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A B S T R A C T

We present a flexible and efficient approach to modeling the magnetization dynamics in modern SOT-MRAM
cells, by coupling charge, spin, and magnetization dynamics in a three-dimensional framework. We expand on
existing literature, to obtain spin current boundary conditions for modeling the Rashba-Edelstein effect. We
compute the spin–orbit torques originating from both, the spin Hall and Rashba-Edelstein effect, and show that
our model can reproduce experimental results for the thickness dependence of the spin torques in an Ir/CoFeB
bilayer structure. Furthermore, we verify our approach by simulating magnetization reversal in field-free SOT-
MRAM cells, and show that with the inclusion of the interfacial Dzyaloshinskii–Moriya interaction, we obtain
domain wall motion similar to previously reported experimental results.
1. Introduction

Spin–orbit torque magnetoresistive random access memory (SOT-
MRAM) devices offer an attractive alternative to traditional memory
technology due to their non-volatility, low power consumption, high
switching speed, and long endurance. SOT-MRAM possesses a nearly
unlimited endurance compared to the well established spin-transfer
torque (STT) MRAM, due to the separation of the read and write
paths. In addition, it offers a roughly one order of magnitude faster
writing speeds, achieved by taking advantage of the spin–orbit coupling
(SOC). As it is a three-terminal device, the large footprint limits the
applications to cache memories, where its sub-ns writing speeds and
long endurance make it a good potential non-volatile replacement for
current SRAM devices [1–3].

The basic SOT-MRAM cell consists of a magnetic tunnel junction
(MTJ), a three layer structure where two ferromagnetic (FM) layers
are separated by a tunneling barrier (TB), placed on a heavy metal
(HM) line as illustrated in Fig. 1. The upper and lower FM layers are
called the reference layer (RL) and the free layer (FL), respectively, as
the magnetization is fixed in the RL and can be changed in the FL.
The logical state of the cell is encoded in the relative orientation of
the magnetization of the two layers, which can be either parallel or
anti-parallel. Due to the tunnel magnetoresistance (TMR), the resistance
across the MTJ can be significantly higher, when the MTJ is in the
anti-parallel state compared to the parallel state, enabling easy reading
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of the state. The state of the cell is written electrically by applying
a current across the HM layer. The current passing through the HM
becomes spin-polarized through the spin Hall effect (SHE) [4]. The
resulting spin currents are perpendicular to the current direction and
are injected into the adjacent FL, where the spins quickly align with
the magnetization direction. Due to the conservation of angular mo-
mentum, the magnetization experiences a torque corresponding to the
absorbed transverse spin current, allowing for efficient manipulation
of the magnetization. Another source of spin torques is the HM/FM
interface, where the Rashba spin–orbit coupling (SOC) lifts the spin
degeneracy of the band structure, locking the spin to the in-plane
momentum. When an in-plane electric field is applied, the occupancy is
shifted and a non-equilibrium spin accumulation is generated through
the Rashba-Edelstein effect (REE) [5].

The symmetry of the SOTs originating from the SHE and the REE in-
troduces challenges for designing SOT-MRAM cells with perpendicular
magnetization orientation, which are required to achieve appropriate
densities for memory applications. As both effects generate SOTs which
act to bring the magnetization in-plane, out-of-plane switching of the
FL requires additional assistance. This has been typically achieved with
an external magnetic field along the current direction, however, as
this limits scaling and complicates the circuit architecture, so-called
field-free approaches have been favored instead. Several field-free so-
lutions have been proposed and demonstrated, some requiring built-in
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Fig. 1. An illustration of a typical SOT-MTJ. The RL, TB, FL, and HM are shown in
red, gray, blue, and yellow, respectively. The blue arrow shows the direction of the
read current, and the red arrow shows the direction of the write current.

magnetic fields [6], additional symmetry-breaking layers [7], or the
combination of SOT with STT [8].

To overcome the engineering challenges and to accelerate the de-
velopment and adoption of SOT-MRAM devices, there is a demand
for software capable of fast and accurate exploration of their design
space. We present results from a finite element micromagnetic simula-
tor, developed with the goal to simulate FL magnetization reversal in
realistic multi-layer, multi-terminal SOT- and STT-MRAM devices. The
spin torques acting on the FL are calculated by solving coupled spin and
charge drift-diffusion equations with appropriate boundary conditions.
The HM/FL interface receives special attention to accurately model spin
torques originating from both the SHE and the REE.

This work goes beyond similar approaches by including all the rele-
vant physical effects, such as the SHE, REE, and interfacial Dzyaloshin-
skii–Moriya interaction (iDMI), in one unified model connecting spin,
charge, and magnetization dynamics. The equations are solved using
the finite element method (FEM), allowing for proper flexibility in mesh
geometries. We can compute the redistribution of the currents and
spin accumulation in realistic multi-layer structures in order to obtain
the spin torque acting on the local magnetization in the FM layers.
With unique boundary conditions for the tunneling spin current and
interfacial SOC we can model the local effects of MTJs during switching
and reproduce experimental measurements for the SOTs, respectively.

In the next section we combine and build on the semi-classical ap-
proaches presented in [9,10] to obtain proper models for the transverse
spin current and torque contributions generated through the interfacial
Rashba SOC. The expressions for interfacial spin and charge current
from [10] are generalized for any direction of the magnetization, and
analytical formulae for the interface scattering matrices are derived.
The resulting expressions come in the form of boundary conditions for
the drift-diffusion equations for spin. In Section 3 we present the drift-
diffusion model to compute the spin accumulation and spin torques
in SOT-MRAM. In Section 4, we present the micromagnetic model
employed to model the magnetization dynamics of the FL. In Section 5
we briefly explain the numerical implementation and combination
of the drift-diffusion and micromagnetic equations. In Section 6 we
reproduce the experimental thickness dependence of the torques in a
HM/FM bilayer structure using our model. In Section 7 we present the
magnitude and symmetry of the SOTs obtained with our approach. Fi-
nally, we prove the flexibility of our approach by presenting simulation
results for anti-parallel to parallel (APP) and parallel to anti-parallel
(PAP) switching of the FL for two different field-free SOT-MRAM cells,
in Sections 8 and 9.

2. Spin transport at interfaces with SOC

We consider a HM/FM interface in the 𝑥–𝑦 plane at 𝑧 = 0, with
the HM below (𝑧 = 0−) and FM above (𝑧 = 0+) the interface. The
scattering system is depicted in Fig. 2. We treat the interface as a
spin-dependent delta function potential and assume specular plane-
wave scattering of the electrons from the interface. For simplicity we
2

Fig. 2. A schematic of the considered interface scattering system. An interface at 𝑧 = 0
separates a HM layer at 𝑧 = 0− from a FM layer at 𝑧 = 0+. Localized at the interface
is a spin-dependent potential with an effective field 𝐮𝐞𝐟𝐟 . The local basis is aligned
with the interface normal, while the spin basis is aligned with the effective field at the
interface.

assume a weak exchange splitting in the bulk of the FM compared to
the interface, and we describe the bulk on either side of the interface
as a spin-independent free electron gas with a spherical Fermi surface
in equilibrium. With these assumptions there is no explicit difference
between the HM and FM side of the interface.

