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A B S T R A C T

The likelihood consensus (LC) enables Bayesian target tracking in a decentralized sensor network with possibly
nonlinear and non-Gaussian sensor characteristics. Here, we propose an evolved LC methodology – dubbed
LC 2.0 – with significantly reduced intersensor communication. LC 2.0 uses multiple refinements of the
original LC including a sparsity-promoting calculation of expansion coefficients, the use of a B-spline dictionary,
a distributed adaptive calculation of the relevant state-space region, and efficient binary representations. We
consider the use of the proposed LC 2.0 within a distributed particle filter and within a distributed particle-
based probabilistic data association filter. Our simulation results demonstrate that a reduction of intersensor
communication by a factor of about 190 can be obtained without compromising the tracking performance.
1. Introduction

1.1. Background

Target tracking aims at estimating the time-varying state – e.g., po-
sition and velocity – of a moving object (‘‘target’’) [1,2]. Here, we
consider distributed Bayesian target tracking in a decentralized sen-
sor network [3], based on a generally nonlinear and non-Gaussian
state-space model. For distributed Bayesian target tracking, we use a
distributed particle filter (DPF) combined with the likelihood consen-
sus (LC) scheme for networkwide information dissemination [4,5]. In
addition, we consider a distributed particle-based probabilistic data
association filter (PDAF), which is suited for scenarios with missed
detections and clutter [2,6–8].

DPF methods have been proposed and studied, e.g., in [4,5,9–18].
esides DPF methods using the LC or other consensus-based informa-
ion dissemination strategies [4,5,10,16], there are also DPF methods

based on the diffusion strategy [11–13,17]. Diffusion-based methods
perform only one diffusion iteration per filtering time step, whereas
LC-based methods perform several consensus iterations per filtering
time step. However, since diffusion-based methods exchange also mea-
surements between neighboring sensors, the communication cost can
still be high. Furthermore, the diffusion approach does not aim at
approximating the Bayes-optimal filter. In fact, approaching the Bayes-
optimal filter would again necessitate multiple diffusion iterations per
filtering time step [17].

∗ Corresponding author.
E-mail addresses: erik.sausa@gmail.com (E. Šauša), pavel.rajmic@vut.cz (P. Rajmic), franz.hlawatsch@tuwien.ac.at (F. Hlawatsch).

LC-based DPF methods approximate the globally Bayes-optimal
state estimator, where ‘‘globally’’ means that the measurements of
all the sensors in the entire sensor network are taken into account.
Because the globally Bayes-optimal state estimator involves the global
likelihood function, the LC scheme computes an approximation thereof
in a distributed way. This is achieved by first performing a dictionary
expansion of the local log-likelihood function of each sensor and then
disseminating and fusing the expansion coefficients by means of a
consensus or gossip algorithm [5]. The communication cost of the LC
increases with the accuracy of approximating the global likelihood
function.

1.2. Contributions and paper organization

Here, we propose an evolved LC methodology – dubbed LC 2.0
– with significantly reduced communication cost. We introduce the
following modifications and extensions of the LC scheme:

• A sparsity-promoting calculation of the LC expansion coefficients
via the orthogonal matching pursuit (OMP) [19,20]. Compared
to the least-squares fit used so far, the OMP offers an improved
tradeoff between approximation accuracy and communication
cost by enabling an easy specification and a reduction of the num-
ber of significant expansion coefficients. We note that the OMP-
based calculation was previously described in our conference
publication [8].
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• Use of a B-spline dictionary [21,22] instead of the Fourier or
monomial dictionary used previously [4,5,8,23]. The atoms of
B-spline dictionaries are localized in the state space, which is
advantageous in view of the localized character of the posterior
distribution. This entails a further modification of the LC, in
which the dictionary expansion is based on the values of the local
log-likelihood functions taken on a uniform grid rather than at the
positions of the particles.

• An ‘‘adaptive zooming’’ mode of the LC in which the dictionary
expansion of each local log-likelihood function is restricted to
a time-dependent ‘‘region of interest’’. This region of interest is
determined online and adaptively in a distributed manner.

• Efficient binary representations of the information communicated
between the sensors.

The LC 2.0 method proposed in this article employs an appropriate
ombination of these innovations. We demonstrate experimentally that
his can result in a reduction of intersensor communication by a factor
f about 190, in addition to yielding a significant reduction of com-
utational complexity. Besides the DPF, which is the simplest use case
or the proposed LC 2.0, we also consider a distributed version of the
article-based PDAF described in [2,7]. The PDAF yields an improved
racking performance in the presence of clutter and missed detections.

This article is organized as follows. Section 2 describes our system
model and reviews LC-based distributed particle filtering. Section 3
presents an OMP-based calculation of the expansion coefficients and
a uniform-grid evaluation of the local log-likelihood functions. In Sec-
tion 4, the B-spline dictionary is introduced. A distributed method for
adaptively determining a region of interest is described in Section 5.
Section 6 presents efficient binary coefficient representations. In Sec-
tion 7, we discuss the use of LC 2.0 within a distributed PDAF. Finally,
the advantages of LC 2.0 are demonstrated via simulation results in
Section 8.

2. Review of LC-based distributed particle filtering

First, we review the conventional formulation of LC-based dis-
tributed particle filtering [4,5].

2.1. System model and local particle filter

We consider a target whose state 𝐱𝑛 = (𝑥𝑛,1 ⋯ 𝑥𝑛,𝑀 )T ∈R𝑀 (which,
for example, includes position and velocity) evolves with time 𝑛 ∈ N0
according to a known state-transition probability density function (pdf)
𝑓 (𝐱𝑛|𝐱𝑛−1). There are 𝑆 sensors indexed by 𝑠 ∈ {1,… , 𝑆}. Sensor 𝑠
communicates with a certain set 𝑠 ⊆ {1,… , 𝑆}⧵{𝑠} of ‘‘neighboring’’
sensors. The graph constituted by the sensors and the communication
links is assumed to be connected, i.e., there is a connection – possibly
with multiple links – between any two sensors. At each time 𝑛, each
sensor 𝑠 acquires a measurement 𝐳(𝑠)𝑛 (such as, e.g., noisy observations of
the target’s range and bearing) that is statistically related to the target
state 𝐱𝑛 according to the known local likelihood function (LLF) 𝑓

(

𝐳(𝑠)𝑛 |𝐱𝑛
)

.
The global likelihood function (GLF) 𝑓 (𝐳𝑛|𝐱𝑛) involves the all-sensors

measurement vector 𝐳𝑛 ≜ (𝐳(1)T𝑛 ⋯ 𝐳(𝑆)T𝑛 )T, i.e., the vector stacking the
measurements of all sensors at time 𝑛. We assume that the sensor
measurements 𝐳(𝑠)𝑛 are conditionally independent across 𝑠 and 𝑛 given
the state sequence. It follows that the GLF factorizes into the LLFs, i.e.,

𝑓 (𝐳𝑛|𝐱𝑛) =
𝑆
∏

𝑠=1
𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

. (1)

Each sensor 𝑠 knows its own measurement 𝐳(𝑠)𝑛 and its own LLF 𝑓
(

𝐳(𝑠)𝑛 |

𝐱𝑛
)

(as a function of 𝐱𝑛), but it does not known the measurements or
LLFs of the other sensors. We emphasize that the above system model
does not make any assumptions of linearity or Gaussianity.

At each time 𝑛, each sensor 𝑠 estimates the current target state 𝐱𝑛
T T T
2

from the measurements of all sensors up to time 𝑛, 𝐳1∶𝑛 ≜ (𝐳1 ⋯ 𝐳𝑛 ) . w
To this end, each sensor runs a local particle filter, which operates
independently of the other sensors except that it uses an approximation
of the GLF 𝑓 (𝐳𝑛|𝐱𝑛) that is calculated in a distributed way via the LC
scheme (see Section 2.2). The local particle filter at sensor 𝑠 computes
an approximation to the minimum mean-square error (MMSE) estima-
tor [24] �̂�MMSE

𝑛 ≜ E{𝐱𝑛|𝐳1∶𝑛} = ∫R𝑀 𝐱𝑛 𝑓 (𝐱𝑛|𝐳1∶𝑛)d𝐱𝑛 , in which 𝑓 (𝐱𝑛|𝐳1∶𝑛)
is the global posterior pdf. This global posterior pdf is represented in
the local particle filter by 𝐽 pairs of particles and associated weights,
{(

𝐱(𝑠,𝑗)𝑛 , 𝑤(𝑠,𝑗)
𝑛

)}𝐽
𝑗=1, with ∑𝐽

𝑗=1𝑤
(𝑠,𝑗)
𝑛 =1.

Using the simplest particle filter algorithm [25], this particle repre-
sentation is calculated time-recursively as follows. In the prediction step,
for each previous particle 𝐱(𝑠,𝑗)𝑛−1 , a ‘‘predicted’’ particle 𝐱(𝑠,𝑗)𝑛|𝑛−1 is sampled
from 𝑓

(

𝐱𝑛|𝐱
(𝑠,𝑗)
𝑛−1

)

, i.e., from the state-transition pdf 𝑓 (𝐱𝑛|𝐱𝑛−1) evaluated
at 𝐱𝑛−1 = 𝐱(𝑠,𝑗)𝑛−1 . In the update step, the associated weights are calculated
as

𝑤(𝑠,𝑗)
𝑛|𝑛−1 = 𝑐 𝑓𝑠

(

𝐳𝑛|𝐱
(𝑠,𝑗)
𝑛|𝑛−1

)

, 𝑗 = 1,… , 𝐽 , (2)

with normalization factor 𝑐 = 1∕
∑𝐽
𝑗=1 𝑓𝑠

(

𝐳𝑛|𝐱
(𝑠,𝑗)
𝑛|𝑛−1

)

. Here, 𝑓𝑠(𝐳𝑛|𝐱𝑛)
denotes an approximation to the GLF 𝑓 (𝐳𝑛|𝐱𝑛) in (1) that involves the
current measurements of all the sensors, 𝐳𝑛, and is calculated in a
distributed way via the LC scheme reviewed in Section 2.2. Next, the
weighted particle set

{(

𝐱(𝑠,𝑗)𝑛|𝑛−1, 𝑤
(𝑠,𝑗)
𝑛|𝑛−1

)}𝐽
𝑗=1 is resampled to avoid particle

degeneracy [25,26]; this results in the new particles 𝐱(𝑠,𝑗)𝑛 , 𝑗 = 1,… , 𝐽
with associated weights 𝑤(𝑠,𝑗)

𝑛 ≡ 1∕𝐽 . The overall recursive algorithm is
initialized at time 𝑛 = 0 by particles 𝐱(𝑠,𝑗)0 , 𝑗 =1,… , 𝐽 that are randomly
drawn from some prior pdf 𝑓 (𝐱0), and by the weights 𝑤(𝑠,𝑗)

0 ≡ 1∕𝐽 .
Finally, the local particle filter at sensor 𝑠 calculates an approximation
�̂�(𝑠)𝑛 to the MMSE estimate �̂�MMSE

𝑛 as the weighted sample mean of the
predicted particles (before resampling), �̂�(𝑠)𝑛 =

∑𝐽
𝑗=1𝑤

(𝑠,𝑗)
𝑛|𝑛−1 𝐱

(𝑠,𝑗)
𝑛|𝑛−1.

