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Abstract 
This review explores the intersection of tribology and dermatology, explicitly
focusing on studying the human skin and drawing inspiration from natural
systems. It investigates animal adaptations and their implications for
biotribological applications, with examples such as the friction anisotropy and 
wear tolerance of snakeskin, the healing properties of fish skin and the lotus effect
for reducing adhesion in biomedical devices. Understanding human skin presents
challenges due to its complex structure and variability influenced by age, gender, 
race and environment. The paper discusses in vivo and ex vivo measurements, 
substitute models replicating human skin properties and contact mechanics
considerations. It explores contact models, measurement methods and factors
impacting skin friction, emphasising the interplay between adhesion and
deformation components. Techniques such as atomic force microscopy and the
colloidal probe technique provide insights into mechanical properties and
molecular interactions. By comprehending the complexities of human skin and its 
tribological behaviour, researchers can develop innovative solutions in areas
ranging from soft robotics to medical research and aerospace technology. 

 
1. Introduction 

Tribology is the science of friction, wear and 
lubrication. While many may think directly of things 
like machine elements and cars, all of us encounter 
tribological phenomena everyday even much more 
closely, namely in or on our bodies. The field that 
deals with these phenomena is a sub-category of 
tribology, called biotribology, which can have a 
significant impact on human well-being. Within 
biotribology, dermatology, ophthalmology, 
orthopaedics, dentistry, hematology/cardiology, 
gastroenterology and neurology are prominent 
fields of study. This review article aims to delve into 
the realm of dermatology, which involves 
comprehensive investigation, diagnosis and 
management of skin-related health conditions. By 
examining relevant studies, we shed light on the 

fundamental theorems employed to comprehend 
contact conditions, which have also played a pivotal 
role in shaping the broader field of tribology. 
Exploring captivating animal kingdom instances 
before delving into human skin's intricate 
properties can provide valuable insights for many 
industrial applications. 

At the crossroads of tribology and dermatology, 
an intriguing avenue of exploration lies in 
uncovering the design principles that govern the 
remarkable adaptability and performance of natural 
systems in response to their environments. Natural 
systems, while functionally complex, are usually 
optimised in terms of shape and performance. It is 
believed that the functional complexity of natural 
systems is what allows natural species to morph 
continuously to adapt to their respective operating 
environments [1]. Often, these adaptations concern 
surface design features. These may include superior 
functionality, the ability to harness functional 
complexity to achieve optimal performance and 
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harmony between shape, form and function. To 
deduce design rules, there exists a need for 
quantification of the relationship governing 
microstructure and mechanical properties of the 
bio-surface, exploring the influence of macro- and 
microstructures and finally devising working 
formulae that describe (and potentially predict) the 
load-carrying capacity of macro- and micro-scale 
features during relative motion. 

The skin's appearance, health and well-being are 
inextricably bound to an individual's physiological 
and psychological well-being since its look, colour 
and features influence societal perception and 
personal interactions. The skin has many functions, 
but the most important is to be a blockade against 
the entrance of chemical, physical and 
microbiological agents, thus protecting all other 
body tissues. It is where hair, nails and certain 
glands, such as sweat glands and mammary tissue, 
form. The hair coat, cutaneous (skin) blood 
circulation and sweat glands are essential in 
temperature regulation. Electrolytes, water, 
vitamins, fat, carbohydrates, proteins and other 
materials are stored in the skin. The skin allows 
radiation from the sun to convert the inactive form 
of vitamin D to the active form. It then transfers 
active vitamin D to the rest of the body through the 
skin's capillary system, as the roughness dimension 
is smaller than the blood platelets [2]. Additionally, 
the skin changes colour to darker with the help of 
melanin and it helps prevent damage from 
ultraviolet light. We can also monitor a person's 
health as internal diseases, external diseases, and 
the effects of topical substances can change the 
visual look of the skin [3]. Skin is a primary sense 
organ for touch, heat, pain, itch, cold and pressure. 
It can also be identified as an extraction organ as it 
has a part in eliminating waste from the body. 
 
2. Observations in nature 

One of the most studied topics concerning the 
functionality of natural surfaces is their wetting 
behaviour, which has direct implications on 
tribological properties. Here the most famous 
effect is the lotus effect, which results in 
superhydrophobicity (i.e. contact angles > 150°). 
Plants have a skin called a cuticle that covers the 
above-ground surfaces. It is composed of waxes 
and a polymer network consisting of fatty acid 
building blocks called cutin. Barthlott and Neinhuis 
noticed that some plants seemed to have a self-
cleaning effect, and this effect was most obvious 
for the lotus [4]. It is caused by combining two 

features of the leaf surface: its waxiness and the 
microscopic bumps covering it. When the pre-
requisite of water-repelling surface chemistry is 
met, the surface structure becomes dominant [5]. 
The resulting high water contact angles and the 
small roll-off angles lead to water droplets rolling 
easily off the leaves and dragging dirt particles 
with them. The most exciting application of the 
lotus effect related to this review is that it reduces 
the adhesion of blood cells to surfaces. Micro- or 
nanostructured surfaces mimicking the lotus effect 
therefore can be used for biomedical devices such 
as catheters, stents and artificial or prosthetic 
cardiovascular components [6]. Inspired by the 
natural blood vessel micro- or nanostructure, Fan et 
al. devised a strategy for mimicking the topography 
of the blood vessel tissue's inner cell layer. Using a 
self-assembly technique together with soft 
lithography, they fabricated an artificial blood vessel 
of polydimethylsiloxane (PDMS) with dimensions 
close to that of natural blood vessels, consisting of 
submicron ridges (500 nm wide and 100 nm high) 
and nanoscale protuberances (100 nm wide and 40 
nm high) [7]. The results indicated that blood 
platelet adhesion was reduced only with multiscale-
structured PDMS when the roughness matched the 
platelet size [8]. Liu et al. designed an in vivo 
experiment on the vascular graft of rats that 
connects to the abdominal aorta to evaluate its 
effect on the patency rate. They fabricated a 
longitudinally aligned graft topography on medically 
graded polyurethane with a surface mimicking the 
arterial vessel's inner coat. Thrombosis formation 
was significantly reduced for the aligned 
topography, and its patency rate was increased 
from 28.6 to 100 % for the smooth surface. They 
concluded that the blood compatibility of the 
aligned topography was observed because of the 
reduced contact area between the surface and the 
platelet, as the roughness dimension is smaller than 
that of the platelets [9]. 

Furthermore, specific microstructures on natural 
surfaces also induce anisotropic wetting behaviour. 
Thorny devils (Moloch horridus) and the Texas 
horned lizard (Phrynosoma cornutum) are two 
fascinating lizard species that can collect and 
transport water [10] with channel-like structures on 
their skin (Fig. 1). Specialised skin structures, 
comprising a microstructured surface with capillary 
channels between imbricate overlapping scales, 
enable the lizard to collect water by capillarity and 
transport it to the mouth for ingestion [11]. It has 
been suggested that these structures can also be 
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used in tribological settings to guide lubricants across 
surfaces to designated positions where lubrication is 
needed to reduce friction and wear [12]. 

 
Figure 1. Capillary fluid transport mechanisms in Moloch 
horridus: (a) Moloch horridus can drink water from sand 

through its feet and back, reprinted from Wikimedia 
Commons, licensed under CC BY-SA 3.0, (b) the fluid 

transport properties through the channels on the 
surface of the Texas horned lizard (Phrynosoma 
cornutum) are demonstrated with the help of a 

coloured water droplet, adapted from Comanns et al. 
[13], licensed under CC BY 4.0 and (c) schematic 

illustrating the mechanism of fluid transport by capillary 
forces; the liquid stops at the sharp edge of capillary I 

and is picked up by the liquid going through the 
interconnection, forming a new liquid front, adapted 
from Comanns et al. [13], licensed under CC BY 4.0 

An exciting example of animal skin, which has 
demonstrated fascinating tribological behaviour 
and has been investigated as a substitute for 
human skin, is the skin of a snake [14]. One 
advantage concerning its tribological evaluation is 
that snakeskin can be obtained without injury to 
the animal and does not have to be subjected to 
chemical or thermal stress prior to use. Shed 
snakeskin, a non-living tissue, can be stored for 
extended periods at room temperature and 
transported conveniently. Stored and fresh 
snakeskin does not appear to exhibit any 
differences in permeability. Moreover, snakeskin, 
lacking hair follicles, does not suffer from issues 
associated with transfollicular penetration 
encountered in mammalian skins. The shed skin of 
ball pythons is of particular interest in tribology 

due to their locomotion within a non-breakable 
boundary lubrication regime [15]. The skin's 
ornamentation facilitates this performance 
feature, making it relevant for the design of sliding 
assemblies (e.g. cylinder piston) and prostheses. 

