

Tapered Quantum Cascade Lasers in the long-wavelength mid infrared region

Davide Pinto^{1,2}, Kumar Kinjalk¹, Ariane Meguekam¹, Michael Bahriz¹, Alexei Baranov¹

¹Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria ²Institute of Electronics and Systems, UMR 5214 CNRS – University of Montpellier, 34095 Montpellier, France

Introduction & motivation

- Long-wavelength Quantum Cascade Lasers (LW-QCLs) find application in several fields, such as in molecular spectroscopy. The small photon energy limits the output power of such devices
- High-power and good beam quality are often desired in many applications for better performances

Results

Electrical and optical characterization

Tapered lasers deliver higher output power, preserving beam quality, and reducing beam divergence along the slow-axis

LW-QCLs features and fabrication

InAs/AISb system

- LW-QCLs are based on **InAs/AISb system** to exploit small m_e^* of InAs quantum wells
- Reduced absorption from Reststrahlen band

Fabrication process of Tapered LW-QCL

1. Lithography to define tapered MESAs and deep MESA wet chemical etching 2. Lithography for insulation aperture via photoresist hard baking

1°	$5.6^\circ \rightarrow 6.5^\circ$	$1.07 \rightarrow 1.23$
2°	$3.7^\circ \rightarrow 5.0^\circ$	$1.31 \rightarrow 1.77$
3°	$4.0^{\circ} \rightarrow 5.0^{\circ}$	2.00 → 2.52

Conclusions & Outlooks

- Tapered LW-QCLs demonstrated an improved power output, together with a reduced slow-axis divergence
- Higher half-taper angles devices displayed suboptimal characteristics such as worse beam quality (due to sidelobes) and limited power output

An optimal taper half-angle could be found around 1°

Future perspectives

3. Top contact metallization via Ti/Au/Cr/Au e-beam evaporation

Straight-side facet of LW-QCL under SEM.

Tapered LW-QCLs with half-angles of 0°, 1°, 2° and 3° - indicated with A, B, C and D, respectively.

• High-reflection and anti-reflection coating for further improvement of the outcoupled optical power

• Single longitudinal mode operation will be achieved by grating fabrication on top of the MESA, for use in spectroscopy applications (DFB laser)

2022 HV spot mag □ WD vacMode

