

DISSERTATION

Heterogeneous building related data streams
for performance assessment applications

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der Technischen Wissenschaften

unter der Leitung von

Univ. Prof. Dipl.-Ing. Dr. techn. Ardeshir Mahdavi
E259-3 Abteilung für Bauphysik und Bauökologie

Institut für Architekturwissenschaften

eingereicht an der Technischen Universität Wien

Fakultät für Architektur und Raumplanung

von

Dipl.-Ing. Dawid Wolosiuk

Matrikelnummer: 01127262

Wien, am 29 Juli 2021

Acknowledgements

i

First and foremost, I would like to thank Professor Mahdavi for his guidance, support and
encouragement both in this research project in particular and during our overall
collaboration at the TU Wien.

I would also like to acknowledge my current and former colleagues from the Department
of Building Physics and Building Ecology for their support both on professional as well as
personal level.

Finally, my heartfelt thanks go to my wife Anna and my wonderful family for their love and
always being there for me. Without their support I could not have reached where I am now.

ii

Abstract

Ontologies are developed and deployed to enhance knowledge and data exchange in a
specific field or domain. For instance, building industry benefits from well-structured
ontologies such as Industry Foundation Classes (IFC) or green building XML that drive
Building Information Modeling software (BIM). In this context, efforts in building
performance specification and assessment can also benefit from well-structured ontologies
and data schemas. Toward this end, a recently introduced building performance data
ontology (complemented with building performance data schema) attempts to identify,
categorize, and capture the complexities of building related performance data and its
attributes.

There are many different types of building-related data, each requiring a specific approach
toward creation and implementation of fitting ontologies. In case of building performance
data streams originating, for instance, from sensors or simulations, these are often
structurally syntactically or semantically heterogeneous and could benefit from an
integration process. Such process of ontological data integration involves i) preprocessing,
ii) categorical identification, iii) supplementation of the relevant attributes (either via
templates, or data scraping), and iv) encoding in a proper file format. Only then is such
ontologized data ready be used in various downstream applications. This effort discusses
the concept of ontologies and its current role in built environment domain. It describes an
ontologization process as applied to a large real-world building monitoring dataset.
Specifically, monitored environmental data are first processed in terms of fidelity and
quality to be subsequently ontologized and delivered to a number of building performance
assessment applications.

iii

Kurzfassung

Ontologien werden entwickelt und eingesetzt, um den Wissens- und Datenaustausch in
einem bestimmten Bereich oder einer bestimmten Domäne zu verbessern. Die
Bauindustrie profitiert beispielsweise von gut strukturierten Ontologien wie Industry
Foundation Classes (IFC) oder Green Building XML, welche die Building Information
Modeling Software (BIM) vorantreiben. In diesem Zusammenhang können auch
Bemühungen zur Erstellung von Leistungsspezifikationen und -bewertungen von gut
strukturierten Ontologien und Datenschemata profitieren. Zu diesem Zweck versucht eine
kürzlich eingeführte Ontologie von Gebäudeleistungsdaten (ergänzt mit einem Schema für
Gebäudeleistungsdaten), die Komplexität von gebäudebezogenen Leistungsdaten und
ihren Attributen zu identifizieren, zu kategorisieren und zu erfassen.

Es gibt viele verschiedene Arten von gebäudebezogenen Daten, die jeweils einen
spezifischen Ansatz für die Erstellung und Implementierung passender Ontologien
erfordern. Bei Gebäudeleistungsdatenströmen, die beispielsweise aus Sensoren oder
Simulationen stammen, sind diese oft strukturell syntaktisch oder semantisch heterogen
und könnten von einem Integrationsprozess profitieren. Ein solcher Prozess der
ontologischen Datenintegration umfasst i) Vorverarbeitung, ii) kategoriale Identifizierung,
iii) Ergänzung der relevanten Attribute (entweder über Vorlagen oder Daten-Scraping) und
iv) Codieren in ein geeignetes Dateiformat. Erst dann können solche ontologisierten Daten
in verschiedenen nachgelagerten Anwendungen verwendet werden. Dieser Versuch
diskutiert das Konzept von Ontologien und seine aktuelle Rolle im Bereich der gebauten
Umgebung. Es beschreibt einen Ontologisierungsprozess, welcher für auf einen großen
realen Gebäudeüberwachungsdatensatz angewendet wird. Konkret werden überwachte
Umweltdaten zuerst in Bezug auf Genauigkeit und Qualität verarbeitet, um anschließend
ontologisiert und an eine Reihe von Anwendungen zur Gebäudeleistungsbewertung
geliefert zu werden.

iv

Contents

1. INTRODUCTION .. 1
1.1.Motivation ..1
1.2.Background ..3
1.3.Overview.. 13

2. BUILDING PERFORMANCE DATA ONTOLOGY 15
2.1.Ontology for building performance data.. 15
2.2.From heterogeneous data streams to application ... 24
2.3.Implementation .. 28

3. DEMONSTRATION OF APPLICATION .. 40
3.1.Information retrieval .. 40
3.2.Performance modelling tools integration ... 46
3.3.Multi-domain PV performance studies... 57

4. CONCLUSION ... 81
4.1.Summary of contributions .. 81
4.2.Future outlook .. 82

REFERENCES ... 84
Project Related Publications ... 84
Bibliography .. 86
List of Tables ... 92
List of Figures ... 93

APPENDIX ... 96

Heterogeneous building related data streams for performance assessment applications

1

CHAPTER 1
Introduction

1.1. Motivation
The rapid advances in computer and information technology over the past few decades
have resulted in unprecedented developments in science, technology, business and
economy. One of the most enabling elements as well as a by-product of these advancements
is data, that has since grown exponentially in volume and equally in importance. Naturally
with growing data volume, the variability of available data type, format and storage
instances has also increased considerably. This poses a problem for data accessibility or
reusability in the context of the heterogeneity of the data sources. Such accessibility issues
even occur within a specific interest group working on the same subject matter (Ushold
and King 1996). This is due to the fact that the actors involved in use and generation of
data very often have different needs, backgrounds, contexts, viewpoints and assumptions.
Typically, such circumstances result in data structures that are often tied to a particular
organization, system, or even a single application instance, and the prospect of reusability
is very limited - a phenomenon known as a data silo. It became apparent that making data
reusable and more accessible can substantially support management, operation, research or
collaboration within a field of interest and beyond.

The importance of data accessibility was first recognized and addressed in research fields
where computer and information technology were the most present, such as Artificial
Intelligence, Software Engineering and Database Systems communities (Sánchez et al.
2007). As a result, data models (also called schemas) and ontologies were introduced. The

Building Performance Data Ontology

2

primary role of these concepts is to add meaning, structure and relationships to the data,
thus making it more readable (accessible) to both users and machines.

With the information and communication technologies progressively becoming integral
part of other disciplines, domains, and fields, a similar need arose for a systematic
representation of knowledge and information, and better data management solutions within
these. For example, if we look at the domains and fields associated with the built
environment, the actors involved in the building process work on the same matter, but are
involved in different aspects and phases of this process, such as: E.g. design, analysis,
construction, maintenance or operation. Naturally, each of these phases nowadays is
enabled and driven by information technology and involves multiple stakeholders. As a
result, the related information space also extends over multiple domains and scales. This
brings us back to the problem of limited accessibility and usability due to multiplicity (hence
heterogeneity) of data streams. These are determined by hardware specifications, software
standards and formats, or system specifications.

The Architecture, Engineering, and Construction (AEC) community already benefits from
common data models that are driving the Building Information Modelling (BIM) and
integrate efforts of multiple stakeholders. Such integration has been suggested to facilitate
better communication between parties involved and to improve the overall efficiency of
the building design, construction, and operation processes. However, the main focus of
BIM related schemas, lies in the representation of primarily static building attributes,
including geometry and semantic information on building components and systems.

Buildings are increasingly equipped with sophisticated monitoring infrastructures, recently
boosted by technological advancements in wireless sensor networks and low-power
microcontrollers fields. These collect a large volume of multiple layers of dynamic data on
the states and events related to building systems' performance, indoor and outdoor
environmental conditions, or occupants' location, movement, and control-oriented actions
(Wolosiuk and Mahdavi 2020; Mahdavi and Wolosiuk 2021). In order to effectively support
the evidence-based design, assessment and operation that rely on (and benefit from) such
building related dynamic data streams, relevant data schemas and ontologies must be
developed and implemented.

Building performance is important throughout the entire building’s life cycle, form the
design phase to construction, maintenance and ultimately disposal (De Wilde 2018).
Majority of building related dynamic data sources (e.g. obtained from monitoring systems
or simulation software) can be considered as Building Performance Data (BPD). These
occur in the form of performance indicators or as performance variables/measures that
compose a complex indicator. Building performance assessment procedures typically make
use of a large number of BPD, involving multiple domains, aspects, and degrees of
resolution. The use cases of BPD are diverse. These include, intelligent building operation,
smart grid applications, compliance demonstration with building code requirements,

Heterogeneous building related data streams for performance assessment applications

3

specification of building attributes in certificate-type documents, as well as comparison and
ranking of building design alternatives. However, despite the extensive use of BPD (both
performance measures and indicators), there have been very few attempts to compose an
explicit BPD ontology (e.g. Mahdavi et al. 2005, Corry et al. 2015). A versatile BPD
ontology can add to the clarity of building performance requirements specifications,
advance the understanding of building performance principles, and provide a solid
foundation for the development of wide range of relevant applications such as all-purpose
data visualization engines or interfaces to variety of performance simulation tools (Mahdavi
and Wolosiuk 2019a).

The present research effort addresses the paucity in comprehensive representation of the
wide scope of building related performance data originating from heterogeneous data
sources. In this context, the Building Performance Data ontology was proposed in an
attempt to organize knowledge in this domain and capture the complexities of building
related performance data and its attributes in a robust data schema.

1.2. Background
The work included in this dissertation is a combination of knowledge and methods taken
from the computer, information and architectural sciences. The latter provides the subject
matter – that is the domain knowledge concerning building performance data and related
issues. The former two provide the foundation for presented research in form of ontologies
and schemas, as well as means for implementation and application illustration.

The modern concept of ontology that is discussed in this work originates from the
Ontology – the branch of philosophy dealing with nature and structure of reality (Guarino
et al. 2009). There is a vast literature on theoretical foundations of ontologies and how the
philosophical concept got adapted in field of Computer Science, for example see Sanchez
et al. (2007), Guarino et al. (2009), Gruber (2009) or Gómez-Pérez et al. (2010).

Probably the most commonly cited early definition of computational ontology is that by
Gruber (1993):

“… A body of formally represented knowledge is based on a
conceptualization: the objects, concepts, and other entities that are presumed
to exist in some area of interest and the relationships that hold them
(Genesereth and Nilsson 1987). A conceptualization is an abstract, simplified
view of the world that we wish to represent for some purpose. Every
knowledge base, knowledge-based system, or knowledge-level agent is
committed to some conceptualization, explicitly or implicitly.
An ontology is an explicit specification of a conceptualization. …”

Initially the computational ontologies and data schemas have been developed in response
to growing need for knowledge representation frameworks to support evolution in

Building Performance Data Ontology

4

computer sciences – in particular artificial intelligence, software engineering and database
systems. Fundamentally, ontologies are expected to help organize and structure
information to enable a common and shared understanding of a particular domain. Such
an understanding leads to better communication, enables interoperability and re-usability
(Uschold and Gruniger 1996).

Ontologies facilitate the integration of data, information and knowledge by formalizing the
vocabulary, specifying the hierarchy of relevant concepts (or classes), supplying
components with relevant attributes and defining relationships between them. Currently
arguably the most prominent exemplification of ontology use is the Semantic Web
(Berners-Lee 2001). It is the extension of existing World Wide Web that is supposed to
give information a well-defined meaning by providing additional layer of machine
understandable data. Ontologies are the backbone of the Semantic Web (Taniar and Rahayu
2006, Domingue et al. 2011). They facilitate automation and interoperability of web enabled
applications and systems in areas such as search engines, social networks, digital recourses
management or e-commerce.

There are several fields outside computer science domain where ontologies already play
important role and are widely deployed, for example knowledge management or biomedical
domains. In the field of knowledge management, they serve as the basis for the collection,
integration and organization of information; they support the search, retrieval,
personalization and visualization of knowledge (Abecker and van Elst 2009, Davies et al.
2002). Ontology-driven knowledge management has become a crucial factor for running
an efficient and successful organization (Stabb et al. 2001).

The biomedical domain is known for the use of many well established ontologies. Due to
a growing volume of data and a growing complexity as well as overlapping concepts in this
domain, it was necessary to establish robust ontologies in order to drive progress in related
areas. These ontologies help in unifying diverse datasets, creation of knowledge bases or
establishing controlled vocabularies that enable interoperability, data exchange, knowledge
retrieval and interpretation, or hypothesis evaluation (Rubin et al. 2008). Some examples of
ontologies in biomedical domain are, i) the Gene Ontology (Ashburner et al 2000) for
describing biological processes, molecular functions and cellular components of gene
products, ii) The NCI Thesaurus (Hartel et al., 2005) that provides a controlled terminology
that enables researchers to integrate, retrieve, and relate diverse data collected in cancer
research or iii) The Foundational Model of Anatomy (Rosse and Mejino 2007) for the
symbolic representation of the phenotypic structure of the human body. These and many
other biomedical ontologies support insightful analyses and scientific discovery in this
complex domain.

Accordingly, the need for data integration and interoperability has also been recognized in
other areas, domains and communities in order to enable a feasible exchange of data and
knowledge and benefit from all the associated advantages. This includes many fields and

Heterogeneous building related data streams for performance assessment applications

5

areas related to buildings and built environment. There have been many attempts to
establish ontologies and schemas pertaining to this domain. Probably the most established
ontological data schemas are those primarily focused on “static” building data (that related
to construction efforts), such as the Industry Foundation Classes (IFC) and the green
building Extensible Markup Language (gbXML). Many other building related ontologies
often address the need for knowledge organization in more specific areas of interest that
potentially involve “dynamic” building data. These ontologies differ in scope and are often
a response to paucities (both informational and functional) in the aforementioned primarily
“static” schemas. Some of these schemas, especially the ones defined in RDF (Resource
Description Framework) data model (Lassila and Swick 1999), adopt existing elements or
semantics from other established schemas (including IFC and gbXML) to allow for some
interoperability, standardization or re-use support.

Recently published review paper by Pritoni et al. (2021) reviews 40 schemas and ontologies
for building energy applications. The authors categorized schemas according to phase of
the building lifecycle. Namely, Design and/or energy modeling (e.g. IFC, gbXML), and building
Operations divided into 5 application groups: i) Sensor networks, Internet of Things, and
smart homes (e.g. DogOnt, SAREF), ii) Commercial building automation and monitoring
(e.g. Project Haystack, Brick Schema, BOT), iii) Grid-interactive efficient building (GEB)
applications (e.g. RESPOND (Esnaola-Gonzalez and Díez, 2020)), iv) Occupants and
behavior (e.g. DNAS Framework (obXML)), and v) Asset management and audits (e.g.
BuildingSync). This section presented the spectrum of relevant building domain ontologies
(as demonstrated above).

The following section presents examples of relevant ontologies and schemas in most of the
above-mentioned categories. Specifically: i)IFC for complex building modelling; ii)gbXML
for energy modeling; iii) SAREF for smart home devices; iv) Project-Haystack schema for
data related to smart devices in buildings; v) Brick schema to represent building data at
large; vi) The Building Topology Ontology (BOT) for specification of relationships
between components and zones of a building; vii) DNAS/obXML to capture occupant
behavior in buildings; viii) BuildingSync schema for data related to energy audit.

Industry Foundation Classes

The IFC “are an open international standard for Building Information Model (BIM) data
that are exchanged and shared among software applications used by the various participants
in the construction or facility management industry sector” (IFC ISO 2018). It specifies
data schema and file format used for creating digital description of the built environment.
It has been developed since 1995 by buildingSMART International (bSI) (formerly -
International Alliance for Interoperability) gradually building recognition and position in
the AEC community to become leading data exchange format for the AEC industry that
enables the BIM. Currently over 800 industry members such as organizations, companies
and institutes that participate in development and promotion of bSI standards (Boreman

Building Performance Data Ontology

6

et al. 2018). Since 2013 it is registered with ISO as ISO 16739 which enhanced format’s
credibility even more. As a result, nowadays many countries require adoption of BIM on
publicly procured projects.

The IFC format is supported by multiple BIM related software for modelling, managing or
simulating the built environment (341 applications listed as of May 2021; buildingSMART,
2021a). Following the schema’s specification, the real-world objects and actions such as
building construction elements, building systems’ elements, construction schedules or cost
estimates are abstracted into entities and given required and optional attributes, properties
and relationships to other entities. For encoding model into a text representation, it utilizes
the EXPRESS data modeling language (Schenck and Wilson 1993). In parallel, the schema
offers more accessible ifcXML format specification, but is not commonly used as a data
exchange format due to much larger size of already “heavy” default file format, rendering
it unpractical for complex building models.

The current official version of IFC data schema (version 4.0.2.1; buildingSMART 2021b)
includes definitions of over a 1000 entities, enumerations and measure types put into the
resource, core, interoperability and domain specific schema architecture layers (see Figure 1 for
the schema architecture). Resource layer — contains resource definitions to describe higher
level entities, core layer — contains entity definitions, provides the basic structure and
relationships, interoperability layer — contains entity definitions for inter-domain
information exchange, domain layer — contains entity definitions pertaining to a specific
domain for intra-domain information exchange (buildingSMART, 2021b).

Heterogeneous building related data streams for performance assessment applications

7

Figure 1 Industry Foundation Classes architecture overview. (source: buildingSmart 2021b)

Green Building XML

In contrast to IFC which is primarily oriented towards construction and management
process, the gbXML is a data schema primarily oriented towards support of building
performance analysis software. It was developed to facilitate the design of more energy
efficient buildings and high-quality indoor environments.

It is an open-source schema that has been developed by a non-profit organization - the
Open Green Building XML Schema, Inc. Its maintenance and development are supported
by public institutions (e.g. U.S.DOE, NREL) as well as leading CAD-based BIM and
performance analysis software companies (e.g. Autodesk, Bentley, IES) (ref to gbxml.org).
It has been developed since 1999 and is now considered the industry standard schema for
sharing information between BIM software and analysis tools. It is focused on storage of
building related information potentially needed by simulation software to enable different
types of building analysis such as energy use, CFD, heating and cooling load, lighting, solar,
shading, HVAC sizing etc. The open source aspect and use of simple and robust XML

Building Performance Data Ontology

8

(both human- and machine- readable format) for information encoding makes
implementation of gbXML in analysis tools relatively easy, hence it is currently supported
by over 50 different applications and tools.

The schema defines over 500 different types of elements (similar to entities in the IDF
format), attributes and enumerations to describe building model. These include among
others: 3D and 2D geometry, construction elements and materials, space boundaries,
internal and external equipment, lighting characteristics and control, occupancy or
schedules. A serialized gbXML file contains elements defined by schema that are connected
with other related elements and attributes in a hierarchical manner. In certain cases (such
as boundary condition definition) the relationships to other elements are defined through
specific attributes.

SAREF

The Smart Applications REFerence ontology (SAREF) (ETSI 2020) was created to enable
the interoperability between various Internet of Things (IoT) devices by matching their
existing assets (standards, protocols, data models etc.). Figure 2 shows an overview of the
main classes and relationships in SAREF ontology. To accomplish the said interoperability,
it describes IoT devices as objects (e.g. appliance, actuator, sensors, meter, HVAC) designed
to perform certain tasks and to accomplish this task it performs certain function (e.g.
actuating, sensing, metering, event) that have associated commands (e.g. switch on, switch
off, toggle) and a state that it is in. Device can offer service that represents a way to
communicate or control other devices in the network (EU Commission and TNO 2015).
For example, an HVAC device can offer a temperature sensor to control its on/off
function.

Figure 2 Overview of the SAREF ontology (source: ETSI 2020)

Heterogeneous building related data streams for performance assessment applications

9

Project Haystack

Project Haystack (2021a) created a schema that addressed the need for a data model for
smart devices and equipment systems present in built environment to make related data
more meaningful or “self-describing”. ProjectHaystack is an open source initiative backed
by major companies such as Intel, Simens, or LaGrand. By offering toolkits,
communication protocol of a ready server implementations on top of the schema it has
become de-facto a standard for streamlining equipment data to building automation
systems.

The schema defines a vocabulary of relevant “tags” (or metadata) of different type that are
used to abstract real-world devices and equipment (such as electric meters, HVAC units,
temperature sensors, pressure sensors or on/off switches) to entities. Different
combinations of tags are used to characterize an entity depending on what they represent.

 Principally an entity has a set of general identification attributes, a set of descriptive/
informational tags specific to the entity type and a set of reference tags specifying
relationships between the entities. A resulting Project-Haystack building model is a
combination of sensors’ data point entities that are associated with equipment entities that
are further associated with a location or site entities (see Figure 3 for an illustrative example)
(Project Haystack 2021b).

Brick

Brick (Balaji et al 2018) is an open source project that was initiated in 2015 by academic
community. Similar to the project Haystack – it is an attempt to create a metadata schema
for smart buildings. The Brick schema captures physical, logical and virtual entities in
buildings, contextualize and attributes them, group them in a class hierarchy, and define
how these entities relate to one another. It is not intended to replace existing standards
used in building management or automation systems but rather to make the existing data
more exposed and available.

The brick is built on three main categorical classes used for grouping entities: i) Point, ii)
Equipment and iii) Location. The Point class host different sources of data such as sensors,
setpoints, status etc. The Equipment class represents devices and installations related to
HVAC, fire safety, solar power, lighting, etc. The Location class include real and logical
locations in the building, such as site, floors, rooms, zones etc. Figure 4 presents an
illustrative example of entities and their relationships as defined by the Brick model. A
resulting Brick model is a representation of assets relationships and data in a building (Brick
Consortium 2021a, 2021b).

Building Performance Data Ontology

10

Figure 3 Diagram of ProjectHaystack entities and their relationships. Here, a temperature sensor (point)

associated with a HVAC Unit (equipment) located in a building in Gaithersburg, USA (site).
(source: Project Haystack, 2021b)

Figure 4 Illustrative example of entities and their relationships as defined by the Brick model.

(source: Brick Consortium 2021b)

Heterogeneous building related data streams for performance assessment applications

11

Building Topology Ontology

The Building Topology Ontology (BOT) (Rasmussen et al. 2017a, 2017b) was developed
to provide “a high-level description of the topology of buildings including stories and
spaces, the building elements they may contain, and the 3D mesh geometry of these spaces
and elements” (Rasmussen et al., 2020).

Currently, the BOT is developed by the World Wide Web Consortium (W3C) Linked
Building Data Community Group (W3C 2021). The group gathers BIM and Web of Data
technology experts together to bring the Linked Data and Semantic Web Technologies
(Domingue et al. 2011) to the AECOO (Architecture, Engineering, Construction, Owner
and Operation) industry for greater integration of data and extended interoperability
between building related and various web-enabled datasets from other communities beyond
building domain (W3C 2021, Rasmussen et al. 2017a).

BOT ontology specifies four main classes to describe a building – zones, elements, interfaces
and 3Dmodel. Zones class defines parts of physical and virtual world in built context such
as site, story, space, thermal zone. Elements class defines any physical object in a zone such
as construction element, device, installation element, furniture etc. Interfaces defines
common parts between elements and zones in the building. 3Dmodel class is used to link
zones and elements to a 3D model (stored in a 3D file format).

As a lightweight ontology it is intended to be easily linked and used with other ontologies
and function as a core element of an ontological building model. Such interoperability with
other ontologies (e.g. those describing performance data, sensors, equipment, systems,
management data, product information) is enabled by its implementation using Semantic
Web technologies such as the RDF (Lassila and Swick 1999), or the Web Ontology
Language OWL (Hitzler et al. 2009; Rasmussen et al. 2020).

DNAS/obXML

The DNAS (Drivers, Needs, Actions and Systems) (Hong et al. 2015a) ontology was
developed as an attempt to capture energy-related occupant behavior in buildings.
Occupant behavior is difficult to define and quantify and yet it can have major impact on
energy usage.

The DNAS ontology is based on human-building interaction framework components
described in Turner and Hong (2013). These include the drivers of behavior (external factors
that provoke energy related occupant behavior), needs (requirements ensuring occupant’s
satisfaction in an environment), actions (activities or interactions with systems that occupant
conducts to satisfy the needs) and systems (any sort of equipment mechanisms or other
measures that an occupant interacts to control comfort or satisfaction in the environment)
(Hong et al. 2015a).

The ontology was implemented in occupant behavior XML (obXML) schema (Hong et al.
2015b). The occupants’ behavior is captured in the schema by elements pertaining to 3

Building Performance Data Ontology

12

main sub-classes of the OcupantBehavior root class. Behaviors class implements the
aforementioned DNAS framework to capture complex patterns of occupants’ behavior
(see Figure 5 for an overview of the behaviors class), Buildings class provides special context
for occupants’ actions and finally Occupants class identifies and provide some relevant details
on singular occupant within a building. Resulting standardized occupant behavior model
built with DNAS/obXML schema enables, e.g., sharing information for better models’
assessment or more accurate building simulation.

Figure 5 An overview of the main Behavior class of the obXML schema that implements the DNAS

framework. (source: Yan et al. 2017)

Heterogeneous building related data streams for performance assessment applications

13

BuildingSync

BuildingSync is a schema focused on energy audit data for commercial buildings. It was
developed to enable exchange of such data between different software and databases
involved in auditing process.

It standardizes and aggregates heterogeneous data into a common format. Thus, energy
audit data represented in a standard, consistent and comparable format, facilitates not only
seamless data exchange between auditing tools, but when aggregated - can enable
potentially significant large-scale analysis (DeGraw et al. 2018). The schema has been
recently upgraded to include data relevant for creation of physic-based energy models of a
building or building-groups from data collected during an audit. Such models can be utilized
with simulation software for performance assessment in retrofitting scenarios.

This section presented the spectrum of relevant building domain ontologies pertaining to
various thematic categories. The Building Performance Data ontology described in the
following chapter puts emphasis on performance data (such as performance measures and
indicators) that spans through many categorical domains and therefore requires a
comprehensive metadata schema to accurately capture the complexity of their nature.

1.3. Overview
The details of the contents of the remaining chapters are given below:

• Chapter 2: Building Performance Data Ontology
This chapter presents details on the proposed BPD ontology and its implementation
process. It includes an overview of building performance related data and its
categorical domains, presents the proposed data schema for building performance
data, describes steps in the workflow of transformation of various data sources to
ontologically structured performance data. Finally, it exemplifies the ontology
implementation process on a large set of performance data.

• Chapter 3: Demonstration of Applications

This chapter presents examples of application of ontologically structured data in a
series of basic to advanced building performance analysis and assessment scenarios.
This includes: data retrieval, data visualization, interfacing to advanced performance
analysis tools, ontology driven web-based PV system performance assessment tool
and multi-domain ontology driven PV performance analysis.

• Chapter 4: Conclusion

This chapter provides an overview of the presented work discusses selected
challenges and gives an outlook on future research directions.

Building Performance Data Ontology

14

Please note that the chapters contain excerpts from the work published by the author in
the course of research progress. This includes: Mahdavi and Wolosiuk (2019a, 2019b,
2021), Mahdavi et al. (2021), Wolosiuk and Mahdavi (2020a, 2020b), Wolosiuk et al. (2021).

15

Heterogeneous building related data streams for performance assessment applications

CHAPTER 2
Building Performance

Data Ontology

2.1. Ontology for building performance data
Peter de Wilde in his book “Building Performance Analysis” (De Wilde 2018) defines
building performance as:

“Building performance is a concept that describes, in a quantifiable way, how
well a building and its systems provide the tasks and functions expected of
that building. Requirements may stem from three main views: an engineering
view of buildings as an object, a process view of building as a construction
activity, and an aesthetic view concerned with the notions of form and
appreciation. Important performance requirements in the engineering view
pertain to building quality, resource savings, workload capacity, timeliness and
readiness.”

Building performance is usually verified (quantified) through the means of testing,
calculation or combination of the two (Foliente 2000). In this context testing denotes
collection of various measurement data as for example that collected by sensors and devices
present in a building or via direct measurement methods. Such measured data could be, but
not necessarily is, a performance measure itself. It can potentially be a variable that
contribute to a compound performance indicator, obtained through calculation or

Building Performance Data Ontology

16

simulation.

