
Theoretical Computer Science 979 (2023) 114204
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Fractional covers of hypergraphs with bounded

multi-intersection ✩,✩✩

Georg Gottlob a, Matthias Lanzinger a,∗, Reinhard Pichler b, Igor Razgon c

a University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3AQ, United Kingdom
b TU Wien, Favoritenstrasse 9, 1040 Wien, Austria
c Birkbeck University of London, Malet Street, London WC1E 7HX, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 March 2022
Received in revised form 4 August 2023
Accepted 15 September 2023
Available online 21 September 2023
Communicated by V. Bonifaci

Keywords:
Hypergraphs
Fractional hypertree width
Fractional graph theory
Fractional edge cover
Fractional hitting set

Fractional (hyper-)graph theory is concerned with the specific problems that arise when
fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered.
The focus of this paper is on fractional edge covers of hypergraphs. Our main technical
result generalizes and unifies previous conditions under which the size of the support of
fractional edge covers is bounded independently of the size of the hypergraph itself. We
show how this combinatorial result can be used to extend previous tractability results for
checking if the fractional hypertree width of a given hypergraph is ≤ k for some constant
k. Moreover, we show a dual version of our main result for fractional hitting sets.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Fractional (hyper-)graph theory [14] has evolved into a mature discipline in graph theory – building upon early research
efforts that date back to the 1970s [2]. The crucial observation motivating this field is that many integer-valued (hyper-
)graph invariants have a meaningful fractional analogue. Frequently, the integer-valued invariants are defined in terms of an
integer linear program (ILP) and the fractional analogue is obtained by the fractional relaxation. Examples of problems which
have been studied in fractional (hyper-)graph theory comprise matching problems, colouring problems, covering problem
and many more.

Covering problems come in two principal flavours, namely edge covers (also referred to as set covers) and hitting sets (also
referred to as vertex covers). We shall concentrate on edge covers in the first place, and afterwards show how our results
translate to hitting sets. Fractional edge covers have attracted a lot of attention in recent times. On the one hand, this is due
to a deep connection between information theory and database theory. Indeed, the famous “AGM bound” – named after

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
✩✩ An extended abstract of this article was presented at the 45th International Symposium on Mathematical Foundations of Computer Science (MFCS
2020) [8].

* Corresponding author.
E-mail addresses: georg.gottlob@cs.ox.ac.uk (G. Gottlob), matthias.lanzinger@cs.ox.ac.uk (M. Lanzinger), pichler@dbai.tuwien.ac.at (R. Pichler),

igor@dcs.bbk.ac.uk (I. Razgon).
https://doi.org/10.1016/j.tcs.2023.114204
0304-3975/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.tcs.2023.114204
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.114204&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:georg.gottlob@cs.ox.ac.uk
mailto:matthias.lanzinger@cs.ox.ac.uk
mailto:pichler@dbai.tuwien.ac.at
mailto:igor@dcs.bbk.ac.uk
https://doi.org/10.1016/j.tcs.2023.114204
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
Atserias, Grohe, and Marx [1] – establishes a tight upper bound on the number of result tuples of relational joins in terms
of fractional edge covers. On the other hand, fractional hypertree width (fhw) is to date the most general width-notion that
allows one to define tractable fragments of solving Constraint Satisfaction Problems (CSPs), answering Conjunctive Queries
(CQs), and solving the Homomorphism Problem [11]. The fractional hypertree width of a hypergraph is defined in terms of
the size of fractional edge covers of the bags in a tree decomposition.

Fractional (hyper-)graph invariants give rise to new challenges that do not exist in the integral case. Intuitively, if a
fractional (hyper-)graph invariant is obtained by the relaxation of a linear program (LP), one would expect things to become
easier, since we move from the intractable problem of ILPs to the tractable problem of LPs. However, also the opposite may
happen, namely that the fractional relaxation introduces complications not present in the integral case. To illustrate such an
effect, we first recall some basic definitions.

Definition 1. A hypergraph H is a tuple H = (V , E), consisting of a set of vertices V and a set of hyperedges (or simply
edges), which are non-empty subsets of V . Let γ be a function of the form γ : E → R+ , i.e., mapping edges to the non-
negative reals. Then the set of vertices covered by γ is defined as B(γ) = {v ∈ V | ∑

e∈E,v∈e γ (e) ≥ 1}. Intuitively, γ assigns
weights to the edges and a vertex v is covered if the total weight of the edges containing v is at least 1.

A fractional edge cover of H is a function γ with V ⊆ B(γ). An integral edge cover is obtained by restricting the func-
tion values of γ to {0, 1}. The support of γ is defined as support(γ) = {e ∈ E | γ (e) �= 0}. The weight of γ is defined as
weight(γ) = ∑

e∈E γ (e). The minimum weight of a fractional (resp. integral) edge cover of a hypergraph H is referred to as
the fractional (resp. integral) edge cover number of H .

The following example adapted from [6] illustrates which complications may arise if we move from the integral to the
fractional case.

Example 1. Consider the family (Hn)n≥2 of hypergraphs with Hn = (Vn, En) defined as

Vn = {v0, v1, . . . , vn}
En = {e0, e1, . . . , en} with e0 = {v1, . . . , vn} and ei = {v0, vi} for i ∈ {1, . . . , n}.

The integral edge cover number of each Hn is 2 and an optimal integral edge cover can be obtained, e.g., by setting
γn(e0) = γn(e1) = 1 and γn(e) = 0 for all other edges. In contrast, the fractional edge cover number is 2 − 1

n and the unique
optimal fractional edge cover is γ ′

n with γ ′
n(e0) = 1 − 1

n and γ ′
n(ei) = 1

n for each i ∈ {1, . . . , n}. For the support of these two
covers, we have |support(γn)| = 2 and |support(γ ′

n)| = n + 1. Hence, the support of the optimal edge covers is bounded in
the integral case but unbounded in the fractional case.

As mentioned above, fractional hypertree width (fhw) is to date the most general width-notion that allows one to define
tractable fragments of classical NP-complete problems, such as CSP solving and CQ answering. However, recognizing if
a given hypergraph H has fhw(H) ≤ k for fixed k ≥ 2 is itself an NP-complete problem [6], i.e., in the terminology of
parameterised complexity, the problem is paraNP-hard. It has recently been shown that the problem of checking fhw(H) ≤ k
becomes tractable if we can efficiently enumerate the fractional edge covers of weight ≤ k [9]. This fact can be exploited
to show that, for classes of hypergraphs with bounded rank (i.e., max. size of edges), bounded degree (i.e., max. number of
edges containing a particular vertex), or bounded intersection (i.e., max. number of vertices in the intersection of two edges),
checking fhw(H) ≤ k becomes tractable. The size of the support has been recently [9] identified as a crucial parameter for
the efficient enumeration of fractional edge covers of weight ≤ k for given k ≥ 1.

The overarching goal of this work is to further extend and provide a uniform view of previously known structural prop-
erties of hypergraphs that guarantee a bound on the size of the support of fractional edge covers of a given weight. In
particular, when looking at Example 1, we want to avoid the situation that the support of fractional edge covers with con-
stantly bounded weight increases with the size of the hypergraph. Our main combinatorial result (Theorem 4) will be that
the size of the support of a fractional edge cover does not depend on the number of vertices or edges of a hypergraph but
instead only on the weight of the cover as well as the structure of its edge intersections.

Formally, the structure of the edge intersections is captured by the so-called Bounded Multi-Intersection Property (BMIP)
[6]: a class C of hypergraphs has this property, if in every hypergraph H ∈ C , the intersection of c edges of H has at most
d elements, for constants c ≥ 2 and d ≥ 0. The BMIP thus generalizes all of the above mentioned hypergraph properties
that ensure bounded support of fractional edge covers of given weight and, hence, also guarantee tractability of checking
fhw(H) ≤ k, namely bounded rank, bounded degree, and bounded intersection. Moreover, when considering the incidence
graph G of H , the BMIP corresponds to G not containing large complete bipartite graphs. A notable result in the area of
parameterized complexity [13] is the polynomial kernelizability of the Dominating Set Problem for graphs without Kc,d , i.e.,
without the complete bipartite graph on c and d edges. A minor tweaking of the results yields a polynomial kernelization
for the Set Cover Problem if the corresponding incidence graph does not contain Kc,d . Our result thus reveals an interesting
connection: it shows that a condition that enables efficient solving of the Set Cover problem also enables efficient checking
of bounded fractional hypertree width.
2

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
In summary, the main results of this paper are as follows:

• First, we show that the size of the support of a fractional edge cover only depends on the weight of the cover and of the
structure of its edge intersections (Theorem 4). More specifically, if the intersection of c edges of a hypergraph H has at
most d elements, and H has a fractional edge cover of weight ≤ k, then H also has a fractional edge cover of weight ≤ k
with a support whose size only depends on c, d, and k.