The plane-wave solution 2 × 2 Hamiltonian describing the system
is then given by [10]:

𝐻 (𝐫,𝐤) = ℏ2𝑘2

2𝑚
𝐼2×2 +

ℏ2𝑘𝐹
𝑚

𝛿(𝑧)
(

𝑢0𝐼2×2 + 𝝈 ⋅ 𝐮𝐞𝐟𝐟 (𝐤)
)

(1)

𝝈 =
(

𝜎𝑥, 𝜎𝑦, 𝜎𝑧
)

is a vector of the Pauli matrices, 𝑢0 is the dimen-
sionless magnitude of the spin-independent part of the potential, and
𝐮𝐞𝐟𝐟 is a dimensionless effective magnetic field at the interface. ℏ is the
reduced planck’s constant, 𝑚 is the electron mass, and 𝑘 is the wave
number of the incident plane waves. 𝐼2×2 is the 2 × 2 identity matrix.
The factor ℏ2𝑘𝐹 𝛿(𝑧)∕𝑚 converts the dimensionless potentials 𝑢0 and 𝐮𝐞𝐟𝐟
into units of energy, where 𝑘𝐹 is the Fermi wave number.

We describe the effective field as a combination of an exchange
interaction and a Rashba SOC at the interface:

𝐮𝐞𝐟𝐟 (𝐤) = 𝑢𝑒𝑥𝐦 + 𝑢𝑅�̂� ×
𝐤
𝑘𝐹

(2)

The dimensionless parameters 𝑢𝑒𝑥 and 𝑢𝑅 are the magnitudes of the
exchange and Rashba spin–orbit interactions, respectively, and 𝐦 is the
magnetization direction at the interface. Other forms of interfacial SOC
such as a Dresselhaus type spin–orbit interaction can also be included
in 𝐮𝐞𝐟𝐟 [11].

We set the quantization axis along the effective field and consider a
plane wave spinor incident on the interface. The reflected and trans-
mitted spinors can then be related to the incident one through the
scattering matrices

𝑟 =
(

𝑟↑ 0
0 𝑟↓

)

(3)

and

𝑡 =
(

𝑡↑ 0
0 𝑡↓

)

(4)

for reflection and transmission, respectively. Using the boundary condi-
tions for the continuity of the wave function and the probability current
at 𝑧 = 0, the following scattering amplitudes are obtained [12,13]:

𝑟↑∕↓ =
𝑢↑∕↓ (5)
𝑖𝑘𝑧∕𝑘𝐹 − 𝑢↑∕↓
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𝑡↑∕↓ =
𝑖𝑘𝑧∕𝑘𝐹

𝑖𝑘𝑧∕𝑘𝐹 − 𝑢↑∕↓
(6)

𝑢↑∕↓ = 𝑢0±𝑢Eff , and 𝑘𝑧 is the out-of-plane component of the wave vector.
In order to obtain semi-classical boundary conditions for either

he drift-diffusion or Boltzmann equations, matrices describing the
cattering of an ensemble of spins with polarization 𝑠 and charge 𝑐 are
equired. Following the derivation in [9] one arrives at

𝑅𝛼𝛽 = 1
2
Tr

[

𝑟†𝜎𝛼𝑟𝜎𝛽
]

(7)

and

𝑇 𝛼𝛽 = 1
2
Tr

[

𝑡†𝜎𝛼𝑡𝜎𝛽
]

, (8)

where 𝛼, 𝛽 ∈ {𝑠, 𝑐}, (⋅)† denotes the conjugate transpose, and Tr denotes
he trace operator. 𝜎𝑠 are the Pauli matrices for 𝑠 ∈ {𝑥′, 𝑦′, 𝑧′}, which
enotes the spin polarization along the Cartesian axes in a spin basis
ith 𝐳′ = 𝐮𝐞𝐟𝐟 . 𝜎𝑐 is the 2 × 2 identity matrix, where 𝑐 denotes charge.
he bar above the matrices denotes that the spin polarization is defined
ccording to the spin basis.
𝑅 and 𝑇 constitute 4 × 4 scattering matrices describing the prob-

ability of an incident ensemble of spins with polarization 𝛽, reflecting
and transmitting into polarization 𝛼, respectively. The matrices can be
sed to obtain boundary conditions for the non-equilibrium distribution
unction in the Boltzmann equation [10]. The resulting matrices from
omputing the traces with the scattering amplitudes in Eqs. (5), (6) are
iven in detail in Appendix A.

We consider a non-equilibrium Boltzmann distribution function for
pin and charge 𝑔𝐼𝛼 (0

±,𝐤∓), incident from above and below the surface
ith the wave vector 𝐤± = (𝑘𝑥, 𝑘𝑦,±𝑘𝑧). With the scattering matrices,

we can describe the total density functions on either side of the inter-
face in terms of the incident ones. Multiplying these density functions
with the velocity along 𝑧 and integrating over the Fermi surface we ob-
tain boundary conditions for the spin and charge currents on either side
of the interface, which can be applied to the drift-diffusion equations.
In units of charge current density (A∕m2), the out-of-plane spin-charge
four-vector currents above and below the interface are given by [10]:

𝑗𝑧(0±) =
∓𝑒

ℏ(2𝜋)3 ∫FS∈in
𝑑𝐤

𝑘𝑧
𝑘𝐹

×
[(

𝐼4×4 − 𝑅 (𝐤)
)

�̃�𝐼 (0±,𝐤) − 𝑇 (𝐤) �̃�𝐼 (0∓,𝐤)
]

(9)

𝑒 is the elementary charge, 𝐼4×4 is the 4 × 4 identity matrix, and the
integration is performed over the incident part of the Fermi surface.
Here and from now on the tilde symbol above a quantity denotes a
four-dimensional vector. As the matrices were derived in a spin frame
with �̂�′ = 𝒖𝐮𝐞𝐟𝐟 , an orthogonal transformation is necessary in order to
describe the spin currents in the local frame with 𝐳 along the interface
normal. The orthogonal transformation

𝑆(𝒌) = 𝑂T(𝒌)�̄�(𝒌)𝑂(𝒌) (10)

is performed on all scattering matrices to convert them from the spin
basis to the local basis, where 𝑂(𝒌) is the coordinate transformation
matrix and 𝑂T(𝒌) is its transpose. The form of 𝑂(𝒌) is presented in
Appendix B.

