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Abstract  

 

 

Ontologies are developed and deployed to enhance knowledge and data exchange in a 
specific field or domain. For instance, building industry benefits from well-structured 
ontologies such as Industry Foundation Classes (IFC) or green building XML that drive 
Building Information Modeling software (BIM). In this context, efforts in building 
performance specification and assessment can also benefit from well-structured ontologies 
and data schemas. Toward this end, a recently introduced building performance data 
ontology (complemented with building performance data schema) attempts to identify, 
categorize, and capture the complexities of building related performance data and its 
attributes.  

There are many different types of building-related data, each requiring a specific approach 
toward creation and implementation of fitting ontologies. In case of building performance 
data streams originating, for instance, from sensors or simulations, these are often 
structurally syntactically or semantically heterogeneous and could benefit from an 
integration process. Such process of ontological data integration involves i) preprocessing, 
ii) categorical identification, iii) supplementation of the relevant attributes (either via 
templates, or data scraping), and iv) encoding in a proper file format. Only then is such 
ontologized data ready be used in various downstream applications. This effort discusses 
the concept of ontologies and its current role in built environment domain. It describes an 
ontologization process as applied to a large real-world building monitoring dataset. 
Specifically, monitored environmental data are first processed in terms of fidelity and 
quality to be subsequently ontologized and delivered to a number of building performance 
assessment applications.  
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Kurzfassung 
 

 

 

Ontologien werden entwickelt und eingesetzt, um den Wissens- und Datenaustausch in 
einem bestimmten Bereich oder einer bestimmten Domäne zu verbessern. Die 
Bauindustrie profitiert beispielsweise von gut strukturierten Ontologien wie Industry 
Foundation Classes (IFC) oder Green Building XML, welche die Building Information 
Modeling Software (BIM) vorantreiben. In diesem Zusammenhang können auch 
Bemühungen zur Erstellung von Leistungsspezifikationen und -bewertungen von gut 
strukturierten Ontologien und Datenschemata profitieren. Zu diesem Zweck versucht eine 
kürzlich eingeführte Ontologie von Gebäudeleistungsdaten (ergänzt mit einem Schema für 
Gebäudeleistungsdaten), die Komplexität von gebäudebezogenen Leistungsdaten und 
ihren Attributen zu identifizieren, zu kategorisieren und zu erfassen.  

Es gibt viele verschiedene Arten von gebäudebezogenen Daten, die jeweils einen 
spezifischen Ansatz für die Erstellung und Implementierung passender Ontologien 
erfordern. Bei Gebäudeleistungsdatenströmen, die beispielsweise aus Sensoren oder 
Simulationen stammen, sind diese oft strukturell syntaktisch oder semantisch heterogen 
und könnten von einem Integrationsprozess profitieren. Ein solcher Prozess der 
ontologischen Datenintegration umfasst i) Vorverarbeitung, ii) kategoriale Identifizierung, 
iii) Ergänzung der relevanten Attribute (entweder über Vorlagen oder Daten-Scraping) und 
iv) Codieren in ein geeignetes Dateiformat. Erst dann können solche ontologisierten Daten 
in verschiedenen nachgelagerten Anwendungen verwendet werden. Dieser Versuch 
diskutiert das Konzept von Ontologien und seine aktuelle Rolle im Bereich der gebauten 
Umgebung. Es beschreibt einen Ontologisierungsprozess, welcher für auf einen großen 
realen Gebäudeüberwachungsdatensatz angewendet wird. Konkret werden überwachte 
Umweltdaten zuerst in Bezug auf Genauigkeit und Qualität verarbeitet, um anschließend 
ontologisiert und an eine Reihe von Anwendungen zur Gebäudeleistungsbewertung 
geliefert zu werden.



iv 

Contents  

 

 

 

1.      INTRODUCTION .................................................................................. 1 
1.1.Motivation ....................................................................................................................1 
1.2.Background ..................................................................................................................3 
1.3.Overview.................................................................................................................... 13 

2.      BUILDING PERFORMANCE DATA ONTOLOGY ......................... 15 
2.1.Ontology for building performance data.............................................................. 15 
2.2.From heterogeneous data streams to application ............................................... 24 
2.3.Implementation ........................................................................................................ 28 

3.      DEMONSTRATION OF APPLICATION .......................................... 40 
3.1.Information retrieval ................................................................................................ 40 
3.2.Performance modelling tools integration ............................................................. 46 
3.3.Multi-domain PV performance studies................................................................. 57 

4.      CONCLUSION ..................................................................................... 81 
4.1.Summary of contributions ...................................................................................... 81 
4.2.Future outlook .......................................................................................................... 82 

REFERENCES ..................................................................................... 84 
Project Related Publications ......................................................................................... 84 
Bibliography .................................................................................................................... 86 
List of Tables ................................................................................................................... 92 
List of Figures ................................................................................................................. 93 

APPENDIX ........................................................................................... 96 
 

 
 



 

 





Heterogeneous building related data streams for performance assessment applications 

1 

 

 

 
 

CHAPTER 1 
Introduction 

1.1. Motivation 
The rapid advances in computer and information technology over the past few decades 
have resulted in unprecedented developments in science, technology, business and 
economy. One of the most enabling elements as well as a by-product of these advancements 
is data, that has since grown exponentially in volume and equally in importance. Naturally 
with growing data volume, the variability of available data type, format and storage 
instances has also increased considerably. This poses a problem for data accessibility or 
reusability in the context of the heterogeneity of the data sources. Such accessibility issues 
even occur within a specific interest group working on the same subject matter (Ushold 
and King 1996). This is due to the fact that the actors involved in use and generation of 
data very often have different needs, backgrounds, contexts, viewpoints and assumptions. 
Typically, such circumstances result in data structures that are often tied to a particular 
organization, system, or even a single application instance, and the prospect of reusability 
is very limited - a phenomenon known as a data silo. It became apparent that making data 
reusable and more accessible can substantially support management, operation, research or 
collaboration within a field of interest and beyond.  

The importance of data accessibility was first recognized and addressed in research fields 
where computer and information technology were the most present, such as Artificial 
Intelligence, Software Engineering and Database Systems communities (Sánchez et al. 
2007). As a result, data models (also called schemas) and ontologies were introduced. The 
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primary role of these concepts is to add meaning, structure and relationships to the data, 
thus making it more readable (accessible) to both users and machines. 

With the information and communication technologies progressively becoming integral 
part of other disciplines, domains, and fields, a similar need arose for a systematic 
representation of knowledge and information, and better data management solutions within 
these. For example, if we look at the domains and fields associated with the built 
environment, the actors involved in the building process work on the same matter, but are 
involved in different aspects and phases of this process, such as: E.g. design, analysis, 
construction, maintenance or operation. Naturally, each of these phases nowadays is 
enabled and driven by information technology and involves multiple stakeholders. As a 
result, the related information space also extends over multiple domains and scales. This 
brings us back to the problem of limited accessibility and usability due to multiplicity (hence 
heterogeneity) of data streams. These are determined by hardware specifications, software 
standards and formats, or system specifications.  

The Architecture, Engineering, and Construction (AEC) community already benefits from 
common data models that are driving the Building Information Modelling (BIM) and 
integrate efforts of multiple stakeholders. Such integration has been suggested to facilitate 
better communication between parties involved and to improve the overall efficiency of 
the building design, construction, and operation processes. However, the main focus of 
BIM related schemas, lies in the representation of primarily static building attributes, 
including geometry and semantic information on building components and systems. 

Buildings are increasingly equipped with sophisticated monitoring infrastructures, recently 
boosted by technological advancements in wireless sensor networks and low-power 
microcontrollers fields. These collect a large volume of multiple layers of dynamic data on 
the states and events related to building systems' performance, indoor and outdoor 
environmental conditions, or occupants' location, movement, and control-oriented actions 
(Wolosiuk and Mahdavi 2020; Mahdavi and Wolosiuk 2021). In order to effectively support 
the evidence-based design, assessment and operation that rely on (and benefit from) such 
building related dynamic data streams, relevant data schemas and ontologies must be 
developed and implemented. 

Building performance is important throughout the entire building’s life cycle, form the 
design phase to construction, maintenance and ultimately disposal (De Wilde 2018). 
Majority of building related dynamic data sources (e.g. obtained from monitoring systems 
or simulation software) can be considered as Building Performance Data (BPD). These 
occur in the form of performance indicators or as performance variables/measures that 
compose a complex indicator. Building performance assessment procedures typically make 
use of a large number of BPD, involving multiple domains, aspects, and degrees of 
resolution. The use cases of BPD are diverse. These include, intelligent building operation, 
smart grid applications, compliance demonstration with building code requirements, 
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specification of building attributes in certificate-type documents, as well as comparison and 
ranking of building design alternatives. However, despite the extensive use of BPD (both 
performance measures and indicators), there have been very few attempts to compose an 
explicit BPD ontology (e.g. Mahdavi et al. 2005, Corry et al. 2015). A versatile BPD 
ontology can add to the clarity of building performance requirements specifications, 
advance the understanding of building performance principles, and provide a solid 
foundation for the development of wide range of relevant applications such as all-purpose 
data visualization engines or interfaces to variety of performance simulation tools (Mahdavi 
and Wolosiuk 2019a). 

The present research effort addresses the paucity in comprehensive representation of the 
wide scope of building related performance data originating from heterogeneous data 
sources. In this context, the Building Performance Data ontology was proposed in an 
attempt to organize knowledge in this domain and capture the complexities of building 
related performance data and its attributes in a robust data schema. 

1.2. Background 
The work included in this dissertation is a combination of knowledge and methods taken 
from the computer, information and architectural sciences. The latter provides the subject 
matter – that is the domain knowledge concerning building performance data and related 
issues. The former two provide the foundation for presented research in form of ontologies 
and schemas, as well as means for implementation and application illustration.  

The modern concept of ontology that is discussed in this work originates from the 
Ontology – the branch of philosophy dealing with nature and structure of reality (Guarino 
et al. 2009). There is a vast literature on theoretical foundations of ontologies and how the 
philosophical concept got adapted in field of Computer Science, for example see Sanchez 
et al. (2007), Guarino et al. (2009), Gruber (2009) or Gómez-Pérez et al. (2010).  

Probably the most commonly cited early definition of computational ontology is that by 
Gruber (1993):  

“… A body of formally represented knowledge is based on a 
conceptualization: the objects, concepts, and other entities that are presumed 
to exist in some area of interest and the relationships that hold them 
(Genesereth and Nilsson 1987). A conceptualization is an abstract, simplified 
view of the world that we wish to represent for some purpose. Every 
knowledge base, knowledge-based system, or knowledge-level agent is 
committed to some conceptualization, explicitly or implicitly.  
An ontology is an explicit specification of a conceptualization. …” 

Initially the computational ontologies and data schemas have been developed in response 
to growing need for knowledge representation frameworks to support evolution in 
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computer sciences – in particular artificial intelligence, software engineering and database 
systems. Fundamentally, ontologies are expected to help organize and structure 
information to enable a common and shared understanding of a particular domain. Such 
an understanding leads to better communication, enables interoperability and re-usability 
(Uschold and Gruniger 1996).  

Ontologies facilitate the integration of data, information and knowledge by formalizing the 
vocabulary, specifying the hierarchy of relevant concepts (or classes), supplying 
components with relevant attributes and defining relationships between them. Currently 
arguably the most prominent exemplification of ontology use is the Semantic Web 
(Berners-Lee 2001). It is the extension of existing World Wide Web that is supposed to 
give information a well-defined meaning by providing additional layer of machine 
understandable data. Ontologies are the backbone of the Semantic Web (Taniar and Rahayu 
2006, Domingue et al. 2011). They facilitate automation and interoperability of web enabled 
applications and systems in areas such as search engines, social networks, digital recourses 
management or e-commerce. 

There are several fields outside computer science domain where ontologies already play 
important role and are widely deployed, for example knowledge management or biomedical 
domains. In the field of knowledge management, they serve as the basis for the collection, 
integration and organization of information; they support the search, retrieval, 
personalization and visualization of knowledge (Abecker and van Elst 2009, Davies et al. 
2002). Ontology-driven knowledge management has become a crucial factor for running 
an efficient and successful organization (Stabb et al. 2001). 

The biomedical domain is known for the use of many well established ontologies. Due to 
a growing volume of data and a growing complexity as well as overlapping concepts in this 
domain, it was necessary to establish robust ontologies in order to drive progress in related 
areas. These ontologies help in unifying diverse datasets, creation of knowledge bases or 
establishing controlled vocabularies that enable interoperability, data exchange, knowledge 
retrieval and interpretation, or hypothesis evaluation (Rubin et al. 2008). Some examples of 
ontologies in biomedical domain are, i) the Gene Ontology (Ashburner et al 2000) for 
describing biological processes, molecular functions and cellular components of gene 
products, ii) The NCI Thesaurus (Hartel et al., 2005) that provides a controlled terminology 
that enables researchers to integrate, retrieve, and relate diverse data collected in cancer 
research or iii) The Foundational Model of Anatomy (Rosse and Mejino 2007) for the 
symbolic representation of the phenotypic structure of the human body. These and many 
other biomedical ontologies support insightful analyses and scientific discovery in this 
complex domain. 

Accordingly, the need for data integration and interoperability has also been recognized in 
other areas, domains and communities in order to enable a feasible exchange of data and 
knowledge and benefit from all the associated advantages. This includes many fields and 
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areas related to buildings and built environment. There have been many attempts to 
establish ontologies and schemas pertaining to this domain. Probably the most established 
ontological data schemas are those primarily focused on “static” building data (that related 
to construction efforts), such as the Industry Foundation Classes (IFC) and the green 
building Extensible Markup Language (gbXML). Many other building related ontologies 
often address the need for knowledge organization in more specific areas of interest that 
potentially involve “dynamic” building data. These ontologies differ in scope and are often 
a response to paucities (both informational and functional) in the aforementioned primarily 
“static” schemas. Some of these schemas, especially the ones defined in RDF (Resource 
Description Framework) data model (Lassila and Swick 1999), adopt existing elements or 
semantics from other established schemas (including IFC and gbXML) to allow for some 
interoperability, standardization or re-use support.  

Recently published review paper by Pritoni et al. (2021) reviews 40 schemas and ontologies 
for building energy applications. The authors categorized schemas according to phase of 
the building lifecycle. Namely, Design and/or energy modeling (e.g. IFC, gbXML), and building 
Operations divided into 5 application groups: i) Sensor networks, Internet of Things, and 
smart homes (e.g. DogOnt, SAREF), ii) Commercial building automation and monitoring 
(e.g. Project Haystack, Brick Schema, BOT), iii) Grid-interactive efficient building (GEB) 
applications (e.g. RESPOND (Esnaola-Gonzalez and Díez, 2020)), iv) Occupants and 
behavior (e.g. DNAS Framework (obXML)), and v) Asset management and audits (e.g. 
BuildingSync). This section presented the spectrum of relevant building domain ontologies 
(as demonstrated above). 

The following section presents examples of relevant ontologies and schemas in most of the 
above-mentioned categories. Specifically: i)IFC for complex building modelling; ii)gbXML 
for energy modeling; iii) SAREF for smart home devices; iv) Project-Haystack schema for 
data related to smart devices in buildings; v) Brick schema to represent building data at 
large; vi) The Building Topology Ontology (BOT) for specification of relationships 
between components and zones of a building; vii) DNAS/obXML to capture occupant 
behavior in buildings; viii) BuildingSync schema for data related to energy audit. 

Industry Foundation Classes 

The IFC “are an open international standard for Building Information Model (BIM) data 
that are exchanged and shared among software applications used by the various participants 
in the construction or facility management industry sector” (IFC ISO 2018). It specifies 
data schema and file format used for creating digital description of the built environment. 
It has been developed since 1995 by buildingSMART International (bSI) (formerly - 
International Alliance for Interoperability) gradually building recognition and position in 
the AEC community to become leading data exchange format for the AEC industry that 
enables the BIM. Currently over 800 industry members such as organizations, companies 
and institutes that participate in development and promotion of bSI standards (Boreman 
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et al. 2018). Since 2013 it is registered with ISO as ISO 16739 which enhanced format’s 
credibility even more. As a result, nowadays many countries require adoption of BIM on 
publicly procured projects.  

The IFC format is supported by multiple BIM related software for modelling, managing or 
simulating the built environment (341 applications listed as of May 2021; buildingSMART, 
2021a). Following the schema’s specification, the real-world objects and actions such as 
building construction elements, building systems’ elements, construction schedules or cost 
estimates are abstracted into entities and given required and optional attributes, properties 
and relationships to other entities. For encoding model into a text representation, it utilizes 
the EXPRESS data modeling language (Schenck and Wilson 1993). In parallel, the schema 
offers more accessible ifcXML format specification, but is not commonly used as a data 
exchange format due to much larger size of already “heavy” default file format, rendering 
it unpractical for complex building models.  

The current official version of IFC data schema (version 4.0.2.1; buildingSMART 2021b) 
includes definitions of over a 1000 entities, enumerations and measure types put into the 
resource, core, interoperability and domain specific schema architecture layers (see Figure 1 for 
the schema architecture). Resource layer — contains resource definitions to describe higher 
level entities, core layer — contains entity definitions, provides the basic structure and 
relationships, interoperability layer — contains entity definitions for inter-domain 
information exchange, domain layer — contains entity definitions pertaining to a specific 
domain for intra-domain information exchange (buildingSMART, 2021b).  
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Figure 1 Industry Foundation Classes architecture overview. (source: buildingSmart 2021b) 

Green Building XML 

In contrast to IFC which is primarily oriented towards construction and management 
process, the gbXML is a data schema primarily oriented towards support of building 
performance analysis software. It was developed to facilitate the design of more energy 
efficient buildings and high-quality indoor environments.  

It is an open-source schema that has been developed by a non-profit organization - the 
Open Green Building XML Schema, Inc. Its maintenance and development are supported 
by public institutions (e.g. U.S.DOE, NREL) as well as leading CAD-based BIM and 
performance analysis software companies (e.g. Autodesk, Bentley, IES) (ref to gbxml.org). 
It has been developed since 1999 and is now considered the industry standard schema for 
sharing information between BIM software and analysis tools. It is focused on storage of 
building related information potentially needed by simulation software to enable different 
types of building analysis such as energy use, CFD, heating and cooling load, lighting, solar, 
shading, HVAC sizing etc. The open source aspect and use of simple and robust XML 
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(both human- and machine- readable format) for information encoding makes 
implementation of gbXML in analysis tools relatively easy, hence it is currently supported 
by over 50 different applications and tools.  

The schema defines over 500 different types of elements (similar to entities in the IDF 
format), attributes and enumerations to describe building model. These include among 
others: 3D and 2D geometry, construction elements and materials, space boundaries, 
internal and external equipment, lighting characteristics and control, occupancy or 
schedules. A serialized gbXML file contains elements defined by schema that are connected 
with other related elements and attributes in a hierarchical manner. In certain cases (such 
as boundary condition definition) the relationships to other elements are defined through 
specific attributes.  

SAREF 

The Smart Applications REFerence ontology (SAREF) (ETSI 2020) was created to enable 
the interoperability between various Internet of Things (IoT) devices by matching their 
existing assets (standards, protocols, data models etc.). Figure 2 shows an overview of the 
main classes and relationships in SAREF ontology. To accomplish the said interoperability, 
it describes IoT devices as objects (e.g. appliance, actuator, sensors, meter, HVAC) designed 
to perform certain tasks and to accomplish this task it performs certain function (e.g. 
actuating, sensing, metering, event) that have associated commands (e.g. switch on, switch 
off, toggle) and a state that it is in. Device can offer service that represents a way to 
communicate or control other devices in the network (EU Commission and TNO 2015). 
For example, an HVAC device can offer a temperature sensor to control its on/off 
function. 

 
Figure 2 Overview of the SAREF ontology (source: ETSI 2020)  
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Project Haystack 

Project Haystack (2021a) created a schema that addressed the need for a data model for 
smart devices and equipment systems present in built environment to make related data 
more meaningful or “self-describing”. ProjectHaystack is an open source initiative backed 
by major companies such as Intel, Simens, or LaGrand. By offering toolkits, 
communication protocol of a ready server implementations on top of the schema it has 
become de-facto a standard for streamlining equipment data to building automation 
systems.  

The schema defines a vocabulary of relevant “tags” (or metadata) of different type that are 
used to abstract real-world devices and equipment (such as electric meters, HVAC units, 
temperature sensors, pressure sensors or on/off switches) to entities. Different 
combinations of tags are used to characterize an entity depending on what they represent. 

 Principally an entity has a set of general identification attributes, a set of descriptive/ 
informational tags specific to the entity type and a set of reference tags specifying 
relationships between the entities. A resulting Project-Haystack building model is a 
combination of sensors’ data point entities that are associated with equipment entities that 
are further associated with a location or site entities (see Figure 3 for an illustrative example) 
(Project Haystack 2021b).  

Brick 

Brick (Balaji et al 2018) is an open source project that was initiated in 2015 by academic 
community. Similar to the project Haystack – it is an attempt to create a metadata schema 
for smart buildings. The Brick schema captures physical, logical and virtual entities in 
buildings, contextualize and attributes them, group them in a class hierarchy, and define 
how these entities relate to one another. It is not intended to replace existing standards 
used in building management or automation systems but rather to make the existing data 
more exposed and available.  

The brick is built on three main categorical classes used for grouping entities: i) Point, ii) 
Equipment and iii) Location. The Point class host different sources of data such as sensors, 
setpoints, status etc. The Equipment class represents devices and installations related to 
HVAC, fire safety, solar power, lighting, etc. The Location class include real and logical 
locations in the building, such as site, floors, rooms, zones etc. Figure 4 presents an 
illustrative example of entities and their relationships as defined by the Brick model. A 
resulting Brick model is a representation of assets relationships and data in a building (Brick 
Consortium 2021a, 2021b).  
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Figure 3 Diagram of ProjectHaystack entities and their relationships. Here, a temperature sensor (point) 

associated with a HVAC Unit (equipment) located in a building in Gaithersburg, USA (site).  
(source: Project Haystack, 2021b) 

 

 
Figure 4 Illustrative example of entities and their relationships as defined by the Brick model.  

(source: Brick Consortium 2021b) 
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Building Topology Ontology  

The Building Topology Ontology (BOT) (Rasmussen et al. 2017a, 2017b) was developed 
to provide “a high-level description of the topology of buildings including stories and 
spaces, the building elements they may contain, and the 3D mesh geometry of these spaces 
and elements” (Rasmussen et al., 2020).  

Currently, the BOT is developed by the World Wide Web Consortium (W3C) Linked 
Building Data Community Group (W3C 2021). The group gathers BIM and Web of Data 
technology experts together to bring the Linked Data and Semantic Web Technologies 
(Domingue et al. 2011) to the AECOO (Architecture, Engineering, Construction, Owner 
and Operation) industry for greater integration of data and extended interoperability 
between building related and various web-enabled datasets from other communities beyond 
building domain (W3C 2021, Rasmussen et al. 2017a).  

BOT ontology specifies four main classes to describe a building – zones, elements, interfaces 
and 3Dmodel. Zones class defines parts of physical and virtual world in built context such 
as site, story, space, thermal zone. Elements class defines any physical object in a zone such 
as construction element, device, installation element, furniture etc. Interfaces defines 
common parts between elements and zones in the building. 3Dmodel class is used to link 
zones and elements to a 3D model (stored in a 3D file format).  

As a lightweight ontology it is intended to be easily linked and used with other ontologies 
and function as a core element of an ontological building model. Such interoperability with 
other ontologies (e.g. those describing performance data, sensors, equipment, systems, 
management data, product information) is enabled by its implementation using Semantic 
Web technologies such as the RDF (Lassila and Swick 1999), or the Web Ontology 
Language OWL (Hitzler et al. 2009; Rasmussen et al. 2020). 

DNAS/obXML 

The DNAS (Drivers, Needs, Actions and Systems) (Hong et al. 2015a) ontology was 
developed as an attempt to capture energy-related occupant behavior in buildings. 
Occupant behavior is difficult to define and quantify and yet it can have major impact on 
energy usage.  

The DNAS ontology is based on human-building interaction framework components 
described in Turner and Hong (2013). These include the drivers of behavior (external factors 
that provoke energy related occupant behavior), needs (requirements ensuring occupant’s 
satisfaction in an environment), actions (activities or interactions with systems that occupant 
conducts to satisfy the needs) and systems (any sort of equipment mechanisms or other 
measures that an occupant interacts to control comfort or satisfaction in the environment) 
(Hong et al. 2015a).  

The ontology was implemented in occupant behavior XML (obXML) schema (Hong et al. 
2015b). The occupants’ behavior is captured in the schema by elements pertaining to 3 
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main sub-classes of the OcupantBehavior root class. Behaviors class implements the 
aforementioned DNAS framework to capture complex patterns of occupants’ behavior 
(see Figure 5 for an overview of the behaviors class), Buildings class provides special context 
for occupants’ actions and finally Occupants class identifies and provide some relevant details 
on singular occupant within a building. Resulting standardized occupant behavior model 
built with DNAS/obXML schema enables, e.g., sharing information for better models’ 
assessment or more accurate building simulation. 

 
Figure 5 An overview of the main Behavior class of the obXML schema that implements the DNAS 

framework. (source: Yan et al. 2017) 
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BuildingSync 

BuildingSync is a schema focused on energy audit data for commercial buildings. It was 
developed to enable exchange of such data between different software and databases 
involved in auditing process.  

It standardizes and aggregates heterogeneous data into a common format. Thus, energy 
audit data represented in a standard, consistent and comparable format, facilitates not only 
seamless data exchange between auditing tools, but when aggregated - can enable 
potentially significant large-scale analysis (DeGraw et al. 2018). The schema has been 
recently upgraded to include data relevant for creation of physic-based energy models of a 
building or building-groups from data collected during an audit. Such models can be utilized 
with simulation software for performance assessment in retrofitting scenarios. 

This section presented the spectrum of relevant building domain ontologies pertaining to 
various thematic categories. The Building Performance Data ontology described in the 
following chapter puts emphasis on performance data (such as performance measures and 
indicators) that spans through many categorical domains and therefore requires a 
comprehensive metadata schema to accurately capture the complexity of their nature. 

1.3. Overview 
The details of the contents of the remaining chapters are given below: 

• Chapter 2: Building Performance Data Ontology 
This chapter presents details on the proposed BPD ontology and its implementation 
process. It includes an overview of building performance related data and its 
categorical domains, presents the proposed data schema for building performance 
data, describes steps in the workflow of transformation of various data sources to 
ontologically structured performance data. Finally, it exemplifies the ontology 
implementation process on a large set of performance data. 