• As an important consequence of this result, we show that the problem of checking if a given hypergraph H has fhw(H) ≤
k is tractable for hypergraph classes satisfying the BMIP (Theorem 30). In particular, BMIP generalizes all previously
known hypergraph classes with tractable fhw-checking, namely bounded rank, bounded degree, and bounded intersection.

• We transfer our results on fractional edge covers to fractional hitting sets, where we again vastly generalize previously
known hypergraph classes (such as hypergraphs of bounded rank [7]) that guarantee a bound on the size of the support
of fractional hitting sets (Theorem 34).

The paper is organized as follows: after recalling some basic notions and results in Section 2, we will present our main
technical result on fractional edge covers in Section 3. The detailed proof of a crucial lemma is separated in Section 3.2. In
Section 4, we apply our result on the bounded support of fractional edge covers to fractional hypertree width and extend
our main combinatorial result to fractional hitting sets. Finally, in Section 5, we summarize our results and give an extensive
overview of interesting open questions in this area of research.

2. Preliminaries

Some general notation. It is convenient to use the following short-hand notation for various kinds of sets: we write [n] for
the set {1, . . . , n} of natural numbers. Let S be a set of sets. Then we write

⋂
S and

⋃
S for the intersection and union,

respectively, of the sets in S , i.e.,
⋂

S = {x | x ∈ s for all s ∈ S} and
⋃

S = {x | x ∈ s for some s ∈ S}.

Hypergraphs. We recall some basic notions on hypergraphs. We have already introduced in Section 1 hypergraphs as pairs
(V , E) consisting of a set V of vertices and a set E of edges. W.l.o.g., we assume throughout this paper that a hypergraph
contains no isolated vertices (i.e., vertices that do not occur in any edge), no pair of vertices that are incident to the
exact same set of edges, and no empty edges. Such hypergraphs are typically referred to as reduced hypergraphs. Given a
hypergraph H = (V , E), the dual hypergraph Hd = (W , F) is defined as W = E and F = {{e ∈ E | v ∈ e} | v ∈ V }.

The incidence graph of a hypergraph H = (V , E) is a bipartite graph (W , F) with W = V ∪ E , such that, for every v ∈ V
and e ∈ E , there is an edge {v, e} in F iff v ∈ e. Note that a hypergraph H and its dual hypergraph Hd have the same
incidence graph.

In this work, we are particularly interested in the structure of the edge intersections of a hypergraph. To this end, recall
the notion of (c, d)-hypergraphs for integers c ≥ 2 and d ≥ 0 from [9]: H = (V , E) is a (c, d)-hypergraph if the intersection
of any c distinct edges in E has at most d elements, i.e., for every subset E ′ ⊆ E with |E ′| = c, we have | ⋂ E ′| ≤ d. A class
C of hypergraphs is said to satisfy the bounded multi-intersection property (BMIP) [6], if there exist c ≥ 2 and d ≥ 0, such that
every H in C is a (c, d)-hypergraph. As a special case studied in [5,6], a class C of hypergraphs is said to satisfy the bounded
intersection property (BIP), if there exists d ≥ 0, such that every H in C is a (2, d)-hypergraph. Hypergraphs with degree
bounded by some constant c ≥ 1 are (c + 1, 0)-hypergraphs. Moreover, bounded rank is clearly a special case of bounded
intersection, that is, if the size of each hyperedge is bounded a constant d, also the intersection of any two hyperedges is of
course bounded by d.

We now recall tree decompositions, which form the basis of various notions of width. A tuple (T , (Bu)u∈T) is a tree
decomposition (TD) of a hypergraph H = (V , E), if T is a tree, every Bu is a subset of V and the following two conditions
are satisfied:

(1) For every edge e ∈ E , there is a node u in T , such that e ⊆ Bu , and
(2) for every vertex v ∈ V , {u ∈ T | v ∈ Bu} is connected in T .

Note that, by slight abuse of notation, we write u ∈ T to express that u is a node in T .
For a function f : 2V → R+ , the f -width of a TD (T , (Bu)u∈T) is defined as sup{ f (Bu) | u ∈ T } and the f -width of a

hypergraph is the minimal f -width over all its TDs.
An edge weight function is a function γ : E → R+ . We call γ a fractional edge cover of a set X ⊆ V by edges in E , if

for every v ∈ X , we have
∑

{e | v∈e} γ (e) ≥ 1. The weight of a fractional edge cover is defined as weight(γ) = ∑
e∈E γ (e).

For X ⊆ V , we write ρ∗
H (X) to denote the minimal weight over all fractional edge covers of X . With respect to some edge

weight function γ , we will say that the weight of a vertex is the sum of all the weights on edges that contain v . The fractional
hypertree width (fhw) of a hypergraph H , denoted fhw(H), is then defined as the f -width for f = ρ∗

H . Likewise, the fhw of a
TD of H is its ρ∗

H -width.
The following technical lemma for weight-functions in (c, d)-hypergraphs will be important.
3

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
Lemma 2. There is a function f (c, d, k) with the following property: let H be a (c, d)-hypergraph and let γ be an edge weight function
with weight(γ) ≤ k. Moreover, let 0 < ε ≤ 1 be dependent on c, d, k and assume that, for each e ∈ E, γ (e) ≤ ε

2c . Let Bε(γ) be the set
of all vertices of weight at least ε . Then |Bε(γ)| ≤ f (c, d, k) holds.

The intuition of this lemma is as follows: suppose that we put rather little weight on each edge (namely ≤ ε
2c). Then, for

a vertex v to be in Bε(γ) (that is, to receive total weight ≥ ε from all the edges containing v), v must be in the intersection
of quite a big number of edges (namely ≥ 2c such edges). However, in a (c, d)-hypergraph, the intersection of c or more
edges contains at most d vertices. So, intuitively, the “contribution” of each edge to covering a particular vertex is limited.
Hence, a weight function γ with weight(γ) ≤ k can put the desired weight ≥ ε only to a limited number of vertices, where
this limit depends on c, d, and k.

Proof of Lemma 2. The proof is based on the following claim (which is Lemma 7.2 in [9]).

Claim A. Fix an integer c ≥ 1. Let X = (x1, . . . , xn) be a sequence of positive numbers ≤ δ and fix w such that
∑n

j=1 x j ≥
w ≥ δc. Then we have

∑
xi1 · xi2 · · · · · xic ≥ (w − δc)c , where the sum is over all c-tuples (i1, . . . , ic) of distinct integers from

[n].
We proceed with a counting argument. Imagine a bipartite graph G = (Bε(γ), T , E(G)) where T is the set of all c-tuples

of distinct edges from H . In G , there is an edge from v ∈ Bε(γ) to (e1, . . . , ec) ∈ T iff v is in e1 ∩ · · · ∩ ec . Furthermore, we
assign weight

∏c
j=1 γ (e j) to every edge in E(G) incident to a tuple (e1, . . . , ec) ∈ T . To avoid confusion, in this proof, we

write E(G) and E(H) to refer to the set of edges in the graph G and in the hypergraph H , respectively.
We now count the total weight in G from both sides. First observe that on the T side, we have degree at most d

because H is a (c, d)-hypergraph. Therefore, the total weight in G is at most d · ∑
(e1,...,ec)∈T

∏c
j=1 γ (e j). Observe that

∑
(e1,...,ec)∈T

∏c
j=1 γ (e j) ≤

(∑
e1∈E(H) γ (e1)

)
· · · · ·

(∑
ec∈E(H) γ (ec)

)
as, by distributivity, all the terms of the sum on the

left-hand side are also present on the right-hand side of the inequality. Furthermore, we have
∑

e∈E(H) γ (e) ≤ k and thus,
by putting it all together, we see that the total weight in G is at most kcd.

From the Bε(γ) side, consider an arbitrary vertex v ∈ Bε(γ) and let e1, . . . , en be the edges in E(H) containing v
with nonzero weight. We have

∑n
j=1 γ (e j) ≥ ε and γ (e j) ≤ ε

2c for each j ∈ [n]. We can apply the above claim for X =
{γ (e1), . . . , γ (en)}, δ = ε

2c , and w = ε to get the inequality
∑

γ (e j1) · · · · · γ (e jc) ≥ (ε − ε
2c · c)c = (ε

2)c , where the sum
ranges over all c-tuples (e j1 , . . . , e jc) of distinct edges in E(H) containing v .