We consider in-plane spin/charge currents driving out-of-plane
spin/charge current through the SOC. The interfacial SOC can also
generate in-plane spin and charge currents, however, these are as-
sumed to weakly affect the torques and are left for future work to
consider. Out-of-plane currents driven by spin/charge chemical po-
tentials 𝑉𝛼 at 𝑧 = 0± can also be captured with (9) by considering
𝑔𝐼𝛼 (0

±,𝐤) ≈ 𝑒𝑉𝛼(0±) [14]. Then, the integration can be performed over
the scattering matrices only, resulting in interface conductance tensors
for spin and charge, where the transverse directions contain computed
spin-mixing conductances. We instead choose to capture the potential-
driven transport through magnetoelectronic circuit theory [15], where
the dependence on the magnetization direction is simple and the
3

interface conductances can be extracted from experiments or com-
puted from first-principles. We present the boundary conditions for
potential-driven interface transport in the next section.

For the case of in-plane spin/charge currents generating out-of-
plane current, we approximate the incoming spin/charge density func-
tions below and above the interface as [10]

𝑔𝐼𝛼 (0
±,𝐤) = 𝑒

𝑘𝑥
𝑘𝐹

𝑣𝐹 𝜏
±𝑃±

𝛼 𝐸ip, (11)

here without loss of generality an in-plane current along the 𝑥-
irection has been assumed. 𝑣𝐹 is the Fermi velocity, 𝜏± are momentum
elaxation times in the HM/FM, 𝑃±

𝛼 are dimensionless polarizations,
nd 𝐸ip is the in-plane electric field. We describe the polarization above
nd below the interface as follows [9]

±
𝛼 =

{

(𝛿𝛼𝑐 − 𝛽𝜎𝛿𝛼𝑠�̂�𝑠), 𝑧 = 0+

𝛿𝛼𝑐 , 𝑧 = 0−,
(12)

here 𝛽𝜎 = (𝜎FM↑ −𝜎FM↓ )∕(𝜎FM↑ +𝜎FM↓ ) is the current spin-polarization in-
ide the FM, with 𝜎FM

↑∕↓ being the bulk conductivity of majority/minority
arriers. We can then write the currents at the interface in terms of
onductivity tensors as

�̃�(0−) = �̃�𝐸𝑖𝑝

�̃�(0+) = �̃�FM𝐸𝑖𝑝,
(13)

here

̃ = 𝑒2

ℏ(2𝜋)3 ∫FS∈in
𝑑𝐤

𝑘𝑧𝑘𝑥
𝑘2𝐹

×
[(

𝐼4×4 − 𝑅 (𝐤)
)

𝜏−𝑃− − 𝑇 (𝐤) 𝜏+𝑃+] . (14)

is the conductivity tensor, and

�̃�FM = 𝑒2

ℏ(2𝜋)3 ∫FS∈in
𝑑𝐤

𝑘𝑧𝑘𝑥
𝑘2𝐹

×
[

𝑇 (𝐤) 𝜏−𝑃− −
(

𝐼4×4 − 𝑅 (𝐤)
)

𝜏+𝑃+] . (15)

is the bulk torkivity tensor. In Eq. (13) 𝑗𝑐𝑧(0−) = 𝑗𝑐𝑧(0+), ensuring the
continuity of the charge current. However, the spin components of the
currents are discontinuous across the interface, as a result of the spin-
flip scattering from the interface potential. The spin-flip scattering at
the interface can be interpreted as a precession of the phase-coherent
spin density around the effective field 𝒖𝐞𝐟𝐟 in a zero-thickness region
at the interface. The precession around the exchange interaction part
of the field (𝑢ex𝐦) describes a transfer of spin angular momentum to
the local magnetization, resulting in an interfacial spin torque. The
precession around the SOC part of the field (𝑢R�̂� × �̂�), called spin–
orbit precession, describes a parasitic loss of spin angular momentum
to the lattice [9,10]. In the limit of zero interfacial SOC (𝑢𝑅 → 0), this
interfacial torque and the tensors given by (14) and (15) vanish.

The spin torque arising from interfacial SOC can be separated into
two contributions, one acting on the magnetization at the interface
through the interfacial exchange interaction, and the other one acting
on the magnetization in the bulk. In the FM the transverse spins
become aligned with the magnetization through a precession and de-
phasing process, and the magnetization experiences a torque due to
the conservation of angular momentum. Assuming this process happens
over a short distance from the interface, we can describe the latter
contribution entirely with the transverse spin current on the FM side
of the interface 𝐣⟂𝐬𝐳

(

0+
)

[9,12]. The other contribution comes from the
phase-coherent spin density at 𝑧 = 0 interacting with the interface mag-
netization through the exchange coupling. The spin torque originating
from the interfacial SOC acting on the magnetization at the interface is
described by [9]:

𝝉𝐦𝐚𝐠
𝒔 =

𝐽𝑒𝑥
ℏ

𝐬𝟎 ×𝐦𝛿(0) = 𝜸𝐦𝐚𝐠
𝒔 𝐸ip𝛿(0) (16)

𝐬𝟎 is the phase-coherent spin density at 𝑧 = 0 and 𝐽𝑒𝑥 is the exchange
energy at the interface. 𝜸𝐦𝐚𝐠 is an interfacial torkivity tensor describing
𝒔
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the torque from the interfacial exchange interaction. The subscript 𝑠
denotes the spin part of the four-dimensional vectors. The interfacial
torkivity tensor is given by [9]:

𝜸𝐦𝐚𝐠
𝒔 = 𝐦 ×

(

𝑢𝑒𝑥𝑒2

ℏ(2𝜋)3 ∫FS∈in
𝑑𝐤

𝑘𝑥
𝑘𝐹

𝑇 (𝐤)
[

𝜏−𝑃− + 𝜏+𝑃+
]

)

𝑠
(17)

Until now, we have assumed the interface normal 𝐧 to be along �̂�
nd the in-plane electric field 𝐄𝐢𝐩 to be along �̂�. In order to generalize
he expressions for the conductivity and torkivity tensors for any 𝐧
nd 𝐄𝐢𝐩, additional orthogonal transformations are required between
he laboratory frame and the frame aligned with the interface normal
nd the in-plane electric field. The details of this transformation are
resented in Appendix C.

