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Fractional (hyper-)graph theory is concerned with the specific problems that arise when 
fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered. 
The focus of this paper is on fractional edge covers of hypergraphs. Our main technical 
result generalizes and unifies previous conditions under which the size of the support of 
fractional edge covers is bounded independently of the size of the hypergraph itself. We 
show how this combinatorial result can be used to extend previous tractability results for 
checking if the fractional hypertree width of a given hypergraph is ≤ k for some constant 
k. Moreover, we show a dual version of our main result for fractional hitting sets.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
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1. Introduction

Fractional (hyper-)graph theory [14] has evolved into a mature discipline in graph theory – building upon early research 
efforts that date back to the 1970s [2]. The crucial observation motivating this field is that many integer-valued (hyper-
)graph invariants have a meaningful fractional analogue. Frequently, the integer-valued invariants are defined in terms of an 
integer linear program (ILP) and the fractional analogue is obtained by the fractional relaxation. Examples of problems which 
have been studied in fractional (hyper-)graph theory comprise matching problems, colouring problems, covering problem 
and many more.

Covering problems come in two principal flavours, namely edge covers (also referred to as set covers) and hitting sets (also 
referred to as vertex covers). We shall concentrate on edge covers in the first place, and afterwards show how our results 
translate to hitting sets. Fractional edge covers have attracted a lot of attention in recent times. On the one hand, this is due 
to a deep connection between information theory and database theory. Indeed, the famous “AGM bound” – named after 
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Atserias, Grohe, and Marx [1] – establishes a tight upper bound on the number of result tuples of relational joins in terms 
of fractional edge covers. On the other hand, fractional hypertree width (fhw) is to date the most general width-notion that 
allows one to define tractable fragments of solving Constraint Satisfaction Problems (CSPs), answering Conjunctive Queries 
(CQs), and solving the Homomorphism Problem [11]. The fractional hypertree width of a hypergraph is defined in terms of 
the size of fractional edge covers of the bags in a tree decomposition.

Fractional (hyper-)graph invariants give rise to new challenges that do not exist in the integral case. Intuitively, if a 
fractional (hyper-)graph invariant is obtained by the relaxation of a linear program (LP), one would expect things to become 
easier, since we move from the intractable problem of ILPs to the tractable problem of LPs. However, also the opposite may 
happen, namely that the fractional relaxation introduces complications not present in the integral case. To illustrate such an 
effect, we first recall some basic definitions.

Definition 1. A hypergraph H is a tuple H = (V , E), consisting of a set of vertices V and a set of hyperedges (or simply 
edges), which are non-empty subsets of V . Let γ be a function of the form γ : E → R+ , i.e., mapping edges to the non-
negative reals. Then the set of vertices covered by γ is defined as B(γ ) = {v ∈ V | ∑

e∈E,v∈e γ (e) ≥ 1}. Intuitively, γ assigns 
weights to the edges and a vertex v is covered if the total weight of the edges containing v is at least 1.

A fractional edge cover of H is a function γ with V ⊆ B(γ ). An integral edge cover is obtained by restricting the func-
tion values of γ to {0, 1}. The support of γ is defined as support(γ ) = {e ∈ E | γ (e) �= 0}. The weight of γ is defined as 
weight(γ ) = ∑

e∈E γ (e). The minimum weight of a fractional (resp. integral) edge cover of a hypergraph H is referred to as 
the fractional (resp. integral) edge cover number of H .

The following example adapted from [6] illustrates which complications may arise if we move from the integral to the 
fractional case.

Example 1. Consider the family (Hn)n≥2 of hypergraphs with Hn = (Vn, En) defined as

Vn = {v0, v1, . . . , vn}
En = {e0, e1, . . . , en} with e0 = {v1, . . . , vn} and ei = {v0, vi} for i ∈ {1, . . . , n}.

The integral edge cover number of each Hn is 2 and an optimal integral edge cover can be obtained, e.g., by setting 
γn(e0) = γn(e1) = 1 and γn(e) = 0 for all other edges. In contrast, the fractional edge cover number is 2 − 1

n and the unique 
optimal fractional edge cover is γ ′

n with γ ′
n(e0) = 1 − 1

n and γ ′
n(ei) = 1

n for each i ∈ {1, . . . , n}. For the support of these two 
covers, we have |support(γn)| = 2 and |support(γ ′

n)| = n + 1. Hence, the support of the optimal edge covers is bounded in 
the integral case but unbounded in the fractional case. 


As mentioned above, fractional hypertree width (fhw) is to date the most general width-notion that allows one to define 
tractable fragments of classical NP-complete problems, such as CSP solving and CQ answering. However, recognizing if 
a given hypergraph H has fhw(H) ≤ k for fixed k ≥ 2 is itself an NP-complete problem [6], i.e., in the terminology of 
parameterised complexity, the problem is paraNP-hard. It has recently been shown that the problem of checking fhw(H) ≤ k
becomes tractable if we can efficiently enumerate the fractional edge covers of weight ≤ k [9]. This fact can be exploited 
to show that, for classes of hypergraphs with bounded rank (i.e., max. size of edges), bounded degree (i.e., max. number of 
edges containing a particular vertex), or bounded intersection (i.e., max. number of vertices in the intersection of two edges), 
checking fhw(H) ≤ k becomes tractable. The size of the support has been recently [9] identified as a crucial parameter for 
the efficient enumeration of fractional edge covers of weight ≤ k for given k ≥ 1.

The overarching goal of this work is to further extend and provide a uniform view of previously known structural prop-
erties of hypergraphs that guarantee a bound on the size of the support of fractional edge covers of a given weight. In 
particular, when looking at Example 1, we want to avoid the situation that the support of fractional edge covers with con-
stantly bounded weight increases with the size of the hypergraph. Our main combinatorial result (Theorem 4) will be that 
the size of the support of a fractional edge cover does not depend on the number of vertices or edges of a hypergraph but 
instead only on the weight of the cover as well as the structure of its edge intersections.

Formally, the structure of the edge intersections is captured by the so-called Bounded Multi-Intersection Property (BMIP)
[6]: a class C of hypergraphs has this property, if in every hypergraph H ∈ C , the intersection of c edges of H has at most 
d elements, for constants c ≥ 2 and d ≥ 0. The BMIP thus generalizes all of the above mentioned hypergraph properties 
that ensure bounded support of fractional edge covers of given weight and, hence, also guarantee tractability of checking 
fhw(H) ≤ k, namely bounded rank, bounded degree, and bounded intersection. Moreover, when considering the incidence 
graph G of H , the BMIP corresponds to G not containing large complete bipartite graphs. A notable result in the area of 
parameterized complexity [13] is the polynomial kernelizability of the Dominating Set Problem for graphs without Kc,d , i.e., 
without the complete bipartite graph on c and d edges. A minor tweaking of the results yields a polynomial kernelization 
for the Set Cover Problem if the corresponding incidence graph does not contain Kc,d . Our result thus reveals an interesting 
connection: it shows that a condition that enables efficient solving of the Set Cover problem also enables efficient checking 
of bounded fractional hypertree width.
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In summary, the main results of this paper are as follows:

• First, we show that the size of the support of a fractional edge cover only depends on the weight of the cover and of the 
structure of its edge intersections (Theorem 4). More specifically, if the intersection of c edges of a hypergraph H has at 
most d elements, and H has a fractional edge cover of weight ≤ k, then H also has a fractional edge cover of weight ≤ k
with a support whose size only depends on c, d, and k.

• As an important consequence of this result, we show that the problem of checking if a given hypergraph H has fhw(H) ≤
k is tractable for hypergraph classes satisfying the BMIP (Theorem 30). In particular, BMIP generalizes all previously 
known hypergraph classes with tractable fhw-checking, namely bounded rank, bounded degree, and bounded intersection.

