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Abstract – Piezoelectric micro-electro-mechanical system (MEMS) loudspeakers are drawing more interest
due to their applications in new-developing audio technologies. MEMS devices’ small dimensions necessitate
including thermal and viscous effects in the surrounding air when simulating their behaviors. Thus, the
linearized mass, momentum and energy conservation equations are used to describe these effects. These formu-
lations are implemented in our open-source finite element program openCFS. In this article, we model a
3D piezoelectric MEMS loudspeaker in two configurations: open and closed back-volume, which behave differ-
ently due to the effects of air viscosity and pressure forces between the cantilever and the closed back-volume.
Furthermore, using a customized vacuum chamber, the atmospheric pressure is varied and its effects are
studied in these two configurations, numerically and experimentally. Experimental results prove that our model
predicts the behavior of the piezoelectric MEMS loudspeaker in various configurations very well. Additional
simulations illustrate the effect of the slit thickness and thermal losses.
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1 Introduction

MEMS loudspeakers are a new and rapidly developing
field in electro-acoustics due to their potential applications
in mobile devices, headphones, audio glasses and hearing
aids. Most loudspeakers consist of an actuation mechanism,
an acoustic diaphragm and an air chamber, therefore, to
model them, multiple physical fields including solid mechan-
ics, electrostatics and acoustics are involved. To excite the
acoustic diaphragm, commonly utilized actuation mecha-
nisms are piezoelectric, electrodynamic [1] and electrostatic
[2]. In piezoelectric MEMS loudspeakers, a cantilever is
excited by a piezoelectric layer sandwiched between two
electrodes in the presence of the input alternating current
(AC) voltage. These loudspeakers are becoming more popu-
lar because they require only a low voltage to provide a high
actuation force [3] and are insensitive to dust [4].

The acoustic performance of a MEMS loudspeaker
depends on material properties, structure and acoustic
design. In MEMS loudspeakers, due to their small dimen-
sions, care has to be taken into account for all relevant
physical effects. Especially for modeling acoustics in the slit
between the cantilever and the frame of the MEMS

loudspeaker, the thermal and viscous effects should be con-
sidered [5, 6]. For modeling thermal and viscous (thermovis-
cous) effects in the acoustic domain, various formulations
are proposed [7–11] which carry the geometry restrictions.
To avoid these geometry restrictions, we use the linearized
thermoviscous acoustic formulation, which consists of the
conservation of mass, momentum, and energy [11–13].
Although being computationally costly, this model fulfills
both thermoviscous acoustic-solid coupling conditions i.e.,
continuity of velocity and continuity of traction.

Thermoviscous effects in MEMS were studied in various
works. Naderyan et al. [14, 15] proposed an analytical
solution based on the low reduced frequency for modeling
thermoviscous acoustic damping in perforated MEMS. A
further comparison to another finite element method
(FEM) model showed good agreement between analytical
and numerical solutions. In 2021, Liechti et al. [16] proposed
lumped and FEM models for a piezoelectric MEMS loud-
speaker, where they considered viscous losses between the
frame and the plate. Later (in 2022), Massimino et al. [17]
designed two MEMS speakers for an in-ear application
considering thermoviscous damping.

In this work, we present a modeling strategy for piezo-
electric MEMS loudspeakers. We use the FEM for solving
the linearized conservation of mass, momentum and energy*Corresponding author: hamideh.hassanpour@tuwien.ac.at
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to take viscous and thermal effects into account. The for-
mulation allows couplings to the flexible solid and the
acoustic wave equation by using non-conforming interfaces
[18]. Employing these formulations, we develop a 3D FEM
model of a piezoelectric MEMS loudspeaker. After showing
the importance of thermoviscous effects, the device is stud-
ied in closed and open back-volume configurations. More-
over, we study the effect of varying atmospheric pressure
on the cantilever deflection. Furthermore, the device is
experimentally tested in different configurations, namely
with an open and closed back volume, respectively. This
experimental data is then compared to the numerical
simulations.

2 Physical modeling

Efficiently modeling a piezoelectric MEMS loudspeaker
requires simulating various domains, including solid, piezo-
electric, thermoviscous acoustics, and acoustic wave equa-
tion in the far-field. Figure 1 shows the topological sketch
of these fields with their interfaces and boundaries.

