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Abstract
In this work, we introduce a novel boundary-conforming mesh-update method
that is particularly designed for problems with large boundary displacements
and topology changes. This method, which we call the surface-reconstruction
virtual-region mesh update method, integrates the virtual region approach and
a surface reconstruction process to handle complex boundary movements. The
virtual region approach allows having an activated and deactivated part of the
mesh, where elements can freely enter or leave the activated domain. Further-
more, the surface reconstruction ensures boundary conformity of the activated
domain. The robustness of the proposed method is shown in two numerical
examples: a variation of the benchmark Poiseuille flow, and the flow simulation
during a closing diaphragm valve. In particular, the diaphragm valve simula-
tion includes large boundary movement, complex geometry, and closing motion.
For this case, both steady and transient simulation results at different closing
conditions are presented.
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1 INTRODUCTION

Many problems in engineering involve moving boundaries or interfaces and topology changes; including for instance
free-surface, fluid-structure interaction (FSI), and problems with imposed motion.

Two major classes of methods have been proposed in the literature: non-body-fitted approaches and body-fitted or
boundary-conforming approaches.1 The first class typically applies an immersed or embedded interface description on a
non-body-fitted mesh; it is also known as interface-capturing approach. In this class, one finds the level-set approach,2
the volume-of-fluid (VOF) method,3 the marker and cell (MAC) method,4 the phase-field method,5 and the immersed
boundary method.6 The second class of methods uses an explicit boundary or interface description, for example, a tracking
approach. In most cases, a boundary-conforming approach is combined with a mesh update method to address the mesh
movement. In particular, this article focuses on this kind of technique, so we will pay special attention to the related
literature.

In order to treat such problems in a boundary-conforming fashion, a variety of approaches are available such as the
arbitrary Lagrangian–Eulerian (ALE) formulation7-9 and the space-time (ST) formulation.10,11 The key idea of ALE is to
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F I G U R E 1 Mesh deformation of a diaphragm valve using a linear-elasticity-based method.

consider mesh velocity and material velocity as independent quantities, such allowing moving boundaries without the
need for the mesh movement to follow the material. In a similar notion, ST employs finite element interpolation for both
space and time, in contrast to only in space, which would be the more common approach. This brings the advantage that
the variational form is written directly over the deformed mesh, thus automatically including the mesh deformation into
the space-time domain.

It is important to note the difference between the domain topology and the mesh topology. The domain topology is
directly related to the shape of the geometry. In contrast, the mesh topology refers to the underlying graph of the mesh. A
change in mesh topology can for example be a result of a modification in the mesh connectivity. In general, any method
that changes the mesh topology requires projection of the solution field between meshes, also called mesh-to-mesh
interpolation, inevitably introducing projection errors.

Such projection errors can be avoided, if a mesh-update method based solely on modifying the mesh vertex position
is used. One type of approach is based on interpolation functions, for instance, the radial basis functions (RBF)12 or a
variation of it.13 The new position of the mesh nodes is obtained by interpolating the displacements of the boundary
nodes to the whole mesh. It should be noted that a small system of equations, only involving the boundary nodes, has to
be solved and no mesh-connectivity information is needed.

Another way for obtaining the updated mesh is by solving a partial differential equation (PDE). Different PDE-based
approaches can be found in this category, as a review, see References 14-20. A commonly used PDE-based method
relies on solving the elasticity equation, first introduced for the linear case,21 and later extended to the nonlinear case.22

Vertex-displacement-based methods generally support a wide range of boundary or interface motions, and they are
computationally efficient since the mesh topology is preserved. However, one observes significant differences in their per-
formance, mainly regarding computational cost and accumulated distortion. An interesting comparison of some of the
aforementioned methods can be found in Reference 20.

Although vertex-displacement-based methods are widely used, they can still fail even for simple motions like large
rigid body translation and rotation. Furthermore, large boundary displacements can easily lead to high mesh distortion
and invalid meshes. Some elements can be undesirably stretched or compressed, which adversely affects the accuracy
and stability of the numerical formulation. An example of the mesh deformation using a linear-elasticity-based method
is shown in Figure 1.

Therefore, when it comes to large deformations in a boundary-conforming method, one needs more than simply
vertex-displacement-based approaches. The most general solution is to perform a global or local remeshing. Examples
can be found in References 23-25. The mesh is deformed as much as possible, and when the mesh quality deteriorates, the
domain is globally or locally remeshed. Every time a new mesh is generated, a mesh-to-mesh interpolation is required. In
general, projection between meshes tends to be computationally expensive for three-dimensional meshes. However, the
main downside is that projections introduce inaccuracies to the numerical solution.

