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Kurzfassung

In dieser Arbeit präsentieren wir eine universelle Methode zur Approximation von ellip-
tischen und zeitabhängigen fraktionalen partiellen Differentialgleichungen. Ausgehend von
einer finiten Elemente Diskretisierung wird der gewünschte Differentialoperator durch eine
Matrix-Approximation L ersetzt. Dies erlaubt es uns, die diskrete Lösung als Matrix-Vektor
Produkt der Form fτ (L)b zu interpretieren, wobei b ein Vektor und fτ eine parameterab-
hängige Funktion ist, wie z.B. die Potenzfunktion oder die Mittag-Leffler Funktion. Um den
Rechenaufwand zu reduzieren, wird eine zusätzliche Approximationsebene in der Form einer
rationalen Krylov Methode etabliert. Letztere projeziert die Matrix auf einen Unterraum
von niedriger Dimension, der es erlaubt, das zugehörige Eigensystem direkt zu berechnen.
Die Wahl des Unterraums hängt von einer Reihe unterschiedlicher Parameter ab, den soge-
nannten Polen. Ausgehend von dem dritten Zolotarëv Problem präsentieren wir ein breites
Spektrum attraktiver Pol-Konfigurationen, die es erlauben, die Abbildung τ 4→ fτ (L)b für
mehrfache Instanzen des Parameters gleichzeitig zu evaluieren. Wir beweisen exponentielle
Konvergenz und stellen ein Fehlerzertifikat zur Qualitätssicherung zahlreicher Approxima-
tionen bereit, für die keine analytischen Ergebnisse vorhanden sind. Das Herzstück dieser
Arbeit sind die sogenannten Zolotarëv Pole, die es ermöglichen, fτ (L)b gleichmäßig in τ
anzunähern, ohne dass die Approximation degeneriert, wenn beispielsweise die fraktionalen
Parameter gegen eine ganze Zahl konvergieren.
Wir stellen die präsentierten Methoden in Verbindung mit ausgewählten Algorithmen aus

der Literatur und zeigen, dass letztere als rationale Krylov Methoden interpretiert werden
können. Diese theoretischen Einblicke erlauben es, unsere Resultate für neue Konvergenzbe-
weise heranzuziehen. Sie suggerieren die Implementierung neuer und die Verbesserung
existenter Methoden und ermöglichen einen direkten Vergleich der Algorithmen. Unsere
analytischen Erkenntnisse werden mit numerischen Experimenten untermauert. Wir führen
einen systematischen Vergleich der erwähnten Methoden durch und präsentieren eine de-
taillierte Parameterstudie, die uns tiefe Einblicke in die Auswirkungen dieser Größen auf die
Approximationseigenschaften von Lösungen fraktionaler Differentialgleichungen gewährleis-
ten.



Abstract

In this thesis we present a unified framework to efficiently approximate solutions to fractional
diffusion problems of elliptic and parabolic type. After finite element discretization, we
take the point of view that the solution is obtained by a matrix-vector product of the form
fτ (L)b, where L is the discretization matrix of the spatial operator, b a prescribed vector,
and fτ a parametric function, such as a fractional power or the Mittag-Leffler function.
To alleviate the computational expenses, a model order reduction strategy in the form
of a rational Krylov method is applied which projects the matrix to a low-dimensional
space where a direct evaluation of the eigensystem is feasible. The particular choice of the
subspace depends on a collection of parameters, the so-called poles. On the basis of the
third Zolotarëv problem, we propose a variety of attractive pole selection strategies which
allow us to efficiently query the solution map τ 4→ fτ (L)b for multiple instances of the
parameter. We either prove exponential convergence rates or provide the description of a
computable error certificate to assess the quality of several poles where no analytical results
are available. At the core of our exposition are the so-called Zolotarëv poles, which allow
us to approximate fτ (L)b uniformly in the parameter τ and do not degenerate as e.g., the
fractional parameters approach an integer.
The proposed methods are set in correspondence with existing schemes from the fractional

diffusion community. In particular, we prove that a large class of model order reduction
strategies can be interpreted as rational Krylov method. These theoretical insights allow
us to leverage our analysis to develop new convergence proofs for several of the studied
schemes. They suggests how to design novel and improve available methods and allow for
a direct comparison of the algorithms. The analytical findings are confirmed by numerical
experiments, including a systematic comparison of the presented schemes and a parameter
study which provides deep insights in the effect of the fractional parameters.
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1 Introduction