• We transfer our results on fractional edge covers to fractional hitting sets, where we again vastly generalize previously 
known hypergraph classes (such as hypergraphs of bounded rank [7]) that guarantee a bound on the size of the support 
of fractional hitting sets (Theorem 34).

The paper is organized as follows: after recalling some basic notions and results in Section 2, we will present our main 
technical result on fractional edge covers in Section 3. The detailed proof of a crucial lemma is separated in Section 3.2. In 
Section 4, we apply our result on the bounded support of fractional edge covers to fractional hypertree width and extend 
our main combinatorial result to fractional hitting sets. Finally, in Section 5, we summarize our results and give an extensive 
overview of interesting open questions in this area of research.

2. Preliminaries

Some general notation. It is convenient to use the following short-hand notation for various kinds of sets: we write [n] for 
the set {1, . . . , n} of natural numbers. Let S be a set of sets. Then we write 

⋂
S and 

⋃
S for the intersection and union, 

respectively, of the sets in S , i.e., 
⋂

S = {x | x ∈ s for all s ∈ S} and 
⋃

S = {x | x ∈ s for some s ∈ S}.

Hypergraphs. We recall some basic notions on hypergraphs. We have already introduced in Section 1 hypergraphs as pairs 
(V , E) consisting of a set V of vertices and a set E of edges. W.l.o.g., we assume throughout this paper that a hypergraph 
contains no isolated vertices (i.e., vertices that do not occur in any edge), no pair of vertices that are incident to the 
exact same set of edges, and no empty edges. Such hypergraphs are typically referred to as reduced hypergraphs. Given a 
hypergraph H = (V , E), the dual hypergraph Hd = (W , F ) is defined as W = E and F = {{e ∈ E | v ∈ e} | v ∈ V }.

The incidence graph of a hypergraph H = (V , E) is a bipartite graph (W , F ) with W = V ∪ E , such that, for every v ∈ V
and e ∈ E , there is an edge {v, e} in F iff v ∈ e. Note that a hypergraph H and its dual hypergraph Hd have the same 
incidence graph.

In this work, we are particularly interested in the structure of the edge intersections of a hypergraph. To this end, recall 
the notion of (c, d)-hypergraphs for integers c ≥ 2 and d ≥ 0 from [9]: H = (V , E) is a (c, d)-hypergraph if the intersection 
of any c distinct edges in E has at most d elements, i.e., for every subset E ′ ⊆ E with |E ′| = c, we have | ⋂ E ′| ≤ d. A class 
C of hypergraphs is said to satisfy the bounded multi-intersection property (BMIP) [6], if there exist c ≥ 2 and d ≥ 0, such that 
every H in C is a (c, d)-hypergraph. As a special case studied in [5,6], a class C of hypergraphs is said to satisfy the bounded 
intersection property (BIP), if there exists d ≥ 0, such that every H in C is a (2, d)-hypergraph. Hypergraphs with degree 
bounded by some constant c ≥ 1 are (c + 1, 0)-hypergraphs. Moreover, bounded rank is clearly a special case of bounded 
intersection, that is, if the size of each hyperedge is bounded a constant d, also the intersection of any two hyperedges is of 
course bounded by d.

We now recall tree decompositions, which form the basis of various notions of width. A tuple (T , (Bu)u∈T ) is a tree 
decomposition (TD) of a hypergraph H = (V , E), if T is a tree, every Bu is a subset of V and the following two conditions 
are satisfied:

(1) For every edge e ∈ E , there is a node u in T , such that e ⊆ Bu , and
(2) for every vertex v ∈ V , {u ∈ T | v ∈ Bu} is connected in T .

Note that, by slight abuse of notation, we write u ∈ T to express that u is a node in T .
For a function f : 2V → R+ , the f -width of a TD (T , (Bu)u∈T ) is defined as sup{ f (Bu) | u ∈ T } and the f -width of a 

hypergraph is the minimal f -width over all its TDs.
An edge weight function is a function γ : E → R+ . We call γ a fractional edge cover of a set X ⊆ V by edges in E , if 

for every v ∈ X , we have 
∑

{e | v∈e} γ (e) ≥ 1. The weight of a fractional edge cover is defined as weight(γ ) = ∑
e∈E γ (e). 

For X ⊆ V , we write ρ∗
H (X) to denote the minimal weight over all fractional edge covers of X . With respect to some edge 

weight function γ , we will say that the weight of a vertex is the sum of all the weights on edges that contain v . The fractional 
hypertree width (fhw) of a hypergraph H , denoted fhw(H), is then defined as the f -width for f = ρ∗

H . Likewise, the fhw of a 
TD of H is its ρ∗

H -width.
The following technical lemma for weight-functions in (c, d)-hypergraphs will be important.
3
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Lemma 2. There is a function f (c, d, k) with the following property: let H be a (c, d)-hypergraph and let γ be an edge weight function 
with weight(γ ) ≤ k. Moreover, let 0 < ε ≤ 1 be dependent on c, d, k and assume that, for each e ∈ E, γ (e) ≤ ε

2c . Let Bε(γ ) be the set 
of all vertices of weight at least ε . Then |Bε(γ )| ≤ f (c, d, k) holds.

The intuition of this lemma is as follows: suppose that we put rather little weight on each edge (namely ≤ ε
2c ). Then, for 

a vertex v to be in Bε(γ ) (that is, to receive total weight ≥ ε from all the edges containing v), v must be in the intersection 
of quite a big number of edges (namely ≥ 2c such edges). However, in a (c, d)-hypergraph, the intersection of c or more 
edges contains at most d vertices. So, intuitively, the “contribution” of each edge to covering a particular vertex is limited. 
Hence, a weight function γ with weight(γ ) ≤ k can put the desired weight ≥ ε only to a limited number of vertices, where 
this limit depends on c, d, and k.

Proof of Lemma 2. The proof is based on the following claim (which is Lemma 7.2 in [9]).

Claim A. Fix an integer c ≥ 1. Let X = (x1, . . . , xn) be a sequence of positive numbers ≤ δ and fix w such that 
∑n

j=1 x j ≥
w ≥ δc. Then we have 

∑
xi1 · xi2 · · · · · xic ≥ (w − δc)c , where the sum is over all c-tuples (i1, . . . , ic) of distinct integers from 

[n].
We proceed with a counting argument. Imagine a bipartite graph G = (Bε(γ ), T , E(G)) where T is the set of all c-tuples 

of distinct edges from H . In G , there is an edge from v ∈ Bε(γ ) to (e1, . . . , ec) ∈ T iff v is in e1 ∩ · · · ∩ ec . Furthermore, we 
assign weight 

∏c
j=1 γ (e j) to every edge in E(G) incident to a tuple (e1, . . . , ec) ∈ T . To avoid confusion, in this proof, we 

write E(G) and E(H) to refer to the set of edges in the graph G and in the hypergraph H , respectively.
We now count the total weight in G from both sides. First observe that on the T side, we have degree at most d

because H is a (c, d)-hypergraph. Therefore, the total weight in G is at most d · ∑
(e1,...,ec)∈T

∏c
j=1 γ (e j). Observe that 

∑
(e1,...,ec)∈T

∏c
j=1 γ (e j) ≤

(∑
e1∈E(H) γ (e1)

)
· · · · ·

(∑
ec∈E(H) γ (ec)

)
as, by distributivity, all the terms of the sum on the 

left-hand side are also present on the right-hand side of the inequality. Furthermore, we have 
∑

e∈E(H) γ (e) ≤ k and thus, 
by putting it all together, we see that the total weight in G is at most kcd.

From the Bε(γ ) side, consider an arbitrary vertex v ∈ Bε(γ ) and let e1, . . . , en be the edges in E(H) containing v
with nonzero weight. We have 

∑n
j=1 γ (e j) ≥ ε and γ (e j) ≤ ε

2c for each j ∈ [n]. We can apply the above claim for X =
{γ (e1), . . . , γ (en)}, δ = ε

2c , and w = ε to get the inequality 
∑

γ (e j1 ) · · · · · γ (e jc ) ≥ (ε − ε
2c · c)c = ( ε

2 )c , where the sum 
ranges over all c-tuples (e j1 , . . . , e jc ) of distinct edges in E(H) containing v .

