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Autonomous In-hand Object Modeling from a Mobile Manipulator.

Philipp Feigl1, Jean-Baptiste Weibel1 and Markus Vincze1

Abstract— Robots require knowledge of objects to manip-
ulate and operate them in their environment. However, such
object models are not always readily available and must
first be created. Service robots are well-equipped to perform
this autonomously, thanks to their set of sensors and arm.
Once grasped, the object of interest can be captured under
many angles and separated from the background, and the
relative transformation between views can be measured through
proprioceptive sensors. As no object knowledge is available,
the approach needs to rely on knowledge of the robot’s
own manipulator, and the environment stability during the
manipulation.

This work focuses on investigating different methods for
segmenting objects moved by a mobile manipulator from
captured RGB-D images, using knowledge of the arm and of
the scene’s background. These segmented views are used to
reconstruct the object, based on the arm forward kinematics
and Iterative Closest Point (ICP) alignment of a 3D hand model
with the scene. We examine the segmentation on different
objects, and demonstrate that the proposed method provides
accurate results even for transparent objects.

I. INTRODUCTION

Robots are expected to perform more and more complex
tasks in the coming years to be able to assist humans in
dangerous, repetitive or simply boring tasks. With the pop-
ulation ageing in most developed countries, service robots
in particular have an essential role to play in helping adults
remain independent for longer. Such robots need to develop
an understanding of their environment and adapt to an
ever-changing set of objects to guarantee safe interaction.
Manipulation of objects, for example, needs knowledge about
the object shape [9] to decide how to grasp it for a specific
purpose.

While humans naturally can perceive objects and estimate
their sizes and shapes very quickly, robots, however, require
models of objects they encounter to adapt. Manual model
creation is time-consuming and generally requires expen-
sive sensors. On the other hand, robots are equipped with
suitable sensors and manipulators to create such models
autonomously. Object modeling involves the collection of
images with known camera poses, and an accurate segmen-
tation of the object in view from the background and robot
manipulator, without knowledge of the object in hand [14].

In this paper, we propose to take advantage of the robot
depth camera and manipulator to autonomously collect views
with and without the object (background view) and combine
them using the arm’s forward kinematics to obtain relative
transformation between views and combine them into a 3D
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model. First, RGB and depth image differencing is applied
between object views and the background view to separate
the object and the arm from the background. Then, the
knowledge of the arm shape and forward kinematics are used
to further segment the arm from the object, and obtain the
relative transformation between the end-effector of the robot
and the camera. This is illustrated in the Figure 1. We show
that our approach for segmentation is competitive, even for
transparent objects and can reconstruct 3D models.

After introducing the relevant state-of-the-art approaches
in Section II, this paper presents a pipeline to reconstruct
3D models of objects from the robot’s in-hand manipulator
in section III. Finally, in Section IV, we show the results of
the segmentation of the robot’s arm and object, as well as
the accuracy of the 3D models obtained.

Fig. 1. The Toyota Human Support Robot is used to autonomously collect
views with known camera-gripper transformation. These images can be
combined, after segmentation, to create a 3D model.

II. RELATED WORK

We present the state-of-the-art methods relevant to this
work. In a first time, we focus on methods used to obtain a
segmentation of the object from the background. In a second
time, we present methods designed to reconstruct objects
from multiple observations.

A. Segmentation

No information about the object to be modeled is available,
as the purpose of the task is to model an object and therefore
obtain that knowledge. Relevant object pixels must be sepa-
rated from the background. Segmentation is a long-standing
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problem, when the background is static. Two categories exist,
as the background is either known beforehand or is learned in
the process. These classical methods are discussed in depth
in [2]. More modern approaches have been developed since,
with [4] training a convolutional neural network (CNN)
taking as input two frames, in between which the robotic
manipulator moved. The network then learns to distinguish
between manipulator, background and object based on this
movement. This method is powerful but its performance
degrades when used with a different manipulator. It is also
possible to use modern deep transformer networks and rely
on more general semantic understanding of the scene to
separate background and foreground as has been studied
in [1].

Unknown object segmentation has also been studied based
on depth information, in the years since off-the-shelf depth
sensors became generally available. In [16], the authors
first obtain supervoxels which are then combined based
on a convexity criterion. CNN have also been applied to
this task with great success [18], refining the depth-based
segmentation prediction using color information.