 
• Chapter 3: Demonstration of Applications 

This chapter presents examples of application of ontologically structured data in a 
series of basic to advanced building performance analysis and assessment scenarios. 
This includes: data retrieval, data visualization, interfacing to advanced performance 
analysis tools, ontology driven web-based PV system performance assessment tool 
and multi-domain ontology driven PV performance analysis. 

 
• Chapter 4: Conclusion 

This chapter provides an overview of the presented work discusses selected 
challenges and gives an outlook on future research directions. 
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Please note that the chapters contain excerpts from the work published by the author in 
the course of research progress. This includes: Mahdavi and Wolosiuk (2019a, 2019b, 
2021), Mahdavi et al. (2021), Wolosiuk and Mahdavi (2020a, 2020b), Wolosiuk et al. (2021). 
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CHAPTER 2 
Building Performance 

Data Ontology 

2.1. Ontology for building performance data 
Peter de Wilde in his book “Building Performance Analysis” (De Wilde 2018) defines 
building performance as: 

“Building performance is a concept that describes, in a quantifiable way, how 
well a building and its systems provide the tasks and functions expected of 
that building. Requirements may stem from three main views: an engineering 
view of buildings as an object, a process view of building as a construction 
activity, and an aesthetic view concerned with the notions of form and 
appreciation. Important performance requirements in the engineering view 
pertain to building quality, resource savings, workload capacity, timeliness and 
readiness.” 

Building performance is usually verified (quantified) through the means of testing, 
calculation or combination of the two (Foliente 2000). In this context testing denotes 
collection of various measurement data as for example that collected by sensors and devices 
present in a building or via direct measurement methods. Such measured data could be, but 
not necessarily is, a performance measure itself. It can potentially be a variable that 
contribute to a compound performance indicator, obtained through calculation or 
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simulation.  

Performance simulation can combine testing (measuring) and calculation as it makes use of 
both empirical (e.g. measured) and theoretical data (e.g. generated, modeled or standard 
values). Performance analysis can be used to improve buildings and the built environment. 
Two of the main phases of the building’s life cycle, namely the design and the operational 
phase can particularly benefit from assessment procedures. In the design phase, assessment 
operations (e.g. computational simulations) can help measure impact of architectural design 
decisions on variety of aspects of building performance (e.g. energy efficiency, occupant’s 
thermal, visual or acoustical comfort) and suggest alternative design solutions. During the 
operation phase, performance can be monitored and assessed for deterioration levels or 
help in faults and errors detection. Finally, the performance analysis can support 
enhancement or reinstatement of building’s performance levels during the refurbishment 
process (De Wilde 2018).  

Performance Data 

A performance assessment of both building designs as well as existing buildings relies on 
extensive amounts of monitored or calculated data on buildings’ behavior to derive the 
values of key Building Performance Indicators (BPIs) and performance measures. Both 
primary performance data (i.e., sensor data or simulated data) and high-level building 
performance indicator values come in various forms, degrees of resolution, and application 
domains.  

An efficient and effective processing of such heterogeneous information base could benefit 
greatly from a well-structured ontological schema that would cover the multiple levels of 
complexity involved. Such ontology is essential for scientific community to facilitate the 
aforementioned mentioned performance data analysis procedures towards building design, 
operation, and retrofit optimization throughout the buildings' life cycle. It would also 
provide a solid basis for development of generic tools and applications such as interfaces 
to established modeling tools, visualization engines that could further support optimization 
or Building Management Systems (BMS) applications and provide deeper insight into the 
data. 

The present work includes research efforts to develop and test a comprehensive Building 
Performance Data (BPD) ontology and associated schema. The BPD ontology builds upon 
foundational ontological work on monitoring data (see Mahdavi et al. 2016,2017,2018) and 
recent efforts to form an explicit ontology for building performance indicators (see 
Mahdavi and Taheri 2018; Mahdavi and Wolosiuk 2019a, 2019b, 2021; Wolosiuk and 
Mahdavi 2020a, 2020b).  

The proposed ontology relies on an extensive review of common performance indicators 
as well as other performance related data originating from monitoring systems, simulation 
applications or models. The developed schema captures the necessary attributes concerning 
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performance data and indicators from a diverse spectrum of performance categories. 

Building Performance Indicators 

To provide a robust classification framework for representation of performance data in a 
robust schema a number of categories must be recognized both in a domain of performance 
indicators as well as performance measures. BPIs pertain to multiple categorical domains 
that assess performance related to building systems, equipment or envelope and equally 
that related to "habitability" aspects of the building, including human health, comfort, and 
satisfaction (Mahdavi 1998, 2011).  

There are many performance indicators in use and a list of such is constantly modified and 
new positions are being added. In consequence a comprehensive review of all available 
indicators is difficult. Nevertheless, the majority of commonly known and used BPIs can 
be compiled, reviewed and categorized. Such effort by Constantino (2017) organizes 
reviewed indicators in 5 thematic domains, including energy efficiency, hygro-thermal 
performance, thermal comfort, air quality, visual environment and acoustical environment. 
These classes are primarily related to indoor environmental factors as well as energy- related 
building performance variables.  

Of course, the building performance spectrum is not limited to these categories. Many other 
indicators related to building integrity, structure, safety and security, management, ecology 
or economy have been described in multiple standards and literature. Following the 
mentioned BPIs review, a general performance indicator classes taxonomy was proposed. 
Figure 6 presents an overview of the main performance categories (or classes), followed by 
sub-categories and instances of performance variables (indicators and measures). 

Monitoring Data and Building Performance 

Currently, in majority of public buildings, but also more commonly in private housing, a 
number of performance variables are directly monitored by the building systems or sensor 
networks. These monitored variables can be stand-alone performance measures or other 
performance-relevant data that are part of overarching compound indicator (this 
observation is discussed more in the following).  

In order to be able to develop a comprehensive ontological schema for building 
performance data, identifying categories in which performance relevant monitoring data 
occurs (similarly to performance indicators) was a necessary step. Such classification was 
suggested in effort to create an ontology for building monitoring data (Mahdavi & Taheri 
2017). The proposed classification framework was based on the related prior efforts 
(Mahdavi et al. 2005, 2016; Mahdavi 2011a 2011b; Zach et al. 2012).  

Six main categorical classes have been proposed to provide an effective taxonomic 
classification to accommodate data streams related to monitoring systems. Namely: 
inhabitants, indoor environmental conditions, external environmental conditions, control 
systems and devices, equipment, and energy flows. Figure 7 pictures an overview of these 
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classes, with their suggested sub-classes and illustrative examples of corresponding 
monitored variables. Refer to Mahdavi and Taheri (2017) for reflections on selected 
categorical groups. 

 
Figure 6 An overview of the five building performance categorical domains with their subsequent 

subcategories and illustrative instances (see Constantinou 2017 for more details). 
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Figure 7 An overview of the six building monitoring data categorical domains with their subsequent 

subcategories and illustrative instances (modified based on Mahdavi and Taheri 2017). 
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Towards universal schema for performance data 

Both of the aforementioned reviews were carried out in order to gain an overview of the 
respective subject matter, an insight into specification of variables pertaining to each of the 
classification groups and ultimately to form ontological schemas.  

These insights helped compose a list of relevant metadata required to enable detailed 
attribution of performance indicators and monitored data originating from diverse 
categorical domains. Distinctive features of some categories and associated variables had 
to be reflected in the final schema through suitable properties. For example, in the case of 
the more complex schema for BPIs, many of the selected attributes are of a general and/or 
informative nature, and some are very specific, however required, to fully describe a narrow 
group of performance variables. Additionally, the relevance of some of the included 
attributes in relation to some more complex indicators may not have been apparent at first, 
but is critical to a full understanding of any indicator they describe and its associated 
value/quantity. Especially when the data is to be shared or re-used. Specifically, this group 
of attributes is associated with technical parameters of the method that was used to derive 
a certain indicator value.  

Over the course of development of the more recent BPI ontology, it became clear that 
ultimately most performance indicators are compounds of measured data, or they can be 
traced back to a single measured variable. This observation indicated that attributes used to 
describe monitored data can be largely covered by the attribute scope of BPI data. For 
example, measured indoor temperature or CO2 concentration level are primary variables 
(or measures) and can function as BPIs in the categories of thermal performance and indoor 
air quality respectively.  

Other statistical treatment of such variable (e.g. values aggregation over time or space) can 
potentially lead to more complex indicator definitions. Furthermore, compound BPIs can 
be derived from multiple measured (also calculated or simulated) variables. For instance, 
daylight factor (an indicator in the visual performance domain) is derived by dividing 
measured or computed indoor illuminance by the outdoor horizontal illuminance obtained 
at the same point in time. In another example, the Predicted Mean Vote (Fanger 1970), an 
indicator of human sensation of thermal comfort, is calculated based on a number of 
measurable environmental variables (air flow speed, air temperature, radiant temperature, 
air relative humidity) and occupants’ personal factors (degree of insulation provided by 
clothing – CLO value, metabolic rate due to actions). It was therefore logical to slightly 
modify the elaborate building performance indicators schema to include monitored data, 
arriving thus at a comprehensive Building Performance Data ontology that would 
encompass both previously mentioned ontologies (Mahdavi and Wolosiuk 2019b).  

The structure of general schema for BPD is largely similar to that of the BPI proposed in 
Mahdavi and Taheri (2018). Table 1 presents the main features of the BPD schema. Each 



21 

Heterogeneous building related data streams for performance assessment applications 
 

 

variable considered falls into a specific main performance category and sub-category, and 
has a name (see Figure 6 and Figure 7 for examples). Instances of the same variable type 
require a unique identifier for different functional and relational purposes. Given a specific 
time and space each variable instance can assume a specific value. Each value can have a 
number of assigned properties and attributes. The variable's type primarily suggests whether 
the data classifies as quantitative or qualitative. If relevant, a level of measurement (nominal, 
ordinal, interval or ratio) can be added alongside data class. Such can render helpful in 
determining meaningful statistical operations or interpretation of the quantity. Quantitative 
data should be supplemented with the magnitude (expressed as a value or number), in case 
of vector-type variables also with a direction and a relevant unit for valid processing and 
interpretation.  

Depending on the category of the variable, a number of additional properties in spatial, 
temporal and frequency domains can be specified. Spatial domain properties allow to 
associate a variable to a specific point in Cartesian coordination system, possibly a defined 
plane, volume or to a topologically relevant location (e.g. tagged room). If the magnitude 
of the variable was derived based on the integration of the number of data points over a 
space, the aggregation method (e.g. sum, average, median) and aggregation grid size can be 
specified.  

Temporal domain properties are expressed in the schema via a time stamp (e.g. per instance 
of the sensor reading). Duration denotes the overall time frame to which a given variable 
value corresponds (e.g. daily, monthly, annual values). A time step denotes recurring time 
intervals to which measurement or simulation data have been assigned. Otherwise, the time 
step (similar to the grid size attribute) can specify the discretization resolution of pertinent 
temporal (spatial in case of the grid size) continua. Finally, if applicable the aggregation 
method of data over the time domain may have to be specified.  

For a group of variables whose values belong to phenomena with wave character (e.g. 
sound, light, radiation), a group of attributes was defined in the frequency domain. 
Frequency range and/or band may be required to specify the analysis setup details (e.g. 
related to measuring equipment parameters) or pre-defined range of interest (such as 
human auditory system capability). Furthermore, the weighting (e.g. A-weighting of sound 
pressure levels in acoustics) and aggregation method can be specified.  

As for the remaining variable property groups, if relevant, an agent ID attribute can be used 
to assign a given variable to a specific entity. Notes property group pertains to additional 
relevant information, for instance, on the indicators' derivation background. In case of a 
monitored variable, notes could include sources of data pointing to a unique ID of a 
measuring device or sensor. In case of derived and compound indicators, notes could 
further point to the corresponding computational procedure, such as applicable formulas, 
algorithms, and associated links and resources.   
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Table 1 General BPD schema (modified based on Mahdavi 2018) 

 
Category Name 
Sub-category Name 
Variable Name 

ID 
Value Type 

Magnitude (size) 
Direction (vector) 
Unit 

Spatial 
domain 

Point 
Plane 
Volume 
Topological reference 
Aggregation method 
Grid size 

Temporal 
domain 

Time stamp 
Duration 
Time step 
Aggregation method 

Frequency 
domain 

Range 
Band (filter) 
Weighting 
Aggregation method 

Agent ID 
Notes Data 

sources 
Category 
ID 

Derivation 
method 

Details (formula, link, 
etc.) 

 

To illustrate the functionality and potential of the ontology, Table 2 includes three 
exemplary variables from different performance domains. Thereby, categories, 
subcategories, and relevant attributes of the selected variables are captured. 
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Table 2 Illustrative representation of three exemplary BPD variables following the structure of the 
proposed schema. 

Category Energy and 
resources 

Thermal 
performance Occupants 

Subcategory Energy performance 
indicator 

Environmental 
indicator Control action 

Variable Name Heating Load Air flow velocity Window contact 

 

ID AnnHL_BA_1807 AirFlo_R1_1808 WinCon_R1_W1 

Value 

Type Quantitative Quantitative Quantitative 
Magnitude  46 0.25 0 
Direction  - [0 0 -1] - 
Unit kWh.m-2 m.s-1 - 

Spatial 
domain 

Point - [1.50, 2.00, 1.10] [1.00, 0.00, 1.20] 
Plane - - - 
Volume Building A - - 
Topo. Ref. Building A Room R_1 Room R_1 
Aggregation - - - 
Grid size - 0.20 m - 

Temporal 
domain 

Time stamp - 
08.05.18 08.05.18 
10:30:00 09:20:00 

Duration Annual  - - 
Time step 1 hour   - 5 min 
Aggregation Arithmetic sum - - 

Frequency 
domain 

Range - - - 
Band - - - 
Weighting - - - 
Aggregation - - - 

Agent   ID - - Occupant_1 

Notes 
Data 

Sources 
Category Simulation Simulation Sensor 
ID Sim_20180729_1 Sim_20180823_3 Con_15 

Derivation 
method   - - - 
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2.2. From heterogeneous data streams to application 
Data or datasets (of a quantitative nature) consisting solely of an array of numbers without 
any additional descriptors cannot meet the requirements of the downstream applications. 
As descriptive and contextual content is added, data usability and scientific potential 
increase. Description of content, context, and structure should be an integral part of any 
dataset.  

Files that contain data in tabular form (e.g. in CSV file format) are usually accompanied by 
a description file, or these details are stored within a file (e.g. in the header). This is not a 
very effective way to contextualize data, especially when it is a part of a larger heterogeneous 
data repository. The information stored in this form is inherently "flat". The bulk of context 
and the main hierarchy remain only on a descriptive level and must be interpreted.  

In this context one of the primary functions of ontological data processing is to help achieve 
an explicit description of content and semantic integration of such heterogeneous data 
sources. Considering building performance data, this integration should not only provide a 
comprehensive overview of building’s performance metrics for analysis purposes, but also 
allow for data utilization and interoperability across range of applications.  

There might not be a single, universal approach to ontology implementation for data 
integration. However, certain set of operations are expected when processing quantitative 
data. Depending on a domain or a field of interest that an ontology pertains to, other 
operations may need to be recognized and applied. As a consequence, the implementation 
process may have to address a list of specific challenges that should be reflected in the 
workflow. Some of the relevant implementation questions are as follows: 

• What type of data is to be semantically enriched and where does the data originate 
from?  

• Should the data be preprocessed in any way?  

• What relevant attributes are available or should be provided? 

• How can attributes be attached to the data efficiently in accordance to the schema 
structure? 

• How to store the ontologized data?  

In the context of the presented effort, the answers to these questions set a foundation for 
creating workflow for transformation of heterogeneous performance data to ontologically 
structured information that is ready to be used in building performance assessment 
applications and beyond. Figure 8 presents schematic overview of the proposed structured 
process in which building-related measured or simulated “raw data” are processed and 
ontologized toward subsequent utilization in various applications. The different phases of 
this process are discussed in detail in the following sections.  
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Figure 8 Schematic process overview for transformation (preprocessing, semantization, storage) of 

performance-data for use in various downstream applications (modified based on Mahdavi and Wolosiuk 
2019b) 
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Data sources 
Building performance data (BPD) originate from various heterogeneous sources. One of 
the most common BPD sources are building management and control systems, metering 
devices, or sensors providing information on indoor and outdoor environmental 
conditions. Likewise, computational building simulation applications can generate relevant 
performance data concerning the thermal, visual or acoustic conditions in the building. In 
addition, "virtual" sensors can deliver data that is derived using both simulated and 
measured values of pertinent building performance variables.  

Due to very different data sources and the multitude of hardware and software components 
(e.g., sensors and data logging devices) and corresponding specifications, there is a large 
diversity in the ways raw data is acquired and stored. The acquisition and storage procedure 
can be influenced by specific manufacturer standards or even by individual requirements 
of a client or building manager. In case of data sources acquired from simulation, specific 
output formats are prescribed to the software.  

This multiplicity of possible formats largely impacts the rest of the ontologization process, 
as data from different sources may require preprocessing in order to achieve a common 
standard regarding the temporal nature of the data (i.e. event-based recordings versus 
regular interval data) or its structural attributes. Some of the common output formats 
applied to building performance data include: i) delimited text files containing tabular data 
(e.g., CSV); ii) database files (e.g., MySQL); iii) spreadsheet files (e.g., XLS); or iv) other 
formats (e.g. software specific output formats). In the process of ontological data 
structuring, sources may need to be handled individually. For instance, semantically 
different and heterogeneously structured data can be stored in the same output format. This 
issue is discussed in the following section. 

Data Preprocessing 
Depending on the nature of data source and/or future application, methods of data 
preprocessing should be considered before supplementing properties and storing values of 
performance variables in a repository. The need for preprocessing is primarily related to 
the variability of data source types, volume and quality of data being integrated.  

In this context, datasets (usually time series of measured performance values) should be 
examined in terms of data point sampling. There are two common sampling strategies for 
data recording, namely event-based and frequency-based (also called interval-based). With 
the event-based method, a measured value is only recorded if it indicates a meaningful 
change in the observed variable (e.g., indoor air temperature change above sensor's accuracy 
or above fixed threshold value) or there is a change in state of a device (e.g., open/close 
window). This type of sampling is increasingly present due to the growing number of 
wireless and low energy monitoring solutions and the need for an energy-efficient 
monitoring regime.  
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The frequency sampling method is based on a fixed time period between recordings of 
measured values. This type of sampling may seem more straightforward, nonetheless the 
sampling frequency can vary from device to device or from data source to data source.  

For this reason, both methods face the following (application related) data usability 
challenge. Namely, many analysis scenarios involving data streams from multiple sources 
require a common temporal base (i.e. uniform intervals) for relevant data analysis 
operations. Instance of such operations include, for example, correlation analysis, data 
aggregation, or multi-variate statistical investigations. Depending on the application, 
different temporal resolution levels of data samples might be required. Theoretically, the 
temporal resolution could be kept at a very high level However, this can lead to data 
redundancy and unnecessarily high computational loads especially when processing large 
sets of data. Therefore, it might be appropriate to follow common practices in a domain 
and/or application scenario when deciding about the desired level of data resolution. For 
example, in case of typical analysis scenarios involving indoor thermal environment, 15-
minute time intervals have been found sufficient. In contrast, high-quality monitoring of 
electrical power can require much shorter time intervals due to rapid spikes in the measured 
variable that would otherwise remain undetected. 

The process of sensor-based data collection is prone to errors. Data quality control is a 
common practice that involves detection of flaws in a dataset to assure its validity and 
usefulness in future applications. There are a few common quality related challenges 
concerning data streams from monitoring devices. For instance, outliers are anomalous data 
points in a population of observations. Approaches to detect and mitigate outliers span 
from empirical methods (based on value range limits) to those rooted in descriptive 
statistics (e.g., Tukey’s fences test for detection, or moving median for outlier removal). 

Discontinuities in measurement records, stored in data repositories (also called - data gaps) 
represent another common problem. There are several strategies for filling in missing data 
points. In case of small data gaps resulting from the removal of outliers, the commonly 
used method is the previously mentioned moving median or mean. In case of larger data 
gaps, a number of data interpolation methods can be applied. The source of such quality 
issues might be related to sensor malfunctions, temporal power supply interruptions, 
voltage drops due to a discharging battery, errors in communication with logger or gateway, 
and other external events.  

All of the mentioned preprocessing elements need to be considered when preparing 
ontologized data for storage, especially when data is to be shared or archived. Hidden flaws 
and inconsistencies in datasets that are not detected and rectified during the preprocessing 
phase, might hinder correct utilization of data by future users. 

Data semantization 
The purpose of implementing an ontology-based schema is to give data a meaning and 
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context. The ontology that is based on empirical study of a domain (or a field of interest), 
outlines the classification taxonomy, naming convention, and collection of applicable 
attributes.  

As with many other cases, also in the case of BPD, the properties of data collections 
pertaining to performance variables or indicators need to be identified individually. This 
could become a cumbersome task that potentially involves manual processing of multiple 
variables, each requiring multiple properties to be identified. Depending on the case at 
hand, some properties might be available for scraping from the output files of the data 
sources (e.g., file name, header's content, column name, etc.). Nonetheless, in such an 
instance, strategies for information extraction need to be developed, resulting in additional 
efforts. This could be beneficial, but only when processing well-structured datasets.  

Building performance data, particularly data coming from monitoring systems, often lacks 
in particular categorical or spatial details. These details need to be supplied by a system 
designer or individually obtained by an implementing expert. As such, the process of 
assigning relevant properties to data might be prone to human error, especially given the 
inherent diversity of diverse building performance data. 

Ontology storage 
Enriched building performance data must be serialized in a format that meets several 
requirements characteristic for ontologies in general, as well as particular requirements 
pertaining to a specific domain. A data model and its serialization format must be able to 
map the structure of hierarchical categories and their relations as specified in an ontology 
definition. It should also allow for assigning properties (detailed in schema) to categories, 
subcategories, and variables.  

What characterizes the BPD ontology is that it typically applies to large sets of time-oriented 
data. Ideally the storage format must not only allow for an effective content mapping, 
filtering and access to categorical data attributes, but also – and more importantly – support 
efficient queries concerning time-dependent values of relevant variables. This condition 
excludes some of the simple text-based serialization solutions (due to serious performance 
issues) and requires some form of data base incorporation or data-specific file format 
utilization. 

2.3. Implementation 
Following the proposed structured workflow, the robustness of the BPD ontology was 
tested using a collection of diverse heterogeneous data sources. The dataset used for testing 
is a collection high-resolution measurement data points that come from multiple sensors 
that monitor occupants, equipment and the indoor environment in several office spaces in 
a university building (TU Wien) in Vienna, Austria. Moreover, the dataset also includes data 
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concerning external environmental conditions that were collected locally by multiple 
measuring instruments. Table 3 lists most of the relevant monitored variables in various 
categorical domains that are part of this dataset. 

To put some of this data into a spatial context Figure 9 presents a plan of one of the office 
spaces with marked positions of the monitoring sensors (air temperature, relative humidity, 
air quality, presence, equipment and light electricity meters) and their original name-tags 
given during  the initial  monitoring system  development. Not marked  in  the  image  are 

 

Table 3 An overview of the performance variables available in the dataset that was used in the 
implementation. 

Category Subcategory Monitored variable 

Indoor conditions 

Hygro-thermal 
conditions 

Air temperature 
Relative humidity 

Visual Overhead illuminance 

Indoor air quality 
CO2 concentration 
Volatile Organic Compounds 

External 
conditions 

Hygro-thermal 
conditions 

Air temperature 
Relative humidity 
Precipitation 

Daylight 

Global Horizontal Irradiance 
Diffuse Horizontal Irradiance 
Sky Luminance 
Sky Radiance 
Sun Presence 

Outdoor air quality CO2 concentration 

Outdoor air flow 
Wind speed 
Wind direction 

Energy and 
resources Energy consumption 

Active power consumption 
Energy meter reading 

Control system 
and devices 

Heating/Cooling 
system Radiator surface temperature 

Occupants 
Position Presence 
Control actions Window contact  
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window contact sensors, radiator temperature sensors and less relevant hygro-thermal 
conditions sensors. Including sensors located in the remaining office spaces, there are a 
total of around 120 unique variables that capture indoor conditions and events.  

The second group in this dataset are variables associated with external environmental 
conditions that are monitored locally using several high-grade monitoring instruments. 
Figure 10 shows a diagram with an overview of these monitored environmental variables 
(listed in table on the left side of the picture) in context of the corresponding monitoring 
system’s architecture. 

The implementation dataset in its majority is syntactically and structurally homogeneous. 
Syntactic homogeneity is achieved by using the same data model to store individual 
monitored variables. Based on the design approach of the monitoring system, each 
monitored variable is saved as a separate SQLite (Hipp, 2021) relational database file. 
Accordingly, each database file retains a structural homogeneity. Specifically, each file 
contains a two-column table with timestamps and a corresponding sensor reading.  
Figure 11 shows an example of the content of such a database file, in which sensor readings 
of the indoor air temperature are stored.  

However, there are some examples of performance-related data in this dataset with a non-
standard format or that differ syntactically and structurally and require individual handling. 
In the present implementation effort, these are the data sources concerning monitoring of 
the sky (see bottom left on Figure 10), such as those generated by the sky luminance camera 
or the sky-scanner. The data from the sky-scanner comes in a form of multiple tabular files 
(one csv file per each day of recording; see Figure 12 for an example) containing uniquely 
structured sequence of the measured values. These files need individual approach to pre-
processing before being integrated, well supplemented with relevant information on the 
exact content and data points structure and stored in an ontologically consistent manner. 

Another example of a non-standard data source in this dataset is output files generated by 
the sky luminance camera. These are high dynamic range images which essentially translate 
to a high-density matrix of precise luminance readings per measurement data point. Such 
can be additionally processed to a sequence of 145 values representing the hemispherical 
Tragenza (Tregenza 1987) sky matrix for use with advanced light simulation software (see 
Figure 22). 

 



 

 

 
Figure 9 Office sensor locations plan.
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Figure 10 An overview of available monitored environmental variables and monitoring system architecture. 



Heterogeneous building related data streams for performance assessment applications 

33 

 

 

 
Figure 11 Sample content of a data source file used in the implementation. Two columns shown relate to 

the time stamp and the corresponding measured values of the indoor air temperature. 

In summary, it can be said that the syntactic and schematic heterogeneity is only a technical 
issue. Different formats and representations of data sources can be adapted for available 
information extraction. Due to high variability of possible data sources and their 
implementation details, there is no single universal approach to this process. Individual 
approach means developing workflows, algorithms or tools to systematically extract the 
information which can be a cumbersome and time-consuming process. 