We conclude that v (now considered as a vertex in G) is incident to edges whose total weight is ≥ (ε
2)c in E(G). Since

we have seen above that the total weight of all edges in E(G) is ≤ kcd, there can be no more than d(2k
ε)c vertices in

Bε(γ). �
Linear programs. We assume some familiarity with Linear Programs (LPs). Formally, we are dealing here with minimization
problems of the form min cT x subject to Ax ≥ b and x ≥ 0, where x is a vector of n variables, c is a vector of n constants,
A is an m × n matrix, b is a vector of m constants, and 0 stands for the n-dimensional zero-vector. More specifically, for
a hypergraph H = (V , E) and vertices Y ⊆ V , the fractional edge cover number ρ∗

H (Y) of Y is obtained as the optimal
value of the following LP: let E = {e1, . . . , en} (note that in a slight departure from typical naming, n here is the number of
edges in the hypergraph) and Y = {y1, . . . , ym}, then c is the n-dimensional vector (1, . . . , 1), b is the m-dimensional vector
(1, . . . , 1), and A ∈ {0, 1}[m]×[n] , such that Aij = 1 if yi ∈ e j and Aij = 0 otherwise. In the sequel, we will refer to such LPs
with c ∈ {1}n , b ∈ {1}m and A ∈ {0, 1}[m]×[n] as unary linear programs.

For given number n of edges, there are at most 2n possible different inequalities of the form Aix ≥ 1. We thus get
the following property of unary LPs, which intuitively states that if the optimum is bigger than some threshold k, then it
exceeds k by some distance.

Lemma 3. For all positive integers n and k, there is an integer D(n, k) such that for any unary LP Z of at most n variables if OPT(Z) > k
then OPT(Z) − k > 1

D(n,k)
, where OPT(Z) denotes the minimum of the LP.

3. Bounding the support of fractional edge covers

3.1. The main combinatorial result

In this section we establish our main combinatorial result, Theorem 4. Every set of vertices in a (c, d)-hypergraph can be
covered in a way such that the size of the support depends only on c, d, and the set’s fractional edge cover number. Recall
that we denote by B(γ) the set of all vertices v such that γ (v) ≥ 1 where γ is a weight function on edges and the weight
of a vertex is the sum of all incident edge weights. For sets S of hyperedges, it will also be convenient to write γ (S) for ∑

e∈S γ (e).
4

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
Theorem 4. There is a function h(c, d, k) such that the following is true. Let H = (V , E) be a (c, d)-hypergraph and let γ be an assign-
ment of weights to E. Let k ∈Q+ such that weight(γ) ≤ k. Then there exists an assignment ν of weights to E such that weight(ν) ≤ k,
B(γ) ⊆ B(ν) and |support(ν)| ≤ h(c, d, k).

The first step of our reasoning is to consider the situation where |B(γ)| is bounded. In this case it is easy to transform
γ into the desired ν . Partition all the hyperedges of H into equivalence classes corresponding to non-empty subsets of
B(γ) such that two edges e1 and e2 are equivalent if and only if e1 ∩ B(γ) = e2 ∩ B(γ). Then let sX be the total weight
(under γ) of all the edges from the equivalence class where e ∩ B(γ) = X . Identify one representative of each (non-empty)
equivalence class and let e X be the representative of the equivalence class corresponding to X . Then define ν as follows.
For each X corresponding to a non-empty equivalence class, set ν(e X) = sX . For each edge e whose weight has not been
assigned in this way, set ν(e) = 0. It is clear that B(γ) ⊆ B(ν) and that the support of ν is at most 2|B(γ)| , which is bounded
by assumption.

Of course, in general we cannot assume that |B(γ)| is bounded. Therefore, as the next step of our reasoning, we consider
a more general situation where we have a bounded set S = {S1, . . . , Sr} where each Si is a set of at most c hyperedges such
that the following conditions hold regarding S:

(i) for each 1 ≤ i ≤ r, γ (Si) ≥ 1, and
(ii) the set U = B(γ) \ ⋃

i∈[r]
⋂

Si is of bounded size.

Then the assignment ν as in Theorem 4 can be defined as follows. For each e ∈ ⋃
S, set ν(e) = γ (e). Next, we observe that

for the subhypergraph H ′ = H −⋃
S, |B H ′(γ)| is bounded, where the subscript H ′ means that we consider B for hypergraph

H ′ . Therefore, we define ν on the remaining edges as in the paragraph above. It is not hard to see that the support of the
resulting ν is of size at most c · r + 2|U | . We are going to show that such a family of sets of edges can always be found for
(c, d)-hypergraphs (after a possible modification of γ).

Definition 5 (Well-formed pair). Let H = (V , E) be a hypergraph and let γ be an edge weight function. We say (S, U) is a
well-formed pair (with regard to γ) if it satisfies the following conditions:

1. U ⊆ B(γ)

2. S = {S1, . . . , Sr} where each Si is a set of at most c hyperedges of H .
3. B(γ) \ U ⊆ ⋃

i∈[r]
⋂

Si .

We denote
∑

i∈[r] |Si | + 2|U | by n(S, U) and refer to it as the size of (S, U).

Definition 6. A well-formed pair (S, U) is perfect if there is an assignment ν : E → [0, 1] with weight(ν) ≤ k and
|support(ν)| ≤ n(S, U) such that

⋃
i∈[r]

⋂
Si ∪ U ⊆ B(ν).

Our aim now is to prove the existence of a perfect pair (S, U) of size bounded by a function depending on c, d, and k.
Clearly, this will imply Theorem 4.

In particular, we will define the initial pair which is a well-formed pair but not necessarily perfect. Then we will define
two transformations from one well-formed pair into another and prove existence of a function transf so that if (S1, U1) is
transformed into (S2, U2), then n(S2, U2) ≤ transf (n(S1, U1)). We will then prove that if we form a sequence of well-formed
pairs starting from the initial pair and obtain every next element by a transformation of the last one then, after a bounded
number of steps we obtain a perfect well-formed pair. We start by defining the initial pair.

Definition 7. The initial pair is (S0, U0) where S0 = {{e} | γ (e) ≥ 1/(2c)} and U0 = B(γ) \ ⋃
{e}∈S0

e.

Lemma 8. There is a function init such that n(S0, U0) ≤ init(c, d, k)

Proof. We can bound |U0| by applying Lemma 2 to all edges with weight less than 1/(2c), i.e., to the subhypergraph
without the edges in S0 . In particular, |U0| ≤ f (c, d, k) where f is as in Lemma 2 (for ε = 1) and | ⋃ S0| ≤ 2ck by construc-
tion. �

We now introduce our two kinds of transformations, folding and extension. A folding removes a set S∗ of c edges from S
and adds to U the vertices in the intersection of the edges of S∗ . In the resulting well-ordered pair (S′, U ′), S′ has one less
element than S and U ′ , compared to U , has a bounded size increase of at most d vertices. Thus the action of folding gets
the resulting well-formed pair closer to one with empty first component, which is a perfect pair according to the discussion
in the beginning of this section.
5

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
Definition 9. Let (S, U) be a well-formed pair such that S contains elements of size c. Let S∗ ∈ S such that |S∗| = c. Let
S′ = S \ {S∗} and U ′ = U ∪ (

⋂
S∗ ∩ B(γ)). We call (S′, U ′) a folding of (S, U).

The folding, however, is possible only if S has an element of size c. Otherwise, we need a more complicated transfor-
mation called an extension. The extension takes an element S ∈ S of size c′ < c and expands it by replacing S with several
subsets of E(H) each containing all the edges of S plus one extra edge. This replacement may miss some of the elements v
of B(γ) ∩ ⋂

S simply because v is not contained in any of these extra edges. This excess of missed elements is added to U
and thus all the conditions of a well-formed pair are satisfied.

Definition 10. Let (S, U) be a well-formed pair with S �= ∅ such that every element of S is of size at most c − 1. For the
extension, let S ∈ S be an element called the extended element and let a set S ′ of hyperedges be called the extending set. We
refer to L = (

⋂
S ∩ B(γ)) \⋃

S ′ as the set of light vertices. An extension of (S, U) is (S′, U ′) where S′ = (S \{S}) ∪{S ∪{e}|e ∈ S ′}
and U ′ = U ∪ L.