2.2. The LC scheme

Next, we review the LC scheme [4,5], which is used for the dis-
tributed calculation of the GLF approximations 𝑓𝑠(𝐳𝑛|𝐱𝑛) involved in the
update step (2). Let us consider

𝐿𝑛(𝐱𝑛) ≜
1
𝑆

log 𝑓 (𝐳𝑛|𝐱𝑛) =
1
𝑆

𝑆
∑

𝑠=1
log 𝑓

(

𝐳(𝑠)𝑛 |𝐱𝑛
)

, (3)

where log denotes the natural logarithm and (1) was used. Note that,
conversely, 𝑓 (𝐳𝑛|𝐱𝑛) = exp(𝑆𝐿𝑛(𝐱𝑛)). Using a dictionary of functions
or ‘‘atoms’’ {𝜓𝑘(𝐱)}𝐾𝑘=1 that is identical for all sensors, each sensor 𝑠
approximates its log-LLF by a linear combination of the atoms, i.e.,

log 𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

≈
𝐾
∑

𝑘=1
𝛼(𝑠,𝑘)𝑛 𝜓𝑘(𝐱𝑛) . (4)

Here, the local expansion coefficients
{

𝛼(𝑠,𝑘)𝑛
}𝐾
𝑘=1 are calculated locally

at each sensor 𝑠 using the local measurements 𝐳(𝑠)𝑛 , as described in
Section 3. The choice of the dictionary {𝜓𝑘(𝐱)}𝐾𝑘=1 will be consid-
ered in Section 4. By inserting (4) into (3), we obtain the following
approximation of 𝐿𝑛(𝐱𝑛) =

1
𝑆 log 𝑓 (𝐳𝑛|𝐱𝑛):

𝐿𝑛(𝐱𝑛) ≈
𝐾
∑

𝑘=1
𝛽(𝑘)𝑛 𝜓𝑘(𝐱𝑛) , (5)

with the global expansion coefficients 𝛽(𝑘)𝑛 ≜ 1
𝑆
∑𝑆
𝑠=1 𝛼

(𝑠,𝑘)
𝑛 , 𝑘 = 1,… , 𝐾.

The global expansion coefficients can be computed in a distributed
manner by means of 𝐾 instances of the average consensus algorithm
[27]. In iteration 𝑖 ∈ {1, 2,…} of the 𝑘th instance of the average
consensus algorithm, sensor 𝑠 updates an iterated estimate of 𝛽(𝑘)𝑛 as

𝛽(𝑘,𝑠)𝑛 [𝑖] =
∑

𝑠′∈{𝑠}∪𝑠

𝛾𝑠,𝑠′ 𝛽
(𝑘,𝑠′)
𝑛 [𝑖 − 1] . (6)

ere, the 𝛾𝑠,𝑠′ are suitably chosen weights, such as the Metropolis
eights [27–29], and the 𝛽(𝑘,𝑠

′)[𝑖 − 1], 𝑠′ ∈  were communicated to
𝑛 𝑠
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sensor 𝑠 by its neighboring sensors 𝑠′ ∈ 𝑠. Sensor 𝑠 then broadcasts
the updated iterated coefficient estimates 𝛽(𝑘,𝑠)𝑛 [𝑖], 𝑘 = 1,… , 𝐾 to its
neighboring sensors.

The recursion (6) is initialized by 𝛽(𝑘,𝑠)𝑛 [0] = 𝛼(𝑠,𝑘)𝑛 and terminated
after a sufficient number 𝐼 of iterations. The final estimates 𝛽(𝑘,𝑠)𝑛 [𝐼]
are then used in (5) to obtain an approximation to 𝐿𝑛(𝐱𝑛). Thus, the
resulting approximation to 𝑓 (𝐳𝑛|𝐱𝑛) = exp(𝑆𝐿𝑛(𝐱𝑛)) obtained at sensor

is

�̂�(𝐳𝑛|𝐱𝑛) = exp

(

𝑆
𝐾
∑

𝑘=1
𝛽(𝑘,𝑠)𝑛 [𝐼]𝜓𝑘

(

𝐱𝑛
)

)

.

his is used in the update step (2). For 𝐼 → ∞, the consensus
ecursion would converge to 𝛽(𝑘)𝑛 because, as assumed in Section 2.1,
he communication graph is connected [28]. As an alternative to the
verage consensus algorithm, a gossip algorithm [30] can be used.

In each iteration 𝑖 of the average consensus algorithm, sensor 𝑠 has
o broadcast the real numbers 𝛽(𝑘,𝑠)𝑛 [𝑖], 𝑘 = 1,… , 𝐾 to its neighbors
′ ∈ 𝑠. In the next four sections, we will propose modifications
f the original LC scheme that lead to a significant reduction of the
ommunication cost.

. Sparsity-promoting LLF approximation using the OMP

In this section, we propose a sparsity-promoting method for calcu-
ating the local expansion coefficients

{

𝛼(𝑠,𝑘)𝑛
}𝐾
𝑘=1 that are involved in

he log-LLF approximation (4).

.1. Review of least-squares-based LLF approximation

The method originally proposed in [4,5] performs a least squares
LS) fit of the right hand side of (4) to the left hand side in a way
uch that the total approximation error at the predicted particles
𝐱(𝑠,𝑗)𝑛|𝑛−1

}𝐽
𝑗=1 is minimized. Let us introduce the local coefficient vector

(𝑠)
𝑛 ≜

(

𝛼(𝑠,1)𝑛 ⋯ 𝛼(𝑠,𝐾)
𝑛

)T ∈ R𝐾, the discretized-atom vector 𝝍 (𝑠)
𝑛,𝑘 ≜

𝜓𝑘(𝐱
(𝑠,1)
𝑛|𝑛−1) ⋯ 𝜓𝑘(𝐱

(𝑠,𝐽 )
𝑛|𝑛−1)

)T ∈ R𝐽, and the discretized-log-LLF vector
(𝑠)
𝑛 ≜

(

log 𝑓 (𝐳(𝑠)𝑛 |𝐱(𝑠,1)𝑛|𝑛−1) ⋯ log 𝑓 (𝐳(𝑠)𝑛 |𝐱(𝑠,𝐽 )𝑛|𝑛−1)
)T ∈ R𝐽. Then, the error

minimized by the LS fit is given by

𝜖(𝑠)𝑛 =
‖

‖

‖

‖

‖

𝜼(𝑠)𝑛 −
𝐾
∑

𝑘=1
𝛼(𝑠,𝑘)𝑛 𝝍 (𝑠)

𝑛,𝑘

‖

‖

‖

‖

‖

2

= ‖

‖

‖

𝜼(𝑠)𝑛 − 𝜳 (𝑠)
𝑛 𝜶

(𝑠)
𝑛
‖

‖

‖

2
,

here the discretized-dictionary matrix 𝜳 (𝑠)
𝑛 ∈ R𝐽×𝐾 has the vectors

(𝑠)
𝑛,𝑘 , 𝑘 = 1,… , 𝐾 as its columns. Note that 𝝍 (𝑠)

𝑛,𝑘 and 𝜳 (𝑠)
𝑛 depend on the

predicted particles 𝐱(𝑠,𝑗)𝑛|𝑛−1. The coefficient vector 𝜶(𝑠)
𝑛 minimizing 𝜖(𝑠)𝑛 is

given by [31]

𝜶(𝑠)
𝑛,LS = 𝜳 (𝑠)+

𝑛 𝜼(𝑠)𝑛 ,

here 𝜳 (𝑠)+
𝑛 ≜

(

𝜳 (𝑠)T
𝑛 𝜳 (𝑠)

𝑛
)−1𝜳 (𝑠)T

𝑛 is the Moore–Penrose pseudoinverse of
(𝑠)
𝑛 . Here, it is assumed that the vectors 𝝍 (𝑠)

𝑛,𝑘 are linearly independent
and 𝐽 ≥ 𝐾, i.e., the number of particles is larger than or equal to the
number of atoms.

3.2. OMP-based LLF approximation

As an improvement over this LS-based calculation, we propose a
sparsity-promoting calculation using the OMP [19,20]. Our goal is to
reduce the number of ‘‘significant’’ expansion coefficients and, thereby,
the communication cost of the LC. The OMP is a greedy iterative
algorithm that selects one atom per iteration. In the first iteration, the
OMP at sensor 𝑠 selects the atom index 𝑘 for which the 𝓁2-normalized
atom vector 𝝍 (𝑠)

𝑛,𝑘 best matches the log-LLF vector 𝜼(𝑠)𝑛 , i.e.,

𝑘1 = argmax
|

|

|

𝝍 (𝑠)T
𝑛,𝑘 𝜼

(𝑠)
𝑛
|

|

|

(𝑠)
.

3

𝑘∈{1,…,𝐾}
‖𝝍𝑛,𝑘‖
(Note that 𝑘1 depends on 𝑛 and 𝑠, which is however not indicated for
otational simplicity.) Then, the residual 𝝆(𝑠)𝑛,1 is formed by subtracting
rom 𝜼(𝑠)𝑛 the orthogonal projection of 𝜼(𝑠)𝑛 onto 𝝍 (𝑠)

𝑛,𝑘1
, i.e., 𝝆(𝑠)𝑛,1 = 𝜼(𝑠)𝑛 −

1𝝍
(𝑠)
𝑛,𝑘1

with 𝑎1 = 𝝍
(𝑠)T
𝑛,𝑘1

𝜼(𝑠)𝑛 ∕‖𝝍 (𝑠)
𝑛,𝑘1

‖. In each further iteration 𝑙 = 2, 3,…,
he atom index 𝑘 for which the normalized version of 𝝍 (𝑠)

𝑛,𝑘 best matches
he previous residual 𝝆(𝑠)𝑛,𝑙−1 is selected, i.e.,

𝑙 = argmax
𝑘∈{1,…,𝐾}

|

|

|

𝝍 (𝑠)T
𝑛,𝑘 𝝆

(𝑠)
𝑛,𝑙−1

|

|

|

‖𝝍 (𝑠)
𝑛,𝑘‖

, 𝑙 = 2, 3,… .

Then, a new residual 𝝆(𝑠)𝑛,𝑙 is formed by subtracting from 𝜼(𝑠)𝑛 the orthog-
onal projection of 𝜼(𝑠)𝑛 onto the 𝑙-dimensional subspace of R𝐽 spanned
y 𝝍 (𝑠)

𝑛,𝑘1
,… ,𝝍 (𝑠)

𝑛,𝑘𝑙
, i.e.,

(𝑠)
𝑛,𝑙 = 𝜼

(𝑠)
𝑛 −𝐏(𝑠)

𝑛,𝑙 𝜼
(𝑠)
𝑛 , (7)

ith the orthogonal projection matrix
(𝑠)
𝑛,𝑙 ≜ 𝜱(𝑠)

𝑛,𝑙
(

𝜱(𝑠)T
𝑛,𝑙 𝜱

(𝑠)
𝑛,𝑙
)−1𝜱(𝑠)T

𝑛,𝑙 = 𝜱(𝑠)
𝑛,𝑙𝜱

(𝑠)+
𝑛,𝑙 , (8)

here 𝜱(𝑠)
𝑛,𝑙 ∈R𝐽×𝑙 is the matrix with columns 𝝍 (𝑠)

𝑛,𝑘1
,… ,𝝍 (𝑠)

𝑛,𝑘𝑙
. We note

that (7), (8) can be rewritten as

𝝆(𝑠)𝑛,𝑙 = 𝜼
(𝑠)
𝑛 −𝜱(𝑠)

𝑛,𝑙 𝐜
(𝑠)
𝑛,𝑙 , with 𝐜(𝑠)𝑛,𝑙 ≜ 𝜱

(𝑠)+
𝑛,𝑙 𝜼

(𝑠)
𝑛 .

Here, 𝐜(𝑠)𝑛,𝑙 ∈ R𝑙 is the LS approximation of 𝜼(𝑠)𝑛 by 𝜱(𝑠)
𝑛,𝑙 𝐜, i.e., 𝐜(𝑠)𝑛,𝑙 =

argmin𝐜 ‖𝜼
(𝑠)
𝑛 −𝜱(𝑠)

𝑛,𝑙 𝐜‖
2.

This iterative algorithm is stopped after a specified number of
iterations or when ‖𝝆(𝑠)𝑛,𝑙‖ falls below a specified positive threshold. Let
𝐿𝑠≤𝐾 denote the final iteration index at sensor 𝑠. Then the result of the
OMP algorithm is the coefficient vector 𝜶(𝑠)

𝑛,OMP =
(

𝛼(𝑠,1)𝑛,OMP ⋯ 𝛼(𝑠,𝐾)
𝑛,OMP

)T

whose elements 𝛼(𝑠,𝑘)𝑛,OMP are equal to the associated elements of 𝐜(𝑠)𝑛,𝐿𝑠 =
𝜱(𝑠)+
𝑛,𝐿𝑠

𝜼(𝑠)𝑛 ∈ R𝐿𝑠 if 𝑘∈{𝑘1,… , 𝑘𝐿𝑠} and zero otherwise, i.e.,

𝛼(𝑠,𝑘)𝑛,OMP =

{
(

𝐜(𝑠)𝑛,𝐿𝑠
)

𝑙 , 𝑘 = 𝑘𝑙 ∈ {𝑘1,… , 𝑘𝐿𝑠},

0 , 𝑘 ∉ {𝑘1,… , 𝑘𝐿𝑠}.