. Coupled spin & charge model

The charge current density 𝐉𝐜 in multi-layered structures consisting
f non-magnetic (NM), FM and HM layers can be expressed as [16,17]:

𝐂 = 𝜎𝐄 + 𝑒
𝜇𝐵

𝛽𝐷𝐷𝑒 (∇𝑺)T 𝐦 + 𝜃SHA𝐷𝑒
𝑒
𝜇𝐵

∇ × 𝐒, (18)

The first term is Ohm’s law, the second is the giant-magneto-resistance
contribution in FM layers, and the third is the inverse SHE contribution
in HM layers. 𝜎, 𝛽𝐷, 𝐷𝑒, and 𝜃SHA are the conductivity, diffusion polar-
zation, diffusion constant, and spin Hall angle, respectively. (𝛁𝐒)𝑖𝑗 =
𝑆𝑖∕𝜕𝑥𝑗 is the vector gradient of the spin accumulation 𝐒. The spin cur-
ent tensor (𝐽𝑆 )𝑖𝑗 , describing flow of spin polarization 𝑖 along direction
, is given by [16,17]:

𝑆 = −
𝜇𝐵
𝑒
𝛽𝜎𝐦⊗ (𝜎𝐄) −𝐷𝑒∇𝑺 − 𝜃SHA

𝜇𝐵
𝑒
𝜀 (𝜎𝐄) (19)

he first term describes the contribution from magnetization polarized
urrents in FM layers, the second term describes the diffusion of spins,
nd the last describes the SHE contribution in HM layers. 𝜀𝑖𝑗𝑘 is the
evi-Civita tensor.

We rewrite the spin current as a function of the charge current
ielding

𝑆 = −
𝜇𝐵
𝑒
𝛽𝜎𝐦⊗

(

𝐉𝐜 −
𝑒
𝜇𝐵

𝛽𝐷𝐷𝑒 (∇𝑺)T 𝐦
)

−𝐷𝑒∇𝑺 − 𝜃SHA
𝜇𝐵
𝑒
𝜀𝐉𝐜, (20)

here we have omitted terms containing 𝜃2SHA.
The spin accumulation 𝐒 is obtained from solving the steady-state

ontinuity equation [12,18]

𝜕𝐒
𝜕𝑡

= 0 = −∇𝐽𝑆 −𝐷𝑒

(

𝐒
𝜆2𝑠𝑓

+ 𝐒 ×𝐦
𝜆2𝐽

+
𝐦 × (𝐒 ×𝐦)

𝜆2𝜑

)

, (21)

ogether with the spin current Eq. (20). 𝜆𝑠𝑓 , 𝜆𝐽 , and 𝜆𝜙 are the spin-
lip, exchange, and dephasing lengths, respectively. As we are primarily
nterested in the magnetization dynamics, which happen at timescales
hree orders of magnitude slower compared to spin dynamics (typically
ns for the former and ∼ ps for the latter [19]), we can assume that the

pin accumulation immediately relaxes to the change in magnetization.
his assumption was confirmed by [20] to be a valid approximation for
imilar systems.

The charge current density is obtained by solving the Laplace equa-
ion

⋅ (𝜎∇𝑉 ) = 0 (22)

or the electrical potential 𝑉 together with the relation

𝐂 = −𝜎∇𝑉 . (23)

e model the TB as a poor conductor whose conductivity depends on
he relative orientation of the FL and RL magnetization [21]:

( )
4

𝑇𝐵 = 𝜎0 1 + 𝑃FL𝑃RL𝐦𝐑𝐋 ⋅𝐦𝐅𝐋 (24)
0 = (𝜎AP + 𝜎P)∕2 is the average over the conductivities in the parallel
nd anti-parallel configuration. 𝐦FL∕RL is the FL/RL magnetization. 𝑃𝐹𝐿
nd 𝑃𝑅𝐿 are Slonczewski polarization parameters related to the TMR

through Julliere’s formula [22]:

TMR =
𝑅AP − 𝑅P

𝑅P
=

2𝑃FL𝑃RL
1 − 𝑃FL𝑃RL

(25)

𝑅𝐴𝑃 and 𝑅𝑃 are the resistivities of the anti-parallel and parallel states,
respectively.

At the external boundaries not containing an electrode we used
the natural assumption of zero flux, i.e. 𝐉𝐂 ⋅ 𝐧 = 0, 𝐽𝑆𝐧 = 0. At
boundaries containing an electrode, constant electrical potentials are
applied as Dirichlet boundary conditions for the charge current. The
spin accumulation gradients normal to the electrodes are assumed to
be zero, i.e. (∇𝐒)𝐧 = 0, resulting in the following Neumann condition
for the spin current [23]:

𝐽𝑆𝐧|E = −
𝜇𝐵
𝑒
𝛽𝜎𝐦

(

𝐉𝐂 ⋅ 𝐧
)

− 𝜃SHA
𝜇𝐵
𝑒

(

𝐧 × 𝐉𝐂
)

(26)

he NM contacts are kept long to ensure that the spin accumulation
ormal to the electrode has sufficiently decayed to zero, sustaining the
alidity of the no-flux condition.

The tunneling spin current is described by [21,24,25]:

𝑆𝐧|TB = −
𝜇𝐵
𝑒

𝐽C ⋅ 𝐧
1 + 𝑃RL𝑃FL𝐦𝐑𝐋 ⋅𝐦𝐅𝐋

×
[

𝑎mx𝑃RL𝐦𝐑𝐋 + 𝑎mx𝑃FL𝐦𝐅𝐋

+ 1
2
(

𝑃RL𝑃
𝜂
RL − 𝑃FL𝑃

𝜂
FL
)

𝐦𝐑𝐋 ×𝐦𝐅𝐋

]

(27)

𝑎𝑚𝑥 describes the effect of the interface spin-mixing conductance on
the transmitted in-plane spin current, and 𝑃 𝜂

FL∕RL is an out-of-plane
olarization parameter for the FL/RL.

At NM/FM interfaces we describe the charge and spin currents using
agnetoelectronic circuit theory [12,15]:

𝐂 ⋅ 𝐧 =
(

𝐺↑ + 𝐺↓
)

𝛥𝑉 −
(

𝐺↑ − 𝐺↓
)

𝛥𝐕𝐒 ⋅𝐦 (28)
𝐉𝐒𝐧 = 𝜇𝐵

𝑒

[

2Re
[

𝐺↑↓
]

𝐦 ×
(

𝐦 × 𝛥𝐕𝐒
)

+2 Im
[

𝐺↑↓
]

𝐦 × 𝛥𝐕𝐒 −
(

𝐺↑ + 𝐺↓
)

𝛥𝐕𝐒
+

(

𝐺↑ − 𝐺↓
)

𝛥𝑉𝐦
]

(29)

𝐺↑∕↓ are the interface conductances for the majority/minority spins,
while 𝐺↑↓ is the complex spin-mixing conductance. The interface con-
ductances relate the interface currents to the chemical potential drops
across the interface 𝛥𝑉 and ∆𝐕𝐒, where the spin chemical potential
𝐕𝐒 = 𝑒

