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Abstract: Salt pans are unique wetland ecosystems. In the Austrian Seewinkel region, salt pans are
in an increasingly vulnerable state due to groundwater drainage and heightened climatic pressures.
It is crucial to model how seasonal and long-term hydrological and climatological variations affect
the salt pan dynamics in Seewinkel, yet a comprehensive understanding of the driving processes
is lacking. The goal of this study is to develop random forest machine learning models driven by
hydrological and meteorological data that allow us to predict in early spring (March) of each year the
inundation state in the subsequent summer and fall. We utilize Earth observation data from Landsat
5 (L5), 8 (L8), and 9 (L9) to derive the time series of the inundation state for 34 salt pans for the
period 1984–2022. Furthermore, we demonstrate that the groundwater level observed in March is the
strongest predictor of the salt pan inundation state in summer and fall. Utilizing local groundwater
data yields a Matthews correlation coefficient of 0.59. Models using globally available meteorological
data, either instead of or in addition to groundwater data, provide comparable results. This allows
the global transfer of the approach to comparable ecosystems where no in situ data are available.

Keywords: salt pan; soda pan; wetlands; drought; Lake Neusiedl—Seewinkel National Park; water
extent; Earth observation; Landsat; inundation state; random forest

1. Introduction

Salt pans are a special type of terrestrial wetlands, which are formed in relation to
arid climates, topographic depressions, and salt-rich groundwater [1,2]. They can be de-
fined as “(. . . ) arid zone basins (. . . ), subject to ephemeral surface water inundation of
variable periodicity and extent” [2]. Saline lakes, such as salt pans, are of vital importance
for biodiversity and water management [2,3]; however, at the global scale, their num-
ber is declining mainly due to direct human intervention in their hydrology and climate
change [4,5]. Although global data on salt pans are missing [6], many case studies suggest
a global trend toward salt pan degradation and decline [2,5,7–10]. These trends also apply
to the salt pans in Seewinkel in eastern Austria [11,12], where key regional ecosystem
functions are under threat. The lives of, among others, halophytes [13], amphibians, rep-
tiles [14,15], and birds [16,17] depend on these wetlands. Halophytes, such as communities
of Puccinellio-Salicornietea, require a high groundwater level facilitating capillary rise to
ensure their water supply [13]. Birds, such as the kentish plover (Charadrius alexandrinus),
use high water levels in spring (for hatching [18]) and summer [17], as do amphibians
and reptiles [14,15]. In Central Europe, such ecosystems can only be found in the Pan-
nonian Basin [19] due to the unique tectonic conditions in the region [20]. In recent years,
processes such as eutrophication, paludification, siltation, overgrowth with vegetation,
fragmentation, long-term drying, and in consequence, habitat loss, have accelerated [21,22].
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These are largely connected to excessive groundwater drainage for land use change [21,23].
The potential impact of climate change on the salt pans in Seewinkel is not yet fully under-
stood [23], although small, geographically isolated wetlands reportedly react rather quickly
to meteorological forcing [24].

The salt pans in the Seewinkel region follow the salt pan cycle [1], in which the dry
basin is the default, central, and recurrent moment, which is alternated by its opposite state:
the varying presence of water [1,25]. In summer, high evaporation rates in combination
with an interruption of groundwater supply tend to outweigh precipitation [14] leading to
salt pan desiccation. Especially during late winter and early spring [21], low evaporation
rates allow precipitation combined with an increased contribution of groundwater to fill
the basins. Wind contributes to important ecosystem processes as it influences evaporation
rates and drives the mixing of water when the salt pan is inundated [21]. It also strengthens
capillary rise and blows out inorganic sediments from the salt pan basins during periods of
desiccation [20]. Salt pans in poor hydrological conditions lose additional water by surface
water infiltrating into deeper soil layers [14]. Thus, monitoring and predicting both the
long-term and short-term variability of surface water occurrence in the Seewinkel salt pans
is needed to assess ecosystem change and their resilience.

Wetland hydroperiod [26], a key characteristic and ecological indicator of intermittent
wetlands, such as salt pans [19,27], can be characterized by means of water height (WH),
water extent (WE), or water volume (WV) [2,28,29]. WH derived from in situ water level
gauges offers the most reliable and temporally frequent source of information. However,
water gauges provide merely vertical, locally tied measurements and are costly to install and
maintain. Especially for salt pans, the water level gauge must be positioned at the deepest
point due to increased drying towards the edges. In many regions of the world, long-term,
automatic in situ measurements are not widely available, as is also the case for the Seewinkel
region (web address: https://wasser.bgld.gv.at/hydrographie/die-seenandhttps://ehyd.
gv.at/ (accessed on 14 August 2023)).

WE is especially suited for studying the inundation state of the salt pans due to their
shallow topography so that small changes in water volume cause substantial changes in
water surface area. WE can be reliably retrieved from Earth observation (EO) satellite data
that provide global, freely available information of high spatial and sufficient temporal
resolution [30,31]. Multispectral imagery has proven to be suitable for studying salt pans
because of the high reflectivity of exposed salt surfaces and the absorption of infrared radi-
ation by water surfaces [6]. Although commonly suffering from cloud cover, multispectral
observations are less affected by wind than radar systems [32–34], which have been widely
used to monitor wetlands [30,31,35,36]. Most studies use data from the moderate resolu-
tion imaging spectroradiometer (MODIS) [37] or a series of the Landsat missions, which
together cover an observation period of nearly 50 years [38]. Examples of global satellite-
derived WE products are the global surface water (GSW) product [39] and the dynamic
surface water extent product [40]. Additionally, continental-scale products exist [41]. These
large-scale products include data on salt pans (Figure 1); however, they are often inaccurate
for small-size ecosystems, such as those encountered in Seewinkel [39]. Local case studies
using remote sensing to derive WE and inundation states are numerous [42–50].

https://wasser.bgld.gv.at/hydrographie/die-seen and https://ehyd.gv.at/
https://wasser.bgld.gv.at/hydrographie/die-seen and https://ehyd.gv.at/
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Figure 1. Location of Seewinkel in Eastern Austria. Outlines of salt pan basins were provided
by Lake Neusiedl—Seewinkel National Park administration [51]. Additionally, the groundwater
stations used in the study are marked. The salt pans are colored based on the water occurrence
product of the Global Surface Water (GSW) data set [39]. The basemap stems from basemap.at (web
address: https://basemap.at/ (accessed on 14 August 2023)). The coordinate reference system is the
MGI/Austria GK M34 (EPSG:31259; web address: https://epsg.io/31259 (accessed on 14 August
2023)). The map inset shows the location of the study area (marked with an X) within Austria.

Several modeling approaches exist that link various drivers to salt pan hydrological
properties. Traditional hydrological modeling [52–54] applied to wetlands depends on a
certain quantity and quality of data for parameterization, which often hampers their spatial
transferability to regions where these data are not available [55–59]. Stochastic modeling
has long been recognized as a vital alternative to process-based modeling [60]. A number
of studies have focused on summarizing past, present, and perspective machine learning
(ML) methodology in estimating different hydrological variables [61–71], such as ground-
water [65–67]. Conventional ML models, such as the random forest (RF) approach [72,73],
have been the most commonly used concepts for modeling hydrological variables [70,71].
They encompass the advantage of being well explored, non-parametric, often robust estima-
tors that, in many cases, offer extensive algorithmic options for model interpretation [70].
Hybrid models [74–77] and deep learning models [78] have only recently gained attention
in hydrological research [77,78]. Hybrid models are meant to incorporate the advantages
of traditional hydrological modeling and ML modeling [74–77]. Although fit for complex
pattern recognition tasks, deep learning models typically require large amounts of data for
model training [78,79] and are harder to interpret [80].

Advances in ML [70,71] have boosted the relevance of stochastic modeling for predicting
lake WH [81–85]. Past research in modeling wetland inundation dynamics using ML methods
is often restricted to using in situ measurements for identifying the presence of water [86,87].
Greater data availability provided by EO [39,88,89] has contributed to studies utilizing WE for
modeling wetlands, although, to our knowledge, not for salt pans and in different temporal
resolutions. The monthly inundation state of freshwater playas in the Great Plains of North
America has been modeled on a large spatial scale using a monthly global water extent
product based on Landsat [39] and climate and land cover data [90]. Inundation patterns in
the Darling River Floodplain, Australia, were modeled using Landsat data and topography,
meteorological, and hydrological data [91]. Satellite-derived WE (lake surface area) of Lake
Gregory, Australia’s salt lake, has been modeled using ML with precipitation and temperature
as predictors [92]. Quantification of wetland permanence of four water body permanence
classes in the Prairie Pothole Region, although not carried out for salt pans, was executed by
ref. [93], who, in addition to climate and land cover, introduced features based on topography
to ML modeling. Various ML models were used for the mentioned studies. Ref. [90] used

https://basemap.at/
https://epsg.io/31259
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a long short-term memory neural network, ref. [91] used RF, ref. [92] applied a generalized
group method of data handling, and ref. [93] used extreme gradient boosting techniques.