Accordingly, only 𝐿𝑠 of the 𝐾 elements of 𝜶(𝑠)
𝑛,OMP are nonzero, which

means that the number of nonzero local expansion coefficients equals
the number of OMP iterations performed. Thus, depending on the stop-
ping criterion, 𝜶(𝑠)

𝑛,OMP is a more or less sparse vector. The computational
complexity of the OMP can be higher than that of the LS-based calcu-
lation because the OMP comprises 𝐿𝑠 LS problems involving inversion
of the matrices 𝜱(𝑠)T

𝑛,𝑙 𝜱
(𝑠)
𝑛,𝑙 ∈ R𝑙×𝑙 for 𝑙 = 1,… , 𝐿𝑠, whereas the LS-based

calculation performs a single inversion of the matrix 𝜳 (𝑠)T
𝑛 𝜳 (𝑠)

𝑛 ∈ R𝐾×𝐾.
Note, however, that the matrices 𝜱(𝑠)T

𝑛,𝑙 𝜱
(𝑠)
𝑛,𝑙 are typically much smaller

than the matrix 𝜳 (𝑠)T
𝑛 𝜳 (𝑠)

𝑛 .
The fact that a prescribed sparsity is obtained by terminating the

OMP after a fixed number of iterations is an advantage of the proposed
method. Other sparse approximation methods such as 𝓁1-based meth-
ods [32] usually need careful parameter tuning to achieve a solution
with a prescribed sparsity.

3.3. Uniform sampling of the log-LLF

In both the OMP-based and LS-based calculation of the local expan-
sion coefficients

{

𝛼(𝑠,𝑘)𝑛
}𝐾
𝑘=1, the log-LLF log 𝑓

(

𝐳(𝑠)𝑛 |𝐱𝑛
)

and the approxi-
mating function ∑𝐾

𝑘=1 𝛼
(𝑠,𝑘)
𝑛 𝜓𝑘(𝐱𝑛) (see (4)) are sampled at the predicted

particles 𝐱𝑛 = 𝐱(𝑠,𝑗)𝑛|𝑛−1 , 𝑗 = 1,… , 𝐽 . However, when using a B-spline
dictionary as proposed in Section 4.2, we observed experimentally
that the expansion coefficients are often unrealistically large, which
leads to an incorrect selection of the set of significant atoms that
are used for approximating the LLF. This is probably due to the fact
that, as B-spline atoms are highly localized in the state space, the
expansion coefficient for a B-spline atom that is located away from

the main particle population can be heavily affected by a few local
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̃

‘‘outlier particles’’ that are not representative of the posterior pdf. This
effect does not occur in the case of a Fourier dictionary, because the
Fourier atoms are not localized and thus the coefficients are always
affected by all the particles. To avoid this issue, we propose to use
a uniform sampling of log 𝑓

(

𝐳(𝑠)𝑛 |𝐱𝑛
)

and ∑𝐾
𝑘=1 𝛼

(𝑠,𝑘)
𝑛 𝜓𝑘(𝐱𝑛), where the

samples 𝐱(𝑞)𝑛 =
(

𝑥(𝑞)𝑛,1 ⋯ 𝑥(𝑞)𝑛,𝑀
)T, 𝑞 = 1,… , 𝑄𝑛 lie on a regular grid within

a region of interest (ROI)

𝑛 =
[

𝑎(1)𝑛 , 𝑏
(1)
𝑛
]

×⋯ ×
[

𝑎(𝑀)
𝑛 , 𝑏(𝑀)

𝑛
]

⊂R𝑀. (9)

More specifically, in the 𝑚th coordinate direction, where 𝑚∈{1,… ,𝑀},
there are 𝑄(𝑚)

𝑛 sample points uniformly spaced in the interval
[

𝑎(𝑚)𝑛 , 𝑏(𝑚)𝑛
]

.
The total number of 𝑀-dimensional (𝑀-D) samples 𝐱(𝑞)𝑛 then is 𝑄𝑛 =
∏𝑀

𝑚=1𝑄
(𝑚)
𝑛 . A distributed, particle-based method for calculating the ROI

interval bounds 𝑎(𝑚)𝑛 and 𝑏(𝑚)𝑛 will be presented in Section 5.
Using this uniform sampling approach, the atom vector 𝝍𝑛,𝑘 and the

log-LLF vector 𝜼(𝑠)𝑛 are redefined as 𝝍𝑛,𝑘 ≜
(

𝜓𝑘(𝐱
(1)
𝑛 ) ⋯ 𝜓𝑘(𝐱

(𝑄𝑛)
𝑛 )

)T ∈ R𝑄𝑛
and 𝜼(𝑠)𝑛 ≜

(

log 𝑓 (𝐳(𝑠)𝑛 |𝐱(1)𝑛 ) ⋯ log 𝑓 (𝐳(𝑠)𝑛 |𝐱(𝑄𝑛)𝑛 )
)T ∈ R𝑄𝑛. We also obtain

modified dictionary matrices 𝜳 𝑛 ∈ R𝑄𝑛×𝐾 (for LS) and 𝜱(𝑠)
𝑛,𝑙 ∈ R𝑄𝑛×𝑙

(for OMP), as the 𝝍𝑛,𝑘 constitute the columns of these matrices. Note
that 𝜱(𝑠)

𝑛,𝑙 still depends on 𝑠 since the OMP-based selection of the 𝝍𝑛,𝑘

constituting the columns of 𝜱(𝑠)
𝑛,𝑙 depends on the LLF at sensor 𝑠.

4. B-spline dictionary

The dictionary {𝜓𝑘(𝐱)}𝐾𝑘=1 used in the log-LLF approximation (4)
affects both the accuracy of the approximation and the communication
cost of the LC. In this section, we introduce the B-spline dictionary as an
attractive alternative to the Fourier dictionary used in the conventional
LC [5,8,23]. We temporarily drop the time index 𝑛 for notational
simplicity.

4.1. Review of the Fourier dictionary

To prepare the ground, we briefly review the Fourier dictionary,
which will also be used as a benchmark in our simulations in Section 8.
We first consider 1-D Fourier dictionaries. The atoms of the 1-D Fourier
dictionary for the 𝑚th coordinate direction,

{

𝜓 (𝑚)
�̃�

(𝑥)
}2�̃�𝑚+1
�̃�=1 , with 𝑚 ∈

{1,… ,𝑀}, are defined as 𝜓 (𝑚)
�̃�

(𝑥) = cos
(

2𝜋
𝑑(𝑚)

(�̃� − 1)(𝑥 − 𝑎(𝑚))
)

for

�̃� = 1,… , �̃�𝑚 + 1 and 𝜓 (𝑚)
�̃�

(𝑥) = sin
(

2𝜋
𝑑(𝑚)

(�̃� − 1 − �̃�𝑚)(𝑥 − 𝑎(𝑚))
)

for

�̃� = �̃�𝑚 + 2,… , 2�̃�𝑚 + 1, all for 𝑥 ∈
[

𝑎(𝑚), 𝑏(𝑚)
]

. Here, 𝑑(𝑚) ≜ 𝑏(𝑚) − 𝑎(𝑚) is
the ROI interval length in the 𝑚th coordinate direction. Note that the
number of frequencies involved (including frequency 0) is �̃�𝑚 + 1. The
overall 𝑀-D Fourier dictionary on the ROI  is then constructed as

�̃��̃�(𝐱) =
𝑀
∏

𝑚=1
𝜓 (𝑚)
�̃�𝑚

(𝑥𝑚) , (10)

with 𝑀-D index �̃� ≜ (�̃�1 ⋯ �̃�𝑀 )T where �̃�𝑚 ∈ {1,… , 2�̃�𝑚 + 1}. Finally,
the 𝑀-D Fourier dictionary with 1-D indexing, {𝜓𝑘(𝐱)}𝐾𝑘=1, is obtained
by mapping �̃� to a 1-D index 𝑘 ∈ {1,… , 𝐾}, with 𝐾 =

∏𝑀
𝑚=1(2�̃�𝑚+ 1).

4.2. The B-spline dictionary

As an alternative to the Fourier dictionary, we propose the use of a
dictionary of 𝑀-D B-splines with uniform spacing of their knots [21].
B-splines enjoy numerous desirable properties [22]. In particular, their
atoms have compact support, and thus are localized. This is an impor-
tant difference from the Fourier dictionary, whose atoms are supported
on the entire ROI, and especially desirable in our case in view of the
localized character of the posterior distribution. Furthermore, B-splines
are continuous and have continuous derivatives up to degree 𝑟−1. They
are well suited for interpolation.

A 1-D B-spline of degree 𝑟 ∈ N0 is a piecewise polynomial function
composed of polynomial segments of degree 𝑟. For example, the 1-D
4

Fig. 1. 1-D B-spline dictionary as defined by (12), with 𝑎(𝑚) =0, 𝑏(𝑚) =8, �̃�𝑚 =7, and
𝛥𝑑(𝑚) = (𝑏(𝑚)− 𝑎(𝑚))∕(�̃�𝑚 + 1) =1.

cubic (i.e., 𝑟 = 3) B-spline prototype with knots positioned at the
integers is an even function with support (−2, 2) that is given by [22]

𝜓(𝑥) =

⎧

⎪

⎨

⎪

⎩

2
3 − |𝑥|2 + 1

2 |𝑥|
3, 0≤ |𝑥|< 1

1
6 (2 − |𝑥|)3 , 1≤ |𝑥|< 2
0 , |𝑥|∉ [0, 2) .

(11)

The atoms of the 1-D B-spline dictionary for the 𝑚th coordinate direc-
tion,

{

𝜓 (𝑚)
�̃�

(𝑥)
}�̃�𝑚
�̃�=1, are then defined by scaling and shifting the B-spline

prototype 𝜓(𝑥) in (11) according to

𝜓 (𝑚)
�̃�

(𝑥) = 𝜓
(

𝑥−𝑎(𝑚) − �̃�𝛥𝑑(𝑚)

𝛥𝑑(𝑚)

)

, 𝑥∈
[

𝑎(𝑚), 𝑏(𝑚)
]

, (12)

for �̃�=1,… , �̃�𝑚. Here, 𝛥𝑑(𝑚) ≜ (𝑏(𝑚)− 𝑎(𝑚))∕(�̃�𝑚 + 1) is the grid spacing
and �̃�𝑚 is the number of shifts in the 𝑚th coordinate direction. The 1-D
B-spline atoms 𝜓 (𝑚)

�̃�
(𝑥) are centered around grid points 𝑥�̃� = 𝑎(𝑚)+�̃�𝛥𝑑(𝑚),

�̃� = 1,… , �̃�𝑚 that are placed uniformly in the interval
[

𝑎(𝑚), 𝑏(𝑚)
]

with
spacing 𝛥𝑑(𝑚). An example is shown in Fig. 1.

The 𝑀-D B-spline dictionary on the ROI  is then composed of
𝑀-D atoms �̃��̃�(𝐱) that are constructed as in (10), with 𝑀-D index
𝐤 = (�̃�1 ⋯ �̃�𝑀 )T where �̃�𝑚 ∈ {1,… , �̃�𝑚}. Finally, the 𝑀-D dictionary
with 1-D indexing, {𝜓𝑘(𝐱)}𝐾𝑘=1, is obtained by mapping �̃� to a 1-D index
𝑘 ∈ {1,… , 𝐾}, with 𝐾 =

∏𝑀
𝑚=1 �̃�𝑚 . By this construction, the 𝑀-D atoms

are shifts of an 𝑀-D B-spline prototype that are located on an 𝑀-D grid.
This grid is regular in each coordinate direction.