Proposition 11. With data as in Definition 10, (S′, U ′) is a well-formed pair.

At the first glance the transformation performed by the extension is radically opposite to the one done by the folding:
the first component grows rather than shrinks. Note, however, that the new sets replacing the removed one contain a
larger number of edges and thus they are closer to being of size c at which stage the folding can be applied to them. The
intuition is that after a sufficiently large number of foldings and extensions, a well-formed pair with empty first component
is eventually obtained.

For our overall goal, we then need to show that the size of the resulting perfect pair is indeed bounded by a function
of c, d, and k. To that end, the following lemma first establishes that a single step in this process increases the size of the
well-formed pair in a controlled manner. To streamline our path to the main result, the proof of the lemma is deferred to
Section 3.2.

Lemma 12. There is a function ext such that the following holds. Let (S, U) be a well-formed pair with S �= ∅ such that every of element
of S is of size at most c − 1. Then one of the following two statements is true.

1. (S, U) is a perfect pair.
2. There is an extension (S′, U ′) of (S, U) such that n(S′, U ′) ≤ ext(n(S, U)). We refer to (S′, U ′) as a bounded extension of (S, U)

For the sake of syntactical convenience, we unify the notions of folding and bounded extension into a single notion of
transformation and prove the related statement following from Lemma 12 and the definition of folding.

Definition 13. Let (S, U) and (S′, U ′) be well-formed pairs. We say that (S′, U ′) is a transformation of (S, U) if it is either a
folding or a bounded extension of (S, U).

Lemma 14. There is a monotone function transf with transf (x) ≥ x for any natural number x such that the following holds. If (S, U) is
a well-formed pair, then one of the following two statements is true.

1. (S, U) is a perfect pair.
2. There exists a transformation (S′, U ′) of (S, U) such that

n(S′, U ′) ≤ transf (n(S, U)).

Proof. Assume that (S, U) is not a perfect pair. Then |S| is not empty (see the discussion at the beginning of this section).
Suppose that an element of S is of size c. Then we set (S′, U ′) to be a folding of (S, U). By definition of the folding and
of (c, d)-hypergraphs, (S′, U ′) is obtained from (S, U) by removal of an element from S and adding at most d vertices to
U . Hence the size of (S′, U ′) is clearly bounded in the size of (S, U). If all elements of S are of size at most c − 1 then by
Lemma 12, there is a bounded extension (S′, U ′) of (S, U).

Clearly, we can specify a function transf ′ so that in both cases n(S, U) ≤ transf ′(n(S, U)). In particular, to satisfy the
requirement for transf , it suffices to set transf (x) = max(x, maxi∈[x] transf ′(i)) for each natural number x. �

Now that we know that each individual step on our path to a perfect pair increases the size only in a bounded fashion,
we need to establish that the number of steps is also bounded by a function of c, d, and k. The following auxiliary theorem
states that such a bound exists.

Definition 15. A sequence of (S1, U1), . . . , (Sq, Uq) is a sequence of transformations if for each i ∈ [q − 1] the following two
statements hold
6

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
1. (Si, Ui) is not a perfect pair.
2. (Si+1, Ui+1) is a transformation of (Si, Ui) as in Lemma 14.

Theorem 16. There is a monotone function sl such that the following is true. Let (S1, U1), . . . , (Sq, Uq) be a sequence of transforma-
tions. Then

q ≤ sl(n(S1, U1)).

The proof of Theorem 16 is provided in Section 3.3.
In summary, we have shown that we can reach a perfect pair in a bounded number of transformations. Moreover, each

transformation increases the size of a pair in a controlled manner. We are now ready to prove our main result.

Proof of Theorem 4. Consider the following algorithm.

1. Let (S0, U0) be the initial pair (see Definition 7).
2. q ← 0
3. While (Sq, Uq) is not a perfect pair

(a) q ← q + 1
(b) Let (Sq, Uq) be a transformation of (Sq−1, Uq−1), which exists by Lemma 14

By Theorem 16, the above algorithm stops with the final q being no higher than sl(n(S1, U1)). It follows from the description
of the algorithm that (Sq, Uq) is a perfect pair. It remains to show that its size is bounded by a function of c, d, k.

q ≤ sl(n(S0, U0)) ≤ sl(init(c,d,k)) (1)

the second inequality follows from Lemma 8 and the monotonicity of sl. Next, by the properties of transf , an inductive
application of Lemma 14 and Lemma 8 yields

n(Sq, Uq) ≤ transf q(init(c,d,k)) (2)

where superscript q means that function transf is composed with itself q-times, that is transf (transf (transf (...))).
Let h(c, d, k) = transf sl(init(c,d,k))(init(c, d, k)). It follows from combination of (1) and (2) that n(Sq, Uq) ≤ h(c, d, k). �

3.2. Proof of Lemma 12

The first step of the proof is to define a unary linear program of bounded size associated with (S, U). Then we will
demonstrate that if the optimal value of this linear program is at most k, then (S, U) is perfect. Otherwise, we show that a
bounded extension can be constructed.

In order to define the linear program, we first formally define equivalence classes of edges covering U (see the informal
discussion in Section 3.1).

Definition 17 (Working subset). A set of vertices U ′ ⊆ U is called working subset (for (S, U)) if there is e ∈ E(H) \ ⋃
S such

that e ∩ U = U ′ . This e is called a witnessing edge of U ′ and the set of all witnessing edges of U ′ is denoted by W U ′ .

Continuing on the previous definition, it is not hard to see that the sets W U ′ partition the set of edges of E(H) \ ⋃
S

having a non-empty intersection with U . Choose an arbitrary but fixed representative of each W U ′ and let AU be the set of
these representatives which we also refer to as the set of witnessing representatives. Now, we are ready to define the linear
program.

Definition 18 (L P (S, U)). The linear program L P (S, U) of (S, U) has the set of variables X = {xe | e ∈ ⋃
S ∪ AU }. The objective

function is the minimization of
∑

xe∈X xe . The constraints are of the following three kinds.

1. {0 ≤ xe ≤ 1 | xe ∈ X}.
2. {OneS | S ∈ S} where OneS is

∑
e∈S xe ≥ 1.

3. {Oneu | u ∈ U } where Oneu is
∑

e∈Eu
xe ≥ 1 where Eu in turn is the subset of

⋃
S ∪ AU consisting of all the edges

containing u.

Lemma 19. Assume that the optimal solution of L P (S, U) is at most k. Then (S, U) is a perfect pair.
7

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
Proof. Each variable xe of L P (S, U) corresponds to an edge e and this correspondence is injective. For each xe , let ν(e) be
the value of xe in the optimal solution. For each edge e not having a corresponding variable, set ν(e) = 0. Note that ν is an
edge weight function with total weight at most k. It follows from a direct inspection that U ∪ ⋃

i∈[r]
⋂

Si ⊆ B(γ) and the
size of the support of ν is at most n(S, U). �

The proof of Lemma 19 establishes a correspondence between solutions of L P (S, U) and edge weight functions. We will
implicitly extend notions for edge weight functions (like their weight) to solutions of L P (S, U) via this correspondence for
the rest of this section.

As stated above, in case the optimal value of L P (S, U) is greater than k, we are going to demonstrate the existence of
a bounded extension of (S, U). The first step towards identifying such an extension is to identify the extended element of
S. Combining Lemma 3 from Section 2 with Lemma 20 below, we observe that S has an element S∗ such that γ (S∗) is
bounded away from 1. This S∗ will be the extended element.

Lemma 20. Let (S, U) be a well-formed pair. Let S∗ be the subset of S consisting of all S such that γ (S) < 1. Let α be an optimal
solution for L P (S, U). Then weight(α) ≤ weight(γ) + ∑

S∈S∗(1 − γ (S)).

Proof. Let β be an arbitrary assignment of weights to the hyperedges of H . We say that β satisfies a constraint OneS for
S ∈ S if β(S) ≥ 1 and that β satisfies the constraint Oneu for u ∈ U if β(Eu) ≥ 1.

We are going to demonstrate an assignment of weights whose total weight exceeds that of γ by at most
∑

S∈S∗(1 −γ (S))

and that satisfies all the constraints OneS and Onev . Clearly, this will imply correctness of this theorem.
For each S ∈ S∗ , choose an arbitrary edge eS ∈ S and let INCR be the set of all such edges. For each e ∈ INCR, let

incre = max{1 − γ (S) | e = eS}. That is, e ∈ INCR can be the representative of multiple S ∈ S∗ and incre represents the
maximal 1 − γ (S) over all the sets S for which e is the representative eS .