The goal of this study is to combine long-term EO and ML to build seasonal prediction
models of the inundation state of salt pans in the Seewinkel region of Austria. Modeling of
the salt pan inundation state contributes to a better understanding of the effect of climate
variability and groundwater exploitation on salt pan health. First, we derive and evaluate
a reference data set of the yearly inundation states from 1984 to 2022 of 34 salt pans based
on the Landsat satellite archive [38,94]. Second, we use this new long-term inundation
state data set as a target variable in combination with meteorological data from global
reanalysis and in situ groundwater data to develop ML models to predict in early spring
(end of March) if the salt pans fall dry during July, August, September, or October (JASO)
of the same year. We develop models with and without the use of local in situ groundwater
gauge data, which are precise but sparse at the global level. Therefore, we tested whether
meteorological predictors in combination with EO-based estimates of WE are fit for use
in regions with limited availability of in situ data. In total, we create three core models: a
meteorology-based model, a groundwater-based model, and one combining meteorological
and groundwater data. To identify the most important drivers, we apply concepts from
explainable artificial intelligence [95].

2. Materials
2.1. Study Area

The study area is located in the Lake Neusiedl—Seewinkel National Park (Figure 1).
Salt pans in Seewinkel are steppe wetlands [14] and mostly relicts of the Würm glacia-
tion [96,97]. Their size ranges between 0.03 km2 and 1.5 km2 (based on the data collected
in the scope of this study). The salt pans are highly heterogeneous in their hydrologi-
cal and ecological condition [14,98]. Due to various causes, the number of salt pans in
Seewinkel has decreased from 139 in the year 1855 to about 59 ecologically intact specimens
in 2012 [14]. Historically, the landscape has been subject to strong economic utilization,
most notably through the intensification and expansion of agricultural practices since the
1960s [96] and because of tourism [14]. A process referred to as “drying from beneath” [20]
has been identified as the main driver behind “dying salt pans” [14], although diverging
theories exist [97,99]. Due to human-induced groundwater drainage, the capillary rise is
disrupted starting at a depth to groundwater of approximately 70 cm [21]. This finally
results in the failure of the water retention capacity of the salt pans and desalinization [21].
Some salt pans tend to be naturally filled with water all year (type: ‘naturally perennial’),
and some artificially hold water over the whole year (type: ‘artificially perennial’). Others
tend to desiccate over continuous periods of time (type: ‘periodically filled’) [14].

The climate in Seewinkel can be classified as Dfb-climate (warm-summer humid conti-
nental; based on monthly ERA5-Land data from 1984 to 2022; Köppen-Geiger climate clas-
sification [100]). The total annual potential evaporation (Epot) is 602 mm (1978–2010; [101]),
the total annual precipitation (P) is 556 mm (1971–2020; [102]), and the annual mean 2 m
temperature (T) is 11.1 °C (1971–2020; [102]). P is highest from May to September and
lowest from October to April (based on monthly ERA5-Land from 1984 to 2022; veri-
fied via ref. [103]). While there is research on the impact of climate change on Lake
Neusiedl [101,102,104,105], it remains unclear whether climate change currently affects
the salt pans in Seewinkel [23]. Most scenarios (Representative Concentration Pathway
(RCP) 4.5 and RCP 8.5) for the Austrian state of Burgenland predict a significant increase
in temperature for all seasons, whereas a slight increase in mean annual precipitation is
expected together with a significant increase (+33%) in winter precipitation in the distant
future (RCP 8.5) [106]. Based on climate scenarios, it is estimated that the return period
of moderate and extreme droughts will decrease in lowland Austria over the course of
the 21st century [107], suggesting greater pressure on vulnerable wetland ecosystems in
the future.
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2.2. Multispectral Satellite Imagery

The salt pan inundation state was mapped using multispectral data from the Landsat
5, 8, and 9 satellites acquired during the time period from 1984 to 2022 [94,108].

Landsat 5 operated between 1984 and 2013. Its thematic mapper (TM) provided data in
six bands in the visible, near-infrared (NIR), and shortwave infrared (SWIR) portions of the
electromagnetic spectrum. Landsat 8 was launched in 2013, and Landsat 9 was launched in
2021. Their operational land imager (OLI) acquires data in nine bands, of which six bands
are used here to be consistent with the information from the TM. Landsat data have a 30
m spatial resolution with a revisit time of approximately 16 days [38]. We accessed the
Level 2, Collection 2, surface reflectance data for Landsat 5 TM (DOI: 10.5066/P9IAXOVV)
and Landsat 8–9 OLI (DOI: 10.5066/P9OGBGM6) using Google Earth Engine (GEE) [109].
Level 2 data also include masks for clouds and cloud shadows, which were applied to the
data. The WE retrieval was limited to scenes acquired between April and October of each
year, as drying commonly occurs during these months and to limit the potential influence
of ice cover on classification accuracy. Furthermore, scenes that contain more than 30%
cloud cover according to the metadata were excluded from the classification. This resulted
in a total of 286 images acquired between May 1984 and October 2022 that were used as the
basis for the wetland extent classification. In 2012, there is a gap in the Landsat time series,
as the Landsat 5 data for the region were only available until the end of 2011, and Landsat
8 was launched in 2013 [108].

In addition to the Landsat data, the Sentinel-2 data with similar spectral characteristics
and a slightly higher spatial resolution from 10 m to 20 m was used for validation of
the retrieved WEs. Seven Sentinel-2 scenes acquired within one day before or after the
respective Landsat scene were used for this purpose. In addition, a cloud-free scene
acquired on 31 May 2018 was used for manually delineating salt pan polygons.

2.3. Predictor Data
2.3.1. Predictor Selection

The selected features relate to the main drivers of salt pan variability, i.e., groundwater,
precipitation, temperature, and evaporation (Table 1). They were narrowed down from a
larger set of potential drivers based on the literature on wetlands and salt pan modeling in
general, as well as the salt pans in Seewinkel, in particular [1]. For example, topography,
a feature proposed by ref. [93], was excluded as a predictor since the variation between
salt pan basins is likely to be minimal (based on a local digital elevation model (DEM)
(web address: https://geodaten.bgld.gv.at/de/downloads/hoehenmodelle-orthofotos.
html (accessed on 14 August 2023))). Information on anthropogenic drivers in sufficient
resolution, e.g., well extraction amounts or channel discharge, was not available [110].

WE in spring is expected to have a major impact on inundation state estimates in
summer [21]. However, we did not include WE as a predictor for the following reasons:
First, its inclusion potentially results in overshadowing other predictors. Although possibly
improving model performance, this would limit model interpretability and ecosystem
understanding. Second, natural spring WE is the result of the underlying processes steered
by groundwater, precipitation, temperature, and evaporation. Hence, WE information is
implicitly included in the nine predictors used in this study.

To account for interannual variability in hydrological and meteorological conditions,
we applied various integration periods to the selected predictors. However, the overall
focus is on integration over 12 months as this period covers the entire time since the last
prediction was made. Other integration periods span 6 months, whereas the SGI is a
continuous variable, as indicated in Table 1. To detect trends in the features, we applied
the Mann-Kendall test [111] to the nine predictors. We abstained from feature selection
methods [112] as we wanted to obtain information on feature importance and partial
dependencies on all introduced predictors. Importantly, our sample size is expected to
be large enough with respect to the maximum number of features (nine features for the
combined model), hence decreasing the likelihood of overfitting [113].

https://geodaten.bgld.gv.at/de/downloads/hoehenmodelle-orthofotos.html
https://geodaten.bgld.gv.at/de/downloads/hoehenmodelle-orthofotos.html
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Table 1. The nine predictors used for modeling inundation state are divided into meteorology and hydrology. Furthermore, the relation to the salt pan cycle is
explained, and additional information is provided.

Field Variable [Unit] Derived Predictor [Unit] (Abbrev.) Integ. Period Relation to Salt Pan Cycle Data Source

Hydrology Groundwater [m.a.s.l.]

Anomalies [unitless] (GW Anom.) 12 m.

Groundwater is of key importance for salt pan water abundance in
Seewinkel [21]
Short-term and especially long-term groundwater depletion leads to salt
pan degradation [114]

Austrian eHyd portal
SGI [unitless] (SGI) Cont.

The Standardized Groundwater Index can serve as a robust estimation
of groundwater drought [115,116]
Groundwater drought in March influences the salt pan water extent in
spring and therefore the inundation state in summer

Level ratio [unitless] (GW level ratio) Oct./March (6 m.)
Fall-winter groundwater level ratio is closely connected to regional
precipitation during that time [117]
The level ratio stands in relation to salt pan water extent in spring [14]

Meteorology

Temperature [°C]
Anomalies [unitless] (T Anom.) 12 m.

Higher temperature increases water temperature [21,118–120]
Higher summer temperature increases evaporation and therefore the
number of drying events [14]
Higher temperatures in winter decrease spring water extent [20]

ERA5-Land [121], DOI:
10.24381/cds.68d2bb30

Numb. of daysabove 25 °C [days] 12 m.
The number of days above 25 °C is connected to heatwaves and
extensive evaporation [122]

Evaporation [mm] Anomalies [unitless] (Epot Anom.) 12 m. Evaporation leads to salt pan concentration and desiccation [1,123]

Precipitation [mm]

Anomalies [unitless] (P Anom.) 12 m.