5. Distributed calculation of the ROI

According to Section 4, the choice of the ROI 𝑛 in (9) influences
the number of atoms 𝜓𝑘(𝐱), and thus also the number of expansion
coefficients 𝛼(𝑠,𝑘)𝑛 that are communicated between neighboring sensors.
Furthermore, if the LC employs uniform sampling of log 𝑓

(

𝐳(𝑠)𝑛 |𝐱𝑛
)

as
described in Section 3.3, then 𝑛 also influences the number 𝑄𝑛 of
𝑀-D samples 𝐱(1)𝑛 ,… , 𝐱(𝑄𝑛)𝑛 . Thus, the choice of 𝑛 has an influence on
the accuracy of the log-LLF approximation and on the communication
cost of the LC. In this section, we present a distributed algorithm
that adaptively determines the ROI 𝑛. The goal is to ‘‘zoom in’’ on
the effective support of the current global posterior pdf 𝑓 (𝐱𝑛|𝐳1∶𝑛) in
order to avoid sampling the log-LLF and placing atoms outside that
effective support, i.e., using computation and communication resources
to approximate the log-LLF on irrelevant parts of the surveillance area.

5.1. Calculation of the ROI interval bounds

The proposed algorithm calculates the ‘‘ROI center point’’ 𝝃𝑛 =
(𝜉(1)𝑛 ⋯ 𝜉(𝑀)

𝑛 )T with 𝜉(𝑚)𝑛 ≜ (𝑎(𝑚)𝑛 + 𝑏(𝑚)𝑛 )∕2 and the ‘‘ROI extent vector’’
𝒅𝑛 = (𝑑(1)𝑛 ⋯ 𝑑(𝑀)

𝑛 )T with 𝑑(𝑚)𝑛 = 𝑏(𝑚)𝑛 −𝑎(𝑚)𝑛 at each time 𝑛 in a distributed
manner. This is done before the LC is performed, i.e., before the update
step of the local particle filter. Indeed, the update step presupposes
knowledge of the ROI, because all sensors use the same ROI-dependent
dictionary. Note that the ROI interval bounds 𝑎(𝑚)𝑛 and 𝑏(𝑚)𝑛 can be

(𝑚) (𝑚) (𝑚) (𝑚) (𝑚) (𝑚)
recovered from 𝝃𝑛 and 𝒅𝑛 as 𝑎𝑛 = 𝜉𝑛 − 𝑑𝑛 ∕2 and 𝑏𝑛 = 𝜉𝑛 + 𝑑𝑛 ∕2.
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Fig. 2. Example (simulation result) of the ROI 𝑛 at two successive time points 𝑛, for dimension 𝑀 = 2. The ROI boundary is shown as a green rectangle. The colored dots depict
the predicted particles 𝐱(𝑠,𝑗)𝑛|𝑛−1 for three sensors 𝑠 = 1, 2, 3; the color indicates the sensor.
First, each sensor 𝑠 calculates the sample variances of the predicted
particles

{

𝐱(𝑠,𝑗)𝑛|𝑛−1
}𝐽
𝑗=1 in the individual coordinate directions 𝑚,

𝜎(𝑠)2𝑛,𝑚 ≜ 1
𝐽

𝐽
∑

𝑗=1

(

𝑥(𝑠,𝑗)𝑛|𝑛−1,𝑚 − �̂�(𝑠)𝑛,𝑚
)2, 𝑚 = 1,… ,𝑀,

where �̂�(𝑠)𝑛,𝑚 ≜ 1
𝐽
∑𝐽
𝑗=1 𝑥

(𝑠,𝑗)
𝑛|𝑛−1,𝑚; here, 𝑥(𝑠,𝑗)𝑛|𝑛−1,𝑚 denotes the 𝑚th element of

𝐱(𝑠,𝑗)𝑛|𝑛−1. Then, for each 𝑚, �̂�(𝑠)𝑛,𝑚 and 𝜎(𝑠)2𝑛,𝑚 are averaged across all sensors,
i.e., the goal is to obtain ̄̂𝑥𝑛,𝑚 ≜ 1

𝑆
∑𝑆
𝑠=1 �̂�

(𝑠)
𝑛,𝑚 and 𝜎2𝑛,𝑚 ≜ 1

𝑆
∑𝑆
𝑠=1 𝜎

(𝑠)2
𝑛,𝑚 . We

therefore perform 2𝑀 instances of the average consensus algorithm to
calculate approximations ̄̂𝑥(𝑠)𝑛,𝑚 of ̄̂𝑥𝑛,𝑚 and 𝜎2(𝑠)𝑛,𝑚 of 𝜎2𝑛,𝑚 , for 𝑚 = 1,… ,𝑀 .
After a finite number of consensus iterations, the approximations ̄̂𝑥(𝑠)𝑛,𝑚
and 𝜎2(𝑠)𝑛,𝑚 at different sensors 𝑠 will be (slightly) different. Because
the LC requires the same ROI 𝑛 at each sensor, we next perform
2𝑀 instances of the maximum consensus algorithm [33] to calculate
̄̂𝑥max
𝑛,𝑚 ≜ max

{ ̄̂𝑥(𝑠)𝑛,𝑚
}𝑆
𝑠=1 and 𝜎2max

𝑛,𝑚 ≜ max
{

𝜎2(𝑠)𝑛,𝑚
}𝑆
𝑠=1 for 𝑚 = 1,… ,𝑀 .

The maximum consensus algorithm converges in a finite number of
iterations, which equals the diameter of the sensor network [33].
Hence, after performing these iterations, identical maxima ̄̂𝑥max

𝑛,𝑚 and
𝜎2max
𝑛,𝑚 are available at all sensors, as desired.

We then define the ROI center point 𝝃𝑛 to be the vector with
elements

𝜉(𝑚)𝑛 = ̄̂𝑥max
𝑛,𝑚 , 𝑚 = 1,… ,𝑀.

Next, we choose each extent vector element 𝑑(𝑚)𝑛 as a function of the
standard deviation 𝑠𝑛,𝑚 ≜

√

𝜎2max
𝑛,𝑚 . The 𝑑(𝑚)𝑛 should be sufficiently large

so that 𝑛 tends to include all the particles, but not larger because this
would result in an unnecessarily large dictionary size 𝐾. Thus, we set
𝑑(𝑚)𝑛 equal to 𝛾𝑠𝑛,𝑚, where 𝛾 > 1 is an empirically chosen scaling factor,
subject to a lower bound 𝑑(𝑚)min, i.e.,

𝑑(𝑚)𝑛 =

⎧

⎪

⎨

⎪

⎩

𝛾𝑠𝑛,𝑚 , if 𝛾𝑠𝑛,𝑚 ≥ 𝑑(𝑚)min,

𝑑(𝑚)min, if 𝛾𝑠𝑛,𝑚 <𝑑
(𝑚)
min.

(13)

Here, the lower bound 𝑑(𝑚)min adds robustness in cases where the set of
predicted particles

{

𝐱(𝑠,𝑗)𝑛|𝑛−1
}𝐽
𝑗=1 is highly concentrated in the state space.

Fig. 2 shows an example of the ROI 𝑛 at two successive time points 𝑛
along with the predicted particles.

5.2. Calculation of the numbers of atoms

Once the extent parameters 𝑑(𝑚)𝑛 are known, we are also able to
calculate the numbers of 1-D B-spline or Fourier atoms 𝜓 (𝑚)(𝑥). We
5

�̃�

recall from Section 4.2 that the number and spacing of the 1-D B-
spline atoms in the 𝑚th coordinate direction are given by �̃�𝑛,𝑚 and
𝛥𝑑(𝑚)𝑛 = 𝑑(𝑚)𝑛 ∕(�̃�𝑛,𝑚 + 1), respectively. Therefore, for a specified B-spline
spacing 𝛥𝑑(𝑚)𝑛 , we obtain

�̃�𝑛,𝑚 =
⌈

𝑑(𝑚)𝑛

𝛥𝑑(𝑚)𝑛

⌉

− 1 ,

where ⌈𝑥⌉ denotes the smallest integer not smaller than 𝑥. Alterna-
tively, we may also specify the 1-D B-spline density, i.e., the number
of 1-D B-spline atoms per unit length in the 𝑚th coordinate direction,
𝜅𝑛,𝑚 ≜ �̃�𝑛,𝑚∕𝑑

(𝑚)
𝑛 . Here, �̃�𝑛,𝑚 follows as

�̃�𝑛,𝑚 =
⌈

𝜅𝑛,𝑚 𝑑
(𝑚)
𝑛

⌉

. (14)

For the Fourier dictionary, according to Section 4.1, there are
2�̃�𝑛,𝑚+1 1-D Fourier atoms in the 𝑚th coordinate direction. These atoms
involve �̃�𝑛,𝑚+1 different frequencies (including frequency 0), which are
given by 𝜈�̃� ≜ (�̃�− 1)∕𝑑(𝑚)𝑛 , �̃� = 1,… , �̃�𝑚 + 1. The bandwidth is given by
the maximum frequency, 𝜈�̃�𝑛,𝑚+1 = �̃�𝑛,𝑚∕𝑑

(𝑚)
𝑛 . If 𝜈�̃�𝑛,𝑚+1 is specified, �̃�𝑛,𝑚

is obtained as

�̃�𝑛,𝑚 =
⌊

𝜈�̃�𝑛,𝑚+1 𝑑
(𝑚)
𝑛

⌋

,

where ⌊𝑥⌋ denotes the largest integer not larger than 𝑥.
The overall dictionary size, i.e., the number of 𝑀-D atoms 𝜓𝑘(𝐱),

𝑘 = 1,… , 𝐾𝑛, is given by 𝐾𝑛 =
∏𝑀

𝑚=1 �̃�𝑛,𝑚 in the B-spline case and 𝐾𝑛 =
∏𝑀

𝑚=1(2�̃�𝑛,𝑚+1) in the Fourier case. Fig. 3 illustrates the covering of the
ROI 𝑛 with B-spline atoms using two different densities of the B-spline
atoms. A higher density enables a more accurate approximation of the
log-LLF log 𝑓

(

𝐳(𝑠)𝑛 |𝐱𝑛
)

within 𝑛 but also implies a larger dictionary size
𝐾𝑛 and, potentially, a higher communication cost.

6. Binary coefficient representation

According to Section 2.2, in LC iteration 𝑖, each sensor 𝑠 broadcasts
its iterated coefficient estimates 𝛽(𝑘,𝑠)𝑛 [𝑖], 𝑘 = 1,… , 𝐾𝑛 to the neighboring
sensors 𝑠′ ∈ 𝑠. In practice, this is done in a binary format. If each
𝛽(𝑘,𝑠)𝑛 [𝑖] is represented by a bit sequence of length 𝑛b, then 𝑁naive =𝐾𝑛𝑛b
bits have to be broadcast by sensor 𝑠 in LC iteration 𝑖. However, this
communication cost can be significantly reduced by broadcasting only
the nonzero 𝛽(𝑘,𝑠)𝑛 [𝑖] plus additional bits that indicate their indices 𝑘
and thus enable a correct interpretation of the stream of length-𝑛b
bit sequences at the receiving sensors. Let 𝐿𝑠[𝑖] denote the number
of nonzero 𝛽(𝑘,𝑠)𝑛 [𝑖]. Before the first consensus iteration 𝑖 = 1, the
coefficient estimates are initialized as 𝛽(𝑘,𝑠)𝑛 [0] = 𝛼(𝑠,𝑘)𝑛 , and thus 𝐿𝑠[0] =
𝐿𝑠, where 𝐿𝑠 denotes the number of nonzero 𝛼(𝑠,𝑘)𝑛 at sensor 𝑠. If the
OMP method was used for calculating the 𝛼(𝑠,𝑘)𝑛 , then, according to
Section 3.2, 𝐿 is given by the number of OMP iterations. If the LS
𝑠
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Fig. 3. Illustration of the covering of the ROI 𝑛 (green rectangle) with B-spline atoms
of two different densities, for dimension 𝑀 = 2. Also shown are the predicted particles
𝐱(𝑠,𝑗)𝑛|𝑛−1 for all the sensors (blue dots). The small grid rectangles within the ROI indicate
the effective supports of the 2-D B-spline atoms.

method was used, then, according to Section 3.1, the number of 𝛼(𝑠,𝑘)𝑛 is
nominally equal to the total number of dictionary atoms at time 𝑛, 𝐾𝑛,
but this number can be reduced by retaining only 𝐿𝑠 ≤ 𝐾𝑛 dominant
expansion coefficients 𝛼(𝑠,𝑘)𝑛 , i.e., those with largest absolute values or
those whose absolute values are above a specified positive threshold.
We note that 𝐿𝑠 may depend on 𝑛, which is not shown by our notation.

