (CI)We determine the corresponding confidence interval (represented
by the lower limit, 𝐿𝐿𝑌, and the upper limit, 𝑈𝐿𝑌) for a given effect-size 𝑌, which can be the
result of an individual experiment (𝑌𝑖) or the summary effect (𝑀∗), as follows:

𝑆𝐸𝑌 = √𝑉𝑌, 𝐿𝐿𝑌 = 𝑌 − 𝑍 𝛼 × 𝑆𝐸𝑌, 𝑈 𝐿𝑌 = 𝑌 + 𝑍 𝛼 × 𝑆𝐸𝑌, (8)

where 𝑆𝐸𝑌 is the standard error, 𝑉𝑌 the variance of the effect-size, and 𝑍 𝛼 the Z-value corre-
sponding to the desired significance level 𝛼. Given 𝛼we compute 𝑍 𝛼 = 𝑝𝑝𝑓 (1− 𝛼

2 ), where 𝑝𝑝𝑓 ()
is the percent point function (we use scipy.stats.norm.ppf1). For example, 𝛼 = 0.05 yields the
1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html


Table 1
Considered explicit-feedback datasets (as provided by Cornac [14]).

Dataset #Users #Items #Interactions

amazon-clothing 5,377 3,393 13,689
amazon-digital-music 5,541 3,568 64,706
amazon-office 3,703 6,523 53,282
amazon-toy 19,412 11,924 167,597
filmtrust 1,508 2,071 35,497
movielens-10M 69,878 10,677 10,000,054
netflix-small 10,000 5,000 607,803

95% CI of 𝑌 ± 1.96 × 𝑆𝐸𝑌.
Forest Plots. Meta-analysis based on effect-sizes yields individual and combined effects from

experiments, their confidence intervals, and weights that show each experiment’s contribution
to the combined effect. Forest plots [7] conveniently summarize these results, allowing for
intuitive interpretation and easy communication of findings. Please refer to Figure 1 for an
example. Effect-sizes and confidence intervals are represented as diamonds with whiskers
⊢ ♦ ⊣. The size of the diamonds corresponds to the weight of the experiments (𝑊 ∗

𝑖 ). The dotted
line at zero denotes the absence of an effect. Suppose the confidence interval of an observed
effect-size crosses this line. In that case, it indicates that the effect-size is not significant at the
given confidence level, meaning that the effect is not detectable.

4. Experimental Setting

For the effect-size-based meta-analysis, we compute pairwise performance metrics for the
models under comparison on a user basis. Therefore we utilize models and data from the Cornac
framework [14]. We use the explicit-feedback datasets listed in Table 1. We split the data in
each experiment with 80% for training and 20% for testing. To conduct the effect-size-based
meta-analysis, we utilize Ranger [5]. We illustrate the utility of effect-size-based meta-analysis
through two use cases:
1) We compare matrix factorization with (MF-bias) and without bias terms (MF) [18] to

demonstrate an incremental update. Our meta-analysis is based on 𝑅𝑀𝑆𝐸 and 𝑁𝐷𝐶𝐺@10,
highlighting the differences in matrix completion and ranking tasks. For 𝑅𝑀𝑆𝐸, we use the
standardized mean difference as the effect-size index, accounting for varying scales in each
experiment. For 𝑁𝐷𝐶𝐺@10, we utilize the raw mean difference.

2) We compare matrix factorization (MF) [18] with Bayesian probabilistic ranking (BPR) [19]
to illustrate a more sophisticated treatment focusing on ranking. We perform the meta-analysis
across all datasets, movie-only datasets, and retail-only datasets, offering insights into overall
and domain-specific effects. 𝑁𝐷𝐶𝐺@10 is the base metric in each case, and we use the raw
mean difference as our effect-size index.

We use the default (hyper)parameters as provided by Cornac [14]. Note that our study focuses
on evaluation rather than the models themselves. For replicability, we provide all runs, i.e.,
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Figure 1: Comparing MF-bias (treatment) to MF (control) in terms of standardized mean difference of
RMSE in matrix completion.
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Figure 2: Comparing MF-bias (treatment) to MF (control) in terms of mean difference in 𝑁𝐷𝐶𝐺@10
(ranking performance).

model-dataset-metric combinations.