2.1 Fluid governing equations

Acoustics in the thermoviscous domain Xtv is modeled
by using the linearized form of the conservation of mass,
momentum, and energy. This linearized formulation is
obtained by applying perturbation ansatz and modeling
the small fluctuations of velocity v, pressure p, density q,
and temperatureT. In doing so, the total quantities are split
into a steady background part ()0 and a small perturbation
part. In the frequency-domain modeling, the equations can
be simplified by using the phasor representation. Using com-
plex algebra, the acoustic purturbations pressure, velocity
and temperuture take the harmonic form of peixt, veixt,
and Teixt, respectively [19, 20]; a time derivative of any
quantity n (onot) becomes ixn. The final linearized conserva-
tion equations modeling the fluid behavior in the thermovis-
cous domain for these small perturbations are [18]

ix
p0

p þ $ � v � ix
T 0

T ¼ 0 in Xtv; ð1aÞ

ixq0v � $ � r ¼ 0 in Xtv; ð1bÞ

ixq0cpT þ $ � q � ixp ¼ 0 in Xtv: ð1cÞ
Note that we assumed a fluid with the ideal gas behavior
with no background velocity v0 = 0. Furthermore, the heat
flux may be expressed by Fourier’s law of heat conduction

q ¼ �cT$T ; ð2Þ
where cT is the thermal conductivity of air. The stress ten-
sor r for a Newtonian fluid is defined as

r ¼ �pI þ s

¼ �pI þ lð$v þ ð$vÞT Þ þ lb �
2
3
l

� �
ðr � vÞI ; ð3Þ

where viscous stress tensor, shear and bulk (or volume)
viscosity are denoted with s, l and lb, respectively. Com-
mon boundary conditions in the thermoviscous acoustic
domain are wall (where velocity and temperature are
zero) and symmetry (where normal velocity is set to zero).

Solving the thermoviscous acoustic formulation with
three unknowns is computationally costly and is only neces-
sary when thermal and viscous boundary layers have signif-
icant effects (i.e., near walls). The thermal effects can be
neglected in some cases. The resulting formulation includes
the linearized conservation of mass and momentum with
velocity and pressure degrees of freedom (dof) [21].

In regions where viscous and thermal boundary layers
do not exist and their effects can be neglected, we use a lin-
ear acoustic wave equation

�x2

c2
pa � $ � $pa ¼ 0 in Xa; ð4Þ

where the speed of sound c ¼ ffiffiffiffiffiffiffiffiffiffiffi
K=q0

p
is defined by the

adiabatic compression modulus K, and the unperturbed
acoustic density q0. The linear acoustic wave equation
has one scalar unknown (pressure, pa) and is computa-
tionally more efficient than thermoviscous acoustics
formulations.

2.2 Solid and piezoelectric governing equations

The domain of the flexible solid Xs and the active piezo-
electric material Xp are modeled by the conservation of
momentum

�x2qiu � $ � ri ¼ 0 in Xs [ Xp; ð5Þ
where index i 2 {s, p} is used to distinguish between flex-
ible solid and active piezoelectric material, u denotes the
solid displacement, qi the density of the solid/piezoelectric
material, and ri is the stress tensor. We consider the
material behavior in the solid domain as linear elastic
but anisotropic, relating stress and strain tensor through
the material stiffness tensor C by

rs ¼ C : s in Xs; ð6Þ

Figure 1. Sketch of the topology of a piezoelectric MEMS
loudspeaker. We have piezoelectric Xp, flexible solid Xs, ther-
moviscous acoustic Xtv and acoustic Xa domains with their
interfaces Cstv, Cptv, Catv. Boundary conditions are applied on
solid (Cs), piezoelectric (Cp, Ce and C0), and thermoviscous (Ctv)
boundaries.
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where the solid strain s is defined as

s ¼ 1
2

$u þ ð$uÞT� �
: ð7Þ

At fixed walls (clampings) we enforce the homogeneous
Dirichlet boundary condition (u = 0).

In harmonic cases, with small perturbations from a ref-
erence state, the assumption of a linear constitutive law is
valid. Therefore, in the piezoelectric domain, the linearized
piezoelectric constitutive law is used

rp ¼ C : s� e � E and D ¼ e : sþ � �E in Xp; ð8Þ
where e denotes the piezoelectric coupling tensor, E and
D are the electric field and flux vectors, respectively,
and � is the electric permittivity tensor. Furthermore,
we use Gauss’ law to describe the electric flux density by

$ �D ¼ 0 in Xp; ð9Þ
and describe the electric field as E = �$/; where / is the
electric scalar potential. This identically fulfills Faraday’s
law for the electrostatic case, i.e. $ � E = 0. The Dirichlet
boundary condition for an electric field is the electric
potential / = /e and / = 0 at boundaries Ce and C0,
respectively. The final linear piezoelectric formulations
are obtained by inserting (8) into (5) and (9).

2.3 Coupling conditions

To model multiple domains, it is essential to ensure
that the couplingS between them are enforced. A piezoelec-
tric MEMS loudspeaker contains three couplings: solid-
thermoviscous acoustics, acoustic-thermoviscous acoustic
and piezoelectric-solid.