Performance simulation can combine testing (measuring) and calculation as it makes use of
both empirical (e.g. measured) and theoretical data (e.g. generated, modeled or standard
values). Performance analysis can be used to improve buildings and the built environment.
Two of the main phases of the building’s life cycle, namely the design and the operational
phase can particularly benefit from assessment procedures. In the design phase, assessment
operations (e.g. computational simulations) can help measure impact of architectural design
decisions on variety of aspects of building performance (e.g. energy efficiency, occupant’s
thermal, visual or acoustical comfort) and suggest alternative design solutions. During the
operation phase, performance can be monitored and assessed for deterioration levels or
help in faults and errors detection. Finally, the performance analysis can support
enhancement or reinstatement of building’s performance levels during the refurbishment
process (De Wilde 2018).

Performance Data

A performance assessment of both building designs as well as existing buildings relies on
extensive amounts of monitored or calculated data on buildings’ behavior to derive the
values of key Building Performance Indicators (BPIs) and performance measures. Both
primary performance data (i.e., sensor data or simulated data) and high-level building
performance indicator values come in various forms, degrees of resolution, and application
domains.

An efficient and effective processing of such heterogeneous information base could benefit
greatly from a well-structured ontological schema that would cover the multiple levels of
complexity involved. Such ontology is essential for scientific community to facilitate the
aforementioned mentioned performance data analysis procedures towards building design,
operation, and retrofit optimization throughout the buildings' life cycle. It would also
provide a solid basis for development of generic tools and applications such as interfaces
to established modeling tools, visualization engines that could further support optimization
or Building Management Systems (BMS) applications and provide deeper insight into the
data.

The present work includes research efforts to develop and test a comprehensive Building
Performance Data (BPD) ontology and associated schema. The BPD ontology builds upon
foundational ontological work on monitoring data (see Mahdavi et al. 2016,2017,2018) and
recent efforts to form an explicit ontology for building performance indicators (see
Mahdavi and Taheri 2018; Mahdavi and Wolosiuk 2019a, 2019b, 2021; Wolosiuk and
Mahdavi 2020a, 2020b).

The proposed ontology relies on an extensive review of common performance indicators
as well as other performance related data originating from monitoring systems, simulation
applications or models. The developed schema captures the necessary attributes concerning

17

Heterogeneous building related data streams for performance assessment applications

performance data and indicators from a diverse spectrum of performance categories.

Building Performance Indicators

To provide a robust classification framework for representation of performance data in a
robust schema a number of categories must be recognized both in a domain of performance
indicators as well as performance measures. BPIs pertain to multiple categorical domains
that assess performance related to building systems, equipment or envelope and equally
that related to "habitability" aspects of the building, including human health, comfort, and
satisfaction (Mahdavi 1998, 2011).

There are many performance indicators in use and a list of such is constantly modified and
new positions are being added. In consequence a comprehensive review of all available
indicators is difficult. Nevertheless, the majority of commonly known and used BPIs can
be compiled, reviewed and categorized. Such effort by Constantino (2017) organizes
reviewed indicators in 5 thematic domains, including energy efficiency, hygro-thermal
performance, thermal comfort, air quality, visual environment and acoustical environment.
These classes are primarily related to indoor environmental factors as well as energy- related
building performance variables.

Of course, the building performance spectrum is not limited to these categories. Many other
indicators related to building integrity, structure, safety and security, management, ecology
or economy have been described in multiple standards and literature. Following the
mentioned BPIs review, a general performance indicator classes taxonomy was proposed.
Figure 6 presents an overview of the main performance categories (or classes), followed by
sub-categories and instances of performance variables (indicators and measures).

Monitoring Data and Building Performance

Currently, in majority of public buildings, but also more commonly in private housing, a
number of performance variables are directly monitored by the building systems or sensor
networks. These monitored variables can be stand-alone performance measures or other
performance-relevant data that are part of overarching compound indicator (this
observation is discussed more in the following).

In order to be able to develop a comprehensive ontological schema for building
performance data, identifying categories in which performance relevant monitoring data
occurs (similarly to performance indicators) was a necessary step. Such classification was
suggested in effort to create an ontology for building monitoring data (Mahdavi & Taheri
2017). The proposed classification framework was based on the related prior efforts
(Mahdavi et al. 2005, 2016; Mahdavi 2011a 2011b; Zach et al. 2012).

Six main categorical classes have been proposed to provide an effective taxonomic
classification to accommodate data streams related to monitoring systems. Namely:
inhabitants, indoor environmental conditions, external environmental conditions, control
systems and devices, equipment, and energy flows. Figure 7 pictures an overview of these

Building Performance Data Ontology

18

classes, with their suggested sub-classes and illustrative examples of corresponding
monitored variables. Refer to Mahdavi and Taheri (2017) for reflections on selected
categorical groups.

Figure 6 An overview of the five building performance categorical domains with their subsequent

subcategories and illustrative instances (see Constantinou 2017 for more details).

19

Heterogeneous building related data streams for performance assessment applications

Figure 7 An overview of the six building monitoring data categorical domains with their subsequent

subcategories and illustrative instances (modified based on Mahdavi and Taheri 2017).

Building Performance Data Ontology

20

Towards universal schema for performance data

Both of the aforementioned reviews were carried out in order to gain an overview of the
respective subject matter, an insight into specification of variables pertaining to each of the
classification groups and ultimately to form ontological schemas.

These insights helped compose a list of relevant metadata required to enable detailed
attribution of performance indicators and monitored data originating from diverse
categorical domains. Distinctive features of some categories and associated variables had
to be reflected in the final schema through suitable properties. For example, in the case of
the more complex schema for BPIs, many of the selected attributes are of a general and/or
informative nature, and some are very specific, however required, to fully describe a narrow
group of performance variables. Additionally, the relevance of some of the included
attributes in relation to some more complex indicators may not have been apparent at first,
but is critical to a full understanding of any indicator they describe and its associated
value/quantity. Especially when the data is to be shared or re-used. Specifically, this group
of attributes is associated with technical parameters of the method that was used to derive
a certain indicator value.

Over the course of development of the more recent BPI ontology, it became clear that
ultimately most performance indicators are compounds of measured data, or they can be
traced back to a single measured variable. This observation indicated that attributes used to
describe monitored data can be largely covered by the attribute scope of BPI data. For
example, measured indoor temperature or CO2 concentration level are primary variables
(or measures) and can function as BPIs in the categories of thermal performance and indoor
air quality respectively.

Other statistical treatment of such variable (e.g. values aggregation over time or space) can
potentially lead to more complex indicator definitions. Furthermore, compound BPIs can
be derived from multiple measured (also calculated or simulated) variables. For instance,
daylight factor (an indicator in the visual performance domain) is derived by dividing
measured or computed indoor illuminance by the outdoor horizontal illuminance obtained
at the same point in time. In another example, the Predicted Mean Vote (Fanger 1970), an
indicator of human sensation of thermal comfort, is calculated based on a number of
measurable environmental variables (air flow speed, air temperature, radiant temperature,
air relative humidity) and occupants’ personal factors (degree of insulation provided by
clothing – CLO value, metabolic rate due to actions). It was therefore logical to slightly
modify the elaborate building performance indicators schema to include monitored data,
arriving thus at a comprehensive Building Performance Data ontology that would
encompass both previously mentioned ontologies (Mahdavi and Wolosiuk 2019b).

The structure of general schema for BPD is largely similar to that of the BPI proposed in
Mahdavi and Taheri (2018). Table 1 presents the main features of the BPD schema. Each

21

Heterogeneous building related data streams for performance assessment applications

variable considered falls into a specific main performance category and sub-category, and
has a name (see Figure 6 and Figure 7 for examples). Instances of the same variable type
require a unique identifier for different functional and relational purposes. Given a specific
time and space each variable instance can assume a specific value. Each value can have a
number of assigned properties and attributes. The variable's type primarily suggests whether
the data classifies as quantitative or qualitative. If relevant, a level of measurement (nominal,
ordinal, interval or ratio) can be added alongside data class. Such can render helpful in
determining meaningful statistical operations or interpretation of the quantity. Quantitative
data should be supplemented with the magnitude (expressed as a value or number), in case
of vector-type variables also with a direction and a relevant unit for valid processing and
interpretation.

Depending on the category of the variable, a number of additional properties in spatial,
temporal and frequency domains can be specified. Spatial domain properties allow to
associate a variable to a specific point in Cartesian coordination system, possibly a defined
plane, volume or to a topologically relevant location (e.g. tagged room). If the magnitude
of the variable was derived based on the integration of the number of data points over a
space, the aggregation method (e.g. sum, average, median) and aggregation grid size can be
specified.

Temporal domain properties are expressed in the schema via a time stamp (e.g. per instance
of the sensor reading). Duration denotes the overall time frame to which a given variable
value corresponds (e.g. daily, monthly, annual values). A time step denotes recurring time
intervals to which measurement or simulation data have been assigned. Otherwise, the time
step (similar to the grid size attribute) can specify the discretization resolution of pertinent
temporal (spatial in case of the grid size) continua. Finally, if applicable the aggregation
method of data over the time domain may have to be specified.

For a group of variables whose values belong to phenomena with wave character (e.g.
sound, light, radiation), a group of attributes was defined in the frequency domain.
Frequency range and/or band may be required to specify the analysis setup details (e.g.
related to measuring equipment parameters) or pre-defined range of interest (such as
human auditory system capability). Furthermore, the weighting (e.g. A-weighting of sound
pressure levels in acoustics) and aggregation method can be specified.

As for the remaining variable property groups, if relevant, an agent ID attribute can be used
to assign a given variable to a specific entity. Notes property group pertains to additional
relevant information, for instance, on the indicators' derivation background. In case of a
monitored variable, notes could include sources of data pointing to a unique ID of a
measuring device or sensor. In case of derived and compound indicators, notes could
further point to the corresponding computational procedure, such as applicable formulas,
algorithms, and associated links and resources.

Building Performance Data Ontology

22

Table 1 General BPD schema (modified based on Mahdavi 2018)

Category Name
Sub-category Name
Variable Name

ID
Value Type

Magnitude (size)
Direction (vector)
Unit

Spatial
domain

Point
Plane
Volume
Topological reference
Aggregation method
Grid size

Temporal
domain

Time stamp
Duration
Time step
Aggregation method

Frequency
domain

Range
Band (filter)
Weighting
Aggregation method

Agent ID
Notes Data

sources
Category
ID

Derivation
method

Details (formula, link,
etc.)

To illustrate the functionality and potential of the ontology, Table 2 includes three
exemplary variables from different performance domains. Thereby, categories,
subcategories, and relevant attributes of the selected variables are captured.

23

Heterogeneous building related data streams for performance assessment applications

Table 2 Illustrative representation of three exemplary BPD variables following the structure of the
proposed schema.

Category Energy and
resources

Thermal
performance Occupants

Subcategory Energy performance
indicator

Environmental
indicator Control action

Variable Name Heating Load Air flow velocity Window contact

ID AnnHL_BA_1807 AirFlo_R1_1808 WinCon_R1_W1

Value

Type Quantitative Quantitative Quantitative
Magnitude 46 0.25 0
Direction - [0 0 -1] -
Unit kWh.m-2 m.s-1 -

Spatial
domain

Point - [1.50, 2.00, 1.10] [1.00, 0.00, 1.20]
Plane - - -
Volume Building A - -
Topo. Ref. Building A Room R_1 Room R_1
Aggregation - - -
Grid size - 0.20 m -

Temporal
domain

Time stamp -
08.05.18 08.05.18
10:30:00 09:20:00

Duration Annual - -
Time step 1 hour - 5 min
Aggregation Arithmetic sum - -

Frequency
domain

Range - - -
Band - - -
Weighting - - -
Aggregation - - -

Agent ID - - Occupant_1

Notes
Data

Sources
Category Simulation Simulation Sensor
ID Sim_20180729_1 Sim_20180823_3 Con_15

Derivation
method - - -

Building Performance Data Ontology

24

2.2. From heterogeneous data streams to application
Data or datasets (of a quantitative nature) consisting solely of an array of numbers without
any additional descriptors cannot meet the requirements of the downstream applications.
As descriptive and contextual content is added, data usability and scientific potential
increase. Description of content, context, and structure should be an integral part of any
dataset.

Files that contain data in tabular form (e.g. in CSV file format) are usually accompanied by
a description file, or these details are stored within a file (e.g. in the header). This is not a
very effective way to contextualize data, especially when it is a part of a larger heterogeneous
data repository. The information stored in this form is inherently "flat". The bulk of context
and the main hierarchy remain only on a descriptive level and must be interpreted.

In this context one of the primary functions of ontological data processing is to help achieve
an explicit description of content and semantic integration of such heterogeneous data
sources. Considering building performance data, this integration should not only provide a
comprehensive overview of building’s performance metrics for analysis purposes, but also
allow for data utilization and interoperability across range of applications.

There might not be a single, universal approach to ontology implementation for data
integration. However, certain set of operations are expected when processing quantitative
data. Depending on a domain or a field of interest that an ontology pertains to, other
operations may need to be recognized and applied. As a consequence, the implementation
process may have to address a list of specific challenges that should be reflected in the
workflow. Some of the relevant implementation questions are as follows:

• What type of data is to be semantically enriched and where does the data originate
from?

• Should the data be preprocessed in any way?

• What relevant attributes are available or should be provided?

• How can attributes be attached to the data efficiently in accordance to the schema
structure?

• How to store the ontologized data?

In the context of the presented effort, the answers to these questions set a foundation for
creating workflow for transformation of heterogeneous performance data to ontologically
structured information that is ready to be used in building performance assessment
applications and beyond. Figure 8 presents schematic overview of the proposed structured
process in which building-related measured or simulated “raw data” are processed and
ontologized toward subsequent utilization in various applications. The different phases of
this process are discussed in detail in the following sections.

25

Heterogeneous building related data streams for performance assessment applications

Figure 8 Schematic process overview for transformation (preprocessing, semantization, storage) of

performance-data for use in various downstream applications (modified based on Mahdavi and Wolosiuk
2019b)

Building Performance Data Ontology

26

Data sources
Building performance data (BPD) originate from various heterogeneous sources. One of
the most common BPD sources are building management and control systems, metering
devices, or sensors providing information on indoor and outdoor environmental
conditions. Likewise, computational building simulation applications can generate relevant
performance data concerning the thermal, visual or acoustic conditions in the building. In
addition, "virtual" sensors can deliver data that is derived using both simulated and
measured values of pertinent building performance variables.

Due to very different data sources and the multitude of hardware and software components
(e.g., sensors and data logging devices) and corresponding specifications, there is a large
diversity in the ways raw data is acquired and stored. The acquisition and storage procedure
can be influenced by specific manufacturer standards or even by individual requirements
of a client or building manager. In case of data sources acquired from simulation, specific
output formats are prescribed to the software.

This multiplicity of possible formats largely impacts the rest of the ontologization process,
as data from different sources may require preprocessing in order to achieve a common
standard regarding the temporal nature of the data (i.e. event-based recordings versus
regular interval data) or its structural attributes. Some of the common output formats
applied to building performance data include: i) delimited text files containing tabular data
(e.g., CSV); ii) database files (e.g., MySQL); iii) spreadsheet files (e.g., XLS); or iv) other
formats (e.g. software specific output formats). In the process of ontological data
structuring, sources may need to be handled individually. For instance, semantically
different and heterogeneously structured data can be stored in the same output format. This
issue is discussed in the following section.

Data Preprocessing
Depending on the nature of data source and/or future application, methods of data
preprocessing should be considered before supplementing properties and storing values of
performance variables in a repository. The need for preprocessing is primarily related to
the variability of data source types, volume and quality of data being integrated.

In this context, datasets (usually time series of measured performance values) should be
examined in terms of data point sampling. There are two common sampling strategies for
data recording, namely event-based and frequency-based (also called interval-based). With
the event-based method, a measured value is only recorded if it indicates a meaningful
change in the observed variable (e.g., indoor air temperature change above sensor's accuracy
or above fixed threshold value) or there is a change in state of a device (e.g., open/close
window). This type of sampling is increasingly present due to the growing number of
wireless and low energy monitoring solutions and the need for an energy-efficient
monitoring regime.

27

Heterogeneous building related data streams for performance assessment applications

The frequency sampling method is based on a fixed time period between recordings of
measured values. This type of sampling may seem more straightforward, nonetheless the
sampling frequency can vary from device to device or from data source to data source.

For this reason, both methods face the following (application related) data usability
challenge. Namely, many analysis scenarios involving data streams from multiple sources
require a common temporal base (i.e. uniform intervals) for relevant data analysis
operations. Instance of such operations include, for example, correlation analysis, data
aggregation, or multi-variate statistical investigations. Depending on the application,
different temporal resolution levels of data samples might be required. Theoretically, the
temporal resolution could be kept at a very high level However, this can lead to data
redundancy and unnecessarily high computational loads especially when processing large
sets of data. Therefore, it might be appropriate to follow common practices in a domain
and/or application scenario when deciding about the desired level of data resolution. For
example, in case of typical analysis scenarios involving indoor thermal environment, 15-
minute time intervals have been found sufficient. In contrast, high-quality monitoring of
electrical power can require much shorter time intervals due to rapid spikes in the measured
variable that would otherwise remain undetected.

The process of sensor-based data collection is prone to errors. Data quality control is a
common practice that involves detection of flaws in a dataset to assure its validity and
usefulness in future applications. There are a few common quality related challenges
concerning data streams from monitoring devices. For instance, outliers are anomalous data
points in a population of observations. Approaches to detect and mitigate outliers span
from empirical methods (based on value range limits) to those rooted in descriptive
statistics (e.g., Tukey’s fences test for detection, or moving median for outlier removal).

Discontinuities in measurement records, stored in data repositories (also called - data gaps)
represent another common problem. There are several strategies for filling in missing data
points. In case of small data gaps resulting from the removal of outliers, the commonly
used method is the previously mentioned moving median or mean. In case of larger data
gaps, a number of data interpolation methods can be applied. The source of such quality
issues might be related to sensor malfunctions, temporal power supply interruptions,
voltage drops due to a discharging battery, errors in communication with logger or gateway,
and other external events.

All of the mentioned preprocessing elements need to be considered when preparing
ontologized data for storage, especially when data is to be shared or archived. Hidden flaws
and inconsistencies in datasets that are not detected and rectified during the preprocessing
phase, might hinder correct utilization of data by future users.

Data semantization
The purpose of implementing an ontology-based schema is to give data a meaning and

Building Performance Data Ontology

28

context. The ontology that is based on empirical study of a domain (or a field of interest),
outlines the classification taxonomy, naming convention, and collection of applicable
attributes.

As with many other cases, also in the case of BPD, the properties of data collections
pertaining to performance variables or indicators need to be identified individually. This
could become a cumbersome task that potentially involves manual processing of multiple
variables, each requiring multiple properties to be identified. Depending on the case at
hand, some properties might be available for scraping from the output files of the data
sources (e.g., file name, header's content, column name, etc.). Nonetheless, in such an
instance, strategies for information extraction need to be developed, resulting in additional
efforts. This could be beneficial, but only when processing well-structured datasets.

Building performance data, particularly data coming from monitoring systems, often lacks
in particular categorical or spatial details. These details need to be supplied by a system
designer or individually obtained by an implementing expert. As such, the process of
assigning relevant properties to data might be prone to human error, especially given the
inherent diversity of diverse building performance data.

Ontology storage
Enriched building performance data must be serialized in a format that meets several
requirements characteristic for ontologies in general, as well as particular requirements
pertaining to a specific domain. A data model and its serialization format must be able to
map the structure of hierarchical categories and their relations as specified in an ontology
definition. It should also allow for assigning properties (detailed in schema) to categories,
subcategories, and variables.

What characterizes the BPD ontology is that it typically applies to large sets of time-oriented
data. Ideally the storage format must not only allow for an effective content mapping,
filtering and access to categorical data attributes, but also – and more importantly – support
efficient queries concerning time-dependent values of relevant variables. This condition
excludes some of the simple text-based serialization solutions (due to serious performance
issues) and requires some form of data base incorporation or data-specific file format
utilization.

2.3. Implementation
Following the proposed structured workflow, the robustness of the BPD ontology was
tested using a collection of diverse heterogeneous data sources. The dataset used for testing
is a collection high-resolution measurement data points that come from multiple sensors
that monitor occupants, equipment and the indoor environment in several office spaces in
a university building (TU Wien) in Vienna, Austria. Moreover, the dataset also includes data

29

Heterogeneous building related data streams for performance assessment applications

concerning external environmental conditions that were collected locally by multiple
measuring instruments. Table 3 lists most of the relevant monitored variables in various
categorical domains that are part of this dataset.

To put some of this data into a spatial context Figure 9 presents a plan of one of the office
spaces with marked positions of the monitoring sensors (air temperature, relative humidity,
air quality, presence, equipment and light electricity meters) and their original name-tags
given during the initial monitoring system development. Not marked in the image are

Table 3 An overview of the performance variables available in the dataset that was used in the
implementation.

Category Subcategory Monitored variable

Indoor conditions

Hygro-thermal
conditions

Air temperature
Relative humidity

Visual Overhead illuminance

Indoor air quality
CO2 concentration
Volatile Organic Compounds

External
conditions

Hygro-thermal
conditions

Air temperature
Relative humidity
Precipitation

Daylight

Global Horizontal Irradiance
Diffuse Horizontal Irradiance
Sky Luminance
Sky Radiance
Sun Presence

Outdoor air quality CO2 concentration

Outdoor air flow
Wind speed
Wind direction

Energy and
resources Energy consumption

Active power consumption
Energy meter reading

Control system
and devices

Heating/Cooling
system Radiator surface temperature

Occupants
Position Presence
Control actions Window contact

Building Performance Data Ontology

30

window contact sensors, radiator temperature sensors and less relevant hygro-thermal
conditions sensors. Including sensors located in the remaining office spaces, there are a
total of around 120 unique variables that capture indoor conditions and events.

The second group in this dataset are variables associated with external environmental
conditions that are monitored locally using several high-grade monitoring instruments.
Figure 10 shows a diagram with an overview of these monitored environmental variables
(listed in table on the left side of the picture) in context of the corresponding monitoring
system’s architecture.

The implementation dataset in its majority is syntactically and structurally homogeneous.
Syntactic homogeneity is achieved by using the same data model to store individual
monitored variables. Based on the design approach of the monitoring system, each
monitored variable is saved as a separate SQLite (Hipp, 2021) relational database file.
Accordingly, each database file retains a structural homogeneity. Specifically, each file
contains a two-column table with timestamps and a corresponding sensor reading.
Figure 11 shows an example of the content of such a database file, in which sensor readings
of the indoor air temperature are stored.

However, there are some examples of performance-related data in this dataset with a non-
standard format or that differ syntactically and structurally and require individual handling.
In the present implementation effort, these are the data sources concerning monitoring of
the sky (see bottom left on Figure 10), such as those generated by the sky luminance camera
or the sky-scanner. The data from the sky-scanner comes in a form of multiple tabular files
(one csv file per each day of recording; see Figure 12 for an example) containing uniquely
structured sequence of the measured values. These files need individual approach to pre-
processing before being integrated, well supplemented with relevant information on the
exact content and data points structure and stored in an ontologically consistent manner.

Another example of a non-standard data source in this dataset is output files generated by
the sky luminance camera. These are high dynamic range images which essentially translate
to a high-density matrix of precise luminance readings per measurement data point. Such
can be additionally processed to a sequence of 145 values representing the hemispherical
Tragenza (Tregenza 1987) sky matrix for use with advanced light simulation software (see
Figure 22).

Figure 9 Office sensor locations plan.

Building Performance Data Ontology

Figure 10 An overview of available monitored environmental variables and monitoring system architecture.

Heterogeneous building related data streams for performance assessment applications

33

Figure 11 Sample content of a data source file used in the implementation. Two columns shown relate to

the time stamp and the corresponding measured values of the indoor air temperature.

In summary, it can be said that the syntactic and schematic heterogeneity is only a technical
issue. Different formats and representations of data sources can be adapted for available
information extraction. Due to high variability of possible data sources and their
implementation details, there is no single universal approach to this process. Individual
approach means developing workflows, algorithms or tools to systematically extract the
information which can be a cumbersome and time-consuming process.

We have established that the given implementation dataset is mostly homogenous on
syntactic and schematic level, however it is heterogeneous on the semantic level. The
content of a sole data file is (in the most cases) irrelevant both for humans and machines if
a context is not provided with it. For example, information stored within said database files
pertaining to any of the temperature measuring sensors (e.g. air temperature, radiator
temperature) have the same meaning - namely the list of values stored in a file represent a
measure of temperature. This information alone would be considered meaningless.
Additionally, we cannot be certain of the unit and scale of the values in question. In the
real-world, all of these data points have at least a certain spatial and/or temporal context.

Building Performance Data Ontology

34

Figure 12 Exemplary content of csv output file generated by sky-scanner control software.

In the given dataset, the temporal context is provided in the form of time stamps for each
measured value, but the rest of the context is not disclosed. All other semantic details
necessary for a proper interpretation of the information about the data source must be
determined so that they can be provided later during the semantization part of the proposed
workflow. Before semantic enrichment of the selected data, however, two preprocessing
operations must be considered, namely the temporal aggregation/segmentation and the
data quality check.

The designated dataset includes variables with both event-based and interval-based
sampling records. The majority of indoor environment monitoring sensors used in this
system are ultra-low power, battery-less wireless sensors that have to manage small amounts
of power very efficiently. Therefore, a measured value is only transmitted when there is a
significant change in the monitored variable, which leads to an event-based characteristic
of the stored records (see Figure 11 for an example of event-based temperature
measurements records from one of these sensors).

On the other hand, the variables related to the monitoring of the external environment are
recorded periodically according to requested interval length. The selected intervals of 1
minute. (for hydro-thermal and air flow monitoring instruments), 5 minutes (for daylight

Heterogeneous building related data streams for performance assessment applications

35

monitoring sensors) and 15 minutes (for sky monitoring sensors) are based on the
monitoring system design decision (see Figure 10 for the system overview).

At this level of implementation process, there was no aggregation nor segmentation
performed on any of the selected variables. The reason behind was to retain the original
values recorded by the sensors for more flexibility at the application level. In fact, data
aggregation was implemented as feature of a tool in one of the illustrated application
examples in the following chapter. If necessary, after the ontological integration of the data
set, new spatially or temporally aggregated or segmented variables can be generated from
the existing ones.

The dataset in question was subjected to a basic data quality check. The characteristics of
the dataset and related issues were previously recognized and known to the author. Thus,
the quality check was not performed “formally” (e.g. no calculated nor interpolated data
points were inserted), as this was not the main focus of the research. Nevertheless, certain
quality control relevant actions were undertaken with regard tothe variables of interest. For
example, due to previously recognized occasionally occurring server failures resulting in
sensor-server communication interruption, an algorithm was developed to specifically
detect quantitative anomalies in the monthly number of generated data points stored in a
database. This particular analysis gave some insight on the time periods without any missing
entries and allowed to select the best quality portion of the dataset for use in application
testing. In addition, missing data treatment methods were implemented as a feature of the
tool that is illustrated in one of the application examples.

Following the proposed workflow, in the next step of ontological data integration process,
the dataset was given a semantic meaning by providing each of the selected variables with
relevant attributes as per the proposed performance data schema. As discussed previously
the only context available from within used data sources is temporal. The remaining context
and semantic details had to be identified.

There are many potential sources of metadata and means to help identify it. Starting at a
low level, such a source can be the name of a data file or the header of a data file (for text
file sources), data column name or accompanying metadata table (for database sources). In
this implementation, the names of the database files
(e.g. “SRW01_00016c48_con_rawdata.db”) indicate the measured performance variable,
the sensor model name, and provide a unique physical address that can be used to link the
file to other related documentation (see Figure 14 for more file name examples in the
column A).

The potential availability or quality of documentation or similar sources with relevant
information about the data varies from case to case and depends heavily on the design of
the monitoring system or application as well as on implementation decisions. If data comes
from a BMS system, it is very likely that all system details are well documented. If, on the
other hand, a data source was a part of specific application instance or used in a peculiar

Building Performance Data Ontology

36

workflow, it may not originally have been designed for reuse, thus none or very few of the
semantically relevant details might have been documented. In such case an insight from a
designer or managing person is required.