Lastly, methods have been developed to estimate more
precisely the manipulator state, enabling its segmentation
from the object grasped. Good depth measurements are
available for commercial manipulators as they use non-
transparent non-reflective surfaces. [17] takes advantage of
these depth measurements to refine the pose of every joint
using iterative closest point (ICP) [3] for joints equipped
with a sensor, and a particle swarm optimization (PSO)
for the articulated joints without measurements (usually the
fingertips of an end-effector). Depth is also used in [5], which
directly classifies depth points as one of the arm joints or
background.

B. Object reconstruction

3D models are obtained by combining a set of views with
known camera pose. Truncated signed distance function [8]
are commonly used for this purpose as they account for
the noise present in depth sensors and pose estimation by
smoothing out the final surface based on the amount of noise.

The reconstruction of dense surfaces in real-time by means
of camera tracking is discussed in [13], using an inexpensive
depth camera (KinectFusion). In [6] a signed distance func-
tion is used to minimize errors on a depth image to estimate
the camera pose.

Camera information can be complemented by the manip-
ulator forward kinematics to create object models. This is
done in [12], where the arm state is tracked by a kalman
filter based on the forward kinematics and the measurments
obtained with an ICP-based registration while the object is
manipulated by a robot hand. Because the whole surface
of the object is not visible due to the fingers, multiple
manipulation sequences are necessary to model the complete
object. [11] learns to separate static and dynamic parts
of a scene when visiting it on a regular basis to extract
multiple partial views of objects and cluster them to obtain
complete objects. [14] also demonstrated that it is possible

to segment and reconstruct objects using a truncated signed
distance function and ICP algorithm in combination with a
hand tracker instead of forward kinematics, when objects are
manipulated by a human hand.

III. AUTONOMOUS IN-HAND OBJECT MODELING

The robot used for the in-hand reconstruction is the Toyota
Human Support Robot (HSR) [19], [20]. The HSR is de-
signed to support and interact with people around the house.
Therefore, it is perfectly suitable for the targeted task and is
equipped with a head-mounted RGB-D camera as well as an
arm. The RGB-D camera is a Xtion PRO LIVE that measure
depth using structured light sensing techniques. Such an
approach provides accurate depth but cannot measure depth
if the distance between the object and the camera is too
small, or if the object is transparent.

We present a pipeline for autonomous in-hand object
modeling that is suitable for this platform. Given an object is
present in the robot end-effector, we record the background
B (with the arm out of view) and then a sequence S of
RGB-D images of the object with different arm poses P. The
relative transformation between the camera and the gripper
is obtained using the forward kinematics of the arm. In this
section, we first detail how we segment the object and the
arm from the background, then how we refine our estimate
of the arm pose as well as the end-effector fingertips to
better segment it out from the original recorded sequence
S, and finally how we use those segmented views to model
the object. An overview of the in-hand modeling pipeline is
shown in Figure 2.
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Fig. 2. Overview of the object in-hand modelling.
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A. Background removal

In this part, we describe how we propose to segment the
arm and object from the background in an image Ik ∈ S,
a process known as Background Subtraction (BS). As we
have collected a view of the scene with the arm out of view,
that is a background image B, all points that are not part
of the arm or the object can be expected to have a small
distance between Ik and B. Any distance function d(Ik, B)
can be used, we apply the euclidean distance pixel-wise in
our experiments:

d2 =

√
n

∑
i=0

(
Ici
k −Bci

)2 (1)

with n as the number of channels and ci as the current
channel. This process can be applied to the three color
channels (R,G,B) or the single channel depth image (where
there are valid depth measurements).

A mask can be obtained from that distance image by
selecting a threshold t for that distance image, such that
pixels with a distance d2 > t belong to the object or the
robot’s arm, and pixels with d2 ≤ t belong to the background,
that is:

Mm
k =

{
1 , d2 > t
0 , otherwise

(2)

with m the modality used (depth d or color c).
To make the selection of that threshold easier, and knowing

that there will always be enough difference between B and Ik,
we first normalize the difference images and set a threshold
to 0.1, that is 10% of the maximum distance value.

Color differencing tend to be quite noisy, and depth
differencing suffers from the sensor limitations. In particular,
some objects do not have any valid depth measurements,
and depth values are missing around object edges due to
shadowing effects between the projector and infrared camera
of the depth sensor. To overcome those limitations, we also
propose to average both differencing images before creating
the mask.