In the course of the consensus iterations 𝑖 = 1, 2,… , 𝐼 , 𝐿𝑠[𝑖] will
generally increase beyond 𝐿𝑠. This is because at different sensors 𝑠, the
sets {𝑘𝑙} of indices 𝑘 for which the 𝛽(𝑘,𝑠)𝑛 [𝑖] are nonzero are typically
not exactly equal, and thus the consensus update operation in (6) will
produce some additional nonzero 𝛽(𝑘,𝑠)𝑛 [𝑖]. However, 𝐿𝑠[𝑖] will still be
much smaller than 𝐾𝑛.

In the following, we propose three different methods for encoding
the indices 𝑘 of the nonzero 𝛽(𝑘,𝑠)𝑛 [𝑖] in a binary format. Our first method,
termed the indicator method, uses an indicator bit vector of length 𝐾𝑛
whose 𝑘th bit is 1 if 𝛽(𝑘,𝑠)𝑛 [𝑖] is nonzero and 0 otherwise. This indicator
bit vector is broadcast to the neighboring sensors in addition to the
𝐿𝑠[𝑖] 𝑛b-bit sequences representing the nonzero 𝛽(𝑘,𝑠)𝑛 [𝑖]. Accordingly,
the total number of bits broadcast by sensor 𝑠 in LC iteration 𝑖 is

𝑁 (𝑠)
indicator,𝑖 = 𝐿𝑠[𝑖]𝑛b +𝐾𝑛 . (15)

This is smaller than 𝑁naive =𝐾𝑛𝑛b if and only if 𝐿𝑠[𝑖] < 𝐾𝑛 (1 − 1∕𝑛b).
An alternative method, termed the label method, transmits along

with each 𝑛b-bit sequence representing a nonzero 𝛽(𝑘,𝑠)𝑛 [𝑖] a binary
‘‘label’’ sequence encoding the index 𝑘. Since there are 𝐾𝑛 possible
indices 𝑘, each label sequence consists of ⌈log2(𝐾𝑛)⌉ bits. Therefore,
the total number of bits broadcast by sensor 𝑠 in LC iteration 𝑖 is

𝑁 (𝑠)
label,𝑖 = 𝐿𝑠[𝑖]

(

𝑛b + ⌈log2(𝐾𝑛)⌉
)

. (16)

This is smaller than 𝑁naive = 𝐾𝑛𝑛b if and only if 𝐿𝑠[𝑖] < 𝐾𝑛∕
(

1 +
⌈log2(𝐾𝑛)⌉∕𝑛b

)

, and smaller than 𝑁 (𝑠)
indicator,𝑖 if and only if 𝐿𝑠[𝑖] <

𝐾𝑛∕⌈log2(𝐾𝑛)⌉.
Finally, the hyperrectangle method is specifically suited to the B-

spline dictionary. As described in Section 4.2, the B-spline atom 𝜓𝑘(𝐱)
corresponding to 𝛽(𝑘,𝑠)𝑛 [𝑖] is localized around some point 𝐱(𝑘) on a regular
𝑀-D grid within the ROI 𝑛. This grid point can be alternatively
indexed by the 𝑀-D index �̃� = (�̃�1 ⋯ �̃�𝑀 )T with �̃�𝑚 ∈ {1,… , �̃�𝑚} (see
(12)). Due to the localization of the atoms 𝜓𝑘(𝐱), the grid points 𝐱(𝑘)
corresponding to the nonzero 𝛽(𝑘,𝑠)𝑛 [𝑖] can be expected to lie in a small
subregion of 𝑛. Equivalently, the associated 𝑀-D indices �̃� are located
in a small 𝑀-D ‘‘discrete hyperrectangle’’ (𝑠)

𝑛 [𝑖] that consists of all �̃�
with �̃�𝑚 ∈

{

𝑙(𝑠)𝑛,𝑚[𝑖],… , 𝑙(𝑠)𝑛,𝑚[𝑖] + 𝛥�̃�
(𝑠)
𝑛,𝑚[𝑖]

}

for 𝑚 = 1,… ,𝑀 . Here, 𝑙(𝑠)𝑛,𝑚[𝑖]
and 𝑙(𝑠)𝑛,𝑚[𝑖]+𝛥�̃�

(𝑠)
𝑛,𝑚[𝑖] are, respectively, the minimum and maximum 𝑚th-

coordinate index �̃�𝑚 of any nonzero 𝛽(𝑘,𝑠)𝑛 [𝑖]. The number of different
𝛽(𝑘,𝑠)𝑛 [𝑖] contained in (𝑠)

𝑛 [𝑖] is |(𝑠)
𝑛 [𝑖]| =

∏𝑀
𝑚=1(𝛥�̃�

(𝑠)
𝑛,𝑚[𝑖]+1); out of these,
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𝐿𝑠[𝑖] are nonzero. The basic geometry is visualized in Fig. 4.
Fig. 4. Illustration (for dimension 𝑀 = 2) of the ROI 𝑛 and the hyperrectangle (𝑠)
𝑛 [𝑖]

(blue rectangle) that contains the 2-D indices �̃� = (�̃�1 �̃�2)T of the nonzero coefficient
estimates 𝛽(𝑘,𝑠)𝑛 [𝑖] (filled magenta rectangles).

Sensor 𝑠 then broadcasts the 𝐿𝑠[𝑖] nonzero 𝛽(𝑘,𝑠)𝑛 [𝑖] using 𝐿𝑠[𝑖] bi-
nary sequences of length 𝑛b, and – adopting, e.g., the strategy of
the indicator method – a binary indicator vector of length |(𝑠)

𝑛 [𝑖]|.
This requires 𝐿𝑠[𝑖]𝑛b + |(𝑠)

𝑛 [𝑖]| bits. In addition, sensor 𝑠 informs the
neighboring sensors about the position and extent of (𝑠)

𝑛 [𝑖] within
𝑛 by broadcasting binary representations of the ‘‘minimum vertex
vector’’ �̃�(𝑠)𝑛 [𝑖] ≜

(

𝑙(𝑠)𝑛,1[𝑖]⋯ 𝑙(𝑠)𝑛,𝑀 [𝑖]
)T and the ‘‘extent vector’’ 𝜟(𝑠)𝑛 [𝑖] ≜

(

𝛥�̃�(𝑠)𝑛,1[𝑖]⋯ 𝛥�̃�(𝑠)𝑛,𝑀 [𝑖]
)T. Because �̃�(𝑠)𝑛 [𝑖] may be one of 𝐾𝑛 =

∏𝑀
𝑚=1 �̃�𝑛,𝑚 pos-

sible 𝑀-D indices �̃�, ⌈log2(𝐾𝑛)⌉ =
⌈
∑𝑀
𝑚=1 log2(�̃�𝑛,𝑚)

⌉

bits are required
to represent it. Furthermore, 𝛥�̃�(𝑠)𝑛,𝑚[𝑖] must lie in the set {1,… , �̃�𝑛,𝑚 −
𝑙(𝑠)𝑛,𝑚[𝑖]}. Thus, 𝑁𝛥 ≜

∏𝑀
𝑚=1(�̃�𝑛,𝑚 − 𝑙

(𝑠)
𝑛,𝑚[𝑖]) different extent vectors 𝜟(𝑠)𝑛 [𝑖]

are possible, which means that ⌈log2(𝑁𝛥)⌉ =
⌈
∑𝑀
𝑚=1 log2(�̃�𝑛,𝑚− 𝑙

(𝑠)
𝑛,𝑚[𝑖])

⌉

bits are required to represent 𝜟(𝑠)𝑛 [𝑖]. The total number of bits broadcast
by sensor 𝑠 in LC iteration 𝑖 is thus 𝑁 (𝑠)

hyperrect,𝑖 = 𝐿𝑠[𝑖]𝑛b + |(𝑠)
𝑛 [𝑖]| +

⌈log2(𝐾𝑛)⌉ + ⌈log2(𝑁𝛥)⌉ or, in more detail,

𝑁 (𝑠)
hyperrect,𝑖 =𝐿𝑠[𝑖]𝑛b +

𝑀
∏

𝑚=1
(𝛥�̃�(𝑠)𝑛,𝑚[𝑖] + 1) +

⌈𝑀
∑

𝑚=1
log2(�̃�𝑛,𝑚)

⌉

+

⌈𝑀
∑

𝑚=1
log2(�̃�𝑛,𝑚− 𝑙(𝑠)𝑛,𝑚[𝑖])

⌉

.

Comparing with (15) and (16), we see that 𝑁 (𝑠)
hyperrect,𝑖 is smaller than

𝑁 (𝑠)
indicator,𝑖 and 𝑁 (𝑠)

label,𝑖 if and only if ∏𝑀
𝑚=1 (𝛥�̃�

(𝑠)
𝑛,𝑚[𝑖] + 1) +

⌈
∑𝑀
𝑚=1 log2

(�̃�𝑛,𝑚)
⌉

+
⌈
∑𝑀
𝑚=1 log2(�̃�𝑛,𝑚− 𝑙

(𝑠)
𝑛,𝑚[𝑖])

⌉

is smaller than 𝐾𝑛 in the former case
and 𝐿𝑠[𝑖]⌈log2(𝐾𝑛)⌉ in the latter case. This essentially amounts to the
condition that the coordinate extents 𝛥�̃�(𝑠)𝑛,𝑚[𝑖] are small enough.

7. LC 2.0 for the distributed PDAF

In this section, extending our conference publication [8], we con-
sider the use of LC 2.0 within a distributed implementation of the
probabilistic data association filter (PDAF).

7.1. Measurement model, LLF, and GLF

The measurement model underlying the PDAF extends the DPF mea-
surement model of Section 2.1 to multiple measurements per sensor,
missed detections, clutter, and a related measurement-origin uncer-
tainty [2,7]. At each time 𝑛 ≥ 1, each sensor 𝑠 = 1,… , 𝑆 now
produces 𝑊 (𝑠)

𝑛 measurements 𝐳(𝑠)𝑛,𝑤 , 𝑤 = 1,… ,𝑊 (𝑠)
𝑛 , where 𝑊 (𝑠)

𝑛 may
also be zero. These measurements include at most one target-generated
measurement, the other measurements being clutter (false alarms).
However, the sensor does not know the origins (target or clutter) of
the measurements. We make the following assumptions: (i) At time
𝑛, sensor 𝑠 ‘‘detects’’ the target, in the sense of producing a target-
generated measurement, with probability 𝑃 (𝑠)

d . This measurement is
distributed according to the conditional pdf 𝑓 (𝑠)

t
(

𝐳(𝑠)𝑛,𝑤|𝐱𝑛
)

. (ii) The clut-
ter measurements are independent and identically distributed (iid) with
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pdf 𝑓 (𝑠)
c

(

𝐳(𝑠)𝑛,𝑤
)

. (iii) The number of clutter measurements at sensor 𝑠
is Poisson distributed with mean 𝜇(𝑠). Using these assumptions, it was
shown in [2, Sec. 4.5] that the LLF at sensor 𝑠 is given by

𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

= 𝑙(𝑠)𝑛,0 +
𝑊 (𝑠)
𝑛

∑

𝑤=1
𝑙(𝑠)𝑛,𝑤(𝐱𝑛) , (17)

with the nonnegative constant ‘‘floor’’ component

𝑙(𝑠)𝑛,0 ≜ 𝐶
(

𝐳(𝑠)𝑛
)(

1 − 𝑃 (𝑠)
d

)

𝜇(𝑠) (18)

and the 𝑊 (𝑠)
𝑛 nonnegative measurement-related components

𝑙(𝑠)𝑛,𝑤(𝐱𝑛) ≜ 𝐶
(

𝐳(𝑠)𝑛
)

𝑃 (𝑠)
d

𝑓 (𝑠)
t

(

𝐳(𝑠)𝑛,𝑤|𝐱𝑛
)

𝑓 (𝑠)
c

(

𝐳(𝑠)𝑛,𝑤
)

, 𝑤=1,… ,𝑊 (𝑠)
𝑛 . (19)

Here, 𝐳(𝑠)𝑛 ≜
(

𝐳(𝑠)T𝑛,1 ⋯ 𝐳(𝑠)T
𝑛,𝑊 (𝑠)

𝑛

)T comprises all the measurements at sensor

𝑠, and 𝐶
(

𝐳(𝑠)𝑛
)

is a normalization constant. In the absence of missed
detections and clutter (i.e., 𝑃 (𝑠)

d = 1, 𝑊 (𝑠)
𝑛 = 1, 𝜇(𝑠) = 0), the LLF in

(17)–(19) would simplify to 𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

= 𝑓 (𝑠)
t

(

𝐳(𝑠)𝑛,1|𝐱𝑛
)

, i.e., the floor
component would be zero and there would be only one measurement-
related component, which is target-generated; this equals the DPF
measurement model of Section 2.1.