Partial differential equations (PDEs) have been an outstanding tool in modern science to de-
scribe real-world phenomena across all engineering disciplines. Throughout the past twenty
years, however, practitioners have been facing experimental setups which seemingly elude
the reach of classical calculus. Standard PDEs lack the ability to adequately model nonlocal
effects, in which two points at finite distance can interact. Fractional partial differential
equations (FPDEs) have proven themselves as gateway to provide refined models which de-
scribe these physical processes more accurately. Their theoretical groundings as well as their
confirmation in scientific experiments have sparked a remarkable amount of recent investi-
gations, ranging from biomedicine [BOKG+14, YPK16, FKR+21, CGGG21] to image pro-
cessing [GO09, GH15, AB17, AR19], and material science [Bat06, GRN+17, SGF20, FZ20].
A paradigm of a nonlocal operator that shall serve us as prototype throughout this thesis
is the fractional Laplacian. On Rd, d ∈ N, there exist at least ten different approaches
to define (−Δ)s, s ∈ (0, 1), which are all known to be equivalent [Kwa17]. These equiva-
lences break down on bounded domains Ω ⊂ Rd as there are several mathematically distinct
ways to impose boundary conditions. Among these competing definitions of the fractional
Laplacian, we are interested in the one obtained by spectral expansion.
The nonlocal nature of this operator has immediate consequences on some basic questions,

such as the fractional Poisson problem:

(−Δ)su = f, in Ω,
u = 0, on ∂Ω,

(1.1)

where Ω is a bounded Lipschitz domain and f ∈ L2(Ω). Solutions to (1.1) for Ω = (0, 1)2

and f ≡ 1 are depicted in Figure 1.1 and can be seen as showcase for the challenges that
arise in the treatment of these problems.

– For small values of s, the fractional Laplacian (−Δ)s is close to the identity oper-
ator, whence u ≈ 1 in the interior of Ω. Towards the boundary the zero trace is
imposed, which forces u(x) to decrease rapidly as x → ∂Ω. This is the reason why
solutions to fractional diffusion problems exhibit limited regularity properties even if
the underlying domain is smooth.

– The fractional exponent can be seen as parameter which is used to adapt the math-
ematical model to the observed data [BOKG+14, SV16]. As such, the precise value
of s is typically unknown and needs to be determined experimentally in the course
of a fitting procedure. Instead of solving (1.1) for one instance of s, one is typically
interested in an approximation of the entire solution manifold {u(s) : s ∈ (0, 1)}. We
also refer to [AR19, ACR21] where the fractional parameter s = s(x) is a function
of a spatial variable which supports our point of view that s 4→ u(s) should be seen
multi-query problem.
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1 Introduction

– Due of their nonlocal interactions, discretized FPDE systems have significantly less
sparsity compared to discretized integer-order PDEs. Therefore, conventional local-
ization techniques may fail to efficiently approximate such problems.

Figure 1.1: Solution u to (1.1) for s = 0.2 (left), s = 0.5 (middle), and s = 0.8 (right) on
the unit square Ω = (0, 1)2 with f ≡ 1.

The interest in fractional diffusion operators does not end in the stationary regime
[SZB+18]. It has been observed in [BCdH08, FKR+21, FRW21] that the growth of tu-
mors exhibits certain memory effects, making the problem global in time. Such phenomena
can be modeled accurately using time-fractional differential operators. In combination with
the fractional Laplacian, this leads us to the fractional heat equation