Artificial snakeskin can be used in soft robotics 
[16]. Snakes can grasp objects with their body and 
move around using various gaits, including slithering 
and creeping. They need a surface structure that 
provides friction anisotropy, enabling them to 
navigate more quickly and efficiently through their 
environment. The critical part is not only in the 
actuation system but also in the design of the 
artificial skin. The skin should possess flexibility and 
stretchability, while the scales need to be 
positioned on a pliable base body at a specific angle 
of attack. In experimental investigations of artificial 
snakeskin, researchers observed friction anisotropy 
when using two different stiffness base materials 
and three angles of attack [17]. Interestingly, they 
discovered that employing a flexible base material 
reduces friction in the forward direction and 
increases it in the reverse direction, resulting in 
enhanced friction anisotropy. In a separate study by 
Sánchez-López et al., long-term low friction 
maintenance and wear reduction on snakes' ventral 
scales were explored [18]. The main issue is that 
even though the softness of the material in robotics 
is essential for friction anisotropy, how would such a 
material endure permanent friction and wear during 
sliding? The wear resistance is attributed to the 
fibrous layered composite material of the skin, 
comprising a gradient of material properties, 
surface microstructure and ordered layers of lipid 
molecules on the skin surface [19]. 

Shed snakeskin has also been considered as a 
substitute for human skin in tribological research. 
The frictional response of shed skin obtained from 
Python regius and human skin from different 
anatomical sites, gender and age, was compared. It 
was observed that the mechanisms governing the 
friction response of human skin are common to 
snakeskin despite differences in chemical 
composition and apparent surface structure. Both 
skin types display sensitivity to hysteresis and 
adhesive dissipation. This observation also means 
researchers can use shed snakeskin under certain 
circumstances as an ex vivo substitute for 
tribological evaluation [20]. However, the frictional 
performance of human skin is not solely determined 
by surface topography but is also influenced by 
water content within the skin cells. A study that 
focused on the skin's permeation parameters and 

(a) 

(b) 

(c) 
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physiological characteristics, e.g. the water and lipid 
content and the thickness of shed snakeskin and 
human skin, demonstrated that the permeability 
coefficients of lipophilic drugs in shed snakeskin, 
were in the same range as those in human skin (0.9 
to 1.8 times), whereas those of hydrophilic drugs 
were remarkably lower (3.3 to 6.1 times). 

Frictional anisotropy like that of snakeskin can 
also be observed on many biological surfaces such 
as butterfly wings [21], animal attachment pads 
[22], insect unguitractor plates [23], spider tarsi 
[24], gecko toe [25], peristome of pitcher plants 
[26], wheat awns [27], plant fruits and leaves and 
fish skin [28]. On the other hand, some non-
biological examples, such as single crystal surfaces 
[29], monolayer graphene [30] and engineered 
surfaces with texture patterns [31] also 
demonstrate this friction anisotropy, thus proving 
an association between these two worlds. If we 
understand the mechanical response depending on 
differently oriented micro- or nanostructures and 
the relationships between the topographic 
orientation and biological functions, such as 
locomotion [32], predation [33], cleaning [34] and 
transporting fluids and items [35], there is always a 
possibility to learn from nature and to apply this 
knowledge in other industrial applications. 
Therefore, frictional anisotropy increasingly attracts 
the interest of scientists and engineers [36]. 

There is another example of skin found in nature 
that has garnered significant attention across a 
wide range of industrial applications, i.e. shark skin 
[37]. The skin of fast-swimming sharks protects 
against the drag that sharks experience when 
swimming. The tiny scales covering the skin called 
dermal denticles (generally 0.2 – 0.5 mm small, 
with fine regularly spaced denticles of 30 – 100 
μm), are shaped like small ribs and are oriented in 
the direction of fluid flow [38]. Riblets inspired by 
shark skin have been shown to reduce drag by up 
to 9.9 % [39]. In addition, the spacing between 
these skin ridges is enough to impede the 
attachment of microscopic aquatic organisms to 
the surface. Slower-swimming sharks also have skin 
protrusions, although they lack the riblet-shaped 
features that provide drag-reducing benefits [40]. 

Dean et al. highlighted the fact that different 
species of shark have different riblet formations, 
but also the same shark species have different 
formations on different parts of their bodies (Fig. 
2). While certain riblet formations exhibit superior 
drag reduction properties, there is room for 
optimising material durability. The manufacturing 

of riblets, both for research purposes and large-
scale applications, has been a major challenge in 
the field. Due to the associated costs, typical 
microscale manufacturing techniques would fit 
better for large-scale applications. Various milling, 
grinding and rolling techniques, micro-moulding, 
micro-embossing and 3D printing were used to 
produce the riblets. These applications fail to 
mimic nanodetails on the riblets and focus on the 
form of the surface. To explore the potential of 
nanoroughness enhancing the overall 
hydrophobicity of shark skin, it is necessary to 
conduct atomic force microscope studies on the 
nanoscale surface characteristics of shark skin [40]. 

 
Figure 2. Different species of shark have different riblet 

formations, but also same shark species have different 
formations on different parts of their bodies; adapted 

from Dean and Bhushan [40], used with permission 
of The Royal Society (U.K.), from Shark-skin surfaces 
for fluid-drag reduction in turbulent flow: A review, 
B. Dean, B. Bhushan, 368, 1929, 2010; permission 

conveyed through Copyright Clearance Center, Inc. 

One of the industrial applications of shark skin 
is swimsuits. The 83 % of the swimmers who won a 
medal at the Olympic Games in Sydney wore a 
shark skin suit. Due to the exceptional speed 
achievable with them, they were subsequently 
banned. This decision spurred scientific 
investigations to demonstrate the scientific 
advantages of the swimsuit. George Lauder, an 
ichthyologist, led a study that found shark skin 
does increase speed – in sharks [41]. However, the 
functionality of the swimsuit relies on many other 
factors such as non-textile parameters, how the 
suit ensures a particular posture during swimming, 
and how tight the swimsuit fits on the swimmer's 
body, but not on the biomimetic aspect, as the suit 
does not feature shark skin riblets [41]. 

https://doi.org/10.1098/rsta.2010.0201
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Through parametric modelling to query a wide 
range of different designs, Domel et al. discovered a 
set of denticle-inspired surface structures that 
achieve simultaneous drag reduction and lift 
generation on an aerofoil, resulting in improvements 
of up to 323 % [42]. Lufthansa Group and BASF 
embraced this technology, and in 2022 Lufthansa 
Cargo equipped all Boeing 777 freighters with these 
structures to improve fuel efficiency and help 
airlines reach sustainability targets. The presence of 
the 50 µm riblets reduces aircraft drag by 10 % and 
fuel consumption by around 1 %. For the entire fleet 
of ten aircraft, this translates to annual savings of 
around 11,700 tons of CO2 emissions, equivalent to 
worldwide commercial airliner savings of approx. 
$16.13 billion per year [43]. 

The skins of other types of fish are also 
noteworthy subjects due to their tribological 
properties and their relevance to medical 
applications for both humans and other species. 
Researchers in dermatology can gain valuable 
insights from the biology of fish skin, as it addresses 
several fundamental questions of great significance 
to mammalian skin. Fish, being constantly exposed 
to aqueous environments that harbour a higher 
concentration of pathogens compared to the aerial 
environment of mammals, have evolved a complex 
antimicrobial defence system [44]. The materials in 
fish skin have a natural anti-inflammatory effect 
that speeds healing, which can be used in human 
wound recovery [45]. 