Let γ ′ be obtained from γ as follows. If e ∈ INCR then γ ′(e) = γ (e) + incre . Otherwise, γ ′(e) = γ (e). It is not hard to see
that γ ′ satisfies the constraints OneS for each S ∈ S, and that weight(γ ′) ≤ weight(γ) + ∑

S∈S∗ (1 − γ (S)). Since γ ′ does not
decrease the weight of any edge, we also observe U ⊆ B(γ ′).

Let {U1, . . . , Ua} be all the working subsets of U and let e1, . . . , ea be the respective witnessing representatives. The set
of edges e1, . . . , ea corresponds to the set AU from Definition 18. Then the assignment γ ′′ of weights is defined as follows.

1. If there is an i ∈ [a] such that e ∈ W Ui and e = ei , then γ ′′(e) = γ ′(W Ui) = γ (W Ui).
2. If e ∈ ⋃

S, then γ ′′(e) = γ ′(e).
3. Otherwise, γ ′′(e) = 0.

Let W = ⋃
i∈[a] W Ui . Note that, by construction, γ ′(W) = γ ′′(W) and the weights of edges outside W are the same under

γ ′ and γ ′′ and thus, weight(γ ′) = weight(γ ′′). Moreover since
⋃

S does not intersect with W , γ ′′ satisfies the constraints
OneS for all S ∈ S.

It remains to show that γ ′′ satisfies the constraints Oneu for each u ∈ U . Let e1, . . . , er be the edges of
⋃

S containing u,
let {U1, . . . , Ub} be the working subsets of U containing u, and let e′

1, . . . , e′
b be the respective witnessing representatives. As

u ∈ B(γ ′), it follows that
∑

i∈[r] γ ′(ei) +∑
i∈[b] γ ′(W Ui) ≥ 1. By construction, γ ′′(ei) = γ ′(ei) for each 1 ≤ i ≤ r and γ ′′(e′

i) =
γ ′(W Ui) for each 1 ≤ i ≤ b. Consequently,

∑
i∈[r] γ ′′(ei) + ∑

i∈[b] γ ′′(e′
i) ≥ 1. We conclude that γ ′′ satisfies Oneu . �

Recall that Lemma 3 states that for integers n and k, and unary LP Z with at most n variables and O P T (Z) > k, there is
an integer D(n, k) such that O P T (Z) − k > 1

D(n,k)
. Together with Lemma 20 this implies the following corollary.

Corollary 21. Let (S, U) be a well-formed pair. Assume that weight(γ) ≤ k while O P T (L P (S, U)) > k. Let n = n(S, U). Then there is
an S∗ ∈ S with 1 − γ (S∗) > 1

D(n,k)·|S| . In particular this means that S∗ is not empty where S∗ is as in Lemma 20.

Proof. Note that the number of variables of L P (S, U) is at most n. It follows from the combination of Lemma 3 and
Lemma 20 that weight(γ) + ∑

S∈S∗(1 − γ (S)) > k + 1/D(n, k) and, since weight(γ) ≤ k,
∑

S∈S∗(1 − γ (S)) > 1/D(n, k) and
hence there is S∗ ∈ S∗ with (1 − γ (S∗)) > 1

D(n,k)·|S∗| ≥ 1
D(n,k)·|S| . �

We are now ready to prove Lemma 12. Let us first recall the lemma and note that the first component of the well-formed
pair in the statement is non-empty and its elements contain at most c − 1 edges.

Lemma 12. There is a function ext such that the following holds. Let (S, U) be a well-formed pair with S �= ∅ such that every of element
of S is of size at most c − 1. Then one of the following two statements is true.

1. (S, U) is a perfect pair.
2. There is an extension (S′, U ′) of (S, U) such that n(S′, U ′) ≤ ext(n(S, U)). We refer to (S′, U ′) as a bounded extension of (S, U)
8

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
Proof of Lemma 12. If the value of the optimal solution of L P (S, U) is at most k, we are done by Lemma 19.
Otherwise, let S∗ ∈ S be as in Corollary 21. Let ε = (D(n, k) · |S|)−1. It follows from Corollary 21 that vertices of B(γ) ∩⋂
S∗ need weight contribution of at least ε from hyperedges of H other than S∗ . We define the extending set S ′ as the set

of all hyperedges of H other than S∗ whose weight is at least ε/2c and therefore |S ′| ≤ 2ck/ε . We observe that the set L of
light vertices (cf., Definition 10) is the subset of B(γ) ∩ ⋂

S∗ consisting of all vertices x that, besides S∗ are contained only
in hyperedges of weight smaller than ε/2c. By Lemma 2, |L| ≤ f (c, d, k) and the size of S∗ is at most c − 1 by assumption.
It is not hard to see that the size of the resulting extension is bounded as well. �
3.3. Proof of Theorem 16

For this theorem, rather than considering a well-formed pair (S, U) itself we consider the pair (A, b) where A is the
multiset of sizes of the sets of S and |U | = b. We call (A, b) a bare bones c-pair (c-BBP). A transformation of (S, U) is
translated into a bounded size transformation of (A, b). In the next five definitions we formalize this intuition. Then we
state Theorem 27 claiming that a sufficiently long sequence of bounded transformations of c-BBPs results in one where the
first component is empty. This will imply Theorem 16 because a c-BBP with the empty first components is translated back
into well-formed pair with the empty first component which is perfect. Finally, we prove Theorem 27.

Definition 22. A bare bones c-pair, abbreviated as c-BBP is a pair (A, b) where A is a multiset of integers in the range [1, c]
and b is just a non-negative integer. We denote 2b + ∑

x∈A x by n(A, b). Note that the number of occurrences of each x ∈ A
in the sum is its multiplicity in A.

Definition 23. Let (A, b) be a c-BBP and assume that c ∈ A. Let A′ = A \ {c} (that is, the multiplicity of c in A is reduced by
one) and let b′ = b + d where d is a non-negative integer. Clearly (A′, b′) is a c-BBP, we refer to it as a folding of (A, b).

Definition 24. Let (A, b) be a c-BBP and let x ∈ A such that x < c. Let A′ be obtained from A by removal of one occurrence
of x and adding d1 occurrences of x + 1 for some non-negative integer d1. Let b′ = b + d2 for some non-negative integer d2.
Clearly (A′, b′) is a c-BBP, we refer to it as an extension of (A, b)

Definition 25. Let (A, b) and (A′, b′) be c-BBPs such that (A′, b′) is either a folding or an extension of (A.b). We then say
that (A′, b′) is a transformation of (A, b). Let n = n(A, b) and n′ = n(A′, b′) and suppose that n′ ≤ g(n) for some function g .
We then say that (A′, b′) is a g-transformation of (A, b).

Definition 26. Let g be a function of one argument and let (A1, b1), . . . , (Ar, br) be a sequence of c-BBPs such that for each
2 ≤ i ≤ r, the c-BPP (Ai, bi) is a g-transformation of (Ai−1, bi−1). We call (A1, b1), . . . , (Ar, br) a g-transformation sequence.
Note that for each 1 ≤ i < r, Ai is not empty for otherwise, it is impossible to apply a transformation to (Ai , bi).

Theorem 27. Let g be a function of one argument. Then there is a function h[g] such that if (A1, b1), . . . , (Ar, br) is a g-transformation
sequence then r ≤ h[g](n) where n = n(A1, b1).

We first show how to prove Theorem 16 using Theorem 27 and then we will prove Theorem 27 itself. We first recall the
theorem.

Theorem 16. There is a monotone function sl such that the following is true. Let (S1, U1), . . . , (Sq, Uq) be a sequence of transforma-
tions. Then

q ≤ sl(n(S1, U1)).

Proof of Theorem 16. Let (S, U) be a well-formed pair and let bbp(S, U) be (A, b) where A is the multiset of sizes of
elements of S (each x occurs in A exactly the number of times as there are sets of size x in S) and b = |U |. It is not hard to
see that (A, b) is a c-BBP. Moreover,

n(S, U) = n(A,b) (3)

Let (S1, U1), . . . , (Sr, Ur) be a transformation sequence. Let (A1, b1), . . . , (Ar, br) be a sequence of c-BBPs such that (Ai, bi) =
bbp(Si, Ui) for each 1 ≤ i ≤ r.

We are going to show that (A1, b1), . . . , (Ar, br) is a transf -transformation sequence. By Theorem 27, this will imply that
r ≤ h[transf](n) where n = n(A1, b1) = n(S1, U1) by (3) thus implying the theorem.

