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Abstract

The Kohn-Sham version of density functional theory (DFT) is the most common method

for theoretical modeling of solids, surfaces and molecules at the quantum level. The accu-

racy of such a calculation depends on the chosen approximation for Exc. The semilocal and

hybrid functionals give very good results for many of systems. However, they are inaccurate

for describing weak interactions, since London dispersion forces are not properly included in

these approximations; better results can be obtained by adding the correlation term (Ec,disp)

accounting for the dispersion forces to the semilocal/hybrid functional. A large number of

nonlocal van der Waals (NL-vdW) functionals have been proposed during the last few years,

such that it is not clear which one should be used. In the first part of this work, we explain

treating van der Waals interactions in DFT. Moreover, we show which functional can be

used to properly describe different systems.

DFT with semilocal xc potential approximations is a reliable method for calculating ground-

state properties of solids, however it provides band gaps that are much smaller than exper-

iment. For an accurate description of band gaps and band alignments, one can use more

advanced and expensive approximations, like hybrid functionals or the many-body GW

method. Another possibility is DFT+U , which can only be applied to localized electrons

(e.g. 3d). The modified Becke-Johnson (mBJ) potential is currently the most accurate

semilocal functionals for band gaps at much lower computational time. However, it cannot

be used for non-periodic and low-dimensional systems, because it requires an average of

∇ρ/ρ over the unit cell. We implemented the local mBJ method in WIEN2k and test it for

some surfaces and interfaces. Then we use a locally averaged, but spatially varying function

of ∇ρ/ρ or ∇ρ/ρ4/3 as an indicator whether a Hubbard U should be applied to a certain

atom in DFT+U calculations for oxide surfaces. In the last part of this work, we perform

DFT calculations to provide a detailed description of the geometry and catalytic sites for

the adsorption of MxOy clusters (M = , Ni, Co, Fe and Mn, x = 5, and y = 0, 1, ..., 5) on

the anatase TiO2(101) surface.



Zusammenfassung

Die Kohn-Sham-Version der Dichtefunktionaltheorie (DFT) ist die gebräuchlichste Meth-

ode zur theoretischen Modellierung von Festkörpern, Oberflächen und Molekülen auf Quan-

tenebene. Die Genauigkeit solche Berechnungen hängt von der gewählten Näherung für Exc

ab. Semilokale und hybride Funktionale liefern sehr gute Ergebnisse für viele Systeme. Sie

sind jedoch für die Beschreibung schwacher Wechselwirkungen zu ungenau, da die London-

Dispersionskräfte in diesen Näherungen nicht korrekt berücksichtigt sind. Bessere Ergebnisse

können durch Addition des Korrelationsterms (Ec,disp) zum semilokalen/hybriden Funktional

erreicht werden, der die Dispersionskräfte berücksichtigt. In den letzten Jahren wurde eine

bestimmte Anzahl nicht-lokaler van-der-Waals (NL-vdW) -Funktionenale vorgeschlagen, so

dass unklar ist, welches davon verwendet werden soll. Im ersten Teil dieser Arbeit erklären

wir die Behandlung von van-der-Waals Wechselwirkungen in der DFT. Darüberhinaus zeigen

wir welche Systeme mit verschieden Funktionalen behandelt werden können.

DFTmit semilokalen Austauschkorrelationspotentialannäherungen ist eine zuverlässige Meth-

ode zur Berechnung der Grundzustandseigenschaften von Festkörpern, führt jedoch zu Band-

lücken, die viel kleiner sind als die experimentellen. Für eine genaue Beschreibung von

Bandlücken und Bandausrichtungen können fortgeschrittenere und teurere Näherungen ver-

wendet werden, wie z. B. Hybridfunktionale oder die Vielteilchen-GW -Methode. Eine

weitere Möglichkeit stellt DFT+U dar, wobei diese Nährung nur auf lokalisierte Elektro-

nen (z. B. 3d) angewendet werden kann. Das modifizierte Becke-Johnson-Potential (mBJ)

ist derzeit das genaueste semilokale Funktional für Bandlücken bei wesentlich geringerer

Rechenzeit. Es kann jedoch nicht für nicht-periodische und niedrigdimensionale Systeme

verwendet werden, da es einen Mittelwert von ∇ρ/ρ über die Einheitszelle benötigt. Wir

haben die Methode ”local mBJ” in WIEN2k implementiert und an einigen Oberflächen und

Grenzschichten getestet. Weiters haben wir eine lokal gemittelte, aber räumlich variierende

Funktion von ∇ρ/ρ oder ∇ρ/ρ4/3 verwendet, um festzulegen, ob ein Hubbard-U auf ein

bestimmtes Atom in DFT+U -Berechnungen mit Oxidflächen angewendet werden soll.

Im letzten Teil führen wir Berechnungen zur Dichtefunktionaltheorie durch, um eine detail-

lierte Beschreibung der Geometrie und katalytischen Zentren für die Adsorption von MxOy

Clustern (M = Cu, Ni, Co, Fe und Mn, x = 5, und y = 0, 1, ..., 5) auf der (101)-Oberfläche

von Anatas TiO2 zuerhalten

ii



Declaration of Authorship

I, Leila Kalantari, declare that this thesis titled, ‘Development, tests and application of DFT

based methods specifically to lower dimensional systems’ and the work presented in it are

my own. I confirm that:

This work was done wholly or mainly while in candidature for a research degree at

this University.

Where I have consulted the published work of others, this is always clearly attributed.

Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

iii



Acknowledgements

I want to express my gratitude to my supervisor, Prop. Dr. Peter Blaha. He has believed

in my potential and provided me with a great environment in terms of an outstanding

scientific as well as social atmosphere which was a strong motivation for me during my PhD.

time. Moreover, I thank Prof. Blaha for giving me the opportunity to participate at so

many conferences and workshops, which I believe is indispensable for a profound scientific

education.

I appreciate the TU-D doctoral College, headed by Dr. Florian Libisch, who accepted me

in February, 2017 and gave me the possibility to discover such a wonderful topic which I am

going to work on it more profoundly in the future.

I also want to especially mention Dr. Fabien Tran. While not being my direct supervisor,

he has always been ready to help me and I took extensive advantage thereof. Thomas Ruh

rendered the life at the institute much more pleasant and was always ready to answer my

questions.

During these last four years, I have also been grateful to enjoy the scientific and social

interaction with many colleagues in the research groups of Prof. Georg Madsen.

My ultimate thanks, however, belong to my family, Naser, Soroush and Sepehr Abazari, for

their never ending support which is the solid basis on which I can build my scientific career.

Leila Kalantari

iv



Contents

Abstract i

Zusammenfassung ii

Declaration of Authorship iii

Acknowledgements iv

Abbreviations viii

Physical constants and units used in this work x

1 Theoretical Background and Methods 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hartree Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Hartree-Fock Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 The Hohenberg-Kohn Theorem . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Total energy in DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.3 Kohn-Sham version of DFT . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.3.1 Total energy in Kohn-Sham DFT . . . . . . . . . . . . . . . 10

1.5 Jacob’s Ladder of Density Functional Theory . . . . . . . . . . . . . . . . . . 12

1.5.1 The First Rung - the Local Density Approximation . . . . . . . . . . 13

1.5.2 The Second Rung - the Generalized Gradient Approximation . . . . . 14

1.5.3 The Third Rung: meta-GGAs . . . . . . . . . . . . . . . . . . . . . . 18

1.5.4 The fourth rung: Hybrid Functionals, Treating Exchange Non-Locally 19

1.5.5 The Fifth Rung: Random Phase Approximation (RPA) . . . . . . . . 20

1.6 Hubbard-Corrected DFT energy functional
DFT+U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



Contents vi

1.6.1.1 General information . . . . . . . . . . . . . . . . . . . . . . 23

1.6.1.2 Rotationally invariant formulation . . . . . . . . . . . . . . 24

1.6.1.3 A simpler formulation . . . . . . . . . . . . . . . . . . . . . 26

1.6.1.4 Determination of U . . . . . . . . . . . . . . . . . . . . . . . 27

1.6.1.5 Density analysis for estimating the degree of on-site correla-
tion on transition-metal atoms in extended systems . . . . . 28

1.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8 WIEN2k code: computational details . . . . . . . . . . . . . . . . . . . . . . 32

2 Treating van der Waals dispersion forces in DFT 34

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Classification of the common DFT-based dispersion methods . . . . . . . . . 35

2.2.1 Ground-Step zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Step one (simple C6 correction): DFT-D1/D2 methods . . . . . . . . 36

2.2.3 Step two (Environment-dependent C6): DFT-D3, vdW(TS) . . . . . 38

2.2.4 Step three: vdW-DF . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.5 Higher steps: Random Phase Approximation (RPA) . . . . . . . . . . 41

3 Local modified Becke-Johnson exchange potential for interface, surfaces,
and two-dimensional materials 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Becke-Roussel (BR) potential . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Becke and Johnson exchange potential . . . . . . . . . . . . . . . . . 44

3.1.3 modified Becke-Johnson exchange (mBJ) potential . . . . . . . . . . 45

3.2 Local modified Becke-Johnson exchange potential . . . . . . . . . . . . . . . 45

4 Summary of published journal articles 47

4.1 Computational Study of Y NMR Shielding in Intermetallic Yttrium Compounds 47

4.2 Orbital-free approximations to the kinetic-energy density in exchange-correlation
MGGA functionals: Tests on solids . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Nonlocal van der Waals functionals for solids: Choosing an appropriate one . 49

4.4 Semilocal exchange-correlation potentials for solid-state calculations: Current
status and future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Efficient Band Structure Calculation of Two-
Dimensional Materials from Semilocal Density Functionals . . . . . . . . . . 50

4.6 Band gap of two-dimensional materials: thorough assessment of modern exchange-
correlation functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Elucidating the formation and active state of Cu co-catalysts for photocat-
alytic hydrogen evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.8 Density analysis for estimating the degree of on-site correlation on transition-
metal atoms in extended systems . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Density functional theory study of metal and metal-oxide nucleation and
growth on the anatase TiO2(101) surface . . . . . . . . . . . . . . . . . . . . 53

5 List of publication 55



Contents vii

6 Appendix 244

Bibliography 251



Abbreviations

1(2,3)D one (two,three)-dimensional

AFM antiferromagnetic

AMF around mean f ield

a.u. atomic unit

CC coupled cluster

CI configuration interaction

cLDA constrained local density approximation

cRPA constrained random phase approximation

DCACP dispersion corrected atom-centered potentials

DFT density functional theory

DMFT dynamical mean f ield theory

DOS density of states

EFG electric f ield gradient

FFT fast Fourier transform

FLL fully localized limit

FM ferromagnetic

GGA generalised gradient approximation

hcp hexagonal closed-packed

LAP local atomic potential

LAPW linearised augmented plane wave

lmBJ local modified Becke Johnson

LO (lo) local orbital

LR linear response

L(S)DA local (spin) density approximation

viii



Abbreviations ix

NMR nuclear magnetic resonance

mBJ modified Becke Johnson

MGGA/meta-GGA meta generalised gradient approximation

MP2 Møller-Plesset Perturbation theory

RDMFT reduced density matrix functional theory

RPA random phase approximation

SCAN strongly constrained and appropriately normed

TDDFT time dependent DFT

TMO transition metal oxide

UEG uniform or (homogeneous) electron gas

vdW van der Waals

WDA weighted density approximation

XC exchange and correlation



Physical constants and units used in

this work

a0 = 0.529177249× 10−28m Bohr radius

c = 2.997 924 58× 108 ms−1 speed of light

e = 1.6021773× 10−19 C elementary charge

= 6.62607004× 10−34 m2kgs−1 Planck’s constant

Ha (Eh) = 27.211386245988(53) eV Hartree energy

me = 9.1093837015(28)× 10−31 kg electron rest mass

mp = 1.67262192369(51)× 10−27kg proton rest mass

0 = 8.8541878128(13)× 1012 A2s4kg−1m−3 vacuum dielectric constant

x



Chapter 1

Theoretical Background and Methods

1.1 Introduction

The challenge of computational solid state physics is to describe the observable, macroscopic

properties of a solid based solely on the type and number of atoms in a unit cell of a

crystalline material. The electronic structure is described by a many-particle wavefunction,

which could be obtained in principle by solving the Schrödinger equation [1] for this many-

particle problem,

ĤΨ = EΨ. (1.1)

with the following Hamiltonian:

Ĥ = T̂n + T̂e + V̂ee + V̂en + V̂nn (1.2)

= −
2

2

M

I=1

∇2
RI

MI

−
2

2

N

i=1

∇2
r̂i

me

+
1

4π 0

N−1

I=1

N

j=i+1

e2

|r̂i − r̂j| −
1

4π 0

N

i=1

M

I=1

e2ZI

|r̂i − R̂I |
+

1

4π 0

M−1

I=1

M

I=I+1

ZIZJ

|R̂I − R̂J |
,

where T̂n and T̂e are the kinetic energy operators of the nuclei and electrons, respectively.

V̂ee and V̂nn are the electron-electron and nucleus-nucleus repulsion, and V̂en is the electron-

nucleus attraction operators. Here is Planck’s constant, RI and MI are the position

and mass of nucleus I, me is the electronic mass, ri is the position of electron i, e is the

1



Theoretical Background and Methods 2

elementary charge, ZI is the charge of nucleus, and 0 is the vacuum dielectric constant.

To simplify the equation, atomic units will be used in which ( = me = e = 4π 0 = 1) so

they can be omitted from the equation. In atomic units, the energy is expressed in Hartree.

Except for relativistic effects this equation is exact. The first approximation is the adiabatic

approximation by Born and Oppenheimer [2] which allows to separate the electronic from

the nuclear motion,

Ĥ = −
N

i=1

1

2
∇̂2

i +
N−1

i=1

N

j=i+1

1

|r̂i − r̂j| −
N

i=1

M

I=1

ZI

|r̂i − R̂I |
+

M−1

I=1

M

I=I+1

ZIZJ

|R̂I − R̂J |
. (1.3)

However, even with this approximation, due to the huge number of degrees of freedom, this

problem can neither be solved analytically nor can it be treated numerically except for a very

few electron system. Despite of this problem, a lot of research was done to make electronic

structure calculation possible. The approaches can be categorized into three groups.

• wavefunction-based methods (Hartree, Hartree-Fock, ... )

• electron density based methods (Density Functional Theory)

• Green’s function based methods (GW )

1.2 Hartree Method

In wavefunction-based methods an approximate wavefunction consists of single-particle

wavefunctions. One of the simplest approximation for a wavefunction is the Hartree method

[3–5], where the wavefunction ΨH is a product of N non-interacting one-electron wavefunc-

tions (orbitals) ψi:

ΨH(r1, r2, ..., rN) =
N

i=1

ψi(ri). (1.4)
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The total energy Etot, which is the expectation value of the Hamiltonian operator given by

(Eq. 1.3)

EH
tot[{ψi}] = ΨH|Ĥ|ΨH

=
N

i=1

ψ∗
i (r) − 1

2
∇2 + vext(r) ψi(r)d

3r

+
1

2

N

i=1

N

j=1,j=i

|ψi(r)|2|ψj(r )|2
|r− r | d3rd3r + Vnn, (1.5)

where vext(r) (or ven(r)) is the external potential which is generated by the nuclei:

vext(r) = −
M

I

ZI

|r−RI | . (1.6)

Defining the Lagrange function

L[{ψi}] = EH
tot[{ψi}]−

N

i=1

i |ψi(r)|2d3r − 1 , (1.7)

where the Lagrange multipliers i are used in order to minimize the total energy by consid-

ering the normalization constraint:

δL[{ψi}]
δψ∗

i (r)
= 0, (1.8)

which give us the Hartree equations:

− 1

2
∇2 + vext(r) +

N

j=1,j=i

|ψj(r )|2
|r− r | d

3r ψi(r) = iψi(r). (1.9)

The Lagrange multipliers i are interpreted as orbital energies.

