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Kurzfassung

In dieser Arbeit werden aktuelle bioinformatische Tools und Methoden zur
Analyse von HT-SELEX Experimenten umgesetzt. SELEX (Systematic
Evolution of Ligands by Exponential Enrichment) ist ein in vitro Prozess der
zur sequentiellen evolutionären Entwicklung von Aptameren genutzt wird. In
High-Throughput-SELEX (HT-SELEX) wird SELEX mit Next Generation
Sequencing kombiniert, wodurch große Datensätze (106-108) entstehen welche
spezielle rechenintensive Analysemethoden erfordern. Aptamere sind kurze
einstränge DNA- oder RNA-Oligonukleotide, welche aufgrund einzigartiger
Faltung an spezifische Zielstrukturen binden können. Sie funktionieren ähnlich
wie Antikörper und können beispielsweise als Nachweis in der Umweltanalytik
dienen.
Für diese Arbeit sollten Datensätze dreier bakterieller Zell-SELEX Experimente
mit dem Ziel-Bakterium Enterococcus faecalis analysiert werden. Das Ziel dieser
Arbeit war es Aptamerkandidaten auszuwählen, welche voraussichtlich gut an die
Zielstruktur binden könnten und daher charakterisiert werden sollten. Ebenfalls
sollten qPCR-basierte Schmelzkurvenanalysen, die für das Monitoring von
bakteriellen Zell-SELEX entwickelt wurden, validiert werden.
Vier bioinformatische Workflows wurden entwickelt. Selex-ngs-prep bereitet
Rohdaten auf und gibt Information über Datenqualität. Selex-assess führt
rudimentären SELEX-spezifische Datenanalysen aus und gibt Listen mit den am
stärksten replizierten Sequenzen aus. Selex-blaster clustert die Daten anhand von
Sekundärstrukturen, basierend auf ungebundenen und daher für eine Bindung
verfügbaren Strängen, und gibt für jeden Cluster Sequenzen und gehäufte Motive
aus. Selex-kmer versucht die Bindungsaffinität von Sequenzen anhand der
enthaltenen K-mere zu bewerten.
Die Workflow konnten zuverlässig anzeigen ob SELEX Experimente erfolgreich
und weitere Datenanalysen indiziert waren. Anhand der Ergebnisse konnten
Fehlerquellen gefunden und SELEX- und Sequencing-Experimente optimiert
werden. Dabei konnte auch gezeigt werden, dass eine qPCR-basierte
Schmelzkurvenanalyse in Bezug auf SELEX zuverlässig Ab- und Anreicherungen
von ssDNA anzeigen kann. Es wurden Sequenzen für eine weiterführende
Charakterisierung anhand von Anreicherung, K-mer Bewertung und Clustering
ermittelt. Aptamer EF05-508, der sich unter den ausgewählten Sequenzen
befand, zeigte hohe Spezifität und Affinität für E. faecalis.



Abstract

In this thesis current data analysis tools and methods for analyzing HT-SELEX
experiments were employed. SELEX (Systematic Evolution of Ligands by
Exponential Enrichment) is an in vitro process that is used to develop aptamers
in a sequential, evolution-like fashion. In High-throughput-SELEX (HT-SELEX),
SELEX is combined with next generation sequencing, resulting in large data sets
(106-108) that require specialized computational approaches for data analysis.
Aptamers are short single-stranded DNA or RNA oligonucleotides, folding into
unique structures and binding to a specific target. They work in a similar fashion
as antibodies, and can be used i.e. to detect targets in environmental analysis.
For this work data sets generated in three bacterial cell-SELEX experiments
targeted at the bacterium Enterococcus faecalis were to be analysed. The aim
was to prepare the data sets generated by sequencing and choose aptamer
candidates for further characterization. Also, qPCR-based remelting curve
analyses methods developed for monitoring the bacterial whole cell-SELEX
process needed to be validated.
Four bioinformatic pipelines were developed to perform the analyses.
Selex-ngs-prep performs data preprocessing and NGS quality analysis.
Selex-assess was developed for rudimentary SELEX-specific data analysis tasks
and returns lists of the most abundant sequences. In Selex-blaster an attempt
was made to perform clustering based on unbound subsequences (looping
regions), which are thought to be the target-specific parts of aptamers, and
provide sequences and enriched motifs for every cluster. In Selex-kmer an
attempt was made to predict binding affinity based on k-mer enrichment.
The pipelines were used to show whether SELEX experiments were successful
and thus more thorough data analysis was indicated. They have proven helpful
for determining error sources and consequently in optimizing SELEX and
sequencing experiments. Moreover, NGS-based data analyses confirmed that
qPCR-based remelting curve analyses of qPCR products during SELEX reliably
indicate changes in ssDNA sequence diversity. Aptamer candidates were
provided for further characterization using replication counts, k-mer-based
scoring and clusterings. Amongst the aptamer candidates identified, aptamer
EF05-508 was found to provide high binding and specificity against E. faecalis.
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1. Introduction

1.1. Aptamers

General Background Aptamers are synthetic oligonucleotides (single-stranded
DNA or RNA molecules), which are generated via an in vitro selection process
called SELEX (Systematic Evolution of Ligands by Exponential Enrichment)[7].
Aptamers fold into three-dimensional structures minimizing free energy,
depending on the arrangement of nucleic acids and properties such as
temperature or chemical composition of the buffer or liquid it is in. They bind to
a specific target with high affinity by non-covalent interactions, similar to
antibodies made from amino acids, by fitting perfectly into an area on the surface
of the target and minimizing free energy even further. Exemplary secondary and
tertiary structure predictions of an aptamer are shown in Figure 1. An example
for shape complementarity of aptamer-target complexes can be seen in Figure 2
RNA aptamers can also be encountered in nature where they constitute the
ligand binding parts of riboswitches and ribozymes. Riboswitches are RNA
molecules which inhibit or promote the synthesis of proteins by binding
specifically to certain nucleotide strands in the genome. Ribozymes are RNA
molecules that are similar in function to protein enzymes and act as catalysts for
certain chemical reactions[8].

Targets and Applications As aptamers are able to reliably bind to their
target, they have become interesting affinity reagents for diagnostic and
therapeutic applications. Within the last decades, aptamers have been developed
to recognize small molecules such as metabolites, drugs, and environmental
toxins[9] and numerous different proteins, such as thrombin, human interleukin
(IL)-10 receptor and human 4-1BB receptor (Figure 1), cholera toxin (Vibrio
cholerae), amyloid fibrils, prostate-specific antigen or hemoglobin[10, 2, 11, 12,
13]. More recently, aptamers have also been developed against complex targets,
such as bacterial or mammalian cells, which offer multiple different binding sites
on their cell surface[14, 15]. An overview of aptamer targets and nucleic
acid-backbone structures as their applications is shown in Figure 3.
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(a) Secondary structure (b) Tertiary structure

Fig. 1: RNA-Aptamer L454 ’p5-GGAAUCUCGCGCUCGUUGGUACCCUU-
AAAAUAAAGGCAUA-p3’, developed using HT-SELEX against two targets: hu-
man interleukin (IL)-10 receptor and human 4-1BB receptor proteins[1, 2].
Figure 1a: L454 secondary structure prediction using RNAfold[3] with standard
parameters. Figure 1b: L454 tertiary structure prediction using the folding sim-
ulation tool RNAComposer[4, 5].

Fig. 2: Simplified ex-
ample showing how ap-
tamers are recognizing
their target. They
bind to their target by
minimizing the exposed
surface area. This
is highly dependent on
the nucleotide sequence.
Figure adapted from
Kinghorn et al., 2017[6].
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(a) Aptamer target
classes and nucleic
acid-backbone struc-
tures of in vitro se-
lected aptamers ("un-
natural" refers to the
use of modified nu-
cleotides).

(b) Aptamer applications categorized into biophys-
ical discovery (e.g. structural and thermodynamic
analyses); clinical reagents (therapeutics, drug con-
jugates, diagnostic agents and clinically tailored
biosensors); informatics (in silico modeling and selec-
tions, machine learning and software development);
scientific tools (e.g. chromatography, non-clinical
sensors, gene regulation and nanotechnology) and
environmental sensors (e.g. food and water sample
analysis).

Fig. 3: Figures adapted from Dunn et al., 2017[9].
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Aptamer Properties Aptamers can be produced relatively easy and cheap,
compared to antibodies, which are usually produced in vivo, raising ethical
questions. Unlike antibodies, aptamers are produced completely synthetically by
chemical synthesis. They can be tagged with fluorophors or different chemical
groups for detection and immobilization. Moreover, aptamers are resistant to
heat denaturation and recover and take their designated structure when the
optimal temperature is reached again.
A major disadvantage of using aptamers for detection or therapeutics is their
vulnerability to nucleases, which are enzymes produced in organisms to break
down nucleotide strands[13].

1.2. Systematic Evolution of Ligands by
Exponential Enrichment

Systematic evolution of ligands by exponential enrichment (SELEX) is an in
vitro selection process, which was simultaneously developed by Tuerk and
Gold[7] and Szostak and Ellington[16] in 1990. It is an iterative evolutionary-like
process, which was initially designed to enrich RNA aptamers selected against
specific targets. Since then, the process has been used to generate both RNA and
DNA aptamers.

SELEX Process The SELEX process is sketched in Algorithm 1 and Figure 4.
First, a random pool of single-strand DNA or RNA is designed and chemically
synthesized. This aptamer pool, called the starting library, consists of up to 1015

strands, all with distinct sequences. During SELEX the target is iteratively
exposed to the aptamer pool in order to select and enrich sequences with affinity
for the target, resulting in target-aptamer complexes. In each SELEX round,
bound aptamers are partitioned from non-binding sequences after incubation
with the target, then eluted from the target and enriched by PCR amplification
for the next round of SELEX. In order to select aptamers with desired binding
properties (high affinity and specificity for a target of interest), a selection
pressure needs to be applied during SELEX by e.g., increasing the number of
washes, decreasing the incubation time or introducing counter-selection
rounds[17]. In this way, aptamer sequences need to compete for an epitope
("survival of the fittest"). Over the course of the SELEX experiment, the
aptamer pool is expected to decrease in heterogeneity, while more and more
aptamer candidates with affinity/specificity to the target are enriched[7].

4



Algorithm 1: SELEX procedure sketched as pseudocode
Input : a0 . . . randomly generated nucleotide library

T . . . set of target structures
rmax . . . number of SELEX rounds
s . . . incubation time

Output: a . . . library and rmax sets of enriched aptamers
for i ranging from 1 to rmax do

# Take fresh target from T

t = T.get_fresh_target();
# Expose target to aptamer set from previous SELEX round

# (or library) and wait s minutes.

t = t.expose_to(ai−1);
t = t.incubate(s);
# Wash off non-binding DNA from exposed target.

t = t.wash_unbound_DNA();
# Recover bound aptamers from target.

ai = t.elute_aptamers();
# Amplify ai to the original size of library a0.

ai = pcr(ai, size(a0));
# Return all enriched aptamer pools for sequencing

return a;

Toggle-SELEX Toggle-SELEX is a variation of the standard SELEX protocol.
In Toggle-SELEX different targets of interest are used and alternated in
consecutive rounds of a SELEX experiment in order to select and identify
cross-reactive aptamers[18].

Starting library and aptamer sequence design Aptamers developed in
SELEX usually consist of a forward primer, a random region and a reverse
primer. The forward primer at the 5’-end, and the reverse primer at the 3’-end
are fixed regions needed for PCR amplification to step up the number of
molecules during the in vitro selection process. The random region ranges from
20 to 60 nucleotides in length, containing all four nucleotides (A, C, G and T).
Aptamers binding to same target structure may show similarities in their
structure and/or nucleotide composition. Apparently, the binding potential of
aptamers stems from unbound looping regions, which are available to interact
with other molecules[19]. A motif is usually a short ( 4 to 12 nucleotides)
subsequence, which is enriched and therefore observed in multiple aptamer
sequences[20, 21]. Figure 5 shows a set of motifs.
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Fig. 4: Scheme of the SELEX process as an UML diagram.

1.3. Sequencing and Aptamer Identification

1.3.1. Sequencing Approaches

Sanger sequencing has been the traditional sequencing technique since the
SELEX procedure was developed. Even though newer more powerful sequencing
technologies have emerged in the last two decades, it is still widely used for
sequencing tasks, including SELEX. After the final round of SELEX, when
enrichment in the SELEX pool is observed via binding assays, the aptamer pool
is cloned and a few aptamers, usually the most frequent 30 to 100 clones, are
picked and sequenced[15, 22].
Sanger sequencing is still a common approach as it is easy to perform and
relatively cheap. It is available at most facilities and is a well-known procedure,
beating most other techniques regarding error rates as it is not as susceptible to
inserts, deletes or mutations. Unfortunately, its low resolution makes it
impossible to gain insight on the dynamics of the SELEX process and to identify
rare but high affinity binders. Moreover, it is a time-consuming approach and
studies have shown that the most frequent sequences found are not necessarily
the best binders[23].
Starting in the last decade, next generation sequencing (NGS) was applied to
SELEX aptamer pools. Depending on the used technique, sequence datasets
comprise between 106 to 107 reads. Reads sequenced in NGS are usually of
lengths up to 300 nucleotides, fitting well for SELEX. SELEX employing NGS is
commonly referred to as HT-SELEX, short for high-throughput-SELEX[15].
Sequencing using NGS reveals only a very small fraction of the original library
size of 1015 different nucleotide strands, but still imposes major computational

6



Fig. 5: Figure a) shows a sequence and the two analog sequences b) and c).
Discovered motifs TACACA, CAACG and CCTCAA are marked in color. Figures d) to
f) show the motif logos. Sequences stem from SELEX experiment EF07. Motif
detection, motif logos and figures were done using AptaTrace[20].
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Fig. 6: Starting library analysis plot. Ideally nucleotides are distributed evenly
at every position for a successful SELEX experiment. Figure adapted from Blind
& Blank, 2014[24].

requirements. Employing NGS for SELEX experiments has lead to many new
possibilities for aptamer development.

1.3.2. SELEX Bioinformatic

The extensive number of sequences gathered during every SELEX round can be
used for all kinds of novel analyses such as i) starting library quality analysis, ii)
single-round aptamer detection, iii) aptamer population tracing, iv) motif
detection and clustering or v) mutational dynamics tracking[24, 25, 15, 26].

Starting Library Quality Analysis Typically, the random region of the
starting ssDNA/RNA library is completely random, i.e. equal distribution of A,
C, G and T (25% each), and does not show bias towards certain nucleotides,
k-mers or sequences. As the selection heavily depends on the randomness of the
library, the quality of the library should ideally be analysed prior to its use for
SELEX experiments. Blind and Blank used a line diagram to show positional
distribution of nucleotides, seen in Figure 6. To visualize k-mer distribution
histograms can be used[24].

Single-Round SELEX Aptamer Detection Finding high-affinity aptamers
early on is key in SELEX for several reasons. The more cycles are performed, the
higher the overall costs of aptamer development, as SELEX is a labor-intensive
and expensive process. Also, the more SELEX rounds are performed, the higher
the chance that well replicating sequences outperform good binders[24]. Hoon et
al., 2011, have shown that a single-round of SELEX can produce well binding
aptamers for antithrombin. Usually one single step is not enough to show
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Fig. 7: Visualization of aptamer popu-
lation tracing. They have taken the 100
highest frequency sequences per SELEX
round and visualized their relative pro-
portions. Figure adapted from Schütze
et al., 2011[15].

significant enrichment on the full-length sequences, so they focused on the
detection of enriched motifs[26]. Enriched motifs can thus be used as guide to
find high-affinity aptamers, as long as starting library randomness is
established[24].

Aptamer Population Tracing As the frequency and abundance of aptamers
are expected to change over the course of many SELEX rounds, it may be helpful
to track population dynamics. Aptamers are expected to get enriched due to
their high-affinity for the target. However, especially in later rounds, PCR bias
increases, and certain aptamer sequences may outperform others simply because
they are easy to amplify but not necessarily good binders. Vice versa, aptamer
sequences that are enriched later in the SELEX due to the increasing selection
pressure may not be easily identified due to their relatively low abundance.
Schütze et al., 2011, have thus visualized changing population sizes in a small
scale, using only the top 100 aptamers per SELEX round, as seen in Figure 7.