We conclude that v (now considered as a vertex in G) is incident to edges whose total weight is ≥ ( ε
2 )c in E(G). Since 

we have seen above that the total weight of all edges in E(G) is ≤ kcd, there can be no more than d( 2k
ε )c vertices in 

Bε(γ ). �
Linear programs. We assume some familiarity with Linear Programs (LPs). Formally, we are dealing here with minimization 
problems of the form min cT x subject to Ax ≥ b and x ≥ 0, where x is a vector of n variables, c is a vector of n constants, 
A is an m × n matrix, b is a vector of m constants, and 0 stands for the n-dimensional zero-vector. More specifically, for 
a hypergraph H = (V , E) and vertices Y ⊆ V , the fractional edge cover number ρ∗

H (Y ) of Y is obtained as the optimal 
value of the following LP: let E = {e1, . . . , en} (note that in a slight departure from typical naming, n here is the number of 
edges in the hypergraph) and Y = {y1, . . . , ym}, then c is the n-dimensional vector (1, . . . , 1), b is the m-dimensional vector 
(1, . . . , 1), and A ∈ {0, 1}[m]×[n] , such that Aij = 1 if yi ∈ e j and Aij = 0 otherwise. In the sequel, we will refer to such LPs 
with c ∈ {1}n , b ∈ {1}m and A ∈ {0, 1}[m]×[n] as unary linear programs.

For given number n of edges, there are at most 2n possible different inequalities of the form Aix ≥ 1. We thus get 
the following property of unary LPs, which intuitively states that if the optimum is bigger than some threshold k, then it 
exceeds k by some distance.

Lemma 3. For all positive integers n and k, there is an integer D(n, k) such that for any unary LP Z of at most n variables if OPT(Z) > k
then OPT(Z) − k > 1

D(n,k)
, where OPT(Z) denotes the minimum of the LP.

3. Bounding the support of fractional edge covers

3.1. The main combinatorial result

In this section we establish our main combinatorial result, Theorem 4. Every set of vertices in a (c, d)-hypergraph can be 
covered in a way such that the size of the support depends only on c, d, and the set’s fractional edge cover number. Recall 
that we denote by B(γ ) the set of all vertices v such that γ (v) ≥ 1 where γ is a weight function on edges and the weight 
of a vertex is the sum of all incident edge weights. For sets S of hyperedges, it will also be convenient to write γ (S) for ∑

e∈S γ (e).
4
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Theorem 4. There is a function h(c, d, k) such that the following is true. Let H = (V , E) be a (c, d)-hypergraph and let γ be an assign-
ment of weights to E. Let k ∈Q+ such that weight(γ ) ≤ k. Then there exists an assignment ν of weights to E such that weight(ν) ≤ k, 
B(γ ) ⊆ B(ν) and |support(ν)| ≤ h(c, d, k).

The first step of our reasoning is to consider the situation where |B(γ )| is bounded. In this case it is easy to transform 
γ into the desired ν . Partition all the hyperedges of H into equivalence classes corresponding to non-empty subsets of 
B(γ ) such that two edges e1 and e2 are equivalent if and only if e1 ∩ B(γ ) = e2 ∩ B(γ ). Then let sX be the total weight 
(under γ ) of all the edges from the equivalence class where e ∩ B(γ ) = X . Identify one representative of each (non-empty) 
equivalence class and let e X be the representative of the equivalence class corresponding to X . Then define ν as follows. 
For each X corresponding to a non-empty equivalence class, set ν(e X ) = sX . For each edge e whose weight has not been 
assigned in this way, set ν(e) = 0. It is clear that B(γ ) ⊆ B(ν) and that the support of ν is at most 2|B(γ )| , which is bounded 
by assumption.

Of course, in general we cannot assume that |B(γ )| is bounded. Therefore, as the next step of our reasoning, we consider 
a more general situation where we have a bounded set S = {S1, . . . , Sr} where each Si is a set of at most c hyperedges such 
that the following conditions hold regarding S:

(i) for each 1 ≤ i ≤ r, γ (Si) ≥ 1, and
(ii) the set U = B(γ ) \ ⋃

i∈[r]
⋂

Si is of bounded size.

Then the assignment ν as in Theorem 4 can be defined as follows. For each e ∈ ⋃
S, set ν(e) = γ (e). Next, we observe that 

for the subhypergraph H ′ = H −⋃
S, |B H ′(γ )| is bounded, where the subscript H ′ means that we consider B for hypergraph 

H ′ . Therefore, we define ν on the remaining edges as in the paragraph above. It is not hard to see that the support of the 
resulting ν is of size at most c · r + 2|U | . We are going to show that such a family of sets of edges can always be found for 
(c, d)-hypergraphs (after a possible modification of γ ).

Definition 5 (Well-formed pair). Let H = (V , E) be a hypergraph and let γ be an edge weight function. We say (S, U ) is a 
well-formed pair (with regard to γ ) if it satisfies the following conditions:

1. U ⊆ B(γ )

2. S = {S1, . . . , Sr} where each Si is a set of at most c hyperedges of H .
3. B(γ ) \ U ⊆ ⋃

i∈[r]
⋂

Si .

We denote 
∑

i∈[r] |Si | + 2|U | by n(S, U ) and refer to it as the size of (S, U ).

Definition 6. A well-formed pair (S, U ) is perfect if there is an assignment ν : E → [0, 1] with weight(ν) ≤ k and 
|support(ν)| ≤ n(S, U ) such that 

⋃
i∈[r]

⋂
Si ∪ U ⊆ B(ν).

Our aim now is to prove the existence of a perfect pair (S, U ) of size bounded by a function depending on c, d, and k. 
Clearly, this will imply Theorem 4.

In particular, we will define the initial pair which is a well-formed pair but not necessarily perfect. Then we will define 
two transformations from one well-formed pair into another and prove existence of a function transf so that if (S1, U1) is 
transformed into (S2, U2), then n(S2, U2) ≤ transf (n(S1, U1)). We will then prove that if we form a sequence of well-formed 
pairs starting from the initial pair and obtain every next element by a transformation of the last one then, after a bounded 
number of steps we obtain a perfect well-formed pair. We start by defining the initial pair.

Definition 7. The initial pair is (S0, U0) where S0 = {{e} | γ (e) ≥ 1/(2c)} and U0 = B(γ ) \ ⋃
{e}∈S0

e.

Lemma 8. There is a function init such that n(S0, U0) ≤ init(c, d, k)

Proof. We can bound |U0| by applying Lemma 2 to all edges with weight less than 1/(2c), i.e., to the subhypergraph 
without the edges in S0 . In particular, |U0| ≤ f (c, d, k) where f is as in Lemma 2 (for ε = 1) and | ⋃ S0| ≤ 2ck by construc-
tion. �

We now introduce our two kinds of transformations, folding and extension. A folding removes a set S∗ of c edges from S
and adds to U the vertices in the intersection of the edges of S∗ . In the resulting well-ordered pair (S′, U ′), S′ has one less 
element than S and U ′ , compared to U , has a bounded size increase of at most d vertices. Thus the action of folding gets 
the resulting well-formed pair closer to one with empty first component, which is a perfect pair according to the discussion 
in the beginning of this section.
5
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Definition 9. Let (S, U ) be a well-formed pair such that S contains elements of size c. Let S∗ ∈ S such that |S∗| = c. Let 
S′ = S \ {S∗} and U ′ = U ∪ (

⋂
S∗ ∩ B(γ )). We call (S′, U ′) a folding of (S, U ).