Precipitation leads to salt pan filling [1]
Precipitation leads to eluviation of the saliferous horizon [20]
Precipitation as observed over a 12-month period is related to
hydrological drought [124]

SPI 6 [unitless] 6 m.
Standardized Precipitation Index 6 is connected to medium-term
precipitation patterns and agricultural drought [125,126]

SPI 24 [unitless] 24 m.
Standardized Precipitation Index 24 is connected to long-term
precipitation patterns and hydrological/socioeconomic
drought [124–127]
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2.3.2. Groundwater Level

Seewinkel is equipped with 84 groundwater gauges located in relative proximity to
the salt pans. Of these, only six provide continuous observations throughout the time span
covered by the Landsat observations and could thus be used for our study (i.e., stations
306043, 319418, 316174, 305755, 305813, and 319426). The point-based data are provided
natively as monthly means through eHyd (web address: https://ehyd.gv.at/ (accessed
on 14 August 2023)). First, we derived the mean monthly groundwater level of the six
stations. We then calculated the groundwater anomalies to exclude long-term climatology.
This was completed by subtracting the mean seasonal component from the original time
series [128,129]:

At = Dt − Ct, (1)

where At is the anomaly at time t, Dt is the monthly averaged values at time t, and Ct is the
long-term seasonal climatology. Ct was calculated by averaging groundwater levels per
month for the entire reference period from 1984 to 2022. Finally, we calculated the 12-month
average of the time series between April (previous year) and March (current year) to derive
presummer season groundwater anomalies for each year. All of these steps were executed
with the Python packages numpy [130] and pandas [131]. We decided not to apply further
detrending to the anomalies to inform the model about long-term environmental changes
(e.g., introduced by human management).

Other predictors that were derived are the Standardized Groundwater Index (SGI) in
March of each year and the October/March groundwater level ratio [115]. The SGI is the
only predictor with a continuous accumulation period and is based on a non-parametric
normal scores transform of the groundwater level data for each calendar month [115]. It
represents information on the groundwater level, not as an average over 12 months, but as
derived in March. The SGI was also calculated based on the monthly groundwater values
averaged across all six stations. The calculation was executed through the Python package
pastas [132]. The groundwater level ratio was calculated as the ratio of the groundwater
level in March (the time of prediction and typically the time of year of the groundwater
level maximum [21]) divided by the level in October of the previous year (approx. the
lowest level [21]). It serves as a proxy for groundwater recharge during winter.

2.3.3. ERA5-Land Meteorology

The ERA5-Land reanalysis [121] is aimed at land applications. It has the following
main characteristics: the data from ERA5-Land offers a high spatial (ca. 9 km × 9 km) and
temporal resolution, global availability, and temporal coverage dating back to the 1950s,
thus, overlapping with Landsat retrieval periods [133–136]. Three variables were used: the
total precipitation P, the potential evaporation Epot, and the 2 m temperature T. The Epot in
ERA5-Land is higher than the Pannonian average of 600–800 mm per year [137] as the Epot
is often overestimated because of representing open water evaporation [121]. We used the
ERA5-Land monthly averaged data from 1950 to the present (DOI: 10.24381/cds.68d2bb30)
for the calculation of nearly all meteorological predictors. Only the number of days in a
year with a maximum temperature above 25 °C was derived from hourly 2 m temperature
data based on the ERA5-Land hourly data (DOI: 10.24381/cds.e2161bac).

First, the seven pixels covering the study area were combined by spatial averaging
for each variable. Preprocessing of the ERA5-Land variables was performed in accordance
with Equation (1) and the Python packages numpy [130] and pandas [131]. Subsequently,
a 12-month average was performed in the case of T and a 12-month summation in the
cases of P and Epot. For the same reason mentioned in Section 2.3.2, detrending was not
performed for these three features either. In addition, we used the ERA5-Land monthly P
to compute the drought indicator standardized precipitation index (SPI) over 6 months and
24 months (SPI; [125,138]) using the R package SPEI [124]. The SPI represents the precipi-
tation conditions of a predefined time period in relation to the respective normal values.

https://ehyd.gv.at/
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It builds on the calculation of a normal distribution as in reference [138]. Furthermore,
the number of days in a year with a maximum temperature above 25 °C was derived.

3. Methods
3.1. Salt Pan Mapping
3.1.1. Derivation of Water Extent Time Series

The WE mapping was based on the unique spectral properties of water, vegetation,
and salt pans. While water absorbs most of the incoming radiation in the near-infrared
spectrum [139], dry salt pans reflect more radiation than inundated areas throughout
the visible and near-infrared wavelengths [6]. Visible, NIR, and SWIR bands were used
as input data for the classification. Additionally, the normalized difference vegetation
index (NDVI), the normalized difference water index (NDWI) [140], and the modified
normalized difference water index (MNDWI) [141] were computed as complementing the
spectral bands with vegetation indices has been shown to have a positive impact on water
classification [39]. To classify inundated and non-inundated pixels, RF models [72] were
trained using data sampled from the permanently inundated nearby Lake Neusiedl and
permanently non-inundated areas from various land cover classes that are common in the
region, such as agriculture and grassland. For each month that was selected for monitoring
due to the reasons detailed in Section 2.2 (April to October), a separate model was trained
to take the seasonality in reflectance values into account.

As the locations of the salt pans are known a priori, we used them as the baseline
for the extent monitoring. The baseline extent of the salt pans was defined by manual
delineation of 34 inundated and dry salt pans and water bodies visible in a cloud-free
image acquired by Sentinel-2 on 31 May 2018. The rationale behind choosing a year late
in the study period for the baseline inventory of wetlands was the focus of this study to
model the inundation/drying behavior of currently existing water bodies. A year early in
the study period likely would have resulted in a higher number of wetlands for monitoring;
however, many of them would not have shown water during a large part of the study
period. The salt pans were either covered by water or by salt crusts, which made them easy
to distinguish visually from their vegetated surroundings. The remaining salt pans could
not be clearly distinguished visually, so it was assumed that reliable monitoring would
not be feasible based on the Landsat data. The baseline salt pan data set was then used to
derive a time series of WE for each salt pan from the classified Landsat data. For each time
step, connected water pixels were first clustered, and, for each salt pan contained in the
baseline data set, the clusters intersecting its baseline extent were used for determining its
water area. In the case that the baseline extent of a salt pan was covered by the cloud/cloud-
shadow mask ≥ 10%, the WE of the respective salt pan was set to a missing value. The
classification process resulted in 34 WE time series, one for each salt pan, thus covering
more than half of all functioning salt pans in the region [14]. Each time series comprises
between 199 (Oberer Stinkersee) and 245 (Albersee) valid data points derived from the 286
Landsat images. The number of valid data points per salt pan varies due to the influence of
the cloud/cloud-shadow masking.

The retrieved WEs were validated for seven dates using reference sample points
that were manually labeled as ’water’ and ’non-water’ samples using the Sentinel-2 data
acquired within one day before or after the respective Landsat scene. As wetlands make
up a relatively small portion of the study area, a stratified approach for the sampling
was selected, i.e., the same number of water and non-water samples was drawn. For this
purpose, each of the Sentinel-2 scenes was preliminarily classified using a threshold of
NDWI > 0, and then a morphological opening (a kernel size of 3 × 3 pixels) was applied to
the resulting binary raster to remove isolated pixels. This preliminary classification was
then used to sample 50 reference points for each class, i.e., a number of 100 reference pixels
was available for each of the seven validation dates. These samples were then assigned a
preliminary label according to the NDWI-derived class, which was then manually corrected
if a visual inspection of the original Sentinel-2 imagery showed discrepancies. For each
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validation date, a confusion matrix was computed between the reference points and our
Landsat-based WE classification. The overall classification accuracy (OA), true positive rate
(TPR), and kappa coefficient are reported as performance metrics for the WE classification.
Accuracies were computed for each validation date because the conditions, particularly
in cloud cover, can change significantly between different image acquisitions, which is
reflected in the obtained accuracy measures.

3.1.2. Derivation of JASO Inundation State

To derive the model target variable, an inundation state, that is ‘desiccated’ (0) or
‘inundated’ (1), was assigned to each year. This was completed based on the WE time
series in JASO described above for nearly every year (1984–2022) and for each of the 34 salt
pans individually. Due to the WE data gaps caused by cloud cover during the year 2002
(only acquisitions on 13 June 2002 and on 20 June 2002), this year could not be used for
inundation state modeling. The only acquisition for the year 1999 in JASO, on 25 September
1999, did not result in WE data for Kiesgrube and St. Martins Therme 2 due to cloud
masking. We decided to manually insert two states ’inundated’ into the time series for the
two salt pans after a visual inspection of the image, as otherwise the entire year would
have been discarded. The year 2012 is missing in the inundation state time series due to the
reasons described in Section 3.1.1.

In the case of a desiccation event, that is, a WE of zero, in any of the four JASO months
for each year, the year was tagged as ‘desiccated’. Correspondingly, in the event that no
desiccation occurred, meaning a non-zero WE was present during the entire JASO period,
the year was tagged as ‘inundated’. Hence, a yearly and binary target space was formed.
This resulted in a total of 1258 data points (37 years times 34 salt pans).