At the interface of the solid-thermoviscous acoustic
coupled problem, one needs to enforce the dynamic and
kinematic conditions requiring continuity of traction and
velocity, respectively. Traction continuity (force equilib-
rium at the interface) is enforced by requiring

�r � ntv ¼ rs � ns on Cstv; ð10Þ
where rs and r are solid and thermoviscous stress tensors,
respectively. The outwards facing normal vectors of solid
ns and thermoviscous acoustics domains ntv are equal and
opposite (see Fig. 1). The second condition (velocity con-
tinuity) is defined as

ixu ¼ v : ð11Þ
At the interface of the acoustic-thermoviscous acoustic
domains (Catv) the dynamic and kinematic coupling condi-
tions are applied. Thereby, the following transmission con-
ditions along this interface (see Fig. 1) have to be fulfilled

r � n ¼ �pan ¼ ra � n on Catv; ð12Þ

v � n ¼ va � n on Catv: ð13Þ
The continuity of pressure means that the net force should
be zero on the (massless) interface separating the fluids.

Note that this coupling transmission is not valid where
the viscous boundary layer exists. The continuity of the
normal component of velocity implies that the fluid should
stay in contact.

We assume region Xa to be modeled by the classical
linear wave equation (assuming non-viscous fluid) and Xtv

by the thermoviscous acoustic partial differential equations
(PDEs). The normal vectors fulfill the following relation

n ¼ ntv ¼ �na: ð14Þ

3 Finite element formulations

The weak form of the problem serving as the basis for
the finite element formulation is obtained by multiplying
the test functions (denoted by ()0) to the governing PDEs,
integrating over the computational domain, and applying
integration by parts. Introducing p0 and T' as the test func-
tions of pressure and temperature, respectively, the weak
forms of conservation of mass (1a) and of energy (1c) in
the thermoviscous acoustic region are

ix
Z
Xtv

1
p0

p0p dXþ
Z
Xtv

p0$ � v dX� ix
Z
Xtv

1
T 0

p0T dX ¼ 0;

ð15aÞ

ix
Z
Xtv

q0cpT
0T dXþ

Z
Xtv

cT$T
0 � $T dX

�ix
Z
Xtv

T 0p dXþ
Z
Ctv

T 0q � ntv dC ¼ 0 : ð15bÞ

The thermoviscous acoustic normal vector ntv of the bound-
ary Ctv points out of the thermoviscous acoustic domain Xtv
(see Fig. 1). We use a polynomial basis function for the
velocity that is one order higher than that used for the pres-
sure. In the similar Stokes problem, this choice of polyno-
mial orders fulfills the inf-sup (Ladyzhenskaya–Babuska–
Brezzi (LBB)) condition. This condition is widely used in
the Stoke equation to obtain well-posedness, ensuring that
the elements do not lock and the pressure does converge.

To couple the acoustic wave equation with the thermo-
viscous acoustics formulation, we directly apply the
dynamic (12) and the kinematic (13) transmission condi-
tions into the weak form of thermoviscous acoustic conser-
vation of momentum and the acoustic wave equation,
respectively. The first transmission equation according to
(12) can be written in the weak form by multiplying the
velocity test function v0 and integrating over the interface
Catv. By doing so, the surface term in thermoviscous acous-
tics’ conservation of momentum gets the formZ

Catv

v0 � r � n dC ¼ �
Z
Catv

v0 � n pa dC; ð16Þ

where n ¼ ntv.
To apply the second transmission condition according

to (13), we first derive the weak form of the wave equation
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by multiplying the acoustic pressure test function p0a to (4)
and then integrating over the acoustic domain Xa. After
applying Green’s theorem, the weak form reads asZ

Xa

1
c2
p0a

o2pa
ot2

dXþ
Z
Xa

$p0a � $pa dX�
Z
Ca

p0a na � $pa dC ¼ 0:

ð17Þ
The conservation of momentum for acoustics in Xa (isen-
tropic fluid) is

$pa ¼ �q0
ova

ot
: ð18Þ

This relation and the continuity of normal velocity in (13)
allow us to rewrite the surface term in (17) as followsZ

Catv

p0a na � $pa dC ¼
Z
Catv

q0 p
0
a

ov
ot

� n dC; ð19Þ

where n ¼ �na. Therefore, the final weak form of the
acoustic wave equation in the frequency-domain is