𝜇𝐵
𝐷𝑒
𝜎 𝐒. The magnetoelectronic circuit theory assumes that the

transverse spin current is fully absorbed close to the interface at the FM
side [15]; without this assumption (29) needs several modifications in
order to get a more general circuit theory. Therefore, we enforce the
full absorption of transverse spin currents by keeping 𝜆𝜙 short. At either
side of the HM/FM interfaces we include the spin current contribution
from the REE which was derived in the previous section:

𝐽R
𝑆 𝐧|HM =

𝜇𝐵
𝑒
𝝈𝒔𝐸ip (30)

𝐽R
𝑆 𝐧|FM =

𝜇𝐵
𝑒
𝜸𝐅𝐌𝒔 𝐸ip (31)

𝐸ip is the magnitude of the in-plane electric field, which we relate to
the charge current as follows:

𝐸ip =
‖𝐉𝐂 −

(

𝐉𝐂 ⋅ 𝐧
)

𝐧‖
𝜎

(32)

The factor 𝜇𝐵∕𝑒 converts the spin current boundary conditions from
Section 2 into units of A/s. The terms containing the mixing-conduct-
ances should be modified by the interfacial SOC [9,14], however, this
modification is considered to be small and to weakly affect the SOTs.
It is therefore not treated in this work.
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4. Micromagnetic model

We model the magnetization dynamics with the Landau–Lifshitz–
Gilbert (LLG) equation for the time evolution of the normalized mag-
netization 𝐦 = 𝐌∕𝑀𝑆 [26,27]:

𝜕𝐦
𝜕𝑡

= −𝛾𝜇0𝐦 ×𝐇𝐞𝐟𝐟 + 𝛼𝐦 × 𝜕𝐦
𝜕𝑡

+ 1
𝑀𝑆

𝐓𝐒 (33)

he first term describes the precession of the magnetization around
n effective field 𝐇𝐞𝐟𝐟 , the second term describes the damping of the
agnetization towards this field, and the third term describes a spin

orque 𝐓𝐒 acting on the magnetization. 𝛾 is the gyromagnetic ratio, 𝜇0
is the vacuum permeability, 𝛼 is the Gilbert damping constant, and 𝑀𝑆
is the saturation magnetization.

By considering the conservation of total spin angular momentum,
the spin torque acting on the magnetization obtained from (21) is

𝐓𝐒 = −
𝐷𝑒

𝜆2𝐽
𝐦 × 𝐒 −

𝐷𝑒

𝜆2𝜙
𝐦 × (𝐦 × 𝐒) (34)

or a steady state. The spin torques from interfacial SOC are included
n the first layer of elements on the FM side of the HM/FM interfaces
nd are given by:

𝐢𝐧𝐭
𝑆 =

𝜇𝐵
𝑒𝑑ℎ

𝜸𝐦𝐚𝐠
𝒔 𝐸ip (35)

𝑑ℎ is the thickness of the elements.
We consider the following contributions to the effective field:

𝐇𝐞𝐟𝐟 = 𝐇𝐞𝐱𝐜𝐡 +𝐇𝐝 +𝐇𝐚𝐧𝐢𝐬𝐨 +𝐇𝐢𝐃𝐌𝐈 (36)

𝐇𝐞𝐱𝐜𝐡 is the exchange field, 𝐇𝐝 is the demagnetizing field, 𝐇𝐚𝐧𝐢𝐬𝐨 is the
anisotropy field, and 𝐇𝐢𝐃𝐌𝐈 is the iDMI field. The exchange field models
the exchange interaction between the magnetic moments which favors
a parallel orientation and is given by [28]:

𝐇𝐞𝐱𝐜𝐡 =
2𝐴𝑒𝑥
𝜇0𝑀𝑆

∇2𝐦 (37)

𝐴ex is the exchange stiffness coefficient. The demagnetizing field is
described by the magnetic potential 𝑢 through the relation [23]:

𝐇𝐝 = −∇𝑢 (38)

𝑢 is obtained by solving the Poisson equation

−∇2𝑢 = −𝑀𝑆𝛁 ⋅𝐦 (39)

together with the Neumann condition [(∇𝑢) ⋅ 𝐧] = −𝑀𝑆𝐦 ⋅ 𝐧 on the
boundaries of the magnetic regions and the constraint of a (1∕|𝐫|)
decay of 𝑢 to zero outside the magnetic regions. [⋅] denotes the dis-
continuity across the boundary. The Anisotropy field describes the
contribution from interface anisotropy and is given by [28]:

𝐇𝐚𝐧𝐢𝐬𝐨 =
2𝐾ani
𝜇0𝑀𝑆

(𝐦 ⋅ 𝐞𝐀)𝐞𝐀 (40)

𝐾ani is the anisotropy coefficient. If 𝐾ani > 0 then 𝐞𝐀 is the easy-axis, if
𝐾ani < 0 then 𝐞𝐀 is normal to the easy-plane. The iDMI field models the
anti-symmetric exchange interaction in thin FM layers due the strong
SOC in adjacent HM layers. It is given by [23,29]:

𝐇𝐢𝐃𝐌𝐈 = −
2𝐷dmi
𝜇0𝑀𝑆

(

∇ × 𝐞𝐃
)

×𝐦 (41)

The boundary condition is (∇𝐦)𝐧 = −𝐷dmi
2𝐴ex

(

𝐞𝐃 × 𝐧
)

× 𝐦, where 𝐷dmi
s the Dzyaloshinskii-Moriya exchange constant and 𝐞𝐃 is the vector
rthogonal to the FM layer plane. In contrast to the exchange interac-
ion, the iDMI introduces a favoring of a perpendicular magnetization
rientation, which plays an important role for the stabilization of
5

omain walls of the Néel order. i
. Method

We discretize time and compute the partial differential equations
PDEs) using the FEM on a mesh of the problem geometry, with
n initial magnetization configuration 𝐦𝟎 at 𝑡 = 0. First, we solve

the Laplace equation for the electric potential 𝑉 and current 𝐉𝐜, the
resulting current is then used to solve the continuity equation for the
spin accumulation 𝐒. From the spin accumulation we obtain the spin
torques 𝐓𝐬 entering the LLG. Then, the Possion equation is solved for
the magnetic potential, using a hybrid method combining FEM with the
boundary element method [30], in order to obtain the demagnetizing
field. We solve the LLG for the time derivative of the magnetization
𝐯 = 𝜕𝐦∕𝜕𝑡 on a sub-mesh containing only the magnetic layers. The
time derivative is used to compute the magnetization at the next time
iteration 𝑘 + 1.

𝐦𝑘+1 = 𝐦𝑘 + 𝐯𝑘𝛿𝑡
‖𝐦𝑘 + 𝐯𝑘𝛿𝑡‖

, (42)

𝛿𝑡 is the time step. This process then repeats for as many iterations
as necessary. For the details of the FEM implementation we refer
the reader to [31]. The results were obtained using the open source
software ViennaSpinMag [32], extended to include the SHE, REE, and
iDMI.