To illustrate the potential sources of semantic attributes that a person implementing an
ontological schema may need to work with to gather information, the following sources
have been used to find spatial properties of some of the variables in the implemented
dataset. Figure 13 previews content of a spreadsheet with the inventory of wireless sensors
and related equipment. The most relevant information in this table is the physical address
of the sensor and the unique ID of a monitored variable assigned to it. In this way we could
cross reference database files with a specific ID of the monitored variable to extract
semantic information from other sources.

For example, the office plan shown on the Figure 9 with exact spatial position of the
sensors. This plan was used to extract relevant spatial domain attributes (e.g. position in
Cartesian space, topological details) of some of the performance data variables. The rest of
the relevant or required metadata that could not be scraped from the aforementioned
sources were derived empirically or were based on expert knowledge and monitoring
system insight.

Given the multitude of performance data variables in the implementation dataset, the
attributes of which must be determined and processed in order to ultimately be serialized
in a file, a specific solution was expected to mitigate this process. Therefore, to facilitate the
attributes supplementation and deposition, all variables and their attributes were aggregated
in a single csv file (see Figure 14). The content of this file follows specification of the BPD
schema and is used to enable efficient integration and storage of the data via designed
conversion algorithm. The data from the sky-scanner, since it is syntactically different from
the rest of dataset, required individual approach and a separate set of conversion functions.

Python programming language was used in the process of performance data
transformation. Several functions for extraction and conversion of the input data streams,
attributes organization and supplementation, and structured storage in a HDF5 file were
developed. The HDF5 (The HDF Group 2019) is a primarily scientific data format capable
of storing various data objects, adapting high-level data schemas and executing very high-
performance queries on large datasets. It allows grouping and organizing objects in a
hierarchical manner, enables the assignment and accommodation of complex metadata to
the elements of the structure and the linking of elements.

Given these features, the HDF5 file format appeared to provide a suitable foundation for
testing the BPD ontology and the proposed data schema. Note that it is not suggested that
this is the only or the ultimate implementation solution. Another implementation approach,
for instance, could be based on Semantic Web (SW)technologies. Because in the application
phase, the emphasis was on high-volume data processing (e.g. long-term visualizations),

Heterogeneous building related data streams for performance assessment applications

37

selecting an all-in-one high-performance format seemed appropriate for this purpose. To
achieve comparable level of data query performance in a SW based implementation, the
use of solutions such as external data storage repositories would be required and would
certainly add another layer of complexity in any application scenario. Figure 15 presents an
exemplary overview of the content of HDF5 file with hierarchically structured building
performance variables and their instances in different categorical groups.

Figure 13 Preview of the inventory file concerning wireless sensors and equipment.

Figure 14 Preview of the tabular file containing gathered details pertaining to performance data and variables.

39

Figure 15 Content of a HDF5 file with ontologically structured performance data.

Demonstration of application

40

CHAPTER 3
Demonstration

of application

3.1. Information retrieval
Note: The following section is based on and contains excerpts from the following,
previously published conference papers - Mahdavi and Wolosiuk (2019a, 2019b).

The most basic functionality that is enabled by the ontology implementation is information
retrieval. Information that is available in a semantically enriched dataset can be very
precisely selected or extracted using logical queries. Any of the attributes present in the
BPD schema might potentially be relevant in such queries. For example, we might be
interested in limiting our selection to specific performance category or variable name, we
can further limit the selection variables available in certain space, but also, we might be
interested in those associated with a specific occupant. Depending on application, there are
many different query scenarios and these queries are most likely the backbone of any
advanced performance application.

As a part of initial BPD ontology testing, a series of algorithms were created in the Python
environment to test querying efficiency of ontologically structured data. The main focus of
this low-level application was to extract target variables that fulfill a specified combination
of spatial, temporal, and categorical criteria. After successful extraction, the data of interest

Heterogeneous building related data streams for performance assessment applications

41

was further processed in terms of descriptive statistics and data visualization (e.g., box plots,
histograms, line plots).

To illustrate this process, consider the example of a two-step test query of the implemented
dataset. In the first step the variables are filtered to ones that have “BPI Secretariat” as the
“Topological reference” in their Spatial domain attributes group. To preview the content
of the selected variables and demonstrate some visualization potential, a trend line for each
of the selected variables was generated for a content preview in a selected time period (here
1-31.05.2016). Figure 16 shows a result of the executed algorithm in the PyCharm IDE - a

Figure 16 Information retrieval using python programming environment. Output of two consecutive logical

queries visible in the bottom window, the upper window previews generated plots.

Demonstration of application

42

Python integrated development environment (JetBrains 2021). In the lower window, the
variable instances found after the first query step are listed and a function is executed to
generate the trend plots for all selected instances (see Figure 18).

The second query step is to extract only the instances of “Indoor Relative Humidity”
variable that are available and generate additional statistically relevant visualizations. The
final result of the query (variable instances “rhu16” and “rhu20_new”) are visible in the
bottom window on the Figure 16. Figure 19 presents the generated set of three
visualizations for one of the selected variable instances in the selected time frame (1.03.2016
– 31.07.2016).

This example illustrates the utility and effectiveness of the well-formed semantically
enriched data. Together with a simple user interface the presented algorithm could become
part of a visualization/exploration tool.

As mentioned in the previous chapter, the HDF5 file format is very efficient in terms of
query performance and can be used in different programming environments. To test and
demonstrate this universal support, an algorithm was developed in MATLAB software to
process queried data (hourly aggregation of event-based measured values) and generate an
annual hourly tile map visualization.

For this purpose, logical queries were formulated to satisfy specific combinations of
categorical, spatial, and temporal criteria. Specifically, "overhead illuminance level" as
variable name, "seminar room" as topological reference, and "year 2017" as temporal
constraint were defined. The values were aggregated to form an hourly based value matrix
(see Figure 17)with an additional visual based information in form of color-coded value
intervals.

Figure 17 An annual tile map visualization of measured overhead illuminance levels in an office area.

Heterogeneous building related data streams for performance assessment applications

43

Figure 18 Trend preview of filtered variables in the selected time range (1-31.05.2016).

Demonstration of application

44

Figure 19 An example of statistically relevant visualizations, generated from query selected measured
values of indoor air relative humidity variable instance (top: trend, frequency distribution; bottom: box

plot).

The last “low-level” illustrative example, based on logical query information retrieval is
indoor-outdoor temperature relationship study. It was hypothesized that, due to the effect
of thermal mass and associated temporal delay, indoor air temperatures may display a higher
correlation with outdoor temperature measured at an earlier instance. In this scenario
logical query constrains were as follows: "indoor/outdoor air temperature" as variable
names, "BPI open space S, TU tower" as topological reference, "21.06.2017 - 22.09.2017"
as temporal constraint. Processing involved aggregation of available variable instances to a
30 minutes step temporal base and averaging the indoor air temperature values to get one
representative indoor air temperature measure. The correlation between indoor air
temperature with outdoor air temperature that was measured 30, 60, 90, 120, 150, and 180
minutes earlier was then investigated (see Figure 20). This analysis suggest that the highest
correlation involves a two-hour time shift between measured indoor and outdoor
temperatures. Figure 21 displays this correlation graphically.

Heterogeneous building related data streams for performance assessment applications

45

Figure 20 Coefficient of determination between measured indoor air temperatures in an office area and

earlier measurements of outdoor temperature (from half an hour to three hours before).

Figure 21 Illustration of the correlation between measured indoor and (two-hour shifted) outdoor

temperatures.

Demonstration of application

46

3.2. Performance modelling tools integration
Note: The following section is based on and contains excerpts from the following,
previously published conference papers - Wolosiuk and Mahdavi (2020a, 2020b).

To further explore the potential of utilization of semantically enriched data with advanced
performance applications an effort was made to harmonize information stored in a HDF5
file and the functionality offered by the Ladybug Tools by creating task specific interfaces
that relies on defined terms and data structure of BPD Ontology.

Ladybug Tools (LT) (Roudsari 2013) integrates the potential of well-known performance
simulation engines such as the EnergyPlus (Crawley et al. 2001) or Radiance (Ward 1994),
with the Rhino 3D (McNeel 2019) modelling software. It is a collection of small
applications that couple these simulation engines with a 3D modelling and visualization
potential of the Rhino software. This linking is enabled through Grasshopper – a visual
programming environment built into the Rhino software.

Grasshopper quickly grew beyond initial 3D algorithmic modelling and parametric design
platform. This was enabled by giving the community a possibility of creating custom
components and component packages that could be shared online. The Ladybug Tools is
an instance of such component package development. Grasshopper supports a number of
programming languages for creating new components. These components can be of a
universal nature (simple mathematical operations on input), as well as complex or task
specific nature, such as calling external software for output generation. The latter is the case
of this implementation, where several custom components written in Python language were
created to enable and test interfacing between BPD ontology serialized in a HDF5 file and
elements of Ladybug Tools.

Initial tests involved creating custom components that would take directly HDF5 file and
some options as an input. The component’s algorithm would extract a pre-specified
performance variable in a desired quantity and process it to a form that is consistent with
particular requirements of Ladybug’s native component input.

One of the tested functionalities was to see if a sky matrix of radiation values representing
amount of radiation coming from each of 145 patches of a sky hemisphere, could be used
with different native LT components that require these values as an input. The values were
generated from previously processed sky-luminance camera images (See Figure 22). For
example, in this case, to be visualized as a 3d hemisphere in the graphical interface of the
Rhinoceros 3D using the SkyDome LB component (see Figure 23).

Heterogeneous building related data streams for performance assessment applications

47

Figure 22 Sky luminance camera processing stages. From luminance image to Tragenza sky matrix.

Figure 23 Sky matrix generated from a luminance camera image visualized in Rhinoceros 3D

environment.

In another scenario, an application specific component was created to take measured
radiation data from the HDF5 file and to replace Typical Meteorological Year (TMY) values
in the original EPW file. Values recorded in a specified year (or a specific period within a
year) are i) aggregated in terms of hourly values, ii) direct normal component is calculated
from global and diffused horizontal radiation (if not provided), iii) latitude and longitude
information is replaced (if provided), iv) and finally a new EPW file is generated, stored
locally, and provided as an input for the Generate Climate Based Sky component. Figure
24 shows this component with the required and optional inputs on the left and outputs on
the right side.

Demonstration of application

48

Figure 24 A custom component for modification of EnergyPlus weather file, for use with climate-based

sky generator in solar radiation studies.

Being able to modify parts of an existing EPW allows for seamless integration of localized
environmental data into the standard Ladybug design or analysis workflow.

The created BPD interfacing component was tested by integration in two illustrative
simulations, involving snapshot-type Illuminance and annual Daylight Autonomy analyses.
The test case for the created component involved modified sample studies provided by the
creators of Ladybug software.

The illuminance simulation results are based on selected diffuse horizontal and direct
normal irradiance values obtained from modified EPW file generated by a custom
component. The new EPW file contains radiation values for the entire year as recorded by
pyranometers in 2016 in Vienna city center. The selected point in time for the simulation
is 2016-06-2110:00:00. Figure 25 presents the integrated BPD interfacing component into
Ladybug components-based simulation setup (only a small part of the setup canvas is
visible here). The resulting daylight illuminance distribution values are visualized in Figure
26 in terms of a color scale.

Heterogeneous building related data streams for performance assessment applications

49

Figure 25 Custom BPD interfacing component (middle left) integrated into simulation setup.

Figure 26 Visualization of the indoor illuminance simulation results based on local historical data for

Vienna.

Demonstration of application

50

In a similar manner, an annual Daylight Autonomy (DA) for the same space was performed.
This time the local historical solar radiation data from the entire year 2016 was used to
visualize and analyze Daylight Autonomy based on a default office type occupancy
schedule. The simulated results represent the percentage amount of occupancy time when
the illuminance is above the given threshold of 300lux. Again, results are visualized as a
color mapped grid representing value threshold for a given analysis grid tile (see Figure 27).

Figure 27 Daylight Autonomy studies based on local data extracted from BPD stored in a HDF5

repository.

After the possibility of extracting and harmonizing the ontologized BPD with Ladybug
Tools via “hard-coded” selection of data had been demonstrated, in the next stage some
usability related functions and components were added so that information stored in an
HDF5 file can be accessed from Grasshopper's interface level. For example, a function for
selecting variable instances based on attribute filtering via interactive interface elements
(e.g. generated drop-down list) (see Figure 28). Another added functionality is data
processing component, where values related to selected variable are extracted according to
specified time frame and can be further aggregated and missing data can be interpolated
(see Figure 29). These new components enabled interactive access to further group of
Ladybug Tools components that use this input data streams for visualization, indices
calculation, or performance simulation.

Heterogeneous building related data streams for performance assessment applications

51

Figure 28 An illustration of custom components created for selecting relevant variable instances based on

attribute filtering via interactive interface elements.

Figure 29 A custom data processing component for analysis period selection, data points aggregation or

missing data handling.

For example, by selecting variable instances related to thermal comfort, such as the air
temperature and relative humidity, regarding certain occupant in the selected office space,
we could utilize the “PMV comfort calculator” or “Thermal comfort indices” LB
components to deliver number of thermal comfort related indices.

There are several options for data visualization in Ladybug. In a basic visualization scenario,
the selected temperature data points can be supplied to “line chart” component to generate
a trend line graph. Figure 30 present a simple chart generated from one of the indoor air
temperature variables (“tem20_new”) in the specified time period.

Demonstration of application

52

Figure 30 Example of a line chart generated with Ladybug native component from extracted indoor air

temperature variable data.

Another visualization option is previously presented tile map. In this case native LB
component is used to generate an hourly overview of a variable in question. Figure 31
presents a tile map of indoor relative humidity generated using “3DMap” component.

In an advanced visualization scenario, thermal comfort related variables are supplied to
generate a psychometric chart. The typical process steps are as follows: First a topological
reference attribute is selected from the list of available attribute instances in the HDF5 file
(Figure 32 A), in the next step the relevant instances of the Indoor Relative Humidity and
Indoor Air Temperature are selected (Figure 32 B), the analysis period is defined (Figure
32 C) and finally the event-based measured values are processed in terms of aggregation to

Figure 31 A tile map visualization of an indoor relative humidity variable, generated using native LB

“3DMap” component.

Heterogeneous building related data streams for performance assessment applications

53

a common hourly time-step (Figure 32 D). Finally, the data is supplied to the “Psychometric
Chart” component. The resulting graph (see Figure 33) presents a color-coded density grid
of total amount of hours in the specified time period of temperature – humidity pairs inside
each of the grid tile (1C° and 5% Rh grid step). The total amount of hours within the
comfort window can be read from the components output or the annual results can be
visualized using “3DMap” component (see Figure 34).

Figure 32 Stages in Grasshopper visual programing model for psychometric chart generation from

ontologized data stored in hdf5.

Demonstration of application

54

Figure 33 Psychometric chart generated from the performance data stored in hdf5 file.

Figure 34 Annual hourly tile map showing hours of the year outside the comfort window.

In the last tested interfacing instance, the aim was to use detailed sky radiation data collected
by a sky-scanner and direct normal solar radiation data (derived from global and diffused
solar irradiance measurements) toward localized solar radiation studies. Sky-scanner
regularly measures, for a specific location, luminance and radiance of the sky hemisphere,
represented in terms of in a 145 segments or patches. A custom component was created to
extract ontologically structured solar radiation data from BPD and process it in terms of
the input format of the Ladybug’s Sky Dome component for data visualization. The
selectedSkyMtx output is an array of aggregated total, direct normal, and diffused radiation
values per sky patch for a selected time period. Figure 35 presents a visualization of the
annual diffuse sky radiation based on the data collected by the sky-scanner in 2016.

Heterogeneous building related data streams for performance assessment applications

55

Figure 35 Visualization of diffuse solar radiation generated from sky-scanner measurements in Vienna,

Austria.

The same structured (selectedSkyMtx) output can be used as the input for the Ladybug’s
Radiation Analysis component. It calculates the total incident solar radiation on a surface
or a selected group of surfaces within a selected time period. It also allows for visualizing
the results directly on the 3D model. Figure 36 presents the result of such a study of an
existing building in Vienna. The Radiation Analysis results can be used in solar heat gain
studies or support solar energy systems design.

Demonstration of application

56

Figure 36 Illustration of a building performance assessment scenario (visualization of incident solar
radiation density distribution across a complex roof configuration of an existing building) supported by

ontologically stream-lined monitoring-based data.

Heterogeneous building related data streams for performance assessment applications

57

3.3. Multi-domain PV performance studies
Note: The first example presented in this section is based on and contains excerpts from
Mahdavi and Wolosiuk (2021). The remaining two examples are largely based on to be
published conference papers – Wolosiuk et al. (2021) and Mahdavi at al. (2021).

Previous sections demonstrated how certain streams of data could be ontologized and then
utilized in different application scenarios. There are, of course, many more cases of
technical applications of models and assessments of performance analysis that would
require a much larger number of data streams and sources. To illustrate such cases a series
of use case scenarios that involved climate, building, building system, user, finance was
created and tested. Specifically, three advanced examples concerning utilization of solar
energy, that focus on PV system energy generation potential, and payback time considering
various constrains related to PV system setup, building energy performance, related soft
costs and other financial aspects. This means, an extensive scope of information in four
categories is required to create models and support relevant calculations. This includes:

• Microclimatic data: Location specific solar radiation data, as well as air
temperature, humidity, wind speed, precipitation to enable accurate and high-
resolution, generated energy profile calculation.

• Building related information: In order to determine the correct size, placement and
orientation of a building-integrated PV system, detailed information about the
building is required, including its shape and geometry, structure and construction.
Essential is also high-resolution data on the electrical energy demand profile of the
building.

• Technical specification of the components of the PV system: Information
regarding the type and performance of inverters, panels, batteries etc. is required
for calculation of generated energy profile

• Financial and regulatory information: As with other types of systems, economically
relevant data (design, installation and maintenance costs of the PV system as well
as electricity purchasing costs and electricity export revenues) are a key factor in
calculation of the revenue time and support of decision-making.

In these examples a certain amount of data could have been theoretically covered by the
proposed ontology (e.g. climatic data, energy consumption profiles, occupancy data etc.)
but not all (e.g. financial data, building geometry, construction details, equipment
specifications etc.).

Gathering reliable data necessary for these use cases was a relatively cumbersome task.
There was very few accessible information sources and input data had to be extracted from
different industry reports, websites, databases or trade journals, then interpreted, verified
and manually prepared for implementation. Each of these homogeneous sources without

Demonstration of application

58

a reliable metadata layer add a new complexity level that hinders the development of
potentially useful performance assessment related applications.

In the following, the said three use cases demonstrate how the broad spectrum of
information is used in combination with performance data streams to provide meaningful
analyses. First example presents a web-based application created for a PV system design
decision support. Second example looks at cost-benefit analysis of different technical PV
system installation and maintenance options under varying location specific environmental
conditions. Third use case presents a framework that facilitates a bi-directional approach
to supporting the design and configuration of PV installations. These examples represent
also future challenges for the research described in this work. Particularly those concerning
creation of a fully seamless data environments in which multi domain information is
accessible thus enabling further progress and discovery.

Introductory remarks on PV performance modelling use cases

The source of all simulation methods and models related to solar power calculation in all
of the following use cases is pvlib-python library. The pvlib-python library, is a package of
functions and classes, written in Python programming language, for simulating the
performance of photovoltaic energy systems (Holmgren et al., 2018). The library
implements multiple models and methods developed by PV Performance Modeling
Collaborative group (PVPMC) for Sandia National Laboratories (Stein, 2012).

The applied modeling procedure requires inputs such as sun positions, solar radiation data,
weather data (climatic data), solar array orientation, and solar equipment specifications.
These are then used as an input for the provided functions and models. The geolocation
metadata (latitude, longitude, and altitude), hourly values of solar radiation (direct normal,
global horizontal, and diffuse horizontal irradiance) as well as air temperature and wind
speed were extracted from a corresponding EPW data files (Crawley et al., 1999). The
weather data provided by the EPW file is derived from Typical Meteorological Year 3
(TMY3) (Wilcox and Marion, 2008) and International Weather for Energy Calculations
(IWEC) data sets (ASHRAE, 2001). It is used to determine solar positions, optimal tilts,
in-plane irradiance and finally energy output for each of the locations and scenarios. The
NREL Solar Position Algorithm (SPA) (Reda and Andreas, 2004) is used to determine solar
positions on an hourly basis for the specified sites. The solar positions, radiation intensities,
and panel orientations data is used in a transposition model function to estimate the total,
normal, and diffuse in-plane irradiance (Hay and Davies, 1980). What fraction of this
irradiance is in the end converted to electric current depends on weather conditions and
the PV systems' efficacy. Functions implementing Sandia Array Performance Model (King
et al., 2004) are used to calculate cell temperature and finally total amount of power
generated by the system.

Any deviation from this modeling approach, as well as financial modeling aspects and PV
systems technological details, can vary between cases and are highlighted in the example

Heterogeneous building related data streams for performance assessment applications

59

descriptions.

A web-based tool for PV installation design decision support

In the first use case, the aforementioned web-based computational platform for supporting
the design and optimization of PV installations was developed. To perform different types
analysis scenarios, it must be supplied with data from all of the previously mentioned
categories. The efficiency of the process by which such heterogeneous data sources are
brought together can benefit significantly from the data ontologization approach described
previously. Although not identical in all cases, the ontologization process for the different
data streams is basically similar. Therefore, the focus below is on demonstrating the
usefulness of the computational environment in responding to a number of illustrative use
case scenarios.

The application was developed in the Python programming environment, using the Dash
framework for building web applications (Plotly 2015). It was used to create a plain user-
interface for input specification as well as output results visualization and inspection. Figure
37 presents an overview of the developed interface. The main visualization type for
different analysis results presentation is a contour plot as seen on the Figure 38. Depending
on the user’s options selection - solar radiation on the PV panels, generated AC power by
the PV panels, annual financial balance (difference between system investments and energy
cost savings over a pre-defined period of time) can be visualized. The result values are
plotted as a function of the panels' orientation (tilt and azimuth). The second implemented
visualization is a line graph that shows the cumulative (annual) cost balance as a function
of the number of PV modules and the module orientation for a specific building, a specific
module / inverter type and a specific electricity price scheme.

Demonstration of application

60

Figure 37 An overview of the developed tool’s user interface.

In order to use the application, the user must provide some basic input data, including the
applicable time period for the analysis, a source of local solar radiation (and other relevant
microclimatic) information, and information on PV module products, and related inverter
products. Depending on the type of output request, additional information regarding the
number of modules and the time horizon for the financial analysis may be required. In
addition, all inquiries about the local storage of electricity or electricity import / export
from / to the grid require the electrical energy load profile of the building in which the PV
system is housed.

To demonstrate the application and its functionality three illustrative use case scenarios
were performed. In the first scenario user wants to analyze how much electrical energy can
be generated by 15 PV panels over a period of a year under typical meteorological year
conditions in a specific location (Vienna, Austria), given specific PV panel and inverter
models (see Figure 37). The resulting visualization presents the respective values as a
function of the azimuth and the inclination of the panel. Figure 6 shows the generated
output, in the form of isolines of accumulated electrical energy given in kWh. While the
calculated most optimal orientation is at an azimuth and an inclination of 165 and 35
degrees respectively, the visualization also illustrates the potential flexibility in a number of
orientations that would provide a similar level of performance.

Heterogeneous building related data streams for performance assessment applications

61

Figure 38 Isolines depicting computed cumulative electrical energy generated over a one-year period (15
PV panels installed in Vienna, Austria) as a function of the panels' orientation (azimuth and tilt)

The second illustrative use case scenario concerns the annual cost balance analysis of a
building-integrated PV system consisting of 15 specific PV modules under the following
input assumptions. The analysis is to be carried out for an investment cycle of 25 years.
The total investment cycle costs consist of the purchase, installation and maintenance cost
of the installation. It is assumed that if the electricity demand of the building (for the
corresponding demand profile, see Figure 7) is not covered by the PV system, electricity
must be drawn from the grid (price 20 cents per kWh). If, on the other hand, the system
produces more electricity than required, the surplus can be fed into the grid (yield of 7 cents
per kWh of exported energy). The final annual balance calculation is derived from the
expenses for energy import, savings from the demand covered directly from the PV system
as well as the income from the feed-in of PV electricity into the grid. The results of this
example are shown in Figure 8 in the form of isolines of the annual cost balance (in euros).
The calculated value is the difference between the total costs of the installation and the
energy purchase costs over a period of 25 years and the income from the export of
electricity into the grid over the same period.

Note that given the illustrative nature of this (and the following) application use case, the
cost balance calculation has the character of a simple amortization analysis. In particular,
the dynamics of energy prices and capital interests are not considered. However, these
parameters can easily be included in the financial analysis component of the calculation
method.

Demonstration of application

62

Figure 39 Assumed electricity use profile (hourly values over the course of one year)

Figure 40 Isolines showing the calculated annual financial energy balance of a building with integrated

PV system.

Heterogeneous building related data streams for performance assessment applications

63

The third illustrative scenario tries to determine the optimal number of PV modules (of a
certain type hence specifications) for an installation in the same location (Vienna, Austria).
As in the previous case, the aim of the optimization is to minimize the annual net system
costs (sum of installation and electricity import costs minus income from electricity export
into the grid, calculated over a period of 25 years).

The application’s interface allows selection of different orientations of the panels as well as
different assumptions about the electricity import and export prices. To illustrate the results
of the calculations, Figure 41 focuses on just one panel orientation (i.e. azimuth of 180
degrees and inclination of 35 degrees) and a fixed electricity purchase price, set at 20 cents
per kWh. This figure suggests that up to a minimum electricity export price (i.e. around 8.5
cents per kWh), any increase in the number of modules leads to lower annual costs. Below
this price threshold, however, a certain number of modules turns out to be optimal (e.g. 20
and 10 modules for 8 and 7 cents per kWh export price for electricity).

Figure 41 Calculated annual balance depending on the number of PV modules and electricity export price
of a building-integrated PV system (panels orientation azimuth/tilt - 180/35 degrees, electricity purchase

price set at 20 cents per kWh)

Performance comparison of static and adjustable photovoltaic panels

Demonstration of application

64

In the second example, the performance data streams are used to enable the cost-benefit
analysis of static (fixed) installations versus dynamic installations capable of solar tracking.
Moreover, in addition to entirely static option and the solar tracking options, it is
conceivable to set up PV installations whose tilt could be "manually" adjusted from time to
time to enhance their potential to capture solar energy. Whereas this latter option would be
more expensive than conventional static installations (due to the needed mechanical gear
and manual labor), it would require significantly fewer resources that automated solar
tracking variants.

This example applies a high-resolution modelling approach together with order of
magnitude cost-estimation to compare the energetic output and estimated installation and
maintenance cost of static, fully dynamic, and multiple instances of recurrent manually
executed directional adjustment of the PV panels.

Utilizing modeling methods and algorithms mentioned in the previous example, different
panel slopes, directions could be parametrically assessed for the magnitude of generated
electricity as a function of the solar radiation intensity at the installation's location.

The study scenario considered flat roof PV panels installation, where all panels were
assumed to be of the same type, namely monocrystalline silicon (mono-Si) with a nominal
module efficiency of 17.8% connected to a string inverter with a maximum efficiency of
97.5%. To streamline option comparison, obstruction issues (due to objects in the
surroundings or due to adjacent panels) were not taken into consideration.

Four different locations were chosen for the study: Helsinki (Finland), Vienna (Austria),
Santa Fe (USA), and Singapore. Table 4 contains basic geographic and climatic information
on the locations for PV module installations. The source of the information included in
this table regarding mean ambient air temperature, annual solar radiation, and annual
sunshine hours are respective Energy Plus Weather (EPW) files.

Five PV installation options were considered, as per description in Table 5. F-xx denotes a
static installation. Thereby, xx stands for the assumed panel tilt (degrees above horizon) for
each location (40, 30, 35, and zero degrees for Helsinki, Vienna, Santa Fe, and Singapore
respectively). The tilts were selected in such way to maximize annual solar gains given
location specific input weather data. Options S-1, M-1, and M-2 denote manual adjustment
of the tilt once every season, once every month, and twice every month, respectively. In all
these cases panels are assumed to face South. E-W option denotes automated East-West
solar tracking.