A way to overcome this issue is by applying a specific mesh update method suitable to a particular application
or mesh movement. For instance, the shear-slip method (SSMUM)26 has been developed for large mesh translation
and rotation. The SSMUM method has been applied to problems with large, but regular mesh displacements, mainly
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2052 GONZÁLEZ et al.

rotation, for example, blood pumps.27,28 In particular, this approach splits the mesh into static and moving subdomains.
The subdomains are connected by a thin layer of structured elements, a so-called shear-slip layer. A modification of the
mesh connectivity is applied only within the shear-slip layer and only if the element distortion exceeds a certain thresh-
old. Later, this approach was extended to problems with large mesh translation by the virtual-ring shear-slip method
(VRSSMUM).29 The main difference to SSMUM is that the moving subdomain is equipped with two new concepts, the
virtual ring and the virtual region. The virtual ring approach is responsible for connecting the “inlet” and “outlet” of the
subdomain in a more abstract space, accounting for the periodicity of an object. The virtual region approach introduces
the concept of having an activated and a deactivated part of the mesh. The virtual region approach is explained in detail
in the following sections. An extension of VRSSMUM is the phantom-domain method,30 which reuses only the concepts
of the virtual ring and virtual region. Since the shear-slip feature of the original SSMUM method is not considered, the
mesh topology is preserved during the simulation. Furthermore, this method is coupled with the linear elasticity method
to address non-regular nodal displacements of the mesh. The phantom-domain method was successfully applied to FSI
problems involving large mesh translation.30

Another option for addressing large rotating domains is by sliding mesh techniques.31,32 Sliding-mesh methods
are based on the coupling of surfaces, usually enhanced by using high-order interpolation functions, for example,
non-uniform rational B-splines. In general, the mesh topology of each subdomain is preserved, the interface between
subdomains is coupled, and the motion can be either imposed or computed using FSI.

Another mesh update technique called Snapping Reference Mesh Update Method (SRMUM) was presented in Ref-
erence 33. The SRMUM method has been applied to the flow simulation of the plastic melt inside single-screw33,34

and twin-screw extruders.35 In general, SRMUM is a method designed to handle intertwined rotating objects, which
makes this method suitable for screw extruder simulations. The mesh topology is preserved, and the nodal posi-
tions are updated by using an algorithm based on only algebraic operations, making this approach computationally
efficient.

In Reference 36, the space-time interface-tracking with topology change (ST-TC) method is introduced. This approach
incorporates a special master-slave system that allows element degeneration and maintains the original mesh connectiv-
ity. In particular, elements can collapse and then can be set apart; thus, it makes it possible to represent the contact of
surfaces and opening and closing motions. This mesh update technique requires the functionality of excluding collapsed
elements from the integration of the equations. The ST-TC method has been applied to, for example, the FSI analysis of
a heart valve.37

More arbitrary large mesh displacements can be handled by applying local mesh modifications, see References 38-43.
This kind of approach applies local mesh optimizations in the vicinity of poor-quality elements, but overall tries to pre-
serve the mesh topology of the initial mesh. Common local mesh optimization includes vertex insertion or removal, edge
and face swapping or splitting, connectivity change, and vertex smoothing. Since the mesh topology changes with these
operations, solution field projection is required for the modified elements.

The particle finite element method (PFEM)44,45 offers an option to handle large mesh displacements by an efficient
remeshing technique. This method exploits the Lagrange framework for the description of the motion, and the mesh
nodes are treated as physical particles. To avoid generating a completely new mesh, PFEM keeps the vertex position, and
only a new connectivity is generated. Another important feature is that mesh-to-mesh interpolation can be avoided when
nodal variables are used. However, changing the mesh topology can still affect the convergence or the accuracy of the
numerical solution.

The time-continuous simplex space-time (C-SST) method46-48 has been introduced to study flow problems with mov-
ing domains, including opening or closing motions. In case of prescribed motion, the deformation of the domain is already
included within the space-time mesh, so no mesh update method is required. The C-SST shows advantages regarding
parallelization since the decomposition of the mesh is performed in both space and time.

This work introduces the surface-reconstruction virtual-region (SR-VR) mesh update method. This method is
designed to handle large boundary displacements, including opening or closing motions. The concept of the virtual
region29 is reused here. Furthermore, the approach is enhanced by a surface reconstruction, which is based on the Steiner
constrained Delaunay triangulation (Steiner CDT). The mesh topology changes only in a single layer of elements con-
nected to the virtual region boundary, so that complex surface movement can be achieved. We use the framework of
stabilized space-time finite element, but the SR-VR method is not limited to only this kind of discretization. The robust-
ness of the proposed method is shown in two numerical examples: a Poiseuille flow in a moving channel, and a 3D
simulation of the closing of a diaphragm valve. The steady and transient simulations show the potential of using a proper
mesh update method to study this complex industrial problem.
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GONZÁLEZ et al. 2053

The article is structured as follows: In Section 2, the governing equations and discretization are described. In
Section 3, the proposed mesh update method is introduced. The numerical results are presented in Section 4, where two
aforementioned cases are studied. Finally, the concluding remarks are given in Section 5.