By defining the Hartree effective potential as:

vHeff,i(r) = vext(r) + vH(r) + vSICi (r), (1.10)
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where vH(r) is the classical Coulomb interaction generated by the charge density ρ(r) =

N
i=1 |ψi|2,

vH(r) =
ρ(r )

|r− r |d
3r (1.11)

and vSICi is the self-interaction correction to the classical Hartree potential vH:

vSICi (r) = − |ψi(r )|2
|r− r | d

3r . (1.12)

The Hartree equations can be rewritten:

− 1

2
∇2 + vHeff,i(r) ψi(r) = iψi(r). (1.13)

The Hartree equations are in the form of one-particle Schrödinger equations and have to be

solved self-consistently.

1.3 Hartree-Fock Method

The Hartree-Fock (HF) method [6–9] is an extension of the Hartree approximation which

satisfies the Pauli exclusion principle. In this method, instead of using a simple product

form of the wavefunction, a Slater determinant ΦHF, which is constructed from a set of

orthonormal one-electron orbitals ψi(ri)χi(si), is used to satisfy the symmetry requirement,

ΦHF(r1, s1, r2, s2, ..., rN , sN) =
1√
N !

ψ1(r1)χ1(s1) ψ1(r2)χ1(s2) · · · ψ1(rN)χ1(sN)

ψ2(r1)χ2(s1) ψ2(r2)χ2(s2) · · · ψ2(rN)χ2(sN)
...

...
. . .

...

ψN(r1)χN(s1) ψN(r2)χN(s2) · · · ψN(rN)χN(sN)

.

(1.14)

With this construction, ΦHF is antisymmetric under exchange of two orbitals or coordinates,

which is necessary for fermionic wavefunctions. In Eq. (1.14), ψi is the spatial part of the
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wavefunction and χi is the spin part, which satisfies:

χi(s) = δsσi
,

where σi is the spin of the electron and δsσi
is the Kronecker symbol. The spin can take one

of two states which will be denoted as ↑ and ↓, χi(s) can have the values 0 or 1.

δsσi
=


1 if (s, σi) = (↑, ↑) or (↓, ↓)

0 if (s, σi) = (↑, ↓) or (↓, ↑)

The total energy EHF
tot is the expectation value of the Hamiltonian, which consists of the

kinetic energy of electrons, the electron-nucleus attraction, the classic electron-electron re-

pulsion (Hartree energy), the HF exchange energy and the repulsion between nuclei, respec-

tively:

EHF
tot [{ψi}] = ΦHF|Ĥ|ΦHF

=
N

i=1

ψ∗
i (r) − 1

2
∇2 + vext(r) ψi(r)d

3r

+
1

2

N

i=1

N

j=1

|ψi(r)|2|ψj(r )|2
|r− r | d3rd3r

−1

2

N

i=1

N

j=1

δσiσj

ψ∗
i (r)ψj(r)ψ

∗
j (r )ψi(r )

|r− r | d3rd3r + Vnn, (1.15)

the third term in this equation is the HF exchange energy:

EHF
x [{ψi}] = −1

2

N

i=1

N

j=1

δσiσj

ψ∗
i (r)ψj(r)ψ

∗
j (r )ψi(r )

|r− r | d3rd3r . (1.16)

Defining the Lagrange function like in the Hartree method,

L[{ψi}] = EHF
tot [{ψi}]−

N

i=1

N

j=1

ij δσiσj
ψ∗
i (r)ψj(r)d

3r − δij , (1.17)

where the Lagrange multipliers ij are used to minimize the total energy by considering the

normalization constraint. After minimizing the Eq. (1.17) with respect to wavefunction ψi
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and unitary transformation of the matrix ij, the self-consistent HF equations become,

− 1

2
∇2 + vext(r) + vH(r) ψi(r)−

N

j=1

δσiσj
ψj(r)

ψ∗
j (r )ψi(r )

|r− r | d3r = iψi(r), (1.18)

where vH is the Hartree potential given in Eq. (1.11). By defining the Hartree-Fock effective

potential as:

vHF
eff,i(r) = vext(r) + vH(r) + vHF

x,i (r), (1.19)

where

vHF
x,i (r) = −

N

j=1

δσiσj
ψj(r)

ψi(r)

ψ∗
j (r )ψi(r )

|r− r | d3r

= vSICi (r)−
N

j=1,j=i

δσiσj
ψj(r)

ψi(r)

ψ∗
j (r )ψi(r )

|r− r | d3r (1.20)

is the HF exchange potential. The self-consistent Hartree-Fock equations (single-particle

Schrödinger-like equation for each orbital ψi) can be rewritten as

− 1

2
∇2 + vHF

eff,i(r) ψi(r) = iψi(r). (1.21)

HF describes exchange correctly, but correlation is totally missing. Correlation can be

included in various (expensive) methods like Møller-Plesset Perturbation theory (MP2),

coupled cluster (CC) or full configuration interaction (CI).

1.4 Density Functional Theory

Introduction

Density functional theory (DFT) is a standard technique in computational chemistry and

material science due to its low computational cost combined with useful accuracy. However,

DFT still has many limitations: too many approximation, too slow for liquids, failures for

strongly correlated system, etc.
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1.4.1 The Hohenberg-Kohn Theorem

The basis of DFT are two theorems presented by Hohenberg and Kohn in 1964 [10].

Theorem I: For any system of interacting particles in an external potential Vext(r), the

potential is determined uniquely only by the ground state particle density ρ0, except for a

constant. It means that every observable which can be expressed as an expectation value of

an operator for Ψ0 is determined only by the ground state density.

Proof of Theorem I

This theorem can be proven by reductio ad absurdum as follows:

We consider a Hamiltonian with V1(r) = V2(r) associated with the same ground state density

ρ(r), and the two corresponding ground state many-body wavefunctions Ψ1(r) and Ψ2(r).

Decompose Ĥi = F̂ + Vi(r), with F̂ describing the electron kinetic energy and Vi(r) the

electron-electron interaction. We can use the variational principle to write:

E1 = Ψ1|Ĥ|Ψ1 < Ψ2|Ĥ|Ψ2 = E2 + ρ(r)(V1(r)− V2(r))d
3r, (1.22)

where E1 is the ground state energy corresponding to |Ψ1 and E2 is the ground state energy

corresponding to |Ψ2 .

With the same reasoning, one obtains:

E2 = Ψ2|Ĥ|Ψ2 < Ψ1|Ĥ|Ψ1 = E1 + ρ(r)(V2(r)− V1(r))d
3r. (1.23)

Adding both equations yields the following contradiction:

E1 + E2 < E2 + E1, (1.24)

consequently the ground state many-body wavefunctions are the same (Ψ1 = Ψ2). Therefore

it is proven that the ground state density determines the external potential in a unique way,

which may differ only by an additive constant. This also proves that every observable can

be determined by the electron density. Since the number of electrons N is determined by

integration of the density ρ, Vext and N define the Hamiltonian and thus all properties of

the system. Therefore, the total energy E of the system can be written as a functional of
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electron density ρ:

E = E(ρ). (1.25)

Theorem II: For any particular Vext(r), the exact ground state energy of the system is

the global minimum of the total-energy functional, and the density that minimizes this

functional is the exact ground state density ρ0(r).

Proof of Theorem II

According to theorem one, the external potential V(r) is uniquely determined by the electron

density ρ(r). Therefore, the ground-state many-body wavefunction Ψ, the solution of N

electrons moving inside V(r), is also a unique function of ρ, (Ψ[ρ(r)]). The total energy can

be define as

E[ρ] := Ψ[ρ]|Ĥ|Ψ[ρ] , (1.26)

and by the variational principle, for any other density ρ

E[ρ ] = Ψ[ρ ]|Ĥ|Ψ[ρ ] > E[ρ]. (1.27)

The total energy functional Eρ is

E[ρ] = T [ρ] + Vee[ρ] + vext(r)ρ(r)d
3r + Vnn. (1.28)

Hohenberg and Kohn [10] specified the universal functional, independent of the external

potential vext, F [ρ] as:

F [ρ] = Ψ|T̂e + V̂ee|Φ = Ψ|T̂e|Φ + Ψ|V̂ee|Φ = T [ρ] + Vee[ρ]. (1.29)

The total energy becomes:

E[ρ] = F [ρ] + vext(r)ρ(r)d
3r + Vnn. (1.30)

Applying the variational principle with ρ to the Lagrange function ( δL
δρ

= 0),

L[ρ] = Etot[ρ]− µ( ρ(r)d3r −N) (1.31)
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leads to the Euler-Lagrange equation of the electron density ρ:

µ =
δE[ρ]

δρ(r)
, (1.32)

where the Lagrange multiplier µ is the chemical potential. This equation is an outcome of

the Hohenberg-Kohn theorems and can be used to calculate the electron density ρ. Since

the exact form of T [ρ] and Vee[ρ] as a function of ρ in Eq. (1.28) are not known, and an

accurate approximation for T [ρ] is not available, useful calculations with Eq. (1.32) are not

possible.

1.4.2 Total energy in DFT

According to the Hohenberg-Kohn theorem, it is possible to consider the total energy as a

functional of ρ,

Etot = Etot[ρ]. (1.33)

However, we do not know the exact mathematical expression of Etot[ρ] with no wavefunctions

involved. We know only approximate expressions, an example is orbital-free DFT given by

the Thomas-Fermi-Dirac [11–13] (TFD) functional:

ETFD
tot [ρ] = τTF(r)d3r + vext(r)ρ(r)d

3r

+
1

2

ρ(r)ρ(r )

|r− r | d3rd3r − 3

4
(
3

π
)1/3 ρ4/3(r)d3r + Vnn, (1.34)

where

τTF(r) =
3

10
(3π2)2/3ρ5/3(r), (1.35)

is the Thomas-Fermi kinetic energy density. The main problem in the TFD functional is

kinetic energy T [ρ] which is one of the main component of the total energy according to the

virial theorem (T ≈ −Etot). All proposed expressions for the kinetic energy are by far too

inaccurate to be useful for real applications.
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1.4.3 Kohn-Sham version of DFT

The main problems in orbital-free DFT are the crude approximations for the kinetic energy

and neglecting the Pauli principle. In order to avoid to use an approximation for T [ρ],

Kohn and Sham [14] proposed to use a single Slater determinant Φ (like in the Hartee-

Fock method), and to consider a fictitious system of non-interacting electrons with the same

density as the interacting system. The exact kinetic energy for a single Slater determinant

reads as:

Ts = Φ|T̂ |Φ = −1

2

N

i=1

ψ∗
i∇2ψi(r)d

3r. (1.36)

The total energy is:

EKS
tot = Ts[{ψi}] + Eext[ρ] + EH[ρ] + Exc[ρ] + Vnn, (1.37)

where Exc = Ex + Ec is the exchange (x) and correlation energy (c). This is not a pure

density functional and we can not calculate δTs/δρ for the Euler equation. Instead δTs/δψ
∗
i

is used. This leads to the famous single-particle Kohn-Sham equations (ρ = N
i=1 |ψ|2):

− 1

2
∇2 + vext(r) +

ρ(r )

|r− r |d
3r + vxc(r) ψi(r) = iψi(r), (1.38)

where vxc represent the exchange-correlation potential which can be derived from the func-

tional derivative of the exchange-correlation energy functional Exc,

vxc =
δExc

δρ(r)
. (1.39)

In the Kohn-Sham version of DFT both, exchange and correlation effects are included while

in Hartree-Fock Ec and vc are absent.

1.4.3.1 Total energy in Kohn-Sham DFT

In the Kohn-Sham DFT method, the total energy is

EKS
tot = Ts[{ψi}] + Eext[ρ] + EH[ρ] + Exc[ρ] + Vnn, (1.40)
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where Ts represents the kinetic energy of non-interacting electrons:

Ts[{ψi}] = −1

2

N

i=1

ψ∗
i∇2ψi(r)d

3r. (1.41)

Eext is the electron-nucleus attraction

Eext[ρ] = vext(r)ρ(r)d
3r, (1.42)

where vext is

vext(r) = −
M

I=1

ZI

|r−RI | . (1.43)

EH[ρ] is classic electron-electron repulsion:

EH[ρ] =
1

2

ρ(r)ρ(r )

|r− r | d3rd3r , (1.44)

and Vnn is nucleus-nucleus repulsion:

Vnn =
M−1

I=1

M

J=I+1

ZIZJ

|RI −RJ | . (1.45)

In the total energy, the exact mathematical form for all components are known except for

Exc. The exchange energy Ex comes from the Pauli exclusion principle like in Hartree-Fock,

while the correlation energy Ec comes from other types of many-body quantum correlations

which are totally missing in Hartree-Fock like electron-electron interaction with opposite

spin. In Kohn-Sham DFT, Exc is defined such that the total energy is exact EKS
tot = Eexact

tot .

Exc = Eexact
tot − (Ts[{ψi}] + Eext[ρ] + EH[ρ] + Vnn) (1.46)

Eexact
tot = Ψexact|Ĥ|Ψexact (1.47)

It has to be corrected for Ts versus exact T and the selfinteraction included in EH. Since we

are not able to calculate Eexact
tot in general and we do not know an exact Exc, approximation for

Exc have to be used. In the following section we will discuss about different approximations

for Exc.
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1.5 Jacob’s Ladder of Density Functional Theory

Introduction

DFT results depend on the accuracy of the exchange correlation energy functional Exc[ρ(r)].

Despite a lot of efforts to define better exchange correlation functionals, there is no system-

atic way known to achieve consistently a higher accuracy. The known DFT approximations

are different in accuracy and computational cost and are usually categorized [15] in the

so-called ”Jacob’s Ladder of Density Functional Theory”, which is the connection between

the very inaccurate Hartee method Exc = 0 and the approximation where Exc is accurate

enough to lead to the chemical accuracy of 1 kcal/mol, which is required to make realistic

chemical predictions. This ladder has five rungs and the quality of approximation usually

increases with each rung, but unfortunately the computational cost also increases.

The functionals of the first rung depend only on the local density ρ(r) (Local Density

Approximation (LDA))

The functionals of the second rung depend on the local density ρ(r) and its gradient

∇ρ(r) (Generalized Gradient Approximation (GGA))

The functionals of third rung depend on the local density ρ(r), its gradient ∇ρ(r) and

the kinetic energy density τ(r) (meta-GGA)

The functionals of the fourth rung depend non-locally on the occupied orbitals φo(r)

and φo(r ).

The functionals of the fifth rung depend non-locally on the occupied and unoccupied

orbitals φo(r), φo(r ), φu(r) and φu(r ) .

We should mention that in the Jacob’s ladder, functionals which depend non-locally

on the density ρ(r) and ρ(r ) are missing, like in the weighted density approxima-

tion (WDA) [16] or in van der Waals functionals [17–21]. In this chapter we discuss

the various approximations and in the next chapter we will discuss van der Waals

interactions.
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1.5.1 The First Rung - the Local Density Approximation

In the original work of Kohn and Sham [14], they suggested that an approximation for Exc

depending only on the local density ρ(r) would be sufficient to describe the exchange and

correlation interaction in metals. They suggested the LDA, which is exact for the so-called

uniform or (homogeneous) electron gas (UEG), which is a periodic solid where the nuclei

are replaced by a positive charge that is uniformly distributed. The exchange-correlation

energy for the LDA has the following simple form:

ELDA
xc [ρ] = UEG

xc (ρ(r), ζ(r))d3r (1.48)

= d3r UEG
x (ρ(r)) + UEG

c (ρ(r), ζ(r)) , (1.49)

where the UEG
xc is the exchange-correlation energy density per volume. This energy density

at r depends only on the local charge density ρ(r), but surprisingly it is an appropriate way

to investigate exchange and correlation contributions in realistic systems and apply it as the

actual exchange-correlation functional.

Exchange: The exchange energy density for the uniform electron gas can be calculated

analytically [22],

UEG
x = −Cxρ

4/3, (1.50)

where

Cx =
3

4

3

π

1/3

. (1.51)

Correlation: The correlation energy density of this system is obtained from numerical

quasi-exact quantum Monte-Carlo simulation of the uniform electron gas for various values

of ρ [23]. These results are then used for analytical fits as a function of ρ and spin-polarization

ζ with a function f(ρ, ζ)

UEG
c = f(ρ, ζ) (1.52)

where

ζ =
ρ ↑ −ρ ↓

ρ
. (1.53)
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Two accurate parametrization of the Monte Carlo data are PW92 [24] and VWN5 [25].