We decided to display the inundation state for each salt pan and year to increase
the understanding of the model target. This was completed with the Python package
matplotlib [142], as well as with all other data visualizations. Additionally, the month of
the first desiccation event per year between April and October was visualized based on the
original WE time series for spotting inundation events outside the JASO period. The first
desiccation event per year is, furthermore, of key ecological importance [14,21].

3.2. Inundation State Prediction
3.2.1. Exploratory Data Analysis: Separability and Correlation Analysis

As a first step, we analyzed the feature space to unveil underlying distributions, feature
relations, possible non-linearities in modeling, data complexity, and class separability [143].
This was completed by visual inspection of histograms per predictor and scatter plots
between all predictor pairs in combination with class-based coloring using a seaborn pair
plot [144]. The complexity analysis was performed for two exemplary salt pans: Lange
Lacke, which is one of the largest salt pans, and Unterer Stinkersee, which is known for its
close connection to groundwater [14]. We abstained from a complete analysis for all salt
pans via the maximum Fisher’s discriminant ratio or other complexity metrics [145] due to
compactness and the ability of the RF to detect multi-dimensional patterns.

Furthermore, we performed a correlation analysis to gain an understanding of the
temporal agreement between the predictive features. For this purpose, both Pearson’s
correlation coefficient r and Spearman’s rank correlation coefficient ρ were calculated
between the nine features with the scipy stats Python package [146].

3.2.2. Random Forests

RF models [72] are commonly used in classification and regression problems in re-
mote sensing [147,148] and hydrology [69,73]. Because of the assumed strong relationship
between the targets (i.e., the inundation state of different salt pans), we used the scikit-
learn multi-output option (web address: https://scikit-learn.org/stable/modules/tree.
html#tree-multioutput (accessed on 14 August 2023)), which is expected to improve gen-
eralization accuracy by estimating the inundation state of multiple salt pans in a single

https://scikit-learn.org/stable/modules/tree.html#tree-multioutput
https://scikit-learn.org/stable/modules/tree.html#tree-multioutput
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model [149,150]. This assumption is based on detailed information on the hydrology of the
individual salt pans [14,20]. We applied hyperparameter optimization (also referred to as
hyperparameter tuning) to reduce overfitting [151]. All concepts applied here are based on
algorithms of the respective scikit-learn packages [152].

3.2.3. Model Setup

The inundation state in summer/fall serves as the target variable in our models. Us-
ing data until the end of March of each year, we predict whether a salt pan dries out
(’desiccated’) or remains ’inundated’ during JASO of the same year. This binary clas-
sification scheme has already been used as the basis for modeling WE in a number of
studies [87,90,91]. The simplicity of the inundation state in summer/fall, meaning its
low temporal resolution, its low number of classes, and its low degree of mathematical
abstraction (Section 3.1.2), in combination with our predictor setup and the RF algorithm,
leads to relatively good model performance and model interpretability. The inundation
state in summer/fall comprises a number of advantages: it is relatively robust considering
the inhomogeneous number of acquisitions per year; it closes the lack of preceding research
by introducing a classification task with a low number of classes; it addresses important
hydrological and ecological issues, as many plants and animals in Seewinkel rely on water
abundance within the salt pans during summer/fall [14,17,18]; it is of interest to decision-
makers that can use our models to enable efficient water management by, e.g., steering
artificial inundation; and it further helps us to identify the most useful predictors quan-
tifying refilling during winter/spring months, as it is aimed at the core characteristic of
salt pans [1], namely the yearly inundation state in JASO. The main limitations of the
target chosen in this study are its coarse temporal resolution and the omittance of spring
inundation/desiccation events that are of high ecological importance [14,17].

Although the prediction is only made once per year, lead times vary between three
and six months as the drying events accounted for by our model can happen in any month
from July to October. Despite desiccation sometimes also occurring before July, we aimed
for a setup that enables forecasting. This is, on the one hand, more challenging because
we include longer lead times, but, on the other hand, more valuable for policymakers
and stakeholders.

To gain a thorough understanding of the predictors of salt pan desiccation while
ensuring global model transferability, we developed four RF models. The model GROUND-
WATER only uses in situ groundwater information, the model METEOROLOGY uses only
meteorological data, and the COMBINED model uses both groundwater and meteorologi-
cal predictors (Table 1; sometimes referred to as main models). In addition, we developed
the RANDOM model, based on a single predictor randomly sampled from a uniform
distribution to create a baseline for testing model performance by involving chance.

For each of the four models, we followed the same training, validation, and test split-
ting [153,154]. We use the definition of ref. [155], who defines the validation set via the use
of hyperparameter tuning and the test set via the use of a final and independent evaluation
of the model. The model splits are presented in Figure 2. We followed an approximate
overall 70% (training), 10% (validation), and 20% (testing) split. For hyperparameter tuning
(described in Section 3.2.5), we applied a six-fold stratified cross-validation (CV) within
the 80% model validation set that recurrently applied the approximate 70%/10% split.
This roughly translates into an 85%/15% split relative to the entire model validation set
(Figure 2).
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Figure 2. Model splits separated into training sets (blue), validation sets (green), and test sets (pink).
The years that correspond to each fold are indicated. Additionally, the cross-validation (CV) schemes
are marked on the left side, and the arrows represent the introduction of the seven independent test
folds to the leave-one-out cross-validation (LOOCV) scheme.

3.2.4. Model Testing

Inside model testing (∼20% of the entire data set), we made use of a leave-one-out
cross-validation (LOOCV) [156,157]. This is meant to improve the prediction skill as always
all other folds, except for the current single test fold, were used for model training as part
of a recurrent 97%/3% split with respect to the entire data set (Figure 2). Hence, seven
LOOCV runs were executed to test, each time, one year (at this point the independent
year) of the overall seven independent test years. This independent test set (Test 7 in
Figure 2) comprises the years 1985, 1991, 1997, 2004, 2010, 2017, and 2022. The years were
chosen at roughly similar intervals across the entire temporal domain to ensure a balanced
distribution of folds over time while maintaining the class balance of the entire data set.

While independent model testing uses ∼20% of the data (seven test years), we aimed
to understand the year-wise model performance from 1984 to 2022. Hence, we reintroduced
the folds used for model validation to model testing as part of a dependent test set. Here,
the training data (∼80%, 30 additional years) were reused from model validation in the
scope of the overall LOOCV (Test 30 in Figure 2). The year-wise information on metrics
additionally benefits model understanding, as the target data exhibits skewed fold-wise
class distributions that affect fold-wise model performance. Although the reintroduction
enables the calculation of feature importance and partial dependencies for all folds, we
abstained from such analysis due to small year-wise sample sizes. The reintroduction of
the years used for model validation inherits the predisposition that these folds have been
part of the hyperparameter tuning. Therefore, the metrics for the folds of the dependent
test set might be inflated as the hyperparameters were adjusted to exactly this set (model
validation set).

As we did not want to exclude fold estimation for the initial training set, we used
LOOCV instead of nested CV [158], which is more commonly used for time series. The met-
rics for some salt pans may also be heightened due to a large target autocorrelation as we
apply an LOOCV scheme [158], although the effect is expected to be minimal due to the
random characteristics (sample bagging) of the RF algorithm [72].

The estimations within the LOOCV scheme were carried out in the scope of 30 runs
per main model. These repetitions aim to address the stochastic variability (randomness
within the sampling and selection of features) of the RF approach [72]. The results of the
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LOOCV were divided into training and test scores for the four model setups and two test
sets (independent test set and dependent test set) and averaged over all runs. We calculated
the standard deviation (SD) for model variability quantification but did not include it in
the results, as it was generally low (max. SD of the Matthews correlation coefficient (MCC;
Section 3.2.6) of 0.02 for the dependent test set (model GROUNDWATER); max. SD of the
MCC of 0.03 for the independent test set (model RANDOM)).

For more insight, we calculated the average fold-wise LOOCV performance over all
30 model runs for the three main models (not the RANDOM model; Section 4.2.2). This
provides information on the development of the test metrics over time. Additionally,
random model realizations for the three main models were chosen to gain an in-depth
understanding of model test set behavior (Section 4.2.3). This allows for studying the
salt pan-wise inundation prediction, meaning the outcome as true positive (TP), false
positive (FP), true negative (TN), and false negative (FN), for every year. The results for the
RANDOM model were based on 200 repetitions to account for the random nature.

3.2.5. Model Validation

For model validation, hyperparameter tuning was applied using GridSearchCV [159].
The final hyperparameters used for the three models can be seen in Table 2. We used
the hyperparameters from the COMBINED model for the calculation of the RANDOM
model, as they offer the most robust solution against overfitting due to the larger number
of features compared to the GROUNDWATER model and METEOROLOGY model.

Table 2. Hyperparameters chosen for the three model setups: GROUNDWATER, METEOROLOGY,
and COMBINED. The numbers in parentheses relate to the average test set and training set perfor-
mance given together with the standard deviation (SD; again, in parentheses). Furthermore, the entire
selection of tested parameters, as well as the default parameters as proposed by scikit-learn [152],
are indicated.