6. Thickness dependence of SOTs

To validate our approach for computing SOTs we compare our
results with an analytical derivation which is often employed to model
SOTs [12], and the experimental SOT measurements for a Ir/CoFeB
bilayer structure reported in [33]. We solve the drift-diffusion equa-
tions for the spin accumulation on a mesh of the bilayer structure, with
a constant charge current of 5 × 1012 A∕m2 along 𝑥 and the interface
normal along 𝑧, and compute the average torque acting on the FM. In
rder to directly compare our results with the experimental data we
onvert the computed torques into effective spin torque conductivities,
efined as [33]:

eff
DL = 2𝑒

ℏ
𝜇0𝑀𝑆 𝑡𝐹𝑀

𝐻DL
𝐸

𝜎effFL = 2𝑒
ℏ
𝜇0𝑀𝑆 𝑡𝐹𝑀

𝐻FL
𝐸

(43)

𝐻DL and 𝐻FL are the strengths of the effective fields correspond-
ing to the damping-like and field-like torque, respectively. 𝑡𝐅𝐌 is the
thickness of the FM and 𝐸 is the magnitude of the applied elec-
tric field. With the magnetization along �̂�, the electric field along
�̂�, and the HM/FM interface at 𝑧 = 0, we have from (33) that

DL∕FL = ±𝑇DL∕FL∕(𝛾𝜇0𝑀𝑆 ), where 𝑇DL∕FL is the torque acting in the
amping-like/field-like direction averaged over the FM layer.

Fig. 3 shows the resulting dependence of the spin torque con-
uctivities on the Ir thickness 𝑡Ir in a Ir(𝑡Ir)/CoFeB(2.3 nm) bilayer
tructure together with the experimental data and a fit of the analytical
xpressions. We use the material parameters given in [33] for Ir and
he parameters in Table 1 for CoFeB, for the Rashba spin current
omputation we use the parameters from [12]. We treat 𝜃SHA, Im[𝐺↑↓],
𝑒𝑥 and 𝑢𝑅 as fitting parameters and we obtain a good fit with the
xperimental data using 𝜃SHA = 0.05, Im[𝐺↑↓] = −0.4×1015, 𝑢𝑒𝑥 = −0.028
nd 𝑢𝑅 = 0.028. The spin Hall angle of Ir has previously been estimated
o be 𝜃IrSHA = 0.02 [34], however, such measurements also capture
everal other contributions originating from the interface and defects,
hich are difficult to separate from the measurement, therefore it is

easonable to assume that the intrinsic spin Hall angle can vary from
he measured one.

Panel (a) shows the damping-like spin torque conductivity. The
amping-like component increases with the HM thickness until reach-
ng a saturation point which depends on the spin diffusion length. This

s a well known result from the literature [9,12]. In this case both
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Fig. 3. The dependence of the damping-like (a) and field-like (b) spin torque conduc-
tivities on the Ir thickness in a Ir(𝑡ir )/CoFeB(2.3 nm) bilayer structure with a current
along 𝐱.

the analytical model and our computations reproduce the experimental
data well.

Panel (b) shows the field-like spin torque conductivity. For several
HM/FM systems the field-like component has been known to not vanish
with decreasing HM thickness [33,35–37], which cannot be explained
by only considering the SHE. In this case the simple analytical model
fails to reproduce the experimental data as the damping-like component
vanishes with decreasing thickness. With the inclusion of the REE in our
model we are able to perfectly reproduce this behavior.

7. Magnitude & symmetry of SOTs

We consider a Pt(4 nm)/CoFeB(1.2 nm) bilayer structure with a con-
stant charge current density of 5 × 1012 A∕m2 along 𝑥 and the interface
normal along 𝑧. We express the magnetization in terms of the polar
and azimuthal angles 𝜃 and 𝜙, respectively, yielding the following
components 𝐦 = (cos𝜙 sin 𝜃, sin𝜙 sin 𝜃, cos 𝜃). As the bilayer structure
we consider is symmetric across the plane spanned by the current and
the interface normal vector we compute the torques for 𝜃 ∈ [0◦, 180◦]
and 𝜙 ∈ [0◦, 180◦] to obtain the angular dependence of the SOTs shown
in Fig. 4. The material parameters used for Pt and CoFeB are presented
in Table 1. The strength of the Rashba SOC is set to 𝑢𝑅 = 0.16, such
that the resulting SOTs are similar in magnitude to the ones obtained
from the SHE. The other parameters required for the computation of
the REE are again taken from [12]. The computed torques are averaged
over the FM and multiplied by a factor of 1∕(𝛾𝑀𝑆 ) in order to obtain
the torques in units of T. We consider the case of vanishing REE or
SHE, and the combination of both effects. For all cases we observe
a vanishing torque, when 𝑚𝑦 = −1 (center of each panel), which
corresponds to the average spin polarization direction. In addition, the
𝑥- and 𝑧-components change sign when the path of the magnetization
passes through 𝑚𝑦 = −1. This is consistent with the definition of the
damping-like and field-like directions the torque can be decomposed
into, which describe the damping towards and precession around the
spin polarization, respectively. We also observe a 90◦ rotation of the
sign symmetry of the 𝑥 and 𝑧 torque components attributed to each
effect. From Fig. 3 we know that the damping-like and field-like com-
ponents dominate for the SHE and REE torques, respectively. This
6

Fig. 4. The angular dependence of the spin torques in a Pt(4.0 nm)/CoFeB(1.2 nm)
bilayer structure with a constant charge current density of 5 × 1012 A∕m2 along 𝑥.
𝑚𝑥 = cos𝜙 sin 𝜃 and 𝑚𝑧 = cos 𝜃, for the angles 𝜃 ∈ [0◦ , 180◦] and 𝜙 ∈ [0◦ , 180◦]. The
center of each panel corresponds to a magnetization direction along −𝑦. The torques
are averaged over the volume of the FM layer. Panels (a)–(d), (e)–(h) and (i)–(l), show
the SOTs obtained from the SHE, REE and from combining the effects, respectively.
The first, second and third column from the left, show the 𝑥-, 𝑦- and 𝑧-component of
the SOTs, respectively, while the fourth column shows the magnitude of the torque.

Fig. 5. A mesh of an out-of-plane SOT-MTJ stack Pt(4.0 nm)/CoFeB(1.2 nm)
/MgO(1.0 nm)/CoFeB(1.0 nm). The HM layer has a surface area of 100 × 50 nm2, while
the MTJ has a diameter of 20 nm.

explains the sign symmetry as the two torque directions are orthogonal
to each other. When combining both effects, we observe a field-like sign
symmetry, as the field-like torque component dominates for our choice
of parameters.