This improves the performance but still provides poor
estimates for transparent objects as they do not provide any
depth measurements. However, this behavior can be taken
advantage of. Indeed, if points without depth measurements
are added to the depth differencing image Md

k , we can
obtain an under-segmented view of the object (with some
background pixels still part of the mask). On the other
hand, the mask obtained from combining the differencing
images across modalities provides an undersegmentation. To
accentuate this effect, we raise the threshold to 0.15 and
perform a morphological erosion. With both of these images,
the process of recovering the exact object boundary based on
the RGB information is called alpha matting, and we propose
to use the Grabcut algorithm [15] for this purpose.

For all differencing approaches, dynamic elements of the
background are removed simply by picking the biggest
connect component in the mask image. Example results are
shown in Figure 3.

Fig. 3. Left column: RGB images of the cracker box, the mustard bottle
and the transparent canister. Middle column: Highlighted are the points left
after the background removal. Right column: Highlighted are the points left
after the arm and fingers removal.

B. Palm removal

The approximate position of the palm coordinate system
is known by the system and can be queried using the tf
component of the Robot Operating System (ROS) as it is
updated dynamically based on joint encoders measurements
as well as arm calibration. This information can be used to
initialize the pose of the 3D model of the hand in the camera
frame. Noise in the sensor measuring each joint angle and
arm calibration errors prevent a perfect alignment. To address
this, a refinement of the palm’s position is performed through
an Iterative Closest Point (ICP) procedure between the hand
3D model and the scene point cloud. Points that are close to
the robot’s palm are considered to be part of the palm and
therefore removed from the point cloud. The transform of the
3D hand model between the initial pose and the ICP-aligned
one can also be used in combination with the kinematic-
based one to obtain refined poses for each view.

Since the fingers of the HSR consist of two links each
and the corresponding joints do not provide position infor-
mation, it is not possible to adjust the fingers of the 3D
model accordingly to remove the fingers with the approach
described. Therefore, at this stage, the resulting point cloud
still contains the forearm, the fingers and the object.

C. Finger position estimation and object segmentation

Using particle swarm optimisation (PSO), multiple finger
positions of the 3D model are estimated and the overlap
between the model and the scene is optimized. Points that
are close to the estimated finger positions are considered as
part of the fingers and removed from the point cloud, such
that only the forearm and the object are left. Fingers can
however be hidden in the scene or recorded from problematic
perspectives. The performance here also suffers from the
depth sensors limitations.

The clustering algorithm DBScan [10] further separates
the remaining point cloud into several clusters, keeping only
those near the fingertip position as part of the object, as can
be seen in the last column of Figure 3. Using the pinhole
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model and the camera intrinsics, a 2D projection is created,
which is needed for the subsequent object reconstruction.

D. Object reconstruction

The above steps are performed for each image Ik of
the sequence S to obtain n 2D images of the object. This
provides us with mask of the object of interest in every
recorded image. The reconstruction is however only possible
for objects where depth information is available.

Since the information of the relative position of the hand to
the camera is known according to the camera pose tracking,
every view will be transformed to the initial palm pose and
combined into a single model. Original poses as well as ICP-
refined poses can be used for this step. The reconstruction
itself is performed using TSDF volume integration.

IV. EXPERIMENTS AND RESULTS

First, the experimental set-up is explained, and the chosen
parameters are presented. The HSR platform described in
the previous section was used to acquire data sequences
for 4 different objects consisting of approximately 13 to
15 images each, under 2 different lighting conditions. The
objects chosen are the crackerbox, the mustard bottle and the
potted meat can from the YCB dataset [7], as high-quality
models are available, as well as one transparent canister.

The initial hand pose was chosen to be the same for
each object dataset for better comparability. For the TSDF
Volume Integration the parameters sdf voxel length
and sdf trunc were set to 0.003 and 0.01, respectively.
For the 3D hand model (consisting of the individual parts
wrist, palm, 2 fingers, and 2 tips) 2000 points per part are
used.

A. Segmentation Results

For the background segmentation different methods were
tested on the captured data. The methods are presented
in III and are color differencing, depth differencing, the
combination of the two and the grabcut-based method. Using
manually created masks of the objects and the arm, the
quality of the segmentation can be determined using the
precision and recall metrics, which are abbreviated here for
simplicity as pr and re. They are given by

pr =
t p

t p+ f p
, re =

t p
t p+ f n

(3)

, with t p and f p as the number of true and false positives,
as well as f n as the number of false negatives.

For each image of an object sequence precision and recall
were calculated to study different cases. Table I lists the pre-
cision and recall values averaged over all (arm- and object-)
segmentations for each evaluated method. Grabcut, followed
by color and depth differencing, are the best performing
methods, while color differencing on its own has the lowest
values, especially for artificial lighting, as summarized in
Table IV, and noisy images.

