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ABSTRACT 

Robots are developed and used more and more in agriculture every day, for various tasks like harvesting, 
planting, disease detection, plant treatment, etc. but there is a considerable gap in soil analysis even though 
it is one of the most important parts of agriculture if farmers want to have good crops. There are laboratories 
that do soil analysis but the process for farmers is laboring and time-consuming, and developed systems 
and robots from other researchers are usually very expensive due to the cost of sensors and overall robot. 
Taking this into consideration, we developed a simple mobile robot equipped with a low-cost soil sensor to 
collect the necessary parameters of soil for farmers, and also an edge device that runs an AI model to 
perform soil analysis with a camera which will help to make final information more reliable, given the fact 
that low-cost sensors have a bad reputation for reliability and precision. One of the advantages of this 
system is that the whole sensor and camera combination for measurement can be adapted very easily to any 
other existing mobile robot, and the overall cost of the measuring system including the edge device is less 
than 100 euros, which makes it a lot less expensive compared with other existing systems with still good 
results in the end. The ultimate goal at the end is to create an almost sensorless device that can perform soil 
analysis just by a camera and can be used in almost any agricultural robotic system. 

 

1 INTRODUCTION 

One of the hot topics in robotics development is in the field of agriculture, especially since the 
pandemics begin and people realize the importance of robotics and automation to replace some of 
the human labor. A systematic review of agricultural robotic systems made by Oliveira and others 
[1] shows that developed robots in that field are mainly focused on plants including plant treatment, 
disease detection, harvesting robots, sowing and planting robots, etc. One of the interesting 
findings of that review was the existence of a very large trade-off between the quality and the price 
of the cameras that are used in agriculture robotics since one of the main sensors on these robots 
is the camera.  

Based on that review and our personal research, we see that there is a gap in soil analysis in 
robotics, knowing that as this process is crucial in agriculture, especially before planting and 
treating the plant further. Also, there is existing research that shows that in both emerging [2] and 
developed countries [3] there are barriers that keep farmers from adapting the latest technologies 
and robotic systems from applying them in their daily work. One of the leading reasons for that is 
the high cost of such systems.  

Taking into account the gap of robotics in soil analysis, the unsolved problem of price/quality 
tradeoff for cameras in agriculture, and, high prices as one of the main barriers to adopting robotics 
in agriculture, we propose a modular device for robots that will tackle these issues. The main idea 
of such a device [better to give the device a name] is to be easily adapted for different robots as a 
modular part to use a combination of a low-cost camera and soil sensor yet still provide a detailed 
analysis of soil and terrain before and after planting. To compensate for the quality of the camera, 



we will be using different artificial intelligence (AI) algorithms in order to have better results even 
with a low-cost camera.  

2 RELATED WORK 

Łukowska et al [4] present a six-wheeled mobile robot that is designed to collect soil samples from 
the terrain and generate a report about soil properties at the end. Even though the robot's main 
purpose is specified to analyze the soil, authors mostly focus on the mechanical design and function 
of the robot and very less on how the robot is supposed to gather the soil data and what type of 
data will be processed. The authors suggest that the robot will carry the “laboratory” and will 
analyze the soil on the board of the robot without the need to send it to classic laboratories for 
results. A similar four-wheeled autonomous robot is developed by Ünal et al [5] which focuses 
specifically on measuring the electrical resistivity (ER) of soil and mapping it on a database based 
on which location it was measured. The developed robot is about 150kg, and in the size of a small 
motorbike, and uses the Wenner four-probe measurement method to measure ER in real-time, 
without the need of collecting samples of soil. Also, a differential global positioning system was 
used for real-time mapping and helped the robot position itself in the terrain. The same 
measurement method was used by Krishnan et al [6] but for a different purpose, to detect 
underground water on soil. Even though the same Wenner four-probe measurement was used, the 
robot overall is simpler since it is using Arduino as the main controller and simple GPS for 
mapping the location of detected water sources on the soil.  

An interesting approach was made by Yan et al [7] with AgriRover, as they claim to bring space 
technology robotics to precision farming. Authors believe that technology used on robots such as 
ExoMars [8] or Curiosity [9] can help to collect soil parameters for large fields and as such help 
in increasing the overall quality and productivity of crops. Based on that, they developed a four-
wheel robot that has a soil sample collecting mechanism, similar to other robots mentioned before 
in this chapter, and also an onboard soil nitrogen analyzer which is made possible by using laser-
induced breakdown spectroscopy (LIBS). Robots also have an onboard Zed camera which is used 
for object detection to help the robot navigate easier through the field. Also, the same system to 
measure the nitrogen level with LIBS was analyzed in much more detail by the same author in 
another paper [10].  

A robot that measures both plant and soil parameters is presented by Iqbal et al [11] which also is 
a four-wheeled robot equipped with Global Navigation Satellite Systems (GNSS) for autonomous 
navigation, and uses ROS (Robotic Operating System) with Nvidia Jetson Nano as the main 
processing unit. The robot is also equipped with LiDAR and a depth camera in order to estimate 
morphological traits of a plant such as height and volume and a manipulator with sensors to 
measure the temperature and humidity of the soil. 

Fentanes et al [12] focus more on the physical properties of the soil such as soil compaction. The 
authors mention that traditional methods for data collection are costly, laborious, and lack quality 
information. Instead, they propose an outdoor mobile robot, which is equipped with a penetrometer 
and generates a 3D map of the soil compaction. 