For the selected options and locations, the magnitudes of incident solar radiation and
generated electricity were computed.

Heterogeneous building related data streams for performance assessment applications

65

Table 4 Geographic and climatic information on the selected locations.

H
el

sin
ki

V
ie

nn
a

Sa
nt

a
Fe

Si
ng

ap
or

e

Latitude [°] 60.32 48.12 35.62 1.37
Longitude [°] 24.97 16.57 -106.08 103.98
Altitude [m] 56 190 1934 16

Mean annual air
temperature [°C] 5.2 10.0 10.8 27.5

Annual solar
radiation [kWh/m2] 947 1122 1986 1671

Annual sunshine
hours count 1669 1680 3554 1651

Table 5 Specification of PV panel options.

Configuration Remark

F-xx Static (fix) panel; tilt (xx) determined as
a function of location's latitude

S-1 Panels' tilt adjusted once every season

M-1 Panels' tilt adjusted once every month

M-2 Panels' tilt adjusted twice every month

E-W Automated sun tracking (East-West)

The optimal panel tilts for the manual adjustment scenarios were calculated as mean altitude
of the sun at solar noon in the specific location per adjustment frequency period. In the
more complex sun tracking scenario, the PV panel tilt is constantly adjusted to follow sun
on its path from east to west. An algorithm that minimizes the solar beam angle of incidence
and translates it to a so called true-tracking rotation angle is applied to determine a panel
tilt angle that maximizes solar gains (Marion and Dobos, 2013; Anderson and Mikofski,
2020). The solar positions, radiation intensities, and panel orientations data were used to
calculate total amount of power generated by the system in each of the cases.

In addition to computed energy magnitude, an effort was made to address the financial
ramifications of these options. To this end, solar equipment and installation costs, as well
as maintenance costs were estimated. Note that given multiple sources of significant
uncertainty in all relevant input assumptions for this calculation, this calculation is not
intended to be a final and accurate assessment. Such uncertainties pertain to relevant cost
items (installation, maintenance, labor etc.) and energy tariffs as well as their future
development. Rather, the purpose of this exercise was to provide a preliminary order of
magnitude impression of the financially relevant aspects of the subject. It is thus also

Demonstration of application

66

important to explicitly mention some of the major simplifications made in the calculation
process. For instance, no differentiation was made between the different locations with
regard to the assumed unit costs for first installation and maintenance the different PV
configurations. Likewise, no location-based differentiation was also made with regard to
the electricity price and its dependence on the fraction of the energy used by the building
versus the fraction exported to the grid. To establish a pertinent electricity pricing range
for option comparison, two contrasting positions at the two ends of use scenarios for the
generated electricity were considered. Whereas at one position it was assumed that all
generated electricity is locally used, at the opposing position it was assumed that all
electricity is supplied to the grid.

Estimated cost of a fixed PV installation is based on market price in Austria (Biermeyr et
al., 2020). The cost of manually adjustable system was assumed to be 1.5% higher than that
of a fixed system. This assumption is based on the market price difference between fix and
adjustable mounting systems, as well as the fraction of the racking system in relation to the
overall installation cost. The cost of the one axis tracker PV installation was assumed to be
10% higher than that of fix version (Fu et al., 2018).

The annual operation and maintenance costs were assumed to amount to 1 to 1.5% of the
investment costs for residential PV system (Fu et al., 2018). Following the pattern of
installation cost difference between fix and tracking systems, the base maintenance cost for
the tracking system installation was assumed to be 10% higher than in other scenarios.

Additional labor costs related to manual adjustment of the position of the panels depend
on the required frequency of adjustment and related manual labor cost. The estimated
hourly labor cost in the services sector in Austria is currently about 32 euros (Eurostat,
2020a).

The estimated annual monetary gains are based on average electricity prices for household
consumers (0.21 euros.kWh-1 according to Eurostat 2020b) and electricity feed-in tariff
(0.077 euros.kWh-1) according to RIS (2017) in Austria.

The resulting graphs as seen on Figure 42 to Figure 45 display the computed monthly
quantities of generated electricity per unit PV panel area for the aforementioned five
installation options and four installation locations.

Heterogeneous building related data streams for performance assessment applications

67

Table 6 includes computed annual values of generated electricity (in kWh.m-2) for the five
PV configuration options and the four locations. Table 7 entails the same information in
relative terms, that is the percentage deviation of the options with reference to the fixed tilt
(F-xx) option.

Figure 42 Monthly values of generated electricity (in kWh.m-2) for the for the location Helsinki.

Figure 43 Monthly values of generated electricity (in kWh.m-2) for the for the location Vienna.

Demonstration of application

68

Figure 44 Monthly values of generated electricity (in kWh.m-2) for the for the location Santa Fe.

Figure 45 Monthly values of generated electricity (in kWh.m-2) for the for the location Singapore.

Heterogeneous building related data streams for performance assessment applications

69

Table 6 Annual values of generated electricity (in kWh.m-2) for the five PV options and the four
locations.

PV
Option

Helsinki Vienna Santa
Fe

Singapore

F-xx 137 155 309 207

S-1 137 157 326 207

M-1 139 159 330 208

M-2 138 159 330 207

E-W 146 171 390 229

Table 7 Deviation (in %) of the annual values of generated electricity via options S-1, M-1, M-2, and E-
W from the fixed option (F-xx).

PV
Option

Helsinki Vienna Santa
Fe

Singapore

S-1 0.0 1.3 5.5 0.0
M-1 1.5 2.6 6.8 0.5
M-2 0.7 2.6 6.8 0.0
E-W 6.6 10.3 26.2 10.6

As alluded to before, to compare the options in economic terms, no differentiation was
made between the different locations with regard to the assumed unit costs for first
installation and maintenance the different PV configurations. Likewise, no differentiation
was made with regard to the electricity price and its dependence on the fraction of the
energy used by the building versus the fraction exported to the grid. Specifically, the
scenario involving full self-sufficiency assumed to correlate with 0.21 Euros.kWh-1 saving,
in contrast to the full export-to-grid scenario, which was assumed to result in 0.077
Euros.kWh-1 gain.

Table 8 provides an overview of the results of the economic analysis. It includes the unit
cost of installation (I), maintenance (M), annual electricity-based monetary gain for 100%
self-sufficiency (GS) versus 100% export to grid (GE), payback times (PB in years) for
additional costs as compared to the F-xx scenario for both electricity price schemes (PBS
and PBE). Payback times are based on simple payback analysis.

Demonstration of application

70

Table 8 Economic comparison of the options, including assumed unit cost (in euros.m-2) of installation (I),
maintenance (M), annual electricity-based monetary gain for 100% self-sufficiency (GS) versus 100%
export to grid (GE) as well as payback times (PB in years) for both electricity price schemes (PBS and

PBE).

 F-xx S-1 M-1 M-2 E-W
 I 295.7 300.2 300.2 300.2 325.3
 M 3.7 5.5 9.0 14.3 4.9

H
el

si
nk

i GS 28.8 28.8 29.2 29.0 30.7
GE 10.5 10.5 10.7 10.6 11.2
PBS 10.4 10.6 10.6 10.8 10.8
PBE 28.5 29.1 29.0 29.7 29.5

V
ie

nn
a

GS 32.6 33.0 33.4 33.4 35.9
GE 11.9 12.0 12.2 12.2 13.1
PBS 9.2 9.3 9.3 9.4 9.2
PBE 25.2 25.4 25.4 25.8 25.2

Sa
nt

a
Fe

 GS 65.0 68.5 69.4 69.4 82.0
GE 23.7 25.0 25.3 25.3 29.9
PBS 4.6 4.5 4.5 4.5 4.0
PBE 12.6 12.2 12.2 12.4 11.0

Si
ng

ap
or

e GS 43.5 43.5 43.7 43.5 48.1
GE 15.9 15.9 16.0 15.9 17.6
PBS 6.9 7.0 7.1 7.2 6.9
PBE 18.9 19.3 19.4 19.8 18.8

Table 9 Deviation (in %) of the estimated payback times for options S-1, M-1, M-2, and E-W from the

fixed option (F-xx).

PV
Option

Helsinki Vienna Santa
Fe

Singapore

S-1 2.1 0.8 -3.2 2.1
M-1 1.8 0.7 -3.3 2.8
M-2 4.3 2.4 -1.7 5.0
E-W 3.5 0.0 -12.6 -0.3

Table 9 facilitates the comparison of the estimated payback times in percentage terms, that
is the percentage deviation of the options S-1, M-1, M-2, and E-W with reference to the
fixed tilt (F-xx) option.

The comparison of PV installation options in view of their electricity generation potential (as shown in
Figure 42 toFigure 45 and

Heterogeneous building related data streams for performance assessment applications

71

Table 6 andTable 7) warrants certain conclusions. The added value of manual adjustment
of panels' tilt is de facto negligible (less than 3%) in case of three locations (Helsinki,
Vienna, Singapore) and rather modest in one case (Santa Fe, 5 to 7%). Specifically, the
frequency of these adjustments is inconsequential for all practical purposes and even
counterproductive (i.e., reduced gain by higher adjustment frequency) in some cases.

From purely energetic output point of view, as compared to the fixed installation option,
the automated E-W tracking option does appear to yield notably higher magnitudes, that is
from around 7% (Helsinki) to 26% (Santa Fe). However, the question remains if this
increased output justifies the necessary additional investment and maintenance costs. To
discuss this point, consider the data summarized in Table 8 andTable 9. This data appears
to suggest that, with the exception of the E-W option, the estimated payback times do not
significantly vary across the installation options considered. However, assumptions
regarding energy tariffs influence the payback times of PV panel installations significantly.
In the present case, moving from full internal utilization of generated electricity to full
export to the grid results in an almost threefold increase of the payback times. In summary,
the results imply that:

i. PV panel installations may be suggested to have reasonable payback times in general,
independent of the installation option and location, especially if a good fraction of the
generated electricity could be locally utilized.

ii. From the electricity production point of view, the manual adjustment options
considered in the present study, do not appear to offer a noteworthy advantage as
compared to the simpler fix-tilt option. The E-W option, on the other hand, does offer
higher electricity yields, particularly in locations with higher solar radiation intensity.

iii. From the standpoint of payback time, only the E-W option at Santa Fe location
displayed a significant reduction potential (approximately 13%). In the other cases, the
advantage of slightly higher electricity yields via adjustable options was offset due to the
necessary additional investment and maintenance costs.

As alluded to before, these results are to be regarded and interpreted cautiously. The
aforementioned uncertainties – particularly with regard to financial factors (installation and
maintenance costs) and the future evolution of electricity prices and tariffs – necessitate the
careful reassessment of the observed trends within the actual (individual) context and
circumstances of the settings considered for the installation of a PV system.

An exhaustive treatment of these uncertainties cannot be provided in the present
contribution. However, in order to exemplify the influence of selected model input
assumptions on option assessment results, a few basic instances were considered. One such
instance pertains to a conceivable option, whereby, the manual PV panel adjustment, as
well as basic maintenance (visual inspection, cleaning) are performed by building owners
themselves, hence incurring no costs. The assessment of this scenario suggests that the

Demonstration of application

72

overall payback time in comparison with the base case would not be significantly reduced
(ranging from no reduction at all to a maximum of 4%). Naturally, a more significant
reduction of the payback time can be expected, if the installation of PV system is supported
via subsidies. To demonstrate this, a scenario involving an installation subsidy at the level
of 250 euros per kWp (City of Vienna, 2021) was probed. This level of subsidy results in
an effective 16 to 18% reduction of the installation cost. This translates in turn, depending
on the electricity pricing and location, into a relative payback time reduction of 2 to 17%
as compared to the base case.

A bi-directional approach to building-integrated PV systems configuration

The configuration of local building-integrated photovoltaic (PV) installations can benefit
from effective and reliable computational support. Especially in cases where a high degree
of energy self-sufficiency is desired, it is important to optimally match the temporal profiles
of the building's energy demand and the available solar radiation intensity. In many
instances, such a matching is conducted in a mono-directional manner. As such, the
building's demand profile is taken as given, which is treated as the basis for the sizing and
configuration of the PV installation. The computational framework introduced in this
research facilities this type of matching, but it is intended to offer additional functionalities.
Specifically, the developed computational platform is conceived to facilitate a bi-directional
approach to supporting the design and configuration of PV installations meant to be
integrated in new building projects. Thereby, the idea is to probe pertinent building design
variables such as orientation, transparent envelope elements, thermal mass, daylight use,
and indoor climate control systems (for heating, cooling, ventilation, and lighting) in terms
of the magnitude and temporal distribution of the resulting building energy demand. The
proposed bi-directional iterative approach not only informs the configuration of PV system
based on the building's demand profile, but also allows for the exploration of the
consequences of the magnitude and temporal profile of the PV's energy supply potential
for the aforementioned relevant building design variables. In other words, the user can
move from the direction of a given building's energy demand profile toward derivation of
appropriate PV installation attributes, or from the opposite direction of a given PV-based
energy supply profile to explore implications for optimized building design variables. This
example presents said computational approach and its functionality in terms of an
illustrative case study.

The computational platform for the aforementioned bi-directional configuration support
of building-integrated PV systems entails three components. These components, which are
briefly described below, serve the i) parametric computation of a building's energy demand
profile, ii) parametric computation of a PV installation's electrical energy generation
potential, iii) computation, visualization, and navigation of the values of a number of whole-
system performance indicators.

The computation of the building's energy demand (and its temporal profile) involves a

Heterogeneous building related data streams for performance assessment applications

73

number of steps. In a first step, the geometry of the case study building is modelled in the
3D modelling environment Rhino. In a second step, the geometry model is augmented with
required input assumptions by using the integrated visual scripting platform Grasshopper
together with the Ladybug Tools plug-ins. Thereby, information about the building with
regard to the location, construction, occupancy, equipment load, lighting density, and the
heating, cooling, and ventilation system is specified. After the required input data is defined
in Honeybee, the building energy simulation are conducted using EnergyPlus.

The computation of the PV-based electricity similar to the previous two examples made
use of the Python programming language and pvlib-python library to calculate solar position,
optimal tilts, incident irradiance, and generated electricity for each of the applicable location
and scenario.

To estimate the amount of time it takes to recover the cost of a solar PV system investment,
one needs to look at two numbers, namely the estimated total system’s lifetime cost and
the annual monetary gains from the energy generated by the system. The cost of the former
consists of system’s initial purchase and installation price and the lifetime maintenance cost.
The estimated purchase cost depends on the solar array size and is based on a market price
kW peak (kWp) power (in Austria ca. 1650 €.kWp-1; Biermayr, 2020). The annual
maintenance costs are assumed to be at a level of 1% of the initial PV system’s investment
cost (Fu, 2018). Over the assumed lifetime of the system (25 years), the maintenance costs
should cover the renewal of the inverters, as well as panel servicing and cleaning.

The annual financial gains depend on the energy usage profile of a building, energy
generation profile of a PV system, and market electricity prices, both consumption and
feed-in tariffs (roughly 0.21 €.kWh-1 and 0.077 €.kWh-1 in Austria; Eurostat 2020; RIS
2020). The annual gain is the sum of monetary value of the energy saved through the local
coverage of the building’s energy demand and the sale of the surplus energy. Within the
framework of a simple payback analysis adopted in the present study, the final payback
duration is the ratio of a total lifetime solar PV system cost to the annual monetary gains
generated by the PV system.

To demonstrate the working of the proposed approach, consider the simple case of a
building design project involving a set of eight identical row houses located in a site in the
city of Vienna, Austria (see Figure 46). For the purpose of the present illustrative case study,
certain attributes of these houses are assumed to be fixed, including overall shape and
geometry, the U-value of external walls

(0.26 W.m-2.K-1) and windows (1.21 W.m-2.K-1), the occupancy density, and the heating,
cooling, and ventilation system (electricity based). Other aspects were considered to be
open for parametric analysis in conjunction with the PV installation options. Specifically,
the façade glazing fraction could be varied (from 20% to 40%), the row of buildings could
be rotated to face different orientations, and the ventilation rates could vary from a basic
constant rate (0.4 h-1) to options involving summer-time ventilative cooling.

Demonstration of application

74

The technical specification of the solar PV system under consideration corresponds to a
typical residential installation quality. The solar panels are considered to have nominal
power of 300 W and an efficiency of 17.8%. They are to be connected inverter units with
a maximum efficiency of 97.5%. Three aspects of the PV panels array were opened for
parameterization, namely the system size (18, 36, 54 kWp), the inclination of the panels
(15°, 30°, 45°) and the alignment of the panels (SE, S, SW).

As stated previously, the proposed platform allows for the concurrent parametric modelling
of both building configurations and PV system configurations. To demonstrate the working
of the platform, the illustrative case of a building design project involving eight row houses
was considered. This building was to be equipped with a roof-top PV installation. Both
building and installation could be subjected to parametric analyses.

Given the demonstrative nature of the present treatment, a rather reduced set of both the
building and the PV systems was considered for parametric variation. These variables
included, in the case of the building block, the orientation of the building, the fraction of
glazing in the façade, and the ventilation rates. In case of the PV system, its overall size, as
well as the tilt and azimuth (orientation) of the PV panels were considered for parametric
analysis. Starting from a base case involving no PV system, it was possible to navigate
through the design-performance space with the overall objective of reducing the payback
time for the PV installation investment, or to increase the return on investment on such a
PV system.

Note that, this payback time is focused on the PV installation only, and does not address
the expenditures for the building itself. Certain changes in design variables (such as the
glazing to wall ratio), however, may influence the building construction investment.
Whereas the present case study did not consider the global payback time for both building
and PV-system investments as the designated performance indicator, this can be
implemented in the system, given the availability of pricing information concerning various
building design options.

These simplifications notwithstanding, the prototypical implementation of the proposed
approached displayed a promising capacity to support the navigation of option space and
the convergence toward increasingly high-performance solutions. Note that the proposed
navigation strategy is distinct form a one-time optimization approach meant to identify the
optimal solution within the design-performance space. Rather, the idea is to support an
open user-driven iterative and bi-directional search, thereby exploring different
constellations of the building and PV-system attributes in view of their implications for the
designated performance indicator.

To exemplify the characteristics of such navigation processes, Figure 47 illustrates a
sequence of successive changes to either building or PV systems variables leading to steady
reduction of the value of the selected performance indicator, that is, in this case, the
payback time for the investment costs of the PV systems and their maintenance

Heterogeneous building related data streams for performance assessment applications

75

expenditures. Note that, due to the difference in the electricity buying and selling prices,
the magnitude of the performance indicator, namely payback time, is influenced by the level
of matching between the temporal profiles of the building's electricity demand and the PV
installation's supply. Obviously, given the assumed pricing scheme, variants that maximize
the coverage of electricity demand via PV-based electricity are advantageous. Similarly,
building design solutions that increase electricity demand during low-supply periods lead to
the need for increased purchase of high-price electricity and are thus disadvantageous in
view of the selected performance indicator. The data set generated through the
aforementioned navigation process and depicted in Figure 47 is rather extensive. As such,
Figure 47 shows the evolving – continuously improving – value of the performance
indicator (payback time, y-axis) over the entire course of the convergence process (x-axis)
in terms of the successive states of the designs.

For visualization and analysis purposes, this data can be disaggregated in different ways.
For instance, Figure 48 shows the data in terms of three distinct sets, each corresponding
to a different overall PV system size. As mentioned before, the various positions in these
functions represent different design states (i.e., different concrete constellations of variable
values pertaining to the building and the PV system). As such, the changes in the individual
variable values cannot be directly observed form this Figure 48. Specifically, Figure 47 and
Figure 48 also do not explicitly display the interesting and dynamic back and forth in the
evolution of the evolving building-related variables and the PV system-related variables. To
pursue this matter further, a smaller number of design states spread over the trajectory was
randomly selected as depicted in Figure 49. This Figure entails again, for the smallest PV
size class (18 kWp) and natural ventilation option, the trajectory of the design variants. The
selected instanced highlighted in Figure 49 are further specified in Table 10, which includes
variables related to both the building and the PV system. Thereby, building design variables
pertain to the building (orientations E-W, SE-NW, S-N, SW-NE; glazing fraction of the
façade in %) and the PV system (PV panel tilt; PV panel azimuth SE, S, SW).

 It is instructive to consider the scope of reshuffling in the values of the different
variables as represented in Table 1. Both the building's energy demand profile and the PV
system's electricity generation profile change with each iteration, and these changes are
reflected in the evolving value of the performance indicator (in this case, the payback time
for the PV system). Consideration and analysis of this interdependency makes sense, if a
building-integrated PV system is considered as a lasting component of a building project.
Concurrent consideration of the designs of building and PV system does not mean that
strict and undue constraints are imposed on the freedom in the selection of building design
features. Interestingly, Figure 49 and Table 10 demonstrate that, for a certain fairly narrow
value range of the performance indicator, multiple and diverse configurations of building
design variables can provide similar levels of performance.

Demonstration of application

76

Figure 46 Schematic illustration of the eight-unit row house complex design located in the city of Vienna
(Austria).

Figure 47 Estimated payback time for PV system's installation and maintenance cost plotted across the

trajectory of the building and PV system variants.

Heterogeneous building related data streams for performance assessment applications

77

Figure 48 Estimated payback time for PV system's installation and maintenance cost plotted across the
trajectory of the building and PV system variants shown for three distinct classes of PV installation sizes.

Demonstration of application

78

Table 10 State descriptions of the design variables regarding the building (orientations E-W, SE-NW,
S-N, SW-NE; glazing fraction of the façade 20, 30, and 40 %) and the PV system (PV panel tilts
15, 30, 45 degrees; PV panel azimuth values SE, S, SW) for a selected number of design states along

the trajectory shown in Figure 49. As with Figure 49, the states in this Table are arranged in descending
order of the respective computed payback times in month.ec

Building Orientation Glazing PV Tilt PV Azimuth

E-W SE-
NW S-N SW-

NE 20% 30% 40% 15° 30° 45° SE S SW

Pa
yb

ac
k

tim
e

[m
on

th
s]

236 � � � �

228 � � � �

224 � � � �

221 � � � �

217 � � � �

215 � � � �

212 � � � �

211 � � � �

208 � � � �

207 � � � �

206 � � � �

204 � � � �

203 � � � �

202 � � � �

201 � � � �

200 � � � �

199 � � � �

198 � � � �

197 � � � �

196 � � � �

196 � � � �

195 � � � �

192 � � � �

192 � � � �

191 � � � �

187 � � � �

Heterogeneous building related data streams for performance assessment applications

79

Figure 49 Estimated payback time for PV system's installation and maintenance cost plotted across the

trajectory of the building and PV system variants shown for smallest PV installation size class and
natural ventilation options. Shown are also the positions of a set of randomly selected states with the

corresponding payback time expressed in months (see Table 10).

The proposed bi-directional computational approach to the concurrent performance
analysis of building designs and respective building-integrated PV system installations
method, allows not only for the exploration of the implications of buildings' energy demand
profile for the configuration of the PV system, but also the other way around: The PV
installation options can be explored in view of their potential implications for buildings'
design features. As such, the proposed approach facilitated the parametric and iterative
analysis of the both building design and PV configuration variables. Hence, those aspects
of the building design could be identified, for which the temporal structure of energy
demand and profile may be of relevance.

The presented approach involved wide spectrum of data both directly related to building
and building performance but equally the technical specification of the equipment and
various related financial aspects. The values of both the building design variables and the
PV system variables (but potentially also the variables related to finance) could be adjusted
within certain ranges. The results of operation of this computational framework verified its
utility toward the concurrent exploration of the option space pertaining to building and PV
system variables. Thereby, it could be demonstrated that a high level of overall performance

Demonstration of application

80

(expressed, for instance, in terms of the payback time for the PV system) can be achieved
with very different constellations of both building design aspects and PV system options.

Heterogeneous building related data streams for performance assessment applications

81

CHAPTER 4
Conclusion

4.1. Summary of contributions
The increasing presence and thus the importance of information and communications
technology (ICT) in most scientific and technological domains and areas in the last few
decades has led to an exponential growth in the volume of data. In order to make this
overwhelming flow of data re-usable and to make it more accessible for both users and
machines, the concept of ontologies and schemas was introduced.

The built environment domain equally benefits from the ICT advancements that enabled
among others building information modelling, performance modelling, simulation and
assessment. The building performance data (BPD) that drive the performance assessment
applications is increasingly available, but due to multiplicity of sources, types and formats
it is mostly syntactic, structural and semantic heterogeneous. To enable data interoperability
that allow for development of methods, tools and applications that operate across multiple
domains, scales and functions, it is necessary to establish versatile and robust ontologies.

Towards this end the building performance data (BPD) ontology was proposed. Such
ontology is expected to facilitate data re-use and utilization in performance assessment
applications.

This effort discussed the concept of ontologies and its current role across different fields
of science and technology. It then focused on the built environment and gives an overview
of the related ontologies that attempt to capture various aspects of the domain. Next,
motivated by the recognized paucity in comprehensive representation of dynamic building
performance related data, the BPD ontology and performance data schema was presented.
The foundation for the developed ontology and schema was an extensive survey of
common building performance indices, measures as well as monitoring data that explored
the potential categorical groups, sources, and properties of the building performance-

Conclusion

82

related variables. The proposed schema was shown to capture key features of wide range
of building performance variables in multiple performance domains, as illustrated by the
examples presented.

The standard process and potential challenges concerning transformation of heterogeneous
BPD were discussed. The said process where heterogeneous building performance related
(measured or simulated) data is pre-processed, transformed, ontologized and stored, was
exemplified on a large set of indoor monitoring data collected from an office building as
well as monitored environmental data collected by a local weather station.

Such semantically enriched dataset was then put to a use in a series of basic to advanced
building performance analysis and assessment scenarios. Specifically, potential of logical
querying of ontologically enriched data for use with visualization and statistical analysis
algorithms was tested. Moreover, a series of interfacing modules were developed that
allowed for connection of performance data with a specific environmental design software.
These interfaces were tested in various use case scenarios ranging from data visualization
to advanced performance analysis concerning human comfort, daylight and solar radiation.

Note that the algorithms and interfaces make use of the formalized vocabulary and
structure due to ontological processing. This formalization enables not only easy translation
of data to conform to input format of existing analysis tools but also facilitates development
of variety of performance applications that can make use of this defined data structure.

To further illustrate how the proposed data integration process can support multi-domain
integrative and collaborative engineering efforts, an original web-based tool as well as two
other application examples concerning building integrated PV systems were presented.
These applications require and involve a range of data sources, such as location-specific
climatic data (e.g. solar radiation), building related data (e.g. electricity demand profile),
photovoltaic equipment specifications and related financial aspects (e.g. investment costs,
maintenance costs, electricity pricing schemes). The applications make use of this data to
assess input variations and deliver or visualize a range of technically and/or financially
optimal options.

4.2. Future outlook
There is a recurring problem in the built environment field and there and it has two
components. On the one hand, sufficient robust ontology instances that give a potential
that was outlined in this effort must be developed and refined; on the other hand, these
need to be adopted by the industry as well as wider community.

The ontology adaptation and development process can be time consuming and difficult
(e.g. Industry Foundation Classes) as it often requires common interest (often financially
motivated) and consent of multiple stakeholders involved. Similar challenges with regard
to the implementation of ontologies and schemas for predominantly “static” aspect of the
built environment concern ontologies with regard to “dynamic” aspects such as building

Heterogeneous building related data streams for performance assessment applications

83

performance, maintenance or operation. In contrast to the purely market-driven use of
ontologies (especially by companies with a high concentration of financial power), for
example in search engines, social networks or knowledge systems, the ratio of demand to
effort in built environment domain and more so in fields related to dynamic building data
is not that high. Therefore, acquiring capital investment for the development of universal
ontologies is a challenge.

The motivation to develop and more commonly implement a wider scope of ontologies
related to the built environment can be nurtured by policy makers due to the growing
awareness and need for a sustainable approach to the design, construction and operation
of buildings. In some countries, this is already happening in relation to publicly procured
buildings where IFC-driven BIM modeling is being enforced. Likewise, imposed
requirements for ontologically systematized information processing should be useful in
relation to the broader aspects of the domain of the built environment (and related
domains) by enabling, among other things, scalable performance optimization, evaluation,
and novel and comprehensive cross-domain solutions.

References

84

References
Project Related Publications
Notice: Major parts of this contribution have been formerly included in the following
publications.