Method pr in % re in %

Color differencing 81.7 66.4
Depth differencing 97.4 88.3
Color and Depth differencing 97.5 95.0
Grabcut 98.8 95.3

TABLE I
PRECISION AND RECALL OF BACKGROUND SUBTRACTION METHODS

AVERAGED OVER ALL OBJECTS

The performance of the object-only segmentation (includ-
ing the arm removal step) is presented in II when using
the Grabcut method for background removal. Due to their
simple geometry, the best results can be achieved for the
cracker box and the potted meat can. The mustard bottle has
a comparatively complicated geometry and reflections of the
ceiling lamp reduce the precision for transparent objects.

Object pr in % re in %

crackerbox 92.4 90.4
mustard bottle 84.8 82.3
potted meat can 92.2 85.7
canister (transparent) 79.9 45.6

TABLE II
PRECISION AND RECALL OF OBJECT SEPARATED FROM ARM AND HAND

FOR BEST PERFORMING BACKGROUND SUBTRACTION METHOD

As can be seen in Table III, the segmentation of the
arm-object combination is an easier task than that of the
separation of the transparent object and arm. For color
differencing it is difficult to distinguish between background
and canister, just as depth differencing has problems due to
insufficient depth data. Considering both modalities, on the
one hand, or using grabcut, on the other hand, gives good
precision. Color and depth differencing however, misses most
of the transparent object points as shown by the low recall.

pr in % re in %
Method A-O O-O A-O O-O

Color diff. 99.3 6.9 51.4 3.4
Depth diff. 97.1 35.3 84.6 15.2
Color and Depth diff. 97.3 62.5 93.4 23.6
Grabcut 99.4 79.9 93.7 46.1

TABLE III
PRECISION AND RECALL OF BACKGROUND SUBTRACTION METHODS

FOR TRANSPARENT OBJECTS (ARM-OBJECT AND OBJECT-ONLY)

In Table IV, we can see that depth-based methods are
more robust to light changes. Their performance are however
still degrading slightly, essentially due to reflections on shiny
arm parts that prevents the depth sensor to measure anything
under the light of the additional lamp.
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pr in % re in %
Ceiling lamp off on off on

Color diff. 99.1 64.3 66.2 66.6
Depth diff. 97.5 97.3 88.4 88.2
Color and Depth diff. 97.7 97.3 95.9 94.2
Grabcut 99.5 98.1 95.9 94.7

TABLE IV
PRECISION AND RECALL OF BACKGROUND SUBTRACTION METHODS

DEPENDING ON THE LIGHT CONDITIONS

B. Reconstruction Results

The accuracy of the model can only be evaluated for three
models (crackerbox, mustard bottle and potted meat can) as
the RGB-D camera cannot measure depth for transparent
objects. Distance of our models compared to high-quality
models is illustrated in Figure 4.

Fig. 4. Distance between our models and high-quality models. Top row:
the poses are obtained with forward kinematics. Bottom row: the poses are
obtained with ICP refinement

The models present errors centered close to 1 cm, creating
fairly accurate 3D models that are however larger than
the real objects. While the refinement step using ICP is
useful for arm removal, the models obtained by adding
that transformation to the forward kinematics are worse.
Detailed histograms of the distance between our models
and high-quality models are shown in 5. Our assumption
is that the ICP refinement does provide better poses when
it converges, but diverges for a few views in every object.
This leads to a worse overall result, indicating that an ICP
convergence criterion should be investigated to improve the
results. This intuition is supported by the more accurate tip
of the mustard bottle in 4, and the fact that every object
presents a stronger peak around 0 in the histogram (but still
higher errors overall).

V. CONCLUSION

We presented a pipeline capable of extracting and recon-
structing images obtained automatically using a mobile robot
manipulator. The method presented is capable of segmenting
out the foreground from the background even for transparent
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Fig. 5. Histogams of the C2M signed distances (in meters) between the
modeled objects and the reference objects. The corresponding histograms,
without (top) and with (bottom) refinement, are given for the cracker box
in red, the mustard bottle in yellow and the potted meat can in blue.

objects with very high precision, and high recall, and further
separates the object from the arm. This segmentation is
shown to be applicable for 3D models reconstruction with
reasonable accuracy.

We intend to further improves this work by optimiz-
ing the relative camera-hand pose estimation through the
use of inverse rendering methods, enabling a purely RGB-
driven estimation that can account for kinematics constraints.
Furthermore, object model completeness can be improved
through manipulation of the object and in particular by
placing the object and grasping it from another side.
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