The LDA approximation consists of using the formulas of the UEG with the density of

real system ρ(r). The LDA approximation gives good results for some classes of solids,

e.g., the 5d-transition metals [26], but it is too inaccurate for the atomization energies of

molecules and solids and systematically overbind both, molecules and solids. Moreover, in

semiconductors and insulators, the band gaps turn out to be too small or even absent.

1.5.2 The Second Rung - the Generalized Gradient Approxima-

tion

The first step for improvement over LDA is making use of the gradient of the density to

account for the inhomogenity of the density. The simplest way of writing Exc is the so-

called gradient expansion approximation (GEA) [14, 27] in which Exc is written as a Taylor

expansion and truncating it at a higher order than LDA,

EGEA
xc [ρ] =

∞

n=0

Exc,2n[ρ] =
∞

n=0

xc,2n(ρ(r),∇ρ(r), ...)d3r. (1.54)

However, the results obtaining from GEA are worse than LDA results. Because some condi-

tions for the exact Exc, which are fulfilled by LDA, are not obeyed by GEA. The solution for

that is the GGA [28], where the energy expression Eq. (1.48) is extended by a function Fxc

called exchange-correlation enhancement factor which depends on the electron density ρ and

its derivative ∇ρ, this is why GGA functionals are called ’semi-local’. The GGA functional

has the following form:

EGGA
xc [ρ] = GGA

xc (ρ(r),∇ρ(r))d3r

= LDA
x (rs(r))Fxc(rs(r), s(r))d

3r, (1.55)

where Fxc(rs, s) = Fx(s) + Fc(rs, s), rs = [3/(4πρ)]1/3 is the Wigner-Seitz radius, and s is

the reduced density gradient which is dimensionless and related to ∇ρ,

s(r) =
|∇ρ(r)|

2(3π2)1/3ρ4/3(r)
. (1.56)
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Many different flavours of GGAs have been proposed, but generally they can be divided into

two different classes: empirical and non-empirical. The non-empirical GGAs are not fitted

to experimental data and are derived directly from first principle, while the empirical GGAs

may contain fitted parameters adjusted by comparison with the experimental data. In the

following three different GGAs will be presented, B88 [29] as an example for an empirical

one, PBE [28] as an example for a non-empirical and PBEsol [30] which is used for lattice

parameters of solids and in the surface calculations in this thesis.

• B88 [29]

The Becke-88 exchange-only functional, contains only one parameter, fits the exact

Hartree-Fock exchange energies of a wide variety of free atoms. It surpassed the

performance of its previous functional containing two parameters or more.

It is known that, the exact asymptotic behavior of the exchange-energy density of any

finite many-electron system is given by:

lim
r→∞ x = −1

r
. (1.57)

Moreover, the asymptotic behavior of the spin density ρσ is also known,

lim
r→∞

ρσ = e−aσr. (1.58)

In this formula aσ is related to the ionization potential of the system and it is a con-

stant. The gradient-correlated exchange-energy functional that reproduces the exact

asymptotic behavior of Eqs. (1.57) and (1.58) is written:

EB88
x = ELDA

x − β
σ

ρ4/3σ

x2
σ

(1 + 6βxσarcsinhxσ)
d3r, (1.59)

where xσ is the dimensionless parameter,

xσ =
|∇ρσ|
ρ
4/3
σ

(1.60)

and β is a constant which can be easily determined by a least-squares fit to exact

atomic Hatreee-Fock data. They found a best-fit value of β = 0.0042 a.u., so the
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exchange-correlation enhancement factor for B88 functional is:

FB88
x (s) = 1 +

0.0042

21/3Cx

b2s2

1 + 0.0252bs arcsinh(bs)
, (1.61)

where b = 2(6π2)1/3. The EB88
x exchange functional is also widely used in the well

known hybrid functional B3LYP [31, 32] in molecular chemistry.

• PBE [28]

Today one of the most widely used GGA-functionals for solid-state calculations is the

one of Perdew, Burke, Ernzerhof (PBE), employing both the density and its gradient

at each point in space. As mentioned before, PBE contains no empirical parameters,

but the parameters are designed to satisfy several conditions that are known for the

exact functional. Some of the conditions fulfilled by PBE are the correct homogeneous

electron gas limit, it means the LDA results are recovered when the reduced density

gradient is zero (s = 0), the Lieb-Oxford bound (Ex[ρ] Exc[ρ] −1.679 ρ4/3d3r)

[33], and the LDA linear response. In PBE, the enhancement factor for exchange is

a function of dimensionless density gradient (s) and two non empirical parameters (µ

and κ)

FPBE
x (s) = 1 + κ− κ

1 + µ
k
s2
, (1.62)

where µ = 0.21951 and κ = 0.804 in order to satisfy the above mentioned conditions.

The correlation enhancement factor is given by

FPBE
c (s, t) = 1 +

HPBE(rs, ζ, t, β)
LDA
c (rs, ζ)

, (1.63)

where

HPBE(rs, ζ, t) = γφ3 ln 1 +
β

γ
t2

1 + At2

1 + At2 + A2t4
(1.64)

and t is a dimensionless spin scaled density gradient

t(r) =
3π2

16

1/3 s(r)

rs(r)φ(r)
. (1.65)
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In this equation, rs is the Wigner-Seitz radiaus, ζ (Eq. 1.53) is the relative spin

polarization and φ given by

φ = (1 + ζ)2/3 + (1− ζ)2/3]/2, (1.66)

with

β = 3µ/π2 0.066725, (1.67)

γ = (1− ln 2)/π2, (1.68)

and

A = (β/γ)[exp(− LDA
c /(γΦ3)− 1]−1. (1.69)

The PBE functional performs equally well for finite and infinite systems. Regarding

the lattice constant of solids, there are GGA functionals which overall perform better

than PBE e.g. PBEsol. However, there are classes of solids for which PBE gives the

best results of all GGAs (e.g., solids containing 3d-transition elements [34, 35])

• PBEsol [30]

PBEsol was introduced to improve equilibrium lattice parameters of densely packed

solids and their surfaces. It has the same analytical form as PBE, but in order to

satisfy other conditions the values of two parameters are different. The value of µ in

Eq. (1.62) was set to µ = µGE = 10/81 (which is a value from the gradient expansion)

in order to satisfy the second order gradient expansion of the exchange energy, while

in correlation, β = 0.046 was chosen to reproduce the accurate TPSS [36] values of the

surface exchange-correlation energy of jellium. PBEsol becomes exact for solids, where

real solid and their surface become truly slowly varying, and exchange dominates over

correlation [37]. However, it performs badly for the thermochemistry of molecules and

solids [38, 39] where a value of µ ≈ 2µGE is more appropriate [40].
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1.5.3 The Third Rung: meta-GGAs

A natural development after the GGA (generalized gradient approximation), that includes

only the density and its first derivative in the exchange-correlation functional, is a meta-

GGA (MGGA) functional which includes the second derivative of the electron density (the

Laplacian) and/or the positive kinetic energy density of the occupied Kohn-Sham orbitals.

This leads to the general expression for Exc:

EMGGA
xc = MGGA

xc (ρ(r),∇ρ(r),∇2ρ(r), τ(r))d3r, (1.70)

where

τ = (1/2)
N

i=1

∇ψ∗
i .∇ψi, (1.71)

is the positive definite kinetic energy density. τ can be used to define a dimensionless variable

(α), which can detect special regions of space that ρ and ∇ρ can not. This dimensionless

variable reads as:

α(r) =
τ(r)− τW(r)

τTF(r)
, (1.72)

where τTF(r) is the Thomas-Fermi kinetic energy density Eq. (1.35) and

τW(r) =
1

8

|∇ρ(r)|2
ρ(r)

(1.73)

is the iso-orbital limit of τ (von Weizsäcker kinetic energy density).

α distinguishes covalent single (α = 0), metallic (α ≈ 1), and weak (α >> 1) bonds [41],

similar to the ”electron localization function” [1/(1+α2)] [42]. MGGAs are computationally

efficient and can achieve high accuracy as well as order-N scaling with unit-cell size. Among

many existing MGGAs, the ”Strongly Constrained and Appropriately Normed Semilocal

Density Funtional” (SCAN) [43] is one of the most promising one. It is nonempirical and

satisfies all known possible exact constraints that a MGGA can satisfy, including some not

satisfied by other well-known MGGA functionals like TPSS [36] and revTPSS [44].
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1.5.4 The fourth rung: Hybrid Functionals, Treating Exchange

Non-Locally

It is well known that semi-local functionals underestimate the band gap, whereas Hartree-

Fock overestimates it. Therefore, a certain combination of both methods can improve the

band gap. The basic idea of hybrid DFT is to treat a fraction of the exchange interaction us-

ing the Hartree-Fock method and the rest with LDA, GGA, or a MGGA. In 1993, Becke [31]

proposed a form for a hybrid exchange-correlation functionals, in which the exchange energy

is a linear combination of a semilocal exchange and the Hartree-Fock exchange functional,

while the correlation remains purely semilocal.

Ehybrid
xc = αxE

HF
x + (1− αx)E

(M)GGA
x + E(M)GGA

c , (1.74)

where

EHF
x = −1

2

N

i=1

N

j=1

δσi(i)σj(j) ψ∗
i (r)ψj(r)ν(|r− r |)ψ∗

j (r )ψi(r )d
3rd3r (1.75)

with 0 ≤ αx ≤ 1. For αx = 0 the original semilocal functional is obtained and for αx =

1 the HF limit is reached. In Eq. (1.75), ν is either the bare Coulomb potential ν =

1/|r− r | for unscreened hybrids or a potential that is screened at long distances for screened

hybrid functionals. One of the most popular hybrid functional in chemistry is the semi-

imperical B3LYP (Becke, three-parameter, Lee-Yang-Parr) functional [31, 32]. Another

popular hybrid functional is PBE0 [45, 46],

EPBE0
xc =

1

4
EHF

x +
3

4
EPBE

x + EPBE
c (1.76)

where the optimal choice of αx is 0.25. In solids, the non-locality of the exchange expression

leads to a increased computational cost because dense k-meshes are required, so that it is

computationally advantages to include only short ranged (screened) exchange contributions.

This leads to the so called HSE hybrid functional which reads as:

EHSE
xc =

1

4
EHF,SR

x (µ) +
3

4
EPBE,SR

x (µ) + EPBE,LR
x (µ) + EPBE

c , (1.77)
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where LR is long range and SR denotes short range contibutions. The error function ap-

proach is used for the range seperation,

1

|r− r | =
erfc(µ|r− r |)

|r− r |
SR

+
1− erfc(µ|r− r |)

|r− r |
LR

, (1.78)

where erfc(µ|r− r |) = 1− erf(µ|r− r |) is the complementary error function with a certain

cut-off parameter µ. In the original HSE functional (HSE03) [47] µ = 0.3 was used, while

it was corrected to µ = 0.207 in later work (HSE06) [47, 48]. In the WIEN2k code, the HF

exchange is screened by means of the Yukawa potential [49, 50],

1

|r− r | =
e−λ|r−r |

|r− r |
SR

+
1− e−λ|r−r |

|r− r |
LR

, (1.79)

where λ is the screening parameter, to eliminate the long range exchange. By scaling λ [50]

one recovers more or less the HSE06 functionals.

Hybrid functionals are more accurate than LDA, GGA, MGGA for the electronic struc-

ture (band gap) of insulators, semiconductor, and the thermochemistry (atomization energy

of molecules), however, because of the double integral and summations over orbitals, the

calculations are much more expensive than semilocal methods. In addition, hybrid func-

tionals are not accurate for metals and yield much too large magnetic moments for itinerant

ferromagnets.

1.5.5 The Fifth Rung: Random Phase Approximation (RPA)

RPA [51–53] can be introduced into DFT via the so-called adiabatic-connection fluctuation-

dissipation (ACFDT) theorem. Within this formulation, the exact exchange-correlation

XC energy in Kohn-Sham DFT can be formally constructed by adiabatically switching on

the Coulomb interaction between electrons, while keeping the electron density fixed at its

physical value. The aim of this theorem is to find an exact expression for the Exc by smoothly

switching the electron-electron interaction from 0 (KS system) to 1 (fully interacting system).
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From ACFDT [54, 55], an exact expression for Exc reads,

Exc = EHF
x [{ψKS}] + EACFDT

c (1.80)

where

EACFDT
c = −

1

λ=0

d3r d3r
1

|r− r |
∞

ω=0

dω

2π
χλ(r, r , iω)− χKS(r, r , iω) . (1.81)

In this equation, χλ is the response function of the λ interacting system and the χKS is the

Kohn-Sham response function. In reciprocal space the correlation energy can be written as:

EACFDT
c = −

1

λ=0

∞

ω=0

dω

2π
q∈BZ G

4π

|q+G|2 χλ
G,G(q, iω)− χKS

G,G(q, iω) (1.82)

= −
1

λ=0

∞

ω=0

dω

2π
Tr ν χλ(iω)− χKS(iω) (1.83)

where the trace is defined as,

Tr{AB} =
q∈BZ G,G

AG,G BG,G (1.84)

and the Coulomb kernel is given as,

νG,G (q) =
4π

|G+ q|2 δG,G . (1.85)

Eq. (1.81) is in principle exact, as long as one can evaluate the response function of the

interacting electron system χλ. The relation between the linear response function of the

interacting system χλ with the coupling strength λ and the non interacting KS response

function χKS can be linked by a Dyson-like equation [56, 57].

χλ(r, r , iω) = χKS(r, r , iω)

+ d3r1d
3r2χ

KS(r, r1, iω)
λ

|r1 − r2| + fλ
xc(r1, r2, iω) χλ(r2, r , iω),
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In the Random Phase Approximation (RPA), this fλ
xc is set to 0, and the correlation energy

can be rewritten as:

ERPA
c =

∞

0

dω

2π
Tr{ln[1− χKSν] + χKSν]}, (1.86)

where ν indicates the Coulomb kernel. RPA provides a very good description of lattice

constants for covalently, ionic, metallic, as well as van der Waals bonded systems [58].

1.6 Hubbard-Corrected DFT energy functional

DFT+U

Introduction

DFT is the main computational tool to perform electronic structure calculation for systems

of realistic complexity, however, it fails for strongly correlated systems. As we discussed in

the previous section, most commonly used energy functionals are constructed as expansions

around the homogeneous electron gas limit and fail in capturing the properties of systems

whose ground state is characterized by more pronounced localization of electrons. The fail-

ure can be ascribed to the tendency of approximate XC functional to over-delocalize valence

electrons and to over-stabilize metallic ground states. The over-delocalization of electrons

is related to the failure of XC functional to cancel out the electronic self interaction in

the Hartree term. One prototypical example of problematic systems are Mott insulators or

charge transfer insulators like the 3d transition-metal oxides, which DFT often predict them

to be metallic or to have very small band gaps [59, 60]. Methods like DFT+Dynamical

Mean Field Theory (DFT+DMFT) [61–64], Reduced Density Matrix Functional Theory

(RDMFT) [65, 66] or Hybrid functionals can improve significantly the description of cor-

related systems [67], but they are prohibitively expensive for big systems. On a practical

level, the DFT+U method that introduces Hubbard-model parameters to represent on-site

screened Coulomb (U) and exchange (J) interactions [68, 69] is one of the powerful and

computationally cheap tools suitable for calculations of large systems. The Hubbard inter-

action is a short range interaction between electrons of opposite spin in the same quantum
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orbital and the Hubbard parameter defined as

U = E(dn+1) + E(dn−1)− 2E(dn), (1.87)

is the Coulomb-energy cost to place two electrons at the same site. In this equation E(dn)

is the total energy of a system for which n electrons fill the given d or f orbitals of a given

atom.