Hyperparameter
GROUNDWATER
(0.6 (0.15)/0.65 (0.03))

METEOROLOGY
(0.53 (0.12)/0.58 (0.02))

COMBINED
(0.58 (0.14)/0.65 (0.03))

Tested Range by
GridSearchCV

Default

n_estimators 40 40 40 40, 100, 300 100
max_feature log2 log2 all sqrt, log2, all sqrt
max_depth 2 4 2 1, 2, 3, 4 ultd.
min_samples_leaf 5 3 7 3, 5, 7, 9, 10 1
min_samples_split 10 17 10 6, 10, 13, 17 2
max_leaf_nodes 5 2 7 2, 3, 5, 7 ultd.

Throughout the parameter-tuning process, GridSearchCV was performed with a six-
fold stratified CV that uses an approx. 85%/15% split within the model validation set, as
described in Section 3.2.4. Hence, for each validation run, five years were introduced as the
actual validation set. The hyperparameter tuning was based on the definition of a range of
values deemed sensible by the literature [151]. Individual hyperparameters were varied
within the predefined range and compared with performance differences of the training and
validation sets. This gave a rough indication of and lever against overfitting. Subsequently,
a further, more restricted range of hyperparameters was declared that allowed for training–
test score differences of a maximum of 25%. Once more applying GridSearchCV, this range
of values (Table 2) was tested using the MCC as the indicator. This resulted in the final set
of hyperparameters also displayed in Table 2.

The hyperparameters were chosen using a different CV scheme and, hence, different
model splits compared to the LOOCV scheme of the main models. The results obtained in
the scope of the hyperparameter tuning were slightly worse compared to the test scores.
In combination with the removal of the seven test folds, independent model testing is
ensured, as hyperparameters adjusted to a certain split are prevented. The hyperparameters
for all models (Table 2) are less complex compared to the default scikit-learn ones that are
designed to fit a maximum of use cases [160]. Generally, the decision trees have similar
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complexity between the models. The exact number of trees (40, 100, or 300) is not essential
for model performance, as was verified both by varying the number of trees and by the CV
results provided by GridSearchCV.

3.2.6. Evaluation Metrics

Global confusion matrices with an MCC, F1-Score, and OA were calculated for the
training sets, test sets (Test 7 and Test 30), and validation sets as the main indicators of
the classification performance. Since we have a slight class imbalance, but both classes
are equally important, we performed macro-averaging to compute the F1-score to put
equal weight on both classes [161]. As the F1-Score does not consider TNs, and the overall
accuracy is vulnerable to a skewed class distribution [162], the main metric considered in
this study is the MCC. It is a robust metric regardless of class imbalances [163]. In the case
of the main models, the metrics, in addition to being averaged over the 30 model runs (200
for the RANDOM model), were either averaged over all folds and salt pans based on the
LOOCV scheme [156,157] or averaged over all salt pans for a single fold. To gain a salt
pan-wise understanding of the model performance, the metrics were averaged across all
years for the random model realizations described in Section 3.2.4 for the eight salt pans
that exhibit a balanced class distribution. It was not possible to include the results for many
of the salt pans due to the model’s tendency to predict a single class in the case of a highly
skewed class distribution per salt pan. We applied the formulation of the MCC used in
scikit-learn [152]:

MCC =
TN × TP − FN × FP√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

3.2.7. Feature Importance

For model interpretability, we calculated the feature importance by the mean decrease
in impurity (MDI, also Gini index) [164] and partial dependencies [165,166]. The results
for the MDI were averaged separately for each of the three main models over all CV folds
and model runs. Since the predictors used in this study are all time series that exhibit
high cardinality, the use of feature importance based on the MDI is justified [72,167,168].
Partial dependency plots (PDP) and individual conditional expectation (ICE) plots [165,166]
were calculated for each salt pan individually using the training set for the test fold 1984,
as this includes the most recent information. We interpret the PDP or ICE curve as the
probability of predicting ’inundated’ or ’desiccated’ given different predictor values, as can
be performed for a binary classification [169]. The PDP and ICE plots were based on
the COMBINED model’s run, which is also displayed in Section 4.2.3. Salt pans with
an especially large partial dependency, spread with regard for the respective predictor,
were manually chosen and visualized, in addition to the PDP, by the ICE plots [166].
The spread was calculated by subtracting the minimum partial dependence value from
the maximum partial dependence value for each salt pan and predictor combination.
For Heidlacke, Hottergrube, and Gsigsee, no partial dependencies could be calculated as
only the state ’desiccated’ is present. Both algorithms are based on the respective scikit-learn
packages [152].

4. Results
4.1. Salt Pan Mapping

For most validation dates, moderate to high accuracy and kappa values could be
achieved (Table 3). The WE tends to be underestimated, and reference samples along the
edges of the WE are often not contained in the Landsat-derived WE.

A total of 60% of the complete inundation state data set (754 combinations of years and
salt pans) are classified as ‘desiccated’, and 40% (504 events) are classified as ‘inundated’
(Figure 3a). For individual salt pans, the class distribution is highly heterogeneous, with a
class imbalance of up to 100% in the case of Hottergrube, Heidlacke, and Gsigsee. For some
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salt pans, e.g., Lange Lacke, Unterer Stinkersee, or Herrnsee, extensive years of drought
are needed to force drying. Unterer Stinkersee (type: ‘naturally perennial’) falls dry less
frequently compared to Lange Lacke (type: ‘periodically filled’). Salt pans that regularly
fall dry are, e.g., Hochstätten, Fuchslochlacke 1 and 2, Huldenlacke, or Oberer Stinkersee.
For Darscholacke, Zicksee, Kiesgrube, and Badesee Apetlon (type: ‘artificially perennial’),
an inundated state can be observed for nearly all years. Numerous salt pans fell dry
six years in a row from 2016 to 2022, the longest (nearly common) desiccation period
since 1984. In many cases, the year-wise distribution is similarly skewed as in recent
years. The ‘inundated’ state commonly occurs clustered in time and over multiple pans.
For example, the three periods in (and around) the years 1987, 1997, 2010, and 2015 are
dominated by the state ‘inundated’, while around the years 1984, 1992, 2003, and 2007,
and all years since 2016, the class ‘desiccated’ prevails.

Figure 3. (a) Binary classification into ‘desiccated’ state (light grey) and ‘inundated’ state (dark blue) for
each salt pan and for each year. The years 2002 and 2012 are missing due to data gaps. (b) First month of
each year in which the salt pans desiccate. Only months between April and October are shown.
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Table 3. True positive ratio (TPR), overall accuracy (OA), and kappa values derived from confusion
matrices between Landsat-based water maps and reference data based on Sentinel-2.

Date Landsat Date Reference TPR OA Kappa

28 May 2017 28 May 2017 0.90 0.95 0.90
29 April 2018 28 April 2018 0.50 0.75 0.50
12 June 2019 12 June 2019 0.53 0.81 0.58
8 August 2020 8 August 2020 0.88 0.94 0.88
9 September 2020 9 September 2020 0.86 0.93 0.86
22 July 2022 21 July 2022 0.82 0.91 0.82
17 October 2022 17 October 2022 0.61 0.81 0.62

As Figure 3b shows, in some years, (early) desiccation is prevalent; for others, inunda-
tion is present throughout the year (assuming the presence of water in winter). Since 2016,
desiccation occurs earlier in the year compared to earlier periods. A total of 41 desiccation
events outside the JASO period can be found when the ‘inundated’ state is prevalent.

4.2. Inundation State Prediction
4.2.1. Exploratory Data Analysis

We detected no trend over the study period for five features (GW Anom., GW lvl.
ratio, SGI, P Anom., and SPI 6) and an increasing trend for the other four features (T
Anom., Number of days above 25 ° C, E Anom., and SPI 24). As expected, the features that
are connected to an increase in WE, e.g., groundwater and precipitation anomalies, have
positive correlations with each other (Figure 4). The same applies to the features that are
assumed to be connected to a decrease in WE, i.e., temperature, evaporation, and number
of days above 25 ° C. Consequently, correlations between predictors associated with water
gain and water loss, respectively, are negative. The relationships between features that
build on integration periods other than 12 months (e.g., SPI 6) are less clear.

The histograms in Figure 4 suggest a better separability between the desiccation and
inundation states for Lange Lacke (a) compared to Unterer Stinkersee (b). This is indeed
confirmed by the inundation state classes in the scatter plots, which show more distinct
clusters in the case of Lange Lacke. The plots suggest that groundwater-based features,
especially SGI, are the most promising predictors for desiccation forecasting. They also
reveal that no two-dimensional predictor combination can lead to perfect class separability
on its own and that multiple features should be included in the models.