Mahdavi, A. and Wolosiuk, D. (2021). Ontologically streamlined data for building design
and operation support (Chapter). Intelligent Environments - Advanced Systems for a
Healthy Planet. Droege, P. (edt.), Elsevere. (To be published, 2021)

Wolosiuk, D., Schuss, M., and Mahdavi, A. (2021). Performance comparison of static and
adjustable photovoltaic panels. Proceedings of the 17th IBPSA Conference, Bruges,
Belgium, 1-3 September 2021.

Mahdavi, A., Wolosiuk, D., and Berger, C. (2021). A bi-directional approach to building-
integrated PV systems configuration. 8th International Buildings Physics Conference
2021, Copenhagen, Denmark.

Wolosiuk, D. and A. Mahdavi, A. (2020a). Application of ontologically structured data for
building performance analysis. Proceedings of the 11th annual Symposium on
Simulation for Architecture & Urban Design (SimAUD). Vienna (Austria). 25-27 May
2020.

Wolosiuk, D., and Mahdavi, A. (2020b). Application of ontologically streamlined data for
building performance analysis. Proceedings of the 13th European Conference on
Product & Process Modelling (ECPPM 2021), 15-17 September 2021, Moscow,
Russia

Heterogeneous building related data streams for performance assessment applications

85

Mahdavi, A. and Wolosiuk D. (2019a). Integration of operational data in building
information modelling: From ontology to application. CLIMA 2019 Congress. E3S
Web Conf. Volume 111.

Mahdavi, A. and Wolosiuk D. (2019b). A Building Performance Indicator Ontology:
Structure and Applications. 16th International IBPSA Conference.

References

86

Bibliography
Abecker A., van Elst L. (2009) Ontologies for Knowledge Management. In: Staab S., Studer
R. (eds) Handbook on Ontologies. International Handbooks on Information Systems.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92673-3_32

Anderson, K. and Mikofski, M. (2020). Slope-Aware Backtracking for Single-Axis Trackers.
Technical Report. NREL/TP-5K00-76626. National Renewable Energy Laboratory.
Golden, CO (USA).

Ashburner, M., Ball, C. A., Blake et al., (2000). Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium. Nature genetics, 25(1), 25–29.
https://doi.org/10.1038/75556

ASHRAE (2001). International Weather for Energy Calculations (IWEC Weather Files)
User’s Manual and CD-ROM. Atlanta, GA (USA).

Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong, D., Johansen, A., Koh, J.,
Ploennigs, J., Agarwal, Y., Berges, M., Culler, D., R.K. Gupta, M.B. Kjærgaard, M.
Srivastava, K. Whitehouse, (2018). Brick: metadata schema for portable smart building
applications, Appl. Energy 226 (2018) 1273–1292.

Berners-Lee, T., Hendler, J.A., Ora, L. (2001). The SemanticWeb. Scientific American
284(5):34–43. [Online]. Available: https://www.scientificamerican.com/article/the-
semantic-web [Accessed: January 2021].

Biermayr, P. et al. (2020). Innovative Energy Technologies in Austria: Market Development
2019. Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and
Technology (BMK). Vienna (Austria).

Bodenreider, O., Mitchell, J. A., & McCray, A. T. (2005). Biomedical ontologies. Pacific
Symposium on Biocomputing. Pacific Symposium on Biocomputing, 76–78.
https://doi.org/10.1142/9789812704856_0016

Borrmann, A., Beetz, J., Koch, C., Liebich, T. & Muhic, Sergej. (2018). Industry Foundation
Classes: A Standardized Data Model for the Vendor-Neutral Exchange of Digital Building
Models. 10.1007/978-3-319-92862-3_5.

Brick Consortium (2021a). Brick Consortium Kickoff [Available at:
https://brickschema.org/docs/Consortium_Kickoff_2021.pdf [Accessed: May 2021]

Brick Consortium (2021b). Brick Ontology Documentation.
[Online]. Available: https://docs.brickschema.org [Accessed: February 2021]

buildingSMART (2021a). buildingSMART - The International Home of BIM [Online].
Available: http://buildingsmart.org [Accessed: May 2021].

Heterogeneous building related data streams for performance assessment applications

87

buildingSMART (2021b). IFC4.3 Documentation. [Online]. Available: http://ifc43-
docs.standards.buildingsmart.org [Accessed: May 2021].

BuildingSync, 2021. BuildingSync schema. [Online]. Available: https://buildingsync.net/
[Accessed: May 2021]

City of Vienna (2021). Green electricity systems or photovoltaic systems - funding
application. [Online]. Available: https://www.wien.gv.at/amtshelfer/bauen-
wohnen/energie/alternativenergie/oekostromanlagen.html [Accessed: April 2021]

Constantinou, N. (2017). A comprehensive multi-domain building performance indicator
catalogue. Master thesis. Department of Building Physics and Building Ecology, TU Wien.
Vienna (Austria).

Crawley, D.B., Hand, J.W., Lawrie. L.K. (1999). Improving the Weather Information
Available to Simulation Programs. Proceedings of Building Simulation ’99, Volume(II).
Kyoto (Japan), September 1999.

Davies, J., Fensel, D., van Harmelen, F. (eds) (2002). Towards the Semantic Web:
Ontology-driven Knowledge Management. ISBN: 978-0-470-84867-8. Wiley, London.

Davies, J., 2010. Lightweight Ontologies, in: Theory and Applications of Ontology:
Computer Applications, R. Poli, M. Healy and A. Kameas, eds,Springer, Dordrecht,
Netherlands, pp. 197–229.1272doi:10.1007/978-90-481-8847-5_9.1273.

DeGraw, J., Field-Macumber, K., Long, N., Goel, S. , BuildingSync® in Action : example
implementations, vol. 2018, ACEEE Summer Study Energy Effic Build (2018), pp. 1-12

Domingue J., Fensel D., Hendler J.A., 2011. Introduction to the Semantic Web
Technologies. In: Domingue J., FenselD., Hendler J.A. (eds) Handbook of Semantic Web
Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92913-
0_1

Domingue, J., Fensel, D. and Hendler, J.A.(eds), 2011. Handbook of semantic web
technologies, Springer, doi:10.1007/978-3-540-92913-0.

EnergyPlus, 2021. [Online]. Available: https://energyplus.net/ [Accessed: May 2021]

Esnaola-Gonzalez, I.; Díez, F.J. 2020. RESPOND Ontology Specification. [Online].
Available: https://respond-project.github.io/RESPOND-Ontology/respond/index-
en.html [Accessed: January 2021].

ETSI, European Telecommunications Standards Institute (2020). SAREF: The Smart
Applications REFerence ontology. [Online]. Available: https://saref.etsi.org/core/v3.1.1/
[Accessed: March 2021]

European Commission and TNO, (2015). Study on Semantic Assets for Smart Appliances
Interoperability. [Online]. Available:

References

88

https://sites.google.com/site/smartappliancesproject/deliverables [Accessed: May 2021]

Eurostat, the statistical office of the European Union (2020a). Labour cost levels by NACE
Rev. 2 activity. Electronic dataset. [Online]. Available:
https://ec.europa.eu/eurostat/web/products-datasets/-/lc_lci_lev [Accessed: January
2021].

Eurostat, the statistical office of the European Union (2020b). Electricity prices for
household consumers - bi-annual data (from 2007 onwards). Electronic dataset. [Online].
Available: https://ec.europa.eu/eurostat/web/products-datasets/-/nrg_pc_204
[Accessed: January 2021].

Fanger, P.O., (1970). Thermal Comfort Analysis and Applications in Environmental
Engineering. Mcgraw-Hill, New York.

Foliente, Greg. (2000). Developments in performance-based building codes and standards.
Forest Products Journal. 50. 12-21.

Fu, R., Feldman, D. and Margolis, R. (2018). U.S. Solar Photovoltaic System Cost
Benchmark: Q1 2018. NREL/TP-6A20-72399. National Renewable Energy Laboratory.
Golden, CO (USA).

Genesereth, M. R., & Nilsson, N. J. (1987). Logical Foundations of Artificial Intelligence.
San Mateo, CA: Morgan Kaufmann Publishers.

Gómez-Pérez, A., Fernández-López, M., Corcho, O., (2007). Ontological Engineering:
with examples from the areas of Knowledge Management, e-Commerce and the Semantic
Web. (Advanced Information and Knowledge Processing). Springer-Verlag, Berlin,
Heidelberg.

Gruber T. (2009) Ontology. In: Liu. L., Özsu, M.T. (eds) Encyclopedia of Database
Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39940-9_1318

Guarino N., Oberle D., Staab S. (2009) What Is an Ontology?. In: Staab S., Studer R. (eds)
Handbook on Ontologies. International Handbooks on Information Systems. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92673-3_0

Guarino, N. and Giaretta, P., (1995). Ontologies and Knowledge Bases. In: Towards Very
Large Knowledge Bases, IOS Press, Amsterdam, 1-2.

Hartel, F. W., de Coronado, S., Dionne, R., Fragoso, G., & Golbeck, J. (2005). Modeling a
description logic vocabulary for cancer research. Journal of biomedical informatics, 38(2),
114–129. https://doi.org/10.1016/j.jbi.2004.09.001

Hay, J.E. and Davies, J.A. (1980). Calculations of the solar radiation incident on an inclined
surface. In Hay, J.E., Won, T.K. Proceedings of First Canadian Solar Radiation Data
Workshop. Ministry of Supply and Services. Toronto (Canada).

Heterogeneous building related data streams for performance assessment applications

89

Hipp, R.D., (2021). SQLite. [Online]. Available: https://www.sqlite.org/index.html.
[Accessed: April 2021].

Hitzler, P., M. Krötzsch, B. Parsia, P.F. Patel- Schneider and S. Rudolph, (2009) OWL 2
web ontology language primer. [Online]. Available: https://www.w3.org/TR/owl2-
primer/ [Accessed: February 2021]

Holmgren, W.F., Hansen, C.W., and, Mikofski, M.A. (2018). pvlib-python: a python
package for modelling solar energy systems. Journal of Open Source Software, 3(29), 884.

ISO 16739 (2013). Industry Foundation Classes (IFC) for data sharing in the construction
and facility management industries. International Organization for Standardization,
Geneva, Switzerland

International Organization for Standardization, (2018). ISO 16739-1:2018 Industry
Foundation Classes (IFC) for data sharing in the construction and facility management
industries — Part 1: Data schema

Ja ̈ger-Waldau, A. (2019). PV Status Report 2019 (EUR 29938 EN). Publications Office of
the European Union, Luxembourg, 2019, ISBN 978-92-76-12608-9.

JetBrains, (2021). The Python IDE. [Online]. Available:
https://www.jetbrains.com/pycharm/ [Accessed January 2021]

King, D. et al. (2004). Sandia Photovoltaic Array Performance Model, SAND Report 3535,
Sandia National Laboratories, Albuquerque, NM.

Lassila O, Swick RR. Resource description framework (RDF) model and syntax
specification.

Lassila, O., Swick, R. (Eds.), (1999). Resource description framework (RDF): model and
syntax specification. Technical report, W3C, 1999. W3C Recommendation 1999-02-22,
[Online]. Available: http://www.w3.org/TR/REC-rdf-syntax/ [Accessed May 2021].

Mahdavi A., (2011). People in Building Performance Simulation. In Hensen, J.L.M.,
Lamberts R. Building Performance Simulation for Design and Operation. Taylor & Francis
Group. New York (USA).

Mahdavi, A., 1998. Steps to general theory of habitability, Human Ecology Review 5(1).

Mahdavi, A., Bachinger, J., and Suter, G. (2005). Toward a unified information space for
the specification of building performance simulation results. In: Building Simulation 2005.
9th International IBPSA Conference, Aug. 15-18, Montreal (Canada). Editors: I.
Beausoleil-Morrison, M. Bernier. p.671-676.

Mahdavi, A., Glawischnig, S., Schuss, M., Tahmasebi, F., and Heiderer, A. (2016).
Structured Building Monitoring: Ontologies and Platform. Proceedings of ECPPM 2016:
The 11th European Conference on Product and Process Modelling. Limassol (Cyprus)

References

90

Mahdavi, A., Taheri, M. (2017). An Ontology for Building Monitoring. Journal of Building
Performance Simulation. 10(5-6), 499-508. DOI:10.1080/19401493.2016.1243730.

Mahdavi, A., Taheri, M., Schuss, M., Tahmasebi, F., and Glawischnig, S. (2018). Structured
Building Data Management: Ontologies, Queries, and Platforms. Exploring Occupant
Behavior in Buildings. Publisher: Springer. Editors: Andreas Wagner, William O'Brien,
Bing Dong. DOI: 10.1007/978-3-319-61464-9_10.

Marion, W. and Dobos, A. (2013). Rotation Angle for the Optimum Tracking of One-Axis
Trackers. NREL Technical Report. NREL/TP-6A20-58891. National Renewable Energy
Laboratory. Golden, CO (USA).

Pritoni, M., Paine, D., Fierro, G., Mosiman, C., Poplawski, M., Saha, A., Bender, J.,
Granderson, J., (2021). Metadata Schemas and Ontologies for Building Energy
Applications: A Critical Review and Use Case Analysis. Energies14, no. 7: 2024.
https://doi.org/10.3390/en14072024

Project Haystack, (2021a). Project Haystack - An Open Source initiative to streamline
working with IoT Data. [Online]. Available: https://project-haystack.org. [Accessed May
2021].

Project Haystack, (2021b). Implementing Project Haystack - Applying Haystack Tagging
for a sample building. [Online]. Available: https://project-
haystack.org/file/28/Reference-Implementation--Applying-Haystack-Tagging-for-a-
Sample-Building.pdf [Accessed May 2021].

Rasmussen, M.H., Pauwels, P., Hviid, C.A., Karlshøj, J., (2017a). Proposing a Central AEC
Ontology That Allows for Domain Specific Extensions, in: Proceedings of the Joint
Conference on Computing in Construction, Vol. 1, Heriot-Watt University, Heraklion,
Crete, Greece. ISBN 978-0-9565951-6-4.doi:10.24928/jc3-2017/0153.

Rasmussen, M.H., Pauwels, P., Lefrançois, M., Schneider, G.F., Hviid, C., Karlshøj, J.,
(2017b). Recent changes in the Building Topology Ontology, in: 5th Linked Data in
Architecture and Construction Workshop, Dijon, France, 2017b.
doi:10.13140/RG.2.2.32365.28647.

Rasmussen, Mads Holten & Lefrançois, Maxime & Schneider, Georg & Pauwels, Pieter.
(2020). BOT: the Building Topology Ontology of the W3C Linked Building Data Group.
Semantic Web. 10.3233/SW-200385.

Reda, I. and Andreas, A., (2004). Solar position algorithm for solar radiation applications.
Solar Energy, vol. 76, no. 5, pp. 577-589, 2004.

RIS, The Legal Information System of the Republic of Austria (2020). Ökostrom-
Einspeisetarifverordnung 2018 – ÖSET-VO 2018. BGBl. II Nr. 408/2017.

Rosse, C., and Mejino, J.L.V., (2007). The Foundational Model of Anatomy Ontology. In

Heterogeneous building related data streams for performance assessment applications

91

A. Burger, D. Davidson, and R. Baldock, editors, Anatomy Ontologies for Bioinformatics:
Principles and Practice, volume 6, pages 59-117, London, Springer.

Rubin, D.L., Nigam H. Shah, Natalya F. Noy, (2008). Biomedical ontologies: a functional
perspective, Briefings in Bioinformatics, Volume 9, Issue 1, January 2008, Pages 75–90,

Sánchez, D.M., Cavero, J.M., Martínez, E.M., (2007). The Road Toward Ontologies. In:
Sharman R., Kishore R., Ramesh R. (eds) Ontologies. Integrated Series in Information
Systems, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-37022-4_1

Schenck, D. A., and Wilson, P. R. (1993). Information Modeling the EXPRESS Way,
Oxford University Press.

Staab, S., Studer, R., (2009). Handbook on Ontologies. ISBN 978-3540709992 Springer,
Berlin.

Staab, S., Studer, R., Schnurr, H.P., Sure-Vetter, Y., (2001). Knowledge Processes and
Ontologies. IEEE Intelligent Systems. 16. 26-34. 10.1109/5254.912382.

Stein, J.S., (2012) The photovoltaic Performance Modeling Collaborative (PVPMC).
Proceedings 38th IEEE Photovoltaic Specialists Conference. Austin, TX (USA). 3-8 June
2012.

Taniar,D. and Wenny Rahayu, J., (2006). Web Semantics Ontology. IGI Global, USA.

Tregenza, P. R. 1987. Subdivision of the Sky Hemisphere for Luminance Measurements,
Lighting Research and Technology 19:13-14

Uschold, M. and Gruninger, M. (1996). Ontologies: Principles, methods and applications.
The Knowledge Engineering Review, 11(2), 93-136. doi:10.1017/S0269888900007797

Uschold, M. and King, M., (1995). Towards a Methodology for building ontologies. In:
Skuce D, ed. IJCAI’95m Workshop on Basic Ontological Issue in Knowledge Sharing.
Montreal, 6.1-6.10.

W3C, (2021). Linked Building Data Community Group. [Online]. Available:
https://www.w3.org/community/lbd/ [Accessed May 2021]

Wilcox, S. and W. Marion. (2008). User's Manual for TMY3 Data Sets. NREL/TP-581-
43156. National Renewable Energy Laboratory. Golden, CO (USA).

Wilde, P., 2018. Building Performance Analysis. 10.1002/9781119341901.

Yan, D., Hong, T., Dong, B., Mahdavi, A., D'Oca, S., Gaetani, I., Feng, X. (2017). IEA
EBC Annex 66: Definition and Simulation of Occupant Behavior in Buildings. Energy and
Buildings. 156. 10.1016/j.enbuild.2017.09.084.

References

92

List of Tables

Table 1 General BPD schema (modified based on Mahdavi 2018) 22
Table 2 Illustrative representation of three exemplary BPD variables following the

structure of the proposed schema. .. 23
Table 3 An overview of the performance variables available in the dataset that was used

in the implementation. .. 29
Table 4 Geographic and climatic information on the selected locations. 65
Table 5 Specification of PV panel options. .. 65
Table 6 Annual values of generated electricity (in kWh.m-2) for the five PV options

and the four locations. .. 69
Table 7 Deviation (in %) of the annual values of generated electricity via options S-1,

M-1, M-2, and E-W from the fixed option (F-xx). .. 69
Table 8 Economic comparison of the options, including assumed unit cost (in euros.m2)

of installation (I), maintenance (M), annual electricity-based monetary gain for
100% self-sufficiency (GS) versus 100% export to grid (GE) as well as payback
times (PB in years) for both electricity price schemes (PBS and PBE). 70

Table 9 Deviation (in %) of the estimated payback times for options S-1, M-1, M-2, and
E-W from the fixed option (F-xx). ... 70

Table 10 State descriptions of the design variables regarding the building (orientations
E-W, SE-NW, S-N, SW-NE; glazing fraction of the façade 20, 30, and 40 %) and
the PV system (PV panel tilts 15, 30, 45 degrees; PV panel azimuth values SE, S,
SW) for a selected number of design states along the trajectory shown in Figure 49.
As with Figure 49, the states in this Table are arranged in descending order of the
respective computed payback times in month.ec ... 78

Heterogeneous building related data streams for performance assessment applications

93

List of Figures

Figure 1 Industry Foundation Classes architecture overview. (source: buildingSmart
2021b) ... 7

Figure 2 Overview of the SAREF ontology (source: ETSI 2020) ... 8
Figure 3 Diagram of ProjectHaystack entities and their relationships. Here, a temperature

sensor (point) associated with a HVAC Unit (equipment) located in a building in
Gaithersburg, USA (site). (source: Project Haystack, 2021b) 10

Figure 4 Illustrative example of entities and their relationships as defined by the Brick
model. (source: Brick Consortium 2021b) .. 10

Figure 5 An overview of the main Behavior class of the obXML schema that implements
the DNAS framework. (source: Yan et al. 2017) ... 12

Figure 6 An overview of the five building performance categorical domains with their
subsequent subcategories and illustrative instances (see Constantinou 2017 for more
details). .. 18

Figure 7 An overview of the six building monitoring data categorical domains with their
subsequent subcategories and illustrative instances (modified based on Mahdavi and
Taheri 2017). .. 19

Figure 8 Schematic process overview for transformation (preprocessing, semantization,
storage) of performance-data for use in various downstream applications (modified
based on Mahdavi and Wolosiuk 2019b) .. 25

Figure 9 Office sensor locations plan... 31
Figure 10 An overview of available monitored environmental variables and monitoring

system architecture. .. 32
Figure 11 Sample content of a data source file used in the implementation. Two columns

shown relate to the time stamp and the corresponding measured values of the
indoor air temperature. .. 33

Figure 12 Exemplary content of csv output file generated by sky-scanner control
software. ... 34

Figure 13 Preview of the inventory file concerning wireless sensors and equipment. 37
Figure 14 Preview of the tabular file containing gathered details pertaining to

performance data and variables. ... 38
Figure 15 Content of a HDF5 file with ontologically structured performance data. 39
Figure 16 Information retrieval using python programming environment. Output of two

consecutive logical queries visible in the bottom window, the upper window
previews generated plots. .. 41

Figure 17 An annual tile map visualization of measured overhead illuminance levels in an
office area. .. 42

Figure 18 Trend preview of filtered variables in the selected time range (1-31.05.2016). . 43

References

94

Figure 19 An example of statistically relevant visualizations, generated from query
selected measured values of indoor air relative humidity variable instance (top: trend,
frequency distribution; bottom: box plot). ... 44

Figure 20 Coefficient of determination between measured indoor air temperatures in an
office area and earlier measurements of outdoor temperature (from half an hour to
three hours before). .. 45

Figure 21 Illustration of the correlation between measured indoor and (two-hour shifted)
outdoor temperatures... 45

Figure 22 Sky luminance camera processing stages. From luminance image to Tragenza
sky matrix. .. 47

Figure 23 Sky matrix generated from a luminance camera image visualized in Rhinoceros
3D environment. ... 47

Figure 24 A custom component for modification of EnergyPlus weather file, for use with
climate-based sky generator in solar radiation studies. ... 48

Figure 25 Custom BPD interfacing component (middle left) integrated into simulation
setup. ... 49

Figure 26 Visualization of the indoor illuminance simulation results based on local
historical data for Vienna. ... 49

Figure 27 Daylight Autonomy studies based on local data extracted from BPD stored in a
HDF5 repository. ... 50

Figure 28 An illustration of custom components created for selecting relevant variable
instances based on attribute filtering via interactive interface elements. 51

Figure 29 A custom data processing component for analysis period selection, data points
aggregation or missing data handling. ... 51

Figure 30 Example of a line chart generated with Ladybug native component from
extracted indoor air temperature variable data. ... 52

Figure 31 A tile map visualization of an indoor relative humidity variable, generated using
native LB “3DMap” component.. 52

Figure 32 Stages in Grasshopper visual programing model for psychometric chart
generation from ontologized data stored in hdf5. ... 53

Figure 33 Psychometric chart generated from the performance data stored in hdf5 file. . 54
Figure 34 Annual hourly tile map showing hours of the year outside the comfort

window. .. 54
Figure 35 Visualization of diffuse solar radiation generated from sky-scanner

measurements in Vienna, Austria... 55
Figure 36 Illustration of a building performance assessment scenario (visualization of

incident solar radiation density distribution across a complex roof configuration of
an existing building) supported by ontologically stream-lined monitoring-based
data. ... 56

Figure 37 An overview of the developed tool’s user interface. .. 60

Heterogeneous building related data streams for performance assessment applications

95

Figure 38 Isolines depicting computed cumulative electrical energy generated over a one-
year period (15 PV panels installed in Vienna, Austria) as a function of the panels'
orientation (azimuth and tilt) .. 61

Figure 39 Assumed electricity use profile (hourly values over the course of one year) 62
Figure 40 Isolines showing the calculated annual financial energy balance of a building

with integrated PV system. .. 62
Figure 41 Calculated annual balance depending on the number of PV modules and

electricity export price of a building-integrated PV system (panels orientation
azimuth/tilt - 180/35 degrees, electricity purchase price set at 20 cents per kWh) ... 63

Figure 42 Monthly values of generated electricity (in kWh.m-2) for the for the location
Helsinki... 67

Figure 43 Monthly values of generated electricity (in kWh.m-2) for the for the location
Vienna. .. 67

Figure 44 Monthly values of generated electricity (in kWh.m-2) for the for the location
Santa Fe. ... 68

Figure 45 Monthly values of generated electricity (in kWh.m-2) for the for the location
Singapore. ... 68

Figure 46 Schematic illustration of the eight-unit row house complex design located in
the city of Vienna (Austria). .. 76

Figure 47 Estimated payback time for PV system's installation and maintenance cost
plotted across the trajectory of the building and PV system variants. 76

Figure 48 Estimated payback time for PV system's installation and maintenance cost
plotted across the trajectory of the building and PV system variants shown for three
distinct classes of PV installation sizes. ... 77

Figure 49 Estimated payback time for PV system's installation and maintenance cost
plotted across the trajectory of the building and PV system variants shown for
smallest PV installation size class and natural ventilation options. Shown are also the
positions of a set of randomly selected states with the corresponding payback time
expressed in months (see Table 10). .. 79

References

96

Appendix
The following appendix contains a selection of source code written in the Python
programming language, which was created in the course of this research project
development.