Pape and Poll observed a correlation between 
the tribological properties and the occurrence and 
appearance of the fish flakes. While the 
mudskipper has soft skin adapted to the periods 
outside of the water, the fish scales protect the 
skin but provide higher friction in the case of 
rubbing contacts. Still, the coefficient of friction 
(COF) values were between 0.2 – 0.5 [46]. Wu et al. 
investigated biomimicking lubrication using 
responsive hydrogels [47]. The slippery mucus 
produced by fish skin is the cause for its ultra-low 
COF with many counter-surfaces, which is vital to 
protect fish against predator attack and allow 
them to swim faster and remain elusive. The 
researchers developed responsive hydrogels that 
mimic this slick skin by responding to external 
stimuli such as pH and temperature. These 
hydrogels outperformed fish skin, achieving not 
only a low COF (in the range of 5 × 10–3) but also 
demonstrating tuneable COFs from low to 
relatively high (higher than 0.1) through sequential 
regulation of pH and temperature. 

While comparing the dermatological properties 
provides valuable insights into the skin properties of 
various animal species, it also forms the basis for our 
understanding of human skin. As part of the animal 
kingdom, we share fundamental biological processes 
and evolutionary history with other species. 
However, the unique characteristics of human skin, 
including its structure, composition and the diverse 
range of diseases it can develop, warrant a focused 
examination. By delving into the intricacies of human 
dermatology, we can uncover specific factors that 
contribute to skin health and diseases in our own 
species. This allows us to explore the interplay 
between genetics, environmental influences, and 
the intricate mechanisms underlying skin health and 
disease in the context of human dermatology. 
 
3. Observations on human skin 

Unlike other animals, humankind's evolution 
has influenced the body to have to withstand more 
extreme conditions. Social constructs made 
unnecessary applications to daily routines. Electric 
and non-electric razors, with shaving and after-
shave creams, hair-removal creams and even 
lasers are frequently used. Humans go to places 
with temperatures between – 50 to 70 °C, 80 m 
deep under water, and even in space. No other 
animals touch electronic devices the entire day 
and use their fingertips as probes. So, very 
different test systems, using different materials, 
are needed to understand human skin's interaction 
with different environments. 
 
3.1 Mechanical properties of human skin 

One of the main challenges in the investigation 
of the skin is the complex structure of the skin (Fig. 
3). The skin has a multi-layered structure, and its 
mechanical properties vary with the depth of the 
layers. The thickness of the various skin layers varies 
significantly, with the epidermis being the thinnest, 
ranging from 0.05 to 1.5 mm, the dermis ranging 
from 0.3 to 3 mm, and the subcutaneous tissue 
being the thickest, ranging from 1 to 2 cm. The 
stratum corneum, the top layer of the epidermis, 
thickness varies between 10 to 20 µm. Given its 
complex multi-layered structure, the skin exhibits a 
wide range of viscoelastic phenomena like most soft 
tissues, including creep, relaxation, hysteresis [48] 
and strain rate dependency [49]. In addition to 
multiple layers, the skin has a dermal matrix with 
embedded fibres, leading to viscoelastic and 
anisotropic mechanical behaviour [50]. The dermis, 
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due to its significant thickness compared to that of 
the stratum corneum and viable epidermis, is the 
main contributor to the tensile mechanical 
properties of the skin [51]. Other structures in the 
skin are sebaceous and eccrine glands and blood 
and lymph vessels. Sebaceous glands produce 
sebum, which keeps the skin and hair supple and 
protects the skin against bacteria and fungi. Eccrine 
glands produce sweat, which regulates body 
temperature but also significantly affects the skin's 
tribological behaviour, as we will discuss later in this 
chapter. The stratum corneum is often described as 
having a brick-and-mortar structure: the dense 
structure of corneocyte bricks and keratin mortar 
makes it very difficult for external hazards to attack 
the body through the skin and for body fluids to 
leave the body through the skin. A combination of 
substances like amino acids, salts and lactate, 
referred to as natural moisturising factors, play an 
essential role in the hydration of the stratum 
corneum [52]. A healthy stratum corneum is 
essential for the skin's defence mechanism and 
dehydration function as a whole [53]. 

 
Figure 3. Schematic illustration of skin layers and main 
functioning parts (adapted from Wikimedia Commons, 
licensed under CC BY-SA 4.0) with a detailed image of 
layers of the epidermis (obtained from Alamy Limited, 

credited as MedicalStocks/Alamy Stock Vector) 

The mechanical properties of the stratum 
corneum are fundamental in conditioning the 
transmission of loads and subsequent 
deformations of the other underlying skin layers 
across several length scales [54]. These mechanical 
aspects are vital for the stimulation of 
mechanoreceptors that convert mechanical energy 
into neural signalling (e.g. tactile perception [55]) 
or are involved in metabolic processes. Any 
variation in the mechanical properties of the 
stratum corneum is likely to affect the material's 
mechanical response; also, the subsequent altered 
external surface topography will eventually have 
evident and significant consequences for the 
tribological response of the skin [56]. 

The skin's characteristics (thickness, strength, 
elasticity and colour) also depend on various subject-
related variables, such as age, gender, body 
composition, race, stress, season, nutrition and 
mechanical load, therefore rendering these 
properties very dynamic, particularly over the life 
course [57]. Moreover, there is substantial variability 
according to specific environmental conditions such 
as temperature and relative humidity, and the skin's 
properties are dependent on the locations on the 
body [58]. The skin on the palms and soles contains 
more eccrine glands per square centimetre than 
hairy skin. When people are nervous or anxious, the 
production of sweat is increased, which results in an 
increase in the coefficient of friction and finally 
increased grip of the palms and soles [59]. 

There remains an unresolved question 
concerning the consistency of skin stiffness 
measurements across various length scales, which 
have yielded values ranging from kPa [60], to 
several MPa [61]. The elastic modulus of human 
skin in vivo has been reported to vary over 4 – 5 
orders of magnitude (ranging from 4.4 kPa to 57 
MPa) in the literature, depending on factors such 
as the measurement method, anatomical site, skin 
hydration level, age, person and theoretical model 
used [62-65]. Moreover, skin hydration also 
influences these values, leading to a reduction in 
the elasticity and stiffness of human skin, typically 
by one order of magnitude. For dry skin, elastic 
modulus ranges from 30 kPa to 1,000 MPa, while 
for wet skin, it ranges from 10 kPa to 100 MPa [66-
69]. It should be noted that the elastic modulus of 
biological soft tissues, particularly skin, lacks 
significance unless the exact strain level and 
physiological conditions are specified. In summary, 
experimental evidence suggests that the stratum 
corneum exhibits stiffness values and elastic 
moduli (ranging from 10 kPa to 1 GPa) at least two 
orders of magnitude higher than those of the dermis 
(ranging from 0.5 kPa to 45 MPa) [57,70-72] and 
subcutaneous fat tissue (0.12 – 30 kPa) [70,73,74]. 
 
3.2 Measuring techniques for the mechanical 

properties of human skin 

Skin testing involves various in vivo and ex vivo 
measurement methods, with suction, indentation 
and extension tests being the most common ones. 
Suction measurements play a vital role in 
determining both in vivo and in situ skin properties 
[75]. By applying negative pressure, tissue is drawn 
into the probe opening, and an optical system 
measures the resulting bulge height. The 

https://upload.wikimedia.org/wikipedia/commons/f/f0/3D_medical_animation_skin_layers.jpg
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relationship between pressure and bulge height is 
directly linked to the probe opening size and 
loading protocol. These suction measurements are 
essential for characterising the nonlinear, 
viscoelastic, and time- and location-dependent 
behaviour of the skin. Through suction tests, 
important skin properties such as compliance, 
elastic recovery, creep and permanent deformation 
can be quantified. These measurements help assess 
the influence of factors like fatigue, ageing, sex and 
body location on the skin's behaviour [76]. 