We have established that the given implementation dataset is mostly homogenous on 
syntactic and schematic level, however it is heterogeneous on the semantic level. The 
content of a sole data file is (in the most cases) irrelevant both for humans and machines if 
a context is not provided with it. For example, information stored within said database files 
pertaining to any of the temperature measuring sensors (e.g. air temperature, radiator 
temperature) have the same meaning - namely the list of values stored in a file represent a 
measure of temperature. This information alone would be considered meaningless. 
Additionally, we cannot be certain of the unit and scale of the values in question. In the 
real-world, all of these data points have at least a certain spatial and/or temporal context. 
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Figure 12 Exemplary content of csv output file generated by sky-scanner control software. 

 

In the given dataset, the temporal context is provided in the form of time stamps for each 
measured value, but the rest of the context is not disclosed. All other semantic details 
necessary for a proper interpretation of the information about the data source must be 
determined so that they can be provided later during the semantization part of the proposed 
workflow. Before semantic enrichment of the selected data, however, two preprocessing 
operations must be considered, namely the temporal aggregation/segmentation and the 
data quality check.  

The designated dataset includes variables with both event-based and interval-based 
sampling records. The majority of indoor environment monitoring sensors used in this 
system are ultra-low power, battery-less wireless sensors that have to manage small amounts 
of power very efficiently. Therefore, a measured value is only transmitted when there is a 
significant change in the monitored variable, which leads to an event-based characteristic 
of the stored records (see Figure 11 for an example of event-based temperature 
measurements records from one of these sensors).  

On the other hand, the variables related to the monitoring of the external environment are 
recorded periodically according to requested interval length. The selected intervals of 1 
minute. (for hydro-thermal and air flow monitoring instruments), 5 minutes (for daylight 
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monitoring sensors) and 15 minutes (for sky monitoring sensors) are based on the 
monitoring system design decision (see Figure 10 for the system overview).  

At this level of implementation process, there was no aggregation nor segmentation 
performed on any of the selected variables. The reason behind was to retain the original 
values recorded by the sensors for more flexibility at the application level. In fact, data 
aggregation was implemented as feature of a tool in one of the illustrated application 
examples in the following chapter. If necessary, after the ontological integration of the data 
set, new spatially or temporally aggregated or segmented variables can be generated from 
the existing ones.  

The dataset in question was subjected to a basic data quality check. The characteristics of 
the dataset and related issues were previously recognized and known to the author. Thus, 
the quality check was not performed “formally” (e.g. no calculated nor interpolated data 
points were inserted), as this was not the main focus of the research. Nevertheless, certain 
quality control relevant actions were undertaken with regard tothe variables of interest. For 
example, due to previously recognized occasionally occurring server failures resulting in 
sensor-server communication interruption, an algorithm was developed to specifically 
detect quantitative anomalies in the monthly number of generated data points stored in a 
database. This particular analysis gave some insight on the time periods without any missing 
entries and allowed to select the best quality portion of the dataset for use in application 
testing. In addition, missing data treatment methods were implemented as a feature of the 
tool that is illustrated in one of the application examples. 

Following the proposed workflow, in the next step of ontological data integration process, 
the dataset was given a semantic meaning by providing each of the selected variables with 
relevant attributes as per the proposed performance data schema. As discussed previously 
the only context available from within used data sources is temporal. The remaining context 
and semantic details had to be identified.  

There are many potential sources of metadata and means to help identify it. Starting at a 
low level, such a source can be the name of a data file or the header of a data file (for text 
file sources), data column name or accompanying metadata table (for database sources). In 
this implementation, the names of the database files  
(e.g. “SRW01_00016c48_con_rawdata.db”) indicate the measured performance variable, 
the sensor model name, and provide a unique physical address that can be used to link the 
file to other related documentation (see Figure 14 for more file name examples in the 
column A).  

The potential availability or quality of documentation or similar sources with relevant 
information about the data varies from case to case and depends heavily on the design of 
the monitoring system or application as well as on implementation decisions. If data comes 
from a BMS system, it is very likely that all system details are well documented. If, on the 
other hand, a data source was a part of specific application instance or used in a peculiar 
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workflow, it may not originally have been designed for reuse, thus none or very few of the 
semantically relevant details might have been documented. In such case an insight from a 
designer or managing person is required.  

To illustrate the potential sources of semantic attributes that a person implementing an 
ontological schema may need to work with to gather information, the following sources 
have been used to find spatial properties of some of the variables in the implemented 
dataset. Figure 13 previews content of a spreadsheet with the inventory of wireless sensors 
and related equipment. The most relevant information in this table is the physical address 
of the sensor and the unique ID of a monitored variable assigned to it. In this way we could 
cross reference database files with a specific ID of the monitored variable to extract 
semantic information from other sources.  

For example, the office plan shown on the Figure 9 with exact spatial position of the 
sensors. This plan was used to extract relevant spatial domain attributes (e.g. position in 
Cartesian space, topological details) of some of the performance data variables. The rest of 
the relevant or required metadata that could not be scraped from the aforementioned 
sources were derived empirically or were based on expert knowledge and monitoring 
system insight.  

Given the multitude of performance data variables in the implementation dataset, the 
attributes of which must be determined and processed in order to ultimately be serialized 
in a file, a specific solution was expected to mitigate this process. Therefore, to facilitate the 
attributes supplementation and deposition, all variables and their attributes were aggregated 
in a single csv file (see Figure 14). The content of this file follows specification of the BPD 
schema and is used to enable efficient integration and storage of the data via designed 
conversion algorithm. The data from the sky-scanner, since it is syntactically different from 
the rest of dataset, required individual approach and a separate set of conversion functions. 

Python programming language was used in the process of performance data 
transformation. Several functions for extraction and conversion of the input data streams, 
attributes organization and supplementation, and structured storage in a HDF5 file were 
developed. The HDF5 (The HDF Group 2019) is a primarily scientific data format capable 
of storing various data objects, adapting high-level data schemas and executing very high-
performance queries on large datasets. It allows grouping and organizing objects in a 
hierarchical manner, enables the assignment and accommodation of complex metadata to 
the elements of the structure and the linking of elements.  

Given these features, the HDF5 file format appeared to provide a suitable foundation for 
testing the BPD ontology and the proposed data schema. Note that it is not suggested that 
this is the only or the ultimate implementation solution. Another implementation approach, 
for instance, could be based on Semantic Web (SW)technologies. Because in the application 
phase, the emphasis was on high-volume data processing (e.g. long-term visualizations), 
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selecting an all-in-one high-performance format seemed appropriate for this purpose. To 
achieve comparable level of data query performance in a SW based implementation, the 
use of solutions such as external data storage repositories would be required and would 
certainly add another layer of complexity in any application scenario. Figure 15 presents an 
exemplary overview of the content of HDF5 file with hierarchically structured building 
performance variables and their instances in different categorical groups.  

 

 
Figure 13 Preview of the inventory file concerning wireless sensors and equipment. 



 

 

 
Figure 14 Preview of the tabular file containing gathered details pertaining to performance data and variables.
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Figure 15 Content of a HDF5 file with ontologically structured performance data. 
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CHAPTER 3 
Demonstration 

of application 

3.1. Information retrieval 
Note: The following section is based on and contains excerpts from the following, 
previously published conference papers - Mahdavi and Wolosiuk (2019a, 2019b). 

The most basic functionality that is enabled by the ontology implementation is information 
retrieval. Information that is available in a semantically enriched dataset can be very 
precisely selected or extracted using logical queries. Any of the attributes present in the 
BPD schema might potentially be relevant in such queries. For example, we might be 
interested in limiting our selection to specific performance category or variable name, we 
can further limit the selection variables available in certain space, but also, we might be 
interested in those associated with a specific occupant. Depending on application, there are 
many different query scenarios and these queries are most likely the backbone of any 
advanced performance application.  

As a part of initial BPD ontology testing, a series of algorithms were created in the Python 
environment to test querying efficiency of ontologically structured data. The main focus of 
this low-level application was to extract target variables that fulfill a specified combination 
of spatial, temporal, and categorical criteria. After successful extraction, the data of interest 
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was further processed in terms of descriptive statistics and data visualization (e.g., box plots, 
histograms, line plots). 

To illustrate this process, consider the example of a two-step test query of the implemented 
dataset. In the first step the variables are filtered to ones that have “BPI Secretariat” as the 
“Topological reference” in their Spatial domain attributes group. To preview the content 
of the selected variables and demonstrate some visualization potential, a trend line for each 
of the selected variables was generated for a content preview in a selected time period (here 
1-31.05.2016). Figure 16 shows a result of the executed algorithm in the PyCharm IDE - a  

 
Figure 16 Information retrieval using python programming environment. Output of two consecutive logical 

queries visible in the bottom window, the upper window previews generated plots. 
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Python integrated development environment (JetBrains 2021). In the lower window, the 
variable instances found after the first query step are listed and a function is executed to 
generate the trend plots for all selected instances (see Figure 18). 

The second query step is to extract only the instances of “Indoor Relative Humidity” 
variable that are available and generate additional statistically relevant visualizations. The 
final result of the query (variable instances “rhu16” and “rhu20_new”) are visible in the 
bottom window on the Figure 16. Figure 19 presents the generated set of three 
visualizations for one of the selected variable instances in the selected time frame (1.03.2016 
– 31.07.2016).  

This example illustrates the utility and effectiveness of the well-formed semantically 
enriched data. Together with a simple user interface the presented algorithm could become 
part of a visualization/exploration tool. 

As mentioned in the previous chapter, the HDF5 file format is very efficient in terms of 
query performance and can be used in different programming environments. To test and 
demonstrate this universal support, an algorithm was developed in MATLAB software to 
process queried data (hourly aggregation of event-based measured values) and generate an 
annual hourly tile map visualization.  

For this purpose, logical queries were formulated to satisfy specific combinations of 
categorical, spatial, and temporal criteria. Specifically, "overhead illuminance level" as 
variable name, "seminar room" as topological reference, and "year 2017" as temporal 
constraint were defined. The values were aggregated to form an hourly based value matrix 
(see Figure 17)with an additional visual based information in form of color-coded value 
intervals. 

 

 
Figure 17 An annual tile map visualization of measured overhead illuminance levels in an office area. 
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Figure 18 Trend preview of filtered variables in the selected time range (1-31.05.2016). 
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Figure 19 An example of statistically relevant visualizations, generated from query selected measured 
values of indoor air relative humidity variable instance (top: trend, frequency distribution; bottom: box 

plot). 

 
The last “low-level” illustrative example, based on logical query information retrieval is 
indoor-outdoor temperature relationship study. It was hypothesized that, due to the effect 
of thermal mass and associated temporal delay, indoor air temperatures may display a higher 
correlation with outdoor temperature measured at an earlier instance. In this scenario 
logical query constrains were as follows: "indoor/outdoor air temperature" as variable 
names, "BPI open space S, TU tower" as topological reference, "21.06.2017 - 22.09.2017" 
as temporal constraint. Processing involved aggregation of available variable instances to a 
30 minutes step temporal base and averaging the indoor air temperature values to get one 
representative indoor air temperature measure. The correlation between indoor air 
temperature with outdoor air temperature that was measured 30, 60, 90, 120, 150, and 180 
minutes earlier was then investigated (see Figure 20). This analysis suggest that the highest 
correlation involves a two-hour time shift between measured indoor and outdoor 
temperatures. Figure 21 displays this correlation graphically. 



Heterogeneous building related data streams for performance assessment applications 

45 

 

 

 
Figure 20 Coefficient of determination between measured indoor air temperatures in an office area and 

earlier measurements of outdoor temperature (from half an hour to three hours before). 

 

 
Figure 21 Illustration of the correlation between measured indoor and (two-hour shifted) outdoor 

temperatures. 

  



Demonstration of application 

46 

 

 

3.2. Performance modelling tools integration 
Note: The following section is based on and contains excerpts from the following, 
previously published conference papers - Wolosiuk and Mahdavi (2020a, 2020b). 

To further explore the potential of utilization of semantically enriched data with advanced 
performance applications an effort was made to harmonize information stored in a HDF5 
file and the functionality offered by the Ladybug Tools by creating task specific interfaces 
that relies on defined terms and data structure of BPD Ontology.  

Ladybug Tools (LT) (Roudsari 2013) integrates the potential of well-known performance 
simulation engines such as the EnergyPlus (Crawley et al. 2001) or Radiance (Ward 1994), 
with the Rhino 3D (McNeel 2019) modelling software. It is a collection of small 
applications that couple these simulation engines with a 3D modelling and visualization 
potential of the Rhino software. This linking is enabled through Grasshopper – a visual 
programming environment built into the Rhino software. 

Grasshopper quickly grew beyond initial 3D algorithmic modelling and parametric design 
platform. This was enabled by giving the community a possibility of creating custom 
components and component packages that could be shared online. The Ladybug Tools is 
an instance of such component package development. Grasshopper supports a number of 
programming languages for creating new components. These components can be of a 
universal nature (simple mathematical operations on input), as well as complex or task 
specific nature, such as calling external software for output generation. The latter is the case 
of this implementation, where several custom components written in Python language were 
created to enable and test interfacing between BPD ontology serialized in a HDF5 file and 
elements of Ladybug Tools.  

Initial tests involved creating custom components that would take directly HDF5 file and 
some options as an input. The component’s algorithm would extract a pre-specified 
performance variable in a desired quantity and process it to a form that is consistent with 
particular requirements of Ladybug’s native component input. 

One of the tested functionalities was to see if a sky matrix of radiation values representing 
amount of radiation coming from each of 145 patches of a sky hemisphere, could be used 
with different native LT components that require these values as an input. The values were 
generated from previously processed sky-luminance camera images (See Figure 22). For 
example, in this case, to be visualized as a 3d hemisphere in the graphical interface of the 
Rhinoceros 3D using the SkyDome LB component (see Figure 23). 
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Figure 22 Sky luminance camera processing stages. From luminance image to Tragenza sky matrix. 

 

 
Figure 23 Sky matrix generated from a luminance camera image visualized in Rhinoceros 3D 

environment. 

In another scenario, an application specific component was created to take measured 
radiation data from the HDF5 file and to replace Typical Meteorological Year (TMY) values 
in the original EPW file. Values recorded in a specified year (or a specific period within a 
year) are i) aggregated in terms of hourly values, ii) direct normal component is calculated 
from global and diffused horizontal radiation (if not provided), iii) latitude and longitude 
information is replaced (if provided), iv) and finally a new EPW file is generated, stored 
locally, and provided as an input for the Generate Climate Based Sky component. Figure 
24 shows this component with the required and optional inputs on the left and outputs on 
the right side.  
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Figure 24 A custom component for modification of EnergyPlus weather file, for use with climate-based 

sky generator in solar radiation studies. 

Being able to modify parts of an existing EPW allows for seamless integration of localized 
environmental data into the standard Ladybug design or analysis workflow. 

The created BPD interfacing component was tested by integration in two illustrative 
simulations, involving snapshot-type Illuminance and annual Daylight Autonomy analyses. 
The test case for the created component involved modified sample studies provided by the 
creators of Ladybug software.  

The illuminance simulation results are based on selected diffuse horizontal and direct 
normal irradiance values obtained from modified EPW file generated by a custom 
component. The new EPW file contains radiation values for the entire year as recorded by 
pyranometers in 2016 in Vienna city center. The selected point in time for the simulation 
is 2016-06-2110:00:00. Figure 25 presents the integrated BPD interfacing component into 
Ladybug components-based simulation setup (only a small part of the setup canvas is 
visible here). The resulting daylight illuminance distribution values are visualized in Figure 
26 in terms of a color scale. 



Heterogeneous building related data streams for performance assessment applications 

49 

 

 

 
Figure 25 Custom BPD interfacing component (middle left) integrated into simulation setup. 

 
Figure 26 Visualization of the indoor illuminance simulation results based on local historical data for 

Vienna. 
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In a similar manner, an annual Daylight Autonomy (DA) for the same space was performed. 
This time the local historical solar radiation data from the entire year 2016 was used to 
visualize and analyze Daylight Autonomy based on a default office type occupancy 
schedule. The simulated results represent the percentage amount of occupancy time when 
the illuminance is above the given threshold of 300lux. Again, results are visualized as a 
color mapped grid representing value threshold for a given analysis grid tile (see Figure 27). 

 

 
Figure 27 Daylight Autonomy studies based on local data extracted from BPD stored in a HDF5 

repository. 

After the possibility of extracting and harmonizing the ontologized BPD with Ladybug 
Tools via “hard-coded” selection of data had been demonstrated, in the next stage some 
usability related functions and components were added so that information stored in an 
HDF5 file can be accessed from Grasshopper's interface level. For example, a function for 
selecting variable instances based on attribute filtering via interactive interface elements 
(e.g. generated drop-down list) (see Figure 28). Another added functionality is data 
processing component, where values related to selected variable are extracted according to 
specified time frame and can be further aggregated and missing data can be interpolated 
(see Figure 29). These new components enabled interactive access to further group of 
Ladybug Tools components that use this input data streams for visualization, indices 
calculation, or performance simulation.  
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Figure 28 An illustration of custom components created for selecting relevant variable instances based on 

attribute filtering via interactive interface elements. 

 
Figure 29 A custom data processing component for analysis period selection, data points aggregation or 

missing data handling. 

For example, by selecting variable instances related to thermal comfort, such as the air 
temperature and relative humidity, regarding certain occupant in the selected office space, 
we could utilize the “PMV comfort calculator” or “Thermal comfort indices” LB 
components to deliver number of thermal comfort related indices.  

There are several options for data visualization in Ladybug. In a basic visualization scenario, 
the selected temperature data points can be supplied to “line chart” component to generate 
a trend line graph. Figure 30 present a simple chart generated from one of the indoor air 
temperature variables (“tem20_new”) in the specified time period.  
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Figure 30 Example of a line chart generated with Ladybug native component from extracted indoor air 

temperature variable data. 

Another visualization option is previously presented tile map. In this case native LB 
component is used to generate an hourly overview of a variable in question. Figure 31 
presents a tile map of indoor relative humidity generated using “3DMap” component.  

In an advanced visualization scenario, thermal comfort related variables are supplied to 
generate a psychometric chart. The typical process steps are as follows: First a topological 
reference attribute is selected from the list of available attribute instances in the HDF5 file 
(Figure 32 A), in the next step the relevant instances of the Indoor Relative Humidity and 
Indoor Air Temperature are selected (Figure 32 B), the analysis period is defined (Figure 
32 C) and finally the event-based measured values are processed in terms of aggregation to  

 
Figure 31 A tile map visualization of an indoor relative humidity variable, generated using native LB 

“3DMap” component. 
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a common hourly time-step (Figure 32 D). Finally, the data is supplied to the “Psychometric 
Chart” component. The resulting graph (see Figure 33) presents a color-coded density grid 
of total amount of hours in the specified time period of temperature – humidity pairs inside 
each of the grid tile (1C° and 5% Rh grid step). The total amount of hours within the 
comfort window can be read from the components output or the annual results can be 
visualized using “3DMap” component (see Figure 34).  

 
Figure 32 Stages in Grasshopper visual programing model for psychometric chart generation from 

ontologized data stored in hdf5. 
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Figure 33 Psychometric chart generated from the performance data stored in hdf5 file. 

 
Figure 34 Annual hourly tile map showing hours of the year outside the comfort window. 

In the last tested interfacing instance, the aim was to use detailed sky radiation data collected 
by a sky-scanner and direct normal solar radiation data (derived from global and diffused 
solar irradiance measurements) toward localized solar radiation studies. Sky-scanner 
regularly measures, for a specific location, luminance and radiance of the sky hemisphere, 
represented in terms of in a 145 segments or patches. A custom component was created to 
extract ontologically structured solar radiation data from BPD and process it in terms of 
the input format of the Ladybug’s Sky Dome component for data visualization. The 
selectedSkyMtx output is an array of aggregated total, direct normal, and diffused radiation 
values per sky patch for a selected time period. Figure 35 presents a visualization of the 
annual diffuse sky radiation based on the data collected by the sky-scanner in 2016.  
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Figure 35 Visualization of diffuse solar radiation generated from sky-scanner measurements in Vienna, 

Austria. 

The same structured (selectedSkyMtx) output can be used as the input for the Ladybug’s 
Radiation Analysis component. It calculates the total incident solar radiation on a surface 
or a selected group of surfaces within a selected time period. It also allows for visualizing 
the results directly on the 3D model. Figure 36 presents the result of such a study of an 
existing building in Vienna. The Radiation Analysis results can be used in solar heat gain 
studies or support solar energy systems design. 
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Figure 36 Illustration of a building performance assessment scenario (visualization of incident solar 
radiation density distribution across a complex roof configuration of an existing building) supported by 

ontologically stream-lined monitoring-based data. 
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3.3. Multi-domain PV performance studies  
Note: The first example presented in this section is based on and contains excerpts from 
Mahdavi and Wolosiuk (2021). The remaining two examples are largely based on to be 
published conference papers – Wolosiuk et al. (2021) and Mahdavi at al. (2021). 

Previous sections demonstrated how certain streams of data could be ontologized and then 
utilized in different application scenarios. There are, of course, many more cases of 
technical applications of models and assessments of performance analysis that would 
require a much larger number of data streams and sources. To illustrate such cases a series 
of use case scenarios that involved climate, building, building system, user, finance was 
created and tested. Specifically, three advanced examples concerning utilization of solar 
energy, that focus on PV system energy generation potential, and payback time considering 
various constrains related to PV system setup, building energy performance, related soft 
costs and other financial aspects. This means, an extensive scope of information in four 
categories is required to create models and support relevant calculations. This includes: 

• Microclimatic data: Location specific solar radiation data, as well as air 
temperature, humidity, wind speed, precipitation to enable accurate and high-
resolution, generated energy profile calculation.   

• Building related information: In order to determine the correct size, placement and 
orientation of a building-integrated PV system, detailed information about the 
building is required, including its shape and geometry, structure and construction. 
Essential is also high-resolution data on the electrical energy demand profile of the 
building. 

• Technical specification of the components of the PV system: Information 
regarding the type and performance of inverters, panels, batteries etc. is required 
for calculation of generated energy profile  

• Financial and regulatory information: As with other types of systems, economically 
relevant data (design, installation and maintenance costs of the PV system as well 
as electricity purchasing costs and electricity export revenues) are a key factor in 
calculation of the revenue time and support of decision-making. 

In these examples a certain amount of data could have been theoretically covered by the 
proposed ontology (e.g. climatic data, energy consumption profiles, occupancy data etc.) 
but not all (e.g. financial data, building geometry, construction details, equipment 
specifications etc.).  

Gathering reliable data necessary for these use cases was a relatively cumbersome task. 
There was very few accessible information sources and input data had to be extracted from 
different industry reports, websites, databases or trade journals, then interpreted, verified 
and manually prepared for implementation. Each of these homogeneous sources without 
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a reliable metadata layer add a new complexity level that hinders the development of 
potentially useful performance assessment related applications. 

In the following, the said three use cases demonstrate how the broad spectrum of 
information is used in combination with performance data streams to provide meaningful 
analyses. First example presents a web-based application created for a PV system design 
decision support. Second example looks at cost-benefit analysis of different technical PV 
system installation and maintenance options under varying location specific environmental 
conditions. Third use case presents a framework that facilitates a bi-directional approach 
to supporting the design and configuration of PV installations. These examples represent 
also future challenges for the research described in this work. Particularly those concerning 
creation of a fully seamless data environments in which multi domain information is 
accessible thus enabling further progress and discovery. 

Introductory remarks on PV performance modelling use cases 

The source of all simulation methods and models related to solar power calculation in all 
of the following use cases is pvlib-python library. The pvlib-python library, is a package of 
functions and classes, written in Python programming language, for simulating the 
performance of photovoltaic energy systems (Holmgren et al., 2018). The library 
implements multiple models and methods developed by PV Performance Modeling 
Collaborative group (PVPMC) for Sandia National Laboratories (Stein, 2012).  

The applied modeling procedure requires inputs such as sun positions, solar radiation data, 
weather data (climatic data), solar array orientation, and solar equipment specifications. 
These are then used as an input for the provided functions and models. The geolocation 
metadata (latitude, longitude, and altitude), hourly values of solar radiation (direct normal, 
global horizontal, and diffuse horizontal irradiance) as well as air temperature and wind 
speed were extracted from a corresponding EPW data files (Crawley et al., 1999). The 
weather data provided by the EPW file is derived from Typical Meteorological Year 3 
(TMY3) (Wilcox and Marion, 2008) and International Weather for Energy Calculations 
(IWEC) data sets (ASHRAE, 2001). It is used to determine solar positions, optimal tilts, 
in-plane irradiance and finally energy output for each of the locations and scenarios. The 
NREL Solar Position Algorithm (SPA) (Reda and Andreas, 2004) is used to determine solar 
positions on an hourly basis for the specified sites. The solar positions, radiation intensities, 
and panel orientations data is used in a transposition model function to estimate the total, 
normal, and diffuse in-plane irradiance (Hay and Davies, 1980). What fraction of this 
irradiance is in the end converted to electric current depends on weather conditions and 
the PV systems' efficacy. Functions implementing Sandia Array Performance Model (King 
et al., 2004) are used to calculate cell temperature and finally total amount of power 
generated by the system. 

Any deviation from this modeling approach, as well as financial modeling aspects and PV 
systems technological details, can vary between cases and are highlighted in the example 
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descriptions. 

A web-based tool for PV installation design decision support 

In the first use case, the aforementioned web-based computational platform for supporting 
the design and optimization of PV installations was developed. To perform different types 
analysis scenarios, it must be supplied with data from all of the previously mentioned 
categories. The efficiency of the process by which such heterogeneous data sources are 
brought together can benefit significantly from the data ontologization approach described 
previously. Although not identical in all cases, the ontologization process for the different 
data streams is basically similar. Therefore, the focus below is on demonstrating the 
usefulness of the computational environment in responding to a number of illustrative use 
case scenarios. 

The application was developed in the Python programming environment, using the Dash 
framework for building web applications (Plotly 2015). It was used to create a plain user-
interface for input specification as well as output results visualization and inspection. Figure 
37 presents an overview of the developed interface. The main visualization type for 
different analysis results presentation is a contour plot as seen on the Figure 38. Depending 
on the user’s options selection - solar radiation on the PV panels, generated AC power by 
the PV panels, annual financial balance (difference between system investments and energy 
cost savings over a pre-defined period of time) can be visualized. The result values are 
plotted as a function of the panels' orientation (tilt and azimuth). The second implemented 
visualization is a line graph that shows the cumulative (annual) cost balance as a function 
of the number of PV modules and the module orientation for a specific building, a specific 
module / inverter type and a specific electricity price scheme. 
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Figure 37 An overview of the developed tool’s user interface. 