�x2
Z
Xa

1
c2
p0apa dXþ

Z
Xa

$p0a � $pa dX

�ix
Z
Catv

q0 p
0
a v � n dC ¼ 0 : ð20Þ

For modeling thermoviscous acoustic-solid coupling, we
applied a non-conforming symmetrization-free formulation
[21]. This method does not introduce any other unknowns
at the interface, such as those used in most of the Lagrange
multiplier-based methods. Thus, it prevents saddle point
problems in the discretized system. Also, since this method
applies the coupling conditions in a weak sense, it can be
used on non-conforming meshes, which are convenient for
mesh generation. First, we apply the traction continuity
condition (10) as

�
Z
Cstv

ðu0 � v0Þ � rs � n dC
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

traction consistency

: ð21Þ

We keep the solid stress tensor for the simpler implementa-
tion since it contains only the displacement as an unknown.
Second, we add the penalty term (term penalty) to guaran-
tee the continuity of velocities

b
p2e
he

Z
Cstv

ðu0 � v0Þ � ou
ot

� v
� �

dC
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

penalty

: ð22Þ

This term is also known as the jump term. The normal
direction of the interface n is defined as n = ns = �ntv.
The penalty term contains the element order pe = max
(ps, ptv) to account various polynomial orders, where, ps
and ptv are the order of basis functions for solid and fluid
domains, respectively. Furthermore, we add 1/he to the
penalty term, where he = min(htv, hs), i.e., the smallest
element length of fluid or solid elements on the non-
conforming interface [22].

Ultimately, the final version of thermoviscous acoustics
conservation of momentum, including thermoviscous acous-
tics-solid and thermoviscous acoustics-acoustics couplings,
in the frequency-domain is obtained as

ix
Z
Xtv

q0v
0 � v dXþ

Z
Xtv

$v0 : rdXþ
Z
Catv

v0 � n pa dC

�
Z
Ctv

v0 � r � n dCþ
Z
Cstv

v0 � rs � n dC
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

traction consistency

� b
p2e
he

Z
Cstv

v0 � ðixu � vÞ dC
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

penalty

¼ 0 : ð23Þ

Additional boundary conditions are applied on the bound-
ary Ctv.

In the solid domain Xs, the conservation of momentum
(5) is the governing relation. In the piezoelectric domain Xp,
Gauss’ law (9) enters the formulations. After integration by
parts and insertion of the relations (6) and (8) along with
the coupling conditions (21) and (22) one obtains

�x2
Z
Xs[Xp

u0 � qiudX

þ
Z
Xs[Xp

$u0 : C : s dXþ
Z
Xp

$u0 : e � $/ dX

�
Z
Cs[Cp

u0 � rs � n dC�
Z
Cstv

u0 � rs � n dC
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

traction consistency

þ b
p2e
he

Z
Cstv

u0 � ðixu � vÞ dC
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

penalty

¼ 0; ð24Þ

and

�
Z
Xp

$/0 � e : s dXþ
Z
Xp

$/0 � � � $/ dX ¼ 0; ð25Þ

where, solid and piezoelectric boundary conditions are
applied on boundaries Cs and Cp, respectively. At the
end, the final set of formulations used in modeling piezo-
electric MEMS loudspeakers consists of (15a), (15b),
(20), (23), (24) and (25).

4 Modeling of a piezoelectric MEMS
loudspeaker

The investigated piezoelectric MEMS loudspeaker
consists of a cantilever with a surface of lsolid � wsolid, fixed
to a rectangular frame on one side, schematically illustrated
in Figure 2. This device is modeled in two configurations:
open and closed back-volume indicated by orange and
purple dashed lines where the back and front volumes are
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connected and separated, respectively. The slit thickness
(tslit) between the cantilever and frame is 10 lm. The active
layer is made of lead zirconate titanate (PZT) with a thick-
ness of tPTZ, sandwiched between two electrodes. Silicon
(Si) is used as a passive layer and frame material. Silicon,
top and bottom electrodes have a thickness of tSi, tte and
tbe, respectively. The back volume has a height of tBV.
Tables 1, 2 and 3 describe the material properties of the dif-
ferent solid layers, air and piezoelectric material. Further
piezoelectric MEMS loudspeaker’s dimensions are provided
in Table 4.

4.1 Numerical model

Finite element modeling of the device is performed using
the open-source FEM code openCFS. The air between the
frame and the plate (slit) is modeled using the thermovis-
cous acoustic formulation to capture the thermoviscous
effects, whereas other acoustic regions are modeled using
the acoustic wave equation. The free-field wave propagation
is ensured using the perfectly matched layer (PML) domain
around the front volume. The cantilever, which is clamped
on one side, is excited using a potential difference of 0.2 V
on the PZT layer. This excites the thermoviscous region
and potentially causes wave propagation. Furthermore,
the thermoviscous region around the slit ends with the wall
boundary condition. Due to symmetry, half of the device is

simulated. Quadratic ansatz functions are used for thermo-
viscous acoustic velocity, temperature and solid displace-
ment, whereas linear ansatz functions are used for pressure
in thermoviscous acoustic and acoustic wave equations.