We consider a generalization of the original PDAF to nonlinear and
non-Gaussian state-space models. This generalized PDAF is a particle
filter based on the likelihood function in (17)–(19) [2,7]. For a dis-
tributed implementation, each sensor 𝑠 runs a local particle filter as
described in Section 2.1. We again assume that the measurements 𝐳(𝑠)𝑛
at different sensors are conditionally independent given 𝐱𝑛. Then, the
GLF is the product of the LLFs (see (1)), and both the LC and the
proposed LC 2.0 can again be used for a distributed calculation of the
GLF approximations 𝑓𝑠(𝐳𝑛|𝐱𝑛) involved in the update step (2). However,
a difference from the GLF calculation performed for the DPF is that now
we also have to take into account the constant floor component 𝑙(𝑠)𝑛,0 of
the LLF (17).

7.2. Splitting off the floor

We now propose a modification of the LC that promotes a sparse
representation of the LLF (17) by splitting off the floor component 𝑙(𝑠)𝑛,0.
For practically relevant sensors, the measurement-related components
𝑙(𝑠)𝑛,𝑤(𝐱𝑛) are effectively supported in subregions of R𝑀 . This implies that
in the complementary subregion, according to (17), the LLF 𝑓

(

𝐳(𝑠)𝑛 |𝐱𝑛
)

is effectively equal to the floor component 𝑙(𝑠)𝑛,0. Since moreover the
measurement-related LLF part ∑𝑊 (𝑠)

𝑛
𝑤=1 𝑙

(𝑠)
𝑛,𝑤(𝐱𝑛) is nonnegative, it follows

that the floor component 𝑙(𝑠)𝑛,0 is approximately equal to the minimum of
the LLF 𝑓

(

𝐳(𝑠)𝑛 |𝐱𝑛
)

, i.e., we effectively have 𝑙(𝑠)𝑛,0 = min𝐱𝑛∈R𝑀 𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

,
and consequently

𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

≥ 𝑙(𝑠)𝑛,0 . (20)

Let us now consider the log-LLF log 𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

and, in particular, its
minimum

𝜆(𝑠)𝑛,0 ≜ min
𝐱𝑛∈R𝑀

log 𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

. (21)

Using the fact that log is a strictly increasing function, we have

𝜆(𝑠)𝑛,0 = log
(

min
𝐱𝑛∈R𝑀

𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

)

= log 𝑙(𝑠)𝑛,0 . (22)

We conclude from (20) that log 𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

≥ log 𝑙(𝑠)𝑛,0 or, equivalently,
using (22),

log 𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

≥ 𝜆(𝑠)𝑛,0 . (23)

It follows from (23) that the log-LLF can be written as

log 𝑓
(

𝐳(𝑠)|𝐱
)

= 𝜆(𝑠) + 𝜆(𝑠)(𝐱 ) , (24)
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𝑛 𝑛 𝑛,0 𝑛 𝑛
Fig. 5. Example (simulation result, using one sensor at the position indicated by the red
bullet) of a log-LLF for dimension 𝑀 = 2. This log-LLF comprises seven measurement-
related components, whereof one is target-generated and the remaining six are clutter.
The dark blue background corresponds to the floor component 𝜆(𝑠)𝑛,0, which equals the
minimum of the log-LLF.

with a nonnegative function 𝜆(𝑠)𝑛 (𝐱𝑛). (Note that, by contrast, the ‘‘log-
LLF floor’’ 𝜆(𝑠)𝑛,0 may be negative.) An example of a log-LLF is shown in
Fig. 5. Inserting (24) into (3) yields

𝐿𝑛(𝐱𝑛) =
1
𝑆

𝑆
∑

𝑠=1

(

𝜆(𝑠)𝑛,0 + 𝜆
(𝑠)
𝑛 (𝐱𝑛)

)

= �̄�𝑛,0 + �̄�𝑛(𝐱𝑛) , (25)

with the log-GLF floor �̄�𝑛,0 and the floorless log-GLF �̄�𝑛(𝐱𝑛) defined as

�̄�𝑛,0 ≜
1
𝑆

𝑆
∑

𝑠=1
𝜆(𝑠)𝑛,0 , �̄�𝑛(𝐱𝑛) ≜

1
𝑆

𝑆
∑

𝑠=1
𝜆(𝑠)𝑛 (𝐱𝑛) . (26)

According to Section 2.2, the LC-based distributed calculation of the
approximate GLF 𝑓𝑠(𝐳𝑛|𝐱𝑛) then amounts to a distributed calculation of
the function 𝐿𝑛(𝐱𝑛) = �̄�𝑛,0 + �̄�𝑛(𝐱𝑛). Obtaining a sparse LC expansion
is facilitated by splitting off the log-GLF floor �̄�𝑛,0 from 𝐿𝑛(𝐱𝑛) and
performing separate distributed calculations of �̄�𝑛,0 and �̄�𝑛(𝐱𝑛). Because
�̄�𝑛,0 is (by (26)) the average of the 𝑆 scalars 𝜆(𝑠)𝑛,0, it can be approximated
in a distributed manner via a single instance of the average consensus
algorithm. The floorless log-GLF �̄�𝑛(𝐱𝑛), on the other hand, is the aver-
age of the 𝑆 functions 𝜆(𝑠)𝑛 (𝐱𝑛); it can be approximated in a distributed
manner via the LC. Thus, the LC is used to calculate only the floorless
log-LLF �̄�𝑛(𝐱𝑛) rather than the overall function 𝐿𝑛(𝐱𝑛).

For a practical implementation, each sensor 𝑠 first determines its
log-LLF floor 𝜆(𝑠)𝑛,0 by finding the minimum of log 𝑓

(

𝐳(𝑠)𝑛 |𝐱𝑛
)

. (In prin-
ciple, the minimum can be obtained from the closed-form expression
(18); however, we observed that a numerical computation according
to (21) yielded a slightly better tracking performance.) Then, a single
instance of the average consensus algorithm is used to calculate the log-
GLF floor �̄�𝑛,0 =

1
𝑆
∑𝑆
𝑠=1 𝜆

(𝑠)
𝑛,0. Next, each sensor 𝑠 calculates its floorless

log-LLF according to 𝜆(𝑠)𝑛 (𝐱𝑛) = log𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
)

− 𝜆(𝑠)𝑛,0 (see (24)). The LC
is now used to calculate the floorless log-GLF �̄�𝑛(𝐱𝑛) =

1
𝑆
∑𝑆
𝑠=1 𝜆

(𝑠)
𝑛 (𝐱𝑛).

Finally, each sensor calculates 𝐿𝑛(𝐱𝑛) according to (25), i.e., by adding
its local estimates of �̄�𝑛,0 and �̄�𝑛(𝐱𝑛).

7.3. Using LC 2.0

A simplification of the strategy described above is possible when
using LC 2.0—more specifically, when using a B-spline dictionary and
the adaptive ROI. Here, most of the support of the log-LLF floor is
removed implicitly by approximating the log-LLF only on the ROI 𝑛.
Moreover, since according to Section 5.1 𝑛 is a slightly extended
version of the effective support of the global posterior pdf 𝑓 (𝐱𝑛|𝐳1∶𝑛),
it typically contains the target-generated component of the log-LLF but
excludes most of the clutter components. When a B-spline dictionary
is used on 𝑛, then, due to the localization of the B-spline atoms, one
obtains a sparse LC expansion without splitting off the log-LLF floor.
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Fig. 6. Surveillance area, sensor network, and target trajectory used in our simulation.

On the other hand, also 𝑛 typically includes subregions that do
not contain measurement-related LLF components and thus belong to
the support of the LLF floor. Therefore, an even better sparsity can
generally be obtained by splitting off the log-LLF floor within 𝑛 and
approximating the floorless log-GLF �̄�𝑛(𝐱𝑛) on 𝑛. Differently from
(22), the log-LLF floor is now determined only on 𝑛, i.e., �̃�(𝑠)𝑛,0 ≜
log

(

min𝐱𝑛∈𝑛
𝑓
(

𝐳(𝑠)𝑛 |𝐱𝑛
))

, and the calculation of the floorless log-LLF
�̃�(𝑠)𝑛 (𝐱𝑛) ≜ log 𝑓

(

𝐳(𝑠)𝑛 |𝐱𝑛
)

− �̃�(𝑠)𝑛,0 and the B-spline expansion of �̃�(𝑠)𝑛 (𝐱𝑛) are
performed on 𝑛.

8. Simulation results

In this section, we evaluate and compare the performance, com-
munication cost, and computational complexity of LC 2.0 relative to
the conventional LC. For a detailed evaluation of LC 2.0, we study the
effects of the different aspects of LC 2.0 – OMP, B-spline dictionary,
binary representation, uniform log-LLF sampling, and adaptive ROI –
separately.

We simulated a target moving in the 2-D plane. The target state is
𝐱𝑛 = (𝑥𝑛,1 𝑥𝑛,2 �̇�𝑛,1 �̇�𝑛,2)T, where 𝑥𝑛,1, 𝑥𝑛,2 and �̇�𝑛,1, �̇�𝑛,2 are the target’s
position and velocity components, respectively. The surveillance area
is [−200m, 200m] × [−200m, 200m]. The evolution of 𝐱𝑛 is modeled as
𝐱𝑛 = 𝐅𝐱𝑛−1+𝚪𝐮𝑛, where the matrices 𝐅 ∈ R4×4 and 𝚪 ∈ R4×2 are defined
in [34], involving a time step parameter 𝑇 that is chosen as 1s, and the
driving noise 𝐮𝑛 ∈ R2 is iid, zero-mean, and Gaussian with covariance
matrix 𝜎2𝑢 𝐈2, where 𝜎𝑢 = 1∕3 m/s2. It follows that the state-transition
pdf 𝑓 (𝐱𝑛|𝐱𝑛−1) is Gaussian with mean 𝐅𝐱𝑛−1 and covariance matrix
𝜎2𝑢𝚪𝚪

T. The sensor network consists of 𝑆 = 10 sensors. Fig. 6 shows the
surveillance area, the sensor network, and the target trajectory used in
our simulation.

Each sensor 𝑠 produces a range (distance) and bearing (angle)
measurement given by

𝐳(𝑠)𝑛 =
(

‖�̃�𝑛 − 𝐩(𝑠)‖ 𝜑(�̃�𝑛,𝐩(𝑠))
)T + 𝐯(𝑠)𝑛 , (27)

where �̃�𝑛 ≜ (𝑥𝑛,1 𝑥𝑛,2)T is the position of the target, 𝐩(𝑠) is the position
of sensor 𝑠, 𝜑(�̃�𝑛,𝐩(𝑠)) is the angle of �̃�𝑛 relative to 𝐩(𝑠), and 𝐯(𝑠)𝑛 is iid,
zero-mean, Gaussian measurement noise with covariance matrix 𝐂𝑣 =
diag{𝜎2r , 𝜎

2
b}, where 𝜎r = 5∕3 m and 𝜎b = 10∕3◦. Because 𝐳(𝑠)𝑛 depends

only on the position �̃�𝑛, the LLF is effectively given by 𝑓
(

𝐳(𝑠)𝑛 |�̃�𝑛
)

, which
implies that our effective state-space dimension is 𝑀 = 2. A modified
measurement model will be used in Section 8.7.