In order to use the application, the user must provide some basic input data, including the 
applicable time period for the analysis, a source of local solar radiation (and other relevant 
microclimatic) information, and information on PV module products, and related inverter 
products. Depending on the type of output request, additional information regarding the 
number of modules and the time horizon for the financial analysis may be required. In 
addition, all inquiries about the local storage of electricity or electricity import / export 
from / to the grid require the electrical energy load profile of the building in which the PV 
system is housed. 

To demonstrate the application and its functionality three illustrative use case scenarios 
were performed. In the first scenario user wants to analyze how much electrical energy can 
be generated by 15 PV panels over a period of a year under typical meteorological year 
conditions in a specific location (Vienna, Austria), given specific PV panel and inverter 
models (see Figure 37). The resulting visualization presents the respective values as a 
function of the azimuth and the inclination of the panel. Figure 6 shows the generated 
output, in the form of isolines of accumulated electrical energy given in kWh. While the 
calculated most optimal orientation is at an azimuth and an inclination of 165 and 35 
degrees respectively, the visualization also illustrates the potential flexibility in a number of 
orientations that would provide a similar level of performance. 
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Figure 38 Isolines depicting computed cumulative electrical energy generated over a one-year period (15 
PV panels installed in Vienna, Austria) as a function of the panels' orientation (azimuth and tilt) 

The second illustrative use case scenario concerns the annual cost balance analysis of a 
building-integrated PV system consisting of 15 specific PV modules under the following 
input assumptions. The analysis is to be carried out for an investment cycle of 25 years. 
The total investment cycle costs consist of the purchase, installation and maintenance cost 
of the installation. It is assumed that if the electricity demand of the building (for the 
corresponding demand profile, see Figure 7) is not covered by the PV system, electricity 
must be drawn from the grid (price 20 cents per kWh). If, on the other hand, the system 
produces more electricity than required, the surplus can be fed into the grid (yield of 7 cents 
per kWh of exported energy). The final annual balance calculation is derived from the 
expenses for energy import, savings from the demand covered directly from the PV system 
as well as the income from the feed-in of PV electricity into the grid. The results of this 
example are shown in Figure 8 in the form of isolines of the annual cost balance (in euros). 
The calculated value is the difference between the total costs of the installation and the 
energy purchase costs over a period of 25 years and the income from the export of 
electricity into the grid over the same period. 

Note that given the illustrative nature of this (and the following) application use case, the 
cost balance calculation has the character of a simple amortization analysis. In particular, 
the dynamics of energy prices and capital interests are not considered. However, these 
parameters can easily be included in the financial analysis component of the calculation 
method. 
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Figure 39 Assumed electricity use profile (hourly values over the course of one year) 

 
Figure 40 Isolines showing the calculated annual financial energy balance of a building with integrated 

PV system. 



Heterogeneous building related data streams for performance assessment applications 

63 

 

 

The third illustrative scenario tries to determine the optimal number of PV modules (of a 
certain type hence specifications) for an installation in the same location (Vienna, Austria). 
As in the previous case, the aim of the optimization is to minimize the annual net system 
costs (sum of installation and electricity import costs minus income from electricity export 
into the grid, calculated over a period of 25 years). 

The application’s interface allows selection of different orientations of the panels as well as 
different assumptions about the electricity import and export prices. To illustrate the results 
of the calculations, Figure 41 focuses on just one panel orientation (i.e. azimuth of 180 
degrees and inclination of 35 degrees) and a fixed electricity purchase price, set at 20 cents 
per kWh. This figure suggests that up to a minimum electricity export price (i.e. around 8.5 
cents per kWh), any increase in the number of modules leads to lower annual costs. Below 
this price threshold, however, a certain number of modules turns out to be optimal (e.g. 20 
and 10 modules for 8 and 7 cents per kWh export price for electricity). 

 
Figure 41 Calculated annual balance depending on the number of PV modules and electricity export price 
of a building-integrated PV system (panels orientation azimuth/tilt - 180/35 degrees, electricity purchase 

price set at 20 cents per kWh) 

Performance comparison of static and adjustable photovoltaic panels 
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In the second example, the performance data streams are used to enable the cost-benefit 
analysis of static (fixed) installations versus dynamic installations capable of solar tracking. 
Moreover, in addition to entirely static option and the solar tracking options, it is 
conceivable to set up PV installations whose tilt could be "manually" adjusted from time to 
time to enhance their potential to capture solar energy. Whereas this latter option would be 
more expensive than conventional static installations (due to the needed mechanical gear 
and manual labor), it would require significantly fewer resources that automated solar 
tracking variants. 

This example applies a high-resolution modelling approach together with order of 
magnitude cost-estimation to compare the energetic output and estimated installation and 
maintenance cost of static, fully dynamic, and multiple instances of recurrent manually 
executed directional adjustment of the PV panels. 

Utilizing modeling methods and algorithms mentioned in the previous example, different 
panel slopes, directions could be parametrically assessed for the magnitude of generated 
electricity as a function of the solar radiation intensity at the installation's location. 

The study scenario considered flat roof PV panels installation, where all panels were 
assumed to be of the same type, namely monocrystalline silicon (mono-Si) with a nominal 
module efficiency of 17.8% connected to a string inverter with a maximum efficiency of 
97.5%. To streamline option comparison, obstruction issues (due to objects in the 
surroundings or due to adjacent panels) were not taken into consideration. 

Four different locations were chosen for the study: Helsinki (Finland), Vienna (Austria), 
Santa Fe (USA), and Singapore. Table 4 contains basic geographic and climatic information 
on the locations for PV module installations. The source of the information included in 
this table regarding mean ambient air temperature, annual solar radiation, and annual 
sunshine hours are respective Energy Plus Weather (EPW) files. 

Five PV installation options were considered, as per description in Table 5. F-xx denotes a 
static installation. Thereby, xx stands for the assumed panel tilt (degrees above horizon) for 
each location (40, 30, 35, and zero degrees for Helsinki, Vienna, Santa Fe, and Singapore 
respectively). The tilts were selected in such way to maximize annual solar gains given 
location specific input weather data. Options S-1, M-1, and M-2 denote manual adjustment 
of the tilt once every season, once every month, and twice every month, respectively. In all 
these cases panels are assumed to face South. E-W option denotes automated East-West 
solar tracking. 

For the selected options and locations, the magnitudes of incident solar radiation and 
generated electricity were computed. 
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Table 4 Geographic and climatic information on the selected locations. 
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Latitude [°] 60.32 48.12 35.62 1.37 
Longitude [°] 24.97 16.57 -106.08 103.98 
Altitude [m] 56 190 1934 16 

Mean annual air 
temperature [°C] 5.2 10.0 10.8 27.5 

Annual solar 
radiation [kWh/m2] 947 1122 1986 1671 

Annual sunshine 
hours count 1669 1680 3554 1651 

 
Table 5 Specification of PV panel options. 

Configuration Remark 

F-xx Static (fix) panel; tilt (xx) determined as 
a function of location's latitude 

S-1 Panels' tilt adjusted once every season 

M-1 Panels' tilt adjusted once every month 

M-2 Panels' tilt adjusted twice every month 

E-W Automated sun tracking (East-West) 

The optimal panel tilts for the manual adjustment scenarios were calculated as mean altitude 
of the sun at solar noon in the specific location per adjustment frequency period. In the 
more complex sun tracking scenario, the PV panel tilt is constantly adjusted to follow sun 
on its path from east to west. An algorithm that minimizes the solar beam angle of incidence 
and translates it to a so called true-tracking rotation angle is applied to determine a panel 
tilt angle that maximizes solar gains (Marion and Dobos, 2013; Anderson and Mikofski, 
2020). The solar positions, radiation intensities, and panel orientations data were used to 
calculate total amount of power generated by the system in each of the cases. 

In addition to computed energy magnitude, an effort was made to address the financial 
ramifications of these options. To this end, solar equipment and installation costs, as well 
as maintenance costs were estimated. Note that given multiple sources of significant 
uncertainty in all relevant input assumptions for this calculation, this calculation is not 
intended to be a final and accurate assessment. Such uncertainties pertain to relevant cost 
items (installation, maintenance, labor etc.) and energy tariffs as well as their future 
development. Rather, the purpose of this exercise was to provide a preliminary order of 
magnitude impression of the financially relevant aspects of the subject. It is thus also 



Demonstration of application 

66 

 

 

important to explicitly mention some of the major simplifications made in the calculation 
process. For instance, no differentiation was made between the different locations with 
regard to the assumed unit costs for first installation and maintenance the different PV 
configurations. Likewise, no location-based differentiation was also made with regard to 
the electricity price and its dependence on the fraction of the energy used by the building 
versus the fraction exported to the grid. To establish a pertinent electricity pricing range 
for option comparison, two contrasting positions at the two ends of use scenarios for the 
generated electricity were considered. Whereas at one position it was assumed that all 
generated electricity is locally used, at the opposing position it was assumed that all 
electricity is supplied to the grid. 

Estimated cost of a fixed PV installation is based on market price in Austria (Biermeyr et 
al., 2020). The cost of manually adjustable system was assumed to be 1.5% higher than that 
of a fixed system. This assumption is based on the market price difference between fix and 
adjustable mounting systems, as well as the fraction of the racking system in relation to the 
overall installation cost. The cost of the one axis tracker PV installation was assumed to be 
10% higher than that of fix version (Fu et al., 2018). 

The annual operation and maintenance costs were assumed to amount to 1 to 1.5% of the 
investment costs for residential PV system (Fu et al., 2018). Following the pattern of 
installation cost difference between fix and tracking systems, the base maintenance cost for 
the tracking system installation was assumed to be 10% higher than in other scenarios. 

Additional labor costs related to manual adjustment of the position of the panels depend 
on the required frequency of adjustment and related manual labor cost. The estimated 
hourly labor cost in the services sector in Austria is currently about 32 euros (Eurostat, 
2020a). 

The estimated annual monetary gains are based on average electricity prices for household 
consumers (0.21 euros.kWh-1 according to Eurostat 2020b) and electricity feed-in tariff 
(0.077 euros.kWh-1) according to RIS (2017) in Austria. 

The resulting graphs as seen on Figure 42 to Figure 45 display the computed monthly 
quantities of generated electricity per unit PV panel area for the aforementioned five 
installation options and four installation locations.  
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Table 6 includes computed annual values of generated electricity (in kWh.m-2) for the five 
PV configuration options and the four locations. Table 7 entails the same information in 
relative terms, that is the percentage deviation of the options with reference to the fixed tilt 
(F-xx) option. 

 

 
Figure 42 Monthly values of generated electricity (in kWh.m-2 ) for the for the location Helsinki. 

 
Figure 43 Monthly values of generated electricity (in kWh.m-2 ) for the for the location Vienna. 
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Figure 44 Monthly values of generated electricity (in kWh.m-2 ) for the for the location Santa Fe. 

 
Figure 45 Monthly values of generated electricity (in kWh.m-2) for the for the location Singapore. 
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Table 6 Annual values of generated electricity (in kWh.m-2 ) for the five PV options and the four 
locations. 

PV  
Option 

Helsinki Vienna Santa 
Fe 

Singapore 

F-xx 137 155 309 207 

S-1 137 157 326 207 

M-1 139 159 330 208 

M-2 138 159 330 207 

E-W 146 171 390 229 

 
 

Table 7 Deviation (in %) of the annual values of generated electricity via options S-1, M-1, M-2, and E-
W from the fixed option (F-xx). 

PV  
Option 

Helsinki Vienna Santa 
Fe 

Singapore 

S-1 0.0 1.3 5.5 0.0 
M-1 1.5 2.6 6.8 0.5 
M-2 0.7 2.6 6.8 0.0 
E-W 6.6 10.3 26.2 10.6 

 
As alluded to before, to compare the options in economic terms, no differentiation was 
made between the different locations with regard to the assumed unit costs for first 
installation and maintenance the different PV configurations. Likewise, no differentiation 
was made with regard to the electricity price and its dependence on the fraction of the 
energy used by the building versus the fraction exported to the grid. Specifically, the 
scenario involving full self-sufficiency assumed to correlate with 0.21 Euros.kWh-1 saving, 
in contrast to the full export-to-grid scenario, which was assumed to result in 0.077 
Euros.kWh-1 gain.  

Table 8 provides an overview of the results of the economic analysis. It includes the unit 
cost of installation (I), maintenance (M), annual electricity-based monetary gain for 100% 
self-sufficiency (GS) versus 100% export to grid (GE), payback times (PB in years) for 
additional costs as compared to the F-xx scenario for both electricity price schemes (PBS 
and PBE). Payback times are based on simple payback analysis. 
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Table 8 Economic comparison of the options, including assumed unit cost (in euros.m-2) of installation (I), 
maintenance (M), annual electricity-based monetary gain for 100% self-sufficiency (GS) versus 100% 
export to grid (GE) as well as payback times (PB in years) for both electricity price schemes (PBS and 

PBE). 

  F-xx S-1 M-1 M-2 E-W 
 I 295.7 300.2 300.2 300.2 325.3 
 M 3.7 5.5 9.0 14.3 4.9 

H
el

si
nk

i GS  28.8 28.8 29.2 29.0 30.7 
GE  10.5 10.5 10.7 10.6 11.2 
PBS  10.4 10.6 10.6 10.8 10.8 
PBE  28.5 29.1 29.0 29.7 29.5 

V
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GS  32.6 33.0 33.4 33.4 35.9 
GE  11.9 12.0 12.2 12.2 13.1 
PBS  9.2 9.3 9.3 9.4 9.2 
PBE  25.2 25.4 25.4 25.8 25.2 

Sa
nt

a 
Fe

 GS  65.0 68.5 69.4 69.4 82.0 
GE  23.7 25.0 25.3 25.3 29.9 
PBS  4.6 4.5 4.5 4.5 4.0 
PBE  12.6 12.2 12.2 12.4 11.0 

Si
ng

ap
or

e GS  43.5 43.5 43.7 43.5 48.1 
GE  15.9 15.9 16.0 15.9 17.6 
PBS  6.9 7.0 7.1 7.2 6.9 
PBE  18.9 19.3 19.4 19.8 18.8 

 
Table 9 Deviation (in %) of the estimated payback times for options S-1, M-1, M-2, and E-W from the 

fixed option (F-xx). 

PV  
Option 

Helsinki Vienna Santa 
Fe 

Singapore 

S-1 2.1 0.8 -3.2 2.1 
M-1 1.8 0.7 -3.3 2.8 
M-2 4.3 2.4 -1.7 5.0 
E-W 3.5 0.0 -12.6 -0.3 

Table 9 facilitates the comparison of the estimated payback times in percentage terms, that 
is the percentage deviation of the options S-1, M-1, M-2, and E-W with reference to the 
fixed tilt (F-xx) option.  

The comparison of PV installation options in view of their electricity generation potential (as shown in 
Figure 42 toFigure 45 and   
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Table 6 andTable 7) warrants certain conclusions. The added value of manual adjustment 
of panels' tilt is de facto negligible (less than 3%) in case of three locations (Helsinki, 
Vienna, Singapore) and rather modest in one case (Santa Fe, 5 to 7%). Specifically, the 
frequency of these adjustments is inconsequential for all practical purposes and even 
counterproductive (i.e., reduced gain by higher adjustment frequency) in some cases.  

From purely energetic output point of view, as compared to the fixed installation option, 
the automated E-W tracking option does appear to yield notably higher magnitudes, that is 
from around 7% (Helsinki) to 26% (Santa Fe). However, the question remains if this 
increased output justifies the necessary additional investment and maintenance costs. To 
discuss this point, consider the data summarized in Table 8 andTable 9. This data appears 
to suggest that, with the exception of the E-W option, the estimated payback times do not 
significantly vary across the installation options considered. However, assumptions 
regarding energy tariffs influence the payback times of PV panel installations significantly. 
In the present case, moving from full internal utilization of generated electricity to full 
export to the grid results in an almost threefold increase of the payback times. In summary, 
the results imply that: 

i. PV panel installations may be suggested to have reasonable payback times in general, 
independent of the installation option and location, especially if a good fraction of the 
generated electricity could be locally utilized.  

ii. From the electricity production point of view, the manual adjustment options 
considered in the present study, do not appear to offer a noteworthy advantage as 
compared to the simpler fix-tilt option. The E-W option, on the other hand, does offer 
higher electricity yields, particularly in locations with higher solar radiation intensity. 

iii. From the standpoint of payback time, only the E-W option at Santa Fe location 
displayed a significant reduction potential (approximately 13%). In the other cases, the 
advantage of slightly higher electricity yields via adjustable options was offset due to the 
necessary additional investment and maintenance costs. 

As alluded to before, these results are to be regarded and interpreted cautiously. The 
aforementioned uncertainties – particularly with regard to financial factors (installation and 
maintenance costs) and the future evolution of electricity prices and tariffs – necessitate the 
careful reassessment of the observed trends within the actual (individual) context and 
circumstances of the settings considered for the installation of a PV system.  

An exhaustive treatment of these uncertainties cannot be provided in the present 
contribution. However, in order to exemplify the influence of selected model input 
assumptions on option assessment results, a few basic instances were considered. One such 
instance pertains to a conceivable option, whereby, the manual PV panel adjustment, as 
well as basic maintenance (visual inspection, cleaning) are performed by building owners 
themselves, hence incurring no costs. The assessment of this scenario suggests that the 
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overall payback time in comparison with the base case would not be significantly reduced 
(ranging from no reduction at all to a maximum of 4%). Naturally, a more significant 
reduction of the payback time can be expected, if the installation of PV system is supported 
via subsidies. To demonstrate this, a scenario involving an installation subsidy at the level 
of 250 euros per kWp (City of Vienna, 2021) was probed. This level of subsidy results in 
an effective 16 to 18% reduction of the installation cost. This translates in turn, depending 
on the electricity pricing and location, into a relative payback time reduction of 2 to 17% 
as compared to the base case. 

A bi-directional approach to building-integrated PV systems configuration 

The configuration of local building-integrated photovoltaic (PV) installations can benefit 
from effective and reliable computational support. Especially in cases where a high degree 
of energy self-sufficiency is desired, it is important to optimally match the temporal profiles 
of the building's energy demand and the available solar radiation intensity. In many 
instances, such a matching is conducted in a mono-directional manner. As such, the 
building's demand profile is taken as given, which is treated as the basis for the sizing and 
configuration of the PV installation. The computational framework introduced in this 
research facilities this type of matching, but it is intended to offer additional functionalities. 
Specifically, the developed computational platform is conceived to facilitate a bi-directional 
approach to supporting the design and configuration of PV installations meant to be 
integrated in new building projects. Thereby, the idea is to probe pertinent building design 
variables such as orientation, transparent envelope elements, thermal mass, daylight use, 
and indoor climate control systems (for heating, cooling, ventilation, and lighting) in terms 
of the magnitude and temporal distribution of the resulting building energy demand. The 
proposed bi-directional iterative approach not only informs the configuration of PV system 
based on the building's demand profile, but also allows for the exploration of the 
consequences of the magnitude and temporal profile of the PV's energy supply potential 
for the aforementioned relevant building design variables. In other words, the user can 
move from the direction of a given building's energy demand profile toward derivation of 
appropriate PV installation attributes, or from the opposite direction of a given PV-based 
energy supply profile to explore implications for optimized building design variables. This 
example presents said computational approach and its functionality in terms of an 
illustrative case study. 

The computational platform for the aforementioned bi-directional configuration support 
of building-integrated PV systems entails three components. These components, which are 
briefly described below, serve the i) parametric computation of a building's energy demand 
profile, ii) parametric computation of a PV installation's electrical energy generation 
potential, iii) computation, visualization, and navigation of the values of a number of whole-
system performance indicators. 

The computation of the building's energy demand (and its temporal profile) involves a 
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number of steps. In a first step, the geometry of the case study building is modelled in the 
3D modelling environment Rhino. In a second step, the geometry model is augmented with 
required input assumptions by using the integrated visual scripting platform Grasshopper 
together with the Ladybug Tools plug-ins. Thereby, information about the building with 
regard to the location, construction, occupancy, equipment load, lighting density, and the 
heating, cooling, and ventilation system is specified. After the required input data is defined 
in Honeybee, the building energy simulation are conducted using EnergyPlus.  

The computation of the PV-based electricity similar to the previous two examples made 
use of the Python programming language and pvlib-python library to calculate solar position, 
optimal tilts, incident irradiance, and generated electricity for each of the applicable location 
and scenario.  

To estimate the amount of time it takes to recover the cost of a solar PV system investment, 
one needs to look at two numbers, namely the estimated total system’s lifetime cost and 
the annual monetary gains from the energy generated by the system. The cost of the former 
consists of system’s initial purchase and installation price and the lifetime maintenance cost. 
The estimated purchase cost depends on the solar array size and is based on a market price 
kW peak (kWp) power (in Austria ca. 1650 €.kWp-1; Biermayr, 2020). The annual 
maintenance costs are assumed to be at a level of 1% of the initial PV system’s investment 
cost (Fu, 2018). Over the assumed lifetime of the system (25 years), the maintenance costs 
should cover the renewal of the inverters, as well as panel servicing and cleaning.  

The annual financial gains depend on the energy usage profile of a building, energy 
generation profile of a PV system, and market electricity prices, both consumption and 
feed-in tariffs (roughly 0.21 €.kWh-1 and 0.077 €.kWh-1 in Austria; Eurostat 2020; RIS 
2020). The annual gain is the sum of monetary value of the energy saved through the local 
coverage of the building’s energy demand and the sale of the surplus energy. Within the 
framework of a simple payback analysis adopted in the present study, the final payback 
duration is the ratio of a total lifetime solar PV system cost to the annual monetary gains 
generated by the PV system. 

To demonstrate the working of the proposed approach, consider the simple case of a 
building design project involving a set of eight identical row houses located in a site in the 
city of Vienna, Austria (see Figure 46). For the purpose of the present illustrative case study, 
certain attributes of these houses are assumed to be fixed, including overall shape and 
geometry, the U-value of external walls  

(0.26 W.m-2.K-1) and windows (1.21 W.m-2.K-1), the occupancy density, and the heating, 
cooling, and ventilation system (electricity based). Other aspects were considered to be 
open for parametric analysis in conjunction with the PV installation options. Specifically, 
the façade glazing fraction could be varied (from 20% to 40%), the row of buildings could 
be rotated to face different orientations, and the ventilation rates could vary from a basic 
constant rate (0.4 h-1) to options involving summer-time ventilative cooling.  
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The technical specification of the solar PV system under consideration corresponds to a 
typical residential installation quality. The solar panels are considered to have nominal 
power of 300 W and an efficiency of 17.8%. They are to be connected inverter units with 
a maximum efficiency of 97.5%. Three aspects of the PV panels array were opened for 
parameterization, namely the system size (18, 36, 54 kWp), the inclination of the panels 
(15°, 30°, 45°) and the alignment of the panels (SE, S, SW). 

As stated previously, the proposed platform allows for the concurrent parametric modelling 
of both building configurations and PV system configurations. To demonstrate the working 
of the platform, the illustrative case of a building design project involving eight row houses 
was considered. This building was to be equipped with a roof-top PV installation. Both 
building and installation could be subjected to parametric analyses.  

Given the demonstrative nature of the present treatment, a rather reduced set of both the 
building and the PV systems was considered for parametric variation. These variables 
included, in the case of the building block, the orientation of the building, the fraction of 
glazing in the façade, and the ventilation rates. In case of the PV system, its overall size, as 
well as the tilt and azimuth (orientation) of the PV panels were considered for parametric 
analysis. Starting from a base case involving no PV system, it was possible to navigate 
through the design-performance space with the overall objective of reducing the payback 
time for the PV installation investment, or to increase the return on investment on such a 
PV system.  

Note that, this payback time is focused on the PV installation only, and does not address 
the expenditures for the building itself. Certain changes in design variables (such as the 
glazing to wall ratio), however, may influence the building construction investment. 
Whereas the present case study did not consider the global payback time for both building 
and PV-system investments as the designated performance indicator, this can be 
implemented in the system, given the availability of pricing information concerning various 
building design options.  

These simplifications notwithstanding, the prototypical implementation of the proposed 
approached displayed a promising capacity to support the navigation of option space and 
the convergence toward increasingly high-performance solutions. Note that the proposed 
navigation strategy is distinct form a one-time optimization approach meant to identify the 
optimal solution within the design-performance space. Rather, the idea is to support an 
open user-driven iterative and bi-directional search, thereby exploring different 
constellations of the building and PV-system attributes in view of their implications for the 
designated performance indicator. 

To exemplify the characteristics of such navigation processes, Figure 47 illustrates a 
sequence of successive changes to either building or PV systems variables leading to steady 
reduction of the value of the selected performance indicator, that is, in this case, the 
payback time for the investment costs of the PV systems and their maintenance 
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expenditures. Note that, due to the difference in the electricity buying and selling prices, 
the magnitude of the performance indicator, namely payback time, is influenced by the level 
of matching between the temporal profiles of the building's electricity demand and the PV 
installation's supply. Obviously, given the assumed pricing scheme, variants that maximize 
the coverage of electricity demand via PV-based electricity are advantageous. Similarly, 
building design solutions that increase electricity demand during low-supply periods lead to 
the need for increased purchase of high-price electricity and are thus disadvantageous in 
view of the selected performance indicator. The data set generated through the 
aforementioned navigation process and depicted in Figure 47 is rather extensive. As such, 
Figure 47 shows the evolving – continuously improving – value of the performance 
indicator (payback time, y-axis) over the entire course of the convergence process (x-axis) 
in terms of the successive states of the designs.  

For visualization and analysis purposes, this data can be disaggregated in different ways. 
For instance, Figure 48 shows the data in terms of three distinct sets, each corresponding 
to a different overall PV system size. As mentioned before, the various positions in these 
functions represent different design states (i.e., different concrete constellations of variable 
values pertaining to the building and the PV system). As such, the changes in the individual 
variable values cannot be directly observed form this Figure 48. Specifically, Figure 47 and 
Figure 48 also do not explicitly display the interesting and dynamic back and forth in the 
evolution of the evolving building-related variables and the PV system-related variables. To 
pursue this matter further, a smaller number of design states spread over the trajectory was 
randomly selected as depicted in Figure 49. This Figure entails again, for the smallest PV 
size class (18 kWp) and natural ventilation option, the trajectory of the design variants. The 
selected instanced highlighted in Figure 49 are further specified in Table 10, which includes 
variables related to both the building and the PV system. Thereby, building design variables 
pertain to the building (orientations E-W, SE-NW, S-N, SW-NE; glazing fraction of the 
façade in %) and the PV system (PV panel tilt; PV panel azimuth SE, S, SW). 