4.1.1 Closed back-volume

Figure 3 shows the geometry and mesh discretization of
the closed back-volume piezoelectric MEMS loudspeaker.
To model the wave propagation, a front volume with the

Figure 2. Section cut along the symmetry line and top view of
the considered MEMS actuator (dimensions are not to scale).
Orange and purple dashed lines indicate the closed and open
back-volume simulation domains, where the back and front
volumes are separated and connected (with a cylindrical hole),
respectively.

Table 1. Solid material properties.

Property Silicon Top
electrode

Bottom
electrode

Density q in kg m�3 2330 21 450 7700
Young’s modulus
E in Nm�2

1.12 � 1011 1.68 � 1011 9.8 � 1010

Poisson’s ratio m 0.28 0.38 0.23

Table 2. Air material properties.

Property Air

Density q in kg m�3 1.225
Bulk modulus K in N m�2 1.4271 � 105

Dynamic viscosity l in N s m�2 1.829 � 10�5

Bulk viscosity k in N s m�2 1.22 � 105

Adiabatic exponent j 1.4
Specific heat capacity cp in J K�1 975.3
Thermal conductivity cT in W/(mK) 25.18 � 103

Table 3. Piezoelectric material properties.

Property Piezoelectric
material

Density q in kg m�3 7600
Young modulus E in N m�2 1.2 � 1011

Poisson ratio m 0.33
Permittivity � in F m�1 �11 = �22 2.771 � 10�8

�33 3.010 � 10�8

Piezoelectric coupling e31 = e32 �3.88
tensor e in A s m�1 e24 = e15 = e33 7.76

Table 4. Model dimensions.

Property Value in
lm

tte 0.1
tPZT 2.1
tbe 0.13
tsi 9.1
tBV 280
tslit 10
ttable 1000
ltable 200 000
wtable 300 000
wsolid 1680
lsolid 1680
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size of 3360 lm� 3360 lm� 3360 lm is considered. The air
is trapped in the back volume with dimensions of
1680 lm� 1680 lm� 280 lm. Further, the PML domain
is used to account for free radiation. The number of
unknowns is stated in Table 5. Thermoviscous velocity has
the most dof because first, polynomials of second order are
used for velocity, and second, a finer mesh is used in the
thermoviscous acoustic domain to resolve the viscous and
thermal boundary layers correctly. On the thermoviscous-
solid and thermoviscous-acoustic interfaces, non-conforming
grids are used.

4.1.2 Open back-volume

In the open back-volume model, the back volume is
connected to the front volume. To model this connection,
a larger acoustic domain (in the size of the vacuum
chamber) with the dimensions 2.55 � 105 lm � 4.1 �
105 lm 3 � 105 lm is connected to the closed back-volume
acoustic domain using acoustic-acoustic non-conforming
interfaces [23]. Figure 4 shows the mesh discritization in
the open back-volume case. In this configuration, all
domains except the acoustic domain remain the same as
in the closed back-volume case (see Tab. 5). Moreover,
the table where the device is placed on must be considered
to avoid acoustic short circuits. This table and the frame of
the device are considered as perfectly rigid domains; there-
fore, they have been left out while modeling. The dimen-
sions of this table are given in Table 4.

4.1.3 Pressure variation

Changes in the atmospheric pressure affect the air
behavior. Density and compression modulus are air mate-
rial properties that vary for different pressures. The air
compression modulus K varies for different pressure as

K ¼ jp0; ð26Þ

where j is the adiabatic exponent. Accordingly, the rela-
tion between air density and pressure is described using
the ideal gas relation

q ¼ p
RT

; ð27Þ

where R is the ideal gas constant and is related to the
adiabatic exponent as R = cp (1 � 1/j). The viscosity
of air has a temperature dependency, however, it does
not vary significantly with atmospheric pressure.

4.2 Experimental setup

The model is validated against experimental results by
comparing the produced sound pressure and the deflection
amplitudes at different atmospheric pressures.

For the atmospheric pressure variation measurements,
the devices are placed on a table inside a custom-designed
vacuum chamber and electrically contacted using micropo-
sitioners (XYZ 300 TR, Quarter Research & Development,
Bend, Oregon, USA). Double-sided adhesive tape is used to
fix the frame of the sample to a surface inside the chamber,
sealing off the back cavity. For open back-volume measure-
ments, the sample is stuck above a small hole of roughly
1 mm in diameter in both the table surface and the adhe-
sive tape, opening the back cavity up to the chamber
volume. The chamber is evacuated using a Scroll-pump

Figure 3. Mesh discretization for closed back volume.