Motif Detection and Clustering Clustering is the process of assigning
sequences to sequence families by similarity. Having assigned families offers the
advantage of being able to move from the single-aptamer level to whole families
at once. Families of interest can be dissected in detail and be analysed without
the noise of unrelated sequences.
An abundance of general clustering techniques is available, and many SELEX
specific adaptions have been made. Computing similarities for every sequence
pair is infeasible due to the vast amount of data per experiment and the resulting
exponential time requirement needed for computation. Therefore, often times
heuristics are applied to estimate distances. There are mainly two approaches for
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clustering HT-SELEX data. The first approach is based on clustering sequences
one-by-one, i.e. a sequence is added to a cluster if the similarity is high enough to
an existing cluster, otherwise a new cluster is created. The other approach is
based on computing an extensive similarity graph beforehand and then clustering
the graph as a whole by applying existing graph clustering techniques.

In SELEX, different types of data can be used for clustering. Most approaches
use the whole random region, variable length subsequences, subsets of nucleotides
or k-mers[27, 28, 29, 1]. Clustering can also be done on secondary structure
information, computed using folding prediction software[30, 20, 31, 21].
Time-series dependent scoring of changes of the average secondary structures of
aptamer families have proven useful for finding well suited binders as seen in
AptaTrace[20]. Pei et al., 2017, have tried applying a kind of tertiary structure
prediction to analyse binding potential of aptamers[32].

Mutational Dynamics Tracking Quang et al., 2018[25], have shown that
tracking the mutational dynamics of aptamer families may lead to the discovery
of better binders. For their experiments they performed cell-SELEX using
MFC-7, a known mammalian breast cancer cell. They found that mutations
observed in the data are mainly caused by the amplification step in every SELEX
round, and that the choice of polymerase used heavily affects the overall
mutational landscape. In contrast, sequencing errors had a comparatively
negligible impact. Based upon these analyses, they inferred that errors during
PCR led to the emergence of new better suited aptamers, but also that
visualizing aptamer families using empirical genealogical evolutionary trees
together with enrichment data can be a viable tool in tracking variant emergence
and their fitness.

Another experiment performed by them built upon an identified aptamer family
targeting a specific protein on the cell surface. They wanted to know whether
they could find better aptamer variants by performing a doped cell-SELEX
against the same target. To this end, a starting library was used that consisted
of the identified aptamer and mutations of the previous step only. Four rounds of
SELEX were done, but none of the newly identified variants outperformed the
original aptamer. Nonetheless, NGS data revealed which parts of the original
aptamer were crucial for binding[25].
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1.4. Overview of Current SELEX Data Analysis
Tools

In the last decade many SELEX specific analysis tools have been developed.
Most of these tools adapt conventional clustering techniques and apply them to
data derived from sequenced SELEX nucleotide pools. These tools usually take
innovative approaches on how to associate aptamers with each other, how
clustering is done in general and how scoring takes place.
Finding the best tool for a given task is not trivial, especially for researchers new
to the field of SELEX bioinformatics. Programs differ on multiple aspects.
Aspects to consider:

• Code quality and robustness
• Ongoing code maintenance
• Documentation
• Assumptions on experiment parameters like target, properties and process
• Algorithmic choices and performance
• Operating system dependence
• Format of results
• GUI vs CLI vs Libraries

In general, tools with command line interface (CLI) require the user to have a
basic understanding of how to interact with a computer on the command line.
Many tools also include a graphical user interface (GUI) which lowers the bar for
inexperienced users. Whether to opt for CLI or GUI tools depends on the use
case. GUI tools can be useful for users unfamiliar with the command line,
one-time-only uses and interactive visualization. CLI tools are easily integrable
in automated bioinformatic pipelines. CLI tools can also be used on remote
cluster computers, which usually offer more computing resources and are
accessible via command line using the SSH-protocol.
Regardless of the interface choice, researchers using these tools still have to
understand the underlying principles, for proper result interpretation. On the
following pages, programs used in SELEX bioinformatics are outlined. An
overview of bioinformatic tools for SELEX data analysis is given in Table 1;
adapted from Komarova et al., 2020[33].

1.4.1. Graphical User Interface Tools

AptaSUITE AptaSuite is a fully featured SELEX data analysis toolkit, in
which AptaPLEX, AptaCLUSTER, AptaTRACE and AptaSIM are combined.
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Software Platform Interface SELEX
specific NGSUnix DOS Web Galaxy Lib Graphical Command Line

FASTAptamer X X X X X
MEME X X X X X X
STREME X X X X X X
MEMERIS X X X
MPBind X X X
AptaMotif X X X
APTANI X X X X X
APTANI² X X X X X X
RaptRanker X X X X X
AptaSUITE X X X X X X
AptaCluster X X X X X
AptaTrace X X X X X
RNAmotifAnalysis X X X X
AptCompare X X X X X
SMART-Aptamer X X X X
Unoise X X X X
Uclust X X X X
DADA2 R X
NCM Clojure X X

Tbl. 1.: Examples of bioinformatic tools used in SELEX data analysis

The components of AptaSUITE are all specifically developed for the analysis of
HT-SELEX data and are highly regarded in the field. AptaSuite is written in
Java[34].

• AptaPLEX: Used to demultiplex and prepare sequencing files.

• AptaSIM: Used to simulate SELEX experiments for validation and
benchmarking of analysis tools.

• AptaCLUSTER: HT-SELEX data analysis tool based on locality sensitive
hashing.

• AptaTRACE: HT-SELEX data analysis tool based on secondary structure
dynamics.

AptaCLUSTER AptaCLUSTER is included in AptaSUITE and is used for
clustering aptamers based on their sequence.
For distance estimation of two aptamers locality sensitive hashing is used. The
hash function produces the same result when two highly similar inputs are used,
also referred to as collision. It is called multiple times on differently sampled
data points of an aptamer. The resulting set of hash values is the hash ensemble
of the aptamer. LSH ensembles are used as a fast to compute estimation on the
upper bound of the distance between two aptamers. As seed for the first cluster
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the most abundant aptamer is used. Any aptamer having the same hash in their
ensemble as the seed is considered a potential cluster candidate and added if
their true distance is below a certain threshold[27].

AptaTRACE AptaTRACE is also included in AptaSUITE and is used for
clustering aptamers based on secondary structure. For every SELEX round, and
for every aptamer a secondary structure is predicted. For every k-mer a
representation of the secondary structures associated with it is calculated per
SELEX round. Linking the secondary structure representations of a k-mer over
all SELEX rounds is called K-context. K-contexts can be utilized to determine
the overall change of secondary structures associated with a k-mer during the
SELEX experiment and also to exactly trace the dynamics of change in
secondary structure. The resulting K-contexts are tested for significance against
low-affinity k-mers and the k-mers of the initial library. The highest scoring
k-mers are chosen for seeding and aptamers are added depending on k-mer
alignment and structure[20].

AptCompare AptCompare is, in contrast to the other tools here, a combination
of multiple SELEX-specific tools and methods. Included are the following
aptamer analysis and motif discovery methods: sequence frequency analysis,
FASTAptamer, MPBind, AptaCLUSTER, APTANI, RNAmotifAnalysis.
AptCompare runs the tools sequentially in a single-threaded way and writes their
results to the disk. In the end all results are combined in a table[35].

MEME-Suite The MEME-Suite is a toolbox developed for the task of motif
discovery in sequence data sets and offers many tools for motif data analysis. The
most prominent tool MEME is based on the Expectation Maximization-algorithm
(short EM-algorithm) and has found application in SELEX bioinformatics. Due
to the computational complexity of the EM-algorithm, it can only be used for
smaller data sets (101 to 103) in feasible time.[36, 28].
In contrast, the tool STREME (Sensitive, thorough, rapid, enriched motif
elicitation), replacing the tool DREME, is not based on the EM-algorithm. It
uses a set of statistical test and iterates them until enough motifs have been
found. STREME does not cover the whole motif search space, and starts with
the most prominent ones based on k-mer frequencies. It is not as accurate as
MEME, but much faster due to linear time scaling, and thus is not as susceptible
to performance issues regarding data set size. A control file can be provided to
perform differential motif search[37].
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As the MEME-Suite programs do not employ secondary structure information by
default, MEME was adapted to also include secondary structure in a tool called
MEMERIS (see 1.4.2)[30].

APTANI² APTANI and its successor APTANI² are based on AptaMotif
(see 1.4.2). AptaMotif is due to extensive secondary structure calculation and
multiple sequence alignments (MSA), which are both computationally expensive,
not applicable to HT-SELEX data. APTANI takes multiple optimization steps
on the AptaMotif approach, by limiting the covered search space. APTANI first
runs a frequency filter on the data set, so only highly enriched aptamers are used
for secondary structure calculation. Secondary structures are calculated within a
defined energy range around the MFE structure. Further optimizations in the
picking of structures for the MSA have been taken.
APTANI² then extends APTANI by adding a ranking scheme based on a
combination of frequency and structural stability[38, 31].

1.4.2. Command Line Interface Tools

FASTAptamer FASTAptamer is one of the most prominent tools used for
HT-SELEX data analysis. It is often used for dereplication of aptamers and
enrichment calculation. FASTAptamer includes a clustering tool which is based
on threshold-based clustering. The clustering is based on Levenshtein distance
and adds aptamers to a cluster if their distances are below a certain threshold.
For fast computation the user should define a minimum frequency at which
aptamers are considered, as Levenshtein distance calculation is computationally
expensive[29].

AptaMotif AptaMotif was developed by Hoinka et al., 2012, and inspired many
advances of other SELEX data analysis programs. AptaMotif is designed for
secondary-structure based aptamer clustering. It is not part of the AptaSuite.
Clustering seeds are selected by performing multiple sequence alignments (MSA)
of aptamer secondary structures. First folding prediction is done for all
aptamers. For every aptamer MEA, MFE and a set of suboptimal structures are
calculated, called the structure ensemble. The structures are annotated and put
in a database.
A number of random aptamers is sampled from the database. For every sampled
aptamer one structure is drawn from their structure ensemble. MSA is performed
on the structures. This is done multiple times.
The MSAs are scored and used as clustering seeds. Then aptamers are added to
these seeds when the difference is small enough[21].
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MPBind MPBind was developed in 2014 by Jiang et al. It scores aptamers
based on k-mer enrichment. MPBind can be used to compare two data sets for
motif enrichment in aptamers. The algorithms used in MPBind would allow for
fast computation and scoring, however, the implementation of MPBind is not
optimized for large data sets.
In both data sets the aptamers are dereplicated and the k-mers are counted.
Fisher’s exact tests and one-sided Spearman correlation tests are used to
determine enrichment significance values. Based on these statistical tests, a
combined enrichment score is calculated for every k-mer. For every aptamer an
averaged score is then calculated, using these combined k-mer scores, depending
on the included k-mers. Aptamers which contain k-mers that have been enriched
from one round to another will presumably have a higher score than others[39].

SMART-Aptamer SMART-Aptamer extends the approach used in MPBind
and can be used for HT-SELEX data sets. It scores aptamers based on a
combination of three scores. The output is a table with aptamers for which the
two maximum scores are summed and used as ranking criteria.
One score is a k-mer enrichment score similar to the one used in MPBind. The
second score is a family size score, based on the size of the cluster the aptamer is
in. Clustering is based on graph clustering using MCL, run on a similarity graph
created from BLAST[40]. The third score considers G-Quadruplex structures and
overall secondary structure stability[41].

MEMERIS MEMERIS is an extension of the original MEME algorithm and
implements secondary structure prediction. It computes MFE structures
beforehand and only considers unpaired subsequences (looping regions) as
starting positions for the algorithm.
However, just like the original MEME algorithm, it can only handle smaller data
sets due to its computational complexity[30].

Unoise Unoise is a denoiser made for amplicon sequencing. It essentially is an
error-correction tool for data sets acquired from Illumina sequencers and has
been used to reliably dereplicate highly-similar sequences[42]. It is included in
the bioinformatic toolkit Usearch.
Allnutt et al. have successfully used Unoise to perform data analysis on SELEX
data sets[1]. An interesting benchmark comparing the denoisers has been done
by Nearing et al., 2018[43].

Uclust Uclust is a clustering tool made for amplicon sequencing tasks is also
included in Usearch[44]. Allnutt et al. have shown that Unoise and Uclust (and
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DADA2 as well) performed very well compared to FASTAptamer and AptaTrace,
and with some benchmarking data sets even outperformed them[1].

RNAmotifAnalysis Ditzler et al., have developed an analysis program (and
Perl library) that can be used for clustering of aptamers from HT-SELEX
experiments based on secondary structure. Clustering in RNAmotifAnalysis is
done in a multi-step repetitive fashion.
First, the sequences are clustered in an iterative threshold-based clustering
process. The clusters are aligned in an MSA process using MAFFT. These
alignments are used as input for RNAalifold from the Vienna RNA package for
prediction of base pairing probabilities and to score how well these sequence
alignments align structurally. Then covariance models (CMs) are created for
every cluster. A subset of the CMs is then refined in an iterative search and
refinement process against the aptamer population. When the change in the CMs
is only marginal a new subset of CMs is used for refinement. In the overall
analysis process some constraints, as limitations on the maximum amount of
sequences or clusters, have been taken to ensure fast computation[45].

RaptRanker RaptRanker is an HT-SELEX analysis tool based on
threshold-based clustering. Contrasting other methods, RaptRanker clusters
subsequences based on their nucleotide composition and the secondary structure
they take in their full-length aptamers. Subsequences and their secondary
structures are stored as profiles, which are then put in relation using a fast
multidimensional sorting algorithm. The result is an undirected (disconnected)
graph. Clustering is done, by finding all minimum spanning trees (MSTs) in the
graph. Aptamers are scored based on the average enrichment of the motif
clusters included in them, similar to the approach used in MPBind[46].

1.4.3. Libraries

Some SELEX analysis tools have been released as libraries instead of stand-alone
programs.

DADA2 DADA2 is a library developed for amplicon sequencing tasks. It
performs error-correction and amplicon inference. Using the sequenced data sets
DADA2 learns an error model of the sequencer and the sequencing run. The
error model is used to perform error-correction and infer the real sequences.
DADA2 finds ASVs, short for Amplicon Sequencing Variants which are
representative sequences for a group[47]. It is a package developed for R.
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HTS-Exploration using NCM Pei et al., considered nucleotide cyclic motifs
(NCMs) in their analysis of HT-SELEX experiments. NCMs have been found to
complement tertiary structure prediction in RNA. In their approach a model is
built based on enrichment/depletion of NCMs. This model can then be used to
find promising aptamers expected to bind with high affinity. In benchmarks
against AptaTrace and RCK their method has performed considerably well.
Correlations between NCM enrichment/depletion and binding affinities have
been shown.
They provide a library implemented in Clojure[32].