The ex vivo mechanical properties of the skin 
can be characterised with extension tests. They 
allow the investigation of the skin's anisotropic 
response related to the Langer lines (skin tension 
lines) distributed across the body [77]. Using a 
uniaxial or multiaxial loading rig, we can observe 
skin's time and history-dependent behaviour 
through monotonic and cyclic creep and relaxation 
experiments [78]. The mechanical properties of the 
samples vary based on their derivation and are 
significantly influenced by storage duration, 
conditions and temperature. Therefore, it becomes 
crucial to analyse the relevant application and 
control these parameters to ensure the validity of 
the research data. Sample preparation typically 
involves removing the epidermis and fat to isolate 
the dermal layer. However, this technique alters 
the skin tissue's physiological state and results in 
the loss of the in vivo multiaxial pre-tension, causing 
changes in the unique tensioned configuration of 
collagen and elastin networks. When studying skin 
extension, many research studies interpret 
experimental data using linear elasticity theory. 
They extract the slope of the linear regime from 
uniaxial or multiaxial measurements to determine 
the ultimate tensile strength and elastic modulus of 
the dermis [61]. 

The dynamic response of superficial skin can be 
measured by indentation. In a range of 10 – 60 Hz 
and at a low indentation depth of 200 ± 3 μm skin 
stiffness and viscosity are frequency-independent 
[79]. For determining the skin's mechanical 
properties at higher resolution atomic force 
microscopy (AFM) can be used. In earlier studies, 
the influence of hydration on the mechanical 
response of the stratum corneum and epidermis 
was quantified using AFM [80]. The measurements 
involve indentation depths of up to 200 nm, which 
are three orders of magnitude smaller than the 
previously described indentation tests. As a result, 
they capture the mechanical response at a much 
finer length scale. 

Previously, shear tests on individual skin layers 
were conducted, but due to experimental 
constraints, they were restricted to the linear 
regime. However, more recent developments have 
addressed this limitation. Gerhardt et al. [81] and 
Lamers et al. [82] introduced an innovative 
experimental approach to examine the shear 
response of full-thickness human skin. In their 
method, they combined large amplitude oscillatory 
shear tests, applying strains up to 0.1 on a 
rheometer, with digital image correlation 
techniques to analyse the cross-sectional area of 
the skin. This new method allows for a more 
comprehensive investigation of the skin's shear 
behaviour. The novel imaging-based method 
introduced in this study allows them to perform 
shear tests and to study layer-dependent skin 
properties using full-thickness skin; hence no need 
to separate skin layers which is a time-consuming 
procedure and possibly disrupts skin layers. Using 
this method, they investigated skin heterogeneity, 
namely the non-linear viscoelastic response, by 
determining local displacements. The visualisation 
of the shear experiment provides real-time optical 
feedback improving quality assurance and reliability 
of the results. Moreover, their method can be used 
to directly measure large strains, i.e. skin mechanics 
in the non-linear viscoelastic strain regime in which 
modulus is strain-dependent and the analysis and 
interpretation of conventional rheometer 
measurements is complicated [83]. With this 
modification, one short shear experiment provides 
raw datasets that can be used to fully characterise 
the viscoelastic, and local strain and layer-
dependent shear properties of full-thickness skin. 

Precise prediction of mechanical responses holds 
significant relevance in a wide range of applications. 
Examples include plastic surgery, where it aids in 
modelling artificial skin grafts; skin tissue engineering, 
enabling better design and development; cosmetics, 
for improved product formulations; shaving, to 
enhance razor performance; and research involving 
trans-epidermal drug delivery, which benefits from 
a better understanding of skin mechanics [84,85]. 
However, no constitutive model in literature can 
describe the complex mechanical response of full-
thickness human skin, specifically to shear 
deformation. The decision to select a certain level 
of mechanical complexity with a constitutive model 
is application-dependent. A simplified constitutive 
skin model often simplifies the contact situation by 
neglecting parameters such as nonlinearity, 
viscosity and heterogeneity. On the other hand, for 
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accurate predictions more complex approaches are 
necessary. Experiments now employ the fusion of 
full-field deformation analysis, which tracks 
complex 3D tissue deformations, with local force 
measurement during ex vivo tests of global force-
displacement curves under different loading 
conditions. 

Besides the classical physical/mechanical 
parameters, skin bioengineering parameters have 
been introduced to characterise the viscoelastic 
properties of human skin. These parameters 
describe skin structural aspects rather than pure 
mechanics, making them somewhat limited in a 
strictly mechanical context. However, despite this 
limitation, dermatologists and cosmetic scientists 
frequently rely on skin bioengineering parameters, 
such as Cutometer values, in clinical, disease-related 
and biological interpretations of skin tissue integrity. 
In the existing literature, weak correlations between 
skin bioengineering parameters and skin friction 
coefficients have been reported. Specifically, the 
tangential stiffness of human skin and the interfacial 
shear strength in tribo-pair are believed to be 
crucial factors in determining the friction behaviour 
of the skin [86,87]. 

Concerning testing cosmetics on skin samples, 
animal skin substitutes became less eligible, as 
from 11 July 2013 trade-in cosmetics tested on 
animals is prohibited in EU member states under 
the EU cosmetics regulation. Every year almost 10 
million mice, rats, rabbits and dogs are used in 
laboratories for research and testing. According to 
the global in vitro diagnostics (IVD) market, 
approximately $76 billion will be spent on product 
testing by 2023 in the skincare, cosmetics and 
pharmaceutical companies [88]. A series of 
standard tests require up to 12,000 animals and 
can take years to complete, so there is a need for 
replicated skin models, if possible, consisting of 
human skin cells, that feature the same properties 
and functions as normal human skin. 

Various chemical and physical considerations 
must be considered when designing a skin model to 
produce a biomimetic design, which should mimic 
the skin's structural characteristics and mechanical 
strength. Various commercial products have made 
significant progress toward achieving a native skin 
alternative. One successful model, the ThinCert® cell 
culture insert, offers an ideal artificial environment 
for in vitro reconstruction and is thus perfect for 
cultivating skin cells [89]. The base of the cell culture 
inserts features a capillary pore membrane which 
consists of USP (United States Pharmacopeia) Class 

VI certified polyethylene terephthalate (PET). The 
membrane enables oxygen to reach the cells from 
above while they are simultaneously supplied with 
nutrients from the multi-well plate below. This is 
important because skin cells need specific nutrients 
and contact with oxygen to develop the stratum 
corneum. The membrane surface is treated in a 
way that ensures optimum adhesion and growth 
for the cultivated cells. The hanging geometry of the 
ThinCert® cell culture inserts ensures the distance 
to the well base and the side walls, so it prevents 
capillary suction between the internal and external 
well walls. ThinCert® inserts are thus ideal for 
primary cell cultures, transport, secretion, diffusion 
studies, migration experiments, cytotoxicity tests, 
co-cultures and transepithelial electrical resistance 
(TEER) measurements. A biotech company, 
Genoskin, developed a method to keep human skin 
alive for up to a week, long enough to conduct a 
wide range of pharmaceutical and cosmetic tests 
[90]. Skin samples are collected from plastic surgery 
patients and classified as in vivo. 

Further research perspectives involve the 
development of a functional bi-layered model that 
mimics the constituent properties such as 
viscoelasticity and organisation of the native 
epidermis and dermis, as well as incorporating 
dynamic elements to mimic skin's interactions with 
other organs. The models, therefore, react even 
more authentically than animal skin to cosmetics in 
testing. 
 
3.3 Contact mechanics and friction behaviour of 

human skin 

To gain a deeper understanding of the friction 
behaviour of human skin, researchers have turned 
their attention to the contact mechanics involved in 
the interaction between skin and various surfaces. 
From a contact mechanics point of view, most 
models trace back to the Hertz theory [91], assuming 
a pure elastic contact situation without adhesion 
between the surfaces. However, this can only be 
used for a first assumption and its accuracy is 
limited. A friction model for skin that also accounts 
for adhesion is summarised in Equation (1) [92,93]. 

 ∼
  

 
n

friction normalC ( )F F . (1) 

If we combine it with Equation (2) 

 
  friction normalμ = F F , (2) 

we can express the coefficient of friction as: 

 ∼
 

 
n

normal
–1μ C ( )F . (3) 



H. Göçerler et al. | Tribology and Materials 3 (2023) 128-153 

 136

In Equation (3), the properties of the 
tribological system determine the constant n. The 
constant in the equations includes an estimation of 
the real area of contact, which can be calculated 
based on the roughness of the skin and the 
topography of the contact material. The estimation 
is based on parameters such as the elastic modulus 
and an indicator for the viscoelastic behaviour of 
the skin. Based on these models, in friction 
situations primarily influenced by adhesion n has a 
value of 2/3 [94], and in friction situations with 
skin deformations primarily right under the surface 
n is 4/3 [95]. According to Comaish and Bottoms 
[93], n should be smaller than 1, although El-Shimi 
[96] is more specific for the n value (between 0.66 
and 1). Other values for n reported in the literature 
range from 0.73 to 1.07 [97-99]. 