 It is instructive to consider the scope of reshuffling in the values of the different 
variables as represented in Table 1. Both the building's energy demand profile and the PV 
system's electricity generation profile change with each iteration, and these changes are 
reflected in the evolving value of the performance indicator (in this case, the payback time 
for the PV system). Consideration and analysis of this interdependency makes sense, if a 
building-integrated PV system is considered as a lasting component of a building project. 
Concurrent consideration of the designs of building and PV system does not mean that 
strict and undue constraints are imposed on the freedom in the selection of building design 
features. Interestingly, Figure 49 and Table 10 demonstrate that, for a certain fairly narrow 
value range of the performance indicator, multiple and diverse configurations of building 
design variables can provide similar levels of performance. 
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Figure 46 Schematic illustration of the eight-unit row house complex design located in the city of Vienna 
(Austria). 

 
Figure 47 Estimated payback time for PV system's installation and maintenance cost plotted across the 

trajectory of the building and PV system variants. 
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Figure 48 Estimated payback time for PV system's installation and maintenance cost plotted across the 
trajectory of the building and PV system variants shown for three distinct classes of PV installation sizes. 
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Table 10 State descriptions of the design variables regarding the building (orientations E-W, SE-NW, 
S-N, SW-NE; glazing fraction of the façade 20, 30, and 40 %) and the PV system (PV panel tilts 
15, 30, 45 degrees; PV panel azimuth values SE, S, SW) for a selected number of design states along 

the trajectory shown in Figure 49. As with Figure 49, the states in this Table are arranged in descending 
order of the respective computed payback times in month.ec 
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Figure 49 Estimated payback time for PV system's installation and maintenance cost plotted across the 

trajectory of the building and PV system variants shown for smallest PV installation size class and 
natural ventilation options. Shown are also the positions of a set of randomly selected states with the 

corresponding payback time expressed in months (see Table 10). 

The proposed bi-directional computational approach to the concurrent performance 
analysis of building designs and respective building-integrated PV system installations 
method, allows not only for the exploration of the implications of buildings' energy demand 
profile for the configuration of the PV system, but also the other way around: The PV 
installation options can be explored in view of their potential implications for buildings' 
design features. As such, the proposed approach facilitated the parametric and iterative 
analysis of the both building design and PV configuration variables. Hence, those aspects 
of the building design could be identified, for which the temporal structure of energy 
demand and profile may be of relevance.  

The presented approach involved wide spectrum of data both directly related to building 
and building performance but equally the technical specification of the equipment and 
various related financial aspects. The values of both the building design variables and the 
PV system variables (but potentially also the variables related to finance) could be adjusted 
within certain ranges. The results of operation of this computational framework verified its 
utility toward the concurrent exploration of the option space pertaining to building and PV 
system variables. Thereby, it could be demonstrated that a high level of overall performance 
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(expressed, for instance, in terms of the payback time for the PV system) can be achieved 
with very different constellations of both building design aspects and PV system options. 

 



Heterogeneous building related data streams for performance assessment applications 

81 

 

 

 
 
 
 

 
 
 

CHAPTER 4 
Conclusion 

4.1. Summary of contributions 
The increasing presence and thus the importance of information and communications 
technology (ICT) in most scientific and technological domains and areas in the last few 
decades has led to an exponential growth in the volume of data. In order to make this 
overwhelming flow of data re-usable and to make it more accessible for both users and 
machines, the concept of ontologies and schemas was introduced.  

The built environment domain equally benefits from the ICT advancements that enabled 
among others building information modelling, performance modelling, simulation and 
assessment. The building performance data (BPD) that drive the performance assessment 
applications is increasingly available, but due to multiplicity of sources, types and formats 
it is mostly syntactic, structural and semantic heterogeneous. To enable data interoperability 
that allow for development of methods, tools and applications that operate across multiple 
domains, scales and functions, it is necessary to establish versatile and robust ontologies. 

Towards this end the building performance data (BPD) ontology was proposed. Such 
ontology is expected to facilitate data re-use and utilization in performance assessment 
applications. 

This effort discussed the concept of ontologies and its current role across different fields 
of science and technology. It then focused on the built environment and gives an overview 
of the related ontologies that attempt to capture various aspects of the domain. Next, 
motivated by the recognized paucity in comprehensive representation of dynamic building 
performance related data, the BPD ontology and performance data schema was presented. 
The foundation for the developed ontology and schema was an extensive survey of 
common building performance indices, measures as well as monitoring data that explored 
the potential categorical groups, sources, and properties of the building performance-
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related variables. The proposed schema was shown to capture key features of wide range 
of building performance variables in multiple performance domains, as illustrated by the 
examples presented.  

The standard process and potential challenges concerning transformation of heterogeneous 
BPD were discussed. The said process where heterogeneous building performance related 
(measured or simulated) data is pre-processed, transformed, ontologized and stored, was 
exemplified on a large set of indoor monitoring data collected from an office building as 
well as monitored environmental data collected by a local weather station. 

Such semantically enriched dataset was then put to a use in a series of basic to advanced 
building performance analysis and assessment scenarios. Specifically, potential of logical 
querying of ontologically enriched data for use with visualization and statistical analysis 
algorithms was tested. Moreover, a series of interfacing modules were developed that 
allowed for connection of performance data with a specific environmental design software. 
These interfaces were tested in various use case scenarios ranging from data visualization 
to advanced performance analysis concerning human comfort, daylight and solar radiation. 

Note that the algorithms and interfaces make use of the formalized vocabulary and 
structure due to ontological processing. This formalization enables not only easy translation 
of data to conform to input format of existing analysis tools but also facilitates development 
of variety of performance applications that can make use of this defined data structure.  

To further illustrate how the proposed data integration process can support multi-domain 
integrative and collaborative engineering efforts, an original web-based tool as well as two 
other application examples concerning building integrated PV systems were presented. 
These applications require and involve a range of data sources, such as location-specific 
climatic data (e.g. solar radiation), building related data (e.g. electricity demand profile), 
photovoltaic equipment specifications and related financial aspects (e.g. investment costs, 
maintenance costs, electricity pricing schemes). The applications make use of this data to 
assess input variations and deliver or visualize a range of technically and/or financially 
optimal options. 

4.2. Future outlook 
There is a recurring problem in the built environment field and there and it has two 
components. On the one hand, sufficient robust ontology instances that give a potential 
that was outlined in this effort must be developed and refined; on the other hand, these 
need to be adopted by the industry as well as wider community. 

The ontology adaptation and development process can be time consuming and difficult 
(e.g. Industry Foundation Classes) as it often requires common interest (often financially 
motivated) and consent of multiple stakeholders involved. Similar challenges with regard 
to the implementation of ontologies and schemas for predominantly “static” aspect of the 
built environment concern ontologies with regard to “dynamic” aspects such as building 
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performance, maintenance or operation. In contrast to the purely market-driven use of 
ontologies (especially by companies with a high concentration of financial power), for 
example in search engines, social networks or knowledge systems, the ratio of demand to 
effort in built environment domain and more so in fields related to dynamic building data 
is not that high. Therefore, acquiring capital investment for the development of universal 
ontologies is a challenge. 

The motivation to develop and more commonly implement a wider scope of ontologies 
related to the built environment can be nurtured by policy makers due to the growing 
awareness and need for a sustainable approach to the design, construction and operation 
of buildings. In some countries, this is already happening in relation to publicly procured 
buildings where IFC-driven BIM modeling is being enforced. Likewise, imposed 
requirements for ontologically systematized information processing should be useful in 
relation to the broader aspects of the domain of the built environment (and related 
domains) by enabling, among other things, scalable performance optimization, evaluation, 
and novel and comprehensive cross-domain solutions. 
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Appendix 
The following appendix contains a selection of source code written in the Python 
programming language, which was created in the course of this research project 
development. 

 



 

# ============================= 
# BPI Sensor db files to BPD schema  
# ============================= 
 
 
import numpy as np 
import h5py 
import sqlite3 
from pandas.io import sql 
from datetime import datetime 
 
# Extract necessary data from CSV file (attributes etc) 
my_data = 
np.genfromtxt('/Users/dw/PycharmProjects/37project/Ontology/BPIdb_to_HDF5_sensorlist_ALL_2019_v2.csv', 
                        delimiter=',', dtype=None, encoding='UTF-8')  
 
# Set hdf5 file name 
HDF5fileName = '/Users/dw/PycharmProjects/37project/Ontology/BPI_office_fromCSV_2019_new_190903.hdf5'   
 
for x in my_data[2:]:  # Iterate through every row (starting from third) in the my_data array (extracted 
from CSV) 
 
    if len(x[0]) > 10:  # Check if the file name exists if entry exists(not an empty row) 
        print('Currently processing: ' + x[0]) 
        sqlDBname = x[0] 
        sqlDBsensorType = x[0].split('_')[0] 
 
        sensorName = x[0][:-11]  # Cut off last 11 characters of the DB name string 
 
        # Create your connection. 
        cnx = sqlite3.connect( 
            '/Users/dw/PycharmProjects/37project/Ontology/mySQLdata/' + sqlDBsensorType + '/' + sqlDBname) 
 
        # read the result of the SQL query into a DataFrame 
        data = sql.read_sql("SELECT `_rowid_`,* FROM `data` ORDER BY `Date` ASC;", cnx) 
        cnx.close() 
 
        # CONVERT DATE STRINGS TO NUMERICAL VALUES and put to numpy array: 
        date = np.array([int(datetime.fromisoformat(line).timestamp()) for line in 
data['Date'].values]).astype( 
            'uint32') 
 
        # IMPORT SENSOR VALUES TO NUMPY ARRAY 
        magnitude = np.array(data[sensorName].values.astype(x[27]))  # x[27] - Data type in the csv file 
 
        # CREATE NEW VARIABLE, ADD ATTRIBUTES, STORE MAGNITUDE & TIME DATA 
        f = h5py.File(HDF5fileName, 'a')  # Open read-write (create if doesn't exist) 
 
        # Creates group (if not existent already) Category/SubCategory/Name of indicator 
        variable = f.require_group('BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3])  
        if x[4] != '': variable.attrs['Name'] = str(x[4]) 
        if x[5] != '': variable.attrs['Type'] = str(x[5]) 
        variable['Magnitude'] = magnitude 
        if x[7] != '': variable.attrs['Direction'] = np.array(x[7].split()).astype(np.float32) 
        if x[8] != '': variable.attrs['Unit'] = str(x[8]) 
 
        # Spatial Domain Attributes 
        variableSD = f.create_group('BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3] + 
'/SpatialDomain') 
        if x[9] != '': variableSD.attrs['Point'] = np.array(x[9].split()).astype(np.float32) 
        if x[10] != '': variableSD.attrs['Plane'] = str(x[10]) 
        if x[11] != '': variableSD.attrs['Volume'] = str(x[11]) 
        if x[12] != '': variableSD.attrs['TopologicalReference'] = str(x[12]) 
        if x[13] != '': variableSD.attrs['AggregationMethod'] = str(x[13]) 
        if x[14] != '': variableSD.attrs['GridSize'] = np.array(x[14].split()).astype(np.uint32) 
 
        # Temporal Domain Attributes 
        variableTD = f.require_group('BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3] + 
'/TemporalDomain') 
        variableTD['TimeStamp'] = date 
        if x[16] != '': variableTD.attrs['Duration'] = float(x[16]) 
        if x[17] != '': variableTD.attrs['TimeStep'] = str(x[17]) 
        if x[18] != '': variableTD.attrs['AggregationMethod'] = str(x[18]) 
 
        # Frequency Domain Attributes 
        variableFD = f.require_group( 
            'BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3] + '/FrequencyDomain') 
        if x[19] != '': variableFD.attrs['Range'] = np.array(x[19].split()).astype(np.uint32) 
        if x[20] != '': variableFD.attrs['Band'] = np.array(x[20].split()).astype(np.uint32) 
        if x[21] != '': variableFD.attrs['Weighting'] = str(x[21]) 
        if x[22] != '': variableFD.attrs['AggregationMethod'] = str(x[22]) 
 
        # AGENT 
        variableAG = f.require_group('BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3] + 
'/Agent') 
        if x[23] != '': variableAG.attrs['AgentID'] = str(x[23]) 



 

 

 
        # NOTES 
        variableNT = f.require_group('BPIcategories/' + x[1] + '/' + x[2] + '/' + x[4] + '/' + x[3] + 
'/Notes') 
        if x[24] != '': variableNT.attrs['DataSourceCategory'] = str(x[24]) 
        if x[25] != '': variableNT.attrs['DataSourceID'] = str(x[25]) 
        if x[26] != '': variableNT.attrs['DerivationMethodDetails'] = str(x[26]) 
        if x[28] != '': variableNT.attrs['DerivationMethodDetails'] = str(x[28]) 
 
        f.close() 
  



 

################################ 
# SKYSCANNER DATA Files to BPD # 
################################ 
 
import pandas 
import os 
import re 
import numpy as np 
from datetime import datetime, timedelta 
 
SkyscannerDataDir = '/Users/dw/PycharmProjects/37project/Ontology/SKY_SCANNER/' 
 
fileList = [] 
dateList = [] 
 
for aFile in os.listdir(SkyscannerDataDir): 
    if aFile.endswith(".csv"): 
        if not aFile.startswith('.'): 
            fileList = np.append(fileList, aFile) 
            match = re.search(r'\d{2}\d{2}\d{2}', aFile) 
 
fileList.sort() 
 
# Get all data and timestamps 
nrOfDataYears = 9 
magnitudeSR = np.empty((18300 * nrOfDataYears, 145), dtype=float) 
magnitudeSL = np.empty((18300 * nrOfDataYears, 145), dtype=float) 
magnitudeSPdirection = np.empty(18300 * nrOfDataYears, dtype=float) 
magnitudeSPelevation = np.empty(18300 * nrOfDataYears, dtype=float) 
date = np.empty(18300 * nrOfDataYears, dtype=int) 
counter = 0 
for aFile in fileList: 
 
    data = pandas.read_csv(SkyscannerDataDir + aFile, header=8) 
    data.rename( 
        columns={'Unnamed: 0': 'Reading', 'Unnamed: 1': 'MeasurementStartTime', 'Unnamed: 2': 
'MeasurementStopTime', 
                 'Unnamed: 148': 'SunDirection', 'Unnamed: 149': 'SunElevation'}, inplace=True) 
 
    # transpose matrix: 
    data = data.T 
    readings = data.reindex(np.concatenate( 
        (["Reading", "MeasurementStartTime", "MeasurementStopTime"], 
         np.arange(16, 31, 1), np.arange(1, 16, 1), 
         np.arange(45, 30, -1), np.arange(60, 45, -1), 
         np.arange(73, 85, 1), np.arange(61, 73, 1), 
         np.arange(96, 84, -1), np.arange(108, 96, -1), 
         np.arange(118, 127, 1), np.arange(109, 118, 1), 
         np.arange(132, 126, -1), np.arange(138, 132, -1), 
         np.arange(142, 145, 1), np.arange(139, 142, 1), 
         np.arange(145, 146, 1), ["SunDirection", "SunElevation"]))) 
 
    matchDay = re.search(r'\d{2}\d{2}\d{2}', aFile) 
 
    for x in range(0, len(readings.columns)): 
        if readings[x][0] == "L": 
            # print(readings[x]) 
            matchTime = re.search(r'\d{2}:\d{2}:\d{2}', readings[x][1]) 
 
            date[counter] = int((datetime.strptime(matchDay.group() + matchTime.group(), 
'%y%m%d%H:%M:%S') - timedelta( 
                hours=1)).timestamp())  # the time stored in the skyscanner files is in utc +1 
 
            print(datetime.strptime(matchDay.group() + matchTime.group(), '%y%m%d%H:%M:%S') - 
timedelta(hours=1)) 
            magnitudeSL[counter] = np.array([readings[3:148][x]]) 
            magnitudeSPdirection[counter] = np.array([readings[148:149][x]]) 
            magnitudeSPelevation[counter] = np.array([readings[149:150][x]]) 
 
            # match.group()+match2.group() #join two regex match queries 
        else: 
            # print(a[x]) 
            magnitudeSR[counter] = np.array([readings[3:148][x]]) 
            counter = counter + 1 
 
# In case the number of measurements was smaller than declared 18300 * nr of years - cut "empty" rows 
out. 
date = date[0:counter] 
magnitudeSL = magnitudeSL[0:counter] 
magnitudeSR = magnitudeSR[0:counter] 
magnitudeSPdirection = magnitudeSPdirection[0:counter] 
magnitudeSPelevation = magnitudeSPelevation[0:counter] 
 
np.save('magnitudeSL.npy', magnitudeSL) 
np.save('magnitudeSR.npy', magnitudeSR) 
np.save('dates.npy', date) 



 

 

np.save('SunDirection.npy', magnitudeSPdirection) 
np.save('SunElevation.npy', magnitudeSPelevation) 
 
# 2nd version 
# CREATE NEW VARIABLE, ADD ATTRIBUTES, STORE MAGNITUDE & TIME DATA 
import h5py 
 
HDF5fileName = "/Users/dw/PycharmProjects/37project/Ontology/BPI_office_fromCSV_2019_new_190903.hdf5" 
f = h5py.File(HDF5fileName, 'a')  # Open read-write (create if doesn't exist) 
 
# Creates group (if not existent already) Category/SubCategory/Name of indicator 
variableSR = f.require_group( 
    'BPIcategories/ExternalConditions/SkyRadiance/SkyScanner')  # Category/subCategory,variable 
Category   Sub_Category   Variable 
 
variableSR.attrs['Name'] = "SkyRadiance" 
variableSR.attrs['Type'] = "quantitative" 
variableSR['Magnitude'] = magnitudeSR 
variableSR.attrs['Direction'] =  
 np.array([np.concatenate(( np.repeat(6, 30), np.repeat(18, 30), 
    np.repeat(30, 24), np.repeat(42, 24), np.repeat(54, 18), 
                            np.repeat(66, 12), np.repeat(78, 6), [90])), 
 
          np.concatenate((np.arange(0, 181, 12), np.arange(-168, 0, 12), 
                          np.arange(0, 181, 12), np.arange(-168, 0, 12), 
                          np.arange(0, 181, 15), np.arange(-165, 0, 15), 
                          np.arange(0, 181, 15), np.arange(-165, 0, 15), 
                          np.arange(0, 181, 20), np.arange(-160, 0, 20), 
                          np.arange(0, 181, 30), np.arange(-150, 0, 30), 
                          np.arange(0, 181, 60), np.arange(-120, 0, 60), 
                          [0] 
                          )) 
          ], np.int16) 
 
variableSR.attrs['Unit'] = "W/(m^2*sr)" 
variableSRSD = 
f.require_group('BPIcategories/ExternalConditions/SkyRadiance/SkyScanner/SpatialDomain') 
# variableSRSD.attrs['Point'] = 
# variableSRSD.attrs['Plane'] = 
variableSRSD.attrs['Volume'] = "TU Wien" 
variableSRSD.attrs['TopologicalReference'] = "Tower" 
# variableSRSD.attrs['AggregationMethod'] = 
# variableSRSD.attrs['GridSize'] = 
 
# Temporal Domain Attributes 
variableSRTD = 
f.require_group('BPIcategories/ExternalConditions/SkyRadiance/SkyScanner/TemporalDomain') 
variableSRTD['TimeStamp'] = date 
# variableSRTD.attrs['Duration'] = 
variableSRTD.attrs['TimeStep'] = "15min" 
# variableSRTD.attrs['AggregationMethod'] = 
 
# NOTES 
variableSRNT = f.require_group('BPIcategories/ExternalConditions/SkyRadiance/SkyScanner/Notes') 
variableSRNT.attrs['DataSourceCategory'] = "Sensor" 
variableSRNT.attrs['DataSourceID'] = "SkyScanner" 
# variableNT.attrs['DerivationMethodDetails'] = 
variableSRNT.attrs[ 
    'Remarks'] = "Variable's Direction attribute describes Altitude and Azimuth of the measurement 
sample taken by sensor conforming with" \ 
                 " Tregenza sky subdivision." 
 
# LUMINANCE 
# CREATE NEW VARIABLE, ADD ATTRIBUTES, STORE MAGNITUDE & TIME DATA 
 
# Creates group (if not existent already) Category/SubCategory/Name of indicator 
variableSL = f.require_group('BPIcategories/ExternalConditions/SkyLuminance/SkyScanner') 
 
variableSL.attrs['Name'] = "SkyLuminance" 
variableSL.attrs['Type'] = "quantitative" 
variableSL['Magnitude'] = magnitudeSL 
variableSL.attrs['Direction'] = variableSR.attrs['Direction'] 
variableSL.attrs['Unit'] = "kcd/m^2" 
 
variableSLSD = 
f.require_group('BPIcategories/ExternalConditions/SkyLuminance/SkyScanner/SpatialDomain') 
# variablSLSD.attrs['Point'] = 
# variableSLSD.attrs['Plane'] = 
variableSLSD.attrs['Volume'] = "TU Wien" 
variableSLSD.attrs['TopologicalReference'] = "Tower" 
# variableSRSD.attrs['AggregationMethod'] = 
# variableSRSD.attrs['GridSize'] = 
 
# Temporal Domain Attributes 
variableSLTD = 
f.require_group('BPIcategories/ExternalConditions/SkyLuminance/SkyScanner/TemporalDomain') 



 

variableSLTD['TimeStamp'] = date 
# variableSLTD.attrs['Duration'] = 
variableSLTD.attrs['TimeStep'] = "15min" 
# variableSLTD.attrs['AggregationMethod'] = 
 
# NOTES 
variableSLNT = f.require_group('BPIcategories/ExternalConditions/SkyLuminance/SkyScanner/Notes') 
variableSLNT.attrs['DataSourceCategory'] = "Sensor" 
variableSLNT.attrs['DataSourceID'] = "SkyScanner" 
# variableSLNT.attrs['DerivationMethodDetails'] = 
variableSLNT.attrs[ 
    'Remarks'] = "Variable's Direction attribute describes Altitude and Azimuth of the measurement 
sample taken by sensor conforming with" \ 
                 " Tregenza sky subdivision." 
 
f.close() 
  



 

 

# =================================================== 
# Find object by attribute and plot v2 
# =================================================== 
 
import h5py 
import matplotlib.pyplot as plt 
from h5py import File 
import time 
from datetime import datetime 
 
f: File = h5py.File('/Users/dw/PycharmProjects/37project/Ontology/HDFs/BPI_office.hdf5', 'r') 
 
# Attributes: 
Xpos = 4 
Ypos = 4.5 
startDate = int(datetime.fromisoformat('2017-01-01 00:00:00').timestamp()) 
stopDate = int(datetime.fromisoformat('2017-12-31 23:59:59').timestamp()) 
 
a = [] 
 
 
def findspecial2(name, obj): 
    if obj.attrs.get('point') is not None and obj.attrs.get('point')[0] == Xpos and 
obj.attrs.get('point')[1] == Ypos: 
        # print(obj) 
        a.append(obj.parent) 
        print(obj.parent) 
 
 
t0 = time.time() 
f.visititems(findspecial2) 
t1 = time.time() 
 
 
def plotGraphs(VariableList): 
    for item in VariableList: 
        print(item.name) 
        dsetX = item['TemporalDomain/timeStamp'] 
        dsetY = item['magnitude'] 
 
        index = (dsetX.value > startDate) & (dsetX.value < stopDate) 
        # extract indexed data and stor in a variable, close HDF5 file 
        dsetY = dsetY.value[index] 
        dsetX = dsetX.value[index] 
 
        print('Dataset min date: ' + datetime.fromtimestamp(int(dsetX[0])).strftime('%Y-%m-%d 
%H:%M:%S')) 
        print('Dataset max date: ' + datetime.fromtimestamp(int(dsetX[-1])).strftime('%Y-%m-%d 
%H:%M:%S')) 
        plt.plot(dsetX[:], dsetY[:]) 
        # plt.title(item.name) 
        plt.title(item.attrs.get('name') + 'trend') 
        # plt.show() 
        # plt.savefig(item.attrs.get('name')+'.pdf',bbox_inches='tight') 
        plt.savefig('lin_' + item.attrs.get('name') + '.pdf', bbox_inches='tight') 
        plt.show() 
        plt.hist(dsetY, 50) 
        plt.title(item.attrs.get('name') + ' frequency distribution') 
        plt.savefig('hist_' + item.attrs.get('name') + '.pdf', bbox_inches='tight') 
        plt.show() 
 
        fig1, ax1 = plt.subplots() 
        ax1.set_title(item.attrs.get('name') + 'box plot') 
        ax1.boxplot(dsetY) 
        plt.show() 
        fig1.savefig('box_' + item.attrs.get('name') + '.pdf', bbox_inches='tight') 
 
 
plotGraphs(a) 
f.close() 
# =================================================== 
 
  



 

######################################## 
# PV explorer tool; web- Application demo 
# key components: 
# https://github.com/pvlib/pvlib-python 
# https://dash.plotly.com 
######################################## 
 
import dash 
import dash_core_components as dcc 
import dash_html_components as html 
import plotly.graph_objs as go 
import pandas as pd 
from dash.dependencies import State, Input, Output 
from datetime import datetime as dt 
import plotly.express as px 
import pvlib 
import glob, os 
 
 
os.chdir("/Users/dw/PycharmProjects/37project/Ontology/PV_panels/Energy_Use_Profiles") 
print("Available Irradiance data sources:") 
 
n_clicks_glob = 0 
# scan for energy use profiles 
eleConsumptionProfiles = [] 
for file in glob.glob("*.csv"): 
    # global irradiance_data_sources 
    if file != None: 
        eleConsumptionProfiles.append(file) 
    print(file.replace(".csv", "")) 
 
# scan for epw weather files 
os.chdir("/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files") 
weather_data_sources = [] 
for file in glob.glob("*.epw"): 
    if file != None: 
        weather_data_sources.append(file) 
    print(file.replace(".epw", "")) 
 
irradiance_model = 'haydavies' 
irradiance_data_source = '/USA_TX_Austin.722540_TMY2.epw' 
 
params = pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][ 
    'open_rack_glass_glass']  # https://pvlib-
python.readthedocs.io/en/stable/generated/pvlib.temperature.sapm_cell.html 
PV_modules_list = pvlib.pvsystem.retrieve_sam('SandiaMod') 
sapm_inverters_list = pvlib.pvsystem.retrieve_sam('CECInverter') 
 
 
def instalation_costs_PV_area(panelArea, divider): 
    instalationCosts = (269.09 * panelArea + 1319.4) / divider 
 
    return instalationCosts 
 
 
app = dash.Dash( 
    __name__, 
    meta_tags=[{"name": "viewport", "content": "width=device-width, initial-scale=1"}], 
) 
 
server = app.server 
app.config.suppress_callback_exceptions = True 
 
surface_azimuths = [90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270] 
surface_tilts = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90] 
panel_counts = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50] 
inverter_price_index = {'high_end': 0.17, 'mainstream': 0.12, 'low_cost': 0.05} 
 
 
def generate_cost_plot(inverter_price_index_type, dd_select_module, dd_select_inverter, 
energy_export_price, 
                       energy_import_price, cost_function, 
                       start, end, weather_file, electricity_use_profile_file, 
electricity_profile_element, 
                       investment_cycle): 
    PV_lifespan = investment_cycle  # TODO:fix naming 
    global results 
    results = pd.DataFrame() 
    naive_times = pd.date_range(start=start, end=end, freq='1h') 
    global system 
    system = {'module': PV_modules_list[dd_select_module], 'inverter': 
sapm_inverters_list[dd_select_inverter], 
              'surface_azimuth': surface_azimuths, 'surface_tilt': surface_tilts, 'panel_count': 
panel_counts} 
 