1.6.1 Theoretical framework

1.6.1.1 General information

In the DFT+U method, strongly correlated electrons of a system (typically, localized d or

f orbitals) are described using a Hubbard model [70–75], whereas the rest of the valence

electrons are treated at the level of standard DFT. The total energy of a system can be

written,

EDFT+U [ρ(r)] = EDFT[ρ(r)] + EHub niσ
mm − Edc niσ , (1.88)

where EDFT is the approximate DFT total energy and EHub is the term that contains the

Hubbard Hamiltonian to model correlated states. It is necessary to eliminate from EDFT,

the part of the interaction energy which is modeled by EHub. This is done by subtracting the

so-called ”double-counting” term Edc. Unfortunately, Edc is not uniquely defined. The two

most popular choices for the ”dc” term are the so-called ”around-mean-field” (AMF) [76–79]

and ”fully localized limit” (FLL) corrections [68, 69, 80, 81]. The first is more appropriate for

systems characterized by quasi-homogeneous distribution of electrons like metals and weakly

correlated systems, while the latter is more suitable for materials whose electrons are more

localized on specific orbitals. In the FLL formulation of DFT+U the energy functional can

be written as,

EDFT+U [ρ(r)] = EDFT[ρ(r)] +
l

U l

2
m,σ=m ,σ

nlσ
mn

lσ
m − U l

2
nl(nl − 1) , (1.89)



Theoretical Background and Methods 24

where nlσ
m are the occupation numbers of localized orbital characterized by atomic site index

l, state index m and spin σ, and nl = m,σ n
lσ
m . The definition of the occupation number

depends on the specific implementation of DFT+U . In many DFT codes they are computed

from projection of KS orbitals onto the states of a localized basis set of choice (e.g., atomic

state):

nlσ
mm =

k,v

fσ
kv ψσ

kv|φl
m φl

m|ψσ
kv (1.90)

where the coefficient fσ
kv is the occupations of the KS state (labeled by k-point, band (v), and

spin indices), calculated by a Fermi-Dirac distribution of the corresponding single-particle

energy eigenvalues. In Eq. (1.89), the expression of the corrective term as a function of

the occupation numbers defined in Eq. (1.90) shows how the Hubbard correction operates

selectively on the localized orbitals of the system (the most correlated ones) while all the

other states continue to be treated at the level of the DFT functionals. The second and third

terms of the Eq. (1.89) represent the Hubbard and the double-counting terms specified in

Eq. (1.88). From the energy functional in Eq. (1.89) and the definition of the atomic orbital

occupation given in Eq. (1.90), the Hubbard contribution to the KS potential can be obtain

as

V σ
tot = V σ

DFT +
l,m

U l 1

2
− nlσ

m |φl
m φl

m|. (1.91)

This equation shows that the Hubbard potential is repulsive for less than half-filled orbitals

(nlσ
m < 1/2) and attractive in all the other cases. It is responsible for the increase in energy

gap in the KS spectrum, and was one of the original purposes of LDA+U [80]. The opening

of the gap in the band structure is only one particular aspect of the Hubbard correction.

This correction is also necessary to capture the localization of the d states in a TiO2 system

with O vacancies [82], and to obtain a better description of the magnetic structure in corre-

lated systems.

1.6.1.2 Rotationally invariant formulation

The formulation presented in Eq. (1.89) is not invariant under rotation of the atomic orbital

basis set utilized to define the occupation numbers nlσ
m. A unitary-transformation-invariant
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formulation was presented in Ref. [83]. In that work EHub were given in a more general

statement, taken from the HF theory. It reads as

EHub nmm l =
1

2 {m},σ,l
m,m |Vee|m ,m nlσ

m,m nl−σ
m m

+ ( m,m |Vee|m ,m )

− m,m |Vee|m ,m )× nlσ
mm nlσ

m m , (1.92)

where the four-index super matrix Vee represents the electron-electron interactions of the

localized states (e.g., d or f atomic states) which can be written as

m,m |Vee|m ,m = d3r d3r ψ∗
lm(r)ψlm (r)

1

|r− r |ψ
∗
lm (r )ψlm (r ) (1.93)

The expansion of the bare Coulomb kernel in spherical harmonics and separation of the

localized states into radial and angular contribution yields:

m,m |Vee|m ,m =
k

ak(m,m ,m ,m )F k (1.94)

where 0 ≤ k ≤ 2l (l is the angular quantum number of localized electrons). The angular

factors ak can be obtain as product of the Clebsh-Gordan Coefficients [84],

ak(m,m ,m ,m ) =
4π

2k + 1

k

q=−k

lm|Ykq|lm lm |Y ∗
kq|lm . (1.95)

The Fk are the Slater integrals [85] including the radial part of the atomic wavefunctions,

Rnl, and have the following expression:

F k = dr dr r2r 2R2
nl(r)

rk<
rk+1
>

R2
nl(r ) (1.96)

where r< and r> indicate the shorter and the larger radial distance of r and r , respectively.

For d electrons, F 0, F 2, F 4 are required to calculate the Vee matrix elements while for f

electrons F 6 is also needed. With the definition of the ”dc” term,

Edc nl
mm =

l

U l

2
nl(nl − 1)− J l

2
[nl↑(nl↑ − 1) + nl↓(nl↓ − 1)] (1.97)
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as the mean-field approximation of the Hubbard correction (1.92), the effective Coulomb U

and exchange J interaction can be computed. U and J for d orbitals are given by,

U =
1

(2l + 1)2
m,m

m,m |Vee|m,m = F 0, (1.98)

and

J =
1

2l(2l + 1)
m=m ,m

m,m |Vee|m,m =
F 2 + F 4

14
. (1.99)

The details about these equations are discussed in Ref. [86].

1.6.1.3 A simpler formulation

The rotationally invariant formulation of DFT+U is the most complete formulation, with

orbital-dependent electronic interaction. However, it has two parameters U and J . In many

cases a simpler expression of the Hubbard correction is adapted and implemented [69], in

which U and J are replaced by Ueff(Ul). This can be obtained only by keeping the lowest

order Slater integrals (F 0) and neglecting all the higher order ones (F 2 = F 4 = J = 0). It

means a0(m,m ,m ,m ) = δm,m δm ,m , so (Eq. 1.89 and Eq. (1.97) can be simplified as,

EU nlσ
mm = EHub nl

mm − Edc nl

=
l

U l

2
(nl)2 −

σ

Tr (nlσ)2

−
l

U l

2
nl(nl − 1)

=
l,σ

U l

2
Tr[nlσ(1− nlσ)]. (1.100)

The simplified version of EU still preserves the rotational invariance of EHub and Edc, by

its dependence on the trace of the occupation matrices and of their product. In this simple

formulation, only one interaction parameter U l is needed to define the corrective functional.

In most cases the simplified version of Hubbard correction give similar results as the fully
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rotationally invariant one, however, the explicit insertion of Hund’s rule coupling J is cru-

cial to get meaningful results in some systems; for instance, to describe the ground state

of systems with noncolinear magnetism[87, 88], to capture correlation effects in multi-band

metals [89, 90], to study heavy-fermion systems [87, 88, 91], etc.

1.6.1.4 Determination of U

In order to achieve reasonable results with DFT+U , two important points should be con-

sidered. First, although a qualitative improvement of the results for correlated systems can

be obtained by DFT+U , the results depend of course on the value of the parameters U and

J . Their values are often empirically calibrated such that the result for a property (e.g.,

band gap or oxidation energy) matches experiment. However, they can also be obtained

ab initio by some methods like constrained-LDA (cLDA) [92–94], constrained-RPA (cRPA)

[86, 95–98], or from linear response (LR) [99, 100]. Nevertheless, there is still some ambi-

guity as well as freedom in the numerical implementation of these methods. For instance,

localized d or f orbitals in solids usually hybridize with other valence sp orbitals, causing

an entangled band structure with considerable band widths, and it is difficult to uniquely

define the localized states in solids.

Second, it is not even always clear, or known in advance, if U should be applied or not. In

contrast to AFM TMO where a large U value of 6−8 eV is required, in a pure transition

metal (TM) the d electrons are itinerant, i.e. only weakly correlated, and no U needs to

be used in principle. However, there are of course intermediate cases, and furthermore in a

given (complicated) system the degree of correlation may vary from one atom to the other

even of the same type. This is the case, for instance, when a surface system consists of

a TMO layer adsorbed on top of a pure metal; the degree of correlation on a TM atom

is expected to decrease when going from the surface (TMO-like) deep into the bulk (pure

TM-like).
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1.6.1.5 Density analysis for estimating the degree of on-site correlation on

transition-metal atoms in extended systems

We found that quantities depending on the electron density ρ (we call them correlation

estimators) can be used to distinguish between correlated and noncorrelated 3d TM atoms

in any kind of systems [101]: bulk solids, interfaces, and surfaces. Such a quantity could in

principle be used to determine, at least qualitatively, whether or not a Hubbard U correction

should be applied on a TM atom.

Correlation estimators

• g̃(r)

Our first correlation estimator is based on

g(r) =
|∇ρ(r)|
ρ(r)

, (1.101)

where ρ is the electron density and ∇ρ the first derivative. Then, the average of g in

the whole unit cell of volume Vcell,

ḡ =
1

Vcell
cell

g(r )d3r . (1.102)

It was also used to define the parameter c that specifies the relative weights of the two

terms in the mBJ potential [102] (see chapter 3). In Ref. [103], we discussed about the

ability of ḡ to distinguish between strongly correlated TMO and itinerant elemental

TM by having clearly different values. However, since ḡ is a constant for a particular

system it can not be used as a local probe and distinguish between different atoms

in the same system. Furthermore, on the technical side it is not applicable to non-

periodic solids, interfaces, and systems with vacuum (low-dimensional systems), since

in such systems averaging a quantity in the unit cell has no meaning.

In Ref. [101] we used a quantity that is local (i.e., position dependent) and can provide

an indication about the strength of correlation on a particular atom. Using simply
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Eq. (1.101) would not really work since some (local) average (as in ḡ) is still necessary

in order to have a function that is able as ḡ to distinguish between TMO and pure

TM. Finally we used the smeared local estimator first suggested in Ref. [104] and then

implemented by Rauch et al. [105, 106]. This local correlation estimator, g̃, is a local

average of g:

g̃(r) =
1

(2πσ2)3/2
g(r )e−

|r−r |2
2σ2 d3r , (1.103)

where the smearing parameter σ determines the size of the region (centered around

r) over which g is averaged. The expression for g̃ is very advantageous since it can

be easily calculated by using the convolution theorem if g is expanded in plane waves.

Note that in periodic bulk systems, g̃ becomes a constant and recovers the value of

Eq. (1.102) when σ is large enough.

However, for surfaces and other systems with vacuum numerical issues with |∇ρ|/ρ
that becomes very large close to the surface region need to be solved. We followed the

prescription proposed in Ref. [105], which consists of modifying Eq. (1.101) as follows:

g(r) =
1− α

β
1− erf

ρ(r)

ρth
+

|∇ρ(r)|
ρ(r)

erf
ρ(r)

ρth
, (1.104)

where ρth is a threshold for very low densities. For ρ ρth, |∇ρ|/ρ is obtained, while

for ρ ρth, g becomes (1 − α)/β. Equation (1.104) was proposed in the framework

of the local mBJ potential (see chapter 3) to cope with the aforementioned problem,

but also to have the correct asymptotic behavior of the local mBJ potential in the

vacuum region. Here, the goal of the damping with the function erf(ρ/ρth) is more to

have a faster convergence of the plane-wave expansion of g. Although the first term

in Eq. (1.104) is not necessary and could be discarded for the purpose of the present

work, we decided to use the full original expression from Ref. [105].

• s̃(r)

The second correlation estimator that we consider is based on the reduced density gradient s,

which is used in the enhancement factor of exchange functionals of the generalized gradient
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approximation (GGA) [28]. s reads

s(r) =
|∇ρ(r)|

2(3π2)1/3ρ4/3(r)
. (1.105)

Besides a constant factor, s differs from Eq. (1.101) by the power in the denominator that

makes s dimensionless. Far from the nuclei, s goes to infinity (while g goes to a constant),

but does not show the large values close to surface regions like g. Similarly to the second

term in Eq. (1.104) for g, we will damp s in the vacuum:

s(r) =
|∇ρ(r)|

2(3π2)1/3ρ4/3(r)
erf

ρ(r)

ρth
(1.106)

and then use it in

s̃(r) =
1

(2πσ2)3/2
s(r )e−

|r−r |2
2σ2 d3r (1.107)

to get our second correlation estimator. We have shown in Ref. [101] that the value of

the correlation estimators g̃ and s̃ at the nucleus of a TM atom, which are local averages

of density-dependent quantities around the corresponding atom, can be used to estimate

the strength of correlation of the TM atom. In bulk solids, where we usually know from

experience in which systems the TM atoms are correlated, there is a very clear difference in

the values of the correlation estimators between correlated (e.g., in oxides) and noncorrelated

(e.g., in pure metals) TM atoms. In more complicated systems, like at interfaces or surfaces,

it may be unclear whether a certain TM atom is correlated or not, however we showed that

our correlation estimators are very reliable in providing a very good hint on the correlation

strength. Thus, g̃ or s̃ could be used to determine for which atoms a Hubbard U correction

should be applied in a DFT+U calculation. According to the results shown in Ref. [101],

we would favour g̃ as a more reliable estimator. However, it does not seem possible to go to

a more quantitative level and to find a global relation between the estimators and a specific

value of U in general, although it might be possible to relate g̃ or s̃ to specific U values

in systems having several TM atoms of the same type but in different environments. The

supplementary materials to this paper, which include all results for different σ and different

ρth for the surfaces, are given in the Appendix.
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1.7 Concluding Remarks

The methodological development and tests focused on two quantities namely:

• Improved band gaps: In Kohn-Sham DFT, all the complexities of the many-electron

system are included in the exchange-correlation XC functional. Standard semi-local

approximations to the XC functionals are quite successful in predicting many prop-

erties of solids, such as the atomic structure, phonon spectra or the qualitative band

structure. Unfortunately, for an accurate description of band gaps and band align-

ments, it is necessary to use more advanced approximations, like non-multiplicative

potentials which are outside of the KS framework. There is no unique method, which

works for all cases.

One possible improvement are Hybrid functionals (see section 1.5.4), in which a frac-

tion of exact exchange is replaced by a fraction of the LDA or GGA exchange, which

increases the band gap. However, the hybrid methods are more expensive and not

satisfactory in some cases like large gap insulators. Another possibility is the LDA+U

method (see section 1.6), but it can only be applied to correlated and localized elec-

trons, e.g., 3d or 4f in transition metal and rare-earth oxides. The much more fun-

damental, but also much more expensive possibility is the many body GW method

[107] which can be applied only to smaller systems and -as a perturbation method-

in some cases depends crucially on the starting point. In 2009 Tran and Blaha [102]

introduced a simple modification of the original BJ exchange potential which yields

band gaps with an accuracy comparable to approaches which are orders of magnitude

more expensive. The mBJ and the recently developed version of mBJ for non-periodic

systems (lmBJ) will be explained in chapter 3, but as shown in Ref. [108] lmBJ is not

always as accurate for 2D-systems as it is for bulk solids. The GLLB-SC [109] poten-

tial and (m)TASK [110, 111] functional provide the band gaps that are the closest to

G0W0 for 2D-systems.

• Treating van der Waals dispersion forces in DFT: In general the functionals of

the LDA, GGA and MGGA yield inaccurate results for van der Waals systems. This

is because these functionals depends only on local quantities and thus are unable to
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describe the dynamical long-range electron correlations. Therefore, the application of

these approximations to systems like weakly bound dimers, molecular crystals, bio-

molecules, and many other systems where dispersion forces play an important role is

questionable. Thus the lack of dispersion interactions, which is defined as the attractive

part of the van der Waals (vdW)-type interaction, is one of the problems in modern

DFT.

Many DFT-based methods which account for dispersion are developed in recent years.

We discuss these methods in chapter 2 and investigate them thoroughly.