8. Modeling hybrid SOT-STT-MRAM

We solve the drift-diffusion equations together with the LLG equa-
tion for the time evolution of the FL magnetization on a mesh of a
hybrid SOT-STT-MTJ for 1 ns using a time step of 10−4 ns, the mesh
is depicted in Fig. 5. The mesh contains a perpendicular MTJ, with a
top contact placed on a HM SOT track. The RL magnetization is fixed
along −𝑧. The initial FL magnetization is in an anti-parallel alignment,
i.e. along 𝑧. A voltage of 0.15V and 2.0V is applied at the SOT (lower
left) and STT (top) contact, respectively, while the lower right contact
is kept grounded. The SOT voltage is applied for the first 0.4 ns. The
material parameters used are presented in Table 1, which correspond
to Pt, MgO, and CoFeB for the HM, TB, and FM layers, respectively. A
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Fig. 6. The average 𝑧-component of the normalized magnetization 𝐦 as a function of
time computed on the mesh depicted in Fig. 5. The upper and lower panels show APP
and PAP switching, respectively.

strong Rashba SOC (𝑢𝑅 = 0.16) is used in order to magnify its influence
on the switching.

Fig. 6 shows the evolution of the 𝑧-component of the FL mag-
netization averaged over the FL during APP and PAP switching. We
also consider the cases of vanishing interfacial Rashba SOC and iDMI,
to better understand the role of these effects during the reversal of
the FL magnetization. The magnetization dynamics are similar in all
the considered scenarios, except for the case of vanishing iDMI and
strong Rashba SOC. During the first 0.4 ns the magnetization is quickly
brought in-plane by the SOTs, followed by the slower completion of
the switching with the STTs after the SOT current has been turned off.
The inclusion of REE contributes to bringing the magnetization in-plane
during the SOT phase for APP switching, as the total torque is stronger.
Furthermore, in the case of vanishing iDMI, the Rashba torque switches
the FL completely in the SOT-phase. However, for the PAP switching,
the Rashba torque works against the switching and for vanishing iDMI
the magnetization is not brought in-plane in the SOT-phase. After the
SOT pulse, the contribution from the REE effect vanishes as there are no
longer in-plane currents along the HM/FM interface. The inclusion of
the iDMI shows a large impact on the switching process, as it introduces
a favoring of a canted magnetization configuration. This assists the
magnetization in reaching the in-plane state, overcoming the strong
Rashba torques in PAP switching. However, it also makes reaching a
parallel (anti-parallel) final configuration more difficult, as the iDMI
works against the switching after the in-plane configuration has been
reached.

Fig. 7 shows several time snapshots of the FL magnetization during
APP switching. During the SOT phase a domain wall is nucleated at the
top (𝑦 = 40 nm) side of the FL, which propagates towards the center,
bringing the average magnetization in-plane. This agrees well with the
observations reported in [38]. During the STT phase the domain wall
begins to precess around the edge of the FL while shrinking, until
the whole FL magnetization has switched. Without the inclusion of
the iDMI, no domain walls are observed, and instead a homogeneous
magnetization reversal occurs across the whole FL.

9. Modeling of SOT-MRAM with built-in in-plane field

We solve the system of equations on the mesh depicted in Fig. 8 for
1 ns using a time step of ℎ = 10−4 ns. The additional FM underneath the
7

Fig. 7. Evolution of the 𝑧-component of the FL magnetization during the APP switching
process.

Fig. 8. A mesh of an out-of-plane SOT-MTJ stack Pt(4.0 nm)/CoFeB(1.2 nm)/MgO
(1.0 nm)/CoFeB(1.0 nm), with an additional FM(20.0 nm) layer underneath the HM
with a fixed magnetization along −𝑥. The HM layer has a surface area of 100× 50 nm2,
while the MTJ has a diameter of 20 nm.

HM has a fixed in-plane magnetization along −𝑥 and generates a stray
field along 𝑥 in the FL which breaks the symmetry of the SOTs, similarly
to an external field. In this case no voltage is applied at the top contact,
while a 0.15V bias is applied across the HM/IP-FM bilayer structure.
The material parameters are the same as in the previous section, except
for a ×1.5 higher 𝑀𝑆 in the additional in-plane FM layer to generate a
strong enough stray field to complete the switching.

The 𝑧-component of the FL magnetization averaged over the FL is
shown in Fig. 9 during APP and PAP switching.

We observe that in all cases the magnetization is reversed. However,
with the inclusion of iDMI and vanishing Rashba SOC, the switching
does not fully complete, and stabilizes at 𝑚𝑧 ≈ ±0.5, as the in-
plane favoring is strong enough to prevent full switching from being
achieved. As the spin torque also favors the in-plane configuration,
turning off the current should help the magnetization relax to a fully
switched orientation, otherwise, a stronger stray field might be required
to fully complete the switching.

With the inclusion of the REE the switching is improved, and the
stable intermediate state introduced by the iDMI is overcome and
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Fig. 9. The average 𝑧-component of the normalized magnetization 𝐦 as a function of
time computed on the mesh depicted in Fig. 8. The upper and lower panels show APP
and PAP switching, respectively.

Fig. 10. Evolution of the 𝑧-component of the FL magnetization during the APP
switching process.

full switching is achieved. As the symmetry of the REE torques in
a bilayer structure should also favor the in-plane configuration, this
suggest that the REE spin currents generated at the HM/IP-FM interface
exert a torque on the FL magnetization which has an unconventional
symmetry.

Fig. 10 shows snapshots of the FL magnetization during APP switch-
ing.

We observe a domain wall nucleating from the side of the FL at a
−45◦ angle with the current direction, which propagates across the FL.
As the stray field breaks the symmetry of the SOTs, the domain wall
8

Table 1
Material parameters.

Parameter Value

LLG (CoFeB)

Gilbert damping, 𝛼 0.02
Saturation magnetization, 𝑀S 0.81 × 106 A m−1

Exchange stiffness, 𝐴𝑒𝑥𝑐ℎ 2 × 10−11 J m−1

Anisotropy energy density, 𝐾ani 0.545 × 106 J m−3

DMI energy, 𝐷dmi −1.75 × 10−3 J m−2

Drift-Diffusion (CoFeB & Pt & MgO)

Conductivity FM, 𝜎FM 4 × 106 Sm−1

Conductivity NM, 𝜎NM 7 × 106 Sm−1

Diffusion Coefficient FM, 𝐷FM
𝑒 10−2 m2s−1

Diffusion Coefficient NM, 𝐷NM
𝑒 1.1 × 10−3 m2 s−1

Spin-flip length FM, 𝜆FM𝑠𝑓 10 nm
Spin-flip length NM, 𝜆NM𝑠𝑓 1.4 nm
Spin exchange length, 𝜆𝐽 0.8 nm
Spin dephasing length, 𝜆𝜙 0.4 nm
Conductivity polarization, 𝛽𝜎 0.52
Diffusion polarization, 𝛽𝐷 0.7
Spin Hall angle, 𝜃SHA 0.19
Tunnel magnetoresistance ratio 200%
Resistance parallel, 𝑅𝑃 1.4 × 104 Ω
Resistance anti-parallel, 𝑅𝐴𝑃 4.2 × 104 Ω
Majority spin conductance, 𝐺↑ 1.0 × 1015 Sm−2