=============================
BPI Sensor db files to BPD schema
=============================

import numpy as np
import h5py
import sqlite3
from pandas.io import sql
from datetime import datetime

Extract necessary data from CSV file (attributes etc)
my_data =
np.genfromtxt('/Users/dw/PycharmProjects/37project/Ontology/BPIdb_to_HDF5_sensorlist_ALL_2019_v2.csv',
 delimiter=',', dtype=None, encoding='UTF-8')

Set hdf5 file name
HDF5fileName = '/Users/dw/PycharmProjects/37project/Ontology/BPI_office_fromCSV_2019_new_190903.hdf5'

for x in my_data[2:]: # Iterate through every row (starting from third) in the my_data array (extracted
from CSV)

 if len(x[0]) > 10: # Check if the file name exists if entry exists(not an empty row)
 print('Currently processing: ' + x[0])
 sqlDBname = x[0]
 sqlDBsensorType = x[0].split('_')[0]

 sensorName = x[0][:-11] # Cut off last 11 characters of the DB name string

 # Create your connection.
 cnx = sqlite3.connect(
 '/Users/dw/PycharmProjects/37project/Ontology/mySQLdata/' + sqlDBsensorType + '/' + sqlDBname)

 # read the result of the SQL query into a DataFrame
 data = sql.read_sql("SELECT `_rowid_`,* FROM `data` ORDER BY `Date` ASC;", cnx)
 cnx.close()

 # CONVERT DATE STRINGS TO NUMERICAL VALUES and put to numpy array:
 date = np.array([int(datetime.fromisoformat(line).timestamp()) for line in
data['Date'].values]).astype(
 'uint32')

 # IMPORT SENSOR VALUES TO NUMPY ARRAY
 magnitude = np.array(data[sensorName].values.astype(x[27])) # x[27] - Data type in the csv file

 # CREATE NEW VARIABLE, ADD ATTRIBUTES, STORE MAGNITUDE & TIME DATA
 f = h5py.File(HDF5fileName, 'a') # Open read-write (create if doesn't exist)

 # Creates group (if not existent already) Category/SubCategory/Name of indicator
 variable = f.require_group('BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3])
 if x[4] != '': variable.attrs['Name'] = str(x[4])
 if x[5] != '': variable.attrs['Type'] = str(x[5])
 variable['Magnitude'] = magnitude
 if x[7] != '': variable.attrs['Direction'] = np.array(x[7].split()).astype(np.float32)
 if x[8] != '': variable.attrs['Unit'] = str(x[8])

 # Spatial Domain Attributes
 variableSD = f.create_group('BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3] +
'/SpatialDomain')
 if x[9] != '': variableSD.attrs['Point'] = np.array(x[9].split()).astype(np.float32)
 if x[10] != '': variableSD.attrs['Plane'] = str(x[10])
 if x[11] != '': variableSD.attrs['Volume'] = str(x[11])
 if x[12] != '': variableSD.attrs['TopologicalReference'] = str(x[12])
 if x[13] != '': variableSD.attrs['AggregationMethod'] = str(x[13])
 if x[14] != '': variableSD.attrs['GridSize'] = np.array(x[14].split()).astype(np.uint32)

 # Temporal Domain Attributes
 variableTD = f.require_group('BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3] +
'/TemporalDomain')
 variableTD['TimeStamp'] = date
 if x[16] != '': variableTD.attrs['Duration'] = float(x[16])
 if x[17] != '': variableTD.attrs['TimeStep'] = str(x[17])
 if x[18] != '': variableTD.attrs['AggregationMethod'] = str(x[18])

 # Frequency Domain Attributes
 variableFD = f.require_group(
 'BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3] + '/FrequencyDomain')
 if x[19] != '': variableFD.attrs['Range'] = np.array(x[19].split()).astype(np.uint32)
 if x[20] != '': variableFD.attrs['Band'] = np.array(x[20].split()).astype(np.uint32)
 if x[21] != '': variableFD.attrs['Weighting'] = str(x[21])
 if x[22] != '': variableFD.attrs['AggregationMethod'] = str(x[22])

 # AGENT
 variableAG = f.require_group('BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3] +
'/Agent')
 if x[23] != '': variableAG.attrs['AgentID'] = str(x[23])

 # NOTES
 variableNT = f.require_group('BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3] +
'/Notes')
 if x[24] != '': variableNT.attrs['DataSourceCategory'] = str(x[24])
 if x[25] != '': variableNT.attrs['DataSourceID'] = str(x[25])
 if x[26] != '': variableNT.attrs['DerivationMethodDetails'] = str(x[26])
 if x[28] != '': variableNT.attrs['DerivationMethodDetails'] = str(x[28])

 f.close()

################################
SKYSCANNER DATA Files to BPD #
################################

import pandas
import os
import re
import numpy as np
from datetime import datetime, timedelta

SkyscannerDataDir = '/Users/dw/PycharmProjects/37project/Ontology/SKY_SCANNER/'

fileList = []
dateList = []

for aFile in os.listdir(SkyscannerDataDir):
 if aFile.endswith(".csv"):
 if not aFile.startswith('.'):
 fileList = np.append(fileList, aFile)
 match = re.search(r'\d{2}\d{2}\d{2}', aFile)

fileList.sort()

Get all data and timestamps
nrOfDataYears = 9
magnitudeSR = np.empty((18300 * nrOfDataYears, 145), dtype=float)
magnitudeSL = np.empty((18300 * nrOfDataYears, 145), dtype=float)
magnitudeSPdirection = np.empty(18300 * nrOfDataYears, dtype=float)
magnitudeSPelevation = np.empty(18300 * nrOfDataYears, dtype=float)
date = np.empty(18300 * nrOfDataYears, dtype=int)
counter = 0
for aFile in fileList:

 data = pandas.read_csv(SkyscannerDataDir + aFile, header=8)
 data.rename(
 columns={'Unnamed: 0': 'Reading', 'Unnamed: 1': 'MeasurementStartTime', 'Unnamed: 2':
'MeasurementStopTime',
 'Unnamed: 148': 'SunDirection', 'Unnamed: 149': 'SunElevation'}, inplace=True)

 # transpose matrix:
 data = data.T
 readings = data.reindex(np.concatenate(
 (["Reading", "MeasurementStartTime", "MeasurementStopTime"],
 np.arange(16, 31, 1), np.arange(1, 16, 1),
 np.arange(45, 30, -1), np.arange(60, 45, -1),
 np.arange(73, 85, 1), np.arange(61, 73, 1),
 np.arange(96, 84, -1), np.arange(108, 96, -1),
 np.arange(118, 127, 1), np.arange(109, 118, 1),
 np.arange(132, 126, -1), np.arange(138, 132, -1),
 np.arange(142, 145, 1), np.arange(139, 142, 1),
 np.arange(145, 146, 1), ["SunDirection", "SunElevation"])))

 matchDay = re.search(r'\d{2}\d{2}\d{2}', aFile)

 for x in range(0, len(readings.columns)):
 if readings[x][0] == "L":
 # print(readings[x])
 matchTime = re.search(r'\d{2}:\d{2}:\d{2}', readings[x][1])

 date[counter] = int((datetime.strptime(matchDay.group() + matchTime.group(),
'%y%m%d%H:%M:%S') - timedelta(
 hours=1)).timestamp()) # the time stored in the skyscanner files is in utc +1

 print(datetime.strptime(matchDay.group() + matchTime.group(), '%y%m%d%H:%M:%S') -
timedelta(hours=1))
 magnitudeSL[counter] = np.array([readings[3:148][x]])
 magnitudeSPdirection[counter] = np.array([readings[148:149][x]])
 magnitudeSPelevation[counter] = np.array([readings[149:150][x]])

 # match.group()+match2.group() #join two regex match queries
 else:
 # print(a[x])
 magnitudeSR[counter] = np.array([readings[3:148][x]])
 counter = counter + 1

In case the number of measurements was smaller than declared 18300 * nr of years - cut "empty" rows
out.
date = date[0:counter]
magnitudeSL = magnitudeSL[0:counter]
magnitudeSR = magnitudeSR[0:counter]
magnitudeSPdirection = magnitudeSPdirection[0:counter]
magnitudeSPelevation = magnitudeSPelevation[0:counter]

np.save('magnitudeSL.npy', magnitudeSL)
np.save('magnitudeSR.npy', magnitudeSR)
np.save('dates.npy', date)

np.save('SunDirection.npy', magnitudeSPdirection)
np.save('SunElevation.npy', magnitudeSPelevation)

2nd version
CREATE NEW VARIABLE, ADD ATTRIBUTES, STORE MAGNITUDE & TIME DATA
import h5py

HDF5fileName = "/Users/dw/PycharmProjects/37project/Ontology/BPI_office_fromCSV_2019_new_190903.hdf5"
f = h5py.File(HDF5fileName, 'a') # Open read-write (create if doesn't exist)

Creates group (if not existent already) Category/SubCategory/Name of indicator
variableSR = f.require_group(
 'BPIcategories/ExternalConditions/SkyRadiance/SkyScanner') # Category/subCategory,variable
Category Sub_Category Variable

variableSR.attrs['Name'] = "SkyRadiance"
variableSR.attrs['Type'] = "quantitative"
variableSR['Magnitude'] = magnitudeSR
variableSR.attrs['Direction'] =
 np.array([np.concatenate((np.repeat(6, 30), np.repeat(18, 30),
 np.repeat(30, 24), np.repeat(42, 24), np.repeat(54, 18),
 np.repeat(66, 12), np.repeat(78, 6), [90])),

 np.concatenate((np.arange(0, 181, 12), np.arange(-168, 0, 12),
 np.arange(0, 181, 12), np.arange(-168, 0, 12),
 np.arange(0, 181, 15), np.arange(-165, 0, 15),
 np.arange(0, 181, 15), np.arange(-165, 0, 15),
 np.arange(0, 181, 20), np.arange(-160, 0, 20),
 np.arange(0, 181, 30), np.arange(-150, 0, 30),
 np.arange(0, 181, 60), np.arange(-120, 0, 60),
 [0]
))
], np.int16)

variableSR.attrs['Unit'] = "W/(m^2*sr)"
variableSRSD =
f.require_group('BPIcategories/ExternalConditions/SkyRadiance/SkyScanner/SpatialDomain')
variableSRSD.attrs['Point'] =
variableSRSD.attrs['Plane'] =
variableSRSD.attrs['Volume'] = "TU Wien"
variableSRSD.attrs['TopologicalReference'] = "Tower"
variableSRSD.attrs['AggregationMethod'] =
variableSRSD.attrs['GridSize'] =

Temporal Domain Attributes
variableSRTD =
f.require_group('BPIcategories/ExternalConditions/SkyRadiance/SkyScanner/TemporalDomain')
variableSRTD['TimeStamp'] = date
variableSRTD.attrs['Duration'] =
variableSRTD.attrs['TimeStep'] = "15min"
variableSRTD.attrs['AggregationMethod'] =

NOTES
variableSRNT = f.require_group('BPIcategories/ExternalConditions/SkyRadiance/SkyScanner/Notes')
variableSRNT.attrs['DataSourceCategory'] = "Sensor"
variableSRNT.attrs['DataSourceID'] = "SkyScanner"
variableNT.attrs['DerivationMethodDetails'] =
variableSRNT.attrs[
 'Remarks'] = "Variable's Direction attribute describes Altitude and Azimuth of the measurement
sample taken by sensor conforming with" \
 " Tregenza sky subdivision."

LUMINANCE
CREATE NEW VARIABLE, ADD ATTRIBUTES, STORE MAGNITUDE & TIME DATA

Creates group (if not existent already) Category/SubCategory/Name of indicator
variableSL = f.require_group('BPIcategories/ExternalConditions/SkyLuminance/SkyScanner')

variableSL.attrs['Name'] = "SkyLuminance"
variableSL.attrs['Type'] = "quantitative"
variableSL['Magnitude'] = magnitudeSL
variableSL.attrs['Direction'] = variableSR.attrs['Direction']
variableSL.attrs['Unit'] = "kcd/m^2"

variableSLSD =
f.require_group('BPIcategories/ExternalConditions/SkyLuminance/SkyScanner/SpatialDomain')
variablSLSD.attrs['Point'] =
variableSLSD.attrs['Plane'] =
variableSLSD.attrs['Volume'] = "TU Wien"
variableSLSD.attrs['TopologicalReference'] = "Tower"
variableSRSD.attrs['AggregationMethod'] =
variableSRSD.attrs['GridSize'] =

Temporal Domain Attributes
variableSLTD =
f.require_group('BPIcategories/ExternalConditions/SkyLuminance/SkyScanner/TemporalDomain')

variableSLTD['TimeStamp'] = date
variableSLTD.attrs['Duration'] =
variableSLTD.attrs['TimeStep'] = "15min"
variableSLTD.attrs['AggregationMethod'] =

NOTES
variableSLNT = f.require_group('BPIcategories/ExternalConditions/SkyLuminance/SkyScanner/Notes')
variableSLNT.attrs['DataSourceCategory'] = "Sensor"
variableSLNT.attrs['DataSourceID'] = "SkyScanner"
variableSLNT.attrs['DerivationMethodDetails'] =
variableSLNT.attrs[
 'Remarks'] = "Variable's Direction attribute describes Altitude and Azimuth of the measurement
sample taken by sensor conforming with" \
 " Tregenza sky subdivision."

f.close()

===
Find object by attribute and plot v2
===

import h5py
import matplotlib.pyplot as plt
from h5py import File
import time
from datetime import datetime

f: File = h5py.File('/Users/dw/PycharmProjects/37project/Ontology/HDFs/BPI_office.hdf5', 'r')

Attributes:
Xpos = 4
Ypos = 4.5
startDate = int(datetime.fromisoformat('2017-01-01 00:00:00').timestamp())
stopDate = int(datetime.fromisoformat('2017-12-31 23:59:59').timestamp())

a = []

def findspecial2(name, obj):
 if obj.attrs.get('point') is not None and obj.attrs.get('point')[0] == Xpos and
obj.attrs.get('point')[1] == Ypos:
 # print(obj)
 a.append(obj.parent)
 print(obj.parent)

t0 = time.time()
f.visititems(findspecial2)
t1 = time.time()

def plotGraphs(VariableList):
 for item in VariableList:
 print(item.name)
 dsetX = item['TemporalDomain/timeStamp']
 dsetY = item['magnitude']

 index = (dsetX.value > startDate) & (dsetX.value < stopDate)
 # extract indexed data and stor in a variable, close HDF5 file
 dsetY = dsetY.value[index]
 dsetX = dsetX.value[index]

 print('Dataset min date: ' + datetime.fromtimestamp(int(dsetX[0])).strftime('%Y-%m-%d
%H:%M:%S'))
 print('Dataset max date: ' + datetime.fromtimestamp(int(dsetX[-1])).strftime('%Y-%m-%d
%H:%M:%S'))
 plt.plot(dsetX[:], dsetY[:])
 # plt.title(item.name)
 plt.title(item.attrs.get('name') + 'trend')
 # plt.show()
 # plt.savefig(item.attrs.get('name')+'.pdf',bbox_inches='tight')
 plt.savefig('lin_' + item.attrs.get('name') + '.pdf', bbox_inches='tight')
 plt.show()
 plt.hist(dsetY, 50)
 plt.title(item.attrs.get('name') + ' frequency distribution')
 plt.savefig('hist_' + item.attrs.get('name') + '.pdf', bbox_inches='tight')
 plt.show()

 fig1, ax1 = plt.subplots()
 ax1.set_title(item.attrs.get('name') + 'box plot')
 ax1.boxplot(dsetY)
 plt.show()
 fig1.savefig('box_' + item.attrs.get('name') + '.pdf', bbox_inches='tight')

plotGraphs(a)
f.close()
===

PV explorer tool; web- Application demo
key components:
https://github.com/pvlib/pvlib-python
https://dash.plotly.com

import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pd
from dash.dependencies import State, Input, Output
from datetime import datetime as dt
import plotly.express as px
import pvlib
import glob, os

os.chdir("/Users/dw/PycharmProjects/37project/Ontology/PV_panels/Energy_Use_Profiles")
print("Available Irradiance data sources:")

n_clicks_glob = 0
scan for energy use profiles
eleConsumptionProfiles = []
for file in glob.glob("*.csv"):
 # global irradiance_data_sources
 if file != None:
 eleConsumptionProfiles.append(file)
 print(file.replace(".csv", ""))

scan for epw weather files
os.chdir("/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files")
weather_data_sources = []
for file in glob.glob("*.epw"):
 if file != None:
 weather_data_sources.append(file)
 print(file.replace(".epw", ""))

irradiance_model = 'haydavies'
irradiance_data_source = '/USA_TX_Austin.722540_TMY2.epw'

params = pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][
 'open_rack_glass_glass'] # https://pvlib-
python.readthedocs.io/en/stable/generated/pvlib.temperature.sapm_cell.html
PV_modules_list = pvlib.pvsystem.retrieve_sam('SandiaMod')
sapm_inverters_list = pvlib.pvsystem.retrieve_sam('CECInverter')

def instalation_costs_PV_area(panelArea, divider):
 instalationCosts = (269.09 * panelArea + 1319.4) / divider

 return instalationCosts

app = dash.Dash(
 __name__,
 meta_tags=[{"name": "viewport", "content": "width=device-width, initial-scale=1"}],
)

server = app.server
app.config.suppress_callback_exceptions = True

surface_azimuths = [90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270]
surface_tilts = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90]
panel_counts = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
inverter_price_index = {'high_end': 0.17, 'mainstream': 0.12, 'low_cost': 0.05}

def generate_cost_plot(inverter_price_index_type, dd_select_module, dd_select_inverter,
energy_export_price,
 energy_import_price, cost_function,
 start, end, weather_file, electricity_use_profile_file,
electricity_profile_element,
 investment_cycle):
 PV_lifespan = investment_cycle # TODO:fix naming
 global results
 results = pd.DataFrame()
 naive_times = pd.date_range(start=start, end=end, freq='1h')
 global system
 system = {'module': PV_modules_list[dd_select_module], 'inverter':
sapm_inverters_list[dd_select_inverter],
 'surface_azimuth': surface_azimuths, 'surface_tilt': surface_tilts, 'panel_count':
panel_counts}

 # prepare epw

 epw_file_path = '/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/' +
weather_file
 epw_data = pvlib.iotools.read_epw(epw_file_path, coerce_year=2019)

 # extract needed data from epw
 temp_air = epw_data[0]['temp_air']
 wind_speed = epw_data[0]['wind_speed']

 coordinates = [(epw_data[1]['latitude'], epw_data[1]['longitude'], epw_data[1]['city'],
epw_data[1]['altitude'],
 epw_data[1]['TZ'])]

 AnnnualHourlyEnergyUseProfileFile =
'/Users/dw/PycharmProjects/37project/Ontology/PV_panels/Energy_Use_Profiles/' +
electricity_use_profile_file
 eleConsumptionProfile = pd.read_csv(AnnnualHourlyEnergyUseProfileFile,
 index_col='Date/Time', parse_dates=True)
 eleConsumptionProfile[electricity_profile_element].groupby(
 eleConsumptionProfile[electricity_profile_element].index.hour).sum()
 loadProfile = eleConsumptionProfile[electricity_profile_element]
 loadProfile = loadProfile.tz_localize(int(epw_data[1]['TZ']) * 60 * 60)

 for latitude, longitude, name, altitude, timezone in coordinates:
 times = naive_times.tz_localize(int(timezone) * 60 * 60) # localizes to GMT

 # times = naive_times.tz_localize(None)
 solpos = pvlib.solarposition.get_solarposition(times, latitude, longitude)
 dni_extra = pvlib.irradiance.get_extra_radiation(times)
 airmass = pvlib.atmosphere.get_relative_airmass(solpos['apparent_zenith'])
 pressure = pvlib.atmosphere.alt2pres(altitude)
 am_abs = pvlib.atmosphere.get_absolute_airmass(airmass, pressure)
 tl = pvlib.clearsky.lookup_linke_turbidity(times, latitude, longitude)
 cs = pvlib.clearsky.ineichen(solpos['apparent_zenith'], am_abs, tl, dni_extra=dni_extra,
altitude=altitude)

 temp_final_panel_count = []
 temp_final_azimuth = []
 temp_final_tilt = []
 temp_final_annual_total_irradiance = []
 temp_final_annual_total_AC = []
 temp_final_annual_balance_kWh_deficit = []
 temp_final_annual_balance_kWh_surplus = []
 temp_final_annual_ac_deficit_cost_EUR = []
 temp_final_annual_ac_balance_EUR = []

 for azim in system['surface_azimuth']:

 temp_irr_val = [] # to get all annual values from a single azimuth
 temp_AC_val = [] # to get all annual AC output per selected panel values from a single
azimuth
 temp_deficiency = []
 temp_surplus = []
 temp_deficiency_series = []
 for tilt in surface_tilts:
 aoi = pvlib.irradiance.aoi(tilt, azim, solpos['apparent_zenith'], solpos['azimuth'])
 total_irradiance = pvlib.irradiance.get_total_irradiance(tilt,
 azim,
 solpos['apparent_zenith'],
 solpos['azimuth'],
 epw_data[0]['dni'],
epw_data[0]['ghi'],
 epw_data[0]['dhi'],
 dni_extra=dni_extra,
 model='haydavies')
 temps =
pvlib.pvsystem.temperature.sapm_cell(total_irradiance['poa_global'].tz_convert(timezone),
 temp_air, wind_speed, **params)
 effective_irradiance = pvlib.pvsystem.sapm_effective_irradiance(
 total_irradiance['poa_direct'], total_irradiance['poa_diffuse'],
 am_abs, aoi, system['module'])
 dc = pvlib.pvsystem.sapm(effective_irradiance, temps, system['module'])
 ac = pvlib.pvsystem.snlinverter(dc['v_mp'], dc['p_mp'], system['inverter'])
 annual_energy = ac.sum()
 annual_irradiance = total_irradiance['poa_global'].sum()

 for panel_count in system['panel_count']:
 print('panel count:', str(panel_count), 'azimuth:', str(azim), 'tilt', str(tilt))
 deficiency = (loadProfile * 1000 - (ac * panel_count))
 annual_deficiency = sum(deficiency[deficiency > 0])
 annual_surplus = sum(deficiency[deficiency < 0]) # TODO:newhere
 temp_final_panel_count.append(panel_count)
 temp_final_azimuth.append(azim)
 temp_final_tilt.append(tilt)
 temp_final_annual_total_irradiance.append(annual_irradiance)
 temp_final_annual_total_AC.append(annual_energy / 1000)
 temp_final_annual_balance_kWh_deficit.append(annual_deficiency / 1000)

 temp_final_annual_balance_kWh_surplus.append(annual_surplus / 1000)
 temp_final_annual_ac_deficit_cost_EUR.append(
 (annual_deficiency / 1000) * energy_import_price + 140 + (
 (system['module']['Area'] * 269.09 * panel_count + 1319.4) / 25))
 temp_final_annual_ac_balance_EUR.append((annual_deficiency / 1000 *
energy_import_price + 140 + (
 (system['module']['Area'] * 269.09 * panel_count + 1319.4) / 25)) + (
 annual_surplus / 1000 *
energy_export_price))

 CostPerPositionAndQuantity = {'panel_count': temp_final_panel_count, 'azimuth':
temp_final_azimuth,
 'tilt': temp_final_tilt, 'annual_irradiance':
temp_final_annual_total_irradiance,
 'annual_ac': temp_final_annual_total_AC,
 'annual_balance_deficit': temp_final_annual_balance_kWh_deficit,
 'annual_balance_surplus': temp_final_annual_balance_kWh_surplus,
 'annual_ac_deficit_cost_EUR': temp_final_annual_ac_deficit_cost_EUR,
 }
 print(cost_function)

 global PVnominalPower
 PVnominalPower = system['module']['Vmpo'] * system['module']['Impo']
 if cost_function == 'cost_function_1':

 results = pd.DataFrame.from_dict(CostPerPositionAndQuantity,
orient='index').round(1).transpose()
 results['annual_ac_balance_EUR'] = (results['annual_balance_deficit'] * energy_import_price +
140 + (
 (system['module']['Area'] * 269.09 * results['panel_count'] + 1319.4) / PV_lifespan))
+ (
 (results['annual_balance_surplus']) *
energy_export_price)
 results['balance_EUR_per_m2'] = results['annual_ac_balance_EUR'] / (
 results['panel_count'] * system['module']['Area'])
 results['deficit_cost_EUR_per_m2'] = results['annual_ac_deficit_cost_EUR'] / (
 results['panel_count'] * system['module']['Area'])
 results['system_cost_per_m2'] = (269.09 * results['panel_count'] * system['module']['Area'] +
1319.4) / (
 results['panel_count'] * system['module']['Area'])

 elif cost_function == 'cost_function_2':
 results = pd.DataFrame.from_dict(CostPerPositionAndQuantity,
orient='index').round(1).transpose()

 results['annual_ac_balance_EUR'] = (results['annual_balance_deficit'] * energy_import_price +
140 + (
 (system['module']['Area'] * 269.09 * results['panel_count'] + 1319.4 + (
 PVnominalPower * results['panel_count'] * inverter_price_index[
 inverter_price_index_type])) / PV_lifespan)) + (
 results['annual_balance_surplus'] *
energy_export_price)

 results['balance_EUR_per_m2'] = results['annual_ac_balance_EUR'] / (
 results['panel_count'] * system['module']['Area'])
 results['deficit_cost_EUR_per_m2'] = results['annual_ac_deficit_cost_EUR'] / (
 results['panel_count'] * system['module']['Area'])
 results['system_cost_per_m2'] = (269.09 * results['panel_count'] * system['module']['Area'] +
1319.4) / (
 results['panel_count'] * system['module']['Area'])

 elif cost_function == 'cost_function_3':

 module_price_index = {'high_efficiency': 0.32, 'maistream': 0.24, 'low_cost': 0.16} # july
2020 exc.vat
 results = pd.DataFrame.from_dict(CostPerPositionAndQuantity,
orient='index').round(1).transpose()
 results['balance_EUR_per_m2'] = results['annual_ac_balance_EUR'] / (
 results['panel_count'] * system['module']['Area'])
 results['deficit_cost_EUR_per_m2'] = results['annual_ac_deficit_cost_EUR'] / (
 results['panel_count'] * system['module']['Area'])
 results['system_cost_per_m2'] = (269.09 * results['panel_count'] * system['module']['Area'] +
1319.4) / (
 results['panel_count'] * system['module']['Area'])

 fig = px.line(results, x="panel_count",
 y="annual_ac_balance_EUR",
 animation_frame="tilt",
 range_x=[5, 50], # range_y=[2100,2600],
 hover_data=['azimuth', 'azimuth'],
 line_group="azimuth",
 color='azimuth',
 height=550,
 title=" Energy cost balance "

).update_traces(mode='lines+markers')

 # fig.data[0].update(mode='markers+lines')
 fig["layout"].pop("updatemenus")
 # fig.show()
 return fig

TEST the above function
generate_cost_plot('mainstream','Canadian_Solar_CS5P_220M___2009_',
'ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_',0.07,0.15,'cost_function_1', dt(2019, 1, 1), dt(2019,
12, 31))

def update_cost_plot(inverter_price_index_type, energy_export_price, energy_import_price,
cost_function,
 investment_cycle):
 PV_lifespan = investment_cycle # TODO:fix naming
 if cost_function == 'cost_function_1':
 results['annual_ac_balance_EUR'] = (results['annual_balance_deficit'] * energy_import_price +
140 + (
 (system['module']['Area'] * 269.09 * results['panel_count'] + 1319.4) / PV_lifespan))
+ (
 results['annual_balance_surplus'] *
energy_export_price)

 elif cost_function == 'cost_function_2':
 results['annual_ac_balance_EUR'] = (results['annual_balance_deficit'] * energy_import_price +
140 + (
 (system['module']['Area'] * 269.09 * results['panel_count'] + 1319.4 + (
 PVnominalPower * results['panel_count'] * inverter_price_index[
 inverter_price_index_type])) / PV_lifespan)) + (
 results['annual_balance_surplus'] *
energy_export_price)

 elif cost_function == 'cost_function_3':
 results['annual_ac_balance_EUR'] = (results['annual_balance_deficit'] * energy_import_price +
140 + (
 (system['module']['Area'] * 269.09 * results['panel_count'] + 1319.4 + (
 PVnominalPower * panel_count * inverter_price_index[
 inverter_price_index_type])) / PV_lifespan)) + (
 results['annual_balance_surplus'] *
energy_export_price)
 fig = px.line(results, x="panel_count",
 y="annual_ac_balance_EUR",
 animation_frame="tilt",
 range_x=[5, 50], # range_y=[2100,2600],
 hover_data=['azimuth', 'azimuth'],
 line_group="azimuth",
 color='azimuth',
 height=550,

).update_traces(mode='lines+markers')
 # fig.data[0].update(mode='markers+lines')
 fig["layout"].pop("updatemenus")
 # fig.show()
 return fig

def generate_contour_plot(dd_select_module, dd_select_inverter, panel_count, base_load, output_type,
start, end,
 weather_file, electricity_use_profile_file, electricity_profile_element,
energy_export_price,
 energy_import_price):
 energies = {}
 profiles = {}
 ACperOrient = {}
 AC_defficiency = {}
 AC_surplus = {}
 AC_defficiency_cost_EUR = {}
 AC_annual_balance_EUR = {}
 baseLoad = base_load

 naive_times = pd.date_range(start=start, end=end, freq='1h')
 system = {'module': PV_modules_list[dd_select_module], 'inverter':
sapm_inverters_list[dd_select_inverter],
 'surface_azimuth': surface_azimuths, 'surface_tilt': surface_tilts}

 # prepare epw
 epw_file_path = '/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/' +
weather_file
 epw_data = pvlib.iotools.read_epw(epw_file_path, coerce_year=2019)
 # extract needed data from epw
 temp_air = epw_data[0]['temp_air']
 wind_speed = epw_data[0]['wind_speed']

 coordinates = [(epw_data[1]['latitude'], epw_data[1]['longitude'], epw_data[1]['city'],
epw_data[1]['altitude'],
 epw_data[1]['TZ'])]