1.8 WIEN2k code: computational details

All the calculations in this thesis were carried out within DFT, using the all-electron,

WIEN2k [112, 113] code, which is based on the full potential (linearized) augmented plane-

wave FP-(L)APW+lo method. The details about basis sets will not be described here,

but they can be found in Refs. [114–116]. The WIEN2k package is a computer program

written mainly in Fortran which performs quantum mechanical calculations on periodic

solids, using periodic boundary conditions. This package allows to study many properties

related to the electronic structure of a crystalline solid: optimized atomic structure, cohesive

energy, electronic band structure, electron density, density of states (DOS), various types

of spectra, magnetism (ferromagnetic, antiferromagnetic and non-magnetic configurations),

non-collinear magnetism, Fermi surface, optical properties, electronic polarization, electric

field gradients, NMR chemical and Knight shifts, and magnetic hyperfine fields. Many

different exchange-correlation potentials including the LDA, various GGAs (Perdew-Wang

[24, 117, 118] or PBE [119], Wu-Cohen [120]), MGGA [36, 43, 44], the DFT+U method [76]

in various flavors for the double counting terms, as well as the so-called Tran-Blaha modified

Becke-Johnson potential [102] and the local modified Becke-Johnson potential (lmBJ) [106],

and hybrid functionals [50, 121] are implemented in this code. Aside from many semilocal

functionals that are directly implemented in the WIEN2k code, all existing semilocal func-

tionals can be used via an interface to the libxc [122, 123] library of XC functionals.

For the d-electron systems in this thesis, we have also included the strong correlation effects

by means of the (GGA+U ) scheme, where the correlation effects were controlled by an
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effective U (Ueff = U − J), where U is the on-site Coulomb repulsion and J the on-site

exchange constant. The value of U is chosen for each particular case based on the correct

reproduction of experimental measurements. The parameters of our calculations are always

fully converged for every particular case to the required precision.



Chapter 2

Treating van der Waals dispersion

forces in DFT

2.1 Introduction

As we discussed in the first chapter, DFT is in principle exact, however in practice approx-

imation must be made for exchange-correlation XC functionals. Many XC functionals like

LDA, GGA and MGGA yield accurate results for solids. However, they fail to describe van

der Waals systems, in which the cohesion is essentially due to van der Waals interactions.

Thus the description of dispersion interactions which is the attractive part of the van der

Waals (vdW)-type interaction, is one of the problems in modern DFT. Therefore, applica-

tion of standard DFT to systems where dispersion forces are not negligible is controversial.

Dispersion is an attractive interaction originating from the response of electrons in one

region to instantaneous charge density fluctuations in another. This interaction leads to

dipole-induced dipole interactions which decay with the well known −1/r6− behavior with

inter-atomic distance r. Several DFT-based methods [17, 19, 20] which try to account for

dispersion have been developed in recent years.

34
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Figure 2.1: In analogy with Jacob’s ladder classification of functional the stairway to
heaven is used to classify DFT-based dispersion correction schemes [124].

2.2 Classification of the common DFT-based disper-

sion methods

In analogy with ”Jacob’s ladder” of functionals presented by Perdew [15], J. Klimeš and A.

Michelides [124] introduced a ”stairway to heaven” (shown in Fig 2.1) for the long range

interactions and place each group of dispersion correction schemes on a different step of the

stairway.

2.2.1 Ground-Step zero

At the ground level are methods, which simply do not consider the long range asymptotic.

These approaches underestimate bindings of separated molecules, however, they were often

used for weakly bounded systems. These are typically GGA and MGGA functionals. One

exception is the LDA XC functional which was sometimes used to study graphite or noble

gases on metals where the dispersion forces play a major role. However, LDA shows in most

other cases the tendency to overestimate the binding. Overall, the results with the ground

methods have inconsistent accuracy and the asymptotic form of interaction is incorrect.

On the ground level of the stairway, are also density functionals specifically fitted to repro-

duce weak interaction around the minimum. One example are the ”Minnesota functionals
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”[125] which are fitted to a data-set that include bindings energy of dispersion bonded

dimers, amongst other properties. In pseudopotentials codes, dispersion can also be mod-

elled by adding a specially constructed pseudpotential projector like the dispersion corrected

atom-centered potentials (DCACP) [126] and the local atomic potentials (LAP) methods

[127]. Although these approaches are promising [128], effort is required to fit the potentials

for each element and transferability is questionable.

2.2.2 Step one (simple C6 correction): DFT-D1/D2 methods

A basic approach to achieve the 1/r6 asymptotic behavior for the interaction of particles in

the gas phase would be to add an additional energy term which accounts for the long-range

interaction to the usual DFT energy. The total energy reads as:

Etot = EDFT + Edisp, (2.1)

where the EDFT is the DFT total energy and Edisp is the additional dispersion interaction

given by

Edisp = −
A,B

CAB
6 /R6

AB, (2.2)

where CAB
6 are the dispersion coefficients which depend on the elemental pairs A and B.

These methods use coefficients that are tabulated, isotropic (i.e., direction independent) and

constant. Such methods are simple and computationally cheap, however they have at least

four clear shortcomings:

• Edisp neglects both the many-body interaction and faster decaying terms like C8/R
8

and C10/R
10 interaction.

• The C6/R
6 function diverge for small separation.

• There is no simple ab initio way to calculate the C6 coefficients.

• The coefficients C6 are kept constant during the calculation, thus the effects of different

chemical states of the atom and the influence of its environment are neglected.
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In 2004, Grimme suggested a more consistent mean of calculating the dispersion coefficient,

referred to as DFT-D1 [17]. In this method, the dispersion coefficients are obtained from a

formula which couples static polarizabilities of isolated atoms and ionization potentials.

The Edisp is an empirical dispersion correction given by

Edisp = −s6

Nat−1

A=1

Nat

B=A+1

CAB
6

R6
AB

fdamp(RAB). (2.3)

In this equation, s6 is a global scaling factor, Nat is the number of atom in the system, CAB
6

is the dispersion coefficient for atom pair AB and RAB denotes the interatomic distance.

As we mentioned before, the C6/R
6 diverges at short-atomic separations. To remedy this

problem a damping function must be used which is given by

fdamp(R) =
1

1 + e−α(R/R0−1)
, (2.4)

where R0 is the sum of atomic van der Waals radii. The damping function fdamp(RAB,A,B)

is equal to one for large separation and Edisp decreases to zero or to a constant for small

separation. Different combination rules for the composed CAB
6 coefficients were proposed,

and finally, a simple average of the following form is used in DFT-D1,

CAB
6 = 2

CA
6 C

B
6

CA
6 + CB

6

. (2.5)

The atomic C6 coefficients are tabulated in Ref. [129], and have been averaged over the

possible hybridization states of the atoms. The atomic C6 coefficients are scaled by a fac-

tor s6, which depends on the actually used density functional to account for the different

behavior of the inter-molecular potential in particular at intermediate distances. In 2006,

Grimme proposed a slightly different approach compared to DFT-D1, known as DFT-D2.

In this approach, the scaling factor s6 in Eq. (2.3) is different and the CAB
6 coefficients are

obtained from the geometric mean:

CAB
6 = CA

6 C
B
6 . (2.6)

The atomic C6 is derived from the London formula for dispersion, based on DFT/PBE0
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calculations of the atomic ionization potential and static dipole polarizabilities. For more

details see Ref. [18]. The simple pairwise correction in step one costs zero CPU time com-

pared to the underlying DFT calculation, so these methods are a good starting point to

account for dispersion.

2.2.3 Step two (Environment-dependent C6): DFT-D3, vdW(TS)

In ”DFT-D1/D2” methods, the dispersion coefficients are predetermined and constant.

Therefore, they are the same for an element regardless of its oxidation state or hybridization

state.

In 2010, Grimme et al. [19, 20] presented an improved version of DFT-D methods known

as DFT-D3, similar to the work of Becke and Johnson [130], and Tkatchenko and Scheffler

[131, 132].

In DFT-D3, the total energy is given by

EDFT-D3 = EDFT + Edisp, (2.7)

where EDFT is the DFT energy, and Edisp is the sum of two- and three-body contribution to

the dispersion energy:

Edisp = E(2) + E(3). (2.8)

The most important two-body term is given by

E(2) = −
AB n=6,8,10,...

sn
CAB

n

Rn
AB

fdamp,n(RAB), (2.9)

where the first sum runs over all atom pairs in the system, CAB
n is the averaged (isotropic)

nth-order dispersion coefficient (n=6, 8, 10 ,...) for atom pairs AB, RAB denotes their

internuclear distance, and sn is a scaling factor (DF dependent for n > 6) [19]. To avoid huge

attractions and singularities for small distances and double counting effects of correlation at

intermediate distances, the damping function fdamp,n are used.

For more information on the supported damping functions in DFT-D3, see Ref. [133]. The
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dispersion coefficients are calculated ab initio using time dependent (TD)DFT. The starting

point is the Casimir-Polder formula [134],

CAB
6 =

3

π

∞

0

αA(iω)αB(iω)dω, (2.10)

where α(iω) denotes the averaged dipole polarizability at imaginary frequency ω. The

higher order of dispersion coefficient are computed recursively. They calculated dispersion

coefficient for various pairs of elements in different reference (hybridization) state. In DFT-

D3, the environmental dependence of the dispersion coefficients are captured by considering

the number of neighbors of each atom and distances, condensed into a coordination number.

The appropriate C6 coefficient is assigned to each pair of atoms by an interpolation between

the calculated reference values according to the current coordination number.

As shown in Eq. (2.8), it is possible to consider also three-body dispersion contributions with

DFT-D3. Grimme et al. [19] and von Lilienfeld et al. [135] used the Axilrod-Teller-Mutto

[136, 137] formula to extend the atom-centered pairwise approaches to include three-body

interaction. The three-part dispersion read as:

E(3) = −1

6
A=B=C

CABC
9 (3 cos θa cos θb cos θc + 1)

(RABRBCRAC)3
fdamp(RABC), (2.11)

where θa, θb and θc are the internal angle of the triangle made by the A, B, and C atoms.

In this formula, the dispersion coefficient CABC
9 is approximated by

CABC
9 ≈ − CAB

6 CAC
6 CBC

6 , (2.12)

and the damping function fdamp(rABC) is similar to Eq. (2.9). The three-body contribution

has a small effect on medium-sized molecules.

Tkatchenko and Scheffler [131, 132] proposed a method, which calculated the dispersion en-

ergy according to reference atomic polarizabilites and reference atomic C6 coefficients [138].

These quantities are enough to obtain the C6 coefficient for a pair of different atoms [139].

Effective atomic volumes are used to obtain environment dependent dispersion coefficients.

This is done by dividing the electron density of a molecule between individual atoms using

the Hirshfeld partitioning scheme and for each atom its resulting density is compared to the
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density of a reference state. This is used to scale the C6 coefficient of a reference atom which

changes the dispersion energy.

2.2.4 Step three: vdW-DF

In all previous methods, predetermined inputs are required to calculate dispersion inter-

action. Step three methods obtain the dispersion interaction directly from the electron

density. These methods are called non-local correlation functionals that add non-local (i.e.,

long range) corrections to semi-local correlation functionals. In NL-vdW methods [21], the

exchange-correlation XC functional is given by

Exc = ESL/hybrid
xc + ENL

c,disp, (2.13)

where the first term is of the semilocal (SL) or hybrid [31, 140] type, and the second term

is the so-called non-local (NL) vdW dispersion of the form

ENL
c,disp =

1

2
ρ(r)Φ (r, r ) ρ(r )d3rd3r . (2.14)

In this equation, Φ(r, r ) is an integration kernel, which is analogous to the Coulomb inter-

action kernel, and depends on the density ρ and its derivative ∇ρ at r and r . It can be

reformulated as a function of two variables d and d ,

Φ(r, r ) = Φ(d, d ), (2.15)

where

d = |r− r | q0(r), d = |r− r | q0(r ), (2.16)

and

q0(r) = q0(ρ(r), |∇ρ(r)|). (2.17)

The kernel Φ(d, d ) has a complicated expression (see Ref. [141] and references therein).

In 2004 Dion et al. [21] proposed a functional form (DRSLL) for this kernel, which could
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be applied to all kind of systems. In this approach the XC energy Exc is calculated by

Exc = EGGA
x + ELDA

c + ENL
c,disp, (2.18)

which consists of the exchange energy in the revPBE [142] approximation, the LDA [24, 25]

correlation energy, and the non-local correlation energy term, respectively. The double

integral in Eq. (2.14) makes the calculations more expensive, but in 2009, Román-Pérez

and Soler [143] proposed a very efficient method for the evaluation of Eq. (2.14) for periodic

systems. This method is based on Fast Fourier Transforms (FFT) and the convolution

theorem. Aside from the form of non-local (NL) vdW dispersion energy, the choice of

exchange functional used in equation (2.18) is also crucial [144]. Different Kernels with

different parameters according to the underlying DFT have been developed [21, 145–148].

The vdW-DF approach increase the computational time by sizeable amount compared to a

GGA calculation; however, the accuracy of this approach can be higher than step one and

two methods.

2.2.5 Higher steps: Random Phase Approximation (RPA)

The RPA approximation (see section 1.5.5) which provides a better description of electronic

correlation energies, gives also a consistently high accuracy for solids [149], and the correct

asymptotic description for the expansion of graphite, which can not be obtained by pairwise

methods [150, 151]. In this step are also other methods involving orbitals like post-HF meth-

ods, MP2 coupled cluster and double hybrid functional, which are extraordinarily expensive

for solids [152].



Chapter 3

Local modified Becke-Johnson

exchange potential for interface,

surfaces, and two-dimensional

materials

3.1 Introduction

As mentioned in chapter one the electronic structure calculations of periodic solids are often

performed with the Kohn-Sham (KS) method of DFT by solving the equations

(−1

2
∇2 + vKS

eff,σ(r))ψi,σ(r) = i,σψi,σ(r), (3.1)

where vKS
eff,σ = vext + vH + vxc,σ is the Kohn-Sham multiplicative effective potential whose

components are the external, Hartree and exchange-correlation vxc,σ = δExc/δρσ = vx,σ +

vc,σ potentials. In Kohn-Sham DFT all the complexities of the many-electron system are

included in the exchange-correlation XC functional. Standard semi-local approximations to

the XC functionals are quite successful in predicting many total-energy related ground-state

properties of solids. However, they are inefficient for accurate description of band gaps and

band alignments, which are excited state properties. Therefore, it is necessary to use more
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sophisticated methods like the Hybrid functionals (e.g., HSE [153]) or the many-body GW

method [107], which are very expensive. Another possibility is the LDA+U [76] method,

but it can only be applied to correlated and localized electrons, e.g., 3d or 4d in transition

and rare-earth oxides. The Becke and Johnson (BJ) [154] potential, which was designed to

reproduce the shape of the optimized effective potential (OEP) (also called exact exchange

method, EXX) [155, 156] improves over the LDA and PBE potential for the description

of band gaps. However, the BJ potential (used in combination with LDA correlation [24])

underestimates the band gaps significantly. In 2009 Tran and Blaha [102] introduced a simple

modification of the original BJ exchange potential which yields band gaps with an accuracy

comparable to approaches which are orders of magnitude more expensive. In the first part

of this chapter a short description of the BR, BJ and mBJ will be given. In the second part,

we focus on the so-called local modified Becke-Johnson exchange potential (lmBJ) which is

an another version of mBJ to obtain band structures at interfaces or systems with vacuum.

3.1.1 Becke-Roussel (BR) potential

Becke-Roussel (BR) potential [157] solves analytically the continuous exchange-hole model

that satisfies all known constraints on exchange-hole functions, including non-negatively,

normalization constrains and short-range behavior. It also yields exact results for both the

electron gas and hydrogenic atom limits, and gives the correct 1/r asymptotic dependence

of the exchange potential in finite systems. It is completely nonempirical and yet generates

energies in very good agreement with exact Hartree-Fock results in typical atomic systems.

The BR potential reads

vBR
x,σ (r) = − 1

bσ(r)
1− e−xσ(r) − 1

2
xσ(r)e

−xσ(r) , (3.2)

where xσ is determined from a nonlinear equation involving the density, its gradient and

Laplacian, and also kinetic energy density (ρσ, ∇ρσ,∇ρ2σ and tσ), then bσ is calculated with

bσ =
x3
σe

−xσ

8πρσ

1
3

. (3.3)
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Note that

lim
|r|→∞

vBR
x,σ (r) = − 1

|r| , (3.4)

which is the asymptotic behavior of the exact exchange potential.