4.2.2. Average Prediction Skill

On average over all 37 folds provided by the LOOCV and 30 model runs, the three
models have moderate skill with an MCC of approximately 0.6 (GROUNDWATER: 0.6,
METEOROLOGY: 0.59, COMBINED: 0.6). For the independent test sets (seven test folds),
a 0.24 performance increase with respect to the RANDOM model is obtained on average
for the three models. Generally, the test metrics as averaged over all folds (described above)
and the dependent folds (Table 4) confirm the abilities of GROUNDWATER in modeling
the inundation state. The independent test set performance metrics of METEOROLOGY
exceed those of GROUNDWATER. The COMBINED model does not show any increase
in performance with respect to METEOROLOGY or GROUNDWATER. Averaged over
all independent test folds and 30 model runs together, the MCC of METEOROLOGY is
0.09 (0.07) higher than that of COMBINED (GROUNDWATER).
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Figure 4. Histograms and scatterplots for Lange Lacke (a) and Unterer Stinkersee (b) for all nine
predictors with coloring in the respective classes. Correlation coefficients (Pearson’s r and Spearman’s
ρ) are additionally displayed on blue background.

Differences between the confusion matrices, as averaged over 30 model runs, are
minimal between the three models (below 1% in regard to the entire sample; Figure 5).
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All three models struggle more with the correct estimation of state ‘inundated’ compared
to ‘desiccated’ (relation of FPs and FNs to the total number of state ‘inundated’ and
‘desiccated’, respectively). GROUNDWATER exhibits more skill in the classification of TNs
(a surplus of nine TNs) compared to the METEOROLOGY model. COMBINED manages to
achieve a surplus of one TP and nine TNs compared to METEOROLOGY. As discussed
in Section 4.2.1, large salt pan inundation state variability results in extensive year-wise
heterogeneity in the class distribution and model performance. As indicated by Figure 5,
the performance between the folds is heterogeneous. The models perform better, and with
less variability in terms of the MCC, for the independent test folds (GW 7, METEO 7,
and COM 7) compared to the 30 dependent test folds (GW 30, METEO 30, and COM
30). Outliers excluded, the tested folds exhibit a pronounced dynamic over the years.
Beginning in 2004, the estimates tend to improve. Here, the MCC does not fall below 0.5,
neither for the seven test folds nor for the additional 30 test folds. In the years 2006 and
2007, the GROUNDWATER model performed much better for the 30 dependent test folds
compared to the other two models. A very different picture is observed pre-2004: all three
models struggle to achieve scores from above 0.5 to 0.6. Especially 1992 presents itself as
challenging for the RF models.

All GW 7, METEO 7, and COM 7 (Figure 5) perform better compared to GW 30,
METEO 30, and COM 30. With this in mind, the difference in metrics between the two sets,
as displayed in Table 4 can be integrated more clearly.

Table 4. Average performance of different model setups inside LOOCV scheme separated for
testing the seven independent test folds (1985, 1991, 1997, 2004, 2010, 2017, and 2022), and the
thirty dependent test folds that have already been part of the validation set. Results are averaged
over 30 model runs. As the SD was, in all cases, below 0.03, we disregarded this information for
each metric.

Model/Score
GROUND-
WATER
7

METEO-
ROLOGY
7

COMB-
INED
7

RAN-
DOM
7

GROUND-
WATER
30

METEO-
ROLOGY
30

COMB-
INED
30

MCC-Test 0.59 0.66 0.57 0.36 0.61 0.57 0.61
MCC-Train 0.68 0.66 0.68 0.56 0.68 0.66 0.68
F1-Macro Test 0.79 0.83 0.78 0.68 0.80 0.79 0.81
F1-Macro Train 0.84 0.83 0.84 0.78 0.84 0.83 0.84
Accuracy Test 0.80 0.83 0.79 0.7 0.81 0.80 0.82
Accuracy Train 0.85 0.83 0.85 0.79 0.85 0.84 0.85

Figure 5. Fold-wise average Matthews correlation coefficient (MCC) over 30 model run for every
model (GW—GROUNDWATER, METEO—METEOROLOGY, COM—COMBINED) and split. The av-
eraged confusion matrices over 30 models run for all 37 folds are additionally displayed for all three
models. The folds from independent test set are marked with (T).



Remote Sens. 2023, 15, 4659 18 of 32

4.2.3. Detailed Analysis of Single LOOCV Model Runs

All three models successfully predict the diverse interannual dynamics of the inunda-
tion state per salt pan (Figure 6). TPs and TNs are numerous, especially in the years with
average conditions. Overall, an accurate estimation in times of pronounced dry and es-
pecially wet periods appears more challenging. For instance, the models lack adequate
prediction for the dry periods in 1986, 1992, 2003, 2007, 2011, and 2016, as well as for the
wet periods in 1987 and around 1996 (1997), 2010, and 2015.

Figure 6. Confusion matrix outcomes for all years (part of this study) from 1984 to 2022 for the
three main models based on the results for the dependent and independent test sets. For each salt
pan (3 rows), the top-most row represents the GROUNDWATER model, the middle row represents
the METEOROLOGY model, and the last row represents the COMBINED model. The underlying
confusion matrix is rolled out for all 34 salt pans as a function of time. Again, the folds from the
independent test set are marked with (T).

For 18 salt pans with a dominant state, the events are correctly predicted in favor of
the majority class (a co-occurrence of light blue and dark red and of light red and dark
blue, respectively, in Figure 6). In these cases, the estimates between the three main models
(i.e., GROUNDWATER, METEOROLOGY, and COMBINED) do not differ, e.g., Badesee
Apetlon. Differences between the models exist for 16 salt pans but are only marginal
for Standlacke, Ochsenbrunnlacke, Wörtenlacken 1, Sechsmahdlacke, Fuchslochlacke 1,
Herrnsee, Birnbaumlacke, and Albersee. The eight cases with varying results between
the models are Zicklacke, Katschitzlacke, Fuchslochlacke 3, Oberer Stinkersee, Mittlerer
Stinkersee, Wörtenlacken 2, Neubruchlacke, and Lange Lacke. These salt pans feature a
more balanced underlying class distribution with varying class succession. Here, the mod-
els demonstrate their flexibility, i.e., the ability to estimate different states for subsequent
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years. When there is a shift from periods of ’inundated’ to ’desiccated’, or vice-versa,
the models do not correctly predict wet and dry states for many salt pans. For instance,
correct estimates for wet conditions in 1994 and for dry conditions in 2016 emerge one
year later after a dry period (around 1993) or wet period (around 2015) (Figure 6). The
strength of model GROUNDWATER lies in its ability to more precisely identify wet, and,
in particular, dry episodes compared to model METEOROLOGY (the identification can be
salt pan-specific). Examples here include Lange Lacke and Wörtenlacken 2 around 1991
and Neubruchlacke, Katschitzlacke, and Zicklacke after 2004. The METEOROLOGY model
struggles to achieve this, often failing to correctly estimate for a number of years in a row
(e.g., Neubruchlacke around 2006 and Zicklacke around 2014). However, for many salt
pans, the model performed better in 1986 and 1988. In a number of additional instances,
the METEOROLOGY model manages to outperform the other two. This translates into
the correct estimation of single anomalous events before and after extremely wet or dry
conditions. Examples include Ochsenbrunnlacke, Mittlerer Stinkersee, Fuchslochlacke
1, Fuchslochlacke 3, and Katschitzlacke in 2016 (as outcome TP) or Lange Lacke and
Wörtenlacken 2 in 1994 (as outcome TN). The COMBINED model performs similarly to the
GROUNDWATER model, though it surpasses its performance in a few cases (e.g., Mittlerer
Stinkersee in 1999 and 2000). In these cases, the model is able to integrate meteorological
and groundwater-based information in a productive manner.

The MCCs for the eight salt pans that exhibit a more balanced class distribution differ
between the three models and between the salt pans (Table 5). On average, the GROUND-
WATER model performs best with a moderate MCC of 0.44 and the METEOROLOGY
model performs the worst (0.29). The COMBINED model attains an MCC of 0.37. For Fuch-
slochlacke 3 and Mittlerer Stinkersee, the METEOROLOGY model performs better than the
GROUNDWATER and COMBINED models, whereas the opposite is true for the other six
salt pans. Compared to the overall model performance of 0.6, the models perform worse
for these eight salt pans with an average MCC of 0.37.

Table 5. Salt pan-wise MCC (as averaged over all folds) for the three single model realizations
(GW–GROUNDWATER, METEO–METEOROLOGY, COM–COMBINED) displayed in Figure 6 for
the eight salt pans that exhibit a balanced class distribution.

Average
MCC

Zicklacke
Katschitz-
Lacke

Fuchsloch-
Lacke 3

Oberer
Stinkersee

Mittlerer
Stinkersee

Wörten-
Lacken 2

Neubruch-
Lacke

Lange
Lacke

Mean

Model GW 0.46 0.51 0.13 0.5 0.15 0.6 0.57 0.6 0.44
Model
METEO

0.2 0.34 0.37 0.51 0.49 0.13 0.19 0.11 0.29

Model COM 0.46 0.35 0.15 0.4 0.28 0.44 0.4 0.44 0.37

4.2.4. Feature Importance

In the GROUNDWATER model, GW anomalies and the SGI have comparable im-
portance (around 0.35, respectively) while this is lower for the GW level ratio (Figure 7).
In the METEOROLOGY model, SPI 6 has little importance while the predictors derived
from temperature have highest importance. SPI 24, although substantially correlated with
GW anomalies and the SGI (r = 0.64, r = 0.53, respectively; Section 4.2.1), which are
important in the GROUNDWATER model, has a lower importance than the temperature
predictors. These observations are in contrast with COMBINED, where the SGI has the
highest importance by far. With a mean importance of 0.47, it is much larger than the other
predictors, most of which lie at a maximum of ∼0.05. Only groundwater and temperature
anomalies have an importance >∼0.05.
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Figure 7. Feature importance calculated as average across all folds and 30 model runs for the three
main models.

