SPIE. PHOTONICS WEST

·CHVS·

Highly sensitive and rugged gas optical detection via interferometric cavity-assisted photothermal spectroscopy

31.01.2023

Davide Pinto davide.pinto@tuwien.ac.at

OPTAPHI has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 860808

- 1. Motivation Gas sensing
- 2. Laser spectroscopy for gas sensing: ICAPS
- 3. Experimental Setup & Results
- 4. Conclusion & Outlook

- 1. Motivation Gas sensing
- **2**. Laser spectroscopy for gas sensing: ICAPS
- 3. Experimental Setup & Results
- 4. Conclusion & Outlook

Motivation – Gas sensing

1. Industrial Process Control

Detection of leaks In-line/on-line monitoring

2. Environmental Monitoring

Greenhouse gases monitoring Detection of toxic gases and pollutant

3. Health and Life Science

Breath analysis for early-stage disease detection

Why laser spectroscopy?

- High selectivity: roto-vibrational absorption lines can be targeted selectively to avoid cross-talking
- High sensitivity:
 - many approaches are capable to achieve <u>sub-ppb</u> detection limits
- High speed measurement
- No sample treatment needed

- 1. Motivation Gas sensing
- 2. Laser spectroscopy for gas sensing: ICAPS
- 3. Experimental Setup & Results
- 4. Conclusion & Outlook

Direct absorption – TDLAS

Indirect absorption – PAS, PTS

3/15

·CAVS·

02 The Fabry-Pérot Interferometer

[1] D. Pinto, J.P. Waclawek, S. Lindner, H. Moser, G. Ricchiuti, B. Lendl, Wavelength modulated diode probe laser for an interferometric cavity-assisted photothermal spectroscopy gas sensor, Sensors and Actuators B: Chemical. 377 (2023) 133061. doi:10.1016/j.snb.2022.133061.

02 Interferometer stability

- Probe laser must be locked to the inflection point to compensate for drifts
- Diode lasers are capable of fast wavelength tuning by acting on the bias current. However, also the emitted optical intensity (I₀) changes as a function of the current!

 λ_{p} (i)

- 1. Motivation Gas sensing
- 2. Laser spectroscopy for gas sensing: ICAPS
- 3. Experimental Setup & Results
- 4. Conclusion & Outlook

O3 Experimental apparatus – NO detection

rcflvSr

O3 Locking scheme

Normalization scheme

Probe wavelength is modulated for locking purposes

Real-time investigation of the interferometer

Wavelength modulated probe diode laser

SPIE - Photonics West 2023 31.01.2023

10/15

QCL current is modulated with a sine wave (f_{exc}) and scanned across the analyte absorption line

The signal is demodulated at the 2nd harmonic (2 f_{exc})

- ✓ Background free technique
- Peak value stores the analytical information

O3 Proof of normalization

- A constant PTS signal was generated (97.5 ppm of NO/N₂)
- 2. The PTS signal was transduced at lowcurrent and high-current fringes
- The PTS signal is normalized to the probe
 1f-demodulated signal (ratio of red and blue curves)
- 4. Normalized signal doesn't depend upon:
 - Interferometer quality (aging)
 - Varying optical intensity

NO detection via ICAPS

Spectral Scan

Excellent linearity ($R^2 = 0.999$) in the whole concentration range

✓ NEC =
$$\frac{1\sigma_{noise}}{\text{sensitivity}} \approx 2 \text{ ppm}$$

✓ NNEA = $\frac{P\alpha_{min}}{\sqrt{\Delta f}} \sim 3 \cdot 10^{-6} \text{ W cm}^{-1} \text{Hz}^{-\frac{1}{2}}$
 $(\alpha_{min} \approx 3 \cdot 10^{-5} \text{ cm}^{-1})$

- 1. Motivation Gas sensing
- 2. Laser spectroscopy for gas sensing: ICAPS
- 3. Experimental Setup & Results
- 4. Conclusion & Outlook

04 ICAPS Recap

Advantages over other techniques

- Reduced sensing volume: design of portable and rugged sensors
- Modulation frequency can be freely tuned: fundamental for slow relaxing gases
- ✓ Open for many applications!

TU

WIEN

04 Outlooks

15/15

• Tapered QCLs for improved optical power output

Mercoledì, Febbraio 1 • 18:00 - 20:00 Moscone Center, Level 2 West

Thank you for your attention

Special thanks to the ones contributing to this work:

- Paul Waclawek
- Harald Moser
- Stefan Lindner
- Giovanna Ricchiuti
- Bernhard Lendl

And the CAVS and Nanomir Groups

This project has received fundings from the European Union's Horizon 2020 research and innovation programme under the Marie Curie Grant Agreement n° 860808