So, consider two arbitrary consecutive elements (Ai, bi) and (Ai+1, bi+1).
Assume first that (Si+1, Ui+1) is obtained from (Si, Ui) by folding. It is not hard to see that (Ai+1, bi+1) is obtained

from (Ai, bi) by removing one occurrence of c and adding bi+1 = bi + (|Ui+1| − |Ui |). That is (Ai+1, bi+1) is obtained from
9

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
(Ai, bi) as result of folding. As n(Si+1, Ui+1) ≤ transf (n(Si, Ui)), it follows from (3) that n(Ai+1, bi+1) ≤ transf (n(Ai, bi)). We
conclude that (Ai+1, bi+1) is obtained from (Ai, bi) as a result of a transf -transformation.

Assume now that (Si+1, Ui+1) is obtained from (Si, Ui) by extension. This means that Si+1 is obtained from Si by removal
of some S∗ of size less than c and replacing it with d1 sets of size c + 1 for some integer d1 ≥ 0. Also Ui+1 is obtained
from Ui by adding d2 new elements for some integer d2 ≥ 0. It follows by construction that (Ai+1, bi+1) is an extension of
(Ai, bi). By the same argumentation as in the end of the previous paragraph, we conclude that (Ai+1, bi+1) is obtained from
(Ai, bi) by transf -transformation. �
Proof of Theorem 27. We assume w.l.o.g. that g is monotone that is for n1 < n2 g(n1) ≤ g(n2). Indeed, otherwise, since g
is defined over non-negative integer, we can define g∗(n) as the maximum over g(0), . . . , g(n) and use g∗ instead of g . The
monotonicity allows us to derive the following inequality.

Suppose that (A1, b1), . . . , (Ax, bx) is a g-transformation sequence and x ≤ y. Then

n(Ax,bx) ≤ g(y)(n(A1,b1)) (4)

For i ∈ {0, . . . , c − 1}, a g-transformation is subset of q-transformations with an additional property recursively defined as
follows.

1. (A′, b′) is a (g, 0)-transformation of (A, b) if (A′, b′) is obtained from (A, b) by folding.
2. Suppose i > 0 and (g, i − 1)-transformation has been defined Then (A′, b′) is a (g, i)-transformation of (A, b) if it is

either a (g, i − 1)-transformation or an extension where the element removed from A is an occurrence of c − i.

A (g, i)-transformation sequence (A1, b1), . . . , (Ar, br) where for each 2 ≤ j ≤ r, (A j, b j) is obtained from (A j−1, b j−1) by
(g, i)-transformation. The sequence is final if all elements of Ar are smaller than c − i, that is no further extension of the
sequence is possible.

We prove by induction that for each i ∈ {0, . . . , c − 1}, there is a function hi[g] such that r as above is at most
hi[g](n(A1, b1)). Then hc−1[g] will be the desired function h[g]. For the sake of simplicity, we will omit g in the square
brackets and refer to these functions as h0, . . . , hc−1.

It is important to observe that our induction is from above, in the sense that we with an increase in i we allow for the
removal of occurrences of lower values. As a consequence, a (g, i)-transformation of (A, b) can never increase the number
of occurrences c − i in A: a folding only removes values from A and an extension can only introduce c − i by removing
occurrences of c − i − 1, which is not permitted in a (g, i)-transformation. It follows that in any (g, i)-transformation
sequence starting at (A1, b1), there can be at most m extensions that remove an occurrence of c − i, where m is the number
of c − i’s in A1. This observation is key to the following argument.

The existence of function h0 is easy to observe. Indeed, the number of consecutive foldings is at most the multiplicity of
c in A1. So, we can put h0 = n(A1, b1).

Assume now that i > 0 and that (A1, b1), . . . , (Ar, br) is a (g, i)-transformation sequence. If it is in fact a (g, i − 1)-
transformation sequence then r ≤ hi−1(A1, b1) by the induction assumption. Otherwise, let 1 < x1 < · · · < xa ≤ r be all the
indices such that for each 1 ≤ j ≤ a, (Ax j , bx j) is obtained from (Ax j−1, bx j−1) by extension removing an element c − i.

For the sake of succinctness, denote n(A1, b1) by n and for each 1 ≤ j ≤ a, we denote n(Ax j , bx j) by n j .
For each integer j ≥ 1, define function f j as follows. f1(x) = hi−1(x) + 1. Suppose that j > 1 and that f j−1 has been

defined. Then f j(x) = f j−1(x) + hi−1(g(f j−1(n))(x)).
We show that for each 1 ≤ j ≤ a, x j ≤ f j(n). Note that (A1, b1), . . . , (Ax1−1, bx1−1) is a (g, i −1)-transformation sequence.

Hence, by the induction assumption, x1 − 1 ≤ hi−1(n) and x1 ≤ f1(n).
Furthermore, let j > 1. Then (Ax j−1 , bx j−1), . . . , (Ax j−1, bx j−1) is also a (q, i − 1)-transformation sequence. Therefore,

by the induction assumption, x j ≤ x j−1 + hi−1(n j−1). By the induction assumption, x j−1 ≤ f j−1(n) and, by (4), n j−1 ≤
g(f j−1(n))(n). Therefore, x j ≤ f j−1(n) + h j−1(g(f j−1(n))(n)) = f j(n) as required. Applying the same argumentation to the
sequence following (Axa , bxa), we conclude that r ≤ fa+1. As noted above, (g, i)-transformations cannot introduce new oc-
currences of c − i and thus a is at most the number of occurrences of c − i in (A1, b1). We can generously bound a by n
and conclude that r ≤ fn+1. Hence, we can set hi = fn+1. �
4. Applications and extensions

4.1. Checking fractional hypertree width

Now that our main combinatorial result has been established we move our attention to an algorithmic application of the
support bound. In particular, we are interested in the problem of deciding whether for an input hypergraph H and constant
k we have fhw(H) ≤ k. The problem is known to be NP-hard even for k = 2 [6]. However, as noted in the introduction,
it has recently been shown that for hypergraph classes which enjoy bounded intersection or bounded degree, it is indeed
tractable to check fhw(H) ≤ k for constant k [9].
10

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
Here we show that our main combinatorial result reveals a large class of instances, that subsumes and extends all
previously known cases, for which checking f hw is tractable. To establish the result we make use of the framework for
tractable width checking developed in [9]. We will only recall the necessary key components here and use them in a
black-box fashion.

Definition 28. Let ρ∗
q (U) be the minimal weight of an assignment γ such that U ⊆ B(γ) and |support(γ)| ≤ q. We define

the q-limited fractional hypertree width of a hypergraph H as its ρ∗
q -width.

Lemma 29 (Theorem 4.5 & Lemma 6.5 in [9]). Fix c, d, and q as constant integers. There is a polynomial-time algorithm testing whether
a given (c, d)-hypergraph has q-limited fractional hypertree width at most k.

The underlying intuition of q-limited fhw is that the bounded support allows for a polynomial-time enumeration of all
the (inclusion) maximal covers of sufficient weight. For (c, d)-hypergraphs, it is then possible to compute a set of candidate
bags such that a fitting tree decomposition, if one exists, uses bags only from this set. Deciding whether a tree decompo-
sition can be created from a given set of candidate bags is tractable under some minor restrictions to the structure of the
resulting decomposition (not of any concern to the case discussed here).

Recall, a class C of hypergraphs is said to satisfy the bounded multi-intersection property (BMIP) if there exist c ≥ 2 and
d ≥ 0, such that every H in C is a (c, d)-hypergraph. We now apply our main result and show that, under BMIP, there exists
a constant q such that the q-limited fractional hypertree width always equals fractional hypertree width. From the previous
lemma it is then straightforward to arrive at the desired tractability result.

Theorem 30. There is a polynomial-time algorithm for testing whether the fhw of the given (c, d)-hypergraph H is at most k (the
degree of the polynomial is upper bounded by a fixed function depending on c, d, k).

Proof. It follows from Theorem 4 that if fhw(H) ≤ k for a (c, d)-hypergraph H then the h(c, d, k)-limited fhw of H is also at
most k.

Indeed, let (T , (Bu)u∈T) be a tree decomposition with fhw at most k. Then, according to Theorem 4, for each node u
in T there is an edge weight function γ with |support(γ)| ≤ h(c, d, k) such that Bu ⊆ B(γ). In other words, it follows that
(T , (Bu)u∈T) has ρ∗

q -width at most k where q is h(c, d, k). Thus, H also has h(c, d, k)-limited fractional hypertree width at
most k. For completeness of the procedure, note that the h(c, d, k)-limited fractional hypertree width can never be lower
than fhw(H).