The folding, however, is possible only if S has an element of size c. Otherwise, we need a more complicated transfor-
mation called an extension. The extension takes an element S ∈ S of size c′ < c and expands it by replacing S with several 
subsets of E(H) each containing all the edges of S plus one extra edge. This replacement may miss some of the elements v
of B(γ ) ∩ ⋂

S simply because v is not contained in any of these extra edges. This excess of missed elements is added to U
and thus all the conditions of a well-formed pair are satisfied.

Definition 10. Let (S, U ) be a well-formed pair with S �= ∅ such that every element of S is of size at most c − 1. For the 
extension, let S ∈ S be an element called the extended element and let a set S ′ of hyperedges be called the extending set. We 
refer to L = (

⋂
S ∩ B(γ )) \⋃

S ′ as the set of light vertices. An extension of (S, U ) is (S′, U ′) where S′ = (S \{S}) ∪{S ∪{e}|e ∈ S ′}
and U ′ = U ∪ L.

Proposition 11. With data as in Definition 10, (S′, U ′) is a well-formed pair.

At the first glance the transformation performed by the extension is radically opposite to the one done by the folding: 
the first component grows rather than shrinks. Note, however, that the new sets replacing the removed one contain a 
larger number of edges and thus they are closer to being of size c at which stage the folding can be applied to them. The 
intuition is that after a sufficiently large number of foldings and extensions, a well-formed pair with empty first component 
is eventually obtained.

For our overall goal, we then need to show that the size of the resulting perfect pair is indeed bounded by a function 
of c, d, and k. To that end, the following lemma first establishes that a single step in this process increases the size of the 
well-formed pair in a controlled manner. To streamline our path to the main result, the proof of the lemma is deferred to 
Section 3.2.

Lemma 12. There is a function ext such that the following holds. Let (S, U ) be a well-formed pair with S �= ∅ such that every of element 
of S is of size at most c − 1. Then one of the following two statements is true.

1. (S, U ) is a perfect pair.
2. There is an extension (S′, U ′) of (S, U ) such that n(S′, U ′) ≤ ext(n(S, U )). We refer to (S′, U ′) as a bounded extension of (S, U )

For the sake of syntactical convenience, we unify the notions of folding and bounded extension into a single notion of 
transformation and prove the related statement following from Lemma 12 and the definition of folding.

Definition 13. Let (S, U ) and (S′, U ′) be well-formed pairs. We say that (S′, U ′) is a transformation of (S, U ) if it is either a 
folding or a bounded extension of (S, U ).

Lemma 14. There is a monotone function transf with transf (x) ≥ x for any natural number x such that the following holds. If (S, U ) is 
a well-formed pair, then one of the following two statements is true.

1. (S, U ) is a perfect pair.
2. There exists a transformation (S′, U ′) of (S, U ) such that

n(S′, U ′) ≤ transf (n(S, U )).

Proof. Assume that (S, U ) is not a perfect pair. Then |S| is not empty (see the discussion at the beginning of this section). 
Suppose that an element of S is of size c. Then we set (S′, U ′) to be a folding of (S, U ). By definition of the folding and 
of (c, d)-hypergraphs, (S′, U ′) is obtained from (S, U ) by removal of an element from S and adding at most d vertices to 
U . Hence the size of (S′, U ′) is clearly bounded in the size of (S, U ). If all elements of S are of size at most c − 1 then by 
Lemma 12, there is a bounded extension (S′, U ′) of (S, U ).

Clearly, we can specify a function transf ′ so that in both cases n(S, U ) ≤ transf ′(n(S, U )). In particular, to satisfy the 
requirement for transf , it suffices to set transf (x) = max(x, maxi∈[x] transf ′(i)) for each natural number x. �

Now that we know that each individual step on our path to a perfect pair increases the size only in a bounded fashion, 
we need to establish that the number of steps is also bounded by a function of c, d, and k. The following auxiliary theorem 
states that such a bound exists.

Definition 15. A sequence of (S1, U1), . . . , (Sq, Uq) is a sequence of transformations if for each i ∈ [q − 1] the following two 
statements hold
6
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1. (Si, Ui) is not a perfect pair.
2. (Si+1, Ui+1) is a transformation of (Si, Ui) as in Lemma 14.

Theorem 16. There is a monotone function sl such that the following is true. Let (S1, U1), . . . , (Sq, Uq) be a sequence of transforma-
tions. Then

q ≤ sl(n(S1, U1)).

The proof of Theorem 16 is provided in Section 3.3.
In summary, we have shown that we can reach a perfect pair in a bounded number of transformations. Moreover, each 

transformation increases the size of a pair in a controlled manner. We are now ready to prove our main result.

Proof of Theorem 4. Consider the following algorithm.

1. Let (S0, U0) be the initial pair (see Definition 7).
2. q ← 0
3. While (Sq, Uq) is not a perfect pair

(a) q ← q + 1
(b) Let (Sq, Uq) be a transformation of (Sq−1, Uq−1), which exists by Lemma 14

By Theorem 16, the above algorithm stops with the final q being no higher than sl(n(S1, U1)). It follows from the description 
of the algorithm that (Sq, Uq) is a perfect pair. It remains to show that its size is bounded by a function of c, d, k.

q ≤ sl(n(S0, U0)) ≤ sl(init(c,d,k)) (1)

the second inequality follows from Lemma 8 and the monotonicity of sl. Next, by the properties of transf , an inductive 
application of Lemma 14 and Lemma 8 yields

n(Sq, Uq) ≤ transf q(init(c,d,k)) (2)

where superscript q means that function transf is composed with itself q-times, that is transf (transf (transf (...))).
Let h(c, d, k) = transf sl(init(c,d,k))(init(c, d, k)). It follows from combination of (1) and (2) that n(Sq, Uq) ≤ h(c, d, k). �

3.2. Proof of Lemma 12

The first step of the proof is to define a unary linear program of bounded size associated with (S, U ). Then we will 
demonstrate that if the optimal value of this linear program is at most k, then (S, U ) is perfect. Otherwise, we show that a 
bounded extension can be constructed.

In order to define the linear program, we first formally define equivalence classes of edges covering U (see the informal 
discussion in Section 3.1).

Definition 17 (Working subset). A set of vertices U ′ ⊆ U is called working subset (for (S, U )) if there is e ∈ E(H) \ ⋃
S such 

that e ∩ U = U ′ . This e is called a witnessing edge of U ′ and the set of all witnessing edges of U ′ is denoted by W U ′ .

Continuing on the previous definition, it is not hard to see that the sets W U ′ partition the set of edges of E(H) \ ⋃
S

having a non-empty intersection with U . Choose an arbitrary but fixed representative of each W U ′ and let AU be the set of 
these representatives which we also refer to as the set of witnessing representatives. Now, we are ready to define the linear 
program.

Definition 18 (L P (S, U )). The linear program L P (S, U ) of (S, U ) has the set of variables X = {xe | e ∈ ⋃
S ∪ AU }. The objective 

function is the minimization of 
∑

xe∈X xe . The constraints are of the following three kinds.

1. {0 ≤ xe ≤ 1 | xe ∈ X}.
2. {OneS | S ∈ S} where OneS is 

∑
e∈S xe ≥ 1.

3. {Oneu | u ∈ U } where Oneu is 
∑

e∈Eu
xe ≥ 1 where Eu in turn is the subset of 

⋃
S ∪ AU consisting of all the edges 

containing u.

Lemma 19. Assume that the optimal solution of L P (S, U ) is at most k. Then (S, U ) is a perfect pair.
7
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Proof. Each variable xe of L P (S, U ) corresponds to an edge e and this correspondence is injective. For each xe , let ν(e) be 
the value of xe in the optimal solution. For each edge e not having a corresponding variable, set ν(e) = 0. Note that ν is an 
edge weight function with total weight at most k. It follows from a direct inspection that U ∪ ⋃

i∈[r]
⋂

Si ⊆ B(γ ) and the 
size of the support of ν is at most n(S, U ). �

The proof of Lemma 19 establishes a correspondence between solutions of L P (S, U ) and edge weight functions. We will 
implicitly extend notions for edge weight functions (like their weight) to solutions of L P (S, U ) via this correspondence for 
the rest of this section.