 # prepare energy use profile
 # Energy Usage profiles
 if output_type == "deficiency_prof" or output_type == "cost_balance":
 AnnnualHourlyEnergyUseProfileFile =
'/Users/dw/PycharmProjects/37project/Ontology/PV_panels/Energy_Use_Profiles/' +
electricity_use_profile_file
 eleConsumptionProfile = pd.read_csv(AnnnualHourlyEnergyUseProfileFile,
 index_col='Date/Time', parse_dates=True)
 eleConsumptionProfile[electricity_profile_element].groupby(
 eleConsumptionProfile[electricity_profile_element].index.hour).sum()
 loadProfile = eleConsumptionProfile[electricity_profile_element]
 print("Annual load: " + str(int(loadProfile.sum()) / 1000) + '[kWh]')
 loadProfile = loadProfile.tz_localize(int(epw_data[1]['TZ']) * 60 * 60)

 for latitude, longitude, name, altitude, timezone in coordinates:
 times = naive_times.tz_localize(int(timezone) * 60 * 60) # localizes to GMT
 solpos = pvlib.solarposition.get_solarposition(times, latitude, longitude)
 dni_extra = pvlib.irradiance.get_extra_radiation(times)
 airmass = pvlib.atmosphere.get_relative_airmass(solpos['apparent_zenith'])
 pressure = pvlib.atmosphere.alt2pres(altitude)
 am_abs = pvlib.atmosphere.get_absolute_airmass(airmass, pressure)
 tl = pvlib.clearsky.lookup_linke_turbidity(times, latitude, longitude)
 cs = pvlib.clearsky.ineichen(solpos['apparent_zenith'], am_abs, tl, dni_extra=dni_extra,
altitude=altitude)
 for azim in system['surface_azimuth']:
 temp_irr_val = [] # to get all annual values from a single azimuth
 temp_AC_val = [] # to get all annual AC output per selected panel values from a single
azimuth
 temp_deficiency = []
 temp_surplus = []
 temp_final_annual_ac_deficit_cost_EUR = []
 temp_final_annual_ac_balance_EUR = []
 for tilt in surface_tilts:
 # print('tilt:',str(tilt),'Azimuth:',str(azim))
 aoi = pvlib.irradiance.aoi(tilt, azim, solpos['apparent_zenith'], solpos['azimuth'])
 total_irrad = pvlib.irradiance.get_total_irradiance(tilt,
 azim,
 solpos['apparent_zenith'],
 solpos['azimuth'],
 epw_data[0]['dni'],
epw_data[0]['ghi'],
 epw_data[0]['dhi'],
 dni_extra=dni_extra,
 model=irradiance_model)
 temps =
pvlib.pvsystem.temperature.sapm_cell(total_irrad['poa_global'].tz_convert(timezone),
 epw_data[0]['temp_air'],
epw_data[0]['wind_speed'],
 **params)

 effective_irradiance = pvlib.pvsystem.sapm_effective_irradiance(
 total_irrad['poa_direct'], total_irrad['poa_diffuse'],
 am_abs, aoi, system['module'])
 dc = pvlib.pvsystem.sapm(effective_irradiance, temps, system['module'])
 ac = pvlib.pvsystem.snlinverter(dc['v_mp'], dc['p_mp'], system['inverter'])
 # sum(ac[ac>100])
 # deficiency = (baseLoad - (ac*panelsQuantity))#in Wh

 if output_type == 'deficiency_prof' or output_type == "cost_balance":
 deficiency = (loadProfile * 1000 - (ac * panel_count))

 elif output_type == "deficiency_const": # todo maybe fix it for execution time???
 deficiency = (baseLoad - (ac * panel_count))

 annual_energy = ac.sum()
 temp_AC_val.append(annual_energy * panel_count / 1000) # to get kWh
 annual_irradiance = total_irrad['poa_global'].sum()
 temp_irr_val.append(annual_irradiance * panel_count / 1000)
 if output_type == 'deficiency_prof' or output_type == "deficiency_const" or
output_type == "cost_balance":
 annual_deficiency = sum(deficiency[deficiency > 0]) # todo: by putting this under
if and so on
 temp_deficiency.append(annual_deficiency / 1000)
 if output_type == "cost_balance":
 annual_surplus = sum(deficiency[deficiency < 0]) # todo: by putting this under if
and so on
 temp_surplus.append(annual_surplus / 1000)
 temp_final_annual_ac_deficit_cost_EUR.append(
 (annual_deficiency / 1000) * energy_import_price + 140 + (
 (system['module']['Area'] * 269.09 * panel_count + 1319.4) / 25))
 temp_final_annual_ac_balance_EUR.append((annual_deficiency / 1000 *
energy_import_price + 140 + (
 (system['module']['Area'] * 269.09 * panel_count + 1319.4) / 25)) + (
 annual_surplus / 1000 *
energy_export_price))

 profiles[str(azim) + '-' + str(tilt)] = total_irrad['poa_global'].groupby(
 total_irrad['poa_global'].index.hour).sum()

 energies[azim] = temp_irr_val
 ACperOrient[azim] = temp_AC_val
 if output_type == 'deficiency_prof' or output_type == "deficiency_const" or output_type ==
"cost_balance":
 AC_defficiency[azim] = temp_deficiency

 if output_type == "cost_balance":
 AC_surplus[azim] = temp_surplus
 AC_defficiency_cost_EUR[azim] = temp_final_annual_ac_deficit_cost_EUR
 AC_annual_balance_EUR[azim] = temp_final_annual_ac_balance_EUR
 # hour based irradiance profile

 # Make nice dateframe matrices:

 print(output_type)

 if output_type == 'total_Irr':
 plotTitle = 'Total Irradiance [kWh/m2] per orientation. Location: ' + str(coordinates[0][2]) +
' Lat: ' + str(
 coordinates[0][0]) + ' Lon:' + str(coordinates[0][1])
 plotInput = pd.DataFrame.from_dict(energies, orient='index').round(1).transpose() # Wh/m2
 plotInput.index = surface_tilts # kWh/m2

 elif output_type == 'total_AC':
 print('here' + output_type)
 print(system['module'])
 plotTitle = 'Total AC per orientation. ' + str(
 panel_count) + ' Panels. Area: ' + str(system['module']['Area'].__round__(2) *
panel_count) + 'm2. ' + str(
 coordinates[0][2]) + ' Lat: ' + str(coordinates[0][0]) + ' Lon:' + str(coordinates[0][1])
 plotInput = pd.DataFrame.from_dict(ACperOrient, orient='index').round(1).transpose() # Wh/m2
 plotInput.index = surface_tilts # kWh/m2

 elif output_type == 'deficiency_prof':
 print('selected')
 plotTitle = 'Deficiency per panel orientation. ' + str(
 panel_count) + ' Panels. Area: ' + str(
 round(system['module']['Area'] * panel_count)) + 'm2. ' + 'Panel Power rating: ' +
str(int(round(
 system['module']['Impo'] * system['module'][
 'Vmpo']))) + 'W ,' + ' Profile source: ' + 'USA_TX_Austin.722540_TMY2.csv'
 plotInput = pd.DataFrame.from_dict(AC_defficiency, orient='index').round(1).transpose() #
Wh/m2
 plotInput.index = surface_tilts # kWh/m2
 elif output_type == 'deficiency_const':
 plotTitle = 'Deficiency per panel orientation. ' + str(
 panel_count) + ' Panels. Area: ' + str(
 system['module']['Area'].__round__(2) * panel_count) + 'm2. ' + ' Base load threshold: ' +
str(
 baseLoad / 1000) + 'kWh'
 plotInput = pd.DataFrame.from_dict(AC_defficiency, orient='index').round(1).transpose() #
Wh/m2
 plotInput.index = surface_tilts # kWh/m2
 elif output_type == "cost_balance":
 plotTitle = 'Annual cost balance (system,import,export). ' + str(
 panel_count) + ' Panels (' + str(
 system['module']['Area'].__round__(2) * panel_count) + 'm2). Investment cycle: 25 years.'
 plotInput = pd.DataFrame.from_dict(AC_annual_balance_EUR, orient='index').round(1).transpose()
Wh/m2
 plotInput.index = surface_tilts # kWh/m2
 else:
 plotTitle = '???'

 # plotTitle = 'Deficiency per panel orientation. ' + str(panelsQuantity) + ' Panels.' + ' Profile
source: ' + 'USA_TX_Austin.722540_TMY2.csv'

 fig = go.Figure(data=go.Contour(
 z=plotInput,
 x=plotInput.columns,
 y=plotInput.index,
 hovertemplate=
 '<i>Azimuth</i>: %{x}°
' +
 '<i>Tilt</i>: %{y}°
' +
 'kWh defic.: %{z}</br>',
 name='',
 # colorscale='Electric',

 contours=dict(
 # coloring ='heatmap', smooths out the map
 showlabels=True, # show labels on contours
 # start=plotInput.values.min(),
 # end=plotInput.values.max(),

 # size=50,#contour step
 labelfont=dict(# label font properties
 size=12,
 color='white',

),
 # if we'd like to customize the bins
 # start=0,
 # end=8,
 # size=2,
 # dx=10,
 # x0=5,
 # dy=10,
 # y0=10,
),
 colorbar=dict(
 title='[kWh]', # title here
 titleside='top',
 titlefont=dict(
 size=14,
 family="Courier New, monospace",
 color="#7f7f7f")
)
))
 if output_type == 'total_AC' or output_type == 'total_Irr':
 fig.add_scatter(x=[plotInput.stack().idxmax()[1]], y=[plotInput.stack().idxmax()[0]],
 mode="markers",
 marker=dict(size=20, color="MediumPurple"),
 name='',
 hovertemplate=
 '<i>Azimuth</i>: %{x}°
' +
 '<i>Tilt</i>: %{y}°
' +
 '<i>kWh</i>: ' + str(plotInput.values.max()) + '
',
 # hoverinfo='none'
)
 elif output_type == "cost_balance":
 fig.add_scatter(x=[plotInput.stack().idxmin()[1]], y=[plotInput.stack().idxmin()[0]],
 mode="markers",
 marker=dict(size=20, color="MediumPurple"),
 name='',
 hovertemplate=
 '<i>Azimuth</i>: %{x}°
' +
 '<i>Tilt</i>: %{y}°
' +
 '<i>EUR/year</i>: ' + str(plotInput.values.min()) + '
',
 # hoverinfo='none'
)

 else:
 fig.add_scatter(x=[plotInput.stack().idxmin()[1]], y=[plotInput.stack().idxmin()[0]],
 mode="markers",
 marker=dict(size=20, color="MediumPurple"),
 name='',
 hovertemplate=
 '<i>Azimuth</i>: %{x}°
' +
 '<i>Tilt</i>: %{y}°
' +
 '<i>kWh defic.</i>: ' + str(plotInput.values.min()) + '
',
 # hoverinfo='none'
)

 if output_type == 'total_Irr':
 fig.data[0].colorbar.title = "[kWh/m2]"
 elif output_type == "cost_balance":
 fig.data[0].colorbar.title = "[EUR]"

 fig.update_layout(
 xaxis=dict(
 tickmode='linear',
 tick0=90,
 dtick=15
),
 yaxis=dict(
 tickmode='linear',
 tick0=0,
 dtick=5
),
 title=dict(text=plotTitle,
 x=0.5,
 y=1,
 xanchor='center',
 yanchor='top'
),
 xaxis_title="Azimuth [deg]",
 yaxis_title="Tilt [deg]",
 font=dict(

 family="Courier New, monospace",
 size=12,
 color="#666666"
),
 height=550, # try solving it with css
 margin=dict(l=20, r=20, t=35, b=20)
)

 # fig.show()

 return fig

def visualize_energy_use_profile(electricity_use_profile_file,
 electricity_profile_element): # TODO use source resd from column
names - list all with kWh
 # Create traces

 AnnnualHourlyEnergyUseProfileFile =
'/Users/dw/PycharmProjects/37project/Ontology/PV_panels/Energy_Use_Profiles/' +
electricity_use_profile_file
 eleConsumptionProfile = pd.read_csv(AnnnualHourlyEnergyUseProfileFile,
 index_col='Date/Time', parse_dates=True)
 # eleConsumptionProfile[electricity_profile_element].groupby(
 # eleConsumptionProfile[electricity_profile_element].index.hour).sum()
 loadProfile = eleConsumptionProfile[electricity_profile_element]
 loadProfile = loadProfile.sort_index()

 fig = go.Figure()
 fig.add_trace(go.Scatter(x=loadProfile.index, y=loadProfile.values,
 mode='lines',
 name='Profile'))
 # fig.add_trace(go.Scatter(x=ac_converted.index, y=ac_converted.values,
 # mode='lines',
 # name='AC'))
 fig.update_layout(title_text='Electricity use profile; Source file: ' + str(
 electricity_use_profile_file) + ' Electricity use source: ' +
str(electricity_profile_element),
 xaxis_rangeslider_visible=True)

 fig.show()

######################
APPLICATION LAYOUT #
######################

app.layout = html.Div(
 className="container scalable",
 children=[
 html.Div(
 id="banner",
 className="banner",
 children=[
 html.H6("_PV Tool_"),
 # html.Img(src=app.get_asset_url("plotly_logo.png")),
],
),
 html.Div(
 className="app_main_content",
 children=[
 html.Div(
 id="dropdown-select-outer",
 # id="dropdown-select-1stRow",
 children=[
 html.Div(
 [
 html.P("Solar Module"),
 dcc.Dropdown(
 id="dropdown-select-module",
 options=[{'label': i.replace("_", " "), 'value': i} for i in
 PV_modules_list.columns.sort_values()],
 # modules selector
 # options=[
 # {"label": "Departure", "value": "dep"},
 # {"label": "Arrival", "value": "arr"},
 #],
 value='Canadian_Solar_CS5P_220M___2009_',
),
],
 className="selector",
),

 html.Div([
 html.Div(
 [

 html.P(["Panel count"], style={"color": "#999999"}),
 dcc.Input(
 id="input-panel-count".format("number"),
 type="number",
 placeholder="10".format("number"),
 value=10,
),
],
 # className="selector",
 style={"margin-right": "20px"},
),

],
 className="selectormiddle",
 style={'width': '17%'}

),
 html.Div(
 [
 html.P("Solar radiation data source:"),
 dcc.Dropdown(
 id="dropdown-select-weather-file",
 options=[{'label': i.replace("_", " "), 'value': i} for i in
 weather_data_sources],
 value=weather_data_sources[0],

),
 # TODO initial value fix#html.P('Panels nominal Power Rating:
'+str(system['module']['Impo'] * system['module']['Vmpo'])+'W', style={ "color" : "#000000", "margin-
bottom" : "0", "font-size" : "0.7em", "line-height" : "1" }),

],
 id="weather-file-select",
 className="selector",
),

],
),
 html.Div(
 id="dropdown-select-2ndRow",
 children=[
 html.Div(
 [
 html.P("Inverter"),
 dcc.Dropdown(
 id="dropdown-select-inverter",
 options=[{'label': i.replace("_", " "), 'value': i} for i in
 sapm_inverters_list.columns.sort_values()],
 value='ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_',
),
],
 className="selector",
),

 html.Div(
 [
 html.P("Date Range"),
 dcc.DatePickerRange(
 id="date-picker-range",
 min_date_allowed=dt(2019, 1, 1),
 max_date_allowed=dt(2020, 1, 1), # set maximum limit according to
local casting
 initial_visible_month=dt(2019, 1, 1),
 minimum_nights=1,
 display_format="MMM Do, YY",
 start_date=dt(2019, 1, 1),
 end_date=dt(2019, 12, 31),
),
],
 id="date-picker-outer",
 className="selectormiddle",
 # style= {'width': 'auto'}
 style={'width': '17%'}
),

 html.Div(
 [
 html.P("Select Output"),
 dcc.Dropdown(
 id="dropdown-select-output",
 options=[
 {"label": "Total Irradiance", "value": "total_Irr"},
 {"label": "Total AC", "value": "total_AC"},
 {"label": "Ene. Deficiency b.o. Profile", "value":
"deficiency_prof"},
 {"label": "Ene. Deficiency b.o. Constant", "value":

"deficiency_const"},
 {"label": "Annual cost balance b.o. Profile", "value":
"cost_balance"},
],
 placeholder='Select desired output',
 # value='deficiency_prof',
),
 html.Div([
 html.P([""],
 id="profile-source-txt"), # "Energy consumption profile
source"
 dcc.Dropdown(
 id="dropdown-select-electricity-use-profile",
 options=[{'label': i.replace("_", " "), 'value': i} for i in
 eleConsumptionProfiles],
 placeholder="Select energy use profile source:",
),
 dcc.Dropdown(
 id="dropdown-select-profile-element",
 options=[
 {"label": "Electricity:Facility",
 "value": "Electricity:Facility [kWh](Hourly)"},
 {"label": "Heating:Electricity",
 "value": "Heating:Electricity [kWh](Hourly)"},
 {"label": "Cooling:Electricity",
 "value": "Cooling:Electricity [kWh](Hourly)"},
 {"label": "HVACFan:Fans:Electricity",
 "value": "HVACFan:Fans:Electricity [kWh](Hourly)"},
 {"label": "Electricity:HVAC", "value": "Electricity:HVAC
[kWh](Hourly)"},
 {"label": "Fans:Electricity", "value": "Fans:Electricity
[kWh](Hourly)"},
 {"label": "General:InteriorLights:Electricity",
 "value": "General:InteriorLights:Electricity
[kWh](Hourly)"},
 {"label": "Appl:InteriorEquipment:Electricity",
 "value": "Appl:InteriorEquipment:Electricity
[kWh](Hourly)"},
 {"label": "Misc:InteriorEquipment:Electricity",
 "value": "Misc:InteriorEquipment:Electricity
[kWh](Hourly)"},
 {"label": "Water Heater:WaterSystems:Electricity",
 "value": "Water Heater:WaterSystems:Electricity
[kWh](Hourly)"},

],
 placeholder='Select electricity consumption source',

),
],
 id="dropdown-select-electricity-use-profile-wrapper"),

 html.Div(

 [
 html.P("Base load [Wh]"),
 dcc.Input(
 id="input-base-load".format("number"),
 type="number",
 placeholder="1000".format("number"),
 value=1000,
),

],
 id="base-load-visibility-div",
 style={"margin-right": "20px"},
),
 # Options for annual cost balance visualization
 html.Div([
 html.P([""], id="annual-cost-balance-txt"),
 html.Div(
 [
 html.P("Enenrgy import price(EUR)"),

 dcc.Input(
 id="input-energy-import-price-
contour".format("number"),
 type="number",
 min=0.00,
 step=0.01,
 max=1,
 placeholder="0.15".format("number"),
 value=0.15,
),
 html.P("Enenrgy export price(EUR)"),
 dcc.Input(

 id="input-energy-export-price-
contour".format("number"),
 type="number",
 min=0.00,
 step=0.01,
 max=1,
 placeholder="0.07".format("number"),
 value=0.07,
),

],
 # className="selector",
 # style={"margin-top": "100px", "margin-right": "20px"},
),

 dcc.Dropdown(
 id="dropdown-select-electricity-use-profile-contour",
 options=[{'label': i.replace("_", " "), 'value': i} for i in
 eleConsumptionProfiles],
 placeholder="Select energy use profile source:",
),
 dcc.Dropdown(
 id="dropdown-select-profile-element-contour",
 options=[
 {"label": "Electricity:Facility",
 "value": "Electricity:Facility [kWh](Hourly)"},
 {"label": "Heating:Electricity",
 "value": "Heating:Electricity [kWh](Hourly)"},
 {"label": "Cooling:Electricity",
 "value": "Cooling:Electricity [kWh](Hourly)"},
 {"label": "HVACFan:Fans:Electricity",
 "value": "HVACFan:Fans:Electricity [kWh](Hourly)"},
 {"label": "Electricity:HVAC", "value": "Electricity:HVAC
[kWh](Hourly)"},
 {"label": "Fans:Electricity", "value": "Fans:Electricity
[kWh](Hourly)"},
 {"label": "General:InteriorLights:Electricity",
 "value": "General:InteriorLights:Electricity
[kWh](Hourly)"},
 {"label": "Appl:InteriorEquipment:Electricity",
 "value": "Appl:InteriorEquipment:Electricity
[kWh](Hourly)"},
 {"label": "Misc:InteriorEquipment:Electricity",
 "value": "Misc:InteriorEquipment:Electricity
[kWh](Hourly)"},
 {"label": "Water Heater:WaterSystems:Electricity",
 "value": "Water Heater:WaterSystems:Electricity
[kWh](Hourly)"},

],
 placeholder='Select electricity consumption source',

),
],
 id="annual-cost-balance-options-wrapper"),

 html.Div(id='mockup-button'),
 dcc.Input(style={'display': 'none'}),

],
 className="selector",

),

 html.Div(
 [
 html.P("_"),
 html.Button(id='submit-button-state', n_clicks=0, children='Submit ',
 style={"backgroundColor": "greenyellow"}),
 html.Div([
 html.P("_ "),
 html.Button(id='preview-profile-state', n_clicks=0,
children='Preview',
 style={"backgroundColor": "white"})
],
 id="prewiew-button-wrapper"),
],

),
],
),
 # -------------------------
 # Contour plot div
 html.Div(
 id="top-row",
 className="row",

 children=[
 html.Div(
 id="map_geo_outer",
 className="twelve columns",
 children=dcc.Loading(
 # contour plot
 children=dcc.Graph(id="contours")
),

),

],
 style={"width": "100%"},

),
 # --------------------------
 html.Div(
 id="dropdown-select-3rdRow",
 children=[
 html.Div(
 [
 html.P("Enenrgy import price(EUR)"),
 dcc.Input(
 id="input-energy-import-price".format("number"),
 type="number",
 min=0.00,
 step=0.01,
 max=1,
 placeholder="0.15".format("number"),
 value=0.15,
),

],
 # className="selector",
 style={"margin-top": "100px", "margin-right": "20px"},
),
 html.Div(
 [
 html.P("Enenrgy export price(EUR)"),
 dcc.Input(
 id="input-energy-export-price".format("number"),
 type="number",
 min=0.00,
 step=0.01,
 max=1,
 placeholder="0.07".format("number"),
 value=0.07,
),

],
 # className="selector",
 style={"margin-top": "100px", "margin-right": "20px"},
),
 html.Div(
 [
 html.P("Select Cost Function"),
 dcc.Dropdown(
 id="dropdown-select-cost-function",
 options=[
 {"label": "CF (Schrack Technik)", "value": "cost_function_1"},
 {"label": "CF (Österreichische Energieagentur)", "value":
"cost_function_2"},
 # {"label": "Cost Function 3", "value": "cost_function_3"},
],
 placeholder='Cost Function 1',
 value='cost_function_1',
),
 html.Div(
 [
 html.P("Select inverter class"),
 dcc.Dropdown(
 id="dropdown-select-inverter-type",
 options=[
 {"label": "High end", "value": "high_end"},
 {"label": "Mainstream", "value": "mainstream"},
 {"label": "Low cost", "value": "low_cost"},
],
 placeholder='Mainstream',
 value='mainstream',
),
],
 id="inverter-class-wrapper"
),

],
 className="selector",

 style={"margin-top": "100px", "margin-right": "20px"},
),

 html.Div(
 [
 html.P("Inv. cycle(y)"),
 dcc.Input(
 id="input-investment-cycle".format("number"),
 type="number",
 min=5,
 step=1,
 max=25,
 placeholder="25".format("number"),
 value=25,

),
],
 style={"margin-top": "100px", "margin-right": "20px"},

),

 html.Div(
 [
 html.P("_______________"),
 html.Button(id='submit-button-state-cost', n_clicks=0,
children='Submit'),
],
 style={"margin-top": "100px"},

),
],
),
 html.Div(id='date-text-output'),

 # 2nd plot (costs)div
 html.Div(
 id="bottom-row",
 className="row",
 children=[
 html.Div(
 id="cost_bottom",
 className="twelve columns",
 children=dcc.Loading(
 # avg arrival/dep delay by destination state
 children=dcc.Graph(id="cost_line")
),
),

],
 style={"width": "100%", },

),

],
),
],
)

Print date before 2nd plot
@app.callback(Output('date-text-output', 'children'),
 [Input("date-picker-range", "start_date"),
 Input("date-picker-range", "end_date"),
 Input("dropdown-select-weather-file", "value"),
 Input("dropdown-select-electricity-use-profile", "value"),
 Input("dropdown-select-profile-element", "value"),
 Input("input-investment-cycle", "value")
])
def update(start, end, solar_source, energy_use_profile, profile_element, investment_cycle):
 print(type(start))
 # return f'Time range: {start.replace("T00:00:00", " ")} - {end.replace("T00:00:00", " ")}'
 return f'INPUT DETAILS - Time range: {start.replace("T00:00:00", " ")} -
{end.replace("T00:00:00",
 " ")}.Investment
 cycle: {investment_cycle}
 ' \
 f'
 years.Solar
 radiation
 data
 src.: {solar_source}.Energy
 use
 profile
 src.: {energy_use_profile}.Energy
 use
 src.: {profile_element}.

 '

def generate_mockup_fig():
 # df = px.data.gapminder().query("country=='Canada'")
 # fig = px.line(df, x="year", y="lifeExp", title='Life expectancy in Canada')
 fig = go.Figure()
 fig.update_layout(
 xaxis={"visible": False},
 yaxis={"visible": False},
 annotations=[
 dict(
 xref="paper",
 yref="paper",
 text="SUBMIT INPUT SETTINGS",
 showarrow=False,
 font=dict(size=28)

)
]

)

 return fig

@app.callback(
 Output("contours", "figure"),
 [Input('submit-button-state', 'n_clicks')],
 [
 State("dropdown-select-module", "value"),
 State("dropdown-select-inverter", "value"),
 State("input-panel-count", "value"),
 State("input-base-load", "value"),
 State("dropdown-select-output", "value"),
 State("date-picker-range", "start_date"),
 State("date-picker-range", "end_date"),
 State("dropdown-select-weather-file", "value"),
 State("dropdown-select-electricity-use-profile-contour", "value"),
 State("dropdown-select-profile-element-contour", "value"),
 State("input-energy-export-price-contour", "value"),
 State("input-energy-import-price-contour", "value"),
],

)
def update_contours(n_clicks, dd_select_module, dd_select_inverter, panel_count, base_load,
output_type, start, end,
 weather_file, electricity_use_profile_file, electricity_profile_element,
energy_export_price,
 energy_import_price):
 # Update contour when dropdown or date-picker change
 print(n_clicks)
 if n_clicks != 0:
 if dd_select_module is None:
 dd_select_module = 'Canadian_Solar_CS5P_220M___2009_'

 if dd_select_inverter is None:
 dd_select_inverter = 'ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_'

 if panel_count is None:
 panel_count = 10

 if base_load is None:
 base_load = 1000

 if output_type is None:
 output_type = "total_Irr"

 if electricity_use_profile_file is None:
 electricity_use_profile_file = eleConsumptionProfiles[0]

 if electricity_profile_element is None:
 electricity_profile_element = "Electricity:Facility [kWh](Hourly)"

 start, end = start.replace("T", " "), end.replace("T", " ")
 return generate_contour_plot(dd_select_module, dd_select_inverter, panel_count, base_load,
output_type, start,
 end, weather_file, electricity_use_profile_file,
electricity_profile_element,
 energy_export_price,
 energy_import_price)
 else:
 return generate_mockup_fig()

@app.callback(

 Output("cost_line", "figure"),

 [Input('submit-button-state-cost', 'n_clicks')],
 [
 State("dropdown-select-inverter-type", "value"),
 State("dropdown-select-module", "value"),
 State("dropdown-select-inverter", "value"),
 State("input-energy-export-price", "value"),
 State("input-energy-import-price", "value"),
 State("dropdown-select-cost-function", "value"),
 State("date-picker-range", "start_date"),
 State("date-picker-range", "end_date"),
 State("dropdown-select-weather-file", "value"),
 State("dropdown-select-electricity-use-profile", "value"),
 State("dropdown-select-profile-element", "value"),
 State("input-investment-cycle", "value"),

],

)
def update_line_cost(n_clicks, inverter_price_index_type, dd_select_module, dd_select_inverter,
energy_export_price,
 energy_import_price,
 cost_function, start, end, weather_file, electricity_use_profile_file,
electricity_profile_element,
 investment_cycle):
 # Update contour when dropdown or date-picker change
 print(n_clicks)
 if n_clicks == 1:
 if inverter_price_index_type is None:
 inverter_price_index_type = 'mainstream'

 if dd_select_module is None:
 dd_select_module = 'Canadian_Solar_CS5P_220M___2009_'

 if dd_select_inverter is None:
 dd_select_inverter = 'ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_'

 if energy_export_price is None:
 energy_export_price = 0.07

 if energy_import_price is None:
 energy_import_price = 0.15

 if cost_function is None:
 cost_function = 1
 if investment_cycle is None:
 investment_cycle = 25