2 GOVERNING EQUATIONS

An incompressible viscous fluid is governed by the Navier–Stokes equations:

𝜌

(
𝜕u
𝜕t
+ u ⋅ 𝛁u

)
− ∇ ⋅ 𝝈 = 𝜌b on Ωt, ∀t ∈ (0,T), (1)

𝛁 ⋅ u = 0 on Ωt, ∀t ∈ (0,T), (2)

where u and p are the velocity and pressure, respectively; b collects the body forces, and 𝜌 is the density.
The system of equations is subjected to initial conditions as well as boundary conditions of the Dirichlet and Neumann

type, respectively written as:

u = u0 on Ω0, u = g on Γg, n ⋅ 𝝈 = h on Γh, (3)

where Γg and Γh are complementary parts of Γ.
For Newtonian fluids, the stress tensor is defined as 𝝈 = −pI + 2𝜂𝜺(u)where the rate of strain tensor is 𝜺(u) = 1

2
(𝛁u +

𝛁uT), and 𝜂 the dynamic viscosity.
The discretization of the governing equation in space and time is based on the deforming-spatial-domain/stabilized

space-time finite element formulation.10,11 This formulation constructs the weak form on a space-time domain; therefore,
the deformation of the spatial domain over time is naturally incorporated into the formulation. More details can be found
in References 49 and 28.

3 MESH UPDATE METHOD

This section presents the implementation of the SR-VR mesh update method, which is suitable for problems with complex
topology changes and large movement of boundaries.

This method reuses the virtual region concept of having an activated and deactivated portion of the mesh, where ele-
ments can freely enter or leave the activated domain. This idea was first introduced in Reference 29 and then extended
to FSI problems.30 In the works mentioned above, the mesh domain was subject to a high translational motion. In par-
ticular, the virtual region boundary Γvr is defined as a flat surface that stays fixed during the simulation, and the large
displacement was applied to the background mesh.

The proposed method is focused on a more complex movement of the virtual region boundary Γvr on unstructured
tetrahedral meshes, including large translation and opening or closing motions.

It is important to mention that although a space-time formulation is used, the SR-VR method is not limited to this
kind of discretization. For instance, the method can be applied to a semi-discrete approach, that is, ALE formulation,
with appropriate modifications.

3.1 Surface-reconstruction virtual-region method (SR-VR)

The method starts by defining an activated domainΩA with respect to the mesh domainΩM asΩA ⊂ ΩM . The complement
is the deactivated domain ΩD = ΩM ⧵ΩA. Furthermore, the virtual region surface Γvr = ΩA ∩ ΩD divides both domains
ΩA and ΩD, see Figure 2A. Note that Γvr is embedded in an arbitrary position of ΩM , so there is no requirement for Γvr
to match the background mesh. In this case, a surface reconstruction is applied to ensure boundary conformity on the
activated domain ΩA. It is important to also mention the subdomain of ΩM formed by only activated elements Ωin

A , and
the triangulated domain Ω . Both domains are key pieces of the method, and a detailed description will be given in the
following paragraphs.
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2054 GONZÁLEZ et al.

(A) (B)

(C) (D)

(E) (F)

(G)

F I G U R E 2 Surface reconstruction process: (A) Mesh domain ΩM , activated domain ΩA, deactivated domain ΩD, and virtual region
boundary Γvr . (B) Side view of ΩM , Γvr , tolerance 𝛿, and activated elements domain Ωin

A . (C) Full view of Ωin
A . (D) Activated elements surface

mesh Γin
A . (E) Surface mesh Γin

A projected onto Γvr . (F) Surface mesh = Γin
A ∪ Γvr ∪ Γl. (G) Final mesh in the activated domainΩA = Ωin

A ∪ Ω .
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GONZÁLEZ et al. 2055

The concept of activation refers to the fact that during the assembly of the equation system, only the contribu-
tion of activated elements is added to the system, whereas deactivated elements are skipped and do not provide any
contribution.29

Generally, the surface reconstruction process can be broken down into the following steps:

1. Set up the node and element activity distribution.
2. Define the activated surface mesh Γin

A .
3. Project Γin

A onto Γvr.
4. Smooth Γvr.
5. Define the surface mesh  from Γin

A , Γvr, and Γl.
6. Triangulate  by the Steiner CDT.
7. Connect the activated domains ΩA = Ωin

A ∪ Ω .