As stated above, in case the optimal value of L P (S, U ) is greater than k, we are going to demonstrate the existence of 
a bounded extension of (S, U ). The first step towards identifying such an extension is to identify the extended element of 
S. Combining Lemma 3 from Section 2 with Lemma 20 below, we observe that S has an element S∗ such that γ (S∗) is 
bounded away from 1. This S∗ will be the extended element.

Lemma 20. Let (S, U ) be a well-formed pair. Let S∗ be the subset of S consisting of all S such that γ (S) < 1. Let α be an optimal 
solution for L P (S, U ). Then weight(α) ≤ weight(γ ) + ∑

S∈S∗(1 − γ (S)).

Proof. Let β be an arbitrary assignment of weights to the hyperedges of H . We say that β satisfies a constraint OneS for 
S ∈ S if β(S) ≥ 1 and that β satisfies the constraint Oneu for u ∈ U if β(Eu) ≥ 1.

We are going to demonstrate an assignment of weights whose total weight exceeds that of γ by at most 
∑

S∈S∗(1 −γ (S))

and that satisfies all the constraints OneS and Onev . Clearly, this will imply correctness of this theorem.
For each S ∈ S∗ , choose an arbitrary edge eS ∈ S and let INCR be the set of all such edges. For each e ∈ INCR, let 

incre = max{1 − γ (S) | e = eS}. That is, e ∈ INCR can be the representative of multiple S ∈ S∗ and incre represents the 
maximal 1 − γ (S) over all the sets S for which e is the representative eS .

Let γ ′ be obtained from γ as follows. If e ∈ INCR then γ ′(e) = γ (e) + incre . Otherwise, γ ′(e) = γ (e). It is not hard to see 
that γ ′ satisfies the constraints OneS for each S ∈ S, and that weight(γ ′) ≤ weight(γ ) + ∑

S∈S∗ (1 − γ (S)). Since γ ′ does not 
decrease the weight of any edge, we also observe U ⊆ B(γ ′).

Let {U1, . . . , Ua} be all the working subsets of U and let e1, . . . , ea be the respective witnessing representatives. The set 
of edges e1, . . . , ea corresponds to the set AU from Definition 18. Then the assignment γ ′′ of weights is defined as follows.

1. If there is an i ∈ [a] such that e ∈ W Ui and e = ei , then γ ′′(e) = γ ′(W Ui ) = γ (W Ui ).
2. If e ∈ ⋃

S, then γ ′′(e) = γ ′(e).
3. Otherwise, γ ′′(e) = 0.

Let W = ⋃
i∈[a] W Ui . Note that, by construction, γ ′(W ) = γ ′′(W ) and the weights of edges outside W are the same under 

γ ′ and γ ′′ and thus, weight(γ ′) = weight(γ ′′). Moreover since 
⋃

S does not intersect with W , γ ′′ satisfies the constraints 
OneS for all S ∈ S.

It remains to show that γ ′′ satisfies the constraints Oneu for each u ∈ U . Let e1, . . . , er be the edges of 
⋃

S containing u, 
let {U1, . . . , Ub} be the working subsets of U containing u, and let e′

1, . . . , e′
b be the respective witnessing representatives. As 

u ∈ B(γ ′), it follows that 
∑

i∈[r] γ ′(ei) +∑
i∈[b] γ ′(W Ui ) ≥ 1. By construction, γ ′′(ei) = γ ′(ei) for each 1 ≤ i ≤ r and γ ′′(e′

i) =
γ ′(W Ui ) for each 1 ≤ i ≤ b. Consequently, 

∑
i∈[r] γ ′′(ei) + ∑

i∈[b] γ ′′(e′
i) ≥ 1. We conclude that γ ′′ satisfies Oneu . �

Recall that Lemma 3 states that for integers n and k, and unary LP Z with at most n variables and O P T (Z) > k, there is 
an integer D(n, k) such that O P T (Z) − k > 1

D(n,k)
. Together with Lemma 20 this implies the following corollary.

Corollary 21. Let (S, U ) be a well-formed pair. Assume that weight(γ ) ≤ k while O P T (L P (S, U )) > k. Let n = n(S, U ). Then there is 
an S∗ ∈ S with 1 − γ (S∗) > 1

D(n,k)·|S| . In particular this means that S∗ is not empty where S∗ is as in Lemma 20.

Proof. Note that the number of variables of L P (S, U ) is at most n. It follows from the combination of Lemma 3 and 
Lemma 20 that weight(γ ) + ∑

S∈S∗(1 − γ (S)) > k + 1/D(n, k) and, since weight(γ ) ≤ k, 
∑

S∈S∗(1 − γ (S)) > 1/D(n, k) and 
hence there is S∗ ∈ S∗ with (1 − γ (S∗)) > 1

D(n,k)·|S∗| ≥ 1
D(n,k)·|S| . �

We are now ready to prove Lemma 12. Let us first recall the lemma and note that the first component of the well-formed 
pair in the statement is non-empty and its elements contain at most c − 1 edges.

Lemma 12. There is a function ext such that the following holds. Let (S, U ) be a well-formed pair with S �= ∅ such that every of element 
of S is of size at most c − 1. Then one of the following two statements is true.

1. (S, U ) is a perfect pair.
2. There is an extension (S′, U ′) of (S, U ) such that n(S′, U ′) ≤ ext(n(S, U )). We refer to (S′, U ′) as a bounded extension of (S, U )
8
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Proof of Lemma 12. If the value of the optimal solution of L P (S, U ) is at most k, we are done by Lemma 19.
Otherwise, let S∗ ∈ S be as in Corollary 21. Let ε = (D(n, k) · |S|)−1. It follows from Corollary 21 that vertices of B(γ ) ∩⋂
S∗ need weight contribution of at least ε from hyperedges of H other than S∗ . We define the extending set S ′ as the set 

of all hyperedges of H other than S∗ whose weight is at least ε/2c and therefore |S ′| ≤ 2ck/ε . We observe that the set L of 
light vertices (cf., Definition 10) is the subset of B(γ ) ∩ ⋂

S∗ consisting of all vertices x that, besides S∗ are contained only 
in hyperedges of weight smaller than ε/2c. By Lemma 2, |L| ≤ f (c, d, k) and the size of S∗ is at most c − 1 by assumption. 
It is not hard to see that the size of the resulting extension is bounded as well. �
3.3. Proof of Theorem 16

For this theorem, rather than considering a well-formed pair (S, U ) itself we consider the pair (A, b) where A is the 
multiset of sizes of the sets of S and |U | = b. We call (A, b) a bare bones c-pair (c-BBP). A transformation of (S, U ) is 
translated into a bounded size transformation of (A, b). In the next five definitions we formalize this intuition. Then we 
state Theorem 27 claiming that a sufficiently long sequence of bounded transformations of c-BBPs results in one where the 
first component is empty. This will imply Theorem 16 because a c-BBP with the empty first components is translated back 
into well-formed pair with the empty first component which is perfect. Finally, we prove Theorem 27.

Definition 22. A bare bones c-pair, abbreviated as c-BBP is a pair (A, b) where A is a multiset of integers in the range [1, c]
and b is just a non-negative integer. We denote 2b + ∑

x∈A x by n(A, b). Note that the number of occurrences of each x ∈ A
in the sum is its multiplicity in A.

Definition 23. Let (A, b) be a c-BBP and assume that c ∈ A. Let A′ = A \ {c} (that is, the multiplicity of c in A is reduced by 
one) and let b′ = b + d where d is a non-negative integer. Clearly (A′, b′) is a c-BBP, we refer to it as a folding of (A, b).