Estimating the actual contact area can be 
calculated based on the skin's and the contact 
material's roughness, the elastic modulus and the 
indicator for the viscoelastic behaviour of the skin. 
Determining these parameters is complex and 
time-consuming. For example, the elastic modulus 
of the skin has been obtained through in vitro 
techniques or measuring techniques that are 
uncomfortable for the subjects. Furthermore, 
some studies conclude that "the" elastic modulus 
for the skin does not exist. This modulus depends 
on the position of the limb, the muscle tension and 
many more variables [100]. 

In terms of measuring skin friction, several 
methods are available. Initially, it was measured 
with a reciprocating linear movement [101]. Later, 
a handheld tribometer was designed [102] as a 
rotating indenter to measure skin friction. The axis 
of rotation of the annular contact material was 
perpendicular to the skin's surface. The vital part 
of this application was that the rotation allows for 
continuous movement with larger displacements 
without being affected by the anisotropic 
properties of the skin. Another application used a 
rotating contact material with the rotation axis 
parallel to the skin's surface [103], allowing for 
continuous movements. Dinc et al. employed a 
force transducer to measure the friction between 
the tip of a finger sliding over a flat sample of 
material. The force transducer measures both the 
applied load and the resulting shear load. The 
input conditions, such as the applied load and the 
sliding velocity in these setups, depend strongly on 
the subject and are therefore typically not very 
accurately controlled or constant during the test, 
but how close this system is to real-world 

application makes it very useful and used even in 
psychophysics investigations [104]. 

The results in the literature for skin friction 
measurements were obtained under vast variations 
of test parameters. The relative motion of the 
counterparts was changed, as well as the normal 
load (0.01 – 70 N) and velocity (0.13 mm/s – 3.5 
m/s) over a wide range. It is not surprising that the 
reported values for the kinematic coefficient of 
friction fluctuate between 0.071 [67] to 5.0 [96], 
and the values for the static coefficient of friction 
fluctuate between 0.11 [105] to 3.4 [97]. The results 
have significant differences according to loading 
conditions, lubrication and material couples. Bobjer 
et al. tested using fingers against polycarbonate (PC) 
(e.g. typical for bottles or mobile phone housings) 
under different loads and observed a strong load 
dependence when measuring skin friction. They 
observed a COF value of 2.22 for the test under 1 N 
load and 0.85 under 20 N loading [106]. Cua et al. 
used polytetrafluorethylene (PTFE) against the 
abdomen and forehead skin and observed 0.12 and 
0.34, respectively showing how the location also 
strongly affects the tribological properties [107]. El-
Shimi et al. used forearm skin against polished steel 
lubricated with silicone oil and without lubrication. 
COF value dropped from 0.31 to 0.07 due to the 
application of silicone oil [96]. They also applied the 
same test parameters on polished and rough 
stainless steel without lubrication. The rough 
sample represented a COF of 0.16, whereas the 
polished surface represented a COF of 0.63. This 
test hints at the role of surface roughness in skin 
contact. Gee et al. used different counter-bodies 
against the finger under the normal load of 2 – 20 N. 
PC against the finger had a COF value of 2.7, glass 
had 1.2 and paper 0.6 [108]. This shows how the 
COF is not only a material property but the property 
of the entire tribological system, and specifically 
how that material pairing influences friction. 
Koudine et al. showed that the loading condition is 
the dominant parameter for the forearm skin and 
glass tribo-pair, where the results varied between 
0.6 – 3.6 [97]. 

Additionally, several substances present on the 
skin can substantially affect skin friction. Such 
substances reported in the literature include oil, 
petrolatum, glycerine, isopropyl alcohol, ether, 
talcum powder and lard [67,95,96,98,99,109-113]. 
Another example of variation in test methods 
affecting the friction results is the preparation of 
the skin. Pre-testing treatments include removing 
hair [99,101,114], cleaning the skin with water, 
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detergents or alcohol [92,93,95,99,108,110,114-
120] and finally, no pre-testing treatment [86,107, 
109,113,121-123]. Cleaning the skin before 
measurements would enhance the repeatability, 
but it influences the skin's state of hydration; also, 
the skin may host some contaminants that 
influence the measured skin friction. 

Depending on the intricate interplay of contact 
conditions, the presence of fluids or lubricants 
(such as sweat, water and sebum), and film 
thicknesses relative to the surface roughness of 
the contacting materials, diverse lubrication effects 
come into play, encompassing boundary lubrication, 
mixed lubrication and elastohydrodynamic 
lubrication (EHL). When a product interfaces with 
the skin through sliding motion, the lateral friction 
force governing the skin-product interaction is 
governed by the intricate interplay of adhesion and 
deformation phenomena, influenced by a multitude 
of intricate factors. The adhesion component 
emerges from the interfacial shear resistance 
arising due to the formation and subsequent 
breaking of interatomic junctions, primarily driven 
by short-range forces such as Van der Waals 
interactions within the contact zone. The existence 
of a naturally produced continuous thin lipid film 
on the outer skin surface assumes paramount 
importance in modulating adhesion forces while 
concurrently altering the area of contact and stress 
distribution [124]. Conversely, the deformation 
friction component arises from viscoelastic 
hysteresis. Depending on the sliding speed of the 
product, the strain energy might only exhibit partial 
recovery, leading to an additional loss in friction. 
 
3.4 The main components of friction: Adhesion 

and deformation 

Adhesion stands prominently as the principal 
contributor to the frictional characteristics of 
human skin, with deformation mechanisms 
deemed to play a secondary role [94,95]. Extensive 
scholarly literature has employed various 
theoretical models to elucidate the mechanical 
contact behaviour and friction mechanisms 
inherent to the skin [67,94,97]. Consideration of 
skin surface roughness's impact on friction reveals 
typical values of Ra and Rz falling within the range 
of 10 – 30 µm and 30 – 140 µm, respectively [125], 
with such values reportedly increasing with age 
[62,126-129]. Although a handful of studies have 
offered insights into the influence of skin 
topography on friction [87,130], the results remain 

somewhat contradictory. For instance, a study on 
female patients' volar forearm friction coefficient 
did not exhibit a significant correlation with the 
surface roughness Ra of the skin. Nevertheless, the 
same study observed that surface roughness Ra 
significantly improved the predictability of the COF 
[87]. Additionally, Nakajima and Narasaka reported 
a correlation between the density of primary lines 
and skin friction, indicating that the lower the 
density of primary lines, the higher the friction. 
However, an additional parameter potentially 
assumes vital significance here, as the density of 
lines corresponds to the skin's elastic modulus, 
which itself changes with age [130]. 

Studies have provided additional evidence that 
the amplitude of the probe surface roughness 
assumes a commanding role in determining 
friction behaviour [131]. Particularly, in the context 
of highly rough surfaces, reaching up to Rq = 90 
µm, a direct correlation has been observed, with 
the COF escalating alongside the increasing surface 
roughness [131,132]. Tomlinson et al. observed a 
constant plateau COF of ≈ 0.8 and ≈ 0.65 for 
roughness values Rq > 25 µm against steel and brass. 
On the other hand, in the case of hydrated skin, a 
Gaussian-like relationship between roughness (Rq 
= 0.004 – 2 µm) and friction coefficients varying 
between 0.9 – 1.7, with maximum values at 
intermediate roughness (Rq = 0.006 – 0.4 µm) was 
reported [133]. The elevated friction observed 
within the intermediate roughness regime may be 
attributed to the intricate interplay of interacting 
adhesion and deformation components, especially 
in the context of the hydrated skin condition. It 
must be pointed out that in skin tribology the 
skewness and kurtosis parameters of the 
roughness, together with the surface texture, are 
essential factors [132,133]. This corroborates the 
findings of Derler et al. [131], whose investigations 
revealed a positive linear correlation between the 
slope of surface asperity peaks and friction 
coefficients during the sliding of plantar skin on 
various wet floor coverings. Furthermore, in a 
recent study focusing on friction between the 
finger and ridged surfaces, Tomlinson et al. [134] 
discovered that at low ridge height and width, 
adhesion played a dominant role in governing 
friction behaviour. However, as the ridge heights 
surpassed 42.5 µm, interlocking effects emerged, 
accounting for over 50 % of the total friction. 
Additionally, at a ridge height of 250 µm, 
hysteresis also became a contributing factor, albeit 
at a level below 10 %. 
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The observed phenomenon of skin friction 
rising in response to increasing material or probe 
roughness aligns with Moore's theory for 
elastomers [135]. This theory posits that the 
friction coefficient of compliant materials on rough 
surfaces escalates proportionally with the 
amplitude of surface roughness. Notably, the 
insightful work by Hendriks and Franklin [115] 
suggests that Moore's theory can indeed be 
extrapolated to the context of the skin interacting 
with rough surfaces (Ra > 3 – 10 µm) particularly in 
scenarios where interactions between surface 
asperities and skin ridges are prevalent, such as on 
the fingers, palm or feet. 