 

 



 

3 OUR APPROACH [Give your system a name and acronym] 

[Start with the problem to solve, one sentence to repeat it here is ok] 

. 

[Then introduce the proposed solution] To tackle this problem, we combined a simple mobile robot 
with a low-cost edge device that will focus mainly on identifying the properties of the soil and 
provide the necessary information to the farmer. [That this info is crucial, should rather be in the 
intro]. The nnn system consists of two main parts, sensor and robot control, and edge device with 
running AI algorithm which uses machine vision to analyze soil type and pH level. 

The first part [name it], which contains ATmega328p, will be in charge as a main control unit for 
both moving the robot in a specific path using encoder data of DC motors and reading soil data 
such as NPK (nitrogen, phosphorus, and potassium), pH level, and EC (electrical conductivity) of 
the soil from the soil sensor which will communicate with the microcontroller via the RS-485 
module. The soil sensor is mounted in the front of the robot on the specific mechanism (see figure 
1) which will push it down to the soil with a DC motor, each time when a measurement is 
performed. Then measured data will be stored on an SD card in form of a text file ready to be read 
by the farmer. 

 



Figure 1. Robot construct [more descriptive. Name of platform, what is all seen] 

 

Since the soil sensor we will use is low-cost and not very precise, we cannot rely 100% on the 
results that are measured directly from it. To verify the data, we propose an AI algorithm that runs 
on an edge device and predicts the type of soil and pH level. For soil prediction, an image classifier 
algorithm can do the job if the training data is good enough in both numbers and quality. The 
challenge, in that case, is that soil images do not have too many features that can help us to 
distinguish between types, so the training data is essential in that case. In our case, since the 
algorithm needs to run on an edge device, we used MobileNet architecture, which is a light version 
of the convolutional neural network (CNN) created from the TensorFlow library. MobileNet 
architecture [13] uses depthwise separable convolutions which essentially reduces the number of 
parameters significantly by keeping the network almost the same in performance compared with 
complex CNN that has obviously more parameters. That feature makes it possible for us to run 
that CNN on low-cost edge devices which helps us to predict the type of soil in real-time in the 
field, without the of powerful computers or laboratory analysis. Prediction of the pH in another 
hand is a bit more difficult to do just by soil images. Barman and Choudhury [14] explain in their 
research that they find via linear regression that there is high coloration between the pH value of 
the soil and the saturation and hue values of the soil images. When these two are used as the main 
parameters for the artificial neural network model (ANN), the model can predict the pH value of 
the soil with very high accuracy. And for the ANN model, the best results can be obtained by using 
the Levenberg-Marquardt algorithm which essentially is a combination of the steepest descent 
method and the Gauss-Newton algorithm and is generally known as the “trust region” algorithm 
that finds the minimum of the function over the space of parameters [15]. 



 

Figure 2. Diagram model of the whole system 

As can be seen from the diagram in figure 2, the robotic system, soil sensor data, and SD card 
module are all connected and controlled from ATmega328, while on the other side, the edge device 
runs algorithms to classify the type of the soil and the pH level just from images taken from camera. 
In the end, all the information is collected on an SD card and ready to be read by a farmer. 

 

4 RESULTS 

In the first phase of our experiment, we were able to implement the soil classification module by 
using a low-cost Sipeed Maix Bit I edge device. We trained and booted the image classifier model 
into the Sipeed Maix Bit I, and with the help of the M12 camera module, we stream a real-time 
video with prediction information shown via the TFT display module (see figure 4). To train the 
classifier model, we prepare a dataset from a total of 785 soil images containing two types of soil 
as main classes (vertisol and alluvial soil). From that dataset 709 images were used as training data 
and 79 images as validation data, and the model was trained for 100 epochs with a result of 97% 
of accuracy.  



 

Figure 3. Training results 

When we test the model on the device with different soil samples from both types of soil, it shows 
about 80% accuracy on average, which is still a good result taking into consideration the poor 
colors that the camera detects.  

 

Figure 4. Edge device prediction of soil type 

 
The total cost for all measurements, including sensors, camera, and both microcontrollers for the 
robot and AI module cost less than 100 euros which can be considered low-cost, especially 
knowing that the whole measuring system can be easily adaptable to most agriculture mobile 
robots. 

 

5 CONCLUSIONS 



Our robot was able to perform soil measurements with satisfactory results, at a very low cost, and 
almost fully autonomous which brings solutions to most of the problems and gaps mentioned at 
the beginning of the paper. One of the main challenges we had to overcome was the poor 
performance of the camera as we mentioned also earlier, which makes classifying process very 
difficult since there is not much information for the AI model to analyze from soil images, 
especially when we try to distinguish two types of soil that look almost identical. But with the right 
and enough training data, and also with the right training parameters it was possible to overcome 
that barrier and came up with satisfactory results for such limited resources. Also, the possibility 
to use the soil measuring system in other robots with only minimum hardware intervention is a 
huge benefit, especially in lowering the cost by using existing robots and not building an entirely 
new system. 

The next phase is to analyze pH values, which can take a lot more time to prepare the dataset since 
besides the image of the soil, it is necessary to measure the pH value of each soil sample in order 
to train the system for pH prediction. Our final aim is to create a robotic system that will analyze 
soil with almost zero sensors, just by using images taken from the camera. 
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