Definition 24. Let (A, b) be a c-BBP and let x ∈ A such that x < c. Let A′ be obtained from A by removal of one occurrence 
of x and adding d1 occurrences of x + 1 for some non-negative integer d1. Let b′ = b + d2 for some non-negative integer d2. 
Clearly (A′, b′) is a c-BBP, we refer to it as an extension of (A, b)

Definition 25. Let (A, b) and (A′, b′) be c-BBPs such that (A′, b′) is either a folding or an extension of (A.b). We then say 
that (A′, b′) is a transformation of (A, b). Let n = n(A, b) and n′ = n(A′, b′) and suppose that n′ ≤ g(n) for some function g . 
We then say that (A′, b′) is a g-transformation of (A, b).

Definition 26. Let g be a function of one argument and let (A1, b1), . . . , (Ar, br) be a sequence of c-BBPs such that for each 
2 ≤ i ≤ r, the c-BPP (Ai, bi) is a g-transformation of (Ai−1, bi−1). We call (A1, b1), . . . , (Ar, br) a g-transformation sequence. 
Note that for each 1 ≤ i < r, Ai is not empty for otherwise, it is impossible to apply a transformation to (Ai , bi).

Theorem 27. Let g be a function of one argument. Then there is a function h[g] such that if (A1, b1), . . . , (Ar, br) is a g-transformation 
sequence then r ≤ h[g](n) where n = n(A1, b1).

We first show how to prove Theorem 16 using Theorem 27 and then we will prove Theorem 27 itself. We first recall the 
theorem.

Theorem 16. There is a monotone function sl such that the following is true. Let (S1, U1), . . . , (Sq, Uq) be a sequence of transforma-
tions. Then

q ≤ sl(n(S1, U1)).

Proof of Theorem 16. Let (S, U ) be a well-formed pair and let bbp(S, U ) be (A, b) where A is the multiset of sizes of 
elements of S (each x occurs in A exactly the number of times as there are sets of size x in S) and b = |U |. It is not hard to 
see that (A, b) is a c-BBP. Moreover,

n(S, U ) = n(A,b) (3)

Let (S1, U1), . . . , (Sr, Ur) be a transformation sequence. Let (A1, b1), . . . , (Ar, br) be a sequence of c-BBPs such that (Ai, bi) =
bbp(Si, Ui) for each 1 ≤ i ≤ r.

We are going to show that (A1, b1), . . . , (Ar, br) is a transf -transformation sequence. By Theorem 27, this will imply that 
r ≤ h[transf ](n) where n = n(A1, b1) = n(S1, U1) by (3) thus implying the theorem.

So, consider two arbitrary consecutive elements (Ai, bi) and (Ai+1, bi+1).
Assume first that (Si+1, Ui+1) is obtained from (Si, Ui) by folding. It is not hard to see that (Ai+1, bi+1) is obtained 

from (Ai, bi) by removing one occurrence of c and adding bi+1 = bi + (|Ui+1| − |Ui |). That is (Ai+1, bi+1) is obtained from 
9
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(Ai, bi) as result of folding. As n(Si+1, Ui+1) ≤ transf (n(Si, Ui)), it follows from (3) that n(Ai+1, bi+1) ≤ transf (n(Ai, bi)). We 
conclude that (Ai+1, bi+1) is obtained from (Ai, bi) as a result of a transf -transformation.

Assume now that (Si+1, Ui+1) is obtained from (Si, Ui) by extension. This means that Si+1 is obtained from Si by removal 
of some S∗ of size less than c and replacing it with d1 sets of size c + 1 for some integer d1 ≥ 0. Also Ui+1 is obtained 
from Ui by adding d2 new elements for some integer d2 ≥ 0. It follows by construction that (Ai+1, bi+1) is an extension of 
(Ai, bi). By the same argumentation as in the end of the previous paragraph, we conclude that (Ai+1, bi+1) is obtained from 
(Ai, bi) by transf -transformation. �
Proof of Theorem 27. We assume w.l.o.g. that g is monotone that is for n1 < n2 g(n1) ≤ g(n2). Indeed, otherwise, since g
is defined over non-negative integer, we can define g∗(n) as the maximum over g(0), . . . , g(n) and use g∗ instead of g . The 
monotonicity allows us to derive the following inequality.

Suppose that (A1, b1), . . . , (Ax, bx) is a g-transformation sequence and x ≤ y. Then

n(Ax,bx) ≤ g(y)(n(A1,b1)) (4)

For i ∈ {0, . . . , c − 1}, a g-transformation is subset of q-transformations with an additional property recursively defined as 
follows.

1. (A′, b′) is a (g, 0)-transformation of (A, b) if (A′, b′) is obtained from (A, b) by folding.
2. Suppose i > 0 and (g, i − 1)-transformation has been defined Then (A′, b′) is a (g, i)-transformation of (A, b) if it is 

either a (g, i − 1)-transformation or an extension where the element removed from A is an occurrence of c − i.

A (g, i)-transformation sequence (A1, b1), . . . , (Ar, br) where for each 2 ≤ j ≤ r, (A j, b j) is obtained from (A j−1, b j−1) by 
(g, i)-transformation. The sequence is final if all elements of Ar are smaller than c − i, that is no further extension of the 
sequence is possible.

We prove by induction that for each i ∈ {0, . . . , c − 1}, there is a function hi[g] such that r as above is at most 
hi[g](n(A1, b1)). Then hc−1[g] will be the desired function h[g]. For the sake of simplicity, we will omit g in the square 
brackets and refer to these functions as h0, . . . , hc−1.

It is important to observe that our induction is from above, in the sense that we with an increase in i we allow for the 
removal of occurrences of lower values. As a consequence, a (g, i)-transformation of (A, b) can never increase the number 
of occurrences c − i in A: a folding only removes values from A and an extension can only introduce c − i by removing 
occurrences of c − i − 1, which is not permitted in a (g, i)-transformation. It follows that in any (g, i)-transformation 
sequence starting at (A1, b1), there can be at most m extensions that remove an occurrence of c − i, where m is the number 
of c − i’s in A1. This observation is key to the following argument.

The existence of function h0 is easy to observe. Indeed, the number of consecutive foldings is at most the multiplicity of 
c in A1. So, we can put h0 = n(A1, b1).

Assume now that i > 0 and that (A1, b1), . . . , (Ar, br) is a (g, i)-transformation sequence. If it is in fact a (g, i − 1)-
transformation sequence then r ≤ hi−1(A1, b1) by the induction assumption. Otherwise, let 1 < x1 < · · · < xa ≤ r be all the 
indices such that for each 1 ≤ j ≤ a, (Ax j , bx j ) is obtained from (Ax j−1, bx j−1) by extension removing an element c − i.

For the sake of succinctness, denote n(A1, b1) by n and for each 1 ≤ j ≤ a, we denote n(Ax j , bx j ) by n j .
For each integer j ≥ 1, define function f j as follows. f1(x) = hi−1(x) + 1. Suppose that j > 1 and that f j−1 has been 

defined. Then f j(x) = f j−1(x) + hi−1(g( f j−1(n))(x)).
We show that for each 1 ≤ j ≤ a, x j ≤ f j(n). Note that (A1, b1), . . . , (Ax1−1, bx1−1) is a (g, i −1)-transformation sequence. 