5. Case Study MF-Bias vs. MF

In our first case study, we examine the impact of incorporating bias terms (user, item, and
global) - designated as the treatment - against a basic matrix factorization model - the control.
We measure their performance on user-item-rating matrix completion via 𝑅𝑀𝑆𝐸 and ranking
through 𝑁𝐷𝐶𝐺@10.
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Figure 3: Comparing BPR (treatment) to MF (control) in terms of mean difference in NDCG@10 - All
datasets.

Figure 1 summarizes the 𝑅𝑀𝑆𝐸 comparison. All confidence intervals (CI) lie on the left of the
zero-effect (dotted) line, with none crossing it, suggesting that the use of bias terms consistently
and significantly improves matrix completion performance (smaller error). Notably, nearly all
experiments contribute similarly to the overall effect calculation, except for the amazon-clothing
dataset, which shows a less confident effect estimation. This reflects the inverse relationship
between the variance of an experiment’s effect-size and its weight in calculating the summary
effect, as detailed in Equations 6 and 7.

Regarding ranking performance (refer to Figure 2), we generally observe a decline when bias
terms are introduced, suggesting potential overfitting. While introducing bias terms enhance
matrix completion, it seems to negatively impact ranking performance. Notably, for individual
experiments using amazon-office and netflix-small datasets, we find no significant ranking
performance differences, as their corresponding confidence intervals cross the zero-effect line.

6. Case Study BPR vs. MF

In our second case study, we evaluate the effect of using Bayesian probabilistic ranking (BPR) -
treatment - versus matrix factorization (MF) - control - on ranking performance (𝑁𝐷𝐶𝐺@10).
This comparison is conducted across all datasets, as well as exclusively on movie and retail
datasets. Looking at the summary effect in Figure 3, we generally expect a boost in ranking
performance when choosing BPR over MF. Although the summary effect estimate is less certain
than in the prior meta-analysis, it is still significant. The difference in ranking performance
between individual experiments with retail and movie datasets is immediately noticeable.
Focusing on retail data only (Figure 4), we expect a performance decline for amazon-clothing,
no significant difference for amazon-toy, and performance gains for amazon-digital-music and
amazon-office. On the whole, we do not expect significant differences when choosing BPR over
MF for retail datasets. In contrast, for movie datasets, we expect consistent and significant
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Figure 4: Comparing BPR (treatment) to MF (control) in terms of mean difference in NDCG@10 - Only
retail datasets.
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Figure 5: Comparing BPR (treatment) to MF (control) in terms of mean difference in NDCG@10 - Only
movie datasets.

improvements in ranking performance when employing BPR (Figure 5).

7. Conclusions

Evaluating recommender systems across multiple datasets is crucial for understanding their
generalizability and robustness. Yet, given the unique characteristics of different data and
algorithms, making comparisons across datasets can be challenging. For instance, it’s not
straightforward to compare RMSE values or average NDCG values across multiple datasets to
determine a model’s overall capacity.
This is where effect-size-based meta-analysis comes in handy. It allows for a statistically

robust comparison between two models across multiple datasets, providing a reliable synthesis
of results. This mitigates subjective interpretations and fosters more valid conclusions on the
overall treatment effect.

We have outlined the theoretical underpinning of this method and, through two case studies,
demonstrated its utility in multi-dataset evaluations. This method isn’t metric-dependent and is
applicable even when scales vary across datasets. Unlike a p-value from a hypothesis test, which
indicates the likelihood of correctly rejecting a null hypothesis (a retrospective view), confidence
intervals predict future outcomes in similar experiments. They enable distinguishing between
the magnitude of an effect and the probability of its recurrence [6]. Forest plots succinctly



summarize the analysis outcomes, enabling intuitive interpretation and facilitating research
communication. For instance, they clearly highlighted the discrepancy between retail and
movie domains in our second case study, which can guide dataset selection for evaluation - a
significant challenge in itself [3].
Since recommender system evaluations often involve more than two models, our fu-

ture work will adapt this approach for multi-dataset, multi-model settings. All runs and
code - for replicating the results - can be found under https://github.com/MeteSertkan/
meta-analysis-based-recsys-eval.
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