    # prepare epw 



 

 

    epw_file_path = '/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/' + 
weather_file 
    epw_data = pvlib.iotools.read_epw(epw_file_path, coerce_year=2019) 
 
    # extract needed data from epw 
    temp_air = epw_data[0]['temp_air'] 
    wind_speed = epw_data[0]['wind_speed'] 
 
    coordinates = [(epw_data[1]['latitude'], epw_data[1]['longitude'], epw_data[1]['city'], 
epw_data[1]['altitude'], 
                    epw_data[1]['TZ'])] 
 
    AnnnualHourlyEnergyUseProfileFile = 
'/Users/dw/PycharmProjects/37project/Ontology/PV_panels/Energy_Use_Profiles/' + 
electricity_use_profile_file 
    eleConsumptionProfile = pd.read_csv(AnnnualHourlyEnergyUseProfileFile, 
                                        index_col='Date/Time', parse_dates=True) 
    eleConsumptionProfile[electricity_profile_element].groupby( 
        eleConsumptionProfile[electricity_profile_element].index.hour).sum() 
    loadProfile = eleConsumptionProfile[electricity_profile_element] 
    loadProfile = loadProfile.tz_localize(int(epw_data[1]['TZ']) * 60 * 60) 
 
    for latitude, longitude, name, altitude, timezone in coordinates: 
        times = naive_times.tz_localize(int(timezone) * 60 * 60)  # localizes to GMT 
 
        # times = naive_times.tz_localize(None) 
        solpos = pvlib.solarposition.get_solarposition(times, latitude, longitude) 
        dni_extra = pvlib.irradiance.get_extra_radiation(times) 
        airmass = pvlib.atmosphere.get_relative_airmass(solpos['apparent_zenith']) 
        pressure = pvlib.atmosphere.alt2pres(altitude) 
        am_abs = pvlib.atmosphere.get_absolute_airmass(airmass, pressure) 
        tl = pvlib.clearsky.lookup_linke_turbidity(times, latitude, longitude) 
        cs = pvlib.clearsky.ineichen(solpos['apparent_zenith'], am_abs, tl, dni_extra=dni_extra, 
altitude=altitude) 
 
        temp_final_panel_count = [] 
        temp_final_azimuth = [] 
        temp_final_tilt = [] 
        temp_final_annual_total_irradiance = [] 
        temp_final_annual_total_AC = [] 
        temp_final_annual_balance_kWh_deficit = [] 
        temp_final_annual_balance_kWh_surplus = [] 
        temp_final_annual_ac_deficit_cost_EUR = [] 
        temp_final_annual_ac_balance_EUR = [] 
 
        for azim in system['surface_azimuth']: 
 
            temp_irr_val = []  # to get all annual values from a single azimuth 
            temp_AC_val = []  # to get all annual AC output per selected panel values from a single 
azimuth 
            temp_deficiency = [] 
            temp_surplus = [] 
            temp_deficiency_series = [] 
            for tilt in surface_tilts: 
                aoi = pvlib.irradiance.aoi(tilt, azim, solpos['apparent_zenith'], solpos['azimuth']) 
                total_irradiance = pvlib.irradiance.get_total_irradiance(tilt, 
                                                                         azim, 
                                                                         solpos['apparent_zenith'], 
                                                                         solpos['azimuth'], 
                                                                         epw_data[0]['dni'], 
epw_data[0]['ghi'], 
                                                                         epw_data[0]['dhi'], 
                                                                         dni_extra=dni_extra, 
                                                                         model='haydavies') 
                temps = 
pvlib.pvsystem.temperature.sapm_cell(total_irradiance['poa_global'].tz_convert(timezone), 
                                                             temp_air, wind_speed, **params) 
                effective_irradiance = pvlib.pvsystem.sapm_effective_irradiance( 
                    total_irradiance['poa_direct'], total_irradiance['poa_diffuse'], 
                    am_abs, aoi, system['module']) 
                dc = pvlib.pvsystem.sapm(effective_irradiance, temps, system['module']) 
                ac = pvlib.pvsystem.snlinverter(dc['v_mp'], dc['p_mp'], system['inverter']) 
                annual_energy = ac.sum() 
                annual_irradiance = total_irradiance['poa_global'].sum() 
 
                for panel_count in system['panel_count']: 
                    print('panel count:', str(panel_count), 'azimuth:', str(azim), 'tilt', str(tilt)) 
                    deficiency = (loadProfile * 1000 - (ac * panel_count)) 
                    annual_deficiency = sum(deficiency[deficiency > 0]) 
                    annual_surplus = sum(deficiency[deficiency < 0])  # TODO:newhere 
                    temp_final_panel_count.append(panel_count) 
                    temp_final_azimuth.append(azim) 
                    temp_final_tilt.append(tilt) 
                    temp_final_annual_total_irradiance.append(annual_irradiance) 
                    temp_final_annual_total_AC.append(annual_energy / 1000) 
                    temp_final_annual_balance_kWh_deficit.append(annual_deficiency / 1000) 



 

                    temp_final_annual_balance_kWh_surplus.append(annual_surplus / 1000) 
                    temp_final_annual_ac_deficit_cost_EUR.append( 
                        (annual_deficiency / 1000) * energy_import_price + 140 + ( 
                                (system['module']['Area'] * 269.09 * panel_count + 1319.4) / 25)) 
                    temp_final_annual_ac_balance_EUR.append((annual_deficiency / 1000 * 
energy_import_price + 140 + ( 
                            (system['module']['Area'] * 269.09 * panel_count + 1319.4) / 25)) + ( 
                                                                    annual_surplus / 1000 * 
energy_export_price)) 
 
    CostPerPositionAndQuantity = {'panel_count': temp_final_panel_count, 'azimuth': 
temp_final_azimuth, 
                                  'tilt': temp_final_tilt, 'annual_irradiance': 
temp_final_annual_total_irradiance, 
                                  'annual_ac': temp_final_annual_total_AC, 
                                  'annual_balance_deficit': temp_final_annual_balance_kWh_deficit, 
                                  'annual_balance_surplus': temp_final_annual_balance_kWh_surplus, 
                                  'annual_ac_deficit_cost_EUR': temp_final_annual_ac_deficit_cost_EUR, 
                                  } 
    print(cost_function) 
 
    global PVnominalPower 
    PVnominalPower = system['module']['Vmpo'] * system['module']['Impo'] 
    if cost_function == 'cost_function_1': 
 
        results = pd.DataFrame.from_dict(CostPerPositionAndQuantity, 
orient='index').round(1).transpose() 
        results['annual_ac_balance_EUR'] = (results['annual_balance_deficit'] * energy_import_price + 
140 + ( 
                (system['module']['Area'] * 269.09 * results['panel_count'] + 1319.4) / PV_lifespan)) 
+ ( 
                                                   (results['annual_balance_surplus']) * 
energy_export_price) 
        results['balance_EUR_per_m2'] = results['annual_ac_balance_EUR'] / ( 
                results['panel_count'] * system['module']['Area']) 
        results['deficit_cost_EUR_per_m2'] = results['annual_ac_deficit_cost_EUR'] / ( 
                results['panel_count'] * system['module']['Area']) 
        results['system_cost_per_m2'] = (269.09 * results['panel_count'] * system['module']['Area'] + 
1319.4) / ( 
                results['panel_count'] * system['module']['Area']) 
 
    elif cost_function == 'cost_function_2': 
        results = pd.DataFrame.from_dict(CostPerPositionAndQuantity, 
orient='index').round(1).transpose() 
 
        results['annual_ac_balance_EUR'] = (results['annual_balance_deficit'] * energy_import_price + 
140 + ( 
                (system['module']['Area'] * 269.09 * results['panel_count'] + 1319.4 + ( 
                        PVnominalPower * results['panel_count'] * inverter_price_index[ 
                    inverter_price_index_type])) / PV_lifespan)) + ( 
                                                   results['annual_balance_surplus'] * 
energy_export_price) 
 
        results['balance_EUR_per_m2'] = results['annual_ac_balance_EUR'] / ( 
                results['panel_count'] * system['module']['Area']) 
        results['deficit_cost_EUR_per_m2'] = results['annual_ac_deficit_cost_EUR'] / ( 
                results['panel_count'] * system['module']['Area']) 
        results['system_cost_per_m2'] = (269.09 * results['panel_count'] * system['module']['Area'] + 
1319.4) / ( 
                results['panel_count'] * system['module']['Area']) 
 
    elif cost_function == 'cost_function_3': 
 
        module_price_index = {'high_efficiency': 0.32, 'maistream': 0.24, 'low_cost': 0.16}  # july 
2020 exc.vat 
        results = pd.DataFrame.from_dict(CostPerPositionAndQuantity, 
orient='index').round(1).transpose() 
        results['balance_EUR_per_m2'] = results['annual_ac_balance_EUR'] / ( 
                results['panel_count'] * system['module']['Area']) 
        results['deficit_cost_EUR_per_m2'] = results['annual_ac_deficit_cost_EUR'] / ( 
                results['panel_count'] * system['module']['Area']) 
        results['system_cost_per_m2'] = (269.09 * results['panel_count'] * system['module']['Area'] + 
1319.4) / ( 
                results['panel_count'] * system['module']['Area']) 
 
    fig = px.line(results, x="panel_count", 
                  y="annual_ac_balance_EUR", 
                  animation_frame="tilt", 
                  range_x=[5, 50],  # range_y=[2100,2600], 
                  hover_data=['azimuth', 'azimuth'], 
                  line_group="azimuth", 
                  color='azimuth', 
                  height=550, 
                  title=" Energy cost balance " 
 
                  ).update_traces(mode='lines+markers') 



 

 

    # fig.data[0].update(mode='markers+lines') 
    fig["layout"].pop("updatemenus") 
    # fig.show() 
    return fig 
 
 
# TEST the above function 
# generate_cost_plot('mainstream','Canadian_Solar_CS5P_220M___2009_', 
'ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_',0.07,0.15,'cost_function_1', dt(2019, 1, 1), dt(2019, 
12, 31)) 
 
def update_cost_plot(inverter_price_index_type, energy_export_price, energy_import_price, 
cost_function, 
                     investment_cycle): 
    PV_lifespan = investment_cycle  # TODO:fix naming 
    if cost_function == 'cost_function_1': 
        results['annual_ac_balance_EUR'] = (results['annual_balance_deficit'] * energy_import_price + 
140 + ( 
                (system['module']['Area'] * 269.09 * results['panel_count'] + 1319.4) / PV_lifespan)) 
+ ( 
                                                   results['annual_balance_surplus'] * 
energy_export_price) 
 
    elif cost_function == 'cost_function_2': 
        results['annual_ac_balance_EUR'] = (results['annual_balance_deficit'] * energy_import_price + 
140 + ( 
                (system['module']['Area'] * 269.09 * results['panel_count'] + 1319.4 + ( 
                        PVnominalPower * results['panel_count'] * inverter_price_index[ 
                    inverter_price_index_type])) / PV_lifespan)) + ( 
                                                   results['annual_balance_surplus'] * 
energy_export_price) 
 
    elif cost_function == 'cost_function_3': 
        results['annual_ac_balance_EUR'] = (results['annual_balance_deficit'] * energy_import_price + 
140 + ( 
                (system['module']['Area'] * 269.09 * results['panel_count'] + 1319.4 + ( 
                        PVnominalPower * panel_count * inverter_price_index[ 
                    inverter_price_index_type])) / PV_lifespan)) + ( 
                                                   results['annual_balance_surplus'] * 
energy_export_price) 
    fig = px.line(results, x="panel_count", 
                  y="annual_ac_balance_EUR", 
                  animation_frame="tilt", 
                  range_x=[5, 50],  # range_y=[2100,2600], 
                  hover_data=['azimuth', 'azimuth'], 
                  line_group="azimuth", 
                  color='azimuth', 
                  height=550, 
 
                  ).update_traces(mode='lines+markers') 
    # fig.data[0].update(mode='markers+lines') 
    fig["layout"].pop("updatemenus") 
    # fig.show() 
    return fig 
 
 
def generate_contour_plot(dd_select_module, dd_select_inverter, panel_count, base_load, output_type, 
start, end, 
                          weather_file, electricity_use_profile_file, electricity_profile_element, 
energy_export_price, 
                          energy_import_price): 
    energies = {} 
    profiles = {} 
    ACperOrient = {} 
    AC_defficiency = {} 
    AC_surplus = {} 
    AC_defficiency_cost_EUR = {} 
    AC_annual_balance_EUR = {} 
    baseLoad = base_load 
 
    naive_times = pd.date_range(start=start, end=end, freq='1h') 
    system = {'module': PV_modules_list[dd_select_module], 'inverter': 
sapm_inverters_list[dd_select_inverter], 
              'surface_azimuth': surface_azimuths, 'surface_tilt': surface_tilts} 
 
    # prepare epw 
    epw_file_path = '/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/' + 
weather_file 
    epw_data = pvlib.iotools.read_epw(epw_file_path, coerce_year=2019) 
    # extract needed data from epw 
    temp_air = epw_data[0]['temp_air'] 
    wind_speed = epw_data[0]['wind_speed'] 
 
    coordinates = [(epw_data[1]['latitude'], epw_data[1]['longitude'], epw_data[1]['city'], 
epw_data[1]['altitude'], 
                    epw_data[1]['TZ'])] 



 

 
    # prepare energy use profile 
    # Energy Usage profiles 
    if output_type == "deficiency_prof" or output_type == "cost_balance": 
        AnnnualHourlyEnergyUseProfileFile = 
'/Users/dw/PycharmProjects/37project/Ontology/PV_panels/Energy_Use_Profiles/' + 
electricity_use_profile_file 
        eleConsumptionProfile = pd.read_csv(AnnnualHourlyEnergyUseProfileFile, 
                                            index_col='Date/Time', parse_dates=True) 
        eleConsumptionProfile[electricity_profile_element].groupby( 
            eleConsumptionProfile[electricity_profile_element].index.hour).sum() 
        loadProfile = eleConsumptionProfile[electricity_profile_element] 
        print("Annual load: " + str(int(loadProfile.sum()) / 1000) + '[kWh]') 
        loadProfile = loadProfile.tz_localize(int(epw_data[1]['TZ']) * 60 * 60) 
 
    for latitude, longitude, name, altitude, timezone in coordinates: 
        times = naive_times.tz_localize(int(timezone) * 60 * 60)  # localizes to GMT 
        solpos = pvlib.solarposition.get_solarposition(times, latitude, longitude) 
        dni_extra = pvlib.irradiance.get_extra_radiation(times) 
        airmass = pvlib.atmosphere.get_relative_airmass(solpos['apparent_zenith']) 
        pressure = pvlib.atmosphere.alt2pres(altitude) 
        am_abs = pvlib.atmosphere.get_absolute_airmass(airmass, pressure) 
        tl = pvlib.clearsky.lookup_linke_turbidity(times, latitude, longitude) 
        cs = pvlib.clearsky.ineichen(solpos['apparent_zenith'], am_abs, tl, dni_extra=dni_extra, 
altitude=altitude) 
        for azim in system['surface_azimuth']: 
            temp_irr_val = []  # to get all annual values from a single azimuth 
            temp_AC_val = []  # to get all annual AC output per selected panel values from a single 
azimuth 
            temp_deficiency = [] 
            temp_surplus = [] 
            temp_final_annual_ac_deficit_cost_EUR = [] 
            temp_final_annual_ac_balance_EUR = [] 
            for tilt in surface_tilts: 
                # print('tilt:',str(tilt),'Azimuth:',str(azim)) 
                aoi = pvlib.irradiance.aoi(tilt, azim, solpos['apparent_zenith'], solpos['azimuth']) 
                total_irrad = pvlib.irradiance.get_total_irradiance(tilt, 
                                                                    azim, 
                                                                    solpos['apparent_zenith'], 
                                                                    solpos['azimuth'], 
                                                                    epw_data[0]['dni'], 
epw_data[0]['ghi'], 
                                                                    epw_data[0]['dhi'], 
                                                                    dni_extra=dni_extra, 
                                                                    model=irradiance_model) 
                temps = 
pvlib.pvsystem.temperature.sapm_cell(total_irrad['poa_global'].tz_convert(timezone), 
                                                             epw_data[0]['temp_air'], 
epw_data[0]['wind_speed'], 
                                                             **params) 
 
                effective_irradiance = pvlib.pvsystem.sapm_effective_irradiance( 
                    total_irrad['poa_direct'], total_irrad['poa_diffuse'], 
                    am_abs, aoi, system['module']) 
                dc = pvlib.pvsystem.sapm(effective_irradiance, temps, system['module']) 
                ac = pvlib.pvsystem.snlinverter(dc['v_mp'], dc['p_mp'], system['inverter']) 
                # sum(ac[ac>100]) 
                # deficiency = (baseLoad - (ac*panelsQuantity))#in Wh 
 
                if output_type == 'deficiency_prof' or output_type == "cost_balance": 
                    deficiency = (loadProfile * 1000 - (ac * panel_count)) 
 
                elif output_type == "deficiency_const":  # todo maybe fix it for execution time??? 
                    deficiency = (baseLoad - (ac * panel_count)) 
 
                annual_energy = ac.sum() 
                temp_AC_val.append(annual_energy * panel_count / 1000)  # to get kWh 
                annual_irradiance = total_irrad['poa_global'].sum() 
                temp_irr_val.append(annual_irradiance * panel_count / 1000) 
                if output_type == 'deficiency_prof' or output_type == "deficiency_const" or 
output_type == "cost_balance": 
                    annual_deficiency = sum(deficiency[deficiency > 0])  # todo: by putting this under 
if and so on 
                    temp_deficiency.append(annual_deficiency / 1000) 
                if output_type == "cost_balance": 
                    annual_surplus = sum(deficiency[deficiency < 0])  # todo: by putting this under if 
and so on 
                    temp_surplus.append(annual_surplus / 1000) 
                    temp_final_annual_ac_deficit_cost_EUR.append( 
                        (annual_deficiency / 1000) * energy_import_price + 140 + ( 
                                (system['module']['Area'] * 269.09 * panel_count + 1319.4) / 25)) 
                    temp_final_annual_ac_balance_EUR.append((annual_deficiency / 1000 * 
energy_import_price + 140 + ( 
                            (system['module']['Area'] * 269.09 * panel_count + 1319.4) / 25)) + ( 
                                                                    annual_surplus / 1000 * 
energy_export_price)) 



 

 

 
                profiles[str(azim) + '-' + str(tilt)] = total_irrad['poa_global'].groupby( 
                    total_irrad['poa_global'].index.hour).sum() 
 
            energies[azim] = temp_irr_val 
            ACperOrient[azim] = temp_AC_val 
            if output_type == 'deficiency_prof' or output_type == "deficiency_const" or output_type == 
"cost_balance": 
                AC_defficiency[azim] = temp_deficiency 
 
            if output_type == "cost_balance": 
                AC_surplus[azim] = temp_surplus 
                AC_defficiency_cost_EUR[azim] = temp_final_annual_ac_deficit_cost_EUR 
                AC_annual_balance_EUR[azim] = temp_final_annual_ac_balance_EUR 
            # hour based irradiance profile 
 
    # Make nice dateframe matrices: 
 
    print(output_type) 
 
    if output_type == 'total_Irr': 
        plotTitle = 'Total Irradiance [kWh/m2] per orientation. Location: ' + str(coordinates[0][2]) + 
' Lat: ' + str( 
            coordinates[0][0]) + ' Lon:' + str(coordinates[0][1]) 
        plotInput = pd.DataFrame.from_dict(energies, orient='index').round(1).transpose()  # Wh/m2 
        plotInput.index = surface_tilts  # kWh/m2 
 
    elif output_type == 'total_AC': 
        print('here' + output_type) 
        print(system['module']) 
        plotTitle = 'Total AC per orientation. ' + str( 
            panel_count) + ' Panels. Area: ' + str(system['module']['Area'].__round__(2) * 
panel_count) + 'm2. ' + str( 
            coordinates[0][2]) + ' Lat: ' + str(coordinates[0][0]) + ' Lon:' + str(coordinates[0][1]) 
        plotInput = pd.DataFrame.from_dict(ACperOrient, orient='index').round(1).transpose()  # Wh/m2 
        plotInput.index = surface_tilts  # kWh/m2 
 
    elif output_type == 'deficiency_prof': 
        print('selected') 
        plotTitle = 'Deficiency per panel orientation. ' + str( 
            panel_count) + ' Panels. Area: ' + str( 
            round(system['module']['Area'] * panel_count)) + 'm2. ' + 'Panel Power rating: ' + 
str(int(round( 
            system['module']['Impo'] * system['module'][ 
                'Vmpo']))) + 'W ,' + ' Profile source:  ' + 'USA_TX_Austin.722540_TMY2.csv' 
        plotInput = pd.DataFrame.from_dict(AC_defficiency, orient='index').round(1).transpose()  # 
Wh/m2 
        plotInput.index = surface_tilts  # kWh/m2 
    elif output_type == 'deficiency_const': 
        plotTitle = 'Deficiency per panel orientation. ' + str( 
            panel_count) + ' Panels. Area: ' + str( 
            system['module']['Area'].__round__(2) * panel_count) + 'm2. ' + ' Base load threshold: ' + 
str( 
            baseLoad / 1000) + 'kWh' 
        plotInput = pd.DataFrame.from_dict(AC_defficiency, orient='index').round(1).transpose()  # 
Wh/m2 
        plotInput.index = surface_tilts  # kWh/m2 
    elif output_type == "cost_balance": 
        plotTitle = 'Annual cost balance (system,import,export). ' + str( 
            panel_count) + ' Panels (' + str( 
            system['module']['Area'].__round__(2) * panel_count) + 'm2). Investment cycle: 25 years.' 
        plotInput = pd.DataFrame.from_dict(AC_annual_balance_EUR, orient='index').round(1).transpose()  
# Wh/m2 
        plotInput.index = surface_tilts  # kWh/m2 
    else: 
        plotTitle = '???' 
 
    # plotTitle = 'Deficiency per panel orientation. ' + str(panelsQuantity) + ' Panels.' + ' Profile 
source:  ' + 'USA_TX_Austin.722540_TMY2.csv' 
 
    fig = go.Figure(data=go.Contour( 
        z=plotInput, 
        x=plotInput.columns, 
        y=plotInput.index, 
        hovertemplate= 
        '<i>Azimuth</i>: %{x}°<br>' + 
        '<i>Tilt</i>: %{y}°<br>' + 
        '<b>kWh defic.</b>: %{z}</br>', 
        name='', 
        # colorscale='Electric', 
 
        contours=dict( 
            # coloring ='heatmap', smooths out the map 
            showlabels=True,  # show labels on contours 
            # start=plotInput.values.min(), 
            # end=plotInput.values.max(), 



 

            # size=50,#contour step 
            labelfont=dict(  # label font properties 
                size=12, 
                color='white', 
 
            ), 
            # if we'd like to customize the bins 
            # start=0, 
            # end=8, 
            # size=2, 
            # dx=10, 
            # x0=5, 
            # dy=10, 
            # y0=10, 
        ), 
        colorbar=dict( 
            title='[kWh]',  # title here 
            titleside='top', 
            titlefont=dict( 
                size=14, 
                family="Courier New, monospace", 
                color="#7f7f7f") 
        ) 
    )) 
    if output_type == 'total_AC' or output_type == 'total_Irr': 
        fig.add_scatter(x=[plotInput.stack().idxmax()[1]], y=[plotInput.stack().idxmax()[0]], 
                        mode="markers", 
                        marker=dict(size=20, color="MediumPurple"), 
                        name='', 
                        hovertemplate= 
                        '<i>Azimuth</i>: %{x}°<br>' + 
                        '<i>Tilt</i>: %{y}°<br>' + 
                        '<i>kWh</i>: ' + str(plotInput.values.max()) + '<br>', 
                        # hoverinfo='none' 
                        ) 
    elif output_type == "cost_balance": 
        fig.add_scatter(x=[plotInput.stack().idxmin()[1]], y=[plotInput.stack().idxmin()[0]], 
                        mode="markers", 
                        marker=dict(size=20, color="MediumPurple"), 
                        name='', 
                        hovertemplate= 
                        '<i>Azimuth</i>: %{x}°<br>' + 
                        '<i>Tilt</i>: %{y}°<br>' + 
                        '<i>EUR/year</i>: ' + str(plotInput.values.min()) + '<br>', 
                        # hoverinfo='none' 
                        ) 
 
 
 
    else: 
        fig.add_scatter(x=[plotInput.stack().idxmin()[1]], y=[plotInput.stack().idxmin()[0]], 
                        mode="markers", 
                        marker=dict(size=20, color="MediumPurple"), 
                        name='', 
                        hovertemplate= 
                        '<i>Azimuth</i>: %{x}°<br>' + 
                        '<i>Tilt</i>: %{y}°<br>' + 
                        '<i>kWh defic.</i>: ' + str(plotInput.values.min()) + '<br>', 
                        # hoverinfo='none' 
                        ) 
 
    if output_type == 'total_Irr': 
        fig.data[0].colorbar.title = "[kWh/m2]" 
    elif output_type == "cost_balance": 
        fig.data[0].colorbar.title = "[EUR]" 
 
    fig.update_layout( 
        xaxis=dict( 
            tickmode='linear', 
            tick0=90, 
            dtick=15 
        ), 
        yaxis=dict( 
            tickmode='linear', 
            tick0=0, 
            dtick=5 
        ), 
        title=dict(text=plotTitle, 
                   x=0.5, 
                   y=1, 
                   xanchor='center', 
                   yanchor='top' 
                   ), 
        xaxis_title="Azimuth [deg]", 
        yaxis_title="Tilt [deg]", 
        font=dict( 



 

 

            family="Courier New, monospace", 
            size=12, 
            color="#666666" 
        ), 
        height=550,  # try solving it with css 
        margin=dict(l=20, r=20, t=35, b=20) 
    ) 
 