Table 5. Degrees of freedom (dof) for open and closed back-
volume configurations.

dof Closed back-
volume

Open back-
volume

Solid mechanic
displacement

194k 194k

Electric potential 10k 10k
Acoustic pressure 56k 712k
Temperature 794k 794k
Thermoviscous pressure 112k 112k
Thermoviscous velocity 2.3M 2.3M

Figure 4. Mesh discretization for open back-volume.
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(HiScroll 18, Pfeiffer Vacuum, Asslar, Germany) capable of
reaching pressures down to 0.3 Pa. The chamber pressure is
measured using the internal piezo/pirani-sensor of the
scroll-pump (RPT010, Pfeiffer Vacuum, Asslar, Germany),
with an accuracy of ±15% between 0.1 and 10 000 Pa, and
±1500 Pa in the range from 10 000 Pa to atmospheric
pressure. A chamber window above the device allows the
plate deflection to be measured using a PSV-500 (Polytec,
Waldbronn, Germany) scanning laser doppler vibrometer
(LDV). Broad band anti-reflective coating (BBAR3) of
the window mitigates reflective losses below 0.5% for wave-
lengths in the region of the HeNe-laser wavelength of the
LDV. The setup is shown in Figure 5. A periodic chirp
signal ranging from 5 Hz to 32 kHz with an amplitude of
0.2 V peak AC and 0 V DC bias is applied. The velocity
of the plate tip is measured at various pressures between
0.3 Pa and atmospheric pressure. A fast Fourier transform
of the integrated measured time signal is performed
using the LDV software PSV10.0 (Polytec, Waldbronn,
Germany) yielding the deflection in the frequency domain.
This is done both with a closed and open back-volume,
measuring five samples to account for process variations
in manufacturing.

The acoustic measurements are carried out with an
APx515 System (Audio Precision, Beaverton, Oregon,
USA) in conjunction with the measurement amplifier
APx1701 (Audio Precision, Beaverton, Oregon, USA) and
a free-field microphone GRAS 46BF (GRAS Sound and
Vibration, Holte, Denmark). The devices are fixed far away
from any reflecting obstacles in the closed back volume con-
figuration, with the microphone positioned perpendicularly
above the center of the plate at 13 distance, to maximize
the signal-to-noise ratio (SNR) while still avoiding near-
field effects. Frequency sweeps from 100 Hz to 30 kHz at
1 V peak AC are carried out, using the acoustic response
function from the measurement software APx500 v5.0.3

(Audio Precision, Beaverton, Oregon, USA) to obtain the
sound pressure level with respect to the frequency.

5 Simulation and experimental results

It is crucial to model the thermoviscous effects in MEMS
loudspeakers due to their small dimension. To demonstrate
the importance of these effects on the resonance frequency
of the MEMS loudspeaker, we model the system with and
without considering these effects. Figure 6 compares the
displacement of the cantilever in the acoustic domain with
and without including thermoviscous effects. In the latter,
the first resonance frequency of the cantilever is entirely
damped. However, in the acoustic simulation, the resonance
frequency of the system is observed at 4 kHz. The results
are far from the actual physics of the solution when the
thermoviscous effects are neglected.

5.1 Closed back-volume

Figure 7 shows the cantilever deflection at the frequency
of f = 3.7 kHz and 100 kPa, where the solid layers are
excited by a 0.2 V potential. The MEMS cantilever shows
the expected bending type deformation of the first reso-
nance. The displacement at the tip of the cantilever
(marked in Fig. 7) is plotted over frequency (1–20 kHz) in
Figure 6. This figure also displays the experimental results
for the different samples and their two standard deviations.
The simulation results are within this deviation up to
17.5 kHz. Both experimental and simulation results indicate
that the peak at the first resonance of the cantilever (at
4 kHz) is damped due to the viscosity of the air.

The acoustic pressure field and sound pressure level
(SPL) at the distance of 13 mm are shown in more detail
in Figures 8a and 8b, respectively. Figure 8a indicates the

Figure 5. Experimental setup including the vacuum chamber, scanning laser doppler vibrometer (LDV), Scroll-pump and the
MEMS loudspeaker inside the vacuum chamber.
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acoustic pressure amplitudes are radially decaying. The
PML region damps the wave and simulates far-field wave
propagation. Note that further simulations with a larger
acoustic domain exhibit similar behaviors. Figure 8b shows
the experimental and numerical SPL, which agree within
two standard deviations of the experimental data up to
20 kHz. Furthermore, a SPL of 55 dB is achieved at the fre-
quency of 5 kHz, which is promising considering the loud-
speaker’s small dimensions.