Hence, by the induction assumption, x1 − 1 ≤ hi−1(n) and x1 ≤ f1(n).
Furthermore, let j > 1. Then (Ax j−1 , bx j−1), . . . , (Ax j−1, bx j−1) is also a (q, i − 1)-transformation sequence. Therefore, 

by the induction assumption, x j ≤ x j−1 + hi−1(n j−1). By the induction assumption, x j−1 ≤ f j−1(n) and, by (4), n j−1 ≤
g( f j−1(n))(n). Therefore, x j ≤ f j−1(n) + h j−1(g( f j−1(n))(n)) = f j(n) as required. Applying the same argumentation to the 
sequence following (Axa , bxa ), we conclude that r ≤ fa+1. As noted above, (g, i)-transformations cannot introduce new oc-
currences of c − i and thus a is at most the number of occurrences of c − i in (A1, b1). We can generously bound a by n
and conclude that r ≤ fn+1. Hence, we can set hi = fn+1. �
4. Applications and extensions

4.1. Checking fractional hypertree width

Now that our main combinatorial result has been established we move our attention to an algorithmic application of the 
support bound. In particular, we are interested in the problem of deciding whether for an input hypergraph H and constant 
k we have fhw(H) ≤ k. The problem is known to be NP-hard even for k = 2 [6]. However, as noted in the introduction, 
it has recently been shown that for hypergraph classes which enjoy bounded intersection or bounded degree, it is indeed 
tractable to check fhw(H) ≤ k for constant k [9].
10
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Here we show that our main combinatorial result reveals a large class of instances, that subsumes and extends all 
previously known cases, for which checking f hw is tractable. To establish the result we make use of the framework for 
tractable width checking developed in [9]. We will only recall the necessary key components here and use them in a 
black-box fashion.

Definition 28. Let ρ∗
q (U ) be the minimal weight of an assignment γ such that U ⊆ B(γ ) and |support(γ )| ≤ q. We define 

the q-limited fractional hypertree width of a hypergraph H as its ρ∗
q -width.

Lemma 29 (Theorem 4.5 & Lemma 6.5 in [9]). Fix c, d, and q as constant integers. There is a polynomial-time algorithm testing whether 
a given (c, d)-hypergraph has q-limited fractional hypertree width at most k.

The underlying intuition of q-limited fhw is that the bounded support allows for a polynomial-time enumeration of all 
the (inclusion) maximal covers of sufficient weight. For (c, d)-hypergraphs, it is then possible to compute a set of candidate 
bags such that a fitting tree decomposition, if one exists, uses bags only from this set. Deciding whether a tree decompo-
sition can be created from a given set of candidate bags is tractable under some minor restrictions to the structure of the 
resulting decomposition (not of any concern to the case discussed here).

Recall, a class C of hypergraphs is said to satisfy the bounded multi-intersection property (BMIP) if there exist c ≥ 2 and 
d ≥ 0, such that every H in C is a (c, d)-hypergraph. We now apply our main result and show that, under BMIP, there exists 
a constant q such that the q-limited fractional hypertree width always equals fractional hypertree width. From the previous 
lemma it is then straightforward to arrive at the desired tractability result.

Theorem 30. There is a polynomial-time algorithm for testing whether the fhw of the given (c, d)-hypergraph H is at most k (the 
degree of the polynomial is upper bounded by a fixed function depending on c, d, k).

Proof. It follows from Theorem 4 that if fhw(H) ≤ k for a (c, d)-hypergraph H then the h(c, d, k)-limited fhw of H is also at 
most k.

Indeed, let (T , (Bu)u∈T ) be a tree decomposition with fhw at most k. Then, according to Theorem 4, for each node u
in T there is an edge weight function γ with |support(γ )| ≤ h(c, d, k) such that Bu ⊆ B(γ ). In other words, it follows that 
(T , (Bu)u∈T ) has ρ∗

q -width at most k where q is h(c, d, k). Thus, H also has h(c, d, k)-limited fractional hypertree width at 
most k. For completeness of the procedure, note that the h(c, d, k)-limited fractional hypertree width can never be lower 
than fhw(H).

To test whether fhw(H) ≤ k it is therefore enough to test whether the h(c, d, k)-limited fhw of H is at most k. This can 
be done in a polynomial time according to Lemma 29. �
4.2. Extension to fractional hitting set

There are two natural dual concepts of fractional edge covers. One is the notion of fractional hitting sets which is dual 
in the sense that it is equivalent to the fractional edge cover on the dual hypergraph. The other, fractional independent sets, 
corresponds to the dual linear program of a linear programming formulation of fractional edge covers. Here we discuss how 
our results extend to hitting sets.

We start by giving a formal definition of the fractional hitting set problem. Let H = (V , E) be a hypergraph and β : V →
[0, 1] be an assignment of weights to the vertices of H . Analogous to the definition of fractional edge covers we define

• B v(β) = {e ∈ E | ∑v∈e β(v) ≥ 1},
• vsupport(β) = {v ∈ V | β(v) > 0},
• and weight(β) = ∑

v∈V β(v).

A fractional hitting set is also called a fractional transversal in some contexts (cf. [14]). For a set of edges E ′ , we denote 
the weight of the minimal fractional hitting set β such that E ′ ⊆ B v(β) as τ ∗(E ′). For hypergraph H = (V , E), we say 
τ ∗(H) = τ ∗(E). Recall, that we assume reduced hypergraphs and therefore there is a one-to-one correspondence of vertices 
in H and edges in Hd . We will make use of the following straightforward observations about the connection of what we 
will call dual weight assignments.

Proposition 31. Let H = (V , E) be a (reduced) hypergraph and let Hd = (W , F ) be its dual. We write f v to identify the edge in F that 
corresponds to the vertex v in V . The following two statements hold:

• For every γ : E → [0, 1] and the function β : W → [0, 1] with β(e) = γ (e) it holds that B v(β) = { f v | v ∈ B(γ )}.1

1 Recall that the edges E of H are the vertices W of Hd .
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• For every β : V → [0, 1] and the function γ : F → [0, 1] with γ ( f v) = β(v) it holds that B(γ ) = {v | f v ∈ B v(β)}.

For the hitting set, a more specific version of our main result is already known. This result is due to Zoltán Füredi [7], 
who extended earlier results by Chung et al. [4]. Recall that a hypergraph H with rank r is also a (1, r)-hypergraph, i.e., this 
can be considered a special case of our setting. Furthermore, note that the statement holds only for weight minimal hitting 
sets.

Proposition 32 ([7], page 152, Proposition 5.11.(iii)). For every hypergraph H of rank (i.e., maximal edge size) r, and every fractional 
hitting set w for H satisfying weight(w) = τ ∗(H), the property |vsupport(w)| ≤ r · τ ∗(H) holds.

In the following we will extend Theorem 4 to an analogous statement for fractional hitting sets thereby generalizing the 
previous proposition significantly. To derive the result we need a final observation about (c, d)-hypergraphs. In a sense, we 
show that bounded multi-intersection is its own dual property.

Lemma 33. Let H be a (c, d)-hypergraph. Then the dual hypergraph Hd is a (d + 1, c − 1)-hypergraph.2

Proof. Let G = (V ∪ E, A) be the incidence graph of H . H being a (c, d)-hypergraph is equivalent to G not having Kc,d+1 as 
a subgraph, with c vertices taken from E and d + 1 vertices taken from V . As the incidence graph Gd = (W ∪ F , B) of Hd is 
isomorphic to G , with vertices and edges changing sides, we conclude that Gd does not have Kd+1,c as a subgraph with d +1
vertices taken from F and c vertices taken from W . This is equivalent to saying that Hd is a (d + 1, c − 1)-hypergraph. �
Theorem 34. There is a function h(c, d, k) such that the following is true. Let c, d, k be constants. Let H be a (c, d)-hypergraph and 
β be an assignment of weights to V (H). Assume that weight(β) ≤ k. Then there is an assignment ν of weights to V (H) such that 
weight(ν) ≤ k, B v(β) ⊆ B v(ν) and |vsupport(ν)| ≤ h(c, d, k).

Proof. Let γ be the dual weight assignment of β as in Proposition 31. That is, γ : F → [0, 1] is an edge weight assignment 
in the dual hypergraph Hd = (W , F ) with |support(γ )| = |vsupport(β)| and weight(γ ) = weight(β).