Figure 2 shows all the steps of the surface reconstruction. The first step is to set up the node and element activity
distribution. In particular, a node is activated if it is located inside the activated domain ΩA. Furthermore, solely for the
node activation, the position ofΓvr is relaxed by a tolerance 𝛿 to avoid activating nodes very close toΓvr that can end in badly
shaped elements. Next, the element activity is set up. Particularly, elements inside the activated domain are activated, that
is, all elements with completely activated nodes. As a result, the domain formed by only activated elementsΩin

A is defined.
Figure 2B shows the side view of the ΩM , where the virtual region surface Γvr and the surface including the tolerance

𝛿 are represented by the solid and dashed red lines, respectively. The domain Ωin
A that contains all activated elements is

also shown. A full view of Ωin
A is shown in Figure 2C.

The second step is to identify the activated surface mesh Γin
A , which is obtained from Ωin

A . Note that Γin
A is defined as a

simplicial complex, that is, vertices, segments, and facets. To ensure a consistentΓin
A , we check for invalid element faces. In

general, an invalid element face is a face that, after projecting its nodes into Γvr will form a collapsed or negative facet. In
particular, the normal vector of an element face ni and the normal of the virtual boundary nvr are used to deactivate invalid
elements. It is important to mention that nvr is defined pointing outward from the activated domain. Thus, elements with
faces normal ni oriented in the opposite direction to the virtual boundary normal nvr are deactivated, that is, ni ⋅ nvr ≤ 0.
If an element onΩin

A is deactivated by this procedure,Ωin
A needs to be recomputed. Once no new elements are deactivated,

a consistent Γin
A has been created, since all facets are oriented in the same direction of Γvr. Figure 2D shows the activated

surface mesh Γin
A resulting from the Ωin

A .
The next step is to project the surface mesh Γin

A onto Γvr. In particular, vertices on Γin
A are unidirectionally projected on

Γvr, as shown in Figure 2E. Although unprojectable faces were already deactivated in the previous step, the vertex projec-
tion can still lead to badly shaped facets on Γvr, and consequently, poor quality triangulated cells. Thus, a surface-mesh
smoothing scheme is performed on Γvr vertices to improve the quality of facets. Particularly, a weighted angle-based
smoothing scheme is applied in this work. The vertex position on the boundary of Γvr is constrained, so the smoothing
only modifies the position of the inner vertices of Γvr. It is important to mention that smoothing schemes that modify the
connectivity of Γvr can also be applied, for example, area-based smoothing. The only requirement is that the boundary of
Γvr remains unchanged, so it maintains the exact shape of Γin

A . For more details about the smoothing approach and the
library used, see References 50 and 51.

Once the surface meshes Γin
A and Γvr are set up, we proceed to define the lateral surface Γl, as shown in Figure 2F. Γl

is formed by quadrilateral facets generated by using only Γin
A and Γvr boundary vertices.

Then, the union of the three aforementioned surfaces Γin
A , Γvr, and Γl, form the surface  = Γin

A ∪ Γvr ∪ Γl, which is
a piecewise linear complex. The domain enclosed by  is denoted as Ω , which is the domain to be triangulated. A
triangulation  of  is a simplicial complex that decomposes Ω into a simplicial mesh.

In particular,  is a non-convex hull, so the standard Delaunay triangulation cannot be applied. Instead, the Steiner
CDT is used to triangulate  .52 A Steiner CDT is a triangulation of  ∪ S, where S is an additional set of vertices added
to it, known as Steiner points. Adding Steiner points to the CDT has three main purposes: creating a valid  , recovering
the boundaries of a CDT, and improving the mesh quality of  .

The Steiner CDT algorithm introduced in Reference 53 allows for constrained boundaries of  by recovering facets
and reallocating Steiner points. This algorithm is essential for the SR-VR method since the mesh topology on Γin

A cannot
change during the triangulation. In other words, the mesh faces on Γin

A and the surface facets of Γin
A must be topologically

equivalent. It should be noted that the Steiner CDT algorithm adds Steiner points only insideΩ , and not on the facets of
Γin

A , so Γin
A remains unaffected. The implementation of the Steiner CDT algorithm used in this work is the one provided

by the TetGen library, version 1.6.0. For more details, see Reference 54.
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2056 GONZÁLEZ et al.

It is important to mention that an additional mesh on Ωadd is defined, such that Ω ⊂ Ωadd. This additional mesh
works as a mesh reservoir for the triangulated mesh  on Ω . Thus, the main mesh domain ΩM remains unchanged. In
most cases, the triangulation  is only a single layer of elements that conforms to the boundary Γvr, so Ωadd is notably
smaller thanΩM . Note also that elements onΩ are activated, whereas the remaining unused elements onΩadd ∩ Ω are
deactivated.

Once the mesh of Ω is generated, both meshes Ωin
A and Ω are connected. The connection of both meshes is per-

formed by updating the connectivity of Ω elements located on the boundary Γin
A . Note that the connectivity of ΩM

remains unchanged and only the connectivity of elements of Ω changes. Finally, the mesh on the activated domain is
ΩA = Ωin

A ∪ Ω , as shown in Figure 2G.