    # fig.show() 
 
    return fig 
 
 
def visualize_energy_use_profile(electricity_use_profile_file, 
                                 electricity_profile_element):  # TODO use source resd from column 
names - list all with kWh 
    # Create traces 
 
    AnnnualHourlyEnergyUseProfileFile = 
'/Users/dw/PycharmProjects/37project/Ontology/PV_panels/Energy_Use_Profiles/' + 
electricity_use_profile_file 
    eleConsumptionProfile = pd.read_csv(AnnnualHourlyEnergyUseProfileFile, 
                                        index_col='Date/Time', parse_dates=True) 
    # eleConsumptionProfile[electricity_profile_element].groupby( 
    #    eleConsumptionProfile[electricity_profile_element].index.hour).sum() 
    loadProfile = eleConsumptionProfile[electricity_profile_element] 
    loadProfile = loadProfile.sort_index() 
 
    fig = go.Figure() 
    fig.add_trace(go.Scatter(x=loadProfile.index, y=loadProfile.values, 
                             mode='lines', 
                             name='Profile')) 
    # fig.add_trace(go.Scatter(x=ac_converted.index, y=ac_converted.values, 
    #                         mode='lines', 
    #                         name='AC')) 
    fig.update_layout(title_text='Electricity use profile; Source file: ' + str( 
        electricity_use_profile_file) + ' Electricity use source: ' + 
str(electricity_profile_element), 
                      xaxis_rangeslider_visible=True) 
 
    fig.show() 
 
 
###################### 
# APPLICATION LAYOUT # 
###################### 
 
app.layout = html.Div( 
    className="container scalable", 
    children=[ 
        html.Div( 
            id="banner", 
            className="banner", 
            children=[ 
                html.H6("_PV Tool_"), 
                # html.Img(src=app.get_asset_url("plotly_logo.png")), 
            ], 
        ), 
        html.Div( 
            className="app_main_content", 
            children=[ 
                html.Div( 
                    id="dropdown-select-outer", 
                    # id="dropdown-select-1stRow", 
                    children=[ 
                        html.Div( 
                            [ 
                                html.P("Solar Module"), 
                                dcc.Dropdown( 
                                    id="dropdown-select-module", 
                                    options=[{'label': i.replace("_", " "), 'value': i} for i in 
                                             PV_modules_list.columns.sort_values()], 
                                    # modules selector 
                                    # options=[ 
                                    #     {"label": "Departure", "value": "dep"}, 
                                    #     {"label": "Arrival", "value": "arr"}, 
                                    # ], 
                                    value='Canadian_Solar_CS5P_220M___2009_', 
                                ), 
                            ], 
                            className="selector", 
                        ), 
 
                        html.Div([ 
                            html.Div( 
                                [ 



 

                                    html.P(["Panel count"], style={"color": "#999999"}), 
                                    dcc.Input( 
                                        id="input-panel-count".format("number"), 
                                        type="number", 
                                        placeholder="10".format("number"), 
                                        value=10, 
                                    ), 
                                ], 
                                # className="selector", 
                                style={"margin-right": "20px"}, 
                            ), 
 
                        ], 
                            className="selectormiddle", 
                            style={'width': '17%'} 
 
                        ), 
                        html.Div( 
                            [ 
                                html.P("Solar radiation data source:"), 
                                dcc.Dropdown( 
                                    id="dropdown-select-weather-file", 
                                    options=[{'label': i.replace("_", " "), 'value': i} for i in 
                                             weather_data_sources], 
                                    value=weather_data_sources[0], 
 
                                ), 
                                # TODO initial value fix#html.P('Panels nominal Power Rating: 
'+str(system['module']['Impo'] * system['module']['Vmpo'])+'W', style={ "color" : "#000000", "margin-
bottom" : "0", "font-size" : "0.7em", "line-height" : "1" }), 
 
                            ], 
                            id="weather-file-select", 
                            className="selector", 
                        ), 
 
                    ], 
                ), 
                html.Div( 
                    id="dropdown-select-2ndRow", 
                    children=[ 
                        html.Div( 
                            [ 
                                html.P("Inverter"), 
                                dcc.Dropdown( 
                                    id="dropdown-select-inverter", 
                                    options=[{'label': i.replace("_", " "), 'value': i} for i in 
                                             sapm_inverters_list.columns.sort_values()], 
                                    value='ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_', 
                                ), 
                            ], 
                            className="selector", 
                        ), 
 
                        html.Div( 
                            [ 
                                html.P("Date Range"), 
                                dcc.DatePickerRange( 
                                    id="date-picker-range", 
                                    min_date_allowed=dt(2019, 1, 1), 
                                    max_date_allowed=dt(2020, 1, 1),  # set maximum limit according to 
local casting 
                                    initial_visible_month=dt(2019, 1, 1), 
                                    minimum_nights=1, 
                                    display_format="MMM Do, YY", 
                                    start_date=dt(2019, 1, 1), 
                                    end_date=dt(2019, 12, 31), 
                                ), 
                            ], 
                            id="date-picker-outer", 
                            className="selectormiddle", 
                            # style= {'width': 'auto'} 
                            style={'width': '17%'} 
                        ), 
 
                        html.Div( 
                            [ 
                                html.P("Select Output"), 
                                dcc.Dropdown( 
                                    id="dropdown-select-output", 
                                    options=[ 
                                        {"label": "Total Irradiance", "value": "total_Irr"}, 
                                        {"label": "Total AC", "value": "total_AC"}, 
                                        {"label": "Ene. Deficiency b.o. Profile", "value": 
"deficiency_prof"}, 
                                        {"label": "Ene. Deficiency b.o. Constant", "value": 



 

 

"deficiency_const"}, 
                                        {"label": "Annual cost balance b.o. Profile", "value": 
"cost_balance"}, 
                                    ], 
                                    placeholder='Select desired output', 
                                    # value='deficiency_prof', 
                                ), 
                                html.Div([ 
                                    html.P([""], 
                                           id="profile-source-txt"),  # "Energy consumption profile 
source" 
                                    dcc.Dropdown( 
                                        id="dropdown-select-electricity-use-profile", 
                                        options=[{'label': i.replace("_", " "), 'value': i} for i in 
                                                 eleConsumptionProfiles], 
                                        placeholder="Select energy use profile source:", 
                                    ), 
                                    dcc.Dropdown( 
                                        id="dropdown-select-profile-element", 
                                        options=[ 
                                            {"label": "Electricity:Facility", 
                                             "value": "Electricity:Facility [kWh](Hourly)"}, 
                                            {"label": "Heating:Electricity", 
                                             "value": "Heating:Electricity [kWh](Hourly)"}, 
                                            {"label": "Cooling:Electricity", 
                                             "value": "Cooling:Electricity [kWh](Hourly)"}, 
                                            {"label": "HVACFan:Fans:Electricity", 
                                             "value": "HVACFan:Fans:Electricity [kWh](Hourly)"}, 
                                            {"label": "Electricity:HVAC", "value": "Electricity:HVAC 
[kWh](Hourly)"}, 
                                            {"label": "Fans:Electricity", "value": "Fans:Electricity 
[kWh](Hourly)"}, 
                                            {"label": "General:InteriorLights:Electricity", 
                                             "value": "General:InteriorLights:Electricity 
[kWh](Hourly)"}, 
                                            {"label": "Appl:InteriorEquipment:Electricity", 
                                             "value": "Appl:InteriorEquipment:Electricity 
[kWh](Hourly)"}, 
                                            {"label": "Misc:InteriorEquipment:Electricity", 
                                             "value": "Misc:InteriorEquipment:Electricity 
[kWh](Hourly)"}, 
                                            {"label": "Water Heater:WaterSystems:Electricity", 
                                             "value": "Water Heater:WaterSystems:Electricity 
[kWh](Hourly)"}, 
 
                                        ], 
                                        placeholder='Select electricity consumption source', 
 
                                    ), 
                                ], 
                                    id="dropdown-select-electricity-use-profile-wrapper"), 
 
                                html.Div( 
 
                                    [ 
                                        html.P("Base load [Wh]"), 
                                        dcc.Input( 
                                            id="input-base-load".format("number"), 
                                            type="number", 
                                            placeholder="1000".format("number"), 
                                            value=1000, 
                                        ), 
 
                                    ], 
                                    id="base-load-visibility-div", 
                                    style={"margin-right": "20px"}, 
                                ), 
                                # Options for annual cost balance visualization 
                                html.Div([ 
                                    html.P([""], id="annual-cost-balance-txt"), 
                                    html.Div( 
                                        [ 
                                            html.P("Enenrgy import price(EUR)"), 
 
                                            dcc.Input( 
                                                id="input-energy-import-price-
contour".format("number"), 
                                                type="number", 
                                                min=0.00, 
                                                step=0.01, 
                                                max=1, 
                                                placeholder="0.15".format("number"), 
                                                value=0.15, 
                                            ), 
                                            html.P("Enenrgy export price(EUR)"), 
                                            dcc.Input( 



 

                                                id="input-energy-export-price-
contour".format("number"), 
                                                type="number", 
                                                min=0.00, 
                                                step=0.01, 
                                                max=1, 
                                                placeholder="0.07".format("number"), 
                                                value=0.07, 
                                            ), 
 
                                        ], 
                                        # className="selector", 
                                        # style={"margin-top": "100px", "margin-right": "20px"}, 
                                    ), 
 
                                    dcc.Dropdown( 
                                        id="dropdown-select-electricity-use-profile-contour", 
                                        options=[{'label': i.replace("_", " "), 'value': i} for i in 
                                                 eleConsumptionProfiles], 
                                        placeholder="Select energy use profile source:", 
                                    ), 
                                    dcc.Dropdown( 
                                        id="dropdown-select-profile-element-contour", 
                                        options=[ 
                                            {"label": "Electricity:Facility", 
                                             "value": "Electricity:Facility [kWh](Hourly)"}, 
                                            {"label": "Heating:Electricity", 
                                             "value": "Heating:Electricity [kWh](Hourly)"}, 
                                            {"label": "Cooling:Electricity", 
                                             "value": "Cooling:Electricity [kWh](Hourly)"}, 
                                            {"label": "HVACFan:Fans:Electricity", 
                                             "value": "HVACFan:Fans:Electricity [kWh](Hourly)"}, 
                                            {"label": "Electricity:HVAC", "value": "Electricity:HVAC 
[kWh](Hourly)"}, 
                                            {"label": "Fans:Electricity", "value": "Fans:Electricity 
[kWh](Hourly)"}, 
                                            {"label": "General:InteriorLights:Electricity", 
                                             "value": "General:InteriorLights:Electricity 
[kWh](Hourly)"}, 
                                            {"label": "Appl:InteriorEquipment:Electricity", 
                                             "value": "Appl:InteriorEquipment:Electricity 
[kWh](Hourly)"}, 
                                            {"label": "Misc:InteriorEquipment:Electricity", 
                                             "value": "Misc:InteriorEquipment:Electricity 
[kWh](Hourly)"}, 
                                            {"label": "Water Heater:WaterSystems:Electricity", 
                                             "value": "Water Heater:WaterSystems:Electricity 
[kWh](Hourly)"}, 
 
                                        ], 
                                        placeholder='Select electricity consumption source', 
 
                                    ), 
                                ], 
                                    id="annual-cost-balance-options-wrapper"), 
 
                                html.Div(id='mockup-button'), 
                                dcc.Input(style={'display': 'none'}), 
 
                            ], 
                            className="selector", 
 
                        ), 
 
                        html.Div( 
                            [ 
                                html.P("_"), 
                                html.Button(id='submit-button-state', n_clicks=0, children='Submit ', 
                                            style={"backgroundColor": "greenyellow"}), 
                                html.Div([ 
                                    html.P("_ "), 
                                    html.Button(id='preview-profile-state', n_clicks=0, 
children='Preview', 
                                                style={"backgroundColor": "white"}) 
                                ], 
                                    id="prewiew-button-wrapper"), 
                            ], 
 
                        ), 
                    ], 
                ), 
                # ------------------------- 
                # Contour plot div 
                html.Div( 
                    id="top-row", 
                    className="row", 



 

 

                    children=[ 
                        html.Div( 
                            id="map_geo_outer", 
                            className="twelve columns", 
                            children=dcc.Loading( 
                                # contour plot 
                                children=dcc.Graph(id="contours") 
                            ), 
 
                        ), 
 
                    ], 
                    style={"width": "100%"}, 
 
                ), 
                # -------------------------- 
                html.Div( 
                    id="dropdown-select-3rdRow", 
                    children=[ 
                        html.Div( 
                            [ 
                                html.P("Enenrgy import price(EUR)"), 
                                dcc.Input( 
                                    id="input-energy-import-price".format("number"), 
                                    type="number", 
                                    min=0.00, 
                                    step=0.01, 
                                    max=1, 
                                    placeholder="0.15".format("number"), 
                                    value=0.15, 
                                ), 
 
                            ], 
                            # className="selector", 
                            style={"margin-top": "100px", "margin-right": "20px"}, 
                        ), 
                        html.Div( 
                            [ 
                                html.P("Enenrgy export price(EUR)"), 
                                dcc.Input( 
                                    id="input-energy-export-price".format("number"), 
                                    type="number", 
                                    min=0.00, 
                                    step=0.01, 
                                    max=1, 
                                    placeholder="0.07".format("number"), 
                                    value=0.07, 
                                ), 
 
                            ], 
                            # className="selector", 
                            style={"margin-top": "100px", "margin-right": "20px"}, 
                        ), 
                        html.Div( 
                            [ 
                                html.P("Select Cost Function"), 
                                dcc.Dropdown( 
                                    id="dropdown-select-cost-function", 
                                    options=[ 
                                        {"label": "CF (Schrack Technik)", "value": "cost_function_1"}, 
                                        {"label": "CF (Österreichische Energieagentur)", "value": 
"cost_function_2"}, 
                                        # {"label": "Cost Function 3", "value": "cost_function_3"}, 
                                    ], 
                                    placeholder='Cost Function 1', 
                                    value='cost_function_1', 
                                ), 
                                html.Div( 
                                    [ 
                                        html.P("Select inverter class"), 
                                        dcc.Dropdown( 
                                            id="dropdown-select-inverter-type", 
                                            options=[ 
                                                {"label": "High end", "value": "high_end"}, 
                                                {"label": "Mainstream", "value": "mainstream"}, 
                                                {"label": "Low cost", "value": "low_cost"}, 
                                            ], 
                                            placeholder='Mainstream', 
                                            value='mainstream', 
                                        ), 
                                    ], 
                                    id="inverter-class-wrapper" 
                                ), 
 
                            ], 
                            className="selector", 



 

                            style={"margin-top": "100px", "margin-right": "20px"}, 
                        ), 
 
                        html.Div( 
                            [ 
                                html.P("Inv. cycle(y)"), 
                                dcc.Input( 
                                    id="input-investment-cycle".format("number"), 
                                    type="number", 
                                    min=5, 
                                    step=1, 
                                    max=25, 
                                    placeholder="25".format("number"), 
                                    value=25, 
 
                                ), 
                            ], 
                            style={"margin-top": "100px", "margin-right": "20px"}, 
 
                        ), 
 
                        html.Div( 
                            [ 
                                html.P("_______________"), 
                                html.Button(id='submit-button-state-cost', n_clicks=0, 
children='Submit'), 
                            ], 
                            style={"margin-top": "100px"}, 
 
                        ), 
                    ], 
                ), 
                html.Div(id='date-text-output'), 
 
                # 2nd plot (costs )div 
                html.Div( 
                    id="bottom-row", 
                    className="row", 
                    children=[ 
                        html.Div( 
                            id="cost_bottom", 
                            className="twelve columns", 
                            children=dcc.Loading( 
                                # avg arrival/dep delay by destination state 
                                children=dcc.Graph(id="cost_line") 
                            ), 
                        ), 
 
                    ], 
                    style={"width": "100%", }, 
 
                ), 
 
            ], 
        ), 
    ], 
) 
 
 
# Print date before 2nd plot 
@app.callback(Output('date-text-output', 'children'), 
              [Input("date-picker-range", "start_date"), 
               Input("date-picker-range", "end_date"), 
               Input("dropdown-select-weather-file", "value"), 
               Input("dropdown-select-electricity-use-profile", "value"), 
               Input("dropdown-select-profile-element", "value"), 
               Input("input-investment-cycle", "value") 
               ]) 
def update(start, end, solar_source, energy_use_profile, profile_element, investment_cycle): 
    print(type(start)) 
    # return f'Time range: {start.replace("T00:00:00", " ")} - {end.replace("T00:00:00", " ")}' 
    return f'INPUT DETAILS  -  Time range: {start.replace("T00:00:00", " ")} - 
{end.replace("T00:00:00", 
    " ")}.Investment 
    cycle: {investment_cycle} 
    ' \ 
            f' 
    years.Solar 
    radiation 
    data 
    src.: {solar_source}.Energy 
    use 
    profile 
    src.: {energy_use_profile}.Energy 
    use 
    src.: {profile_element}. 



 

 

    ' 
 
 
def generate_mockup_fig(): 
    #    df = px.data.gapminder().query("country=='Canada'") 
    #    fig = px.line(df, x="year", y="lifeExp", title='Life expectancy in Canada') 
    fig = go.Figure() 
    fig.update_layout( 
        xaxis={"visible": False}, 
        yaxis={"visible": False}, 
        annotations=[ 
            dict( 
                xref="paper", 
                yref="paper", 
                text="SUBMIT INPUT SETTINGS", 
                showarrow=False, 
                font=dict(size=28) 
 
            ) 
        ] 
 
    ) 
 
    return fig 
 
 
@app.callback( 
    Output("contours", "figure"), 
    [Input('submit-button-state', 'n_clicks')], 
    [ 
        State("dropdown-select-module", "value"), 
        State("dropdown-select-inverter", "value"), 
        State("input-panel-count", "value"), 
        State("input-base-load", "value"), 
        State("dropdown-select-output", "value"), 
        State("date-picker-range", "start_date"), 
        State("date-picker-range", "end_date"), 
        State("dropdown-select-weather-file", "value"), 
        State("dropdown-select-electricity-use-profile-contour", "value"), 
        State("dropdown-select-profile-element-contour", "value"), 
        State("input-energy-export-price-contour", "value"), 
        State("input-energy-import-price-contour", "value"), 
    ], 
 
) 
def update_contours(n_clicks, dd_select_module, dd_select_inverter, panel_count, base_load, 
output_type, start, end, 
                    weather_file, electricity_use_profile_file, electricity_profile_element, 
energy_export_price, 
                    energy_import_price): 
    # Update contour when dropdown or date-picker change 
    print(n_clicks) 
    if n_clicks != 0: 
        if dd_select_module is None: 
            dd_select_module = 'Canadian_Solar_CS5P_220M___2009_' 
 
        if dd_select_inverter is None: 
            dd_select_inverter = 'ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_' 
 
        if panel_count is None: 
            panel_count = 10 
 
        if base_load is None: 
            base_load = 1000 
 
        if output_type is None: 
            output_type = "total_Irr" 
 
        if electricity_use_profile_file is None: 
            electricity_use_profile_file = eleConsumptionProfiles[0] 
 
        if electricity_profile_element is None: 
            electricity_profile_element = "Electricity:Facility [kWh](Hourly)" 
 
        start, end = start.replace("T", " "), end.replace("T", " ") 
        return generate_contour_plot(dd_select_module, dd_select_inverter, panel_count, base_load, 
output_type, start, 
                                     end, weather_file, electricity_use_profile_file, 
electricity_profile_element, 
                                     energy_export_price, 
                                     energy_import_price) 
    else: 
        return generate_mockup_fig() 
 
 
@app.callback( 



 

    Output("cost_line", "figure"), 
 
    [Input('submit-button-state-cost', 'n_clicks')], 
    [ 
        State("dropdown-select-inverter-type", "value"), 
        State("dropdown-select-module", "value"), 
        State("dropdown-select-inverter", "value"), 
        State("input-energy-export-price", "value"), 
        State("input-energy-import-price", "value"), 
        State("dropdown-select-cost-function", "value"), 
        State("date-picker-range", "start_date"), 
        State("date-picker-range", "end_date"), 
        State("dropdown-select-weather-file", "value"), 
        State("dropdown-select-electricity-use-profile", "value"), 
        State("dropdown-select-profile-element", "value"), 
        State("input-investment-cycle", "value"), 
 
    ], 
 
) 
def update_line_cost(n_clicks, inverter_price_index_type, dd_select_module, dd_select_inverter, 
energy_export_price, 
                     energy_import_price, 
                     cost_function, start, end, weather_file, electricity_use_profile_file, 
electricity_profile_element, 
                     investment_cycle): 
    # Update contour when dropdown or date-picker change 
    print(n_clicks) 
    if n_clicks == 1: 
        if inverter_price_index_type is None: 
            inverter_price_index_type = 'mainstream' 
 
        if dd_select_module is None: 
            dd_select_module = 'Canadian_Solar_CS5P_220M___2009_' 
 
        if dd_select_inverter is None: 
            dd_select_inverter = 'ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_' 
 
        if energy_export_price is None: 
            energy_export_price = 0.07 
 
        if energy_import_price is None: 
            energy_import_price = 0.15 
 
        if cost_function is None: 
            cost_function = 1 
        if investment_cycle is None: 
            investment_cycle = 25 
 
        # TODO: need to add title to cost function so that we know what#s on the graph 
        if electricity_use_profile_file is None: 
            electricity_use_profile_file = eleConsumptionProfiles[0] 
 
        if electricity_profile_element is None: 
            electricity_profile_element = "Electricity:Facility [kWh](Hourly)" 
 
        start, end = start.replace("T", " "), end.replace("T", " ") 
 
        print(n_clicks) 
 
        return generate_cost_plot(inverter_price_index_type, dd_select_module, dd_select_inverter, 
energy_export_price, 
                                  energy_import_price, 
                                  cost_function, start, end, weather_file, 
electricity_use_profile_file, 
                                  electricity_profile_element, investment_cycle) 
    elif n_clicks > 1: 
 
        return update_cost_plot(inverter_price_index_type, energy_export_price, energy_import_price, 
cost_function, 
                                investment_cycle) 
 
 
    else: 
        return generate_mockup_fig() 
 
 
# reset clicks on 
@app.callback(Output('submit-button-state-cost', 'n_clicks'), 
              [Input("date-picker-range", "start_date"), 
               Input("date-picker-range", "end_date"), 
               Input("dropdown-select-profile-element", "value"), 
               Input("dropdown-select-output", "value"), 
               Input("dropdown-select-weather-file", "value") 
               ]) 
def update(start, end, temp_val_1, temp_val_2, temp_val_3): 



 

 

    return 0 
 
 
# preview button energy profile cost plot 
# reset clicks on 
@app.callback( 
    Output('mockup-button', 'children'), 
    [Input('preview-profile-state', 'n_clicks'), ], 
    [State("dropdown-select-electricity-use-profile", "value"), 
     State("dropdown-select-profile-element", "value"), 
     ]) 
def update(n_clicks, electricity_use_profile_file, electricity_profile_element): 
    print("Preview btn click state: " + str(n_clicks)) 
    if n_clicks != 0: 
        visualize_energy_use_profile(electricity_use_profile_file, electricity_profile_element) 
    return ""  # return nothing 
 
 
# reset preview butto 
@app.callback(Output('preview-profile-state', 'n_clicks'), 
              [Input("dropdown-select-electricity-use-profile", "value"), 
               Input("dropdown-select-profile-element", "value"), 
               Input("dropdown-select-output", "value"), 
               ]) 
def update(empty_1, empty_2, empty_3): 
    return 0 
 
 
# inverter type dropdown visibility control 
@app.callback(Output('inverter-class-wrapper', 'style'), 
              [Input("dropdown-select-cost-function", "value"), 
               ]) 
def update(dropdown_value): 
    if dropdown_value == "cost_function_2": 
        print(dropdown_value) 
        return {'display': 'block'} 
    else: 
        return {'display': 'none'} 
 
 
# control profile selection display 
@app.callback(Output('dropdown-select-electricity-use-profile-wrapper', 'style'), 
              [Input("dropdown-select-output", "value"), 
               ]) 
def update(dropdown_value): 
    if dropdown_value == "deficiency_prof": 
        print(dropdown_value) 
        return {'display': 'block'} 
    else: 
        return {'display': 'none'} 
 
 
@app.callback(Output('profile-source-txt', 'style'), 
              [Input("dropdown-select-output", "value"), 
               ]) 
def update(dropdown_value): 
    if dropdown_value == "deficiency_prof": 
        print(dropdown_value) 
        return {'display': 'block'} 
    else: 
        return {'display': 'none'} 
 
 
@app.callback(Output('base-load-visibility-div', 'style'), 
              [Input("dropdown-select-output", "value"), 
               ]) 
def update(dropdown_value): 
    if dropdown_value == "deficiency_const": 
        print(dropdown_value) 
        return {'display': 'block'} 
    else: 
        return {'display': 'none'} 
 
 
@app.callback(Output('prewiew-button-wrapper', 'style'), 
              [Input("dropdown-select-output", "value"), 
               ]) 
def update(dropdown_value): 
    if dropdown_value == "deficiency_prof": 
        print(dropdown_value) 
        return {'display': 'block'} 
    else: 
        return {'display': 'none'} 
 
 
#### 



 

 
@app.callback(Output("annual-cost-balance-options-wrapper", 'style'), 
              [Input("dropdown-select-output", "value"), 
               Input('submit-button-state-cost', 'n_clicks') 
               ]) 
def update(dropdown_value, n_clicks): 
    if dropdown_value == "cost_balance": 
        print(dropdown_value) 
        return {'display': 'block'} 
    else: 
        return {'display': 'none'} 
 
    # Run the server 
 
 
if __name__ == "__main__": 
    app.run_server( 
        debug=True, port=8054, dev_tools_hot_reload=False, use_reloader=False 
    ) 
 
  



 

 

#################################################### 
# BPD ontology to LADYBUG 
# List unique attributes in the selected file v1.0 
#  
#################################################### 
 
import scriptcontext 
import ghpythonremote 
h5py = scriptcontext.sticky['h5py'] 
np=  scriptcontext.sticky['numpy'] 
import Grasshopper.Kernel as gh 
 
#================= 
if _hdf5File != None and _attribute != None: 
 
    hdf5File = _hdf5File 
     
    objects_list=[] 
    variables_name_list=[] 
    uniqueNamesList=[] 
     
    print "looking for:   ", _attribute, 
    #print len(_objects_list) 
    #print _hdf5File 
 
 
    def findspecial(name, obj): 
        #print type(obj) 
        #print name 
        try: 
            curName = ghpythonremote.obtain(obj.attrs.get(_attribute)) 
            #print curName 
            if  curName != None: 
                uniqueNamesList.append(curName) 
        except: 
            print "warning findspecial, it's OK though" 
 