1.5. Identification of Aptamers against Bacteria

In the last decade, next generation sequencing has changed SELEX substantially,
enabling the detection of potentially better binding aptamers in the low
numbers, compared to high-abundance sequences. Even though NGS has arrived
in the field, Sanger sequencing is still the dominant sequencing technique for
bacteria-targeted SELEX experiments[48, 49, 50, 18, 51, 52, 53, 54]. Only few
groups have performed bacteria-targeted SELEX with NGS[55, 56, 57].
In whole-cell SELEX, enriched sequences may bind to unspecific epitopes of the
targeted cell, leading to aptamers which may be sensible to the targeted cells,
but not specific to them.
Therefore, some groups have treated the task using a differential approach to
increase confidence in expected sequence specificity. Meyer S. et al., 2013[58],
were the first to use a differential approach, using engineered mammalian cells
over-expressing a known membrane protein, as target and unmodified cells for
counter-selection. They sequenced the selection and counter-selection of the last
SELEX round using NGS, and chose sequences based on their comparative
abundance ratios. Pleiko et al., 2019[59], have gone a similar way, using
cancerous renal cells as selection targets, and healthy renal cells for
counter-selection. They treated their SELEX experiment as an RNA-seq
problem, using conventional RNA-seq tools for aptamer identification.
Beside these two, other groups have used NGS for whole-cell SELEX as well[60,
57, 61, 55], most of them selecting sequences based on enrichment, abundance,
secondary structure, or on clusterings.
While many whole-cell SELEX protocols have been developed[62], the
development of cell-SELEX specific analysis methods and software tools is still
lagging behind. Analysis tools created for SELEX usually cover a set of different
use cases, i.e. identification of well-replicating aptamers or clustering of aptamer
families, and differ on computational complexity, code quality and applied
analysis methods. Most tools have been developed for conventional single-target
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SELEX, and therefore not all of them are suitable for every type of SELEX
experiment. Additionally, the way experiments are analysed by these tools vary
greatly, so interpretation and validation of results is difficult. Tools are usually
validated by correlating results of sequence ranking and experimentally
determined binding affinities[15]. As the SELEX procedure is not standardized,
choosing the right tools and methods strongly depends on experiment structure,
dataset sizes and the research questions.
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2. Aim of Thesis

The aim of this thesis was to analyse NGS data sets derived from in-house
performed whole-cell SELEX experiments against bacterial cells. The goal was to
set up bioinformatic pipelines that enable to:

1. Pre-process and prepare raw NGS data sets for analysis

2. Analyse the quality of the starting ssDNA library

3. Assess the SELEX procedure and enriched ssDNA pools

4. Identify and extract aptamer candidate sequences for downstream
experimental screening and testing.

NGS data sets to be analysed originated from three different whole-cell SELEX
experiments:

• SELEX-EF01: whole-cell SELEX over 9 consecutive rounds; target:
Enterococcus faecalis

• SELEX-EF05: whole-cell SELEX over 11 consecutive rounds; target: E.
faecalis

• SELEX-EF07: whole-cell Toggle-SELEX over 9 consecutive rounds;
toggle-target-order: E. faecalis, E. faecium, E. durans, E. hirae

In addition, attempts were made to perform secondary-structure-based clustering
and motif detection and k-mer-based sequence ranking.
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3. Methods

In this project, ssDNA pools from multiple SELEX experiments against target
bacteria (Enterococcus spp.) were pooled and sequenced with an Illumina MiSeq
platform. Demultiplexing was done automatically by the Illumina MiSeq
sequencer.

3.1. Pipeline Development

The bioinformatic pipelines were developed using the workflow manager Nextflow
20.10.0[63].
Custom data manipulation and analysis tasks were done using a set of different
scripting languages and tools. Required libraries and software were made
available to the workflows using the conda channels bioconda, conda-forge and
the default channel.
Python 3.9 was used with the libraries scipy[64], biopython[65], pandas[66] and
networkx[67].
R 3.6[68] was used with the libraries dplyr[69] and tidyr[70] for data wrangling,
ggplot2[71] for visualization, xlsx[72] for creating Excel tables and
RMarkdown[73] for creating HTML-files. If not otherwise specified, ggplot2 was
used for all visualization tasks.
Common tools available in the POSIX environment were used for low-level tasks,
such as converting from FASTQ to FASTA or extracting data from tables.

3.2. Preprocessing and Quality Assessment:
selex-ngs-prep

The workflow selex-ngs-prep performs data preparation and quality assessment of
raw FASTQ-files. It trims off flanking regions (forward and reverse primers) and
discards sequences missing primers (artifacts). It then filters the sequences by
quality, merges paired-end reads and discards sequences which are out of the
designated length range. The workflow returns preprocessed files in FASTA and
FASTQ format. Info on the sequencing quality is given for the input and output
files in the form of plots and tables.
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Data Preparation Input sequences are expected to consist of a forward primer,
random region, and reverse primer.
The first step of data preparation is the trimming of forward and reverse primer.
Cutadapt 3.3[74] is used for this task. Forward and reverse primers are provided
in an anchored, linked form (’ˆPRIMER1...PRIMER2’), enabling global alignment
for the forward primer and semi-global alignment for the reverse primer.
Likewise, for the reverse complement file, primers are provided in reverse
complemented form, also anchored and linked. Cutadapt is configured to detect
primers in an error-tolerant way allowing mismatches. Quality filtering is done
using the tool fastp v0.20.1[75]. Fastp is configured to keep sequence pairs in
which both reads have a high enough average phred quality. It is used as well for
paired-end read merging. It is configured to do error-correction and allows a
settable number of mismatches. A custom-made Python script is used to check
every sequence for the correct length, discarding any sequence out of the defined
bounds.
The resulting FASTQ-files are then converted to FASTA using the POSIX tool
’sed’. FASTA-files produced in the workflow consist of two lines per sequence.
The number of remaining sequences after every step is gathered in tabular
csv-files, using the POSIX tool ’wc’ for all FASTA- and FASTQ- files. Line
counts are divided by 2 (4 for FASTQ respectively) using bash math mode. Two
plots are created with a custom R-script, visualizing loss during preprocessing
with stacked bar charts, scaled to 100% and unscaled in absolute numbers.

Sequencing Quality Assessment The sequencing quality assessment script,
written in R, creates sequencing quality plots using the ’plotQualityProfiles’
function provided in DADA2 [47]. The script works using both, paired-end
sequencing files and single-read sequencing files. All forward (respectively
reverse) FASTQ-files are summarized and have their overall quality plotted,
saved to PNG files and embedded into an HTML-file using RMarkdown[73]. The
RMarkdown Render function is called for every single SELEX round separately,
embedding their quality profile plots as well and saving them as PNG.

3.3. SELEX Assessment: selex-assess

The workflow selex-assess is used to analyse sequencing data from bacterial
whole-cell SELEX experiments. It dereplicates sequences, returns their counts
and scales the number of reads to rpm (reads per million). It ranks and sorts
sequences by decreasing abundance. Nucleotide composition analyses are done
based on the 40-nucleotide random regions of the ssDNA sequences. Global
assessment of sequence diversity, tracing of population dynamics and
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identification of putative aptamer candidates based on sequence abundances is
done.

Sequence Dereplication To dereplicate sequences a custom Python script was
written. The script takes a FASTA-file for every SELEX round and goes through
them sequentially. For every SELEX round a dictionary is created and the
sequences are scanned top to bottom. When a new sequence is encountered, it is
added to the dictionary and the counter is set to 1. If the sequence is observed
again, the counter is increased by 1. The dictionaries of the SELEX rounds are
then combined to a DataFrame and written to a tabular csv-file. A FASTA-file
containing all dereplicated sequences is created, for which the identifier of every
sequence consists of the sequence itself and the sequence counts, separated by the
character ’-’.

Recovering the Top Sequences A custom R script is used to extract the top
n sequences of every SELEX round. The script takes the csv-file created in the
dereplication step and uses the library xlsx[72] to create a tabular xlsx-file. The
script recovers the top n sequences of every SELEX round, orders them, and fills
one sheet per round with sequences, their absolute counts and their counts scaled
to rpm (reads-per-million) using the formula xj;RPM =

xj
n

i=1
xi

∗ 106.

Nucleotides Composition Assessment A custom Python script (Figure 8a) is
used to count the nucleotides encountered per position in the SELEX rounds.
The counting script can be configured to be used with RNA, DNA, proteins or
custom alphabets. A dictionary of length ’random region length’ is created
beforehand with nested dictionaries for the nucleotides set to 0. Every aptamer is
scanned from left to right and the corresponding counters are increased by one.
By default, the script prints to the console in csv-tabular form. It can also
output counts as percentages per position as well as the overall share every
nucleotide takes. The script is called once per SELEX round.
For every SELEX round plots are created consisting of vertical stacked bars
along the x-axis for every position in the sequences, using a custom R script,
Another plot is created consisting of vertical stacked bars along the x-asis for
every SELEX round, using another R script. The plots are written to PNG files
and embedded in HTML-files using RMarkdown.

Enrichment Analysis A custom R script (Figure 8b) is used to assign
sequences into bins. As input the script takes a tabular csv-file from the
dereplication step and a logarithmic base as input. The script first reads the
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csv-file and puts it in memory. For every sequence an exponent is found, by
logarithmizing the count and rounding to the next lower integer such as:
exp = log(count) . The number of sequences per bin and SELEX round are
then summed up. This table is written to two tabular csv-files, one containing
the summed total count of a bin per SELEX round, and one containing the
number of unique reads of a bin per SELEX round.
Another R script then visualizes these tables, plotting one vertical stacked bar
per SELEX round, visualizing the share every bin takes per SELEX round.

3.4. K-mer-based Aptamer Scoring: selex-kmer

The workflow selex-kmer adapts a k-mer-based scoring approach used in
MPBind from Jiang et al., 2014[39]. First, the workflow determines the
representative sequence for every mutational family. For every SELEX round all
k-mers are counted and put into a table. Then one-tailed Fisher Exact tests are
done for every combination of SELEX rounds for every k-mer. The results of this
step are then used to calculate scores for sequences.

Determining the Representative Sequence for Mutational Families For
every mutational family cluster a representative sequence is chosen. BLAST
2.12.0[76] is used to find highly-similar sequence clusters. First, a BLAST
database is created using the dereplicated sequences. To query the database
multiple single-core BLAST searches with 1000 sequences per query are launched
in parallel. A cut-off of 0.05 is set for the E-value. The results of the BLAST
searches are then combined using the POSIX tool ’cat’ and parsed into a graph
using a custom-made Python script, using the networkx [67] library. The graph
consists of a number of disconnected sub-graphs, called components, containing
sequences which are similar to each other. The script uses the networkx library
to find all disconnected components and chooses the sequence with the highest
total read count as representative. Representative sequences are then written to
a FASTA-file.

K-mer Counting K-mers are counted using a custom-made Python script. The
script takes as input the k-mer size k, a SELEX round FASTA-file, and the
FASTA-file containing all representative sequences. An array covering the whole
k-mer space (4k) is initialized with zeroes. Sequences of the SELEX round file
are considered for k-mer counting, if they can be found in the representatives file.
Sequences are scanned from left to right with a frame size of k to get all k-mers.
For every k-mer the corresponding entry in the k-mer space array is incremented
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(a) Scheme of the selex-assess nu-
cleotide composition analysis step.

(b) Scheme of the selex-assess enrich-
ment analysis step.

Fig. 8: Schemes of the actions performed in selex-assess. Shown actions extend
the UML-diagram of selex-assess as seen in Figure 11 in the results section (4.1.2).
Green rectangles represent sequence files (FASTA, FASTQ), pink rectangles rep-
resent plots and tabular files, and round edge rectangles represent analysis steps.
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by one. K-mers are only counted once per sequence. The k-mer count array is
then written to a tabular csv-file.

Fisher Exact Testing Enrichment testing of k-mers is done using a
custom-made Python script that performs Fisher Exact tests, using the
fisher_test method as provided in the scipy.stats library[64]. The script takes
the k-mer count files of two SELEX rounds and the length k. First, the k-mers
are loaded into memory. Then the script runs through a loop for every k-mer. A
contingency table is made for every k-mer which is used as input for the
fisher_test function. The function has the alternative hypothesis set to ’greater’.
The resulting p-value is z-transformed using the percent point function
scipy.stats.norm.ppf. The transformed p-value (called the z-value) is then
multiplied by −1. The z-values are limited to ±20.
The output consists of the k-mer, the absolute counts of it, the p-value and the
negated z-value.

Aptamer Scoring Aptamer scoring is done using a custom-made Python
script. The script takes a FASTA-file containing all random regions and the
output of the Fisher exact testing step.
The k-mer enrichment table is read and put into memory using a dictionary, as
well as all distinct random region sequences. Then every sequence is scanned
from left to right. All k-mers encountered in the sequence are put into a
dictionary and the corresponding k-mer enrichment scores are assigned to them.
The sequence scores are then calculated by averaging all k-mer scores in the
dictionary.
Shifting scores are calculated for a short section of 5 k-mers. The shifting scores
are initialized as: smin = +∞ and smax = −∞. Just as with the overall aptamer
score, sequences are scanned from left to right. For every position i , 5
consecutive kmers are extracted and the score si is calculated. Then si is
compared to smax. If it is greater than the current value, smax is assigned the
value of si (and vice versa for smin).
As output sequences, the compared SELEX round numbers and the associated
scores are printed to the shell and written to a tabular csv-file.

3.5. Secondary Structure-Based Motif Detection:
selex-blaster

The workflow selex-blaster was designed to cluster sequences based on their
predicted secondary structure and find single-stranded motifs in these clusters.
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The workflow starts with a dereplication step, as described in the selex-assess
workflow. The representative sequence for every mutational family is determined,
as described in the selex-kmer workflow. Sequences are folded and used to create
a simlarity matrix using masked BLAST. Then the similarity matrix is clustered
using MCL. The resulting clusters are scanned for motifs using MEME.

Secondary Structure-Based BLAST The secondary structure-based pairwise
alignment (Figure 9) works as follows. Folding prediction is done using RNAfold
2.4.17 included in the toolkit ViennaRNA[3], using the packed ssDNA folding
model by Mathews et al.,2004[77]. For this the forward and reverse primer are
attached to the random regions using the POSIX tool ’sed’. Secondary MFE
structures are used for masking, which are extracted using ’awk’ and put into a
tabular csv-file. Masking is performed using a custom Python script. The script
reads the csv-table sequence-wise and checks for every nucleotide in the sequence
whether it is bound in the secondary structure. Bound nucleotides are printed in
lowercase and unbound nucleotides are printed in uppercase. Sequences are also
hard masked using the character ’N’ instead of lowercase.
BLAST 2.12.0[76] is used in ’blastn-short’ mode with reward and penalty values
’-reward 1 -penalty -4 -gapopen 1 -gapextend 2’, as these seemed to work
reasonably well. A masked BLAST database is created using the
lowercase-masked FASTA-file. A cut-off of 20000 is used for the E-value to
include lower-significance hits as well. Multiple single-core BLAST queries are
executed in parallel using small chunks of the N-masked FASTA-file. The search
results are then combined into one tabular csv-file using the POSIX tool ’cat’.
Query sequence, hit sequence and alignment length are extracted using the
POSIX tool ’cut’. Self-hits are excluded by scanning every hit and comparing
query and hit sequence, using a custom Python script.

Graph Clustering The resulting similarity graph is clustered using MCL
14.137[40], short for Markov Clustering Algorithm. By default an inflation factor
of 1.4 is used. A FASTA-file is created for every cluster using a custom Python
script.

Motif Detection MEME 5.3.0[36, 28] is used to detect motifs in the cluster
files. MEME is configured to find a maximum of 3 motifs with a minimal length
of 4. Motif detection on the reverse-complement strand is disabled. Motif
candidates are compared to a randomized model by MEME. The result consists
of one motif file in HTML/MEME-format per cluster, which can be opened using
a current web browser or used for further analysis using tools from the
MEME-Suite.
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Fig. 9: Scheme of the secondary structure-based pairwise alignment procedure
in the workflow selex-blaster. The shown action extends the UML-diagram of
selex-blaster as seen in Figure 13 in the results section (4.1.4). Green rectangles
represent sequence files (FASTA, FASTQ), pink rectangles represent plots and
tabular files, and round edge rectangles represent analysis steps.
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4. Results and Discussion
The results and discussions part of this thesis is divided into two sections. First,
the bioinformatic analysis pipelines developed during this master project are
presented and discussed in detail. In section two, the results from data analyses
of three different SELEX experiments (EF01, EF05, and EF07) employing the
developed pipelines are shown and discussed. Related wetlab work (SELEX
experiments and NGS sequencing) was conducted by Claudia Kolm and Isabella
Cervenka[14, 78].

4.1. Bioinformatic Analysis Pipelines

In this thesis project, four bioinformatic analysis pipelines were developed for the
analysis of in-house performed bacterial whole-cell SELEX experiments, namely
i) selex-ngs-prep, ii) selex-assess, iii) selex-kmer and iv) selex-blaster.
In the following subsections, the steps the workflows take during execution are
outlined including thresholds and parameters which are expressed in italics.
With every pipeline a ’nextflow.config’ file is provided, in which default values
are stored, as well as a custom-made configuration wizard script, that can be
used to generate experiment specific configuration files. Thresholds and other
parameters described are default values and specific to the SELEX experiments
conducted in 2019. Schemes of the workflows are presented as UML diagrams.