The skin's surface is typically safeguarded by an 
acidic hydrolipid film, maintaining a pH range of 4 
to 6. This protective film plays pivotal roles, such as 
governing the skin flora, forestalling colonisation 
by pathogenic organisms and serving as a potent 
defence mechanism against invading microorganisms 
[125]. Comprising a blend of water from sweat and 
sebum secreted by sebaceous glands, the 
hydrolipid film envelops the stratum corneum. In 
the domain of skin tribology, the role and 
significance of sebum lipids and their interactions 
with water have sparked debates and 
controversies [107,136-139]. A study conducted by 
Pailler-Mattei et al. [139] illuminated how the skin 
surface lipid film influences skin adhesion 
properties through capillary phenomena. Likewise, 
Gupta et al. [137] presented noteworthy findings, 
illustrating a moderate positive linear correlation 
between sebum levels and the forearm skin's 
friction when measured against steel. 

Conversely, when exploring the forehead, a 
discovery of weak correlations between the skin 
surface lipid content and friction emerged [107]. 
This finding further emphasises the location-specific 
nature of the skin's tribological behaviour. 
Interestingly, in the same study, no significant 
correlation was evident between the parameters in 
nine other anatomical skin regions, indicating that 
surface lipids hold a restricted role in governing skin 
friction. Consequently, a deeper investigation and 
more fundamental studies are imperative to 
comprehensively elucidate the intricate influence of 
sebum lipids on the frictional properties of the skin. 

Skin friction coefficients exhibit variations by 
factors ranging from 1.5 to 7 between wet and dry 
conditions, as documented in numerous studies 
[87,93-96,103,140-145]. In regions characterised 
by high humidity or under wet conditions, the skin 
becomes thoroughly hydrated, and friction values 

surge to be 2 – 4 times higher than those observed 
during dry sliding conditions [115,116,143,146,147]. 
This substantial escalation in skin friction in moist 
environments may be ascribed to the plasticizing 
influence of water, which results in the smoothing 
of skin roughness asperities, consequently leading 
to a more substantial real contact area. Depending 
on the contact conditions and the relative fluid film 
thickness concerning the skin's surface roughness 
and the material it interacts with, a combination of 
mixed lubrication or boundary lubrication 
phenomena might also come into play [148]. 
Nonetheless, investigations revealed that the 
contribution solely due to elastohydrodynamic 
lubrication (EHL) is inadequate in fully explaining 
the friction behaviour of wet skin sliding against 
smooth glass. This discrepancy is attributed to the 
skin's surface roughness significantly surpassing the 
minimum film thickness required for EHL, leading 
to the supposition that water films between the 
skin and smooth glass are locally formed, while dry 
contact zones coexist in other regions [147]. 

As mentioned before, adhesion is the 
dominating friction mechanism on human skin. 
According to the adhesion model of friction [149], 
the friction force is given by F = τ Ar, where τ is the 
interfacial shear strength and Ar is the real area of 
contact. For the interfacial shear strength of skin, 
Adams et al. [95] adopted the model τ = τ0 + α pr 
for shear properties of thin organic films [150], 
where τ0 denotes the intrinsic shear strength, α a 
pressure coefficient and pr = N/Ar the real contact 
pressure with N the normal load. The friction 
coefficient can then be written as: 

  

 

 

 
 

r 0
r

r
μ( ) = = +τA τp α

N p
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Since the apparent and real contact areas and 
contact pressures are related by A p = Ar pr, the 
friction coefficient as a function of the apparent 
contact pressure p = N/A is given by: 

  
 

r 0μ( )= +A τp α
A p

. (5) 

When the real contact area aligns perfectly with 
the apparent contact area, the disparity between 
the apparent and actual contact pressure becomes 
negligible. Such a circumstance is postulated to 
occur when a soft material is in a state of complete 
conformational contact with the counter-surface. 
This particular scenario appears to be realistic in 
the context of hydrated skin, which softens and 
adheres closely to the counter-surface, facilitated 
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by the potential presence of minute quantities of 
interfacial water that function as adhesive liquid 
bridges [151]. 

The frictional response of dry skin stands in 
stark contrast to that of moist and wet skin, 
demonstrating relatively low friction coefficients. 
Multiple studies have shown that the friction 
coefficients of dry skin remain largely unaffected 
by variations in the applied normal load. This 
observation finds its rationale in the Greenwood 
and Williamson model [152], wherein the real 
contact area of rough solid surfaces is 
hypothesised to exhibit a linear increase with 
changes in the normal load. For a friction 
coefficient independent of the apparent contact 
pressure, (Ar/A) (1/p) = Ar/N = constant. 

The frictional interactions involving the skin and 
underlying soft tissue during contact entail 
contributions to the friction coefficient through 
viscoelastic hysteresis or ploughing mechanisms 
[153]. It is anticipated that the contribution arising 
from hysteresis would increase proportionally with 
the applied normal load and contact pressure, 
whereas ploughing would lead to a load-
independent effect on the friction coefficient 
[138,153]. Johnson et al. [154] and Adams et al. 
[95] investigated skin friction at the volar forearm, 
interacting with spherical probes, employing the 
approach proposed by Greenwood and Tabor 
[155]. They discerned that the contribution of 
hysteresis to the friction coefficient ranged at 
approximately 0.05. Notably, similar findings in the 
range of 0.04 to 0.06 were reported by 
Kwiatkowska et al. [124]. However, measurements 
on the forearm and cheek, using rotating probes, 
did not regard friction mechanisms associated with 
skin deformation as particularly relevant [115]. On 
the contrary, a recent study indicated that forces 
stemming from microscale deformations of the 
skin could significantly contribute to the overall 
friction experienced by the human finger pad 
[133]. Investigations concerning the friction of 
human skin against glass revealed contributions to 
the friction coefficient due to viscoelastic skin 
deformations, hovering below 0.2 [147]. 
Moreover, when studying foot skin sliding on wet 
floor coverings, contributions due to skin 
deformations were found to reach up to 0.4 [131], 
particularly on notably rough surfaces. 

The confluence of hysteresis effects and the 
ploughing action of the skin by the asperities 
present on rough surfaces is likely responsible for 
the emergence of pronounced deformation 

components. Notably, in the context of friction 
between the finger and small, triangular ridged 
surfaces, Tomlinson et al. [134] documented 
substantial interlocking effects and prominent 
contributions of hysteresis to the overall friction, 
particularly when the ridge heights exceeded 42.5 
and 250 µm, respectively. Moreover, it was posited 
that deformation also plays a pivotal role in the 
friction between human skin and textiles [156]. 
Sanders et al. [157] embarked on an investigation 
of the frictional interactions involving soft 
prosthetic interface materials and a sock fabric 
against the skin at the tibia (shin). The resulting 
measurements of friction coefficients for both 
material types exhibited an increasing trend with 
the applied normal load, hinting at the involvement 
of deformation in the observed friction. Likewise, in 
a study examining the skin of the volar forearm in 
both young and elderly subjects [86] it was 
observed that skin deformation mechanisms bear 
relevance to the frictional behaviour exhibited 
when the skin interacts with textiles. 