From Lemma 33 we have that Hd is a (d + 1, c − 1)-hypergraph and thus by Theorem 4 there is an edge weight function 
ν ′ with B(γ ) ⊆ B(ν ′) and |support(ν ′)| ≤ h′(d +1, c −1, k). Let ν now be the dual weight assignment of ν ′ . By Proposition 31
we then see that also B v (β) ⊆ B v(ν) and |vsupport(ν)| = |support(ν ′)| ≤ h′(d + 1, c − 1, k). �
5. Conclusion & open questions

5.1. Conclusion

We have proved novel upper bounds on the size of the support of fractional edge covers and vertex covers. These bounds 
have then been fruitfully applied to the problem of checking fhw(H) ≤ k for given hypergraph H . Recall that, without 
imposing any restrictions on the hypergraph H , this problem is NP-complete even for k = 2 [6], thus ruling out even XP-
membership. In contrast, for hypergraph classes that exhibit bounded multi-intersection, we have managed to establish 
XP-membership, that is, checking fhw(H) ≤ k for hypergraphs in such a class is feasible in polynomial time for any constant 
k. Beyond the application to checking fractional hypertree width, our main result reveals completely new and far-reaching 
connections between fractional covers in hypergraphs and hypergraph structure which may be of independent interest in a 
wide variety of fields.

Below we identify a number of interesting open problem that are closely related to our main results.

5.2. Precise computation of fhw(H)

We have shown that for any (c, d)-hypergraph H , the question fhw(H) 
?≤ k can be answered in polynomial time with the 

degree of the polynomial depending on c, d, and k. Suppose we are given a constant k such that fhw(H) ≤ k. Is it possible 
to compute the optimal (precise) value of fhw(H) in polynomial time with the degree of the polynomial depending on c, d, 
and k?

We know that 1 ≤ fhw(H) ≤ k and that for each 1 ≤ k′ ≤ k we can test fhw(H) ≤ k′ in time polynomial in c, d, k′ . It might 
seem that fhw(k) can be efficiently computed by repeated binary-search like querying fhw(H) ≤ k′ for values of k′ getting 
closer and closer to the actual value of fhw(H).

2 Note that the superscript of Hd only signifies that it is the dual of H . It is not connected to the integer constant d used for the multi-intersection width 
of H .
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Unfortunately, this method does not work. More specifically, there is no function h∗(c, d, k) upper bounding the degree 
of the polynomial for the runtime of the resulting algorithm. Indeed, if such a function existed then it would hold that 
h(c, d, k′) ≤ h∗(c, d, k) for any 1 ≤ k′ ≤ k. The proposition below demonstrates that this is not the case.

Proposition 35. h(2, 1, x) tends to infinity as x approaches 2 from below.

Proof. Recall the hypergraph family (Hr)r≥2 from Example 1 that we defined as follows. Hr = (Vr, Er) with Vr =
{v0, . . . , vr} and E = {e0, . . . , er} with e0 = {v1, . . . , vr} and ei = {v0, vi} for 1 ≤ i ≤ r.

It is known that the size of the smallest fractional edge cover of Hr is 2 − 1/r and the cover is witnessed by the unique 
assignment of weights where the weight of e0 is 1 − 1/r and the weight of the rest of the hyperedges is 1/r. Clearly the 
support of this assignment of weights is r + 1 and hence h(2, 1, 2 − 1/r) ≥ r + 1 for each integer r ≥ 2. In fact, Hr witnesses 
that for any 2 − 1/r ≤ x < 2, h(2, 1, x) ≥ r + 1. Indeed, a direct inspection shows that any edge cover of Hr of a support of 
size smaller than r + 1 needs to have weight at least 2. It follows that even if we set x larger than 2 − 1/r but still smaller 
than 2, the support of size r + 1 is needed anyway. The rest of the proof is an elementary calculus exercise. �

The impossibility to efficiently compute fhw(H) for (c, d)-hypergraphs by the method as above, of course, does not mean 
that the parameter cannot be efficiently computed. We leave the possibility of such a computation as an interesting open 
question.

Open question 1. Let H be a (c, d) hypergraph such that fhw(H) ≤ k for some integral constant k. Is it possible to compute 
fhw(H) in a polynomial time with the degree of the polynomial depending on c, d, k?

It seems that a positive answer to Question 1 requires a new algorithmic approach for the computation of fractional 
hypertree decompositions of small width where bags do not necessarily have bounded support. This will require a deeper 
insight into the structure of hypertree decompositions of hypergraphs.

5.3. From bounded multi-intersection to bounded VC dimension

It is known that (c, d)-hypergraphs have VC dimension at most c + d [9]. Therefore, it is natural to ask whether it is 
possible to generalize Theorem 4 from bounded multi-intersection to bounded VC dimension. More precisely, is there a 
function f such that for any constants d and k, any hypergraph H of VC dimension at most d and fractional edge cover 
of weight at most k, has a fractional edge cover γ of weight at most k and the support of γ is of size at most f (d, k)? 
We conjecture that the answer to this question is negative and that there is a class of hypergraphs witnessing the negative 
answer.

Conjecture 1. There are constants d, k and an infinite class H of hypergraphs whose VC dimension is at most d, the fractional edge 
cover is at most k and the set {minsupportk(H)|H ∈ H} is unbounded where minsupportk(H) is the smallest size of support of an 
edge cover of H of weight at most k.

Let us discuss the reason why we stated the above conjecture. A notable result [13] in the area of parameterized com-
plexity implies that the (non-fractional) set cover problem is FPT for (c, d)-hypergraphs parameterized by the size k. (The 
result is stated for dominating sets but can be reformulated in terms of set covers through a minor modification.) On the 
other hand, the problem becomes W[1]-hard already for VC dimension 2 [3]. Thus the set cover problem for bounded VC 
dimension is notably harder than for bounded multi-intersection.

5.4. Fixed-parameter tractability

Recall that fractional hypertree width (fhw) is defined as the f -width where f is the fractional edge cover number of 
the bags of a tree decomposition. Analogously, the generalized hypertree width (ghw) is defined as the f -width where 
f is the integral edge cover number of the bags of a tree decomposition. The computation of both, fhw and ghw is hard 
for hypergraphs in general [10,6]. However, our recent results demonstrate that the generally intractable problems for the 
computation of these notions of width admit XP-algorithms for restricted classes of hypergraphs. It is therefore natural to 
ask whether even more efficient algorithms, and in particular FPT-algorithms, are possible.

We believe that the (2, 1)-hypergraphs are the right class to start this investigation with. Even more specifically, we 
propose to first look at the situation for generalized hypertree width. The parameterized intractability, if established for this 
class of hypergraphs, will extend to parameterized intractability for (c, d)-hypergraphs in general. Moreover, the methods 
used in Section 4.1 to show tractability of checking fhw rely on the tractability of checking ghw for the respective fragments. 
On the other hand, if an FPT-algorithm for generalized hypertree width is obtained, it is likely to be based on a novel insight, 
thus inspiring further research regarding a possibility of its generalization. We believe that the case of (2, 1)-hypergraphs is 
a critical starting point for such considerations as the general case for (c, d)-hypergraphs may involve significant additional 
13
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combinatorial challenges which are not directly relevant for the key observations. We therefore propose the following future 
research question.

Open question 2. Is there an FPT-algorithm parameterized by k that tests ghw(H) ≤ k for (2, 1)-hypergraphs?

Recent work has shown that, analogously to treewidth in graphs, ghw can be characterised in terms of forbidden sub-
structures in degree-2 hypergraphs (i.e., (3, 0)-hypergraphs) [12]. Such a characterisation can provide an alternative path 
towards fixed-parameter tractable checking of ghw ≤ k (in the degree 2 case) through deciding whether certain substruc-
tures (whose size depends on k) are present in the hypergraph.
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