4.2.5. Partial Dependency

The potential significance of groundwater-based predictors to estimate the inundation
state of Lange Lacke (Section 4.2.1) translates into a pronounced evolution of partial
dependency against the SGI (Figure 8, steel-gray dashed) in the COMBINED model (also
for Wörtenlacken 2). SPI 24 has a comparable impact on Unterer Stinkersee (light blue
dash-dotted), although to a lesser extent. It is striking that the other predictors do not, or
only slightly, affect the prediction skills in both cases. Statistically, when involving the
entire population of 34 salt pans, the variability in the inundation states of nine salt pans
can be explained mainly by meteorological predictors, whereas, in 22 cases, groundwater-
based features perform best (Table A1, Appendix A). In some cases, there is only little
variability of the partial dependency when plotted against any of the predictors. This is
also indicated by Table A1, though it is not further regarded here due to compactness. We
find that, except for the Epot and SPI 6, every predictor exhibits a strong interaction with
the dynamics of at least one salt pan (Table A1; Figure 8 in dotted red). Groundwater-based
features exhibit more pronounced curves that span a wider partial dependency range
compared to the other predictors.

In general, the partial dependencies agree with the underlying physical process.
For instance, higher temperature anomalies (Kirchsee) or the number of days above 25 °C
(Katschitzlacke) contribute to a prediction probability in favor of the ‘desiccated’ inundation
state. This rule is not true for all salt pans, although this dependence commonly applies.
The PDP reveals all important probability thresholds for inundation state prediction. For ex-
ample, at SGI = 0, the class attribution probability switches from the ‘desiccated’ state
to the ‘inundated’ state for Lange Lacke. At around 60 days above 25 °C in the previous
12 months, the estimates change from ‘inundated’ to ‘desiccated’ for Katschitzlacke. Similar
inferences for nearly all salt pans can be made. These are summarized in Appendix A.
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Figure 8. The Partial Dependency Plots (PDP) are displayed for each predictor inside the COMBINED
model for three selected salt pans: Lange Lacke, Unterer Stinkersee, and, additionally, a salt pan
with a pronounced partial dependency dynamic against the respective predictor. For these salt pans,
the individual conditional expectation (ICE) plots are also included in red with reduced line width.

5. Discussion
5.1. Assumptions

The modeling framework has been built on several assumptions. First, the targets
(i.e., inundation dynamics for different salt pans) are correlated. Second, the accumulation
periods (particularly, the dominant 12-month period) hold explanatory power in regard to
the inundation state in summer. Third, the salt pans are in an environmental condition that
is good enough to allow them to react to the natural drivers applied in this study. In other
words, the salt pans need to be at least sufficiently well connected to the salt pan cycle to
respond to the groundwater-based and meteorological predictors. Fourth, we assume that
the climatology always leads to the prediction of a drying from spring toward summer.
Hence, the models cannot predict the ’inundated’ state based on dry conditions in spring.
This is unless the salt pan-wise class distribution is skewed towards the ’inundated’ state,
causing the models to always predict the ’inundated’ state (outcome TN). In other words,
if the situation during the lead time deviates much from the climatology, the models will
not capture many of the effects on the salt pan inundation state. This is a disadvantage in
years when drivers strongly change and may lead to misclassifications.

In total, desiccation in spring (in April to June; here used as a proxy for dry conditions)
in combination with the ’inundated’ state in JASO occurred for 41 events (Figure 3a) and
resulted in 20 TNs and 21 FPs for the GROUNDWATER model. The year 2008 accumulated
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a notable number of fourteen FP outcomes. This circumstance also reveals that not all
annual desiccation events were captured. Taking into account the desiccation events
from the beginning of April to the end of October would result in a class distribution
of 63%/ 37%.

5.2. Predictors

The results of the EDA (only for Lange Lacke; Figure 4a), feature importance (Figure 7),
and calculation of partial dependencies (Figure 8) support the assumption of a close
connection between salt pans and groundwater [14,21]. We suspect that the rather long
time steps of the model and the respective long-term predictor setup support the forcing
of the slow-reacting features evolving around groundwater as a key predictor. It is to be
determined whether the high importance of groundwater is actually due to the contribution
of groundwater to salt pan water status directly or more generally to water abundance,
i.e., drought conditions, in the region. The outstandingly high feature importance of SGI
is presumptively connected to its continuous nature, rather than relying on artificially
thresholded integration periods [115].

Still, the METEOROLOGY model achieved similar scores compared to the GROUND-
WATER model. Both were able to capture many of the interannual differences in the
inundation state. We managed to find meteorological predictors that are of importance
for spring salt pan water abundance, which is essential for the salt pan inundation state
in JASO. The importance of meteorological predictors could stem from their temporal
autocorrelation from one year to the next [170,171]. For the meteorological predictors, a
single (or more) not included month(s) from the previous year could make a change in
spring water abundance.

We find that, other than the continuous SGI, time periods of 12 months or more
work best for predicting salt pan inundation state. Such predictors exhibited large feature
importance within their model setups. It is up to further research to determine whether the
12-monthly anomaly mean is the most appropriate integration period. This argument is
particularly relevant as shifting climate patterns influence groundwater recharge. The SPI
6 and the GW level ratio relate to a similar time period (6 months). This period does not
seem to be particularly relevant, as both predictors were comparatively insignificant in all
three models (also when disregarding the SGI). Temperature-based predictors were most
important in the METEOROLOGY model despite exhibiting low correlations with the SGI.

For some combinations of salt pans and predictors, the PDP (Figure 8) exhibited sig-
moid curves with a wide spread. The PDPs for Lange Lacke and Unterer Stinkersee showed
a clear progression against the SGI and SPI 24, respectively. The SPI 24 is closely related to
groundwater drought as suggested in the literature [125] and by the correlation analysis
(rSPI24,SGI = 0.53 and ρSPI24,SGI = 0.55; Section 4.2.1). Therefore, our results can confirm
the observation made by ref. [14] that both salt pans are closely connected to groundwater.
This is even more true for Wörtenlacken 2, which is reported to have an atypically strong
connection to groundwater, even greater than that of Lange Lacke [14]. Similar inferences
can be made for all other salt pans (Appendix A). Additionally, the probability thresh-
olds for the SGI were similar in the case of Lange Lacke and Wörtenlacken 2 (Figure 8).
However, such an analysis is prone to misinterpretations as partial dependency behavior
can vary depending on the model setup and the underlying training data. For example,
the hydrology of Katschitzlacke is reportedly similar to Lange Lacke [14], whereas our
results indicate a closer connection to the predictor number of days above 25 °C.

A drawback associated with the input data is their low spatial resolution. The ar-
gument is particularly valid for P anomalies, since groundwater level, Epot anomalies,
and T anomalies vary less in space and time [172,173]. Here, future models could improve
the (spatial) representation of precipitation. An understanding of the inundation state
in JASO would require seasonal forecasts of hydrological and meteorological variables.
Meteorological predictors that focus on depicting changing precipitation, evaporation,
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and temperature patterns in the region due to climate change should additionally prove
beneficial [24].

Features evolving due to the human impact on the ecosystem, such as the (e.g.,
monthly) amount of groundwater extraction from wells and discharge into drainage canals,
were not used, as, to our knowledge, no such information is available in the region. How-
ever, the use of this information could potentially enhance the knowledge to be gained
from the models, especially if such information was available at the subregional scale or for
each salt pan.

5.3. Target

Our results confirm that the EO-based inundation state is a useful target variable for
ML-based modeling. Data from the Landsat mission has been shown to form a useful basis
for quantifying interannual dynamics in surface water dynamics [39,54,174]. Although in
some years, the impact of cloud cover was high, the summer/fall inundation status could
be retrieved for all salt pans over the entire study period except for the years 2002 and
2012. The variation in this target variable roughly showed similar dynamics to some of
the variables considered in other studies on a larger area, e.g., SPEI3 [103] or long-term
precipitation [102]. The year 2015 represents an exception, as it is referred to as drought
year in ref. [103] but appears rather wet in our analysis. This might be because of the rather
wet conditions in fall-winter 2014, which is also visible in ref. [103].

Uncertainties in the salt pan time series are expected to be larger for smaller salt pans,
which have a larger relative proportion of mixed pixels with bordering land (Section 4.1).
However, this argument turns out to be secondary since the accuracy of the model target
is dependent on the exact recognition of desiccation and not on the precise sensing of the
true WE. Higher resolution remote sensing products, such as Sentinel-2 imagery, could
reduce the error connected to spotting desiccation inside the ’last’ pixels. Such data would
need to be used in combination with, e.g., the Landsat archive, to build the models on
extensive time series. In addition to using satellite data with higher resolutions, we propose
the use of alternative target variables to avoid the skewed salt pan-wise (and year-wise)
class imbalances. The time of the first desiccation (Figure 3) would constitute an interesting
target variable [14,21].