Thoroughly determining the adhesion 
component of friction necessitates the 
measurement of the real contact area. However, 
the application of modern tools such as 
microtribometers and atomic force microscopy is 
presently constrained in connection with in vivo 
measurements of skin. Furthermore, optical 
methods used to assess the microscopic contact 
area between finger pads and smooth glass are 
unsuitable for rough surfaces and non-transparent 
materials. 

Another aspect of inquiry revolves around 
whether friction's adhesion and deformation 
components remain as two non-interacting terms, 
as postulated in the two-term model [138]. The 
literature also underscores the substantial impact 
of skin hydration and interfacial water on the skin 
friction coefficient. Nevertheless, a more 
comprehensive and systematic investigation is 
warranted to discern the intricate transition from 
dry to moist skin. The influence of skin hydration 
and softening on the skin's surface and its 
micromechanical properties, as well as the 
accompanying alterations in the microscopic 
contact geometry, remain widely unknown. 
Additionally, the role of small quantities of water 
at the interface between the skin and the counter-
surface, as well as the contribution of other 
substances like skin lipids, remains unclear. 

Theoretical frameworks devised for solids, 
exemplified by the models of Greenwood and 
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Williamson [152] and Archard [158], have been 
harnessed to qualitatively elucidate specific facets 
of the contact and friction behaviour of dry skin 
[95,115,159]. However, the applicability of such 
models to the intricate surface topography of 
human skin remains a subject that requires further 
elucidation. Furthermore, an intriguing open 
question arises concerning the extent to which 
theoretical concepts governing the contact 
behaviour of soft materials [160-162] are 
applicable to hydrated skin. 

The Hertz model relates the geometrical 
contact parameters (R = radius of the sphere, a = 
radius of the circular contact zone and d = vertical 
deformation), the normal force N and the reduced 
modulus E* according to the following equations 
[163,164]: 
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The reduced modulus E* is given by the elastic 
moduli E1,2 and the Poisson's ratios ν1,2 of the two 
contacting materials. If one material is considerably 
softer (skin) than the other (spherical probe), E* can 
be approximated by the elastic properties of the 
soft material. 
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Adams et al. [95] employed an elastic modulus 
of 40 kPa, as deduced from loading data, combined 
with an assumed Poisson's ratio of 0.49. Similar 
outcomes regarding the elastic modulus were also 
reported in other investigations concerning 
forearm skin [124] and the skin of fingertips [165]. 
As posited by Hendriks and Franklin [115], the 
material constituting the probe brought into 
contact with the skin holds less significance 
compared to its surface roughness. Nonetheless, 
intriguingly, none of the studies employing 
spherical probes explicitly specified the surface 
roughness. While the most frequently used probe 
materials were steel and glass, other materials like 
ruby, PE, PP and PTFE probes were also utilised. 
Notably, measurements involving steel spheres 
yielded the highest friction coefficients. Moreover, 
in various friction experiments, wherein alternative 
probes were employed alongside linear sliding 
movements [114,130,137,140], the estimated 

contact pressures were consistently maintained at 
relatively low levels. 

The friction coefficient remains unaffected by 
the apparent contact area [165] and the sliding 
velocity [166]. However, it is essential to 
acknowledge that these laws are of a 
phenomenological nature, primarily applied at the 
macroscopic scale. When adhesion forces within 
the system fall within the range of the applied 
load, their influence effectively assumes that of an 
additional loading force. Because of this additional 
force, friction forces extend to negative applied 
loads according to Equation (8) proposed by 
Derjaguin [167,168]: 

 
        friction load load friction( )=μ + (0)F F F F , (8) 

where Ffriction (0) corresponds to the friction force at 
zero applied load. This formulation is a useful 
simplification and allows the friction coefficient and 
adhesion to be obtained independently of each 
other, where the adhesion or "contact adhesion" 
[169] is obtained from the intercept of the friction-
load relationship with the load axis (Fig. 4). 

 
Figure 4. Effect of the applied load on the friction 

force according to three different approximations: the 
Amontons-Coulomb and Derjaguin friction laws, as 
well as the Johnson-Kendall-Roberts (JKR) theory 

This simple model claims that the friction force 
is not proportional to the load but to the real area 
of contact Ar [170] according to: 

  
    friction load c( )=F F S A, (9) 

where Sc is the critical shear contact stress at the 
contacting. This friction-force relationship can be 
generally used and has been proven in many 
experimental systems [171-174]. Therefore, a good 
understanding is required of how surface 
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interactions, such as Van der Waals and capillary 
forces, affect friction and adhesion at the 
molecular and atomic scale [169,175,176]. 
 
3.5 The tribology is in the details: Atomic force 

microscopy on skin 

The scientific community assumes that the 
secret to a deeper understanding of skin's 
macroscopic friction behaviour may reveal itself 
through studies examining the behaviour of human 
skin on a microscopic scale [177]. Around 1942, 
Bowden and Tabor [178], brought considerable 
insights to this subject, revealing that the actual 
contact area between two solids constitutes only a 
fraction of the apparent contact area, primarily 
owing to surface roughness. Consequently, as the 
normal load is applied, the real contact area 
augments due to the deformation of asperities. On 
the nanometre and micrometre scales, all surfaces 
are inherently rough, making contact only at 
discrete microscopic points referred to as 
asperities. Therefore, delving into the interactions 
between these asperities at the molecular and 
atomic levels holds the potential to offer a refined 
comprehension of contacts on the macroscopic 
scale. Considering the aforementioned 
observation, it would seem logical to focus on one 
of the most sophisticated techniques available for 
micron- and submicron-level force analysis. Atomic 
force microscopy (AFM) is a powerful tool to 
investigate molecular interactions at biointerfaces, 
as well as their mechanical properties, with 
nanometric spatial resolution and 1 to 10 pN force 
resolution [179,180]. AFM, originally designed to 
investigate topography by discerning height 
variations on the sample surface, has yielded 
pertinent insights from various studies. Notably, 
these investigations indicate that scar tissue tends 
to exhibit greater stiffness than healthy skin [110]. 
Moreover, it has been observed that the elastic 
modulus of the stratum corneum roughly doubles 
when compared to that of the epidermis [114]. 
Specifically, the latter study reported stiffness 
values ranging from 1 to 2 MPa, while values 
reported for "skin" range between 5 to 10 kPa 
[181-183]. These indentation experiments thus 
compellingly showcase the influence of length 
scale on the mechanical properties of skin. 

The colloidal probe technique developed by 
Ducker et al. [184,185] and Butt [186] is based on 
the exchange of the AFM cantilever tip by a 
colloidal particle (1 – 20 µm in diameter), as shown 
in Figure 5. 

 
Figure 5. Figure 5 Colloidal probe produced without 

glue for stable adhesion forces: (a) image of the 
probe on cantilever with the microscope attached to 
the AFM and (b) scanning electron microscopy (SEM) 
image of the probe with geometrical detail; reprinted 

from Tomala et al. [187], copyrighted by Springer 
Nature and reproduced with permission from SNCSC 

One of its advantageous aspects lies in its 
flexibility to enable force measurements with a 
probe crafted from virtually any material, provided 
the probe possesses a well-defined shape and is 
nearly incompressible. In these measurements, the 
magnitude of the acquired force is proportionate 
to the size of the probe. Nevertheless, when 
comparing forces obtained with distinct probes, 
straightforward comparisons prove elusive, 
necessitating the application of the Derjaguin 
approximation to normalise the results [167]. This 
approximation relates the normal force to the 
energy per unit area (W) between two flat 
surfaces, according to: 
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where Reff is the effective radius that depends on 
the interacting surfaces and D is the surface-
surface distance. When a rigid sphere is sliding on 
a deformable surface, it should be noted that the 
energy dissipation is like that of a rolling sphere. The 
frictional force in such contact can be expressed by 
derivation from Greenwood and Tabor [155] as: 

 
  
  

    
 

 

1 32 3 2
4 3

def
eff

9 1=β
128

– νF W
R E

. (11) 