Data Availability Workflows are hosted on GitHub:

• selex-ngs-prep: https://github.com/hovercat/selex-ngs-prep

• selex-assess : https://github.com/hovercat/selex-assess

• selex-kmer : https://github.com/hovercat/selex-kmer

• selex-blaster : https://github.com/hovercat/selex-blaster

4.1.1. Preprocessing and Quality Assessment:
selex-ngs-prep

The workflow selex-ngs-prep (Figure 10) handles the data preparation and
quality assessment of next generation sequencing files from whole-cell bacterial
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SELEX experiments, which were sequenced on an Illumina MiSeq platform. The
pipeline works with demultiplexed paired-end files in FASTQ format.
Selex-ngs-prep expects sequences to consist of random regions with two fixed
adapters (SELEX forward and reverse primers) attached, one on each end.
The resulting sequence files can be used as input for other tools or for the
SELEX analysis pipelines presented in this thesis.

Trimming The primer regions are removed before progressing to further data
analysis stages, as for most analyses the random region sequences were sufficient.
Due to the heavy amplification over the course of the SELEX experiment,
adapters and random regions can be subject to mutations, insertions or deletions,
trimming the adapters rigidly was not an option. Therefore, an error-tolerant
adapter scanning approach was used. All sequences starting with a forward
primer, containing a variable length random region, and a reverse primer are
considered valid and have their primers cut. Sequences not meeting these
requirements are discarded.
Trimming is done using cutadapt, which is a versatile adapter trimmer offering
great customizability. Cutadapt is configured to specifically look for the forward
and reverse primers in the sequences, performing global alignment for the
forward primer and semi-global alignment for the reverse primer. A default
error-threshold of 20% was chosen for primer regions to be successfully
recognized.

Quality Filtering Sequences stemming from SELEX can only be used if the full
random region is of a high enough quality. Any sequence with an average quality
score below a certain minimumg average phred quality should be discarded,
which was set to 30 by default. The tool fastp[75] was used for this task.

Paired-End Read Merging Sequences from SELEX experiments are relatively
short, e.g. 86 nucleotides (40nt random region and 23nt primer regions), so
single-read sequencing is sufficient. Paired-end sequencing was performed as the
technology was available. As for every strand two redundant sequences exist,
paired-end read merging served as a quality increasing step. In the paired
end-read merging step, every sequence pair is merged into a single sequence, as
long as both strands are sufficiently similar. By default, the maximum numbers
of mismatches is set to allow 1 mismatch. In hindsight, the maximum number of
mismatches could have been set higher, as the used tool (fastp) corrects
mismatches. Error correction can be disabled using the base correction flag.
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Fig. 10: Scheme of the selex-ngs-prep workflow as an UML diagram. Green
rectangles represent sequence files (FASTA, FASTQ), pink rectangles represent
plots and tabular files, and round edge rectangles represent analysis steps.
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Random Region Length Restriction As sequences undergo insertions and
deletions during SELEX they may differ significantly in length. Thus, only reads
with a random region of length 40± 3nt were included by default. In the
configuration file the expected exact length, the minimum length and the
maximum length can be set. Accidentally litigated forward and reverse primers
were encountered in SELEX experiment EF07 (4.2.3), which were discarded at
this step.

Preprocessing Loss Assessment Over the course of the preparation procedure
a number of reads are lost, which is visualized with horizontal stacked bar charts.
One plot is used to show the exact share of loss at every preprocessing for every
SELEX round. Another plot shows whether there are differences between
SELEX round data set sizes, as it uses unscaled numbers. Optimally, all data
sets should have similar size.

Sequencing Quality Assessment Sequencing quality profiles for every SELEX
round are plotted using the function ’plotQualityProfiles’ provided in the
DADA2[47] toolkit. Sequencing quality is assessed for the unprocessed
paired-end reads, as well as for the fully preprocessed reads, to allow for visual
comparison. The plots are saved to PNG-files and embedded into an HTML-file
using RMarkdown.
The workflow executes these steps in sequential order. In hindsight, a sequential
approach may hinder detection of error sources as sequences may get discarded
early on. For example, the adapter trimming step discards all sequences which
have no primers attached. However, if the sequence is of too low quality, it is
discarded as well. It would be better to do the steps individually and then
overlap the resulting data sets.

4.1.2. SELEX Assessment: selex-assess

The workflow selex-assess (Figure 11) was developed to analyse sequencing data
from in house performed bacterial whole-cell SELEX experiments by determining
read counts (sequence frequency), normalizing them to the total number of reads
in the population (reads per million), assessing nucleotide composition, ranking
reads and determining singleton to duplicate ratios. Overall, it allows for a global
assessment of sequence diversity, tracing of population dynamics and
identification of putative aptamer candidates based on sequence abundances.
Another important asset to check was that the starting ssDNA library is
unbiased, as the whole experiment depends on it. The library should consist of
singleton sequences only and be unbiased regarding nucleotide distribution.
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Fig. 11: Scheme of the selex-assess workflow as an UML diagram. Green rect-
angles represent sequence files (FASTA, FASTQ), pink rectangles represent plots
and tabular files, and round edge rectangles represent analysis steps.
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Top n Aptamer List At the start of HT-SELEX, aptamers mainly were chosen
based on the highest read counts. The same procedure is used, when aptamer
DNA pools are sequenced via Sanger sequencing. This method is still used today
to some extent, though it is limited, as the most frequent aptamer sequences may
not necessarily be the best performing binders[59].
The workflow returns the top n reads (by default 1000) for every SELEX round
and puts them into an xlsx-table. Xlsx-format allows for multiple sheets in one
file, so all SELEX round can be put into one file. For every SELEX round, a
sheet is created containing the top n sequences, absolute counts and counts
scaled to RPM (reads-per-million). RPM counts were useful to show the share
every aptamer takes per SELEX round, and to calculate enrichment between two
rounds. Every sheet in the xlsx-table is ordered in descending order.

Nucleotides Composition Assessment A scheme of the ’Nucleotide
composition analysis and visualization’ step is depicted in Figure 8a in 3.3.
The share every nucleotide takes along the random region per position can be
used as an indicator to check for library randomness. Typically, the ssDNA
library is expected to have an equal distribution of nucleotides at every position.
The nucleotide distribution is visualized using stacked bar charts with one bar
for every position in the random region. Additionally, nucleotide distribution is
visualized for all SELEX rounds separately to show the changes per position.

Enrichment Analysis The enrichment analysis step (see Figure 8b in 3.3)
serves as an analysis tool to determine whether sequences got enriched.
Successful SELEX processes can be described by observing sequence enrichment
over the SELEX process in combination with increased ssDNA pool binding
affinity. Optimally, one could expect that with every SELEX round the
heterogeneity of the data set decreases and the read counts of binding aptamers
increases. Due to the possibility of PCR artifacts (inserts, deletes or mutations)
it is possible that sequence variants may emerge, especially when distinct
sequences are already dominating the pool population[79]. If SELEX pressure is
properly applied, sequence variants will go ’extinct’ and no new families except
for spontaneous mutations will be added.
To show an increase in sequence duplication, logarithmic binning is applied, as
during SELEX, sequence counts may be subject to exponential growth. Bins are
spaced logarithmically (base 2 and 10) to make exponential growth perceivable.
log2 was sufficient to show small increases, while log10 showed to be useful for
larger steps. This step was also useful to check unbiasedness of the ssDNA
library, as it optimally should contain singleton sequences only.
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SELEX rounds (and ssDNA library) are compared by plotting a stacked bar for
every SELEX round on the x-axis.
It was observed that plots based on rpm-scaled counts were not useful, as
comparatively smaller data sets got scaled much more than others, and therefore
seemed to be more enriched. Subsampling should have been done before binning,
as the input data sets were not always of equal size and therefore plots were
slightly skewed.

4.1.3. K-mer-based Aptamer Scoring: selex-kmer

The workflow selex-kmer (Figure 12) adapts a k-mer-based scoring approach
used in MPBind from Jiang et al., 2014[39]. A k-mer is a subsequence of length
k. For instance, the sequence GTTCAT consists of the 4-mers GTTC, TTCA and TCAT.
A length of 6 was chosen for k by default. The selex-kmer workflow produces
scoring tables for every possible combination of SELEX rounds, consisting of an
overall k-mer enrichment score, a maximum shifting score and a minimum
shifting score for every sequence.
Jiang et al.[39], used k-mer enrichment scores to estimate binding potential of
sequences, based on how strongly k-mers were enriched from round to round.
The ground principle of k-mer enrichment based scoring lies in the assumption
that only small sections of the aptamer nucleotide sequences are binding
specifically to the target structures[19]. The aptamers are forming
three-dimensional structures, partially folding to bind with themselves,
minimizing free energy. Sections of an aptamer which are not bound to itself and
therefore exposed to the outside, are commonly called looping regions. If a target
is available for binding, the loop is expected to bind to the target[19]. Aptamers
with looping regions which are sequence-wise similar should bind to the same
target structure and therefore get replicated more often, even if otherwise not
related. Thus, an enrichment of k-mers in the looping region seems plausible.
Unfortunately, MPBind v2.1 (written in Python 2.4.3) did not work as expected
without rewriting parts of it. A short examination of the code showed that
instead of importing custom scripts as libraries, MPBind executes these
subsequent scripts by spawning new processes using the ’python’ alias with the
’commands’ library. As ’python’ is the alias for the newest installed version of
python by default, MPBind executed the scripts, which are written in Python 2,
using Python 3, even if the program was started using an installation of Python
2. Besides that, even though the employed algorithm scales linearly, MPBind did
not finish with the data sets of the SELEX experiments in a sufficient time. The
reason for that may lie in excessive spawning of subprocesses. Therefore, parts of
their method were adapted with performance in mind.
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Fig. 12: Scheme of the selex-kmer workflow as an UML diagram. Green rectangles
represent sequence files (FASTA, FASTQ), pink rectangles represent plots and
tabular files, and round edge rectangles represent analysis steps.
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It was also hypothesized that scores could be used to estimate the binding
affinity of sequences when used differentially i.e. by comparing scores for
selection and counter-selection data sets.

Working Principle First, to avoid bias of overexpressed k-mers due to mutated
sequence, a representative sequence for every mutational family is chosen. Then,
k-mers are counted for every SELEX round. Every k-mer is only counted once
per sequence to avoid bias due to long single nucleotide stretches, as seen in
sequences such as "GTTTCGGGGGGGGGGGGGAACACATTTGTGTAACAAACAGTC" (found in
EF07 ). A one-sided Fisher Exact test is performed for every k-mer for every
combination of SELEX rounds to estimate enrichment significance. The resulting
p-value is z-transformed and multiplied by −1, so enriched k-mers would have a
positive score. To avoid overly strong influence of outlier k-mers, z-values were
limited to ±20.
K-mer based sequence scores are then calculated for every sequence by summing
up the enrichment scores of every included unique k-mer and then taking the
average.
Special interest was put into recognizing short regions of sequences which may
show exceptionally high or low scores, by calculating scores for these regions.
Theses scores are referred to as shifting scores and are calculated for regions
consisting of 5 k-mers. The maximum and minimum shifting scores of every
sequence are kept.

4.1.4. Secondary Structure-Based Motif Detection:
selex-blaster

The workflow selex-blaster (Figure 13) was designed to cluster sequences based
on predicted secondary structures and find single-stranded motifs in the
discovered clusters.
A method developed by Song M. et al., 2019[41] was adapted for the workflow.
They developed a tool which calculated a compound score for every sequence.
The compound score combined k-mer-based scores, cluster sizes and structural
stability of sequence-based clusters. Their approach for sequence-based clustering
was adapted for this project.
During the SELEX experiments some sequences got enriched that interacted
heavily with the forward and reverse primers. The random region of these
sequences evolved to resemble a reverse complement of the flanking SELEX
primers, and folding prediction showed that they folded into tightly bound
structures. To reduce the influence of these sequences a secondary-structure
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based clustering approach, based on unbound looping regions, was proposed and
implemented.
The adapted method consists of four sequential steps, looping region-based
masking of sequences, creation of a similarity graph using pairwise alignment,
graph clustering and an EM-algorithm for motif detection.
The workflow starts with a dereplication step (see selex-assess workflow), and
determines representative sequences for every mutational family(see selex-kmer
workflow) to avoid retrieving very tight clusters.

Structure-based Sequence Masking

Working principle The forward and reverse primer have to be provided for
folding prediction. The temperature of the folding environment was set to 21°C
by default. The number of CPUs is set to 4 by default. The energy model file
path for DNA folding has to be set manually in the config file. The energy model
for DNA folding by Mathews et al., 2004[77], was used, which is packaged with
ViennaRNA.
MFE (minimum free energy) secondary structures are predicted using
RNAfold[3]. The MFE structures are used to mask sequence files, making bound
nucleotides unavailable in the subsequent pairwise alignment step.
For pairwise alignment BLAST[76] is used, as it is an established tool for
pairwise alignment, using heuristic search method with high performance.
BLAST is used to run a search of the masked sequence data set on itself. The
focus of the search lies on very short matches, as the masking steps only leaves
unbound looping regions available for the search. As the matched regions are of
very short length ( 4-12nt), the E-value was not useful, and instead the
alignment length is used. The result of this step is a similarity graph, in which
only aptamers with similar unbound looping regions are associated.
Clustering is then done using MCL[40] (Markov Clustering Algorithm), an
unsupervised and highly performant clustering algorithm based on graph weight
dependent flow. When testing the workflow, MCL was able to cluster graphs
with over 5 ∗ 106 edges in decent time. MCL offers different parameters for
clustering, which influence the overall clustering granularity, the most important
parameter being the inflation factor, which is set to 1.4 by default. A FASTA-file
is created for every cluster. For more detail on MCL see appendix at A.2.
For motif detection the tool MEME from the MEME-suite is used[36, 28]. The
MEME-Suite offers a wide variety of motif detection and enrichment analysis
tools originally based on the EM-algorithm. For more detail on MEME see
appendix A.3. At first STREME[37] was used for motif detection as it makes use
of a linearly scaling algorithm and is therefore better suited for next generation
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Fig. 13: Scheme of the selex-blaster workflow. Green rectangles represent se-
quence files (FASTA, FASTQ), pink rectangles represent plots and tabular files,
and round edge rectangles represent analysis steps.
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sequencing data. When sequence masking was added at a late stage of
development, cluster sizes got sufficiently small (100-103 sequences) to use
MEME instead.
The result of this step is a motif file in HTML-format for every cluster, which
can be opened in any conventional web browser.
In hindsight, using only one structure per sequence may limit the usefulness of
this approach, as ssDNA does not have one fixed structure, and structure
ensembles as seen in APTANI[38] or AptaMotif[21] could be used. As BLAST
was used on masked sequences, matches were rather short, and E-values and
bitscores were unreliable, so alignment length was used as clustering metric,
which was not optimal. A way to overcome this could be to use a soft clustering
based method using structure ensembles.

4.1.5. Discussion of Workflow Development

Workflow Management Workflow management tools have become a necessity
in bioinformatics to allow for reproducible data analysis. Workflow managers
allow for easier development, customization and maintenance, compared to
complicated shell scripts or hard coded programs.
The presented pipelines were implemented using the workflow manager Nextflow.
It is regarded as one of the top workflow managers in bioinformatics currently.
Different workflow managers, namely Nextflow, Luigi and Snakemake, were
initially tested. Nextflow has shown to be comfortable and intuitive to work with
in multiple settings. Moreover, it can be easily extended using the package
manager conda and works well using cluster computers.

Repository Hosting and Documentation All workflows developed in this
thesis are managed using remote git repositories. Detailed info on execution,
installation and configuration is provided in README pages included with every
workflow. Using remotely hosted repositories offered many advantages compared
to keeping all files on local data storage, such as: less risk of data loss, traceability
of code changes, possibility to collaborate with others, having a central place to
present the pipelines, and remote working from almost any machine.