Minority spin conductance, 𝐺↓ 0.1 × 1015 Sm−2

Spin-mixing conductance, Re{𝐺↑↓} 2.0 × 1015 Sm−2

Spin-mixing conductance, Im{𝐺↑↓} 0.7 × 1015 Sm−2

continues to propagate and vanishes in the lower right corner at a 45◦

angle from the center, completing the switching. Similar domain wall
propagations were also reported in [38], with the exception that the
domain walls were shown to propagate along a straight line. However,
a different structure was used, and an external field along the current
direction was used instead of a built-in one.

10. Conclusion

We have presented a new approach for modeling of the magnetiza-
tion dynamics in SOT-MRAM cells. We have generalized the expressions
from [10] for an arbitrary magnetization direction and derived an-
alytical expression for the scattering matrices, resulting in boundary
condition that can capture the complex REE effect at HM/FM interfaces.
Through the inclusion of spin–orbital effects into the coupled charge
and spin drift-diffusion equations, we can compute the spin torques
originating from the SHE and REE acting on the magnetic layers of
multi-layer structures. We show that in HM/FM bilayer structures we
can reproduce experimental results for the SOTs. We have shown that
including the torques in the LLG equation, together with important
effective field contributions such as the demagnetizing and iDMI field,
enables the modeling of the complex magnetization reversal of the FL.
We have demonstrated the flexibility of our approach by simulating two
different approaches for field-free SOT-pMTJs. Using relevant material
parameters we are able to reproduce the general behavior of these
devices.
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Appendix A. Scattering matrices

We compute the traces in Eqs. (7) and (8) using the scattering
amplitudes for the spin-dependent interface potential in Eqs. (5) and
(6), respectively. The resulting Boltzmann scattering matrices have the
following block-diagonal form:

𝑆 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑎𝜈 𝑏𝜈 0 0
−𝑏𝜈 𝑎𝜈 0 0
0 0 𝑐 𝑑
0 0 𝑑 𝑐

⎞

⎟

⎟

⎟

⎟

⎠

, (A.1)

𝜈 ∈ {𝑟, 𝑡} denotes the matrix element for reflection (𝑟) or transmission
(𝑡). The elements in the lower right block are the same for both
matrices. The resulting matrix elements can be written as follows:

𝑎𝑟 = cos
(

𝜒↑ − 𝜒↓

)

cos
(

𝜒↑

)

cos
(

𝜒↓

)

(A.2a)

𝑏𝑟 = sin
(

𝜒↑ − 𝜒↓

)

cos
(

𝜒↑

)

cos
(

𝜒↓

)

(A.2b)

𝑎𝑡 = cos
(

𝜒↑ − 𝜒↓

)

sin
(

𝜒↑

)

sin
(

𝜒↓

)

(A.2c)

𝑏𝑡 = sin
(

𝜒↑ − 𝜒↓

)

sin
(

𝜒↑

)

sin
(

𝜒↓

)

(A.2d)

𝑐 =
sin

(

𝜒↑

)

sin
(

𝜒↑

)

+ sin
(

𝜒↓

)

sin
(

𝜒↓

)

2
(A.2e)

𝑑 =
sin

(

𝜒↑

)

sin
(

𝜒↑

)

− sin
(

𝜒↓

)

sin
(

𝜒↓

)

2
(A.2f)

he angle 𝜒↑∕↓ is defined as:

↑∕↓ = tan−1
(

𝑘𝑧∕𝑘𝐹
𝑢↑∕↓

)

(A.3)

Appendix B. Orthogonal transformation for the spin basis

With the interface normal along �̂� and the electric field along �̂�, we
define the spin basis with the following set of orthogonal vectors:

�̂�′(𝐤) = �̂�Eff (𝐤) × (�̂� × �̂�) (B.1a)

�̂�′(𝐤) = �̂�Eff (𝐤) ×
(

�̂�Eff (𝐤) × (�̂� × �̂�)
)

(B.1b)

�̂�′(𝐤) = �̂�Eff (𝐤) (B.1c)

The orthogonal transformation matrix from the spin basis to the frame
aligned with the interface and current is then given by:

𝑂𝐬(𝐤) =
[

�̂�′(𝐤) �̂�′(𝐤) �̂�′(𝐤)
]

(B.2)

The 4 × 4 transformation matrix is then given by:

𝑂(𝐤) =
(

𝑂𝐬(𝐤) 0
0 1

)

(B.3)

In the limit of no SOC (𝑢𝑅 → 0), �̂�′ and �̂�′ reduce to the damping-like
and field-like directions, respectively, while �̂�′ becomes aligned with 𝐦.
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Appendix C. Orthogonal transformation for generalized spin trans-
port

In order to generalize the REE spin current and torque contribution
calculations in Section 2 to any direction of the interface normal 𝐧 and
in-plane electric field �̂�𝐢𝐩, additional coordinate transformations are
required between the laboratory frame and the interface calculation
frame where 𝐧 = �̂� and �̂�𝐢𝐩 = �̂�. We define the interface calculation
basis with the following set of orthogonal vectors:

�̂�𝐢𝐧𝐭 = �̂� − (�̂� ⋅ 𝐧)𝐧 = �̂�𝐢𝐩 (C.1a)

�̂�𝐢𝐧𝐭 = 𝐧 × �̂� (C.1b)

�̂�𝐢𝐧𝐭 = 𝐧 (C.1c)

The orthogonal transformation from the laboratory frame to the inter-
face calculation frame is then given by:

𝑂𝐢𝐧𝐭 =
[

̂𝐱𝐢𝐧𝐭 ̂𝐲𝐢𝐧𝐭 ̂𝐳𝐢𝐧𝐭
]

(C.2)

The magnetization used in the interface calculations 𝒎𝐢𝐧𝐭 is then ob-
tained with

𝒎𝐢𝐧𝐭 = 𝑂𝐢𝐧𝐭𝐦 (C.3)

and the conductivity and torkivity tensors used in the drift-diffusion
equations are given by

𝝈𝒔 = 𝑂𝑇
𝐢𝐧𝐭𝝈

𝐢𝐧𝐭
𝒔 (C.4)

and

𝜸𝒔 = 𝑂𝑇
𝐢𝐧𝐭𝜸

int
𝒔 , (C.5)

respectively.
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