 # TODO: need to add title to cost function so that we know what#s on the graph
 if electricity_use_profile_file is None:
 electricity_use_profile_file = eleConsumptionProfiles[0]

 if electricity_profile_element is None:
 electricity_profile_element = "Electricity:Facility [kWh](Hourly)"

 start, end = start.replace("T", " "), end.replace("T", " ")

 print(n_clicks)

 return generate_cost_plot(inverter_price_index_type, dd_select_module, dd_select_inverter,
energy_export_price,
 energy_import_price,
 cost_function, start, end, weather_file,
electricity_use_profile_file,
 electricity_profile_element, investment_cycle)
 elif n_clicks > 1:

 return update_cost_plot(inverter_price_index_type, energy_export_price, energy_import_price,
cost_function,
 investment_cycle)

 else:
 return generate_mockup_fig()

reset clicks on
@app.callback(Output('submit-button-state-cost', 'n_clicks'),
 [Input("date-picker-range", "start_date"),
 Input("date-picker-range", "end_date"),
 Input("dropdown-select-profile-element", "value"),
 Input("dropdown-select-output", "value"),
 Input("dropdown-select-weather-file", "value")
])
def update(start, end, temp_val_1, temp_val_2, temp_val_3):

 return 0

preview button energy profile cost plot
reset clicks on
@app.callback(
 Output('mockup-button', 'children'),
 [Input('preview-profile-state', 'n_clicks'),],
 [State("dropdown-select-electricity-use-profile", "value"),
 State("dropdown-select-profile-element", "value"),
])
def update(n_clicks, electricity_use_profile_file, electricity_profile_element):
 print("Preview btn click state: " + str(n_clicks))
 if n_clicks != 0:
 visualize_energy_use_profile(electricity_use_profile_file, electricity_profile_element)
 return "" # return nothing

reset preview butto
@app.callback(Output('preview-profile-state', 'n_clicks'),
 [Input("dropdown-select-electricity-use-profile", "value"),
 Input("dropdown-select-profile-element", "value"),
 Input("dropdown-select-output", "value"),
])
def update(empty_1, empty_2, empty_3):
 return 0

inverter type dropdown visibility control
@app.callback(Output('inverter-class-wrapper', 'style'),
 [Input("dropdown-select-cost-function", "value"),
])
def update(dropdown_value):
 if dropdown_value == "cost_function_2":
 print(dropdown_value)
 return {'display': 'block'}
 else:
 return {'display': 'none'}

control profile selection display
@app.callback(Output('dropdown-select-electricity-use-profile-wrapper', 'style'),
 [Input("dropdown-select-output", "value"),
])
def update(dropdown_value):
 if dropdown_value == "deficiency_prof":
 print(dropdown_value)
 return {'display': 'block'}
 else:
 return {'display': 'none'}

@app.callback(Output('profile-source-txt', 'style'),
 [Input("dropdown-select-output", "value"),
])
def update(dropdown_value):
 if dropdown_value == "deficiency_prof":
 print(dropdown_value)
 return {'display': 'block'}
 else:
 return {'display': 'none'}

@app.callback(Output('base-load-visibility-div', 'style'),
 [Input("dropdown-select-output", "value"),
])
def update(dropdown_value):
 if dropdown_value == "deficiency_const":
 print(dropdown_value)
 return {'display': 'block'}
 else:
 return {'display': 'none'}

@app.callback(Output('prewiew-button-wrapper', 'style'),
 [Input("dropdown-select-output", "value"),
])
def update(dropdown_value):
 if dropdown_value == "deficiency_prof":
 print(dropdown_value)
 return {'display': 'block'}
 else:
 return {'display': 'none'}

@app.callback(Output("annual-cost-balance-options-wrapper", 'style'),
 [Input("dropdown-select-output", "value"),
 Input('submit-button-state-cost', 'n_clicks')
])
def update(dropdown_value, n_clicks):
 if dropdown_value == "cost_balance":
 print(dropdown_value)
 return {'display': 'block'}
 else:
 return {'display': 'none'}

 # Run the server

if __name__ == "__main__":
 app.run_server(
 debug=True, port=8054, dev_tools_hot_reload=False, use_reloader=False
)

BPD ontology to LADYBUG
List unique attributes in the selected file v1.0

import scriptcontext
import ghpythonremote
h5py = scriptcontext.sticky['h5py']
np= scriptcontext.sticky['numpy']
import Grasshopper.Kernel as gh

#=================
if _hdf5File != None and _attribute != None:

 hdf5File = _hdf5File

 objects_list=[]
 variables_name_list=[]
 uniqueNamesList=[]

 print "looking for: ", _attribute,
 #print len(_objects_list)
 #print _hdf5File

 def findspecial(name, obj):
 #print type(obj)
 #print name
 try:
 curName = ghpythonremote.obtain(obj.attrs.get(_attribute))
 #print curName
 if curName != None:
 uniqueNamesList.append(curName)
 except:
 print "warning findspecial, it's OK though"

 while True:

 if _hdf5File != None and len(_attribute) != 0:
 #print "hdf5+"
 f = h5py.File(_hdf5File, 'r')
 try:
 ghpythonremote.obtain(f.visititems(findspecial))
 except:
 print "warning visititems, retrying"
 uniqueNamesList=[]
 continue
 print "done"
 uniqueNamesList = ghpythonremote.obtain(np.unique(uniqueNamesList).tolist())
 print uniqueNamesList
 break

 else:
 print "input missing"
 break

BPD ontology to LADYBUG
Filter variables based on selected attribute v4.2

import scriptcontext
import ghpythonremote

h5py = scriptcontext.sticky['h5py']
import Grasshopper.Kernel as gh

if run:

 objects_list = []
 variables_name_list = []
 print
 "looking for: ", _attribute, " - ", _attributeValue

 def findspecial(name, obj):
 # print type(obj)
 # print name
 try:
 curName = obj.attrs.get(_attribute)
 # print curName
 if curName == _attributeValue:
 objects_list.append(obj)
 variables_name_list.append(name.split("/")[-1])
 except:
 print
 "warning findspecial, it's OK though"

 def findinobjlist(name, obj):
 # print obj.parent
 # print name
 try:
 curName = obj.attrs.get(_attribute)
 # print curName
 if curName == _attributeValue:
 objects_list.append(obj.parent)
 variables_name_list.append(obj.parent.name.split("/")[-1])
 except:
 print
 "warning findspecial, it's OK though"

 while True:

 if len(_objects_list) != 0 and _hdf5File is None:
 # print "obj+"
 # print _objects_list
 try:
 for x in _objects_list:
 x.visititems(findinobjlist)
 if x.attrs.get(_attribute) == _attributeValue:
 objects_list.append(x)
 variables_name_list.append(x.name.split("/")[-1])

 except:
 # print "warning visititems, retrying"
 objects_list = []
 variables_name_list = []
 break
 continue
 print
 "done_obj"
 break

 elif _hdf5File is not None and len(_objects_list) == 0:
 # print "hdf5+"
 f = h5py.File(_hdf5File, 'r')
 try:
 if _attribute == "Name" or _attribute == "Type" or _attribute == "Direction" or
_attribute == "Unit":
 f.visititems(findspecial)
 else:
 f.visititems(findinobjlist)

 except:
 print
 "warning visititems, retrying"
 objects_list = []
 variables_name_list = []
 continue

 print
 "done_hdf5"
 break

 elif _hdf5File is not None and len(_objects_list) != 0:

 warning = "As for now, only one input is allowed.\n" + \
 "Either HDF5 File or HDF5 objects list.\n" + \
 "Disconnect one of the sources and try again."
 w = gh.GH_RuntimeMessageLevel.Warning
 ghenv.Component.AddRuntimeMessage(w, warning)
 print
 "As for now, only one input is allowed."
 break
 else:
 print
 "no input"
 break

BPD ontology to LADYBUG
HDF5 object postprocessing Ladybug v1.5
DateTime period, segmentation/aggregation,
missing data handling

import sys
import scriptcontext
import ghpythonremote
import Grasshopper.Kernel as gh
import time
from datetime import datetime

h5py = scriptcontext.sticky['h5py']
np = scriptcontext.sticky['numpy']
pd = scriptcontext.sticky['pandas']

analysisPeriod = _analysisPeriod_

def mean(numbers):
 if type(numbers) == list:
 return float(sum(numbers)) / max(len(numbers), 1)
 else:
 return numbers

=================
if _timeStep_ == None: _timeStep_ = 60;
step = int(_timeStep_) * 60
variable = _variable_hdf5_object

varTimestamps =
ghpythonremote.obtain(_variable_hdf5_object['TemporalDomain/TimeStamp'].value.tolist())
varDatapoints = ghpythonremote.obtain(_variable_hdf5_object['Magnitude'].value.tolist())

startDT = datetime(_analysisPeriod_[0][0], _analysisPeriod_[0][1], _analysisPeriod_[0][2],
 analysisPeriod[0][3] - 1)
startTS = int(time.mktime(startDT.timetuple()))
stopDT = datetime(_analysisPeriod_[1][0], _analysisPeriod_[1][1], _analysisPeriod_[1][2],
analysisPeriod[1][3] - 1)
stopTS = int(time.mktime(stopDT.timetuple()))

if startTS < varTimestamps[0]:
 print
 "Data missing for this analysis period."
 print
 "First dataset entry timestamp is:"
 print
 datetime.fromtimestamp(varTimestamps[0]).strftime('%Y-%m-%d %H:%M:%S')
 errorMessage = "Data missing for this analysis period.\n" + \
 "First dataset entry timestamp is:\n" + \
 datetime.fromtimestamp(varTimestamps[0]).strftime('%Y-%m-%d %H:%M:%S')
 e = gh.GH_RuntimeMessageLevel.Error
 ghenv.Component.AddRuntimeMessage(e, errorMessage)

 sys.exit()

newTimestamp1 = []
newMagnitude1 = []
newTimestamp1 = []
finalValues = []
finalTimestamps = []
tempValue = []
i = 0

currentTimeband = startTS

Averaging value based on the following time period from ztime stamp- 9:00 value is the average of
the datapoints from 9:00-10:00
for idx, val in enumerate(varTimestamps):

 if currentTimeband > stopTS: # stop when reached the endDate
 break
 elif val < currentTimeband: # to discard entries lower than startDate
 continue
 elif val < currentTimeband + step:
 tempValue.append(varDatapoints[idx])

 else:
 while True:

 if len(tempValue) != 0 and val < currentTimeband + 2 * step:
 finalValues.append(round(mean(tempValue), 2))

 finalTimestamps.append(currentTimeband)
 tempValue = []
 tempValue.append(varDatapoints[idx])
 currentTimeband = currentTimeband + step
 break
 elif len(tempValue) == 0 and val < currentTimeband + 2 * step:

 finalValues.append(None)
 finalTimestamps.append(currentTimeband)
 tempValue.append(varDatapoints[idx])
 currentTimeband = currentTimeband + step
 break

 else:
 if len(tempValue) != 0:
 finalValues.append(round(mean(tempValue), 2))
 finalTimestamps.append(currentTimeband)
 tempValue = []
 else:
 finalValues.append(None)
 finalTimestamps.append(currentTimeband)
 currentTimeband = currentTimeband + step

finalDateTime = []
for x in finalTimestamps:
 finalDateTime.append(datetime.fromtimestamp(x).strftime('%Y-%m-%d %H:%M:%S'))

if missingDataHandling_ != None and missingDataHandling_ != 'adjacent mean': # a 'ffill' or 'bfill'
or 'adjacent mean'):
 print
 "Interpolation method: ", missingDataHandling_
 missingData = pd.Series(finalValues)
 missingData = missingData.interpolate(method=missingDataHandling_)
 missingData = missingData.bfill().ffill()
 interpolatedFinalValues = ghpythonremote.obtain(missingData.tolist())

elif missingDataHandling_ == 'adjacent mean':
 print
 "Interpolation method: ", 'adjacent mean inside'
 missingData = pd.Series(finalValues)
 missingData = (missingData.ffill() + missingData.bfill()) / 2
 missingData = missingData.bfill().ffill()
 interpolatedFinalValues = ghpythonremote.obtain(missingData.tolist())

BPD ontology to LADYBUG
Skyscanner BPD object to "selected sky matrix"#
(diffused values only!!!) #

import sys
import scriptcontext
import ghpythonremote
import Grasshopper.Kernel as gh
import time
from datetime import datetime

start = time.time()
h5py = scriptcontext.sticky['h5py']
np = scriptcontext.sticky['numpy']
pd = scriptcontext.sticky['pandas']

print _analysisPeriod
print str(_analysisPeriod[0])

#=================
if startIndex == None: startIndex = 0;

#GENERATE DATETIME IN RANGE TO MATCH AVERAGES
startStr= str(_analysisPeriod[0][0]) + "-" + str(_analysisPeriod[0][1]) + "-"+
str(_analysisPeriod[0][2]) + " " +str(_analysisPeriod[0][3]-1) +":00:00"
endStr= str(_analysisPeriod[1][0]) + "-" + str(_analysisPeriod[1][1]) + "-"+
str(_analysisPeriod[1][2]) + " " +str(_analysisPeriod[1][3]-1) +":00:00"

print "From: "+startStr+" Till: "+ endStr

varTimestamps = pd.Series(_skyScannerObject['TemporalDomain/TimeStamp'][()])[int(startIndex):]
varDatapoints = pd.DataFrame(_skyScannerObject['Magnitude'][()],columns = range(1,
146))[int(startIndex):]

#!!!!!! WARNING !!!!!!
#OLDER HDF5 % IMPORTS WONT WORK CORRECTLY SINCE TIMESTAMP SAVED IN HDF5 IS BASED ON LOCAL POSIX TIME
AND NOT UTC
#THIS NEEDS TO BE FIXED IN THE HDF5 file
df1 = pd.DataFrame(pd.to_datetime(varTimestamps, unit='s'), columns=['datetime'])#Get all timestamps
and make datefreme from it
df1 = pd.concat([df1, varDatapoints], axis=1)#merge with datapoints
df1.set_index('datetime', inplace=True)

#Limit of analysis period:
df_p = df1.resample('H').mean()

#This is just a test, we have the Diffuse only but the whole set is needed (diff, glob, direct)
totalRad = ["key:location/dataType/units/frequency/startsAt/endsAt", "VIENNA_KARLSPLATZ_TU_WIEN", "Sky
Patches' Total Radiation", "kWh/m2", 'NA', (_analysisPeriod[0][1], _analysisPeriod[0][2],
_analysisPeriod[0][3]), (_analysisPeriod[1][1], _analysisPeriod[1][2], _analysisPeriod[1][3])]
totalRadValues = []

print "len: " , len(df_p.loc[startStr:endStr])

for each in (df_p.loc[startStr:endStr].sum()/1000).tolist():
 totalRadValues.append(each)

diffuseRad = ["key:location/dataType/units/frequency/startsAt/endsAt", "VIENNA_KARLSPLATZ_TU_WIEN",
"Sky Patches' Diffuse Radiation", "kWh/m2", 'NA', (_analysisPeriod[0][1], _analysisPeriod[0][2],
_analysisPeriod[0][3]), (_analysisPeriod[1][1], _analysisPeriod[1][2], _analysisPeriod[1][3])]
diffuseRadValues = []

for each in [0] * 145:
 diffuseRadValues.append(each)

directRad = ["key:location/dataType/units/frequency/startsAt/endsAt", "VIENNA_KARLSPLATZ_TU_WIEN",
"Sky Patches' Direct Radiation", "kWh/m2", 'NA', (_analysisPeriod[0][1], _analysisPeriod[0][2],
_analysisPeriod[0][3]), (_analysisPeriod[1][1], _analysisPeriod[1][2], _analysisPeriod[1][3])]
directRadValues = []
for each in [0] * 145:
 directRadValues.append(each)

#The data from the sky scanner is in W/m^2*sr and we need to normalize the value per patch area:
def calculatePatches(patchesValues): # ret Sum if we want to get a cumulative sum

 horIllumPerPatch = []
 for x in patchesValues[0:30]:
 Ehp = x* 0.0435
 horIllumPerPatch.append(Ehp)

 for x in patchesValues[30:60]:
 Ehp = x* 0.0416

 horIllumPerPatch.append(Ehp)

 for x in patchesValues[60:84]:
 Ehp = x* 0.0474
 horIllumPerPatch.append(Ehp)

 for x in patchesValues[84:108]:
 Ehp = x* 0.0407
 horIllumPerPatch.append(Ehp)

 for x in patchesValues[108:126]:

 Ehp = x* 0.0429
 horIllumPerPatch.append(Ehp)

 for x in patchesValues[126:138]:
 Ehp = x* 0.0445
 horIllumPerPatch.append(Ehp)

 for x in patchesValues[138:144]:
 Ehp = x* 0.0455
 horIllumPerPatch.append(Ehp)

 Ehp = patchesValues[144]* 0.0344
 horIllumPerPatch.append(Ehp)
 return horIllumPerPatch

totalRadValues = calculatePatches(totalRadValues)

selectedSkyMtx = totalRad + totalRadValues + diffuseRad + diffuseRadValues + directRad +
directRadValues
selectedSkyMtx = ghpythonremote.obtain(selectedSkyMtx)

PV energy generation/m2 per location and panel position strategy#
v1.4 #

import pvlib
from pvlib import location
from pvlib import irradiance
from pvlib import tracking
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns

plt.rcParams['figure.figsize'] = (6, 4.5)
sns.set_color_codes()
sns.set_theme(style="whitegrid")

Helsinki optimal Tilt:40
epw, metadata = pvlib.iotools.read_epw(

'/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/FIN_Helsinki.029740_IWEC.epw
',
 coerce_year=2018)

Vienna optimal Tilt: 30
epw, metadata = pvlib.iotools.read_epw(

'/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/AUT_Vienna.Schwechat.110360_
IWEC_official.epw',
coerce_year=2018)

Santa Fe optimal Tilt:35
epw, metadata =
pvlib.iotools.read_epw('/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/USA_N
M_Santa.Fe.County.Muni.AP.723656_TMY3.epw', coerce_year=2018)

Singapore optimal Tilt:0
epw, metadata =
pvlib.iotools.read_epw('/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/SGP_S
ingapore.486980_IWEC.epw', coerce_year=2018)

lat, lon, timezone from EPW file
location = location.Location.from_epw(metadata)

times = epw.index - pd.Timedelta('30min')
solar_position = location.get_solarposition(times)

solar_position.index += pd.Timedelta('30min')
solar_position.index = epw.index.tz_localize(None)

get rid of ltime ocalization according to UTC
epw.index = epw.index.tz_localize(None)

use apparent zenith as tilt
ManualTilt = solar_position['apparent_zenith'].copy()

def calculate_mean_tilt(positonChangePeroiod, apparentZenithArray, maxSurfaceTilt):
 if positonChangePeroiod == 'quarterly' or positonChangePeroiod == 1:
 period_mean_tilt = apparentZenithArray.copy()
 period_mean_tilt.loc[period_mean_tilt > maxSurfaceTilt] = np.NaN
 temp_dataframe = pd.DataFrame(index=solar_position.index)
 cosFunctArray = pd.Series(
 [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN,
np.NaN, 1, np.NaN,
 np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN]) #
starts with 00:00
 temp_dataframe[''] = np.resize(cosFunctArray, temp_dataframe.shape[0]) # fill df with
repeating array
 cosNormalizedZenith = temp_dataframe[''] * period_mean_tilt
 periodNormalizedZenith = cosNormalizedZenith.resample('Q').mean()
 optimizedTiltAngles = apparentZenithArray.copy()

 for month in range(1, 4):
 optimizedTiltAngles.loc[optimizedTiltAngles.index.month == month] =
periodNormalizedZenith[0]
 for month in range(4, 7):
 optimizedTiltAngles.loc[optimizedTiltAngles.index.month == month] =
periodNormalizedZenith[1]
 for month in range(7, 10):
 optimizedTiltAngles.loc[optimizedTiltAngles.index.month == month] =
periodNormalizedZenith[2]
 for month in range(10, 13):
 optimizedTiltAngles.loc[optimizedTiltAngles.index.month == month] =
periodNormalizedZenith[3]

 if positonChangePeroiod == 'monthly' or positonChangePeroiod == 2:
 period_mean_tilt = apparentZenithArray.copy()
 period_mean_tilt.loc[period_mean_tilt > maxSurfaceTilt] = np.NaN
 temp_dataframe = pd.DataFrame(index=solar_position.index)
 cosFunctArray = pd.Series(
 [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN,
np.NaN,
 1, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN,
 np.NaN]) # starts with 00:00
 temp_dataframe[''] = np.resize(cosFunctArray, temp_dataframe.shape[0])
 cosNormalizedZenith = temp_dataframe[''] * period_mean_tilt
 periodNormalizedZenith = cosNormalizedZenith.resample('M').mean()
 optimizedTiltAngles = apparentZenithArray.copy()

 for month in range(1, 13):
 optimizedTiltAngles.loc[optimizedTiltAngles.index.month == month] =
periodNormalizedZenith[month - 1]

 if positonChangePeroiod == 'fortnightly' or positonChangePeroiod == 3:
 period_mean_tilt = apparentZenithArray.copy()
 period_mean_tilt.loc[period_mean_tilt > maxSurfaceTilt] = np.NaN
 temp_dataframe = pd.DataFrame(index=solar_position.index)
 cosFunctArray = pd.Series(
 [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN,
np.NaN,
 1, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN,
 np.NaN])
 temp_dataframe[''] = np.resize(cosFunctArray, temp_dataframe.shape[0])
 cosNormalizedZenith = temp_dataframe[''] * period_mean_tilt
 periodNormalizedZenith = cosNormalizedZenith.resample('14D').mean()
 optimizedTiltAngles = apparentZenithArray.copy()

 for week in range(1, 55, 2):
 optimizedTiltAngles.loc[optimizedTiltAngles.index.week == week] = periodNormalizedZenith[
 int((week - 1) / 2)]
 for week in range(2, 55, 2):
 optimizedTiltAngles.loc[optimizedTiltAngles.index.week == week] = periodNormalizedZenith[
 int((week - 2) / 2)]

 return optimizedTiltAngles, cosNormalizedZenith, periodNormalizedZenith

inputTiltAngles, cosNormalizedZenith, periodNormalizedZenith = calculate_mean_tilt('quarterly',
solar_position['apparent_zenith'], 75)

annual_energy = 0

def calculate_total_irrad(epw, solar_position, surface_tilt, surface_azimuth):
 dni_extra = pvlib.irradiance.get_extra_radiation(epw.index)
 total_irrad = irradiance.get_total_irradiance(
 surface_tilt=surface_tilt,
 surface_azimuth=surface_azimuth,
 dni=epw['dni'],
 ghi=epw['ghi'],
 dhi=epw['dhi'],
 dni_extra=dni_extra,
 solar_zenith=solar_position['apparent_zenith'],
 solar_azimuth=solar_position['azimuth'],
 model='haydavies')
 # model='isotropic')

 aoi = pvlib.irradiance.aoi(surface_tilt, surface_azimuth, solar_position['apparent_zenith'],
 solar_position['azimuth'])
 airmass = pvlib.atmosphere.get_relative_airmass(solar_position['apparent_zenith'])
 pressure = pvlib.atmosphere.alt2pres(metadata['altitude'])
 am_abs = pvlib.atmosphere.get_absolute_airmass(airmass, pressure)
 temperature_model_parameters =
pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_glass']
 temps = pvlib.pvsystem.sapm_celltemp(total_irrad['poa_global'], epw['wind_speed'],
epw['temp_air'],
 **temperature_model_parameters)
 effective_irradiance = pvlib.pvsystem.sapm_effective_irradiance(
 total_irrad['poa_direct'], total_irrad['poa_diffuse'],
 am_abs, aoi, module)

 # v1
 # dc = pvlib.pvsystem.sapm(effective_irradiance, temps, module)
 # ac = pvlib.pvsystem.snlinverter(dc['v_mp'], dc['p_mp'], inverter)
 # ac = ac+ 2.328

 # v2 we consider a 4.5kWpeak installation (ca. 15 panels) to neutralize inverter losses
 dc = pvlib.pvsystem.sapm(effective_irradiance, temps, module) * 15
 ac = pvlib.pvsystem.snlinverter(dc['v_mp'], dc['p_mp'], inverter)
 ac = ac / 15

 # v3 losses are constant at 2.328 W/h
 # dc = pvlib.pvsystem.sapm(effective_irradiance, temps, module)
 # ac = pvlib.inverter.sandia(dc['v_mp'], dc['p_mp'], inverter)

 print('Generated energy:', str(int(ac.sum() / (module['Area'] * 1000))), 'kWh/m\u00b2')
 # print('Generated energy:',str(int(ac.sum())),'kWh/',str(module['Area']),'m\u00b2')
 annual_energy = ac.sum()

 return ac

df_monthly = pd.DataFrame()
df_tilts = pd.DataFrame()

use apparent zenith as tilt
NS_tracking = solar_position['apparent_zenith'].copy()
limit of 80deg
NS_tracking.loc[NS_tracking > 80] = 0

truetracking_angles = tracking.singleaxis(
 apparent_zenith=solar_position['apparent_zenith'],
 apparent_azimuth=solar_position['azimuth'],
 axis_tilt=0,
 axis_azimuth=180,
 max_angle=60,
 backtrack=False, # False for true-tracking
 gcr=0.5) # irrelevant for true-tracking

get the module and inverter specifications from SAM

sandia_modules = pvlib.pvsystem.retrieve_sam('SandiaMod')
sapm_inverters = pvlib.pvsystem.retrieve_sam('cecinverter')
module = sandia_modules['Silevo_Triex_U300_Black__2014_']
inverter = sapm_inverters['SMA_America__SB7_7_1SP_US_40__240V_']

total_irrad_1 = calculate_total_irrad(epw, solar_position,
truetracking_angles['surface_tilt'].fillna(0),
 truetracking_angles['surface_azimuth'].fillna(0))

df_monthly['tracking'] = total_irrad_1.resample('m').sum()
df_tilts['apparent_zenith'] = solar_position['apparent_zenith']
df_tilts['azimuth'] = solar_position['azimuth']
df_tilts['elevation'] = solar_position['elevation']
df_tilts['tracking'] = NS_tracking
df_tilts['gIrr-tracking'] = total_irrad_1

for idx, word in enumerate(['quarterly', 'monthly', 'fortnightly']):
 temp_tilt = calculate_mean_tilt(word, solar_position['apparent_zenith'], 75)[0]
 total_irrad_irradiance = calculate_total_irrad(epw, solar_position, temp_tilt, 180)
 df_tilts[word] = temp_tilt
 column_name = f"gIrr-{word}"
 df_tilts[column_name] = total_irrad_irradiance[0]
 df_monthly[word] = total_irrad_irradiance.resample('m').sum()

fix = calculate_total_irrad(epw, solar_position, 40, 180)
df_monthly['fix'] = fix.resample('m').sum()
df_tilts['gIrr-fix'] = fix

annual_sum = df_monthly.resample('A').sum()
print('Annual Irradiance per selected tilt,azimuth:', str(int(annual_sum['fix'])))

df_monthly_kWh = df_monthly / 1000
df_monthly_kWh.plot.line()

get current handles and labels
this must be done AFTER plotting
current_handles, current_labels = plt.gca().get_legend_handles_labels()

sort or reorder the labels and handles
new_labels = list(['E-W', 'S-1', 'M-1', 'M-2', 'F-35'])

call plt.legend() with the new values
plt.legend(current_handles, new_labels)
plt.show()
plt.savefig('/Users/dw/PycharmProjects/37project/Ontology/PV_panels/BS2021/images/santa_fe.pdf')

sns.lineplot(data=df_monthly_kWh, palette="tab10", linewidth=2)
plt.xlim(df_monthly.index.min(), df_monthly.index.max())
plt.xlim(df_monthly.index.min(), df_monthly.index.max())
plt.ylim(0,)
current_handles, current_labels = plt.gca().get_legend_handles_labels()

sort or reorder the labels and handles
reversed_handles = list(reversed(current_handles))
new_labels = list(['E-W', 'S-1', 'M-1', 'M-2', 'F-40'])

plt.legend(current_handles, new_labels)
plt.show()

df_monthly_kWh.index = pd.Series(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep',
'Oct', 'Nov', 'Dec'])
sns.lineplot(data=df_monthly_kWh, palette="tab10", linewidth=2)
current_handles, current_labels = plt.gca().get_legend_handles_labels()

sort or reorder the labels and handles
reversed_handles = list(reversed(current_handles))
new_labels = list(['E-W', 'S-1', 'M-1', 'M-2', 'F-40'])

plt.legend(current_handles, new_labels)
plt.margins(x=0)
plt.grid(which='major', axis='x')
plt.ylabel("Monthly energy output [kWh/m\u00b2]")
plt.savefig('/Users/dw/PycharmProjects/37project/Ontology/PV_panels/BS2021/images/AC_helsinki.pdf')
plt.show()