Scripting Languages Development of own tools was preferred when the task at
hand was easy-to-implement, such as k-mer counting or sequence dereplication,
or if existing tools did not work as required, e.g. due to performance issues, as
seen in MPBind[39], the form of results, reproducibility, customizability, or due
to performing unnecessary analyses, as with smart-aptamer[41]. Existing tools
were used for analysis or data preparation whenever feasible.
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By default, scripts in Nextflow process are executed as ’bash’ and therefore tools
included in POSIX environments are accessible. For easy-to-implement tasks,
such as converting from FASTQ to FASTA or extracting data from tabular files,
tools such as awk and sed were used.
Python 3 was used for computationally demanding tasks. One reasons to opt for
Python was its broad support from the bioinformatics community, offering many
useful libraries. Also, due to Python being a scripting language, compilation was
not needed. Computationally demanding tasks tended to run much faster using
Python, compared to the R scripting language.
The statistical scripting language R 3.6[68] was used for data wrangling and
plotting tasks, as high-quality libraries for data wrangling and visualization are
available.

4.2. Analysis of whole-cell HT-SELEX
Experiments

All bacterial whole cell-SELEX experiments were performed with a chemically
synthesized ssDNA library purchased from Integrated DNA Technologies
(Coralville, USA). The ssDNA library was designed to have a 40-nucleotide
random region (N40, equal distribution of A, T, G, and C), which is flanked with
constant primer binding regions (forward primer: 5-TAG GGA AGA GAA GGA
CAT ATG AT, reverse primer 5-TCA AGT GGT CAT GTA CTA GTC AA-3)
at the 5’ and 3’ end. Sequencing of the SELEX pools (cell-bound ssDNA pools
from different SELEX rounds) was done using an Illumina MiSeq with an
expected output of roughly 2 ∗ 106 sequences (MiSeq Reagent Micro Kit v2,
300-cycles)[14]. Data analysis tasks were executed in a POSIX environment using
Manjaro Linux 21.0.4.

Data Availability Raw FASTQ-files of SELEX EF05 can be downloaded from
the Sequence Read Archive (SRA) at NCBI under the accession number
PRJNA615076. For access to the raw FASTQ-files of SELEX EF01 and SELEX
EF07 contact C. Kolm[14].

4.2.1. SELEX EF01

SELEX EF01 was performed to generate DNA aptamers against Enterococcus
faecalis. After 9 consecutive SELEX rounds with increasing selection
pressure[78], ssDNA pools of each round were subject to next generation
sequencing to determine whether sequence enrichment took place. According to
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qPCR measured amounts of recovered ssDNA sequence and remelting curve
analyses, no significant changes in ssDNA pool binding and heterogeneity were
observed[78].

4.2.1.1. Results from workflow selex-ngs-prep

In total, 1, 743, 272 reads were generated and successfully demultiplexed by the
Illumina MiSeq platform (R00, R02-R09).
Before preprocessing, the following parameters were set: i) a maximum error rate
of 20% for successful adapter recognition, ii) every sequence had to show an
average sequencing quality of at least 30 along the random region, iii) for
paired-end read merging 1 mismatch was allowed and mismatch error-correction
was enabled and iv) random regions were allowed to be 37 to 43 nucleotides long.
The number of reads per SELEX round was sufficiently well distributed, with R4
posing the greatest outlier from the mean with 4.04% deviation, as can be seen in
Table 2.
Sequencing quality is plotted in Figures 14a and 14b. They show that almost all
reads are around the designated length of 86 nucleotides, which can be seen at
the drastic drop of the red line. The dotted orange lines show the 25th and 75th
percentile and are both above 30 at all times in the region of interest. Overall,
the quality values tended to be lower at the beginning of the reads and steadily
increased. However, combining the mean quality value with the quality heatmap
in the background shows that only very short sequences tended to be of low
quality, which can be observed by an increase of mean quality at positions 40,
when those reads are not considered for the plot anymore. Figure 14c shows the
sequencing quality after preprocessing to show an average quality of around 38.
Table 3 and Tables 21, 23 and 22 in the appendix show the effect preprocessing
had on the numbers of sequences. Figures 15a and 15b plot the preprocessing
loss.
Overall, adapter trimming introduced an average loss of 10.97%. This step also
discarded very short sequences and sequences of extremely low quality with no
adapters detected. Quality filtering introduced an average loss of 17.23%, with a
substantial amount of sequences removed (58.24%) in Round R8. At the quality
trimming step on average 11.37% were lost (excluding R8). Paired-end merging
and size limiting introduced very low numbers of loss (0.28%, resp. 0.20%).
The quality filter outlier of SELEX round R8 was especially severe. R8 had the
lowest read count from the beginning, so either the sequencer was not able to
properly demultiplex reads of R8 or there was another problem during library
preparation, e.g. the barcoding step.
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(a) Forward Reads (b) Reverse Reads

(c) Preprocessed Reads

Fig. 14: Sequencing quality profiles of EF01 raw and preprocessed reads. Median
quality is plotted as a straight orange line while the mean quality is plotted as
a straight green line. The background shows a heatmap for the overall quality
distribution. Dotted orange lines show the 25th and 75th percentile of quality.
The straight red line shows the share of considered reads.
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(a) Absolute numbers

(b) Scaled to 100%.

Fig. 15: Loss of preprocessing steps in EF01.
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Total reads Share in NGS run Dev. from mean
R0 222414 12.76% 0.26 %
R2 220753 12.66% 0.16 %
R4 288262 16.54% 4.04 %
R5 180032 10.33% 2.17 %
R6 243162 13.95% 1.45 %
R7 210076 12.05% 0.45 %
R8 171799 9.85% 2.65 %
R9 206774 11.86% 0.64 %

1743272 100.00%

Tbl. 2.: Sequenced reads for SELEX EF01 (R0-R9).

Discarded Trimming Filter PE-Merge Length-limit
R0 6.77% 11.14% 0.28% 0.38%
R2 14.09% 10.92% 0.33% 0.19%
R4 11.66% 10.72% 0.29% 0.19%
R5 11.85% 11.38% 0.31% 0.16%
R6 10.50% 11.08% 0.28% 0.17%
R7 10.04% 11.23% 0.27% 0.15%
R8 11.51% 58.24% 0.15% 0.11%
R9 11.38% 13.12% 0.33% 0.23%
Avg 10.97 % 17.23 % 0.28 % 0.20 %

Tbl. 3.: Share of discarded reads (in %) during every preprocessing step for
SELEX EF01. Shares are taken for the original data set size.

4.2.1.2. Results from workflow selex-assess

Nucleotide distribution and sequence enrichment in the cell-bound ssDNA pools
of SELEX round R2-R9 were then determined using the workflow selex-assess.
For visualization and simple interpretation, the workflow returns a series of
tables and plots.
Figures 17a to 17c show the distribution of nucleotides at each position of the
40-nucleotide long random region in the ssDNA library and the ssDNA pools of
SELEX rounds R4 and R9, while Figure 17d shows the overall changes in
nucleotide composition over the SELEX rounds.
Results indicated that that the initial ssDNA library composition was slightly
increased in adenine with 29.1% of all nucleotides. Guanine (24.0%) and thymine
(24.8%) were close to 25% while cytosine was slightly decreased (22.2%). Over
the course of SELEX EF01 cytosine rose to a share of 31.7%, while adenine and
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Fig. 16: Assessment of SELEX EF01 (R0-R9) in terms of sequence enrichment
and frequency. Sequence enrichment can be observed. The darker a bar, the
higher the replication number of the reads represented by them. Bars are as tall
as the total read count of the sequences in them.

guanine declined to 24.9% and 18.7% respectively. Thymine increased to 28.1%
in R2 and then slowly declined to a share of 24.7% in the last round.
The established workflow selex-assess revealed that no substantial enrichment of
sequences was observable over the course of the bacterial whole-cell SELEX
EF01, as seen in Figure 16. Thus, no further analyses were conducted and the
SELEX experiment was aborted.
Appendix table 24 shows the top 25 reads for the last SELEX Round of EF01,
which however were not chemically synthesized and tested in binding assays.
In conclusion, NGS data analysis confirmed the observations made by
qPCR-based remelting curve analyses (no significant changes in ssDNA pool
binding and heterogeneity) and thus verified the usability of the workflow for
in-line monitoring of the SELEX process.
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(a) ssDNA Library (b) R2

(c) R9 (d) Nucleotide composition dynamics of EF01

Fig. 17: Nucleotide distributions of EF01 at each position of the 40-nucleotide
long random region of the ssDNA library(a) and SELEX rounds R4(b) and R9(c),
as well as changes in the nucleotide composition in the random regions over the
selection rounds R0-R9(d).
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4.2.2. SELEX EF05

Like SELEX EF01, SELEX EF05 was performed to generate DNA aptamers
against E. faecalis. In contrast to SELEX EF01 however, 11 consecutive SELEX
rounds were performed and according to qPCR-based remelting curve analyses,
changes in ssDNA pool populations were observed, indicating a potential
enrichment of sequences[78]. To confirm these results and to identify potential
aptamer candidates, ssDNA pools from SELEX rounds R02-R11 were subject to
next generation sequencing and data analysis[78].

4.2.2.1. Results from workflow selex-ngs-prep

In total, 2, 948, 294 reads were produced and successfully demultiplexed by the
Illumina MiSeq platform (R02-R11). The data set for the ssDNA library
(referred to as R00) was taken from the EF01 sequencing run and increased the
sequence count to 3, 055, 932 reads, which were put into the selex-ngs-prep
pipeline. The number of reads per SELEX round was again sufficiently well
distributed, indicating that library preparation and pooling of SELEX samples
was performed properly. The plots in Figures 18a and 18b show the sequencing
quality. Figure 18c shows the sequencing quality after preprocessing with an
average quality of 38.
Table 5 and Tables 25, 26 and 27 in the appendix show the effect preprocessing
had on the numbers of sequences. Figures 19a and 19b plot the preprocessing
loss, including the ssDNA library R00. The preprocessing parameters used were
identical to the ones of SELEX experiment EF01, given in 4.2.1.1.
Overall, adapter trimming introduced an average loss of 10.29%. This step also
discarded very short sequences and sequences of extremely low quality with no
adapters detected. Quality filtering introduced an average loss of 21.04%, which
was on average higher than in EF01. In the quality filter step no outliers were
observable. In contrast, paired-end merging and size limiting introduced very low
numbers of loss (0.24% and 0.11% respectively).
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(a) Forward Reads (b) Reverse Reads

(c) Preprocessed Reads

Fig. 18: Sequencing quality profiles of EF05 raw and preprocessed reads. Median
quality is plotted as a straight orange line, while the mean quality is plotted as
a straight green line. The background shows a heatmap for the overall quality
distribution. Dotted orange lines show the 25th and 75th percentile of quality.
The straight red line shows the share of considered reads.
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(a) Absolute numbers

(b) Scaled to 100%.

Fig. 19: Loss of sequences after preprocessing steps in EF05.
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Total reads Share in NGS run Dev. from mean
R02 342616 11.62% 1.62 %
R03 330387 11.21% 1.21 %
R04 258891 8.78% 1.22 %
R05 251043 8.51% 1.49 %
R06 299303 10.15% 0.15 %
R07 253449 8.60% 1.40 %
R08 308397 10.46% 0.46 %
R09 247589 8.40% 1.60 %
R10 317454 10.77% 0.77%
R11 339165 11.50% 1.50%

2948294 100.00%

Tbl. 4.: Sequenced reads for SELEX EF05 (R02-R11).

Discarded Trimming Filter PE-Merge Length-limit
R02 10.14% 21.21% 0.25% 0.16%
R03 7.83% 22.04% 0.27% 0.14%
R04 7.62% 21.52% 0.20% 0.13%
R05 13.25% 21.29% 0.21% 0.11%
R06 10.90% 20.14% 0.21% 0.10%
R07 12.04% 19.73% 0.19% 0.09%
R08 10.11% 22.83% 0.24% 0.10%
R09 13.75% 20.86% 0.20% 0.09%
R10 8.41% 20.83% 0.29% 0.10%
R11 9.73% 19.95% 0.34% 0.09%
Avg 10.38% 21.04% 0.24% 0.11%

Tbl. 5.: Share of discarded reads (in %) during every preprocessing step for
SELEX EF05. Shares are taken for the original data set size.
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4.2.2.2. Results from workflow selex-assess

Nucleotide distribution and sequence enrichment in the cell-bound ssDNA pools
of SELEX round R02-R11 were then determined using the workflow selex-assess.
For visualization and simple interpretation, the workflow returns a series of
tables and plots.
Figure 21a to 21c show the distribution of nucleotides at each position of the
40-nucleotide long random region in ssDNA pools of SELEX rounds R02, R06,
and R11, while Figure 21d shows the overall changes in nucleotide composition
over the SELEX rounds. As described in EF01, the initial ssDNA library was
slightly biased towards sequences with elevated adenine(29.1%) and reduced
cytosine nucleotide bases (22.1%). Over the SELEX process, the nucleotide
distribution then changed by an increase of cytosine- and thymine-rich sequences
of 8.0% and respectively 3.8% in SELEX round R11 (Figure 21c). Likewise,
changes in nucleotide composition in the random regions were determined
(Figure 21d).
The workflow selex-assess revealed that sequences were enriched over the course
of the bacterial whole-cell SELEX EF05. From SELEX round R07 on, an
increased number of sequences with > 10 reads were detected, while the
proportion of unique sequences gradually decreased (Figure 20). Thus, next
generation sequencing data confirmed the observations made by qPCR-based
remelting curve analyses, which suggested a decrease in pool diversity and an
increase of enriched sequences from R09 on.
In Table 6, the top 25 reads encountered in the last round R11 of SELEX EF05
from the workflow selex-assess are given, while Table 7 contains all potential
aptamer candidates, which were then selected, chemically synthesized and
experimentally screened for target binding. Amongst them, aptamer EF05-508
showed high affinity and specificity for E. faecalis target cells[14].
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Fig. 20: Assessment of SELEX EF05 (R00-R11) in terms of sequence enrichment
and frequency. Sequence enrichment can be observed. The darker a bar, the
higher the replication number of the reads represented by them. Bars are as tall
as the total read count of the sequences in them.
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(a) R02 (b) R06

(c) R11 (d) Nucleotide composition dynamics of EF05

Fig. 21: Nucleotide distributions of EF05 at each position of the 40-nucleotide
long random region of SELEX rounds R02(a), R06(b) and R11(c), as well as
changes in the nucleotide composition in the random regions over the selection
rounds R02-R11(d).
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Rank Count Random Region Tag
1 3538 TTTCTCAACGGGACCATCACTTACCTCAAGTACTTGGACG EF05-501
2 557 GTCAACTCATTTATGGTGCTCCTCGTACCTCAGGTGGTTA EF05-503
3 547 CCGGCTATCTCCCTACCGTGGCCGAGTACCTCAAACGTTT EF05-502
4 392 CTGCCTGACTTCATAATGCTTCTTCTCCCTGTGGTACTTG
5 390 GGCTCTCTGGTCTTCAAGGCCCATGATTACAGTCAGATCA
6 360 CCTTAGGTCTTAACTATCAGGCGGTCTGTATCAATTCGAT
7 330 GGCAGGGAGCGACCGGGTCATTGATTATCTGTCAAAGTGT
8 322 GGCCATACCTCGTGCCTTCTGTGATCATCTCTATCAATTG EF05-504
9 316 CTCAATCATCAAGGGTCTACTTCCCGCTTGTGGGCCATTC
10 298 CCTCTCTCTTACTGCTACTGGGCAGGGTACTCAATTACGT EF05-505
11 279 CGGTCCCGACTCAATATTGTTCCCTCCCCTTATCAGGCGG EF05-506
12 270 TCCTCTAATCAACTCTATGCCTTATCCCCTTGGTCAGGAC EF05-507
13 250 CAGGTCTCGTCCCTTGTGGAACAGGAATACTGGCATCACA
14 249 CATGGCTCCCTCTTCAACTTCAAGTCAGTGATCTGTCAAA
15 249 CCTCTGTCAGAGCCATCATAGAGACTATGATCCCTGGTCA
16 241 CCTGGATCATCGATGGCAAAAGCGCATTCCCGGCATGTGGC
17 234 ACGCACATCATGAATTGGCCACTCATCACTTTATCGTGGT
18 225 ATGGCCTAGTTCTGCCCCCGGGGACATAGCTCAAACGCGA
19 223 GCATTACATCAACACTATGACCATTCGTGACCGGAGTGGC
20 220 TTCGAATTCATCTAGTGTCAATCATCATCCCTGGTCATTC
21 218 ACTGGCCTTGACACCCTGTTGTGGCTTGATGACAATAACA EF05-508
22 213 CCTGTCTCGTCCTAAGTAATGGTTTCATGTAACCTCAACT
23 211 GGCCATCCCCCAATCGCGGTGGGCTATGCACCTCAACAAG
24 205 CCTTCGCCTCTCTACAAGGGCGCAATGCTTCGCTCAATCGT
25 204 TTCCTCCTCCTCTGACTGTTGTTGTCGGTAATATCAATCC