To test whether fhw(H) ≤ k it is therefore enough to test whether the h(c, d, k)-limited fhw of H is at most k. This can
be done in a polynomial time according to Lemma 29. �
4.2. Extension to fractional hitting set

There are two natural dual concepts of fractional edge covers. One is the notion of fractional hitting sets which is dual
in the sense that it is equivalent to the fractional edge cover on the dual hypergraph. The other, fractional independent sets,
corresponds to the dual linear program of a linear programming formulation of fractional edge covers. Here we discuss how
our results extend to hitting sets.

We start by giving a formal definition of the fractional hitting set problem. Let H = (V , E) be a hypergraph and β : V →
[0, 1] be an assignment of weights to the vertices of H . Analogous to the definition of fractional edge covers we define

• B v(β) = {e ∈ E | ∑v∈e β(v) ≥ 1},
• vsupport(β) = {v ∈ V | β(v) > 0},
• and weight(β) = ∑

v∈V β(v).

A fractional hitting set is also called a fractional transversal in some contexts (cf. [14]). For a set of edges E ′ , we denote
the weight of the minimal fractional hitting set β such that E ′ ⊆ B v(β) as τ ∗(E ′). For hypergraph H = (V , E), we say
τ ∗(H) = τ ∗(E). Recall, that we assume reduced hypergraphs and therefore there is a one-to-one correspondence of vertices
in H and edges in Hd . We will make use of the following straightforward observations about the connection of what we
will call dual weight assignments.

Proposition 31. Let H = (V , E) be a (reduced) hypergraph and let Hd = (W , F) be its dual. We write f v to identify the edge in F that
corresponds to the vertex v in V . The following two statements hold:

• For every γ : E → [0, 1] and the function β : W → [0, 1] with β(e) = γ (e) it holds that B v(β) = { f v | v ∈ B(γ)}.1

1 Recall that the edges E of H are the vertices W of Hd .
11

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
• For every β : V → [0, 1] and the function γ : F → [0, 1] with γ (f v) = β(v) it holds that B(γ) = {v | f v ∈ B v(β)}.

For the hitting set, a more specific version of our main result is already known. This result is due to Zoltán Füredi [7],
who extended earlier results by Chung et al. [4]. Recall that a hypergraph H with rank r is also a (1, r)-hypergraph, i.e., this
can be considered a special case of our setting. Furthermore, note that the statement holds only for weight minimal hitting
sets.

Proposition 32 ([7], page 152, Proposition 5.11.(iii)). For every hypergraph H of rank (i.e., maximal edge size) r, and every fractional
hitting set w for H satisfying weight(w) = τ ∗(H), the property |vsupport(w)| ≤ r · τ ∗(H) holds.

In the following we will extend Theorem 4 to an analogous statement for fractional hitting sets thereby generalizing the
previous proposition significantly. To derive the result we need a final observation about (c, d)-hypergraphs. In a sense, we
show that bounded multi-intersection is its own dual property.

Lemma 33. Let H be a (c, d)-hypergraph. Then the dual hypergraph Hd is a (d + 1, c − 1)-hypergraph.2

Proof. Let G = (V ∪ E, A) be the incidence graph of H . H being a (c, d)-hypergraph is equivalent to G not having Kc,d+1 as
a subgraph, with c vertices taken from E and d + 1 vertices taken from V . As the incidence graph Gd = (W ∪ F , B) of Hd is
isomorphic to G , with vertices and edges changing sides, we conclude that Gd does not have Kd+1,c as a subgraph with d +1
vertices taken from F and c vertices taken from W . This is equivalent to saying that Hd is a (d + 1, c − 1)-hypergraph. �
Theorem 34. There is a function h(c, d, k) such that the following is true. Let c, d, k be constants. Let H be a (c, d)-hypergraph and
β be an assignment of weights to V (H). Assume that weight(β) ≤ k. Then there is an assignment ν of weights to V (H) such that
weight(ν) ≤ k, B v(β) ⊆ B v(ν) and |vsupport(ν)| ≤ h(c, d, k).

Proof. Let γ be the dual weight assignment of β as in Proposition 31. That is, γ : F → [0, 1] is an edge weight assignment
in the dual hypergraph Hd = (W , F) with |support(γ)| = |vsupport(β)| and weight(γ) = weight(β).

From Lemma 33 we have that Hd is a (d + 1, c − 1)-hypergraph and thus by Theorem 4 there is an edge weight function
ν ′ with B(γ) ⊆ B(ν ′) and |support(ν ′)| ≤ h′(d +1, c −1, k). Let ν now be the dual weight assignment of ν ′ . By Proposition 31
we then see that also B v (β) ⊆ B v(ν) and |vsupport(ν)| = |support(ν ′)| ≤ h′(d + 1, c − 1, k). �
5. Conclusion & open questions

5.1. Conclusion

We have proved novel upper bounds on the size of the support of fractional edge covers and vertex covers. These bounds
have then been fruitfully applied to the problem of checking fhw(H) ≤ k for given hypergraph H . Recall that, without
imposing any restrictions on the hypergraph H , this problem is NP-complete even for k = 2 [6], thus ruling out even XP-
membership. In contrast, for hypergraph classes that exhibit bounded multi-intersection, we have managed to establish
XP-membership, that is, checking fhw(H) ≤ k for hypergraphs in such a class is feasible in polynomial time for any constant
k. Beyond the application to checking fractional hypertree width, our main result reveals completely new and far-reaching
connections between fractional covers in hypergraphs and hypergraph structure which may be of independent interest in a
wide variety of fields.

Below we identify a number of interesting open problem that are closely related to our main results.

5.2. Precise computation of fhw(H)

We have shown that for any (c, d)-hypergraph H , the question fhw(H)
?≤ k can be answered in polynomial time with the

degree of the polynomial depending on c, d, and k. Suppose we are given a constant k such that fhw(H) ≤ k. Is it possible
to compute the optimal (precise) value of fhw(H) in polynomial time with the degree of the polynomial depending on c, d,
and k?

We know that 1 ≤ fhw(H) ≤ k and that for each 1 ≤ k′ ≤ k we can test fhw(H) ≤ k′ in time polynomial in c, d, k′ . It might
seem that fhw(k) can be efficiently computed by repeated binary-search like querying fhw(H) ≤ k′ for values of k′ getting
closer and closer to the actual value of fhw(H).

2 Note that the superscript of Hd only signifies that it is the dual of H . It is not connected to the integer constant d used for the multi-intersection width
of H .
12

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
Unfortunately, this method does not work. More specifically, there is no function h∗(c, d, k) upper bounding the degree
of the polynomial for the runtime of the resulting algorithm. Indeed, if such a function existed then it would hold that
h(c, d, k′) ≤ h∗(c, d, k) for any 1 ≤ k′ ≤ k. The proposition below demonstrates that this is not the case.

Proposition 35. h(2, 1, x) tends to infinity as x approaches 2 from below.

Proof. Recall the hypergraph family (Hr)r≥2 from Example 1 that we defined as follows. Hr = (Vr, Er) with Vr =
{v0, . . . , vr} and E = {e0, . . . , er} with e0 = {v1, . . . , vr} and ei = {v0, vi} for 1 ≤ i ≤ r.

It is known that the size of the smallest fractional edge cover of Hr is 2 − 1/r and the cover is witnessed by the unique
assignment of weights where the weight of e0 is 1 − 1/r and the weight of the rest of the hyperedges is 1/r. Clearly the
support of this assignment of weights is r + 1 and hence h(2, 1, 2 − 1/r) ≥ r + 1 for each integer r ≥ 2. In fact, Hr witnesses
that for any 2 − 1/r ≤ x < 2, h(2, 1, x) ≥ r + 1. Indeed, a direct inspection shows that any edge cover of Hr of a support of
size smaller than r + 1 needs to have weight at least 2. It follows that even if we set x larger than 2 − 1/r but still smaller
than 2, the support of size r + 1 is needed anyway. The rest of the proof is an elementary calculus exercise. �

The impossibility to efficiently compute fhw(H) for (c, d)-hypergraphs by the method as above, of course, does not mean
that the parameter cannot be efficiently computed. We leave the possibility of such a computation as an interesting open
question.