Furthermore, we have studied the effect of atmospheric
pressure on the cantilever displacement. Figure 9 demon-
strates the experimental and numerical displacements
at the tip of the cantilever for four atmospheric pressure
of 1000, 2800, 32 000 and 100 000 Pa with an excitation
of 0.2 V in the closed back-volume configuration. A confi-
dence belt (±2ri) for the measurement results is obtained
by taking into account the standard deviations (ri) of the
peak location (first natural frequency) and amplitude vari-
ation. The mean amplitude of the experimental results was
obtained after frequency-shifting to the mean peak location
frequency. Figure 9 shows that the simulation results can
reasonably predict the first resonance frequencies and are
between the experimental deviations up to 11 kHz.

At lower pressure, the damping effects are low; there-
fore, the resonances are sharper with higher amplitudes

and closer to the natural resonance frequency of the can-
tilever. Increasing the pressure causes more damping and
fades out the resonance peaks. This damping is related to
two reasons: air viscosity and air pressure forces between
the cantilever and closed back-volume [24]. This pressure
force results in an increase in the stiffness of the cantilever

Figure 7. MEMS loudspeaker’s cantilever deformation in
closed back-volume at 100 kV with excitation of 0.2 V at
f = 3.8 KHz.

Figure 6. Displacement at the tip of the cantilever in two cases: with and without thermoviscous effects at 100 kPa with excitation of
0.2 V. The experimental results are shown as mean (dashed line) ±2r (shaded region) using the standard deviation r of the 5
individual measurements (full thiner lines).

Figure 8. Pressure field and SPL in the closed back-volume
configuration with an excitation of 1 V at an atmospheric
pressure of 100 kPa. (a) Acoustic pressure field at f = 5 kHz.
(b) Sound pressure level (SPL) at distance of 13 mm. The
experimental results are shown as mean (dashed line) ±2r
(shaded region) using the standard deviation r of the 8
individual measurements (full thiner lines).
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and consequently shifts in resonance frequency [25, 26].
Figure 9 shows that resonances are shifted to higher fre-
quencies at higher pressure, where higher pressure force
and subsequently higher stiffness exist.

5.2 Open back-volume

In the open back-volume, the back volume is connected
to the front volume; therefore, air is no longer trapped in
the back volume. Figure 10 shows the displacement at the
tip of the cantilever over the frequency range of 1–20 kHz
with an excitation of 0.2 V at an atmospheric pressure of
100 kPa. Although the resonance peak is slightly before
the confidence band, the shape of the curve agrees remark-
ably well. The displacement amplitude is within two stan-
dard deviations for a wide frequency range from 5 to
13 kHz. In contrast to the closed back-volume case, the can-
tilever shows its first resonance at a frequency of ~4 kHz.

The acoustic pressure field is shown in Figure 11 at a fre-
quency of 5 kHz and an atmospheric pressure of 100 kPa.

The radially decaying waves with their dipole character
are visible.

Moreover, the effect of the atmospheric pressures is
shown in Figure 12. This figure shows the displacement at
the tip of the cantilever over different atmospheric pressures
of 3, 60 and 100 kPa. The air viscosity and compression
damping in the open back-volume are not as pronounced
as in the closed back-volume configuration. In the open
back-volume configuration, the system shows its resonance
frequency in all the atmospheric pressures at ~4 kHz.
Similar to the closed back-volume configuration, lower
displacement amplitudes are achieved at higher pressures
due to viscous damping, and sharper peaks with larger dis-
placement amplitudes are observed at lower pressures.
Counter to the closed back-volume configuration, the reso-
nances are shifted to lower frequencies with increasing
atmospheric pressure. Since the damping effect is weak in
the open back-volume configuration, atmospheric pressure
only affects the air density. Therefore, by increasing the
pressure, the air density increases (added mass effect) and
causes lower resonances. While the amplitude curves agree
well with the averaged experimental results (in therms of
shape and amplitude values), the model consistently
under-predicts the first natural frequency in this case.

5.3 Impact of the slit thickness

The slit thickness is one of the critical design parameters
in the closed back-volume MEMS loudspeaker, since

Figure 9. Displacement at the tip of the cantilever in the closed back-volume configuration at various atmospheric pressures of 1, 2.8,
32 and 100 kPa. The shaded region indicates the statistical variation on the experimental results (±2r) by taking into account the
standard deviation of the peak location (first natural frequency) and amplitude variation. The mean amplitude of the experimental
results (obtained after frequency-shifting to the mean peak location frequency) is shown as a dashed line.