Each local particle filter uses 𝐽 = 10000 particles. For initialization
of the particles at time 𝑛 = 0, the position �̃�𝑛 is sampled uniformly
at random in the surveillance area, the target speed is sampled from
a truncated Gaussian distribution with mean 2 m/s and standard de-
8

viation 1∕3 m/s, and the target heading is sampled from a uniform
distribution on (−180◦, 180◦]. The LC employs 𝐼 = 20 consensus itera-
tions. The tracking accuracy of the DPF is measured by the localization
root mean square error (RMSE) and the track loss percentage, based on
100 simulation runs performed over 50 time steps 𝑛 (corresponding to
a duration of 50 s). The localization RMSE is averaged over all sensors
and all successful simulation runs. Here, a simulation run is considered
successful if after the initial period 𝑛 = 1,… , 10 (i.e., after effects due
to particle filter initialization have died off), the localization RMSE is
smaller than 𝑡loss = 5m; otherwise it is considered a track loss and
included in the calculation of the track loss percentage. We note that
the somewhat arbitrary threshold of 5 m was motivated by the fact that
it is roughly 1% of the lateral length of the surveillance area (which is
400 m).

8.1. OMP

First, we demonstrate the savings in communication that are
achieved by the OMP-based calculation of the local expansion coef-
ficients described in Section 3.2 relative to the conventional LS-based
calculation. We only consider a B-spline dictionary because the benefits
of the OMP for a Fourier dictionary were already discussed in [8]. Our
B-spline dictionary comprises 𝐾 = 400 atoms located uniformly in the
entire surveillance area. We used uniform sampling of the log-LLF on
the entire surveillance area (see Section 3.3). That is, at this point,
we do not use the adaptive ROI. Fig. 7(a) shows the time-averaged
localization RMSE (averaged over all time steps 𝑛 = 1,… , 50) versus
the number of nonzero local expansion coefficients. Here, as well as in
the simulations reported later, 𝐿𝑠 was chosen identically for each sensor
𝑠, i.e., 𝐿𝑠 ≡ 𝐿. In the OMP case, 𝐿 equals the number of OMP iterations
while in the LS case, we retained the 𝐿 local coefficients with the
largest absolute values. In what follows, we consider 𝐿∈{2,… , 20}. We
conclude from Fig. 7(a) that for 𝐿 ≥ 4, OMP leads to a smaller (better)
localization RMSE than LS. Conversely, using OMP, a given RMSE is
obtained with a smaller 𝐿 than using LS. For example, an RMSE of
about 3.3 m is obtained with 𝐿 = 15 when using LS as opposed to
only 𝐿 = 6 when using OMP. This superior RMSE performance of OMP
can be explained by OMP’s superior approximation accuracy, which is
related to the fact that OMP performs several (small-size) LS steps and
chooses the best coefficients one-by-one, whereas in the LS method the
relevant coefficients are selected via a single heuristic thresholding that
is performed after the LS approximation. To complete the picture, we
note that neither OMP nor LS produced any track losses.

The smaller values of 𝐿 required by the OMP translate into savings
in the number of nonzero coefficient estimates 𝛽(𝑘,𝑠)𝑛 [𝑖]. Fig. 7(b) shows
the average number of nonzero coefficient estimates, �̄�𝛽 (averaged over
all LC iterations 𝑖, all sensors 𝑠, and all time steps 𝑛) versus the RMSE.
For example, the average number of nonzero coefficient estimates that
a sensor has to broadcast for an RMSE of 3.3 m is reduced by about one
half if OMP is used instead of LS. Because of this superiority of OMP,
we will not further consider LS unless stated otherwise.

8.2. B-spline dictionary

Next, we compare DPFs using a B-spline dictionary and a Fourier
dictionary (abbreviated DPF-B and DPF-F, respectively). DPF-B uses
�̃�𝑚 = 40 B-spline atoms in each coordinate direction 𝑚 = 1, 2 and hence
𝐾 = 1600 B-spline atoms in total, which are regularly spaced in the
entire surveillance area. DPF-F uses a Fourier dictionary with �̃�𝑚 = 20
nonzero frequencies in each coordinate direction and hence 𝐾 = 1681
Fourier atoms in total. Note that 𝐾 is similar in DPF-B and DPF-F. In
DPF-B, the log-LLF is sampled uniformly in the entire surveillance area
using 𝑄𝑛 = 160000 samples, whereas in DPF-F, it is sampled at the
𝐽 = 10000 particles; these sampling schemes produce the best results
in the respective cases. (We note that 𝑄𝑛 can be chosen significantly
smaller when the adaptive ROI is implemented, see Section 8.5.) Both

DPF-B and DPF-F use the OMP with 𝐿 = 5 iterations.
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Fig. 7. Comparison of DPFs with OMP-based and LS-based calculation of the local expansion coefficients, using a B-spline dictionary and uniform sampling in the entire surveillance
area (these DPFs are abbreviated as DPF-B-OMP and DPF-B-LS, respectively): (a) Time-averaged localization RMSE versus number of nonzero local expansion coefficients, 𝐿, (b)
average number of nonzero coefficient estimates, �̄�𝛽 , versus time-averaged localization RMSE.
Fig. 8. Comparison of DPFs using a B-spline dictionary and a Fourier dictionary, both covering the entire surveillance area: (a) Localization RMSE versus time, (b) average number
of nonzero coefficient estimates, 𝑁𝛽 , versus time.
Fig. 8(a) shows the localization RMSE versus time obtained with
DPF-B, with DPF-F, and – as a performance benchmark – with a
centralized multisensor particle filter (abbreviated CPF). For 𝑛 = 1,
the RMSE of DPF-F is 34 m and thus much higher (worse) than that of
DPF-B; this can be explained by the fact that initially the particles are
spread out over the entire surveillance area and, thus, not sufficiently
concentrated. For 𝑛 ≥ 2, on the other hand, the RMSE of DPF-F is
typically lower than that of DPF-B and effectively equals that of CPF
for 𝑛 ≥ 13. The RMSE of DPF-B exhibits a large variation with time; in
particular, it is large around 𝑛 = 25, where the target changes direction
(see Fig. 6). The higher RMSE and the RMSE’s time variation can be
explained by the small density of the B-spline grid. These issues will be
resolved in Section 8.5 through the use of the adaptive ROI.

On the other hand, the track loss results are contrary to the RMSE re-
sults: the track loss percentage of DPF-F was measured as 2.2, whereas
DPF-B did not produce any track losses.

Fig. 8(b) shows the number of nonzero coefficient estimates, 𝑁𝛽 ,
broadcast on average by a sensor during one LC iteration. The time-
average of 𝑁𝛽 is about 35 for DPF-F but only 22 for DPF-B, correspond-
ing to a reduction by about 33%. This reduction due to the use of the
B-spline dictionary will be seen to be even larger when the adaptive ROI
is implemented, see Section 8.5. Furthermore, 𝑁𝛽 is seen to be fairly
constant in the case of DPF-B, which implies an approximately constant
communication cost. By contrast, in the case of DPF-F, 𝑁𝛽 exhibits a
large time variation. This can be explained by the fact, observed in our
simulations, that using the Fourier dictionary the atoms selected by the
9

OMP algorithm are partly different across the sensors for some time
steps, whereas using the B-spline dictionary the atoms tend to coincide
across the sensors for most time steps.

8.3. Binary representation

Our next simulation compares DPF-B variants using the binary
coding methods presented in Section 6. All these DPF-B variants employ
a binary wordlength of 𝑛b = 32 (the standard floating point format) and
𝐾 = 1600 B-spline atoms in the entire surveillance area. Fig. 9 shows the
binary communication costs 𝑁naive as well as 𝑁 (𝑠)

indicator,𝑖 , 𝑁
(𝑠)
label,𝑖 , and

𝑁 (𝑠)
hyperrect,𝑖 averaged over all sensors 𝑠 and all LC iterations 𝑖. It can be

seen that the binary communication cost is smallest for the hyperrect-
angle method (its time-average is only 790.71 bit), somewhat higher for
the label method, and much higher for the indicator method. However,
all are significantly lower than the communication cost of naive coding,
𝑁naive =𝐾𝑛b = 51200 bit. We conclude that the proposed binary coding
methods lead to large savings in communication. The inferiority of the
indicator method relative to the label and hyperrectangle methods is
due to the large length of the binary indicator vector (which comprises
𝐾 = 1600 bits) and will be seen in Section 8.5 to be less pronounced
when the adaptive ROI is implemented.

Fig. 9 also considers DPF-F with binary coding using the label
method, which is the most efficient coding method for DPF-F. It is seen
that the communication cost of this DPF-F variant is about twice that
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Fig. 9. Average binary communication costs of DPF-B variants using different binary
coding methods, as well as of DPF-F using the label method.

Table 1
Tracking performance of DPF-B variants using log-LLF sampling at the particles or
uniformly in the entire surveillance area.

DPF RMSE [m] 𝜌 [%]

DPF-B-P(10000) N/A 100
DPF-B-P(100000) N/A 100

DPF-B-U(1600) 2.35 0.2
DPF-B-U(10000) 1.70 0.2
DPF-B-U(40000) 1.73 0.2
DPF-B-U(160000) 1.70 0

of DPF-B using the hyperrectangle method. Thus, using the B-spline
dictionary instead of the Fourier dictionary reduces the communication
cost by approximately one half.

8.4. Uniform log-LLF sampling

As mentioned in Section 3.3, successful use of the B-spline dic-
tionary requires that the log-LLF is sampled uniformly rather than at
the particles. We now verify this fact and study the impact of the
number of samples 𝑄 on the tracking performance. We consider two
DPF-B variants, abbreviated as DPF-B-P(𝐽 ) and DPF-B-U(𝑄), in which
the log-LLF is sampled either at the particles using 𝐽 = 10000 or 100000
particles or uniformly in the entire surveillance area using 𝑄 = 1600,
10000, 40000, or 160000 samples. Both DPF-B variants use 𝐾 = 1600
B-spline atoms in the entire surveillance area. Table 1 presents the
time-averaged localization RMSE and the track loss percentage 𝜌. It is
seen that sampling of the log-LLF at the particles results in 𝜌 = 100%
(thus, there are no ‘‘successful’’ simulation runs from which to calculate
the RMSE). This can partially be attributed to particle degeneracy, and
we conjecture that using a more sophisticated resampling filter would
result in a smaller track loss percentage at the cost of a higher complex-
ity. By contrast, uniform sampling yields excellent performance, with
𝜌 = 0.2% or 0% and RMSE around 1.7 m for 𝑄 = 10000 or larger.

8.5. Adaptive ROI

Next, we demonstrate the benefits of using the adaptive ROI in-
troduced in Section 5.1. We consider a DPF-B variant, designated
DPF-B-ROI, in which the B-spline dictionary covers only the ROI 𝑛.
The parameter 𝛾 used in the calculation of 𝑛 (see (13)) is 10. The
numbers of B-spline atoms in the two coordinate directions, �̃�𝑛,1 and
�̃�𝑛,2, are chosen adaptively according to (14) with 𝜅𝑛,1 = 𝜅𝑛,2 = 1∕20.
The log-LLF is sampled uniformly on 𝑛 with a density of one sample
per meter; thus, the total number of samples is 𝑄 = 𝑑(1)𝑑(2), where the
10

𝑛 𝑛 𝑛
ROI interval lengths 𝑑(1)𝑛 and 𝑑(2)𝑛 are determined adaptively according
to (13). For initialization of the local particle filters at 𝑛 = 1, 1 is
chosen as the entire surveillance area; furthermore, �̃�1,1 = �̃�1,2 = 10,
corresponding to 𝐾1 = 100 B-spline atoms. For 𝑛 = 1, the sampling
density is reduced to one sample per 5 m, therefore 𝑄1 = 6400. For
𝑛 ≥ 2, the (adaptively determined) dictionary size 𝐾𝑛 and number of
log-LLF samples 𝑄𝑛 are much smaller than 𝐾1 and 𝑄1, respectively: we
observed 𝐾𝑛 = 4 and 𝑄𝑛 around 1000 for almost all times and simulation
runs.