3.1.2 Becke and Johnson exchange potential

In 2007, Becke and Johnson presented a simple analytical form for the exchange potential,

which depends on the kinetic energy density. It was shown to reproduce well the character-

istic shell structure of the exact exchange potential, obtained with the optimized effective

potential method (OEP) [158] for atoms, and leads to a finite value at the position of the nu-

clei, which is the behavior of the exact potential [159]. It can also describe the correct −1/r

asymptotic dependence, which is crucial in time dependent density-functional theory and in

the computation of electric properties sensitive to virtual orbitals and long-range density.

Calculations on solids show that the BJ exchange potential (with or without LDA/GGA

correlation) leads to a better description of band gaps of semiconductors and insulators

compared to the standard LDA and GGA approximations [160]. The BJ exchange potential

is given by

vBJ
x,σ(r) = vBR

x,σ (r) +
1

π

5

6

τσ(r)

ρσ(r)
, (3.5)

where

τσ(r) =
1

2

Nσ

i=1

∇ψ∗
i,σ(r).∇ψi,σ(r) (3.6)

is the kinetic-energy density, ρσ = Nσ

i=1 |ψi,σ|2 is the electron density, and vBR
x,σ (r) is the

Becke-Rossel potential Eq. 3.2. Originally, Becke and Johnson used Slater potential (vSlaterx,σ )

[9] instead of (vBR
x,σ ), but they showed that these two potential are quasi-identical for atoms

[161]. We should mention that there is no exchange-energy functional Ex whose energy

functional derivative δEx/δρσ gives vBJ
x,σ, and therefore it can not be used to calculate total

energies and geometry optimization.
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3.1.3 modified Becke-Johnson exchange (mBJ) potential

The BJ exchange potential (used in combination with LDA correlation) improves over LDA

and PBE for the description of band gaps for many semiconductors and insulators, however

it still underestimates the band gaps significantly. In 2009 Tran and Blaha [102] presented a

modified version of the semi local BJ exchange potential which was adapted to get improved

band gaps. The mBJ exchange potential reads

vmBJ
x,σ (r) = cvBR

x,σ (r) + (3c− 2)
1

π

5

6

τσ(r)

ρσ(r)
. (3.7)

This equation is a slightly modified Eq. (3.5), where c is a system-dependent parameter and

c = 1 corresponds to the original BJ potential. c is determined in the following empirical

relation,

c = α + β
1

Vcell cell

|∇ρ(r )|
ρ(r )

d3r
1/2

, (3.8)

where α and β are two free parameters which were obtained by a fit to experimental gaps,

and Vcell is the unit cell volume. In the original work, α = −0.012 (dimensionless) and

β = 1.023 bohr1/2 were obtained by minimization of the mean absolute relative error for

the band gap of 23 solids. Other parametrizations were proposed by Koller et. al. [162] to

further improve the performance of mBJ potential. Note that since vBR
x,σ vSlaterx,σ and vBR

x,σ

is an average of the Hartree-Fock potential [9], mBJ potential can be consider as a kind of

hybrid potential whose exact exchange is given by c.

3.2 Local modified Becke-Johnson exchange potential

Although the modified Becke-Johnson MGGA exchange potential of DFT has been shown

to be the best exchange potential to determine band gaps of crystalline solids, it can not be

used for non-periodic systems. In the original version of TB-mBJ potential c is a material-

dependent fitted parameter which is constant in the whole unit cell, that is why it cannot

be consistently used to describe the electronic structure of non-periodic or nanostructured

systems. In Ref. [105] Rauch et. al. proposed an effective solution to enable the use of the
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mBJ potential for non-periodic systems through an inexpensive local reformulation of the

parameter c. In this scheme the parameter c is substituted by a local parameter c(r),

c(r) = α + βg̃(r) , (3.9)

where the free parameters α, β and can be chosen from the original mBJ [102] or from

the improved one [162]. In this equation g̃(r) is a locally averaged, but spatially varying

function,

g̃(r) =
1

(2πσ2)3/2
g(r )e−

|r−r |2
2σ2 d3r , (3.10)

that depends on a smearing parameter σ. The expression of g̃ is very favourable since it

can be easily implemented into DFT codes using Fast-Fourier-Transforms (FFT) through

the convolution of g(r) and the Gaussian in the reciprocal space. Before using this local

mBJ potential (lmBJ) for surfaces and other systems with vacuum, some issues should

be solved. The correct asymptotic behavior of the XC potential c → 1 in the vacuum

region should be attained. Moreover, at the vacuum-matter boundary |∇ρ|/ρ becomes

very large, leading to very large XC potential and thus impede the convergence of the

calculation. Another difficulty is related to vanishingly small ρ(r) in a vacuum region,

leading to numerical instabilities. All these problems can be solved by forcing c → 1 for the

low density region by modifying g(r) as

g(r) =
1− α

β
1− erf

ρ(r)

ρth
+

|∇ρ(r)|
ρ(r)

erf
ρ(r)

ρth
, (3.11)

where ρth is a threshold density. They chose a value corresponding to the Wigner Seitz

radius rths = (3/4πρth)
(1/3) = 7 bohr [163]. In Ref. [108, 164] we tested a variety of XC

functionals as well as the lmBJ exchange potential for the calculation of the band gap of

2D materials . In Ref. [164] our test set comprises 298 2D materials for which G0W0 band

gaps are available and were used as reference. The tested XC functionals are the most

accurate currently available for band gaps. The results show that the two most accurate

are the GLLB-SC potential and the mTASK functional. The lmBJ(β = 0.6) potential and

TASK functional can also be considered as accurate and follow quite closely GLLB-SC and

mTASK.
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4.1 Computational Study of Y NMR Shielding in In-

termetallic Yttrium Compounds

Leila Kalantari, Khoong Hong Khoo, Robert Laskowski, Peter Blaha; The Journal of Phys-

ical Chemistry C 121 (51), 28454-28461, 2017.

Abstract:

Density functional theory (DFT) calculations of the magnetic shielding for solid state nu-

clear magnetic resonance (NMR) provide an important contribution for the understanding

of experimentally observed signals. In this work, we present calculations of the Y NMR

shielding in intermetallic compounds. (YMg, YT, YTX, YT2X, YT2X2, Y2TB6 and Y2TSi3

where T represents various transition metals and X refers to group IV elements C, Si, Ge,

Sn, Pb). The total shielding σ of this selection varies by about 2500 ppm and correlates

very well with the experimentally observed shifts except for YMg and YZn. These two sim-

ple compounds have a spike in the DOS at EF and a corresponding huge spin susceptibility

which leads to the disagreement. It could be a problem of DFT (neglect of spin fluctuations),

but we would interpret the discrepancies as caused by disorder which could be present in

the experimental samples, because disorder removes the spike in the DOS. The diamagnetic

contribution σo (chemical shift) is by no means constant as often assumed when interpreting

experimental metallic shifts and varies up to 1500 ppm, but still the dominating term is
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the spin contact term σc. Although all compounds are metals, only half of them have a

paramagnetic (negative) σc due to the reoccupation of the valence Y-5s electrons, while for

others the large induced Y-4d magnetic moment induces a diamagnetic core polarization.

In most of our cases, the spin dipolar contribution σsd is fairly small with |σsd| less than 100

ppm, and often even much smaller except in a few very asymmetric compounds like YCo2Si2

and YRu2Si2 (σsd≈ 320 ppm).

4.2 Orbital-free approximations to the kinetic-energy

density in exchange-correlation MGGA function-

als: Tests on solids

Fabien Tran, Péter Kovács, Leila Kalantari, Georg K. H. Madsen, Peter Blaha; The Journal

of chemical physics 149 (14), 144105, 2018.

Abstract:

A recent study of Mejia-Rodriguez and Trickey [Phys. Rev. A 96, 052512 (2017)] showed

that the deorbitalization procedure (replacing the exact Kohn-Sham kinetic-energy density

by an approximate orbital-free expression) applied to exchange-correlation functionals of

the meta-generalized gradient approximation (MGGA) can lead to important changes in

the results for molecular properties. For the present work, the deorbitalization of MGGA

functionals is further investigated by considering various properties of solids. It is shown

that depending on the MGGA, common orbital-free approximations to the kinetic-energy

density can be sufficiently accurate for the lattice constant, bulk modulus, and cohesive

energy. For the band gap, calculated with the modified Becke-Johnson MGGA potential,

the deorbitalization has a larger impact on the results.
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4.3 Nonlocal van derWaals functionals for solids: Choos-

ing an appropriate one

Fabien Tran, Leila Kalantari, Boubacar Traoré, Xavier Rocquefelte, Peter Blaha; Physical

Review Materials 3 (6), 063602, 2019.

Abstract:

The nonlocal van der Waals (NL-vdW) functionals [Dion et al., Phys. Rev. Lett. 92, 246401

(2004)] are being applied more and more frequently in solid-state physics, since they have

shown to be much more reliable than the traditional semilocal functionals for systems where

weak interactions play a major role. However, a certain number of NL-vdW functionals have

been proposed during the last few years, such that it is not always clear which one should be

used. In this work, an assessment of NL-vdW functionals is presented. Our test set consists

of weakly bound solids, namely rare gases, layered systems like graphite, and molecular

solids, but also strongly bound solids in order to provide a more general conclusion about

the accuracy of NL-vdW functionals for extended systems. We found that among the tested

functionals, rev-vdW-DF2 [Hamada, Phys. Rev. B 89, 121103(R) (2014)] is very accurate

for weakly bound solids, but also quite reliable for strongly bound solids.

4.4 Semilocal exchange-correlation potentials for solid-

state calculations: Current status and future di-

rections

F Tran, J Doumont, L Kalantari, AW Huran, MAL Marques, P Blaha; Journal of Applied

Physics 126 (11), 110902, 2019.

Abstract:

Kohn-Sham (KS) density functional theory (DFT) is a very efficient method for calculating

various properties of solids as, for instance, the total energy, the electron density, or the

electronic band structure. The KS-DFT method leads to rather fast calculations, however

the accuracy depends crucially on the chosen approximation for the exchange and correlation
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(xc) functional Exc and/or potential vxc. Here, an overview of xc methods to calculate

the electronic band structure is given, with the focus on the so-called semilocal methods

that are the fastest in KS-DFT and allow to treat systems containing up to thousands of

atoms. Among them, there is the modified Becke-Johnson potential that is widely used to

calculate the fundamental band gap of semiconductors and insulators. The accuracy for

other properties like the magnetic moment or the electron density, that are also determined

directly by vxc, is also discussed.

4.5 Efficient Band Structure Calculation of Two-

Dimensional Materials from Semilocal Density Func-

tionals

A Patra, S Jana, P Samal, F Tran, L Kalantari, J Doumont, P Blaha; J. Phys. Chem. C,

125(20), 11206-11215, 2021.

Abstract:

The experimental and theoretical realization of 2D materials is of utmost importance in

semiconducting applications. Computational modeling of these systems with satisfactory

accuracy and computational efficiency is only feasible with semilocal density functional the-

ory methods. In the search for the most useful method in predicting the band gap of 2D

materials, we assess the accuracy of recently developed semilocal exchange-correlation en-

ergy functionals and potentials. Though the explicit forms of exchange-correlation(XC)

potentials are very effective against XC energy functionals for the band gap of bulk solids,

their performance needs to be investigated for 2D materials. In particular, the LMBJ [J.

Chem. Theory Comput. 2020, 16, 2654] and GLLB-SC [Phys. Rev. B. 2010, 82, 115106]

potentials are considered for their dominance in bulk band gap calculation. The perfor-

mance of recently developed meta generalized gradient approximations, like TASK [Phys.

Rev. Research 2019, 1, 033082] and MGGAC [Phys. Rev. B 2019, 100, 155140], is also

assessed. We find that the LMBJ potential constructed for 2D materials is not as successful

as its parent functional, i.e., MBJ [Phys. Rev. Lett. 2009, 102, 226401] in bulk solids. Due

to a contribution from the derivative discontinuity, the band gaps obtained with GLLB-SC
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are in a certain number of cases, albeit not systematically, larger than those obtained with

other methods, which leads to better agreement with the quasiparticle band gap obtained

from the GW method. The band gaps obtained with TASK and MGGAC can also be quite

accurate.

4.6 Band gap of two-dimensional materials: thorough

assessment of modern exchange-correlation func-

tionals

Fabien Tran, Jan Doumont, Leila Kalantari, Peter Blaha, Tomáš Rauch, Pedro Borlido,

Silvana Botti, Miguel A. L. Marques, Abhilash Patra, Subrata Jana, Prasanjit Samal; J.

Chem. Phys. 155, 104103, 2021.

Abstract:

The density functional theory (DFT) approximations that are the most accurate for the

calculation of band gap of bulk materials are hybrid functionals like HSE06, the MBJ po-

tential, and the GLLB-SC potential. More recently, generalized gradient approximations

(GGA), like HLE16, or meta-GGAs, like (m)TASK, have proven to be also quite accurate

for the band gap. Here, the focus is on 2D materials and the goal is to provide a broad

overview of the performance of DFT functionals by considering a large test set of 298 2D

systems. The present work is an extension of our recent studies [Rauch et al., Phys. Rev.

B 101, 245163 (2020) and Patra et al., J. Phys. Chem. C 125, 11206 (2021)]. Due to

the lack of experimental results for the band gap of 2D systems, G0W0 results were taken

as reference. It is shown that the GLLB-SC potential and mTASK functional provide the

band gaps that are the closest to G0W0. Following closely, the local MBJ potential has a

pretty good accuracy that is similar to the accuracy of the more expensive hybrid functional

HSE06.
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4.7 Elucidating the formation and active state of Cu

co-catalysts for photocatalytic hydrogen evolution

Jasmin S. Schubert, Leila Kalantari, Andreas Lechner, Ariane Giesriegl, Sreejith P. Nan-

dan, Pablo Alaya Leiva, Peter Blaha, Alexey Cherevan, Dominik Eder; J. Mater. Chem. A,

9(38), 21958-21971, 2021.

Abstract:

The designing of active and selective co-catalysts constitutes one of the major challenges

in developing heterogeneous photocatalysts for energy conversion applications. This work

provides a comprehensive insight into thermally induced bottom-up generation and transfor-

mation of a series of promising Cu-based co-catalysts. We demonstrate that the volcano-type

HER profile as a function of calcination temperature is independent of the type of the Cu

precursor but is affected by changes in oxidation state and location of the copper species.

Supported by DFT modeling, our data suggest that low temperature (< 200◦C) treatments

facilitate electronic communication between the Cu species and TiO2, which allows for a

more efficient charge utilization and maximum HER rates. In contrast, higher temperatures

(> 200◦C) do not affect Cu oxidation state, but induce a gradual, temperature-dependent

surface-to-bulk diffusion of Cu, which results in interstitial, tetra-coordinated Cu+ species.

The disappearance of Cu from the surface and the introduction of new defect states is associ-

ated with a drop in HER performance. This work examines electronic and structural effects

that are in control of the photocatalytic activity and can be transferred to other systems for

further advancing photocatalysis.

4.8 Density analysis for estimating the degree of on-

site correlation on transition-metal atoms in ex-

tended systems

Leila Kalantari, Fabien Tran, Peter Blaha; Phys. Rev. B 104, 155127, 2021.

Abstract:
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In the context of the modified Becke-Johnson (mBJ) potential, we recently underlined that

ḡ, the average of |∇ρ| /ρ in the unit cell, has markedly different values in transition-metal

oxides and pure transition metals [Tran et al., J. Appl. Phys. 126, 110902 (2019)]. However,

since ḡ is a constant it is not able to provide local information about a particular atom in

the system. Furthermore, while g can be used only for periodic bulk solids, a local (i.e.,

position-dependent) version would allow us to consider also low-dimensional systems and

interfaces. Such a local function has been proposed by Rauch et al. [J. Chem. Theory

Comput. 16, 2654 (2020)] for the local mBJ potential. Actually, a local version of g, or

of another similar quantity like the reduced density gradient s, could also be used in the

framework of other methods. Here, we explored the idea to use such a local function g̃

(or s̃, defined as average of g (s) around a certain region of a transition metal, to estimate

the degree of correlation on a transition-metal atom. We found a large difference of our

correlation estimators for noncorrelated and correlated materials proving its usefulness and

reliability. Our estimators can subsequently be used to determine whether a Hubbard U

on-site correction in the DFT+U method should be applied to a particular atom, even in

cases where it is not clear whether a particular atom should be considered as correlated

or not, like in interfaces between correlated and noncorrelated materials or oxygen covered

metal surfaces. In such cases, our estimators could also be used for an interpolation of U

between the correlated and noncorrelated atoms.