Figure 10. Displacement at the tip of the cantilever with an
excitation of 0.2 at an atmospheric pressure of 100 in the open
back-volume configuration. The shaded region indicates the
statistical variation on the experimental results (±2r) by taking
into account the standard deviation of the peak location (first
natural frequency) and amplitude variation. The mean ampli-
tude of the experimental results (obtained after frequency-
shifting to the mean peak location frequency) is shown as a
dashed line. The 5 measurements are plotted as dotted lines.

Figure 11. Pressure field at 100 kPa and f = 5 kHz with an
excitation of 1 V in open back-volume configuration.
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it significantly affects the viscous damping and resonance
frequencies of the system. The slit thickness which was orig-
inally set to 10 lm, is further varied to 15 lm and 20 lm.
The displacements at the tip of the cantilever over fre-
quency, using these slit thicknesses, are plotted in Figure 13.
These studies are done at the atmospheric pressure of
100 kPa with the excitation of 0.2 V. A narrower slit thick-
ness causes higher damping and fades out the displacement
peak. By increasing the slit thickness, higher displacements
with sharper peaks are observed. The resonances are
slightly shifted to higher frequencies due to the damping
effect discussed previously.

5.4 Importance of thermal effect

The study of thermal effects is important since eliminat-
ing the temperature dof can significantly reduce computa-
tional effort. Therefore, we model the piezoelectric MEMS
loudspeaker with and without thermal effects using thermo-
viscous acoustic and viscous acoustic formulations, respec-
tively. Figures 14 and 15 show the displacement at the tip
of the cantilever and acoustic pressure in the frequency
range of 1–5 kHz at a distance of 3.2 mm with an excita-
tion of 0.2 V and the atmospheric pressure of 100 kPa in
closed and open back-volume configuration, respectively.
These figures demonstrate that in both open and closed

back-volume configurations, cantilever displacement and
acoustic pressure are equal with andwithout thermal effects.
This leads to a reduction of 794k dof for temperature and

Figure 13. Displacement at the tip of the cantilever using
different slit thicknesses of 10, 15 and 20 lm in the closed back-
volume configuration with an excitation of 0.2 V and the
atmospheric pressure of 100 kPa.

Figure 14. Displacement at the tip of the cantilever and
acoustic pressure at a distance of 3.2 mm for the closed back-
volume case.

Figure 15. Displacement at the tip of the cantilever and
acoustic pressure at a distance of 3.2 mm for the open back-
volume case.

Figure 12. Displacement at the tip of the cantilever at different atmospheric pressures of 3, 60 and 100 kPa with an excitation of
0.2 V in the open back-volume configuration. The shaded region indicates the statistical variation on the experimental results (±2r)
by taking into account the standard deviation of the peak location (first natural frequency) and amplitude variation. The mean
amplitude of the experimental results (obtained after frequency-shifting to the mean peak location frequency) is shown as a dashed
line.
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reduces the solution time by 37% and 42% for closed and
open back-volume configurations, respectively.

6 Conclusion

In this work, we modeled a 3D piezoelectric MEMS
loudspeaker using our open source finite element program,
which includes thermoviscous effects. Furthermore, we
conducted experiments in various configurations to validate
this model. We studied these effects in closed and open
back-volume configurations (where the back and front
volumes are separated and connected, respectively) at
various atmospheric pressures. A customized vacuum
chamber was used to vary the atmospheric pressure in the
experimental setup. In the closed back-volume case, ther-
moviscous effects altered the cantilever’s displacements
and consequently the SPL, and faded out the cantilever’s
first resonance at ~4 kHz . The numerical results, displace-
ment, and SPL agreed well with the experimental data. In
the open back-volume case, the damping effects are not as
pronounced as for the closed back-volume. Therefore, the
first resonance frequency is still at ~4 kHz, which is verified
with experimental displacements.

The cantilever displacement amplitudes were affected
by altering the atmospheric pressure. In the closed and open
back-volume configurations, increasing pressure causes
more damping and lower displacement amplitudes. Regard-
ing the cantilever displacements, experimental results also
captured the same behavior. Displacement peaks were shar-
per at lower pressure. Unlike the open back-volume case,
the resonances shifted to higher frequencies for the closed
back-volume. This is due to an increase in the stiffness of
the cantilever as a consequence of the compression force
between the cantilever and closed back-volume. In the open
back-volume configuration, the resonances slightly shifted
to lower frequencies when increasing pressure and subse-
quently increasing the density.

Furthermore, the slit thickness was studied. Using three
different configurations with a thickness of 10, 15, and
20 lm showed that increasing the slit thickness caused
lower damping and, therefore, higher and sharper displace-
ment peaks. Moreover, we showed that the thermal effects
are negligible. This reduced the computation time by ~40%.
In conclusion, this validated method and simulation strat-
egy can be used for modeling similar MEMS devices.
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