Fig. 10 compares DPF-B-ROI and DPF-B, where the latter employs
𝐾 = 1600 B-spline atoms in the entire surveillance area and uniform
log-LLF sampling in the entire surveillance area using 𝑄𝑛 = 160000
samples. In addition, Fig. 10 shows the results of DPF-F (using 𝐾 = 1681
Fourier atoms on the entire surveillance area and particle-based log-
LLF sampling) and of CPF. All DPFs use the OMP with 𝐿 = min{5, 𝐾𝑛}
iterations (note that 𝐿 cannot be larger than 𝐾𝑛). For binary coding,
DPF-B-ROI and DPF-B use the hyperrectangle method and DPF-F uses
the label method, all with binary wordlength 𝑛b = 32. One can see in
Fig. 10(a) that the localization RMSE of DPF-B-ROI is typically signif-
icantly lower than that of DPF-B. Moreover, for 𝑛 larger than about
10, the RMSE comes very close to that of DPF-F and, somewhat later,
also to that of CPF. The measured track loss percentage was similar
for DPF-B-ROI and DPF-B (0.2% and 0%, respectively) but higher for
DPF-F (2.2%). Fig. 10(b) shows that for 𝑛 ≥ 3, the communication cost
of DPF-B-ROI is only about 40% of that of DPF-B. We conclude that
using the adaptive ROI results in both a significant gain in tracking
accuracy and large savings in communication. The latter come in addi-
tion to the savings relative to DPF-F previously reported in Section 8.2,
which are again visible in Fig. 10(b).

Although our focus is on reducing the communication cost, also
the computational complexity of the proposed DPF methodology is
of interest. Fig. 10(c) shows the runtime per time step 𝑛, averaged
over all sensors and simulation runs, of DPF-B-ROI and DPF-F versus
time. These results were obtained with a MATLAB implementation on
a laptop computer using 16 GB RAM and an i7-8565U CPU operating at
a clock rate of 1.80 GHz. It is seen that the runtime of DPF-B-ROI, after
a brief initial convergence phase, is about 0.01s, which is only about
one tenth of the runtime of DPF-F. This can be explained by the reduced
dictionary size 𝐾𝑛 and the reduced number of sampling points 𝑄𝑛
employed by DPF-B-ROI relative to DPF-F. The runtime of DPF-B-ROI
can be broken down as follows: 62% is spent on the update step, 16%
on calculating the expansion coefficients, 12% on particle resampling,
8% on the prediction step, and 2% on calculating the ROI parameters,
such as the particles’ standard deviations 𝑠𝑛,𝑚. In DPF-F, about 50% of
the runtime is spent on calculating the expansion coefficients. This large
percentage is due to the fact that DPF-F uses sampling of the log-LLF
at the particles, i.e., the Fourier basis functions have to be evaluated
at the 𝐽 particles, whereas in DPF-B-ROI only 𝑄𝑛 sampling points are
used. As a consequence, in DPF-F, the matrices involved in the OMP
are larger, resulting in a higher complexity. We report for completeness
that the average runtime of DPF-B (i.e., not using an adaptive ROI) is
approximately 3.4 s and thus significantly larger than that of DPF-B-
ROI. Finally, we note that the complexity of evaluating the B-spline
basis functions can be reduced by a table lookup based on a piecewise
linear approximation, as discussed in [35].

8.6. The benefit of LC 2.0

After studying the individual aspects of LC 2.0 separately, we now
demonstrate the total reduction of communication cost achieved with
LC 2.0 relative to the conventional LC. In addition, we compare the
performance of LC and LC 2.0 with that of two diffusion-based meth-
ods. Fig. 11(a) shows the RMSE of DPF-B-ROI (previously consid-
ered in Fig. 10, but now dubbed DPF-LC2.0), of a DPF using the
conventional LC (dubbed DPF-LC), and of the diffusion-based DPFs
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Fig. 10. Comparison of DPF-B with and without adaptive ROI: (a) Localization RMSE, (b) average binary communication cost, (c) average runtime per time step.
Fig. 11. Comparison of a DPF using LC2.0 (identical to DPF-B-ROI in Fig. 10) with a DPF using the conventional LC: (a) Localization RMSE, also showing the results for CPF and
for the diffusion-based DPFs proposed in [12] and [17], (b) average binary communication cost, also showing the results for a DPF using the conventional LC enhanced by the
label method for binary coding.
proposed in [12] (dubbed DPF-Diff) and in [17] (dubbed DPF-Diff-
cov). DPF-LC2.0 combines all the methodological constituents of LC
2.0—OMP, B-spline dictionary, efficient binary coding, uniform log-LLF
sampling, and adaptive ROI—as previously described for DPF-B-ROI
in Section 8.5. By contrast, DPF-LC uses LS-based calculation of the
local expansion coefficients, retaining the 𝐿 = 10 dominant coefficients;
a Fourier dictionary with 𝐾 = 1681 Fourier atoms on the entire
surveillance area; log-LLF sampling at the particles; and naive binary
coding, i.e., each of the 𝐾 = 1681 coefficients is represented by
𝑛b = 32 bits. Here, we chose 𝐿 = 10 and 𝐾 = 1681 because this
resulted in a similar localization RMSE as for DPF-LC2.0. One can see
in Fig. 11(a) that, as intended, the localization RMSE of DPF-LC2.0 is
similar to that of DPF-LC, and it closely approaches that of CPF. On
the other hand, the track loss percentage of DPF-LC2.0 and DPF-LC
was measured as 0.2% and 4.2%, respectively, and thus the overall
tracking performance of DPF-LC2.0 is considerably better than that of
DPF-LC. It can furthermore be seen in Fig. 11(a) that, after an initial
convergence phase, the localization RMSE of DPF-Diff and DPF-Diff-
cov is, respectively, about 80% and 25% higher than that of DPF-LC2.0
and DPF-LC. This is consistent with the fact that the diffusion protocol
does not aim at approximating the Bayes-optimal filter. The track loss
percentage of DPF-Diff and DPF-Diff-cov was measured as 0.3% and
0.2%, respectively, which is similar to that of DPF-LC2.0.

Fig. 11(b) shows that the communication cost of DPF-LC2.0 is only
about 0.5% of that of DPF-LC. A large part of this reduction is caused
by the efficient binary coding. To demonstrate this fact, Fig. 11(b) also
considers a DPF-LC variant, designated DPF-LC-label, that uses the label
11
coding method instead of naive coding. The time-averaged communi-
cation cost was measured as 𝑁 = 53792 bit for DPF-LC, 𝑁 = 2341.59 bit
for DPF-LC-label, and 𝑁 = 284.14 bit for DPF-LC2.0. Thus, relative to
DPF-LC, efficient binary coding reduces communication by a factor of
about 24, and a further reduction by a factor of about 8 is achieved
by the remaining constituents of LC 2.0 (OMP, B-spline dictionary, and
adaptive ROI), resulting in a total reduction by a factor of about 190.
Finally, the communication cost of DPF-Diff and of DPF-Diff-cov was
measured as 𝑁 = 192 bit and 𝑁 = 512 bit, respectively. Note that this
is the total communication cost, whereas the values of 𝑁 given for the
three consensus-based DPF variants are the communication cost per LC
iteration. To obtain a meaningful comparison, we have to multiply the
latter by the number of LC iterations, 𝐼 = 20; we then see that the
total communication cost of DPF-Diff and of DPF-Diff-cov is smaller by
a factor of, respectively, about 25 and 11 than the total communication
cost of DPF-LC2.0. Note, however, that the communication cost of
DPF-Diff and DPF-Diff-cov increases linearly with the dimension of
the measurements, whereas that of DPF-LC2.0 does not depend on the
measurement dimension.

8.7. LC2.0 for the DPDAF

Finally, we consider the use of LC2.0 within a distributed PDAF
(DPDAF) as proposed in Section 7. The simulation setup is as before,
except that now there are multiple measurements per sensor with
the following parameters (cf. Section 7.1): target detection probability
𝑃 (𝑠) = 0.95, clutter mean 𝜇(𝑠) = 5, clutter pdf 𝑓 (𝑠)(𝐳(𝑠)

)

uniform on the
d c 𝑛,𝑤
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Fig. 12. Comparison of a DPDAF using LC2.0 with and without floor splitting, a DPDAF using a Fourier dictionary on the entire surveillance area and the OMP [8], and a centralized
PDAF: (a) Localization RMSE, (b) average binary communication cost.
surveillance area. Fig. 12 compares the DPDAF using LC 2.0 (dubbed
DPDAF-LC2.0) with the DPDAF using a Fourier dictionary on the entire
surveillance area and the OMP as considered in [8] (DPDAF-F) and
with a centralized PDAF (CPDAF). DPDAF-LC2.0 uses the adaptive
ROI (with 𝛾 = 10) and a B-spline dictionary (with the number of
atoms adaptively determined using density 𝜅𝑛,1 = 𝜅𝑛,2 = 1∕20, and
initialized as 𝐾1 = 225), and it splits off the log-GLF floor within the
ROI as described in Section 7.3. Both DPDAF-LC2.0 and DPDAF-F use
𝐿 = min{5, 𝐾𝑛} OMP iterations and the best binary encoding method
(hyperrectangle and label method, respectively). DPDAF-F uses 𝐾 = 441
Fourier atoms, which was observed to be the minimal number of atoms
yielding a track loss percentage 𝜌 below 5%. Fig. 12 also considers
a variant of DPDAF-LC2.0 that does not split off the log-GLF floor
(dubbed DPDAF-LC2.0-nosplit).

We can see in Fig. 12(a) that for 𝑛 ≥ 15, the localization RMSE of
all four methods is almost equal. At 𝑛 = 1, the RMSE of DPDAF-LC2.0
is significantly lower than that of DPDAF-F, whereas for 𝑛 between
3 and 15, it is similar. The track loss percentage was measured as
𝜌 = 0.4% for both DPDAF-LC2.0 and DPDAF-F. For 𝑛 ≤ 15, the RMSE of
DPDAF-LC2.0-nosplit is higher than that of DPDAF-LC2.0 and DPDAF-
F. Moreover, the track loss percentage of DPDAF-LC2.0-nosplit was
measured as 4.5% and is thus significantly higher than that of DPDAF-
LC2.0. Hence, splitting off the log-GLF floor improves the tracking
accuracy. Fig. 12(b) shows that the communication cost of DPDAF-
LC2.0 is only about half that of DPDAF-F. This reduction is due to the
use of the B-spline dictionary and the adaptive ROI. Furthermore, the
communication cost of DPDAF-LC2.0 is seen to be lower than that of
DPDAF-LC2.0-nosplit, especially for 𝑛 ≤ 10. Indeed, during this initial
phase, splitting off the log-GLF floor yields a faster convergence of the
ROI (we recall that at time 𝑛 = 1, the ROI is initialized as the entire
surveillance area) and, in turn, a lower communication cost.

9. Conclusion

The likelihood consensus (LC) scheme enables approximately Bayes-
optimal distributed target tracking in nonlinear and non-Gaussian sen-
sor networks. We proposed an evolved ‘‘LC 2.0’’ scheme with signifi-
cantly reduced communication cost. LC 2.0 incorporates several modi-
fications of the original LC scheme including the use of the OMP and a
B-spline dictionary, efficient binary representations, and a distributed
adaptation of the region of interest. Simulation results demonstrated
reductions in communication by a factor of about 190, without a loss
in tracking performance.

An interesting direction for future work is the application of LC
2.0 to other distributed Bayesian filtering frameworks in which the
global likelihood function factors into the local likelihood functions.
In particular, the distributed Bernoulli filter presented in [23] can be
easily adapted to LC 2.0.
12
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