4.9 Density functional theory study of metal and metal-

oxide nucleation and growth on the anatase TiO2(101)

surface

Leila Kalantari, Fabien Tran, Peter Blaha (submitted)

Abstract

Experimental studies have shown the possible production of hydrogen through photocat-

alytic water splitting using metal oxide (MOy) nanoparticles attached to an anatase TiO2
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surface. In this work, we performed density functional theory calculations to provide a de-

tailed description of the stability and geometry of MxOy clusters M = Cu, Ni, Co, Fe and

Mn, x = 1−5, and y = 0−5) on the anatase TiO2(101) surface. It is found that unsaturated

2-fold-coordinated O-sites may serve as nucleation centers for the growth of metal clusters.

The formation energy of Ni-containing clusters on the anatase surface is larger than for other

M clusters. In addition, the Nin adsorption energy increases with cluster size n, which makes

the formation of bigger Ni clusters plausible as confirmed by transition electron microscopy

images. Another particularity for Ni-containing clusters is that the adsorption energy per

atom gets larger when the O-content is reduced, while for other M atoms it remains almost

constant or, as for Mn, even decreases. This trend is in line with experimental results. Also

provided is a discussion of the oxidation states of M5Oy clusters based on their magnetic

moments and Bader charges and their possible reduction with oxygen depletion.
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Appendix

Density analysis for estimating the degree of on-site correlation on

transition-metal atoms in extended systems

Leila Kalantari, Fabien Tran, Peter Blaha

Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-

TC, A-1060 Vienna, Austria
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Table 6.1: Values of g̃ on the 3d TM atom in correlated and non-correlated bulk solids
calculated for different σ. The magnetic state is indicated in parenthesis.

solid σ=3.78 σ=2.78 σ=1.78 σ = 1.53 σ=1.28 σ=1.03 σ=0.78
Ti (NM) 1.08 1.08 1.23 1.43 1.80 2.38 3.08
V (NM) 1.18 1.18 1.27 1.42 1.75 2.31 3.07
Cr (AFM) 1.29 1.29 1.35 1.47 1.76 2.30 3.09
Mn (NM) 1.30 1.30 1.40 1.57 1.91 2.49 3.28
Fe (FM) 1.37 1.37 1.43 1.56 1.85 2.41 3.25
FeAl (FM) 1.10 1.10 1.23 1.41 1.77 2.39 3.22
FeNi (FM) 1.45 1.45 1.50 1.62 1.90 2.44 3.27
Fe3Ni (FM) 1.42 1.42 1.48 1.59 1.88 2.43 3.25
Fe2P (FM) 1.33 1.33 1.42 1.58 1.90 2.48 3.29
FeSb2 (FM) 1.33 1.35 1.50 1.66 1.96 2.49 3.26
Co (FM) 1.46 1.46 1.51 1.62 1.89 2.45 3.30
Ni (FM) 1.52 1.52 1.57 1.67 1.95 2.50 3.37
Cu (NM) 1.51 1.51 1.58 1.71 2.01 2.60 3.48
Cu2Sb (NM) 1.41 1.42 1.52 1.67 2.00 2.62 3.50
Cu3P (NM) 1.40 1.40 1.56 1.75 2.11 2.71 3.55
CuAu (NM) 1.56 1.56 1.61 1.75 2.06 2.65 3.51
Cu3Au (NM) 1.58 1.57 1.62 1.77 2.09 2.69 3.55
Zn (NM) 1.36 1.36 1.47 1.66 2.03 2.68 3.60
TiO2(Anatase) (NM) 1.85 1.87 2.02 2.12 2.29 2.60 3.12
TiO2(Rutile) (NM) 1.83 1.84 1.98 2.09 2.28 2.60 3.12
Ti2O3 (NM) 1.77 1.78 1.90 2.01 2.21 2.56 3.10
V2O3 (AFM) 1.79 1.79 1.93 2.05 2.27 2.64 3.21
SrVO3 (NM) 1.77 1.78 1.90 2.01 2.20 2.54 3.11
Cr2O3 (AFM) 1.84 1.85 1.97 2.08 2.29 2.67 3.26
CrO2 (FM) 1.87 1.87 2.00 2.12 2.31 2.65 3.22
MnO (AFM) 1.74 1.74 1.85 2.00 2.29 2.77 3.43
MnO2 (AFM) 1.88 1.89 2.02 2.13 2.33 2.69 3.24
Mn2O3 (AFM) 1.83 1.85 1.99 2.11 2.34 2.74 3.35
FeO (AFM) 1.73 1.73 1.83 1.97 2.28 2.73 3.43
Fe2O3 (AFM) 1.83 1.83 1.96 2.10 2.34 2.76 3.42
Fe3O4 (FM) 1.79 1.80 1.92 2.05 2.29 2.73 3.40
FeF2 (AFM) 1.99 2.00 2.18 2.32 2.54 2.93 3.54
CoO (AFM) 1.77 1.77 1.86 1.99 2.27 2.75 3.47
NiO (AFM) 1.81 1.81 1.90 2.03 2.29 2.77 3.51
CuO (AFM) 1.80 1.80 1.91 2.20 2.34 2.83 3.57
Cu2O (NM) 1.64 1.64 1.79 1.97 2.31 2.84 3.57
CuI (NM) 1.50 1.53 1.79 1.98 2.30 2.83 3.58
ZnO (NM) 1.80 1.80 1.97 2.14 2.44 2.93 3.68
YBa2Cu3O6(FM)-Cu1,Cu2 1.58,1.72 1.56,1.74 1.81,1.89 2.03,2.05 2.37,2.33 2.86,2.82 3.36,2.36
YBa2Cu3O7(NM)-Cu1,Cu2 1.58,1.71 1.56,1.73 1.81,1.89 2.02,2.05 2.35,2.33 2.85,2.82 3.56,3.56
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Table 6.2: Values of s̃ on the 3d TM atom in correlated and non-correlated bulk solids
calculated for different σ. The magnetic state is indicated in parenthesis.

solid σ=3.78 σ=2.78 σ=1.78 σ = 1.53 σ=1.28 σ=1.03 σ=0.78
Ti (NM) 0.38 0.38 0.41 0.45 0.53 0.62 0.65
V (NM) 0.38 0.38 0.39 0.42 0.48 0.57 0.62
Cr (AFM) 0.39 0.39 0.40 0.41 0.46 0.53 0.59
Mn (NM) 0.44 0.44 0.47 0.50 0.57 0.68 0.75
Fe (FM) 0.47 0.47 0.48 0.50 0.53 0.59 0.62
FeAl (FM) 0.36 0.36 0.38 0.41 0.47 0.57 0.63
FeNi (FM) 0.48 0.48 0.49 0.51 0.54 0.59 0.62
Fe3Ni (FM) 0.48 0.48 0.49 0.50 0.54 0.59 0.62
Fe2P (FM) 0.44 0.44 0.46 0.49 0.54 0.60 0.63
FeSb2 (FM) 0.52 0.52 0.52 0.53 0.57 0.61 0.63
Co (FM) 0.48 0.48 0.49 0.51 0.54 0.60 0.64
Ni (FM) 0.48 0.48 0.49 0.50 0.54 0.60 0.65
Cu (NM) 0.48 0.48 0.49 0.51 0.56 0.63 0.67
Cu2Sb (NM) 0.50 0.50 0.49 0.51 0.56 0.64 0.69
Cu3P (NM) 0.48 0.49 0.54 0.57 0.63 0.69 0.72
CuAu (NM) 0.51 0.51 0.52 0.54 0.59 0.66 0.70
Cu3Au (NM) 0.51 0.52 0.54 0.56 0.61 0.68 0.72
Zn (NM) 0.47 0.47 0.49 0.52 0.58 0.67 0.72
TiO2(Anatase) (NM) 0.89 0.88 0.81 0.78 0.75 0.72 0.67
TiO2(Rutile) (NM) 0.79 0.79 0.76 0.75 0.73 0.71 0.67
Ti2O3 (NM) 0.73 0.73 0.71 0.71 0.71 0.70 0.66
V2O3 (AFM) 0.75 0.74 0.70 0.70 0.68 0.67 0.63
SrVO3 (NM) 0.73 0.72 0.68 0.67 0.66 0.66 0.64
Cr2O3 (AFM) 0.74 0.74 0.75 0.76 0.77 0.78 0.76
CrO2 (FM) 0.75 0.75 0.72 0.69 0.67 0.65 0.61
MnO (AFM) 0.68 0.67 0.66 0.66 0.67 0.68 0.63
MnO2 (AFM) 0.77 0.77 0.75 0.75 0.74 0.74 0.73
Mn2O3 (AFM) 0.77 0.76 0.72 0.71 0.70 0.67 0.63
FeO (AFM) 0.64 0.64 0.65 0.67 0.68 0.70 0.66
Fe2O3 (AFM) 0.74 0.74 0.73 0.72 0.71 0.70 0.66
Fe3O4 (FM) 0.73 0.72 0.70 0.71 0.73 0.76 0.77
FeF2 (AFM) 0.99 0.98 0.91 0.88 0.83 0.78 0.69
CoO (AFM) 0.64 0.64 0.66 0.67 0.69 0.71 0.69
NiO (AFM) 0.64 0.65 0.66 0.67 0.70 0.72 0.71
CuO (AFM) 0.77 0.77 0.77 0.78 0.79 0.80 0.78
Cu2O (NM) 0.67 0.67 0.68 0.70 0.73 0.76 0.74
CuI (NM) 0.83 0.83 0.79 0.78 0.77 0.77 0.74
ZnO (NM) 0.80 0.80 0.80 0.80 0.80 0.80 0.76
YBa2Cu3O6(FM)-Cu1,Cu2 0.77,0.71 0.77,0.71 0.78,0.70 0.78,0.71 0.79,0.72 0.78,0.73 0.73,0.72
YBa2Cu3O7(NM)-Cu1,Cu2 0.76,0.71 0.77,0.71 0.77,0.70 0.78,0.71 0.78,0.72 0.77,0.73 0.73,0.72
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Table 6.3: The g̃ for plane Ni(111) surfaces as well as Ni(111) with full oxygen coverage
for different σ and different ρth , the results for Ni and NiO are added to the table only

for comparison.

solid σ=3.78 σ=2.78 σ=1.78 σ = 1.53 σ=1.28 σ=1.03 σ=0.78
Ni 1.52 1.52 1.57 1.67 1.95 2.50 3.37
NiO 1.81 1.81 1.90 2.03 2.29 2.77 3.51

Ni (Ni@surface)-ρth=0.0007 1.52 1.57 1.69 1.82 2.10 2.62 3.43
Ni (Ni@subsurface) 1.54 1.54 1.58 1.69 1.96 2.51 3.37
Ni (Ni@middle) 1.52 1.52 1.57 1.68 1.96 2.51 3.38
Ni (Ni@surface)-ρth=0.002 1.50 1.56 1.69 1.82 2.09 2.62 3.43
Ni (Ni@subsurface) 1.54 1.54 1.58 1.68 1.95 2.51 3.37
Ni (Ni@middle) 1.52 1.52 1.57 1.68 1.95 2.51 3.37
Ni (Ni@surface-ρth=0.01 1.47 1.53 1.67 1.81 2.09 2.62 3.43
Ni (Ni@subsurface) 1.53 1.54 1.58 1.69 1.96 2.50 3.37
Ni (Ni@middle) 1.52 1.52 1.57 1.68 1.96 2.51 3.39
Ni (Ni@surface)-ρth=0.015 1.46 1.52 1.67 1.80 2.08 2.62 3.43
Ni (Ni@subsurface) 1.53 1.54 1.58 1.69 1.96 2.51 3.37
Ni (Ni@middle) 1.52 1.52 1.57 1.68 1.96 2.51 3.38

Ni-full coverage (Ni@surface-ρth=0.0007 1.72 1.77 1.82 1.90 2.12 2.59 3.37
Ni-full coverage (Ni@subsurface) 1.60 1.56 1.58 1.69 1.96 2.52 3.36
Ni-full coverage (Ni@middle) 1.54 1.54 1.59 1.70 1.97 2.52 3.38
Ni-full coverage (Ni@surface)-ρth=0.002 1.70 1.75 1.81 1.90 2.11 2.58 3.36
Ni-full coverage (Ni@subsurface) 1.59 1.56 1.58 1.70 1.96 2.51 3.36
Ni-full coverage (Ni@middle) 1.54 1.54 1.59 1.70 1.97 2.52 3.37
Ni-full coverage (Ni@surface)-ρth=0.01 1.66 1.72 1.80 1.90 2.12 2.59 3.37
Ni-full coverage (Ni@subsurface) 1.58 1.56 1.58 1.69 1.96 2.52 3.36
Ni-full coverage (Ni@middle) 1.54 1.54 1.59 1.70 1.97 2.52 3.38
Ni-full coverage (Ni@surface-ρth=0.015 1.64 1.71 1.80 1.89 2.12 2.59 3.37
Ni-full coverage (Ni@subsurface 1.58 1.56 1.58 1.69 1.94 2.52 3.36
Ni-full coverage (Ni@middle) 1.53 1.54 1.59 1.70 1.97 2.52 3.38
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Table 6.4: The s̃ for plane Ni(111) surfaces as well as Ni(111) with full oxygen coverage
for different σ and different ρth , the results for Ni and NiO are added to the table only

for comparison.

solid σ=3.78 σ=2.78 σ=1.78 σ = 1.53 σ=1.28 σ=1.03 σ=0.78
Ni 0.48 0.48 0.49 0.50 0.54 0.60 0.65
NiO 0.64 0.65 0.66 0.67 0.70 0.72 0.71
Ni (Ni@surface)-ρth=0.004 0.57 0.61 0.63 0.63 0.64 0.67 0.68
Ni (Ni@subsurface) 0.52 0.50 0.49 0.51 0.54 0.61 0.66
Ni (Ni@middle) 0.48 0.48 0.49 0.50 0.54 0.61 0.66
Ni (Ni@surface)-ρth=0.01 0.49 0.54 0.58 0.60 0.63 0.67 0.68
Ni (Ni@subsurface) 0.50 0.50 0.49 0.51 0.54 0.61 0.66
Ni (Ni@middle) 0.48 0.48 0.49 0.50 0.54 0.61 0.66
Ni (Ni@surface)-ρth=0.012 0.48 0.52 0.57 0.59 0.62 0.66 0.68
Ni (Ni@subsurface) 0.50 0.50 0.49 0.51 0.54 0.61 0.66
Ni (Ni@middle) 0.48 0.48 0.49 0.50 0.54 0.61 0.66
Ni (Ni@surface)-ρth=0.015 0.46 0.51 0.56 0.58 0.62 0.66 0.68
Ni (Ni@subsurface) 0.49 0.49 0.49 0.51 0.54 0.61 0.66
Ni (Ni@middle) 0.48 0.48 0.49 0.50 0.54 0.61 0.66
Ni (Ni@surface)-ρth=0.02 0.44 0.48 0.54 0.57 0.60 0.66 0.68
Ni (Ni@subsurface) 0.47 0.49 0.49 0.51 0.54 0.61 0.66
Ni (Ni@middle) 0.48 0.48 0.49 0.50 0.54 0.61 0.66
Ni (Ni@surface)-ρth=0.03 0.41 0.45 0.51 0.54 0.58 0.64 0.68
Ni (Ni@subsurface) 0.47 0.48 0.48 0.50 0.54 0.60 0.65
Ni (Ni@middle) 0.47 0.47 0.48 0.50 0.54 0.60 0.66