Tbl. 6.: Top 25 Reads from last enrichment round of SELEX EF05.
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Tag Random Region
EF05-501 TTTCTCAACGGGACCATCACTTACCTCAAGTACTTGGACG
EF05-502 CCGGCTATCTCCCTACCGTGGCCGAGTACCTCAAACGTTT
EF05-503 GTCAACTCATTTATGGTGCTCCTCGTACCTCAGGTGGTTA
EF05-504 GGCCATACCTCGTGCCTTCTGTGATCATCTCTATCAATTG
EF05-505 CCTCTCTCTTACTGCTACTGGGCAGGGTACTCAATTACGT
EF05-506 CGGTCCCGACTCAATATTGTTCCCTCCCCTTATCAGGCGG
EF05-507 TCCTCTAATCAACTCTATGCCTTATCCCCTTGGTCAGGAC
EF05-508 ACTGGCCTTGACACCCTGTTGTGGCTTGATGACAATAACA
EF05-509 CCTCACTCTTGACCCAAAGTGCATGCTCTATTCATTCGGA
EF05-510 GCTTCTGTGCACATTAAGGCACTCGTCTTCACTGTGGTTC
EF05-511 CCTAACTCACTTACCAGCACGAGGTGCCTGTACCATCAAT
EF05-512 CTCTCATCACAGGAATTTGAATTTCCCTTGTGGACAGTAA
EF05-513 GATGTGAATTCCGTCCCTTGGTCAGACACTTCAACACCGG
EF05-514 TCTCGACGCTATGATCAAGACGCAGTATGATGGCACATCA
EF05-515 TTAACCCTCATTTAATGGCCGCGTCAATCCGCAAAGGGTC
EF05-516 TTCCTTCGCAGGACACCGATGGCCAGGCGCGAGTCAATAT
EF05-517 TCCTATGGCCGCATCCCTTCAAGGACAAGCTCACAAGAAT

Tbl. 7.: Characterized aptamer sequences from EF05.
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4.2.2.3. Results from workflow selex-blaster

Motif detection was performed on a data set that combined all round files of
SELEX EF05 (R00-R11) by using the workflow selex-blaster, to find the looping
regions responsible for binding.
The workflow reported to have found 14.247 clusters. Tables 8 and 9 show the
top three motif logos for the first 20 clusters. Apparently, some motifs repeated
to some degree in the found clusters. For example the sequence TAATA is
contained in motifs c000007/1, c000008/2, c000011/1, c000012/1, c000014/1,
c000015/2. Bitscore of discovered motifs was lower than expected.
The combined SELEX rounds dereplicated to 913.582 unique sequences, of which
representative sequences were chosen for every mutational family cluster,
resulting in a data set containing 873.737 sequences. The data set was masked
after folding prediction and used to create a similarity graph using BLAST. The
similarity graph created contained 45.169 sequences connected by 69.083 edges.
Only around 5% of the input sequences were retained, probably due to the strict
restrictions imposed by secondary-structure based masking. Clustering was done
using an inflation factor of 1.2 for MCL. MEME (MEME-Suite 5.3.0) was used
on all clusters that had at least 20 sequences (122 clusters).

4.2.2.4. Results from workflow selex-kmer

K-mer-based scoring was performed to estimate binding affinity of sequences, by
using the workflow selex-kmer for 6-mers.
Scores were calculated for every combination of datasets including rounds
R02-R11 and library R00. To avoid overrepresentation of k-mers, the data sets
were dereplicated and filtered to only include representative sequences of
mutational family clusters, similarly as described in the results of selex-blaster.
The selex-kmer workflow returned k-mer based sequence scores for every round
combination. Scores consisted of the overall aptamer score, the lowest and the
highest shifting score. The shifting score was based on 5 consecutive k-mers of
length 6, so a stretch of 10 characters.
Table 10 shows the top 15 sequences chosen using the highest shifting scores of
round R11, and contains sequences with their highest shifting scores for rounds
R2, R5, R8 and R11. Table 11 shows motifs of the top 1000 sequences of R11,
chosen by highest k-mer shifting scores. Motifs 1 and 3 have the consensus
sequences CTCTCT, which is included in aptamer candidate EF05-505. Parts of
motif 3 (consensus sequence AATCATCATG) can be found in EF05-504 (ATCAT) and
EF05-512 (TCATCA).
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Cluster Seqs Motif 1 # Motif 2 # Motif 3 #

c000000 135 113

c000001 121 95

c000002 106 76

c000003 86 53 13

c000004 74 28 20 11

c000005 73 40 15

c000006 71 50

c000007 70 42 8

c000008 67 40 7

c000009 64 43 12

Tbl. 8.: Motifs detected using MEME in clustered data sets of EF05, continued
in Table 9. Motifs of E-value ≤ 0.05 are shown.
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Cluster Seqs Motif 1 # Motif 2 # Motif 3 #

c000010 64 39

c000011 62 35 15

c000012 61 15 13 10

c000013 60 16 24 7

c000014 60 33 11

c000015 59 37 4

c000016 56 24 16

c000017 54 29 14

c000018 52 37

c000019 52 21 15

Tbl. 9.: Continuation of Table 8.
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Sequence R2 R5 R8 R11
GCTGAAAGAGTTACAATGAAAGAGTCCGTCAACATCATCT 14.63 3.47 1.70 3.68
CCTATCCGCGATAACCTCCCGTATCGTGTCTCTCTCTCTC 18.04 4.77 2.23 3.43
ATCCATGAAAATGGTACTGCCATCGGCCCTCTCTCTCTCC 18.70 4.79 2.59 3.43
CTCCATCTACTGTTACGCCGTCTACTGTTATTGCATCATG 16.15 3.59 2.17 3.25
CCCGGCTGAATTTACATCTGGCATGGATTTACATCATCGA 13.85 3.84 2.24 3.19
TGACGTGGCGTATCCCCGCGTAACTATCTCTCTCTCTCGC 16.58 4.47 1.65 3.18
TTCCTCTCTCTTCTATAGTGGAATCAAACAGTAATTAAGA 18.23 4.32 2.44 3.06
CCCGCGTTTCTTCCTCTCTCTTCGCGCACCGTACACGTCT 18.26 4.32 2.44 3.06
GGTTTGCCGCGTTCGGGACCTCTCTCTTCCTGGCACCACG 18.11 4.32 2.44 3.06
TCGTAATCACACGATGCCTCTCTCTTCAGACAACCGGTGT 18.11 4.32 2.44 3.06
CACGTATCAAGGTTTGCCTCTCTCTTCTTAGGCTTGAAAC 18.11 4.32 2.44 3.06
GGAGACTCTTTAATACCTCTCTCTTCGGTTCTGCATGAAT 18.11 4.32 2.44 3.06
ACTAACCACATGTCCTTCCGCATCCTCTCTCTTCAAGGTT 18.11 4.32 2.46 3.06
CCTCTCTCTTCCATCCCCCCACTATTTTAAGACAGGTTTC 18.11 4.32 2.44 3.06
GTACATCACATGGTAGATCCTCTCTCTTCCACGCAAAACA 18.11 4.32 2.44 3.06

Tbl. 10.: Sequences maximizing the k-mer shifting score in the last round R11 of
SELEX EF05.

Motif E-value Sites Width

3.1e-1462 777 15

4.9e-295 108 10

1.1e-061 102 9

Tbl. 11.: Motifs found in the top 1000 sequences maximizing the k-mer shifting
score in round R11 for SELEX EF05. MEME 5.3.3[28] was used in anr-mode to
find motifs.
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4.2.3. SELEX EF07

In contrast to SELEX EF01 and SELEX EF05, SELEX experiment EF07 was
performed to in vitro select species cross-reactive DNA aptamers that bind to
intestinal enterococci. To that end, a toggle-SELEX experiment approach was
used in which four enterococcal species, namely Enterococcus faecalis, E. faecium,
E. durans and E. hirae, served as target cells in alternating rounds of SELEX,
see Table 12. It must be highlighted that after nine rounds of SELEX it was no
longer possible to produce enough ds/ssDNA for further rounds due to severe
concatemer formation during the PCR amplification step (unpublished data). As
a result, ssDNA library R00 and ssDNA pools from round R02-R09 were subject
to next-generation sequencing in order to assess the SELEX pool populations
and to identify potential aptamer candidates.

SELEX Round Target Species
R01 E. faecalis
R02 E. faecalis
R03 E. faecium
R04 E. durans
R05 E. hirae
R06 E. faecalis
R07 E. faecium
R08 E. durans
R09 E. hirae

Tbl. 12.: Targets used in the Toggle-SELEX approach of EF07

4.2.3.1. Results from workflow selex-ngs-prep

In total, 783, 823 sequences were produced and successfully demultiplexed by the
Illumina MiSeq platform (R00, R02-R09). The number of reads per SELEX
round was sufficiently well distributed, indicating that library preparation and
pooling of SELEX samples was performed properly, however, a higher number of
reads was expected. The raw data showed that the Illumina MiSeq was not able
to demultiplex 484, 794 sequences. The plots in Figures 22a and 22b show the
sequencing quality. Figure 22c shows the overall quality after preprocessing, to
show an average quality of around 38. Sequences tended to be of higher quality
than in EF01 and EF05. Just as in EF01 and EF05 a small amount of short
sequences was in the data set. Also, compared to them, EF07 appeared to
contain a lot more long length reads.
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Total reads Share in NGS run Dev. from mean
R0 107638 13.73% 2,62 %
R2 89759 11.45% 0,34 %
R3 89697 11.44% 0,33 %
R4 88914 11.34% 0,23 %
R5 85909 10.96% 0,15 %
R6 96500 12.31% 1,20 %
R7 83246 10.62% 0,49 %
R8 57997 7.40% 3,71 %
R9 84163 10.74% 0.37%

783823 100.00%

Tbl. 13.: Sequenced reads for SELEX EF07 (R0-R9)

Table 14 and Tables 28, 30 and 29 in the appendix show the effect preprocessing
had on the numbers of sequences. Figures 23a and 23b plot the preprocessing
loss. The preprocessing parameters used were identical to the ones of SELEX
experiment EF01, given in 4.2.1.1.
Overall, adapter trimming introduced an average loss of 10.38%, with R09 being
an outlier with 21.14% loss. Quality filtering introduced an average loss of 7.72%,
which was the lowest, compared to SELEX EF01 and SELEX EF05. Average
paired-end read merging loss was low for rounds R00-R05 with 0.33% and started
to increase with R6, rising to 16% in round R9. Therefore, the overall average
loss for paired-end read merging was 4.38%. The loss stemming from random
region length limitations was increasing as well starting with R7 to 3.25% for R9.
The average loss was therefore 0.69%. The average length-limitation loss, when
R7 to R9 were excluded, was 0.30%. The propagation of the error implies that
the problem may stem from the SELEX experiment itself and not from
sequencing.
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(a) Forward Reads (b) Reverse Reads

(c) Preprocessed Reads

Fig. 22: Sequencing quality profiles of EF07 raw and preprocessed reads. Median
quality is plotted as a straight orange line, while the mean quality is plotted as
a straight green line. The background shows a heatmap for the overall quality
distribution. Dotted orange lines show the 25th and 75th percentile of quality.
The straight red line shows the share of considered reads.
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(a) Absolute numbers

(b) Scaled to 100%.

Fig. 23: Loss of sequences after preprocessing steps in EF07.
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Loss at Trimming Filter PE-Merge Length-limit
R0 7.42% 7.23% 0.34% 0.46%
R2 7.77% 7.87% 0.32% 0.25%
R3 7.49% 7.15% 0.22% 0.25%
R4 7.02% 8.27% 0.37% 0.21%
R5 11.56% 7.21% 0.40% 0.25%
R6 7.98% 7.39% 0.71% 0.28%
R7 11.88% 8.12% 4.36% 0.41%
R8 10.32% 8.30% 16.39% 0.88%
R9 21.14% 7.91% 16.31% 3.25%
Avg 10.29% 7.72% 4.38% 0.69%

Tbl. 14.: Share of discarded reads (in %) during every preprocessing step for
SELEX EF07. Shares are taken for the original data set size.

Examination of Length/PE-merging Loss To assess the cause of the
increased loss in the preprocessing the length-restriction script was modified to
publish FASTA-files containing too long and too short sequences. The tool
MEME 5.3.3[28] was used on the data set containing 429 too long sequences of
round R9. MEME found a motif that strongly resembles the used reverse primer
TTGACTAGTACATGACCTCTTGA, which is usually attached only once at the 3 -end of
the sequences. Therefore, MEME was run with a maximum motif length of 23,
and found that in 367 out of 429 sequences the motif was found (87.6%). As the
reverse primer was already cut once in the trimming step, sequences containing
the motif had the reverse primer attached at least twice and were therefore
concatemers. The found motif logo can be seen in Figure 24.
To find the point in time at which the problem emerged, FIMO[80], included in
MEME-Suite 5.3.3, was used to search for the motif in the other SELEX rounds
data sets containing too long sequences. Table 15 shows that starting with
SELEX round R2, one sequence was found to have two additional reverse primers
attached. In R3 three sequences were found to have one additional primer
attached, which were 12% of the discarded sequences in this step. R5 and R6
had an increase to 18 resp. 23 sequences containing primers with 24.7% resp.

Fig. 24: Motif logo of the enriched concatemer of SELEX EF07 round R9.
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Seqs Seqs
>43nt % Motifs

found
Seqs w/
Motif % Motifs

per Seq
R0 107638 11 0.01% 0 0 00.0%
R2 89759 5 0.01% 2 1 20.0% 2.00
R3 89697 25 0.03% 3 3 12.0% 1.00
R4 88914 38 0.04% 0 0 00.0%
R5 85909 73 0.08% 26 18 24.7% 1.44
R6 96500 100 0.10% 33 23 23.0% 1.43
R7 83246 176 0.21% 145 104 59.1% 1.39
R8 57997 177 0.31% 211 130 73.5% 1.62
R9 84163 429 0.51% 565 369 86.0% 1.53

Tbl. 15.: Increase of concatemers containing the motif logo representing the
reverse primer. (Figure 24)

23.0% of all length-wise discarded sequences being concatemers. In round R7 an
increase to 104 sequences (59%) were concatemers, which rose to 130 (73.45%) in
R8, and to 369 (86.01%) in R9.

4.2.3.2. Results from workflow selex-assess

Nucleotide distribution and sequence enrichment in the cell-bound ssDNA pools
of SELEX round R02-R11 were then determined using the workflow selex-assess.
For visualization and simple interpretation, the workflow returns a series of
tables and plots.
Figures 26a to 26c show the distribution of nucleotides at each position of the
40-nucleotide long random region in ssDNA pools of SELEX rounds R2, R5 and
R9. Figure 26d shows the overall changes in nucleotide composition over the
SELEX rounds.
The initial ssDNA library was resequenced for this run, and as described in
SELEX EF01 and SELEX EF05, slightly biased towards sequences with elevated
adenine(29.1%) and reduced cytosine nucleotide bases (22.1%).
Over the SELEX process, the nucleotide distribution changed by an increase of
cytosine- and thymine-rich sequences of 7.6% and respectively 2.7% in SELEX
round R6, to then decrease again (Figure 26d).
In Table 16, the top 25 reads encountered of the last round R09 of SELEX EF07
from the workflow selex-assess are given. The workflow selex-assess revealed that
sequences were enriched over the course of the bacterial whole-cell SELEX EF07.
From SELEX round R05 on, an increased number of sequences with > 10 reads
were detected, while the proportion of unique sequences gradually decreased
(Figure 25). Thus, NGS data confirmed the observations made by qPCR-based
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remelting curve analyses, which suggested a decrease in pool diversity and an
increase of enriched sequences.