Open question 1. Let H be a (c, d) hypergraph such that fhw(H) ≤ k for some integral constant k. Is it possible to compute
fhw(H) in a polynomial time with the degree of the polynomial depending on c, d, k?

It seems that a positive answer to Question 1 requires a new algorithmic approach for the computation of fractional
hypertree decompositions of small width where bags do not necessarily have bounded support. This will require a deeper
insight into the structure of hypertree decompositions of hypergraphs.

5.3. From bounded multi-intersection to bounded VC dimension

It is known that (c, d)-hypergraphs have VC dimension at most c + d [9]. Therefore, it is natural to ask whether it is
possible to generalize Theorem 4 from bounded multi-intersection to bounded VC dimension. More precisely, is there a
function f such that for any constants d and k, any hypergraph H of VC dimension at most d and fractional edge cover
of weight at most k, has a fractional edge cover γ of weight at most k and the support of γ is of size at most f (d, k)?
We conjecture that the answer to this question is negative and that there is a class of hypergraphs witnessing the negative
answer.

Conjecture 1. There are constants d, k and an infinite class H of hypergraphs whose VC dimension is at most d, the fractional edge
cover is at most k and the set {minsupportk(H)|H ∈ H} is unbounded where minsupportk(H) is the smallest size of support of an
edge cover of H of weight at most k.

Let us discuss the reason why we stated the above conjecture. A notable result [13] in the area of parameterized com-
plexity implies that the (non-fractional) set cover problem is FPT for (c, d)-hypergraphs parameterized by the size k. (The
result is stated for dominating sets but can be reformulated in terms of set covers through a minor modification.) On the
other hand, the problem becomes W[1]-hard already for VC dimension 2 [3]. Thus the set cover problem for bounded VC
dimension is notably harder than for bounded multi-intersection.

5.4. Fixed-parameter tractability

Recall that fractional hypertree width (fhw) is defined as the f -width where f is the fractional edge cover number of
the bags of a tree decomposition. Analogously, the generalized hypertree width (ghw) is defined as the f -width where
f is the integral edge cover number of the bags of a tree decomposition. The computation of both, fhw and ghw is hard
for hypergraphs in general [10,6]. However, our recent results demonstrate that the generally intractable problems for the
computation of these notions of width admit XP-algorithms for restricted classes of hypergraphs. It is therefore natural to
ask whether even more efficient algorithms, and in particular FPT-algorithms, are possible.

We believe that the (2, 1)-hypergraphs are the right class to start this investigation with. Even more specifically, we
propose to first look at the situation for generalized hypertree width. The parameterized intractability, if established for this
class of hypergraphs, will extend to parameterized intractability for (c, d)-hypergraphs in general. Moreover, the methods
used in Section 4.1 to show tractability of checking fhw rely on the tractability of checking ghw for the respective fragments.
On the other hand, if an FPT-algorithm for generalized hypertree width is obtained, it is likely to be based on a novel insight,
thus inspiring further research regarding a possibility of its generalization. We believe that the case of (2, 1)-hypergraphs is
a critical starting point for such considerations as the general case for (c, d)-hypergraphs may involve significant additional
13

G. Gottlob, M. Lanzinger, R. Pichler et al. Theoretical Computer Science 979 (2023) 114204
combinatorial challenges which are not directly relevant for the key observations. We therefore propose the following future
research question.

Open question 2. Is there an FPT-algorithm parameterized by k that tests ghw(H) ≤ k for (2, 1)-hypergraphs?

Recent work has shown that, analogously to treewidth in graphs, ghw can be characterised in terms of forbidden sub-
structures in degree-2 hypergraphs (i.e., (3, 0)-hypergraphs) [12]. Such a characterisation can provide an alternative path
towards fixed-parameter tractable checking of ghw ≤ k (in the degree 2 case) through deciding whether certain substruc-
tures (whose size depends on k) are present in the hypergraph.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors acknowledge support by the Vienna Science and Technology Fund (WWTF) [10.47379/ICT2201] and the
Austrian Science Fund (FWF): Project P30930. Georg Gottlob is a Royal Society Research Professor and acknowledges support
by the Royal Society in this role through the “RAISON DATA” project (Reference No. RP\R1\201074). Matthias Lanzinger
acknowledges support by the Royal Society “RAISON DATA” project (Reference No. RP\R1\201074).

References

[1] A. Atserias, M. Grohe, D. Marx, Size bounds and query plans for relational joins, SIAM J. Comput. 42 (4) (2013) 1737–1767.
[2] C. Berge, Fractional Graph Theory, ISI Lecture Notes, vol. 1, Macmillan of India, 1978.
[3] K. Bringmann, L. Kozma, S. Moran, N.S. Narayanaswamy, Hitting set for hypergraphs of low VC-dimension, in: Proc. ESA, 2016, 23.
[4] F.R.K. Chung, Z. Fueredi, M. Garey, R.L. Graham, On the fractional covering number of hypergraphs, SIAM J. Discrete Math. 1 (1) (1988) 45–49.
[5] W. Fischl, G. Gottlob, D.M. Longo, R. Pichler, Hyperbench: a benchmark and tool for hypergraphs and empirical findings, in: Proc. PODS, ACM, 2019,

pp. 464–480.
[6] W. Fischl, G. Gottlob, R. Pichler, General and fractional hypertree decompositions: hard and easy cases, in: Proc. PODS, 2018, pp. 17–32.
[7] Z. Füredi, Matchings and covers in hypergraphs, Graphs Comb. 4 (1) (1988) 115–206.
[8] G. Gottlob, M. Lanzinger, R. Pichler, I. Razgon, Fractional covers of hypergraphs with bounded multi-intersection, in: Proc. MFCS, in: LIPIcs, vol. 170,

2020, 41.
[9] G. Gottlob, M. Lanzinger, R. Pichler, I. Razgon, Complexity analysis of generalized and fractional hypertree decompositions, J. ACM 68 (5) (Sept. 2021).

[10] G. Gottlob, Z. Miklós, T. Schwentick, Generalized hypertree decompositions: NP-hardness and tractable variants, J. ACM 56 (6) (2009) 30.
[11] M. Grohe, D. Marx, Constraint solving via fractional edge covers, ACM Trans. Algorithms 11 (1) (2014) 4.
[12] M. Lanzinger, The complexity of conjunctive queries with degree 2, in: Proc. PODS, ACM, 2022, pp. 91–102.
[13] G. Philip, V. Raman, S. Sikdar, Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond, ACM Trans. Algorithms 9 (1) (2012)

11.
[14] E. Scheinerman, D. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs, Dover Publications, Inc., 2011.
14

http://refhub.elsevier.com/S0304-3975(23)00517-0/bibB62CA384AE2CEF9C61DE695AFC255BCDs1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bib130FB61B6E65326047E553CC8068ED40s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bibDCB51B0D2A9093EFB48ED19208817528s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bib9BA853ED2C6D012EBC0A1784A3A95F7Bs1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bib0DDE461B19BB38312FAA0BFB629B3EB0s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bib0DDE461B19BB38312FAA0BFB629B3EB0s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bib9F6C4F608C526C0BD7588545464723C3s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bib8CD4A3BD292FB0F049867886AC83B359s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bibD05BFA1BCD6A56166F816E7593D6ACF6s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bibD05BFA1BCD6A56166F816E7593D6ACF6s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bibE512DAFD8E2A998710C011ADBD5B25BCs1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bib2982D29B8B781FCFFACD85DE1EE56611s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bib37F13FC937ABA3CDF5E0C89B5F6DB38Cs1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bibA00F66F14BD13500F5635CA4E2C1ACA2s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bibF39D90BAC468FEB4FA73B49CC9F39F06s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bibF39D90BAC468FEB4FA73B49CC9F39F06s1
http://refhub.elsevier.com/S0304-3975(23)00517-0/bibE0C94F311ADF4F64CA26D0E82B35DD41s1

	Fractional covers of hypergraphs with bounded multi-intersection
	1 Introduction
	2 Preliminaries
	3 Bounding the support of fractional edge covers
	3.1 The main combinatorial result
	3.2 Proof of Lemma 12
	3.3 Proof of Theorem 16

	4 Applications and extensions
	4.1 Checking fractional hypertree width
	4.2 Extension to fractional hitting set

	5 Conclusion & open questions
	5.1 Conclusion
	5.2 Precise computation of fhw(H)
	5.3 From bounded multi-intersection to bounded VC dimension
	5.4 Fixed-parameter tractability

	Declaration of competing interest
	Data availability
	Acknowledgements
	References