Ni-full coverage (Ni@surface)-ρth=0.004 0.62 0.63 0.58 0.58 0.58 0.62 0.65
Ni-full coverage (Ni@subsurface) 0.52 0.50 0.49 0.51 0.54 0.61 0.66
Ni-full coverage (Ni@middle) 0.49 0.49 0.49 0.51 0.55 0.61 0.66
Ni-full coverage (Ni@surface)-ρth=0.01 0.56 0.58 0.57 0.57 0.58 0.62 0.65
Ni-full coverage (Ni@subsurface) 0.51 0.49 0.49 0.51 0.54 0.61 0.66
Ni-full coverage (Ni@middle) 0.49 0.49 0.49 0.51 0.54 0.61 0.66
Ni-full coverage (Ni@surface)-ρth=0.012 0.55 0.57 0.57 0.56 0.58 0.62 0.65
Ni-full coverage (Ni@subsurface) 0.51 0.49 0.49 0.51 0.54 0.61 0.66
Ni-full coverage (Ni@middle) 0.49 0.49 0.49 0.51 0.54 0.61 0.66
Ni-full coverage (Ni@surface)-ρth=0.015 0.53 0.56 0.56 0.56 0.58 0.62 0.65
Ni-full coverage (Ni@subsurface) 0.50 0.49 0.49 0.50 0.54 0.61 0.66
Ni-full coverage (Ni@middle) 0.49 0.49 0.49 0.51 0.55 0.61 0.66
Ni-full coverage (Ni@surface)-ρth=0.02 0.51 0.54 0.56 0.56 0.58 0.62 0.65
Ni-full coverage (Ni@subsurface) 0.50 0.49 0.49 0.51 0.54 0.61 0.66
Ni-full coverage (Ni@middle) 0.49 0.49 0.49 0.51 0.55 0.61 0.66
Ni-full coverage (Ni@surface)-ρth=0.03 0.48 0.52 0.53 0.54 0.57 0.61 0.65
Ni-full coverage (Ni@subsurface) 0.49 0.48 0.48 0.50 0.54 0.61 0.66
Ni-full coverage (Ni@middle) 0.48 0.48 0.49 0.50 0.54 0.61 0.66
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Table 6.5: The g̃ for plane Fe(001) surfaces as well as Fe(001) with different oxygen
coverage for different σ and different ρth , the results for Fe and FeO are added to the

table only for comparison

solid σ=3.78 σ=2.78 σ=1.78 σ = 1.53 σ=1.28 σ=1.03 σ=0.78
Fe 1.37 1.37 1.43 1.56 1.85 2.41 3.25
FeO 1.73 1.73 1.83 1.97 2.28 2.73 3.43

Fe (Fe@surface)-ρth=0.0007 1.38 1.43 1.61 1.78 2.09 2.63 3.38
Fe (Fe@subsurface) 1.41 1.42 1.47 1.59 1.87 2.42 3.23
Fe (Fe@middle) 1.38 1.38 1.44 1.56 1.85 2.41 3.25
Fe (Fe@surface)-ρth=0.002 1.37 1.42 1.61 1.77 2.09 2.63 3.37
Fe (Fe@subsurface) 1.40 1.42 1.47 1.59 1.87 2.42 3.23
Fe (Fe@middle) 1.38 1.38 1.44 1.56 1.85 2.41 3.24
Fe (Fe@surface)-ρth=0.01 1.35 1.40 1.59 1.77 2.09 2.62 3.38
Fe (Fe@subsurface) 1.39 1.42 1.47 1.59 1.87 2.42 3.24
Fe (Fe@middle) 1.38 1.38 1.44 1.56 1.85 2.41 3.25
Fe (Fe@surface)-ρth=0.015 1.34 1.40 1.59 1.76 2.08 2.62 3.38
Fe (Fe@subsurface) 1.39 1.42 1.47 1.59 1.87 2.42 3.24
Fe (Fe@middle) 1.38 1.38 1.44 1.56 1.85 2.41 3.25

Fe-full coverage (Fe@surface)-ρth=0.002 1.58 1.66 1.81 1.94 2.19 2.66 3.38
Fe-full coverage (Fe@subsurface) 1.51 1.49 1.50 1.62 1.90 2.44 3.25
Fe-full coverage (Fe@middle) 1.39 1.39 1.45 1.57 1.85 2.40 3.24
Fe-full coverage (Fe@surface)-ρth=0.015 1.51 1.60 1.77 1.91 2.18 2.66 3.38
Fe-full coverage (Fe@subsurface) 1.48 1.48 1.50 1.62 1.90 2.44 3.25
Fe-full coverage (Fe@middle) 1.39 1.39 1.45 1.57 1.85 2.40 3.24

Fe-full coverage(2) (Fe@surface)-ρth=0.002 1.60 1.67 1.82 1.94 2.21 2.68 3.39
Fe-full coverage(2) (Fe@subsurface) 1.54 1.53 1.56 1.68 1.96 2.50 3.30
Fe-full coverage(2) (Fe@middle) 1.44 1.41 1.46 1.58 1.86 2.42 3.24
Fe-full coverage(2) (Fe@surface)-ρth=0.015 1.54 1.61 1.78 1.92 2.19 1.67 3.38
Fe-full coverage(2) (Fe@subsurface) 1.52 1.52 1.56 1.68 1.97 2.50 3.30
Fe-full coverage(2) (Fe@middle) 1.44 1.41 1.46 1.58 1.87 2.42 3.24

Fe-half coverage (Fe@surface)-ρth=0.015 1.48 1.55 1.71 1.85 2.13 2.63 3.35
Fe-half coverage (Fe@subsurface(near O)) 1.46 1.47 1.51 1.62 1.90 2.43 3.24
Fe-half coverage (Fe@subsurface(far O)) 1.46 1.46 1.48 1.60 1.88 2.44 3.24
Fe-half coverage (Fe@middle) 1.39 1.39 1.45 1.57 1.85 2.61 3.23

Fe-1/9 coverage(Fe@surface(nearO))-ρth=0.002 1.41 1.48 1.66 1.81 2.10 2.61 3.35
Fe-1/9 coverage(Fe@surface(farO)) 1.38 1.42 1.61 1.78 2.09 2.62 3.36
Fe-1/9 coverage(Fe@sublayer(nearO)) 1.44 1.46 1.50 1.61 1.88 2.42 3.24
Fe-1/9 coverage(Fe@sublayer(farO)) 1.41 1.42 1.47 1.59 1.87 2.42 3.24
Fe-1/9 coverage(Fe@middle) 1.38 1.38 1.44 1.61 1.85 2.40 3.24
Fe-1/9 coverage(Fe@surface(nearO))-ρth=0.015 1.38 1.45 1.63 1.79 2.09 2.61 3.35
Fe-1/9 coverage(Fe@surface(farO)) 1.35 1.40 1.59 1.62 2.08 2.62 3.36
Fe-1/9 coverage(Fe@sublayer(nearO)) 1.42 1.46 1.50 1.61 1.88 2.42 3.24
Fe-1/9 coverage(Fe@sublayer(farO)) 1.40 1.42 1.47 1.59 1.87 2.42 3.24
Fe-1/9 coverage(Fe@middle) 1.42 1.38 1.44 1.56 1.85 2.40 3.24
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Table 6.6: The s̃ for plane Fe(001) surfaces as well as Fe(001) with different oxygen
coverage for different σ and different ρth , the results for Fe and FeO are added to the

table only for comparison

solid σ=3.78 σ=2.78 σ=1.78 σ = 1.53 σ=1.28 σ=1.03 σ=0.78
Fe 0.47 0.47 0.48 0.50 0.53 0.59 0.62
FeO 0.64 0.64 0.65 0.67 0.68 0.70 0.66
Fe (Fe@surface)-original 1.25 0.88 0.67 0.65 0.65 0.67 0.67
Fe (Fe@sublayer)-original 0.70 0.55 0.50 0.51 0.54 0.59 0.62
Fe (Fe@middle)-original 0.47 0.47 0.48 0.49 0.53 0.59 0.62
Fe (Fe@surface)-ρth=0.004 0.53 0.58 0.61 0.63 0.64 0.66 0.65
Fe (Fe@sublayer) 0.52 0.52 0.50 0.51 0.54 0.59 0.62
Fe (Fe@middle) 0.47 0.47 0.48 0.49 0.53 0.59 0.62
Fe (Fe@surface)-ρth=0.007 0.48 0.53 0.59 0.61 0.63 0.66 0.65
Fe (Fe@sublayer)) 0.50 0.51 0.50 0.51 0.54 0.59 0.62
Fe (Fe@middle) 0.47 0.47 0.48 0.49 0.53 0.59 0.62

Fe (Fe@surface)-ρth=0.01 0.46 0.50 0.57 0.59 0.63 0.66 0.65
Fe (Fe@sublayer) 0.49 0.50 0.50 0.51 0.54 0.59 0.62
Fe (Fe@middle) 0.47 0.47 0.48 0.49 0.53 0.59 0.62
Fe (Fe@surface)-ρth=0.015 0.43 0.47 0.54 0.57 0.61 0.65 0.65
Fe (Fe@sublayer) 0.47 0.49 0.50 0.51 0.54 0.60 0.62
Fe (Fe@middle) 0.47 0.47 0.48 0.49 0.53 0.60 0.62
Fe (Fe@surface)-ρth=0.03 0.37 0.40 0.48 0.51 0.57 0.62 0.64
Fe (Fe@sublayer) 0.44 0.46 0.48 0.50 0.53 0.59 0.62
Fe (Fe@middle) 0.47 0.46 0.47 0.49 0.52 0.58 0.62

Fe-full coverage (Fe@surface)-ρth=0.015 0.49 0.55 0.60 0.62 0.64 0.66 0.65
Fe-full coverage (Fe@sublayer) 0.51 0.51 0.51 0.52 0.55 0.60 0.62
Fe-full coverage (Fe@middle) 0.47 0.47 0.48 0.49 0.53 0.58 0.62

Fe-full coverage(2) (Fe@surface)-ρth=0.004 0.62 0.66 0.67 0.67 0.67 0.68 0.65
Fe-full coverage(2) (Fe@sublayer) 0.56 0.55 0.53 0.55 0.58 0.62 0.63
Fe-full coverage(2) (Fe@middle) 0.50 0.49 0.50 0.50 0.54 0.59 0.62
Fe-full coverage(2) (Fe@surface)-ρth=0.01 0.54 0.59 0.63 0.64 0.66 0.68 0.65
Fe-full coverage(2) (Fe@sublayer) 0.54 0.54 0.53 0.55 0.58 0.62 0.63
Fe-full coverage(2) (Fe@middle) 0.49 0.49 0.49 0.51 0.54 0.59 0.62
Fe-full coverage(2) (Fe@surface-ρth=0.015 0.51 0.56 0.61 0.63 0.65 0.67 0.65
Fe-full coverage(2) (Fe@sublayer) 0.53 0.53 0.53 0.55 0.58 0.62 0.64
Fe-full coverage(2) (Fe@middle) 0.50 0.49 0.49 0.51 0.54 0.59 0.62
Fe-full coverage(2) (Fe@surface-ρth=0.02 0.49 0.54 0.59 0.61 0.64 0.66 0.65
Fe-full coverage(2) (Fe@sublayer) 0.52 0.53 0.53 0.54 0.57 0.62 0.63
Fe-full coverage(2) (Fe@middle) 0.49 0.49 0.49 0.50 0.54 0.59 0.62

Fe-half coverage (Fe@surface) (ρth=0.015) 0.47 0.52 0.58 0.60 0.63 0.66 0.65
Fe-half coverage (Fe@subsurface(near O)) 0.49 0.50 0.50 0.51 0.54 0.59 0.62
Fe-half coverage (Fe@subsurface(far O)) 0.49 0.50 0.50 0.51 0.55 0.60 0.62
Fe-half coverage (Fe@middle) 0.47 0.47 0.47 0.49 0.52 0.58 0.62

Fe-1/9 coverage(Fe@surface(nearO))-original 1.44 0.95 0.70 0.67 0.66 0.67 0.65
Fe-1/9 coverage(Fe@surface(farO))-original 1.36 0.89 0.67 0.65 0.65 0.67 0.65
Fe-1/9 coverage(Fe@sublayer(nearO))-original 0.71 0.55 0.50 0.51 0.60 0.59 0.62
Fe-1/9 coverage(Fe@sublayer(farO))-original 0.74 0.56 0.50 0.51 0.54 0.59 0.62
Fe-1/9 coverage(Fe@middle)-original 0.47 0.47 0.48 0.49 0.53 0.59 0.62
Fe-1/9 coverage(Fe@surface(nearO)-ρth = 0.004 0.55 0.60 0.63 0.64 0.65 0.67 0.65
Fe-1/9 coverage(Fe@surface(farO)) 0.54 0.58 0.61 0.62 0.64 0.66 0.65
Fe-1/9 coverage(Fe@sublayer(nearO)) 0.53 0.52 0.50 0.51 0.54 0.60 0.62
Fe-1/9 coverage(Fe@sublayer(farO)) 0.52 0.52 0.50 0.51 0.54 0.58 0.62
Fe-1/9 coverage(Fe@middle) 0.47 0.47 0.48 0.49 0.53 0.59 0.62
Fe-1/9 coverage(Fe@surface(nearO)-ρth = 0.012 0.46 0.51 0.57 0.60 0.62 0.66 0.65
Fe-1/9 coverage(Fe@surface(farO)) 0.45 0.49 0.56 0.58 0.62 0.66 0.64
Fe-1/9 coverage(Fe@sublayer(nearO)) 0.49 0.50 0.50 0.51 0.54 0.59 0.62
Fe-1/9 coverage(Fe@sublayer(farO)) 0.48 0.50 0.50 0.51 0.54 0.59 0.62
Fe-1/9 coverage(Fe@middle) 0.47 0.47 0.48 0.49 0.53 0.58 0.62
Fe-1/9 coverage(Fe@surface(nearO))-ρth = 0.015 0.44 0.49 0.56 0.58 0.62 0.65 0.65
Fe-1/9 coverage(Fe@surface(farO)) 0.43 0.47 0.54 0.57 0.61 0.65 0.64
Fe-1/9 coverage(Fe@sublayer(nearO)) 0.48 0.50 0.50 0.51 0.54 0.59 0.62
Fe-1/9 coverage(Fe@sublayer(farO)) 0.47 0.49 0.50 0.51 0.54 0.59 0.62
Fe-1/9 coverage(Fe@middle) 0.47 0.47 0.48 0.49 0.53 0.59 0.62
Fe-1/9 coverage(Fe@surface(nearO))-ρth = 0.02 0.42 0.47 0.54 0.56 0.61 0.65 0.64
Fe-1/9 coverage(Fe@surface(farO)) 0.41 0.45 0.52 0.55 0.60 0.64 0.64
Fe-1/9 coverage(Fe@sublayer(nearO)) 0.48 0.49 0.50 0.51 0.54 0.60 0.62
Fe-1/9 coverage(Fe@sublayer(farO)) 0.46 0.48 0.49 0.51 0.54 0.60 0.62
Fe-1/9 coverage(Fe@middle) 0.47 0.47 0.48 0.49 0.53 0.59 0.62
Fe-1/9 coverage(Fe@surface(nearO))-ρth = 0.03 0.38 0.43 0.50 0.53 0.58 0.63 0.64
Fe-1/9 coverage(Fe@surface(farO)) 0.37 0.41 0.48 0.51 0.57 0.62 0.64
Fe-1/9 coverage(Fe@sublayer(nearO)) 0.46 0.48 0.49 0.50 0.53 0.59 0.62
Fe-1/9 coverage(Fe@sublayer(farO)) 0.44 0.46 0.48 0.50 0.53 0.59 0.62
Fe-1/9 coverage(Fe@middle) 0.47 0.47 0.47 0.49 0.52 0.58 0.62
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[115] E. Sjöstedt, L. Nordström, and D. J. Singh. Solid State Commun., 114:15, 2000.

[116] G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström. Phys. Rev.
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