In Equation (11), Fdef is the frictional force due 
to the deformation component and β is the 
viscoelastic loss fraction. In the context of a colloidal 
probe interacting with a flat surface, the probe's 
spherical shape streamlines the computation of the 
effective radius, which can be reasonably 
approximated as the radius of the colloidal probe. In 
the realm of force and friction measurements, the 
precise determination of the normal and torsional 
spring constants is of utmost importance, as these 

(a) (b) 
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constants translate the cantilever's bending and 
twisting motions into corresponding forces. Over 
the past two decades, numerous solutions have 
been proposed, spanning theoretical, experimental 
or hybrid approaches. Among these, one technique 
has garnered widespread acceptance due to its 
combination of accuracy and simplicity. This 
method, pioneered by Sader et al. [188], derives 
from observing the effects of the surrounding fluid 
on the cantilever's vibration frequency response. 
Specifically, the cantilever is allowed to vibrate in 
response to thermal motion while submerged in a 
fluid, typically air. The normal resonance frequency 
(fz) and the normal quality factor (Qz) are obtained 
by fitting a simple harmonic oscillator function to 
the normal resonance peak obtained from the 
thermal power spectra of the cantilever, and 
afterwards, they are combined with the measured 
length (L) and width (w) of the cantilever, as well 
as, the density (ρ) of the fluid, to determine the 
normal spring constant kz, where Γi

z
 (Rez) is the 

imaginary component of the hydrodynamic 
function for normal vibrations and Re is the 
Reynolds number [189,190]. 

    
4 2 z
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The determination of the torsional spring 
constant kϕ is analogous to the calculation of kz in 
Equation (12), but in this case, the torsional 
resonance frequency (fϕ) and the torsional quality 
factor (Qϕ) are obtained from the torsional 
resonance peak. Therefore, kϕ is calculated using: 
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where Γiϕ (Reϕ) is the imaginary component of the 
hydrodynamic function for torsional vibrations 
[190]. There is a limitation in the determination of 
the torsional resonance frequency from the 
torsional thermal power spectra because of its 
lower resolution, and for stiffer cantilevers this 
resonance is difficult to measure. 

The mechanical attributes of the stratum 
corneum assume paramount importance in 
facilitating its distinctive functions as the outer 
protective layer, encompassing roles such as skin 
barrier and photoprotection. An intriguing area of 
inquiry centres around biointeractions, examining 
factors like the extent of deflection occurring when 

human hair meets the skin. Nonetheless, data 
pertinent to this remain limited [191-193]. In an 
endeavour to deepen our comprehension of the 
stratum corneum's mechanical properties, surface 
indentation and PeakForce® QNM measurements 
were conducted [194]. 

The reduced modulus [195] was derived by 
fitting the contact mechanical theory of Derjaguin, 
Muller and Toporov (DMT) to the force curve 
obtained at each pixel. The resultant mean reduced 
modulus amounted to 0.51 GPa. Moreover, for 
purposes of comparison, the values of the reduced 
modulus were converted into elastic modulus (ESC) 
by applying the equation below, duly omitting the 
contribution of silicon due to its substantially 
higher relative stiffness. 

 ∗
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, (14) 

where the subscript S corresponds to silicone, SC 
to the stratum corneum, and ν to Poisson's ratio 
(νSC = 0.48). Therefore, the reduced modulus of 
0.51 GPa was transformed into a value of 0.39 GPa, 
which is consistent with the relatively high stiffness 
of the SC reported in the literature [193,196,197]. 

For example, in the design of shaving 
applications, it is crucial to describe in detail the 
behaviour of the top layers of the skin as well as 
the sebum distribution. Therefore, Indrieri et al. 
used AFM [198] and a spherical probe that was 
produced specifically for the AFM measurements. 
A novel approach for the production and 
characterisation of epoxy- and adhesive-free 
colloidal probes was introduced, which was 
important to avoid contamination of the skin 
samples. Borosilicate glass microspheres were 
attached to commercial AFM cantilevers, 
exploiting the capillary adhesion force due to the 
formation of a water meniscus. Then, thermal 
annealing of the sphere-cantilever system at a 
temperature slightly below the softening point of 
borosilicate glass was carried out. Moreover, 
Indrieri et al. presented a statistical 
characterisation protocol of the probe dimensions 
and roughness based on AFM inverse imaging of 
colloidal probes on spiked gratings [199]. In a 
"point-and-shoot" capture mode of the AFM, 
significant differences were observed between the 
lipid-covered and uncovered areas (see Fig. 6) 
[187]. In the area that was assumed to be covered 
with lipids, the force curve captured by the AFM 
reaches a plateau that looks as if the force exerted 
by the probe was damped by a viscous material. 
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This is assumed to be the first sign of 
phospholipids on the stratum corneum epidermis. 

 
Figure 6. Observation of the plateau on the images 
acquired by the AFM using a colloidal probe in the 

darker zone of the image, assuming the presence of 
the sebum; reprinted from Tomala et al. [187], 

copyrighted by Springer Nature and reproduced with 
permission from SNCSC 

Podestà et al. [200] delved into the intricacies of 
topographic correction and pondered the prospect 
of employing a model-independent approach, 
thereby obtaining friction versus load 
characteristics of the investigated system without 
resorting to postulating any contact-friction model. 
They adeptly addressed the topographic correction 
conundrum pertaining to adhesive multiasperity 
contact, a frequent occurrence in numerous 
experimental setups. Their calculations revealed a 
coefficient of friction values, hovering around 
0.025 ± 0.002, wherein the relatively modest 
coefficient is attributed to the lubricative 
properties of the sebum. Subsequent investigations 
focusing on a specific area designated for friction 
measurements, aided by a comprehensive 
topography and adhesion map, illuminated that 
even on the micrometre scale, human skin 
showcases significantly diverse phases [187]. 
 
4. Conclusion 

In conclusion, the study of dermatology and 
tribology in nature offers valuable insights and 
inspiration for various scientific and engineering 
fields. Observations from nature, including 
examples from snakes, fish, plants and sharks, 
have provided valuable knowledge about 
optimised shape, performance and friction 
characteristics. These insights have been applied in 
soft robotics, medical research, tribology and 
aerospace technology, leading to innovative 
solutions and improved functionality. 

Human skin, as a complex and versatile organ, 
presents its own set of challenges in understanding 
its tribological properties. Factors such as skin 
structure, hydration, age and environmental 
conditions influence its behaviour. To overcome 
limitations in studying human skin directly, 
biomimetic skin models and ex vivo tests have 
been developed. These approaches have 
contributed to understanding skin compliance, 
stiffness and shear response. 

Contact mechanics considerations are crucial 
for studying skin friction. The coefficient of friction 
is influenced by factors such as adhesion, 
deformation, lubrication and surface roughness. 
Skin roughness and material topography make the 
estimation of the real contact area complex. 
Adhesion is a significant contributor to skin 
friction, while deformation mechanisms play a 
minor role. The interplay between adhesion and 
deformation components and the transition from 
dry to moist skin require further investigation. 

Various measurement techniques, including 
reciprocating linear movement, rotating contact 
materials, force transducers, atomic force 
microscopy and colloidal probe technique, have 
been employed to study skin friction at various 
scales. These techniques have provided valuable 
insights into the mechanical properties and 
molecular interactions involved in skin tribology. 

Overall, the synergy between dermatology and 
tribology in nature has the potential to drive 
advancements in various scientific and engineering 
disciplines. By understanding and harnessing the 
unique properties of natural systems, researchers 
can develop innovative solutions for improved 
performance, efficiency and functionality in areas 
such as soft robotics, medical devices and 
biomaterials. Further research and exploration in 
this interdisciplinary field will continue to deepen 
our understanding and lead to exciting 
advancements in the future. The emergence of 
artificial intelligence (AI) is one of the examples of 
these advancements. The use of AI is becoming 
common in the diagnosis of skin cancer, psoriasis 
and dermatitis. Sensors and algorithms used in 
these applications could also be beneficial for 
tribological research. Enhancements in skin tissue 
equivalents for accuracy will play a vital role in the 
future, which will allow testing methods for 
consumer products and skin models, and also aid 
in several research efforts to provide treatments 
for different diseases. The confluence of shared 
applications observed between tribology and 
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dermatology in this scholarly work invites 
contemplation regarding the appropriateness of 
the neologism "dermatribology", suggesting that 
the prospect of its usage is not premature. 
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