Fig. 25: Assessment of SELEX EF07 (R00-R09) in terms of sequence enrichment
and frequency. Sequence enrichment can be observed. The darker a bar, the
higher the replication number of the reads represented by them. Bars are as tall
as the total read count of the sequences in them.
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(a) R2 (b) R5

(c) R9 (d) Nucleotide composition dynamics of EF07

Fig. 26: Nucleotide distributions of EF07 at each position of the 40-nucleotide
long random region of SELEX rounds R02(a), R07(b) and R09(c), as well as
changes in the nucleotide composition in the random regions over the selection
rounds(d).
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Rank Count Random Region
1 1368 GCTATTCGCATCCGGCTGGGTGGCAGGGGGATTGGTAAGG
2 821 GTTTCGGGGGGGGGGGGAACACATTTGTGTAACAAACAGTC
3 626 GGGTGGTGGGTGGGGGGCAAGCTACTTGCCTATTTTCGTA
4 531 CTGAGACGGGTTCAGGGTGTGGTTGGAGGGAATGGGGCTG
5 464 GCGGGGAGAGGCGAAAGAAGCTGGGATGGAAGGGCGTAGG
6 460 TGACACACTTTCCTCAATTGGTACAATCACGTTCATCTCT
7 382 GTTTCGGGGGGGGGGGAACACATTTGTGTAACAAACAGTC
8 363 TTAATCATAATGACAGGGAGGGGGGTGGCGGTCGGCGGGT
9 351 CGAACCATAACCACGCCTAACATCTTCTTATACTCAGCGA
10 333 CGGGGGGTGGCAGCGCGGATACGTTTCCCTGCTTTGTGAC
11 317 AGCTCTTAGTTCGTTCGTACTCGCGGTTGGGGGGGGGCCG
12 280 CCGGCGTTTTTGAGGGGGTGGTGCTTGGGGGAACGGGCCA
13 274 AGCTCTTAGTTCGTTCGTACTCGCGGTTGGGGGGGGGGCCG
14 219 GTTTCGGGGGGGGGGGGGAACACATTTGTGTAACAAACAGTC
15 212 CGATTCATTTGTCAGCCTAATATTCCGAGGGACTAATGCT
16 201 CAAAGTCAAAAGACATACAGGCCGTCTGTACGTCCCTTCC
17 177 TGTATGAGCGGAAACTTCCTAGACCTGCATACAATCGCCT
18 167 TTCGGGGGGGTGGGGAATTCCATTGCTATGGTAGACTAAT
19 163 TACGCTTCGTTCCATTACTGCATGCAATGTACATACCTCA
20 145 TTCCGCAATTAGTTCCCCTAGTTACGCACGTCTAAATGTC
21 142 TACAGGCAGTGACACGACAAAGTATCCTACTTCTCGAGACG
22 141 CTTCAGACCGAAAATATGTGCATGGGGGACTTAATTTTGA
23 130 CCACATACCTGATTTGGTCGAAGTACTGCATGATTCTCCC
24 107 AGGCCTTGTTAAGATATCCTACATGTTTGTGTACTTAGGA
25 101 TGGCGTAACGGGTTGGGGGGGTGAGATATTCTAAGCATCT

Tbl. 16.: Top 25 Reads from last enrichment round of SELEX EF07.

4.2.3.3. Results from workflow selex-blaster

Motif detection was performed on a data set that combined all round files of
SELEX EF07 (R00-R09) by using the workflow selex-blaster, to find the looping
regions responsible for binding.
The workflow reported to have found 7.966 clusters. Tables 17 and 18 show the
top three motif logos for the first 20 clusters. The discovered motifs had a higher
bitscore compared to the ones in SELEX EF05.
The combined SELEX rounds dereplicated to 367.420 unique sequences, of which
representative sequences were chosen for every mutational family cluster,
resulting in a data set containing 357.254 sequences. The data set was masked
after folding prediction and used to create a similarity graph using BLAST. The
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similarity graph created contained 52.999 sequences connected by 125.438 edges.
Compared to SELEX EF05, the share of retained sequences was higher at around
15%. Clustering was done using an inflation factor of 1.2 for MCL. MEME
(MEME-Suite 5.3.0) was used on all clusters that had at least 20 sequences (499
clusters).
graphicx

4.2.3.4. Results from workflow selex-kmer

K-mer-based scoring was performed to estimate binding affinity of sequences, by
using the workflow selex-kmer for 6-mers.
Scores were calculated for every combination of datasets including rounds
R02-R09 and library R00. To avoid overrepresentation of k-mers, the data sets
were dereplicated and filtered to only include representative sequences of
mutational family clusters, similarly as described in the results of selex-blaster.
The selex-kmer workflow returned k-mer based sequence scores for every round
combination. Scores consisted of the overall aptamer score, the lowest and the
highest shifting score. The shifting score was based on 5 consecutive k-mers of
length 6, so a stretch of 10 characters.

Target-specific Shifting Scores An attempt was made to find sequences
which may be specific to E. faecalis by maximizing k-mer shifting scores for that
target and minimizing shifting scores for non-targets (see Table 12). Only
sequences with a score difference below 5 for all targets were considered to
increase confidence in predictions. Target specific scores were calculated for the
remaining 8.870 sequences:

sE .faecalis =
sR2 + sR6

2
− sR3 + sR7

2
− sR4 + sR8

2
− sR5 + sR9

2
− |sR2 − sR6|

The difference between the target is subtracted to discourage too high differences.
Table 19 shows the top 15 sequences ordered by the E. faecalis specific score.
Table 20 shows motifs of the top 1000 sequences of E. faecalis targeted rounds,
chosen using the target specific scores.
Similar analyses have been done for the other targets and are in the appendix. E.
faecium: Tables 31 and 34. E. durans : Tables 32 and 35. E. hirae: Table 33
and 36.
The target specific shifting scores were calculated manually using an R-script.
Target specific score calculation should be done automatically by the pipeline, if
the pipeline is used for Toggle-SELEX, and should therefore be included in
future updates. A summary of the top sequences for every target (in
Toggle-SELEX) should be created.
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Cluster Seqs Motif 1 # Motif 2 # Motif 3 #

c000000 294 26 26 33

c000001 261 19 29 20

c000002 248 49 22 20

c000003 233 47 26 15

c000004 223 59 33 13

c000005 221 46 69 10

c000006 217 97 15 10

c000007 214 70 35 25

c000008 214 39 58 11

c000009 207 75 18 22

Tbl. 17.: Motifs detected using MEME in clustered data sets of EF07, continued
in Table 18. Motifs of E-value ≤ 0.05 are shown.
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Cluster Seqs Motif 1 # Motif 2 # Motif 3 #

c000010 207 35 37 20

c000011 204 42 21 20

c000012 195 36 29 29

c000013 193 100 15 7

c000014 183 24 40 45

c000015 182 72 22

c000016 176 46 41 12

c000017 165 48 26 18

c000018 165 43 39

c000019 161 58 9 17

Tbl. 18.: Continuation of Table 17.
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Sequence E.
faecalis

E.
faecium

E.
durans

E.
hirae

CGAAATGAATTTTATAAAAGTCAATGTTAATTGTTAGAA 2.12 -3.61 -2.44 -3.54
GACAAATGTAGAAATGGCATAGGATTCTGTGAAATCGGAC 1.10 -5.16 -4.21 -3.75
GAACGATTGTAAGGAAATCATGGCAAGCATTTAGATTGAC 0.89 -5.43 -6.10 -7.33
CTGGATGTTACTCGAAAAACAGTGGCCATAATCGTAATCA 0.85 -4.57 -5.15 -5.30
ATTTATTTAGAATATGGAGTGGCCATAAACAAACATGGAC 0.79 -4.69 -4.75 -6.42
CTATGAAAATGTCAAACATGGCAATTACAAACAAATTCGC 0.76 -3.80 -4.20 -5.19
AGCATGTTACAAAGAAATTCAACAGTCGTTTTTATCGTTT 0.75 -3.84 -3.91 -3.31
TATGGGAAAAATCAGTTTTGTGACATCAAATATCAGCACT 0.72 -4.07 -4.88 -6.16
TTAAACAAAGACAAAAGAAAACCCAAAGTGGCCATGGATA 0.71 -4.26 -5.74 -6.37
TAGATCGAATAACATCGTGATAGATTCAACAAGGCATTAT 0.69 -4.50 -2.91 -4.13
CGGACATGGCTTAATATTCAAAACGAATGATTTGGTCTGA 0.69 -4.42 -4.02 -4.41
CCAAAATTACAGTCATGATAATTTAAAAACGGTATTGCTC 0.67 -6.76 -4.99 -6.96
TAGTTGAAATAGGTACAATGTTACCAAATAGTGGCCTAAC 0.67 -3.90 -3.67 -4.02
GATGATACCCAAGACGAAGTCAAACTCGGGAACTCTGAGG 0.65 -3.42 -3.47 -5.04
TCGGTACTATGACATAAATTTAGAAATATTTGTCGAGAGT 0.65 -5.17 -3.17 -4.65

Tbl. 19.: Sequences maximizing the k-mer shifting score for target E. faecalis.

Motif E-value Sites Width

2.2e-150 277 11

2.8e-045 72 8

3.0e-043 130 9

2.4e-039 70 8

6.2e-043 160 8

3.5e-002 31 9

Tbl. 20.: Motifs found in the top 1000 sequences maximizing the k-mer shifting
score for target E. faecalis.
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5. Conclusion and Outlook

Despite big strides in the last decade, the field of SELEX bioinformatics is still in
an early stage of development. There is no ’one-fits-all’ solution as the tools that
can be used strongly depend on SELEX structure and the sought-after results.
In this thesis project, automatic bioinformatic pipelines were developed to
analyse in-house performed bacterial whole-cell SELEX experiments and to
identify potential aptamer candidates. A major advantage of the developed
pipelines over other current tools is the customizability as they can be easily
extended with additional features by adding new processes in the Nextflow
pipeline. The presented pipelines need no user-interaction and make data
analysis results reproducible by using experiment specific configurations.
Moreover, analysis results have proven useful for finding error sources and to
support wetlab work (NGS library prep and SELEX protocols). They have
shown that qPCR-based remelting curve analyses, which is done to check for
enrichment, were also observable in the NGS data. The cause for the concatemer
formation in SELEX EF07 was investigated, and it was shown that concatemers
consisted of SELEX reverse primers.
The established pipelines selex-ngs-prep and selex-assess enable to preprocess
NGS raw reads and assess ssDNA pool populations from various rounds of a
SELEX experiment with regard to nucleotide composition, sequence enrichment
and frequency-based ranking. Furthermore, first steps were made to establish
structure-based clustering (selex-blaster) and k-mer-based aptamer scoring
(selex-kmer) for Toggle-SELEX approaches. The pipeline selex-blaster, which
was adapted from Song M. et al., 2019[41] was developed to perform clusterings.
Compared to the original method, clustering is not done on the full length
random regions, but instead based on looping regions, which were predicted
using RNAfold[3]. Momentarily, selex-blaster could still could use some
optimization due to ambiguity of the results by providing an overview of results
for every cluster. To overcome the current limitations of the single
structure-based clustering, adaptions using soft clustering on structure
ensembles, similar to APTANI[31] and AptaCluster[27], with attention on
looping regions could be implemented to make selex-blaster a feasible option for
future SELEX experiments. The pipeline selex-kmer has shown potential for
analyzing Toggle-SELEX experiments and calculates scores for short sequence
stretches to highlight sequences containing well-enriched nucleotide stretches only

73



in a portion of their sequence. Selex-kmer has shown to be faster and more
robust than the tool it was adapted from (MPBind[39]) and it would be
interesting to add further k-mer-specific enrichment calculations. Both pipelines
selex-kmer and selex-blaster should be benchmarked with other tools using
HT-SELEX data sets including characterized aptamer sequences in the future.
An interesting in silico approach, potentially enabling highly specific aptamer
development, could be to combine single-step SELEX (Hoon et al.,2011[26]) with
differential cell-SELEX (Meyer S. et al.,2013[58], Pleiko et al.,2019[59]), using
multiple targets and target combinations of related bacterial species. Enrichment
would be much smaller, compared to conventional SELEX procedures, thus
biological and technical replicates would be required to make target-specific
enrichment observable on the k-mer level. This could significantly reduce time
investment needed for SELEX experiments and allow for the parallel
development of aptamers specific to a variety of targets.
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A. Appendix

A.1. Nextflow

Nextflow offers a domain specific language to allow for dynamic pipeline
building. Its syntax is based on Groovy, a Java-derived scripting language.
Nextflow can be used to easily combine data driven processes for preparation,
analysis or visualization.

A.1.1. Nextflow Processes

In Nextflow, multiple analysis tasks can be linked using processes with their
input and output channels. The core part of a process is the embedded script.
By default, the script is executed as Bash, however, it is also possible to execute
scripts written in other languages, making it possible to directly embed R or
python in a Nextflow process.
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Input and output channels can be used to direct data to processes in a
pipeline-like way. These channels can contain either files, values, or tuples of
various combinations.
Nextflow processes can be decorated with directives to change their execution
behaviour. Process directives can be used for a variety of process adjustments.
For instance, they can be used to change the number of CPUs to use, the size of
available working memory, time constraints, whether to retry failed processes,
where to publish finished analysis files, or even whether the process should be
executed on a remote cluster computer. The example process A.1 uses a process
directive to create or check for a conda environment containing the bioinformatic
analysis tool ’fastp’ and also allows only for one CPU per process fork.
A process in Nextflow always consists of a unique name, an input channel and a
script part.

1 /**
2 * Example for printing out all text files in the current
3 * directory
4 */
5

6 notes = Channel.fromPath( ’*.txt’ ) // put txt files in channel ’
notes’

7

8 /**
9 * process cat will call the UNIX command ’cat’ to print the

10 * content of every file in the channel ’notes ’
11 */
12 process cat {
13 echo true // print process output to console
14 cpus 1 // use one cpu only
15 maxForks 15 // allow 4 concurrent processes
16

17 input:
18 file note_file from notes
19 script:
20 """
21 cat ${note_file}
22 """
23 }
24

Listing A.1. Rudimentary Nextflow example

A.1.2. Conda Integration

Nextflow workflows offer the possibility of importing required software and
libraries utilizing the package manager conda. Tools and software are installed to
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temporary conda environments by using the conda directive as seen in
Listing A.2. Conda was useful to decrease configuration and installation
overhead.

1 /**
2 * example process using fastp to filter files based on
3 * quality
4 */
5 process fastp {
6 conda ’bioconda ::fastp ’
7 input:
8 file f_raw from fasta_files
9 output:

10 file f_filtered into fasta_files_filtered
11 script:
12 """
13 fastp -i ${f_raw} --average_qual 30 -o ${f_filtered}
14 """
15 }
16

Listing A.2. Conda integration in Nextflow

A.1.3. Configuration and Execution

Nextflow uses a clear text file, called ’nextflow.config’ by default, to save
configuration parameters. Parameters in the config files can be accessed globally
across the pipeline. Using different configurations allows for easy modifications of
the pipeline execution behavior. Configuration files can also be used to define
different execution profiles. Profiles can be used to give different instructions,
depending on whether the pipeline is run on a remote cluster, locally or for
instance with a different number of CPUs. Whole workflows can be run on
cluster computers, as tried on the Vienna Scientific Cluster. Nextflow also offers
the possibility to only run subprocesses in cluster environments, making it
feasible to outsource demanding tasks to more powerful machines.
Before workflow execution can be started, a valid configuration file must exit as
well as all required input files. Workflows can be executed from the command
line using the commands shown in Listing A.3. Nextflow stores temporary
intermediate files in the directory ’work’, which can be deleted after execution.

1 # run pipeline for the first time for SELEX experiment
2 # slx1.
3 nextflow run selex -blaster.nf -config slx1.config
4

5 # continue pipeline from where we left off (e.g. if changes
6 # were made to the script , to not start over).
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7 nextflow run pipeline_name.nf -config slx1.config -resume
8

Listing A.3. Execution of Nextflow Scripts

A.2. Clustering using MCL

The original idea behind the MCL algorithm[40] lies in random walks on
weighted undirected graphs. Nodes represent aptamer sequences, while edges
represent similarity. A walker starts at a random node in the graph, then takes
an edge to walk to another node based on edge weight. The walker walks a
number of steps until it stops and the process is repeated. Clusters are
discovered, as the edges of a family will be traversed more often due to higher
similarity. The MCL algorithm adapts this principle in a flow-like approach,
alternating expansion and inflation steps.