5.4. Model Error

Although in this study we were able to predict the salt pan inundation state in
Seewinkel with only moderate accuracy, the average performance of the three independent
test sets indicates a gain of 0.24 compared to the RANDOM model. We regard the average
score between the models of 0.6 as acceptable only insofar as the assumed reasons for
the observed model error are numerous and, depending on the salt pan and year, heavy-
weighing. Therefore, the model error can be, approximately, explained. Increasing the
model performance based on the issues described, in detail, below is largely limited by data
uncertainty and data availability. The failure of the model to make correct predictions if
the meteorological conditions deviate much from the climatology, the artificial inundation,
and the uncertain hydrological condition, meaning surface water possibly infiltrating into
deeper layers, explain the results and provide starting points for future improvements to
the model. In general, we consider the model setup performant and stable.

Many years exhibit highly skewed class distributions, especially since 2016. This
influences the metrics since different years are connected to varying degrees of difficulty in
correct estimation. The total skill of the three models is very similar. The indirect setup of
the model, which means the prediction of the inundation state in summer via the water
balance at the end of March, can be considered a major contributor to this outcome. Salt
pans with a more balanced class distribution are more challenging to correctly estimate
for the three models (Table 5). On average, the GROUNDWATER model performed best
in predicting these eight salt pans (Zicklacke, Katschitzlacke, Fuchslochlacke 3, Oberer
Stinkersee, Mittlerer Stinkersee, Wörtenlacken 2, Neubruchlacke, and Lange Lacke), al-
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though interpreting these results proved difficult due to the widely varying hydrological
conditions of the salt pans [14]. Section 4.2.2 stresses the importance of the underlying
physical conditions on the fold-wise performance. As already discussed in Section 5.1,
moderate success mainly lies in the struggle to estimate extreme dry, and, especially, wet
conditions in summer (e.g., drought around 1992, 2003, and 2016, and wet periods around
especially 1996 (1997) and 2010).

As stated in Section 4.2.3, estimates were worse for years in which the inundation
state shifted to the alternative state. The misclassifications are probably due to some salt
pans reacting faster to hydrometeorological changes than others. Hence, for some salt pans,
the environmental conditions of the previous months and year(s) have a stronger influence
on the prediction of the current year than for others. Furthermore, the misclassifications
may be partly due to the fact that the input features are coarse resolution (i.e., do not differ
between Lacken) and partly to the model trying to get a best fit over all the years.

Although we did not apply feature selection [112] to reduce the number of features
used in this study, we were able to inhibit overfitting in model testing. This was completed
by trimming the decision trees used in the four RF models in the scope of the hyperparame-
ter optimization. This built on our model design, which enables independent model testing
and, practically, on closely monitoring training–test differences throughout this study.

In addition to changing climate patterns, a process referred to as “drying from be-
neath” [20] challenges the water-holding capacity of the salt pans. Depending on the
ecological state of the salt pans, this mechanism can directly influence WE and, therefore,
the inundation state. We suppose that the worse the ecological health of the salt pan,
the higher the negative impact on model performance. However, it is not possible to
characterize this ecological state based on our models and using the available input data.
Due to the skewed class distribution, the assumption that our predictor selection works
better for more natural/ecologically healthy salt pans could not be answered inside this
model setup. The disregarded large human influence on the water cycle [21] constitutes an
additional source of error.

All models are subject to a division between the periods before and after 2004 (Figure 5).
This pattern cannot be found in the target variable (Figure 3). Additional research is needed
to clearly connect climate change and the phenomenon of “dying salt pans” to these
observations. As artificially inundated salt pans were introduced into the modeling, year-
wise estimates could additionally have been affected due to misguided thresholding.

5.5. Model Transferability

The model based on meteorological predictors can be transferred to any other salt
pan ecosystem worldwide in combination with the use of high-resolution remote sensing
imagery, such as that provided by Landsat. In general, globally available predictor data in
sufficient temporal and spatial resolution with respect to the studied ecosystem are needed,
at best in combination with uncertainty quantification. This can be ensured by choosing
an adequate spatial resolution of the predictors with regard to the catchment size. Here,
ERA5-Land offers a good starting point with its 9 km × 9 km spatial resolution. The EO
data should have a suitable temporal and spatial resolution to capture the dynamics of the
studied ecosystem. For example, it is not possible to retrieve the water extent information
of ecosystems of a smaller size than the Landsat resolution of 30 m × 30 m. Another
important constraint is that this approach will likely not be suitable in the case of water
bodies whose water extent shows a low sensitivity with respect to water volume, i.e., with
steep bathymetry in which a drop in the water level will not lead to a proportional decrease
in the water area.

6. Conclusions

As salt pans in Seewinkel are increasingly vulnerable ecosystems in often poor hydro-
logical conditions, we aimed at improving ecosystem understanding and, finally, decision-
making by predicting the salt pan inundation state in summer and fall with ML models.
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Our models stress the importance of groundwater for the estimation of the inundation
state in summer/fall. This solidifies the general notion represented in the literature [14,21]
and calls for sustainable groundwater management in the region to ensure the conservation
of this ecosystem. We stress that the use of the SGI [115] as a predictor is promising.
The model based on meteorological predictors can be transferred to any other salt pan
ecosystem worldwide in combination with the use of high-resolution remote sensing
imagery, such as the Landsat archive. METEOROLOGY achieved an MCC of 0.66 compared
to GROUNDWATER with 0.59 and COMBINED with 0.57, with respect to the independent
test set. We identified the most likely sources of error, namely the struggle to estimate the
inundation state correctly in the case of extreme environmental conditions developing after
March, human intervention into the water cycle by artificially inundating the salt pans, and
surface water loss due to the possible infiltration into deeper layers due to a failure of the
water retention capacity [20]. Furthermore, we highlight the potential of the concept of
partial dependency [166] to understand threshold-dependent ecosystems, such as salt pans
in the Seewinkel region.

To our knowledge, the results represent the first data-driven prediction and under-
standing of salt pan dynamics in the Seewinkel region. We identified the main drivers and
potential improvements for future model development. In this context, the use of more
advanced ML algorithms could prove beneficial.

Furthermore, the possibility of transferring the METEOROLOGY model to other salt
pan ecosystems in combination with EO data makes this study particularly valuable. We
propose the application of our models to salt pans of larger sizes and ones that are less
influenced by humans and in a better ecological condition. This could improve both
performance and interpretability.

The possibility of predicting the salt pan inundation state in summer/fall is of po-
tential importance to decision-makers in conservation and tourism [14,17]. A better un-
derstanding of salt pans can contribute to preserving this unique geographic space in the
Pannonian Basin.
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Appendix A

Table A1. Most important predictors for each salt pan according to PDP displayed together with the
largest spread (in parentheses). Furthermore, the threshold for predicting a certain class for the most
important predictor is indicated.

Predictor with Largest PDP Spread Threshold for Predictor

Badesee Apetlon GW Anomal (0.18) −0.09
Lange Lacke SGI (0.51) −0.09
Neubruchlacke GW Anomal (0.43) 0.1
Kiesgrube GW Anomal (0.12) −0.12
Standlacke GW Anomal (0.25) 0.14
Ochsenbrunnlacke GW Anomal (0.25) 0.1
Gsigsee GW Anomal (0.0) −0.45
Wörtenlacken 2 SGI (0.61) −0.03
Kirchsee T Anomal (0.21) −0.62
Wörtenlacken 1 GW Anomal (0.49) −0.09
Mittlerer Stinkersee SPI 24 (0.28) 0.09
Huldenlacke T Anomal (0.13) −0.2
Kleine Neubruchlacke SPI 24 (0.21) 0.29
Heidlacke GW Anomal (0.0) −0.45
Unterer Stinkersee SPI 24 (0.17) −0.41
Sechsmahdlacke GW Anomal (0.2) 0.14
Martenhofenlacke SGI (0.22) 0.09
Oberer Stinkersee SPI 24 (0.55) 0.29
Kuhbrunnlacke GW Anomal (0.08) 0.1
Hottergrube GW Anomal (0.0) −0.45
Fuchslochlacke 3 SGI (0.32) 0.09
St. Martins Therme 2 SPI 24 (0.23) −0.47
Fuchslochlacke 2 SGI (0.12) 0.09
St. Martins Therme 1 GW level ratio (0.15) 1.0
Fuchslochlacke 1 GW Anomal (0.31) 0.16
Hochstätten P Anomal (0.16) 42.27
Herrnsee SGI (0.33) −0.03
Birnbaumlacke SPI 24 (0.17) 0.73
Katschitzlacke # Days ab. 25 °C (0.33) 64.0
Albersee GW Anomal (0.21) 0.14
unbekannt GW Anomal (0.08) 0.06
Zicksee GW level ratio (0.09 ) 1.0
Darscholacke GW Anomal (0.12) −0.13
Zicklacke SGI (0.59) −0.03
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