Remark 1. In general,  only changes when the SR-VR method is performed, and this happens as frequently as required.
Once SR-VR is performed, no information of the solution vector of the previous time step is available for nodes on  , so
interpolation of the solution vector is required. Particularly, not all nodes on  need interpolation, only Steiner points
and those located on Γvr.

Remark 2. The SR-VR method is performed on space domains only. In particular, for space-time formulation, the mesh
update method is performed on the upper-level space-time slab. Then, the mesh information, that is, coordinates and
connectivity, is transferred to the lower-level space-time slab. In the case of moving domains, the coordinates on Γvr are
adapted according to the movement of Γvr.

Remark 3. Regarding parallelization, all triangulation operations are computed in a single partition, and afterwards, the
new connectivity information is shared with the partitions that contain mesh information ofΩadd. Generally, such sequen-
tial operations reduce parallel efficiency. However, the effect is not significant since the domain where they are applied is
just a small portion of the entire mesh. We notice that the time required by the mesh update method is considerably less
than that of the linear system solver

Remark 4. The total number of nodes and elements are those that belong to both meshes ΩM and Ωadd, and do not
change during the simulation. This is particularly important in a multiprocessor environment since the mesh partitioning
is performed only once before the simulation starts. However, updating the mesh connectivity still requires updating
the communication information among processors during runtime. Note also that the implementation of the method is
independent of how both meshes are partitioned. Yet, the communication is more efficient when the number of partitions
with information of Ωadd is minimal.

Remark 5. In general, the tolerance 𝛿 depends on the mesh size where Γvr is located. We notice that the triangulation can
fail only in some particular cases where 𝛿 is not defined. One can still find poorly shaped elements for small and large
values of 𝛿, but as long as 𝛿 is defined, a valid triangulation is obtained. In particular, a value of half of the element size
was chosen in our simulations since it gave the best mesh quality.

4 NUMERICAL RESULTS

4.1 Poiseuille flow

A variation of the Poiseuille flow, including a moving domain, is investigated to validate the proposed approach. The
moving domain is obtained by adding a constant motion on one of the lateral walls. Consequently, this wall is pushing
fluid in one direction as a piston would do. A fully developed Poiseuille flow is expected at the outlet of the channel. A
sketch of the problem is shown in Figure 3A. The activated ΩA and deactivated ΩD domains are shown, where the mesh
domain is ΩM = ΩA ∪ ΩD. Γvr is positioned at a distance Δx from the left wall, and it moves at a constant speed U. The
bottom and top walls are split into a slip and no-slip boundary condition, as shown in the figure. On Γoutlet, a traction-free
boundary condition is imposed.

The analytical solution of the flow in the channel is a parabolic velocity profile:

ua(y) =
6Q
H3 y (H − y) , (4)

where Q = UH is the flow rate, and H is the height of the channel.

 10970207, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7200 by R
w

th A
achen H

ochschulbibliothe, W
iley O

nline L
ibrary on [04/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GONZÁLEZ et al. 2057

(B)(A)

F I G U R E 3 Poiseuille flow: (A) Dimensions, boundary conditions, and activated domain. (B) Structured tetrahedral mesh.

F I G U R E 4 Velocity flow field when Γvr is positioned at Δx = 0.5.

The following parameters are used in the simulation: U = 1, H = 1, L1 = 1.5, L2 = 5, viscosity 𝜂 = 0.1, and density
𝜌 = 1. It is important to mention that the geometry is chosen long enough to obtain a developed Poiseuille flow at the
outlet.

The time step is chosen according to a Courant number C ≈ 0.2, computed with respect to the inflow fluid velocity U
and the longitudinal element size.

The initial condition is the steady solution of the whole mesh, that is, Δx = 0. Then, the unsteady simulation starts,
and the Γvr moves from Δx = 0 until a steady-state of the moving mesh is reached, which happens for values close to
Δx = 0.7.

A structured tetrahedral mesh ΩM is used, as shown in Figure 3B. A single element layer is considered in the depth
direction. The element shape is defined by an aspect ratio of 5 between the longitudinal and transverse element size. The
additional mesh Ωadd described in Section 3.1 is not presented, but consists of 2% of elements of ΩM .

Figure 4 shows the velocity field for Γvr positioned at Δx = 0.5. Three states of the fluid can be visualized: a constant
velocity profile, a transition flow once the boundary condition changes to no-slip, and a developed parabolic velocity
profile at the outlet.

A mesh-convergence study is performed, and the maximum absolute difference max(|u − ua|) between the velocity
on Γoutlet and the analytical solution (4) is computed. Figure 5 shows the results of the maximum absolute error once the
steady-state of the problem is reached at different dimensionless transverse element sizes h∗ = h∕H. The convergence
analysis shows that the error decreases quadratically with the mesh size.