A.3. Motif Detection using MEME

The tool MEME is based on an adaption of the EM-algorithm
(Expectation-Maximization), which is a common method for data clustering. In
the EM-algorithm many similarities to the k-means algorithm are apparent.
However, every cluster’s center point is calculated based on the probability of a
data point to belong to the cluster. Therefore, the EM-algorithm algorithm
performs soft clustering, in which data points are not exclusively assigned to a
cluster.
Lawrence and Reilly[81] have adapted the EM-algorithm to be used for motif
detection on sequences. They assumed every sequence to contain the sought
motif once. As the motif is unknown, a guess is made on the position where it
could be in every sequence. For every found subsequence a probability is
calculated, whether it could be a motif. Based on these subsequences and their
probabilities the motif model is updated. Probability calculations and choosing of
new starting points can be repeated multiple times until the changes in the motif
model are insignificant. In the tool MEME, Bailey and Elkan[82] extended their
algorithm to also work on sequences containing no motifs or multiple motifs.
MEME runs the EM-algorithm for only step, using different motif models as
starting points. Then of these runs, an initial model, maximizing a consensus
score, is chosen. This model is then used to run the EM-algorithm to
convergence. The goal is to move away from local maxima to finding global
maxima.
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A.4. EF01

Remaining Total reads Trimmer Filter PE-merging Length-limit
R0 222414 207355 182569 181940 181085
R2 220753 189641 165524 164799 164375
R4 288262 254650 223738 222910 222376
R5 180032 158700 138215 137660 137374
R6 243162 217638 190697 190007 189599
R7 210076 188977 165381 164818 164497
R8 171799 152033 51980 51714 51532
R9 206774 183250 156120 155443 154969

1743272 1552244 1274224 1269291 1265807

Tbl. 21.: Number of reads of SELEX EF01 round R0-R9 after the various pre-
processing steps.

Discarded Trimming Filter PE-Merge Length-limit
R0 15059 24786 629 855
R2 31112 24117 725 424
R4 33612 30912 828 534
R5 21332 20485 555 286
R6 25524 26941 690 408
R7 21099 23596 563 321
R8 19766 100053 266 182
R9 23524 27130 677 474

191028 278020 4933 3484

Tbl. 22.: Number of discarded reads of every preprocessing step for EF01.
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Remaining Total reads Trimmer Filter PE-merging Length-limit
R0 100.00% 93.23% 82.09% 81.80% 81.42%
R2 100.00% 85.91% 74.98% 74.65% 74.46%
R4 100.00% 88.34% 77.62% 77.33% 77.14%
R5 100.00% 88.15% 76.77% 76.46% 76.31%
R6 100.00% 89.50% 78.42% 78.14% 77.97%
R7 100.00% 89.96% 78.72% 78.46% 78.30%
R8 100.00% 88.49% 30.26% 30.10% 30.00%
R9 100.00% 88.62% 75.50% 75.18% 74.95%

Tbl. 23.: Read share remaining in EF01 after every preprocessing step.

Rank Count Random Region
1 33 TGACTAGTACATGACCATAGGGAAGAGAAGGACATATGA
2 26 GTGGCAGGTTACCCGAGAACCGAACCATACTCTCTCCCG
3 19 GTACAACACCTCAATAAGTCCGCGATAACGCGCAACAGTA
4 11 TTAGCCCCCCGAACCTCACTCACACATCTGCATACACTTT
5 10 CCGAGCTCCTGATGTGACGTCGGACTTCTTGACCACCG
6 9 CGGCCGCCCCAAGTCTCGTATATAGTCCCAACGCCTACAA
7 7 CATCTCCGGCTTGGCACCATCACCCAGACACACCACTAAT
8 7 TAGTTCCAAGGCAGCCCACCCCTACCCTCTCTCGACTCTA
9 7 ACGACACACACCACTCCATCTCCGCCGTCTCCTGCCAGCC
10 7 CACTCTCTCAGAAGCCAGCATCCCGCTCCACCTTTCGCCC
11 7 GCATTTGCGCTTACATCCAACGACTGTATACCTCGGACAC
12 7 CGTGAGCTGCAGTTATCGTTAAACTGGTACCAATTCGTTT
13 7 TGACTAGTACATGACCACTAGGGAAGAGAAGGACATATGA
14 7 TTACCAAATTCTGCACATCACCTCCACACCCGGCCGGCTG
15 7 GGATGAATCAGCGGGGCCGGGTAAGCAGATATGAGGACTC
16 7 CCCCTGTAGTTAGCCCCACACTATCTTGCTCTTTCTCACT
17 7 CATAACCACCGATAGTTTCTTAAGTACCCATCGATTCTTT
18 7 TCGCCATCGAGAACCTGATCATTCGAATTAGCTAAGGAGT
19 7 ACCCCCTGTACCCCCCTCCCAGCCGTAGCACGCCCCATGA
20 7 ACCTTGCATCAATTTACACGGCGACACAATCCCCACCCAA
21 6 GCCCGAGCTCCTGATGTGACGTCGGACTTCTTGACCACCG
22 6 CACCCTCCACGCTAGTACCACCCCACCTCCAGGCTATCCC
23 6 ACCGCCACATACTCACACTATGCCCACGAAACCAACCCTT
24 6 TATCGAAACAACACCCATACACCCAGCCTGATACCAACTC
25 6 TCGTCGTTAACTGAAATTTCCAGCGTTTTGGCAGATGTTG

Tbl. 24.: Top 25 Reads from last enrichment round of SELEX EF01.
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A.5. EF05

Remaining Total reads Trimmer Filter PE-merging Length-limit
R02 342616 307863 235186 234321 233769
R03 330387 304505 231689 230803 230346
R04 258891 239157 183432 182908 182567
R05 251043 217770 164329 163804 163522
R06 299303 266687 206409 205787 205483
R07 253449 222924 172912 172435 172210
R08 308397 277222 206811 206056 205754
R09 247589 213555 161909 161412 161187
R10 317454 290747 224628 223704 223392
R11 339165 306175 238504 237347 237027

2291675 2049683 1562677 1557526 1554838

Tbl. 25.: Number of reads of SELEX EF05 round R02-R11 after the various
preprocessing steps.

Discarded Trimming Filter PE-Merge Length-limit
R02 34753 72677 865 552
R03 25882 72816 886 457
R04 19734 55725 524 341
R05 33273 53441 525 282
R06 32616 60278 622 304
R07 30525 50012 477 225
R08 31175 70411 755 302
R09 34034 51646 497 225
R10 26707 66119 924 312
R11 32990 67671 1157 320

191028 278020 4933 3484

Tbl. 26.: Number of discarded reads of every preprocessing step for EF05.
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Remaining Total reads Trimmer Filter PE-merging Length-limit
R02 100.00% 89.86% 68.64% 68.39% 68.23%
R03 100.00% 92.17% 70.13% 69.86% 69.72%
R04 100.00% 92.38% 70.85% 70.65% 70.52%
R05 100.00% 86.75% 65.46% 65.25% 65.14%
R06 100.00% 89.10% 68.96% 68.76% 68.65%
R07 100.00% 87.96% 68.22% 68.04% 67.95%
R08 100.00% 89.89% 67.06% 66.82% 66.72%
R09 100.00% 86.25% 65.39% 65.19% 65.10%
R10 100.00% 91.59% 70.76% 70.47% 70.37%
R11 100.00% 90.27% 70.32% 69.98% 69.89%

Tbl. 27.: Read share remaining in EF05 after every preprocessing step.

A.6. EF07

Remaining Total reads Trimmer Filter PE-merging Length-limit
R0 107638 99656 91876 91513 91017
R2 89759 82782 75718 75432 75206
R3 89697 82979 76565 76369 76147
R4 88914 82674 75318 74990 74802
R5 85909 75976 69783 69440 69225
R6 96500 88799 81663 80981 80713
R7 83246 73357 66599 62966 62621
R8 57997 52014 47199 37691 37182
R9 84163 66373 59719 45996 43260

699660 638237 584721 569382 566913

Tbl. 28.: Number of reads of SELEX EF07 round R0-R9 after the various pre-
processing steps.
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Discarded Trimming Filter PE-Merge Length-limit
R0 7982 7780 363 496
R2 6977 7064 286 226
R3 6718 6414 196 222
R4 6240 7356 328 188
R5 9933 6193 343 215
R6 7701 7136 682 268
R7 9889 6758 3633 345
R8 5983 4815 9508 509
R9 17790 6654 13723 2736

61423 53516 15339 2469

Tbl. 29.: Number of discarded reads of every preprocessing step for EF07.

Remaining Total reads Trimmer Filter PE-merging Length-limit
R0 100.00% 92.58% 85.36% 85.02% 84.56%
R2 100.00% 92.23% 84.36% 84.04% 83.79%
R3 100.00% 92.51% 85.36% 85.14% 84.89%
R4 100.00% 92.98% 84.71% 84.34% 84.13%
R5 100.00% 88.44% 81.23% 80.83% 80.58%
R6 100.00% 92.02% 84.62% 83.92% 83.64%
R7 100.00% 88.12% 80.00% 75.64% 75.22%
R8 100.00% 89.68% 81.38% 64.99% 64.11%
R9 100.00% 78.86% 70.96% 54.65% 51.40%

Tbl. 30.: Read share remaining in EF07 after every preprocessing step.
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Sequence E.
faecalis

E.
faecium

E.
durans

E.
hirae

TGGTTTATGATACGCGGGAAGTAGGCGTGAAGGATAAAAG -8.98 2.24 -1.48 -0.60
AGACAGAAACGCGAACTAGAGGATATATGGTTATTTGCGA -5.96 2.14 -2.29 -2.13
ATGAAATTAATAACTAGGTAACAAATCGATAGTCGAAGAC -3.75 1.93 -1.66 0.72
TGTGAGAGATGAGTATCGAGAAGGATAAAGTTTTAAGTAA -7.29 1.92 -1.71 -0.92
TCGCAGATATGAAACAATAATGATAAACAATAGCGTGGGG -8.66 1.86 -0.43 0.48
TAGAATTTATAGATTTGAGAACAAGTTGAAAAACGGGAAC -8.84 1.78 0.09 1.14
TTGATATGGAGTAAACCAATAGACTAGTAATAAACCAGC -3.90 1.77 -1.91 -1.22
TGCAAGCACTGAGAGGGACGACATATGGGCATAGTTGT -5.36 1.68 -4.45 -4.67
AAAATGAGATTGGGTAGAAGGTATAACAATAGCAAGTATC -9.68 1.66 -1.14 -1.06
ATAGAACACGCGAGCAGTTTAGATATAAATTGGACATTTC -9.04 1.58 -3.85 -4.78
AAAAACTGCAAACGCGGGTATCGAAAGAGAATAACACAAC -5.94 1.56 -3.27 -1.38
GAGTAGAATGATTAAGAACTGAACGGAATACAATAGTGGC -7.65 1.55 -0.19 0.05
TGGTTAACGCGGCTAGGTACAGGAGTTATAAACAGAGATA -8.46 1.52 -1.14 -0.34
ACTGAAACAACGAGCATATGCAAACAGTTATTTGGAGAAA -5.34 1.51 -3.55 -2.32
GTAAACGTAGGCAAGTAGACTAGAGATGATACAGTAAATA -7.93 1.50 -1.00 1.11

Tbl. 31.: Sequences maximizing the k-mer shifting score for target E. faecium.

Sequence E.
faecalis

E.
faecium

E.
durans

E.
hirae

GATGGGTGGTGTACGGAAAAATAGTTGAAGATGCAAGAGC -10.97 -4.95 2.73 -4.08
CTACATGGATAGGAAAGTTGGTGGTGCAAAGGGATTTACA -10.30 -4.03 2.52 -4.58
ATGCGATATAAGGCCGGAGGTAAAGGCTGGAAGACATAGG -11.07 -3.30 2.19 -2.98
GTGATGGTGGTCGAATAAGAAGTTATTATTAGTTGACTAC -8.97 -3.43 2.16 -3.45
TTCGTTAGGATGATTATGTGGTGGTAAAGGGTAAGAAATT -7.44 -4.32 1.72 -4.89
GATAGCGTATTGCAGGTGAATGTTGGTGGTGGATGAGGTC -7.66 -4.93 1.48 -5.57
GTCAAAGTTTGATTAGGTATGTGGTGGTTTGTGCGAATCT -5.79 -4.67 1.39 -5.03
GCATACGAATAGGAAAGCGATGTGAAGCGAGATAATGTAG -8.67 -0.12 1.36 -0.18
ATAGGTATATGTGAGGTGTGTGGAATTTAAGAATGTTACC -8.82 -2.86 1.33 -3.53
TTTGCGTGAATAAATATTGAAGTGAAGAATGAGTGTAAAG -9.35 0.69 1.29 0.29
GCAAAAGTAAGTGTTAGGAATAAATATAATAAGCTACACA -6.89 0.18 1.29 1.08
ATACGGGTGGTTTGTAAACGATGTAAGCAATGGAACACTC -6.98 -4.02 1.28 -5.19
ATATTTTAAAACAAATTAGTTGGAAACGAGAACCGGGGCA -8.30 -1.61 1.25 -2.56
GGAACTAAGATACCGGAAATATTATAACTAGGGAACCCCA -8.68 -0.64 1.21 -1.53
CGACAATAAAATGGAAGCAATGCAACGGGGTCGGTTGAGA -8.49 -1.60 1.15 -1.20

Tbl. 32.: Sequences maximizing the k-mer shifting score for target E. durans.
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Sequence E.
faecalis

E.
faecium

E.
durans

E.
hirae

GCTAGGATAGAAATTGAATTATTTAATGTACGAGTACAAA -2.67 -0.24 -1.34 2.29
TCGAAGGAATACAAGCGTAAAACGATTAAAAAAAGACGTA -6.15 1.48 0.65 2.07
CATAAAGGTCGAAAGTAGAAGTATATTAAAACAAATTAGC -7.27 0.48 -0.57 1.51
CTAATGAAACGCAATAAGCGAATGTTTAAGATCACGT -4.31 -0.17 -0.77 1.40
GAGAGATATAGGCAAAAGCGGTAAAGAATGTATAGATTTC -8.40 0.59 0.30 1.38
GAAAATAAATGCAAACTGAGTAAAGCAAAGAAGTAAA -6.18 -0.20 -0.77 1.37
GGTAAGAATTTAAGTATATTAGAAGAGTACAACGAAGATC -7.85 0.48 0.14 1.35
CTGCGAGGTATTGAATAGAAGCAAAACAGCTAAAGAACAG -9.49 -0.16 -1.19 1.33
CCAAAACAAGAGTAATGTGAAAGATACGTAGAGGTCCATG -7.35 0.54 0.70 1.15
TAGAATTTATAGATTTGAGAACAAGTTGAAAAACGGGAAC -8.84 1.78 0.09 1.14
GTAAACGTAGGCAAGTAGACTAGAGATGATACAGTAAATA -7.93 1.50 -1.00 1.11
AGTGTAGGGATAGCAAAGGGTATTAGTAGGCAAATTTGGC -8.08 1.31 -1.35 1.10
CGTGCGAAACAAAATTAGATGAAAATGAAGGTCGAACAGG -5.97 -0.50 -1.17 1.09
CGCAGATTTAGTAGGGCCAGAAACAATATAAGGATGTAGG -8.82 -0.41 -0.73 1.09
GCAAAAGTAAGTGTTAGGAATAAATATAATAAGCTACACA -6.89 0.18 1.29 1.08

Tbl. 33.: Sequences maximizing the k-mer shifting score for target E. hirae.

Motif E-value Sites Width

7.6e-018 93 8

Tbl. 34.: Motifs found in the top 1000 sequences maximizing the k-mer shifting
score for target E. faecium.

Motif E-value Sites Width

2.1e-031 135 8

5.8e-012 85 8

Tbl. 35.: Motifs found in the top 1000 sequences maximizing the k-mer shifting
score for target E. durans.

Motif E-value Sites Width

Tbl. 36.: No motifs were found in the top 1000 sequences maximizing the k-mer
shifting score for target E. hirae.
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