 
 
    while True: 
         
         
        if _hdf5File != None and len(_attribute) != 0: 
            #print "hdf5+" 
            f = h5py.File(_hdf5File, 'r') 
            try: 
                ghpythonremote.obtain(f.visititems(findspecial)) 
            except: 
                print "warning visititems, retrying" 
                uniqueNamesList=[] 
                continue 
            print "done" 
            uniqueNamesList = ghpythonremote.obtain(np.unique(uniqueNamesList).tolist()) 
            print uniqueNamesList 
            break 
             
        else: 
            print "input missing" 
            break 

  



 

#################################################### 
# BPD ontology to LADYBUG 
# Filter variables based on selected attribute v4.2 
#  
#################################################### 
 
import scriptcontext 
import ghpythonremote 
 
h5py = scriptcontext.sticky['h5py'] 
import Grasshopper.Kernel as gh 
 
if run: 
 
    objects_list = [] 
    variables_name_list = [] 
    print 
    "looking for:   ", _attribute, " - ", _attributeValue 
 
    def findspecial(name, obj): 
        # print type(obj) 
        # print name 
        try: 
            curName = obj.attrs.get(_attribute) 
            # print curName 
            if curName == _attributeValue: 
                objects_list.append(obj) 
                variables_name_list.append(name.split("/")[-1]) 
        except: 
            print 
            "warning findspecial, it's OK though" 
 
 
    def findinobjlist(name, obj): 
        # print obj.parent 
        # print name 
        try: 
            curName = obj.attrs.get(_attribute) 
            # print curName 
            if curName == _attributeValue: 
                objects_list.append(obj.parent) 
                variables_name_list.append(obj.parent.name.split("/")[-1]) 
        except: 
            print 
            "warning findspecial, it's OK though" 
 
 
    while True: 
 
        if len(_objects_list) != 0 and _hdf5File is None: 
            # print "obj+" 
            # print _objects_list 
            try: 
                for x in _objects_list: 
                    x.visititems(findinobjlist) 
                    if x.attrs.get(_attribute) == _attributeValue: 
                        objects_list.append(x) 
                        variables_name_list.append(x.name.split("/")[-1]) 
 
            except: 
                # print "warning visititems, retrying" 
                objects_list = [] 
                variables_name_list = [] 
                break 
                continue 
            print 
            "done_obj" 
            break 
 
        elif _hdf5File is not None and len(_objects_list) == 0: 
            # print "hdf5+" 
            f = h5py.File(_hdf5File, 'r') 
            try: 
                if _attribute == "Name" or _attribute == "Type" or _attribute == "Direction" or 
_attribute == "Unit": 
                    f.visititems(findspecial) 
                else: 
                    f.visititems(findinobjlist) 
 
            except: 
                print 
                "warning visititems, retrying" 
                objects_list = [] 
                variables_name_list = [] 
                continue 
 



 

 

            print 
            "done_hdf5" 
            break 
 
        elif _hdf5File is not None and len(_objects_list) != 0: 
 
            warning = "As for now, only one input is allowed.\n" + \ 
                      "Either HDF5 File or HDF5 objects list.\n" + \ 
                      "Disconnect one of the sources and try again." 
            w = gh.GH_RuntimeMessageLevel.Warning 
            ghenv.Component.AddRuntimeMessage(w, warning) 
            print 
            "As for now, only one input is allowed." 
            break 
        else: 
            print 
            "no input" 
            break 
 
  



 

#################################################### 
# BPD ontology to LADYBUG 
# HDF5 object postprocessing Ladybug v1.5 
# DateTime period, segmentation/aggregation,  
# missing data handling 
#################################################### 
 
import sys 
import scriptcontext 
import ghpythonremote 
import Grasshopper.Kernel as gh 
import time 
from datetime import datetime 
 
h5py = scriptcontext.sticky['h5py'] 
np = scriptcontext.sticky['numpy'] 
pd = scriptcontext.sticky['pandas'] 
 
 
analysisPeriod = _analysisPeriod_ 
 
 
def mean(numbers): 
    if type(numbers) == list: 
        return float(sum(numbers)) / max(len(numbers), 1) 
    else: 
        return numbers 
 
 
# ================= 
if _timeStep_ == None: _timeStep_ = 60; 
step = int(_timeStep_) * 60 
variable = _variable_hdf5_object 
 
varTimestamps = 
ghpythonremote.obtain(_variable_hdf5_object['TemporalDomain/TimeStamp'].value.tolist()) 
varDatapoints = ghpythonremote.obtain(_variable_hdf5_object['Magnitude'].value.tolist()) 
 
startDT = datetime(_analysisPeriod_[0][0], _analysisPeriod_[0][1], _analysisPeriod_[0][2], 
                   _analysisPeriod_[0][3] - 1) 
startTS = int(time.mktime(startDT.timetuple())) 
stopDT = datetime(_analysisPeriod_[1][0], _analysisPeriod_[1][1], _analysisPeriod_[1][2], 
_analysisPeriod_[1][3] - 1) 
stopTS = int(time.mktime(stopDT.timetuple())) 
 
if startTS < varTimestamps[0]: 
    print 
    "Data missing for this analysis period." 
    print 
    "First dataset entry timestamp is:" 
    print 
    datetime.fromtimestamp(varTimestamps[0]).strftime('%Y-%m-%d %H:%M:%S') 
    errorMessage = "Data missing for this analysis period.\n" + \ 
                   "First dataset entry timestamp is:\n" + \ 
                   datetime.fromtimestamp(varTimestamps[0]).strftime('%Y-%m-%d %H:%M:%S') 
    e = gh.GH_RuntimeMessageLevel.Error 
    ghenv.Component.AddRuntimeMessage(e, errorMessage) 
 
    sys.exit() 
 
newTimestamp1 = [] 
newMagnitude1 = [] 
newTimestamp1 = [] 
finalValues = [] 
finalTimestamps = [] 
tempValue = [] 
i = 0 
 
currentTimeband = startTS 
 
# Averaging value based on the following time period from ztime stamp- 9:00 value is the average of 
the datapoints  from 9:00-10:00 
for idx, val in enumerate(varTimestamps): 
 
    if currentTimeband > stopTS:  # stop when reached the endDate 
        break 
    elif val < currentTimeband:  # to discard entries lower than startDate 
        continue 
    elif val < currentTimeband + step: 
        tempValue.append(varDatapoints[idx]) 
 
    else: 
        while True: 
             
            if len(tempValue) != 0 and val < currentTimeband + 2 * step: 
                finalValues.append(round(mean(tempValue), 2)) 



 

 

                finalTimestamps.append(currentTimeband) 
                tempValue = [] 
                tempValue.append(varDatapoints[idx]) 
                currentTimeband = currentTimeband + step 
                break 
            elif len(tempValue) == 0 and val < currentTimeband + 2 * step: 
 
                finalValues.append(None) 
                finalTimestamps.append(currentTimeband) 
                tempValue.append(varDatapoints[idx]) 
                currentTimeband = currentTimeband + step 
                break 
                 
            else: 
                if len(tempValue) != 0: 
                    finalValues.append(round(mean(tempValue), 2)) 
                    finalTimestamps.append(currentTimeband) 
                    tempValue = [] 
                else: 
                    finalValues.append(None) 
                    finalTimestamps.append(currentTimeband) 
                currentTimeband = currentTimeband + step 
 
 
finalDateTime = [] 
for x in finalTimestamps: 
    finalDateTime.append(datetime.fromtimestamp(x).strftime('%Y-%m-%d %H:%M:%S')) 
 
if missingDataHandling_ != None and missingDataHandling_ != 'adjacent mean':  # a 'ffill' or 'bfill' 
or 'adjacent mean'): 
    print 
    "Interpolation method: ", missingDataHandling_ 
    missingData = pd.Series(finalValues) 
    missingData = missingData.interpolate(method=missingDataHandling_) 
    missingData = missingData.bfill().ffill() 
    interpolatedFinalValues = ghpythonremote.obtain(missingData.tolist()) 
 
elif missingDataHandling_ == 'adjacent mean': 
    print 
    "Interpolation method: ", 'adjacent mean inside' 
    missingData = pd.Series(finalValues) 
    missingData = (missingData.ffill() + missingData.bfill()) / 2 
    missingData = missingData.bfill().ffill() 
    interpolatedFinalValues = ghpythonremote.obtain(missingData.tolist()) 
 
 
  



 

################################################# 
# BPD ontology to LADYBUG 
# Skyscanner BPD object to "selected sky matrix"# 
# (diffused values only!!!)                     # 
################################################# 
 
 
import sys  
import scriptcontext 
import ghpythonremote 
import Grasshopper.Kernel as gh 
import time 
from datetime import datetime 
 
start = time.time() 
h5py = scriptcontext.sticky['h5py'] 
np = scriptcontext.sticky['numpy'] 
pd = scriptcontext.sticky['pandas'] 
 
print _analysisPeriod 
print str(_analysisPeriod[0]) 
 
#================= 
if startIndex == None: startIndex = 0; 
 
#GENERATE DATETIME IN RANGE TO MATCH AVERAGES  
startStr= str(_analysisPeriod[0][0]) + "-" + str(_analysisPeriod[0][1]) + "-"+ 
str(_analysisPeriod[0][2]) + " " +str(_analysisPeriod[0][3]-1) +":00:00"  
endStr= str(_analysisPeriod[1][0]) + "-" + str(_analysisPeriod[1][1]) + "-"+ 
str(_analysisPeriod[1][2]) + " " +str(_analysisPeriod[1][3]-1) +":00:00"  
 
print "From: "+startStr+" Till: "+ endStr 
 
varTimestamps = pd.Series(_skyScannerObject['TemporalDomain/TimeStamp'][()])[int(startIndex):] 
varDatapoints = pd.DataFrame(_skyScannerObject['Magnitude'][()],columns = range(1, 
146))[int(startIndex):] 
 
#!!!!!! WARNING !!!!!! 
#OLDER HDF5 % IMPORTS WONT WORK CORRECTLY SINCE TIMESTAMP SAVED IN HDF5 IS BASED ON LOCAL POSIX TIME 
AND NOT UTC 
#THIS NEEDS TO BE FIXED IN THE HDF5 file 
df1 = pd.DataFrame(pd.to_datetime(varTimestamps, unit='s'), columns=['datetime'])#Get all timestamps 
and make datefreme from it 
df1 = pd.concat([df1, varDatapoints], axis=1)#merge with datapoints 
df1.set_index('datetime', inplace=True) 
 
#Limit of analysis period: 
df_p = df1.resample('H').mean() 
 
 
#This is just a test, we have the Diffuse only but the whole set is needed (diff, glob, direct)  
totalRad = ["key:location/dataType/units/frequency/startsAt/endsAt", "VIENNA_KARLSPLATZ_TU_WIEN", "Sky 
Patches' Total Radiation", "kWh/m2", 'NA', (_analysisPeriod[0][1], _analysisPeriod[0][2], 
_analysisPeriod[0][3]), (_analysisPeriod[1][1], _analysisPeriod[1][2], _analysisPeriod[1][3])] 
totalRadValues = [] 
 
print "len: " , len(df_p.loc[startStr:endStr]) 
 
for each in (df_p.loc[startStr:endStr].sum()/1000).tolist(): 
    totalRadValues.append(each) 
 
diffuseRad = ["key:location/dataType/units/frequency/startsAt/endsAt", "VIENNA_KARLSPLATZ_TU_WIEN", 
"Sky Patches' Diffuse Radiation", "kWh/m2", 'NA', (_analysisPeriod[0][1], _analysisPeriod[0][2], 
_analysisPeriod[0][3]), (_analysisPeriod[1][1], _analysisPeriod[1][2], _analysisPeriod[1][3])] 
diffuseRadValues = [] 
 
for each in [0] * 145: 
    diffuseRadValues.append(each) 
 
directRad = ["key:location/dataType/units/frequency/startsAt/endsAt", "VIENNA_KARLSPLATZ_TU_WIEN", 
"Sky Patches' Direct Radiation", "kWh/m2", 'NA', (_analysisPeriod[0][1], _analysisPeriod[0][2], 
_analysisPeriod[0][3]), (_analysisPeriod[1][1], _analysisPeriod[1][2], _analysisPeriod[1][3])] 
directRadValues = [] 
for each in [0] * 145: 
    directRadValues.append(each) 
 
#The data from the sky scanner is in W/m^2*sr and we need to normalize the value per patch area: 
def calculatePatches(patchesValues):  # ret Sum if we want to get a cumulative sum 
 
    horIllumPerPatch = [] 
    for x in patchesValues[0:30]: 
        Ehp = x* 0.0435 
        horIllumPerPatch.append(Ehp) 
 
    for x in patchesValues[30:60]: 
        Ehp = x* 0.0416 



 

 

        horIllumPerPatch.append(Ehp) 
 
    for x in patchesValues[60:84]: 
        Ehp = x* 0.0474 
        horIllumPerPatch.append(Ehp) 
 
    for x in patchesValues[84:108]: 
        Ehp = x* 0.0407 
        horIllumPerPatch.append(Ehp) 
 
    for x in patchesValues[108:126]: 
 
        Ehp = x* 0.0429 
        horIllumPerPatch.append(Ehp) 
 
    for x in patchesValues[126:138]: 
        Ehp = x* 0.0445 
        horIllumPerPatch.append(Ehp) 
 
    for x in patchesValues[138:144]: 
        Ehp = x* 0.0455 
        horIllumPerPatch.append(Ehp) 
 
    Ehp = patchesValues[144]* 0.0344 
    horIllumPerPatch.append(Ehp) 
    return horIllumPerPatch 
 
totalRadValues = calculatePatches(totalRadValues) 
 
selectedSkyMtx = totalRad + totalRadValues + diffuseRad + diffuseRadValues + directRad + 
directRadValues 
selectedSkyMtx = ghpythonremote.obtain(selectedSkyMtx) 

  



 

################################################################### 
# PV energy generation/m2 per location and panel position strategy# 
# v1.4                                                            # 
################################################################### 
 
import pvlib 
from pvlib import location 
from pvlib import irradiance 
from pvlib import tracking 
import numpy as np 
import pandas as pd 
from matplotlib import pyplot as plt 
import seaborn as sns 
 
plt.rcParams['figure.figsize'] = (6, 4.5) 
sns.set_color_codes() 
sns.set_theme(style="whitegrid") 
 
# Helsinki optimal Tilt:40 
epw, metadata = pvlib.iotools.read_epw( 
    
'/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/FIN_Helsinki.029740_IWEC.epw
', 
    coerce_year=2018) 
 
# Vienna optimal Tilt: 30 
# epw, metadata = pvlib.iotools.read_epw( 
#    
'/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/AUT_Vienna.Schwechat.110360_
IWEC_official.epw', 
#    coerce_year=2018) 
 
# Santa Fe optimal Tilt:35 
# epw, metadata = 
pvlib.iotools.read_epw('/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/USA_N
M_Santa.Fe.County.Muni.AP.723656_TMY3.epw', coerce_year=2018) 
 
# Singapore optimal Tilt:0 
# epw, metadata = 
pvlib.iotools.read_epw('/Users/dw/PycharmProjects/37project/Ontology/PV_panels/EPW_Weather_files/SGP_S
ingapore.486980_IWEC.epw', coerce_year=2018) 
 
# lat, lon, timezone from EPW file 
location = location.Location.from_epw(metadata) 
 
times = epw.index - pd.Timedelta('30min') 
solar_position = location.get_solarposition(times) 
 
solar_position.index += pd.Timedelta('30min') 
solar_position.index = epw.index.tz_localize(None) 
 
# get rid of ltime ocalization according to UTC 
epw.index = epw.index.tz_localize(None) 
 
# use apparent zenith as tilt 
ManualTilt = solar_position['apparent_zenith'].copy() 
 
 
def calculate_mean_tilt(positonChangePeroiod, apparentZenithArray, maxSurfaceTilt): 
    if positonChangePeroiod == 'quarterly' or positonChangePeroiod == 1: 
        period_mean_tilt = apparentZenithArray.copy() 
        period_mean_tilt.loc[period_mean_tilt > maxSurfaceTilt] = np.NaN 
        temp_dataframe = pd.DataFrame(index=solar_position.index) 
        cosFunctArray = pd.Series( 
            [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, 
np.NaN, 1, np.NaN, 
             np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN])  # 
starts with 00:00 
        temp_dataframe[''] = np.resize(cosFunctArray, temp_dataframe.shape[0])  # fill df with 
repeating array 
        cosNormalizedZenith = temp_dataframe[''] * period_mean_tilt 
        periodNormalizedZenith = cosNormalizedZenith.resample('Q').mean() 
        optimizedTiltAngles = apparentZenithArray.copy() 
 
        for month in range(1, 4): 
            optimizedTiltAngles.loc[optimizedTiltAngles.index.month == month] = 
periodNormalizedZenith[0] 
        for month in range(4, 7): 
            optimizedTiltAngles.loc[optimizedTiltAngles.index.month == month] = 
periodNormalizedZenith[1] 
        for month in range(7, 10): 
            optimizedTiltAngles.loc[optimizedTiltAngles.index.month == month] = 
periodNormalizedZenith[2] 
        for month in range(10, 13): 
            optimizedTiltAngles.loc[optimizedTiltAngles.index.month == month] = 
periodNormalizedZenith[3] 



 

 

 
    if positonChangePeroiod == 'monthly' or positonChangePeroiod == 2: 
        period_mean_tilt = apparentZenithArray.copy() 
        period_mean_tilt.loc[period_mean_tilt > maxSurfaceTilt] = np.NaN 
        temp_dataframe = pd.DataFrame(index=solar_position.index) 
        cosFunctArray = pd.Series( 
            [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, 
np.NaN, 
             1, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, 
             np.NaN])  # starts with 00:00 
        temp_dataframe[''] = np.resize(cosFunctArray, temp_dataframe.shape[0]) 
        cosNormalizedZenith = temp_dataframe[''] * period_mean_tilt 
        periodNormalizedZenith = cosNormalizedZenith.resample('M').mean() 
        optimizedTiltAngles = apparentZenithArray.copy() 
 
        for month in range(1, 13): 
            optimizedTiltAngles.loc[optimizedTiltAngles.index.month == month] = 
periodNormalizedZenith[month - 1] 
 
    if positonChangePeroiod == 'fortnightly' or positonChangePeroiod == 3: 
        period_mean_tilt = apparentZenithArray.copy() 
        period_mean_tilt.loc[period_mean_tilt > maxSurfaceTilt] = np.NaN 
        temp_dataframe = pd.DataFrame(index=solar_position.index) 
        cosFunctArray = pd.Series( 
            [np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, 
np.NaN, 
             1, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, 
             np.NaN]) 
        temp_dataframe[''] = np.resize(cosFunctArray, temp_dataframe.shape[0]) 
        cosNormalizedZenith = temp_dataframe[''] * period_mean_tilt 
        periodNormalizedZenith = cosNormalizedZenith.resample('14D').mean() 
        optimizedTiltAngles = apparentZenithArray.copy() 
 
        for week in range(1, 55, 2): 
            optimizedTiltAngles.loc[optimizedTiltAngles.index.week == week] = periodNormalizedZenith[ 
                int((week - 1) / 2)] 
        for week in range(2, 55, 2): 
            optimizedTiltAngles.loc[optimizedTiltAngles.index.week == week] = periodNormalizedZenith[ 
                int((week - 2) / 2)] 
 
    return optimizedTiltAngles, cosNormalizedZenith, periodNormalizedZenith 
 
 
inputTiltAngles, cosNormalizedZenith, periodNormalizedZenith = calculate_mean_tilt('quarterly', 
solar_position['apparent_zenith'], 75) 
 
annual_energy = 0 
 
 
def calculate_total_irrad(epw, solar_position, surface_tilt, surface_azimuth): 
    dni_extra = pvlib.irradiance.get_extra_radiation(epw.index) 
    total_irrad = irradiance.get_total_irradiance( 
        surface_tilt=surface_tilt, 
        surface_azimuth=surface_azimuth, 
        dni=epw['dni'], 
        ghi=epw['ghi'], 
        dhi=epw['dhi'], 
        dni_extra=dni_extra, 
        solar_zenith=solar_position['apparent_zenith'], 
        solar_azimuth=solar_position['azimuth'], 
        model='haydavies') 
    # model='isotropic') 
 
    aoi = pvlib.irradiance.aoi(surface_tilt, surface_azimuth, solar_position['apparent_zenith'], 
                               solar_position['azimuth']) 
    airmass = pvlib.atmosphere.get_relative_airmass(solar_position['apparent_zenith']) 
    pressure = pvlib.atmosphere.alt2pres(metadata['altitude']) 
    am_abs = pvlib.atmosphere.get_absolute_airmass(airmass, pressure) 
    temperature_model_parameters = 
pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_glass'] 
    temps = pvlib.pvsystem.sapm_celltemp(total_irrad['poa_global'], epw['wind_speed'], 
epw['temp_air'], 
                                         **temperature_model_parameters) 
    effective_irradiance = pvlib.pvsystem.sapm_effective_irradiance( 
        total_irrad['poa_direct'], total_irrad['poa_diffuse'], 
        am_abs, aoi, module) 
 
    # v1 
    # dc = pvlib.pvsystem.sapm(effective_irradiance, temps, module) 
    # ac = pvlib.pvsystem.snlinverter(dc['v_mp'], dc['p_mp'], inverter) 
    # ac = ac+ 2.328 
 
    # v2 we consider a 4.5kWpeak installation (ca. 15 panels) to neutralize inverter losses 
    dc = pvlib.pvsystem.sapm(effective_irradiance, temps, module) * 15 
    ac = pvlib.pvsystem.snlinverter(dc['v_mp'], dc['p_mp'], inverter) 
    ac = ac / 15 



 

 
    # v3 losses are constant at 2.328 W/h 
    # dc = pvlib.pvsystem.sapm(effective_irradiance, temps, module) 
    # ac = pvlib.inverter.sandia(dc['v_mp'], dc['p_mp'], inverter) 
 
    print('Generated energy:', str(int(ac.sum() / (module['Area'] * 1000))), 'kWh/m\u00b2') 
    # print('Generated energy:',str(int(ac.sum())),'kWh/',str(module['Area']),'m\u00b2') 
    annual_energy = ac.sum() 
 
    return ac 
 
 
df_monthly = pd.DataFrame() 
df_tilts = pd.DataFrame() 
 
# use apparent zenith as tilt 
NS_tracking = solar_position['apparent_zenith'].copy() 
# limit of 80deg 
NS_tracking.loc[NS_tracking > 80] = 0 
 
truetracking_angles = tracking.singleaxis( 
    apparent_zenith=solar_position['apparent_zenith'], 
    apparent_azimuth=solar_position['azimuth'], 
    axis_tilt=0, 
    axis_azimuth=180, 
    max_angle=60, 
    backtrack=False,  # False for true-tracking 
    gcr=0.5)  # irrelevant for true-tracking 
 
# get the module and inverter specifications from SAM 
 
sandia_modules = pvlib.pvsystem.retrieve_sam('SandiaMod') 
sapm_inverters = pvlib.pvsystem.retrieve_sam('cecinverter') 
module = sandia_modules['Silevo_Triex_U300_Black__2014_'] 
inverter = sapm_inverters['SMA_America__SB7_7_1SP_US_40__240V_'] 
 
total_irrad_1 = calculate_total_irrad(epw, solar_position, 
truetracking_angles['surface_tilt'].fillna(0), 
                                      truetracking_angles['surface_azimuth'].fillna(0)) 
 
df_monthly['tracking'] = total_irrad_1.resample('m').sum() 
df_tilts['apparent_zenith'] = solar_position['apparent_zenith'] 
df_tilts['azimuth'] = solar_position['azimuth'] 
df_tilts['elevation'] = solar_position['elevation'] 
df_tilts['tracking'] = NS_tracking 
df_tilts['gIrr-tracking'] = total_irrad_1 
 
for idx, word in enumerate(['quarterly', 'monthly', 'fortnightly']): 
    temp_tilt = calculate_mean_tilt(word, solar_position['apparent_zenith'], 75)[0] 
    total_irrad_irradiance = calculate_total_irrad(epw, solar_position, temp_tilt, 180) 
    df_tilts[word] = temp_tilt 
    column_name = f"gIrr-{word}" 
    df_tilts[column_name] = total_irrad_irradiance[0] 
    df_monthly[word] = total_irrad_irradiance.resample('m').sum() 
 
fix = calculate_total_irrad(epw, solar_position, 40, 180) 
df_monthly['fix'] = fix.resample('m').sum() 
df_tilts['gIrr-fix'] = fix 
 
annual_sum = df_monthly.resample('A').sum() 
print('Annual Irradiance per selected tilt,azimuth:', str(int(annual_sum['fix']))) 
 
df_monthly_kWh = df_monthly / 1000 
df_monthly_kWh.plot.line() 
 
# get current handles and labels 
# this must be done AFTER plotting 
current_handles, current_labels = plt.gca().get_legend_handles_labels() 
 
# sort or reorder the labels and handles 
new_labels = list(['E-W', 'S-1', 'M-1', 'M-2', 'F-35']) 
 
# call plt.legend() with the new values 
plt.legend(current_handles, new_labels) 
plt.show() 
# plt.savefig('/Users/dw/PycharmProjects/37project/Ontology/PV_panels/BS2021/images/santa_fe.pdf') 
 
sns.lineplot(data=df_monthly_kWh, palette="tab10", linewidth=2) 
plt.xlim(df_monthly.index.min(), df_monthly.index.max()) 
plt.xlim(df_monthly.index.min(), df_monthly.index.max()) 
plt.ylim(0, ) 
current_handles, current_labels = plt.gca().get_legend_handles_labels() 
 
# sort or reorder the labels and handles 
# reversed_handles = list(reversed(current_handles)) 
new_labels = list(['E-W', 'S-1', 'M-1', 'M-2', 'F-40']) 



 

 

plt.legend(current_handles, new_labels) 
plt.show() 
 
df_monthly_kWh.index = pd.Series(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 
'Oct', 'Nov', 'Dec']) 
sns.lineplot(data=df_monthly_kWh, palette="tab10", linewidth=2) 
current_handles, current_labels = plt.gca().get_legend_handles_labels() 
 
# sort or reorder the labels and handles 
# reversed_handles = list(reversed(current_handles)) 
new_labels = list(['E-W', 'S-1', 'M-1', 'M-2', 'F-40']) 
 
plt.legend(current_handles, new_labels) 
plt.margins(x=0) 
plt.grid(which='major', axis='x') 
plt.ylabel("Monthly energy output [kWh/m\u00b2]") 
# plt.savefig('/Users/dw/PycharmProjects/37project/Ontology/PV_panels/BS2021/images/AC_helsinki.pdf') 
plt.show() 
 