4.2 3D diaphragm valve simulation

This section shows the result of the steady and the transient simulation of a diaphragm valve. The same geometry, mesh,
and fluid properties are used for both cases. It is important to mention that the SR-VR method allows using the same
mesh in all simulations. Thus, creating meshes for different opening positions is avoided.

An incompressible viscous fluid with viscosity 𝜂 = 0.01Pa s and density 𝜌 = 1000 kg∕m3 is considered. The flow is
defined by a Reynolds number Re ∼ 200 based on the channel diameter and the maximum inlet velocity.

A sketch of the problem is shown in Figure 6. Dimensions are presented in Table 1. The geometry is based on
Reference 55. The opening distance of the diaphragm l varies from 0 to 15 mm, being closed and fully open, respectively.
The diaphragm, represented by the virtual region boundary Γvr, is shown in its half-open state. The figure also shows the
activatedΩA and deactivatedΩD domains, where the mesh domain isΩM = ΩA ∪ ΩD. The additional meshΩadd described
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2058 GONZÁLEZ et al.

F I G U R E 5 Mesh convergence study: Maximum velocity difference at different element sizes.

F I G U R E 6 Diaphragm valve: Dimensions, boundary conditions, and activated domain.

T A B L E 1 Diaphragm valve dimensions in mm.

L D Du H l e

100 20 50 20 0–15 6

in Section 3.1 is not shown, but consists of 8% of the number of elements on ΩM . The activated domain ΩA is enclosed
by the virtual region boundary Γvr, the inlet Γinlet, the outlet Γoutlet, and the remaining wall boundaries Γw.

On Γoutlet, a traction-free condition is imposed. For internal flows in channels, an inflow velocity profile is typically
imposed. Here, this is not possible due to the unknown behavior of the flow rate during the closing process. Therefore, a
mixed boundary condition is imposed on Γinlet instead. This condition prescribes a zero Dirichlet tangent and bitangent
velocity, and an inhomogeneous Neumann traction in the normal direction, as follows:

u ⋅ t = 0 on Γinlet, n ⋅ 𝝈 ⋅ n = h ⋅ n on Γinlet. (5)

Note that the normal component of the strain rate tensor is small on the inlet boundary, so the magnitude of the trac-
tion vector is close to the pressure value on the inlet, that is, h ⋅ n ∼ pin. It is important to mention that for all simulations,
the inlet pressure shows variations no larger than 5%, and a parabolic profile is recovered for steady problems. There-
fore, by using this mixed boundary condition, a pressure pin can indirectly be imposed, and a consistent inflow velocity is
obtained. Furthermore, a pressure value close to zero pout ∼ 0 can be found on the outlet due to the traction-free condition.
Consequently, a constant pressure drop Δp is obtained. In particular, pin = 5.7 Pa is used in all simulations.
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GONZÁLEZ et al. 2059

F I G U R E 7 Diaphragm valve: Exact position of the diaphragm at two opening positions, fully open and closed.

F I G U R E 8 Diaphragm valve: Example of the surface reconstruction of the half-open valve position. (A) Main mesh ΩM and
diaphragm position Γvr (red); (B) elements inside the activated domain Ωin

A and the domain that needs to be triangulated Ω (cian); (C)
triangulated mesh on Ω ; (D) mesh of the activated domain ΩA = Ωin

A ∪ Ω .

On the moving boundaryΓvr, we imposed a no-slip condition for steady cases and the mesh velocity for unsteady flows.
The mesh velocity is computed from the Γvr position. Finally, a no-slip boundary condition is imposed on the remaining
walls Γw.

In Figure 7, the exact position of the fully open and closed diaphragm valve is shown. These two states are the initial
and the final ones, respectively. Since the simulations required intermediate times, a Lagrange cubic interpolation in time
is used. In general, cubic interpolations require four evaluation points. So, for simplicity, we just duplicate the initial and
final curves at equal times. In addition, a cubic interpolation offers a smooth derivative interpolation; in other words, a
smooth mesh velocity on Γvr is imposed.

As example, the surface reconstruction of the diaphragm on a half-open position of the valve is shown in Figure 8.
In particular, a slice of the half of mesh on the plane x-y is presented. The four different states of the mesh during the
process are shown at each subfigure: the main mesh ΩM , the portion of the mesh inside the activated domain Ωin

A , the
triangulated mesh on Ω , and the mesh of the activated domain ΩA = Ωin

A ∪ Ω .
An inside view of the mesh is shown in Figure 9. A view of a fully open, half-open, and closed diaphragm valve is

presented in Figure 9A–C, respectively. Note that one layer of elements remains in the closed position since no flow is
possible through a single layer. The mesh is an unstructured tetrahedral mesh with a refinement on the region where
the diaphragm moves. In particular, element sizes of h = 0.5 and h = 1 mm are used in the fine and coarse mesh zones,
respectively. For comparison with the Poiseuille mesh convergence study, we compute the dimensionless element size
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2060 GONZÁLEZ et al.

F I G U R E 9 Diaphragm valve: Inside view of the mesh at three different opening positions of the valve, (A) fully open, (B) half-open,
and (C) closed.

(A) (B)

(C) (D)

F I G U R E 10 Diaphragm valve: Effect of the smoothing technique on the mesh quality of the triangulated mesh Ω . Analysis of the
half-open positions of the valve; top view of mesh (A) without smoothing and (B) with smoothing; histogram of the mesh element quality at
(C) small aspect ratios and (D) large aspect ratios.

h∗ = h∕D with respect to the valve diameter D. Here, the fine dimensionless element size is h∗ = 0.025. This value is in
the middle of all element sizes studied in the Poiseuille flow test case. The mesh consists of 781,356 elements and 147,792
nodes. The mesh decomposition is computed with ParMetis56 and includes 336 partitions, of which 30 belong to Ωadd.

A smoothing step was mentioned when explaining the surface reconstruction process in Section 3. Here, a brief dis-
cussion of the effect of using a smoothing technique on the mesh quality of the triangulated part on Ω is presented. As
an example, the half-open valve position results are shown in Figure 10. There is no unique way to measure the mesh
quality. In this work, the tetrahedron quality is quantified by the aspect ratio, defined as the ratio between the longest
edge and the shortest height. A top view of the mesh showing the element aspect ratio without and with smoothing is
presented in Figure 10A, B, respectively. When both figures are compared, the mesh quality improvement is visible when
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GONZÁLEZ et al. 2061

T A B L E 2 Mesh quality over time; average aspect ratio and average of maximum values.

Aspect ratio on 𝛀 Average Average of max.

Without smoothing 1.65 87.8

With smoothing 1.51 21.4

Aspect ratio on ΩM 1.33 4.62

smoothing is applied. Furthermore, it is even more evident by coloring a range of small aspect ratios. Figure 10C, D show
the histogram of the mesh element quality for different aspect ratios. The histogram of small aspect ratios confirms the
visible improvement mentioned before. Although a slight difference is shown for small aspect ratios, there is a consid-
erable effect on large aspect ratios. While the number of elements suddenly dropped at an aspect ratio close to 20 when
smoothing is used, without using smoothing, the values continue until 100. Thus, the number of elements with large
aspect ratios can be drastically reduced by using a smoothing technique. It is important to mention that even though only
the half-open valve position is presented in this example, the same behavior is seen at any other valve opening position.
The average aspect ratios over time among all valve opening positions are shown in Table 2. In particular, for elements on
the triangulated meshΩ , the average aspect ratio and the average of the maximum aspect ratios are shown. For compar-
ison reasons, the average values of the main meshΩM are also presented. The average values show the same pattern as the
example introduced before: a considerable reduction of the maximum aspect ratios can be achieved by using a smooth-
ing technique. However, when they are compared with the values of the main mesh, higher aspect ratios are obtained.
Despite this, the aspect ratios still lie within an acceptable range of values.

4.2.1 Steady simulation

For this section, the steady version of the Navier–Stokes equations (1) and (2) are solved on a static mesh. The SR-VR
method is applied to the original mesh to conform Γvr to a fixed position at a particular opening position of the valve. The
same mesh is used in all cases and only the position of Γvr changes.

As a means of comparison, we relate the fixed-position valve to piping systems. These are subject to energy losses of
two kinds, friction loss and minor loss. The first one is due to the fluid friction along the pipe, and the second is due to
pipe components. In particular, the minor energy loss in a valve is defined by the loss coefficient K:57

K =
Δp

1
2
𝜌V 2

, (6)

where Δp, V , and 𝜌 are the pressure drop, the average velocity in the pipe, and the fluid density, respectively.
In Figure 11, the loss coefficient K and the flow rate (%) is shown for different valve openings. Each dot corresponds to

a static simulation with a fixed valve opening. The flow rate is computed as a percentage of the fully open valve flow rate.
Note that for openings less than 10%, the flow rate decays to values close to zero. We notice that the element size has a
significant influence at low openings. Further simulations with finer meshes should be considered for studying openings
less than 10%. Regarding the loss coefficient, it drastically increases at openings of less than 40%. High loss coefficient
values at openings of less than 30% are not shown.

4.2.2 Transient simulation

For the transient simulation, the movement of the diaphragm is included. The SR-VR method is applied on Γvr to ensure
boundary conformity during the closing of the valve. Five different closing times are considered, that is, 0.5, 1, 2, 5, and
10 s.

The results of the inflow, outflow, and the average flow rate are shown in Figure 12. As a reference, the results of the
static valve are also plotted. The average flow rate is computed from the inlet and outlet flow rate values. The movement
of the diaphragm pushes fluid with it; this additional flow rate in the system causes variations in the flow rates at the inlet
and outlet. In particular, these variations can produce backflow at the inlet. The fastest closing time, that is, 0.5 s, shows
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2062 GONZÁLEZ et al.

F I G U R E 11 Steady diaphragm valve: Loss coefficient and flow rate (%) at different opening.

F I G U R E 12 Unsteady diaphragm valve: Inflow, outflow, and average flow rate (%) at different opening position of the valve. Results of
different closing times are plotted with lines, and results of the static simulation are plotted with dots.
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GONZÁLEZ et al. 2063

F I G U R E 13 Unsteady diaphragm valve: The 3D streamlines (left) and the midsection velocity field (right) are shown for a closing time
of 10 s (slow) at four different opening positions: (A,B) 90%, (C,D) 60%, (E,F) 30%, and (G,H) closed.

the most significant influence on the inlet and outlet flow rates, exhibiting a variation of 60% for a fully open valve. In
contrast, a closing time of 10 s is closer to the static solution. Even though more significant variations are found at the inlet
and outlet flow rates, the average flow rate shows only small ones. Overall, the same flow rate behavior can be considered.

In Figure 13, the 3D streamlines and the mid-section velocity field for a closing time of 10 s at different opening
positions of the valve are shown. The plot is enhanced by streamlines, and the velocity profile at the inlet and outlet
is also plotted. In general, all the inlet velocity profiles are parabolic with different maximum velocities depending on
the opening position of the valve, except for the fully closed valve, where a small backflow component is found. The
streamlines show that the main flow comes from the inlet, and the influence of the moving diaphragm is low.

The 3D streamlines and the mid-section velocity field are also shown in Figure 14, but for a closing time of 0.5 s. An
essential difference in the flow field is found for this fast-closing valve. The streamlines show that the flow rate caused
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2064 GONZÁLEZ et al.

(A) (B)

(C) (D)

(E) (F)

(G) (H)

F I G U R E 14 Unsteady diaphragm valve: The 3D streamlines (left) and the midsection velocity field (right) are shown for a closing time
of 0.5 s (fast) at four different opening positions: (A,B) 90%, (C,D) 60%, (E,F) 30%, and (G,H) closed.

by the diaphragm is relatively high; for instance, the streamlines of Figure 14A,C,E that reach the outlet mainly come
from the diaphragm. In addition, backflow is already present at a 90% opening of the valve, and it is increasing over time,
finding a maximum value just at the moment of the fully closed position.

5 CONCLUSIONS

We have presented a boundary-conforming mesh update method that handles challenging problems with large boundary
displacements and opening or closing motions. This method, called the SR-VR mesh update method, uses the virtual
region concept to handle an activated and deactivated part of the mesh. The boundary conformity between these two
domains is enforced by a surface reconstruction process based on the Steiner constrained Delaunay triangulation.
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GONZÁLEZ et al. 2065

We showed the robustness of the proposed method in two numerical examples. First, we validated the results in a
variation of a benchmark Poiseuille flow. Then, we successfully simulated the flow inside of a closing diaphragm valve. In
particular, we could address the different challenges presented in this industrial application by using the SR-VR method,
for instance, the large displacement of the diaphragm, the complex diaphragm geometry, and the closing of the valve.
Results of the diaphragm valve, like the flow rate and the loss coefficient, were presented at different opening positions and
closing times. In addition, the proposed method was applied to the same mesh in all simulations at different conditions,
avoiding the generation of meshes for each particular case.

Regarding parallelization, the current implementation does not depend on how the different domains are partitioned.
However, the communication after a connectivity update can be improved by minimizing the number of processors shar-
ing the triangulated domain. We also notice that by performing the mesh decomposition only once, the partitioning
slightly deteriorates with a new connectivity. Repartitioning the mesh might solve this issue, but would incur an additional
cost.

In comparison with the precursor methods of this work,29,30 the SR-VR method is a significant improvement. Even
though the method’s complexity increases by including connectivity changes, the SR-VR method was shown to be reliable
for handling large topological changes. With SR-VR, more complex virtual boundary geometries are achieved, and options
to control the mesh quality are added. The latter result in minimizing the chances of the failure of the algorithm and
therefore, increasing its robustness.

Finally, we can conclude that the presented mesh update method can be applied in flow problems involving large
boundary displacements and topology changes. We plan to extend the application of the SR-VR method to problems
where the motion is not prescribed, like free-surface or FSI problems. Generally, for this kind of problems, the mesh
update method is included in a strong coupling loop with the governing equations. Hence, the SR-VR method is used
several times per time step. A way to avoid this is by using a vertex-displacement-based method in the coupling loop and
performing the SR-VR method only when required. In future work, we will discuss the challenges of this kind of problem.
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