∂αt u+ (−Δ)su = f, in Ω× (0, T ),
u = 0, on ∂Ω× (0, T ),
u = u0, on ∂Ω× {0},

(1.2)

where α ∈ (0, 1] is the fractional time exponent, ∂αt the so-called Caputo fractional derivative
of order α, T ∈ R+, f ∈ L∞(0, T ;L2(Ω)) a forcing term, and u0 ∈ L2(Ω) some initial data.
Adding to the difficulty of the nonlocal operator in space, the presence of ∂αt in (1.2) causes
long-range interactions that require additional memory to store the history. The latter
increases as T becomes large.
All these aspects need to be incorporated in the design of accurate, reliable, and yet com-

putationally affordable numerical schemes. The amount of research published on this matter
is vast and covers the treatment of elliptic problems [ILTA05, ILTA06, NOS15, BP15, Vab15,
MN18, HLM+18, BLP19b, HMP21, DS21, DH21, HKL+21b, HKL+21a, Vab21a, Vab21b],
space-fractional evolution equations [BLP17a, AM17, MR20b, Vab21c], time-fractional evo-
lution equations [Lub88, JLZ15, KW21, FRW21], and fully space-time fractional diffusion
problems [MN11, YTLI11, NOS16, BLP17b, Rie20, DHS21]. Needless to say, these refer-
ences do not exhaust the rich literature on the subject. One way or another, either of the
schemes listed above has to compensate for the nonlocality of the problem. Three classes
of methods that we mention here explicitly are the following.

1. A conceptually straightforward approach is the accurate but expensive discrete eigen-
function method (DEM) [LPG+20, Hof20, BP15, ILTA05, ILTA06, YTLI11] which

5



1 Introduction

relies on a matrix approximation L ∈ RN×N , N ∈ N, of the spatial integer-order
differential operator. The latter is used to interpret a discrete approximation of u
as matrix-vector product fτ (L)b, where fτ is a matrix function that depends on a
collection of parameters encoded in the vector τ ∈ Θ ⊂ Rp, p ∈ N, and b ∈ RN a
vector that comes from the given data. Typical examples include

– fτ (λ) = f s(λ) = λ−s with s ∈ Θ = (0, 1),
– fτ (λ) = e−tλs with τ = (t, s) ∈ Θ = R+ × (0, 1),
– fτ (λ) = Eα,β(−tαλs), τ = (α, β, t, s) ∈ Θ = {(α, β, t, s) ∈ (0, 1] × R+ × R+ ×
[0, 1] : β ≥ α}, where Eα,β denotes the generalized Mittag-Leffler function.

The matrix fτ (L) is typically dense and its evaluation requires the knowledge of the
entire eigensystem of L. Having cubic complexity in N , this approach is only feasible
if L is of moderate size.

2. Significantly more efficient are so-called quadrature schemes, which have been applied
in [BP15, BP16, BLP17a, BLP17b, BGZ20, Rie20, DAC+21, AN21, DZ21], see also
[DH21]. The idea is to rewrite fτ (L) via Cauchy’s formula as a contour integral over
a parametrized family of classical PDEs. The integral is discretized using a suitable
quadrature whose evaluation boils down to the computation of multiple local prob-
lems which can be tackled using standard tools for elliptic PDEs. If fτ (λ) = λ−s, the
contour can be chosen as the negative real line, in which case the integral representa-
tion is known as Balakrishnan’s formula [Bal60]. For time-dependent problems, one
typically resorts to complex contours which in turn necessitates solutions to complex-
valued problems, even if L and b are real.

3. The third and final approach we mention here is based on the harmonic extension
technique developed in [CS07, ST10, CT10, CDDS11, BCdPS13]. The fractional
differential equation is reinterpreted as local degenerate integer-order PDE on the
semi-infinite cylinder CΩ := Ω × R+. A natural approach consists of a d + 1 di-
mensional finite element method which takes advantage of the solution’s rapid decay
in the artificial direction, justifying truncation to a bounded domain of moderate
size [NOS15, NOS16, BMN+18, BMS20, MR20b]; see also [AG18, ACN19]. Solu-
tions to fractional diffusion problems can therefore be made available by resorting
to well-known discretization methods for d + 1-dimensional degenerate integer-order
problems.

Each of the schemes mentioned above yields accurate approximations to solutions of frac-
tional diffusion problems. Unfortunately, however, the computational effort of each single
solve depends on the problem size N . Hence, their implementation is unfeasible if one
is interested in computing solutions for multiple instances of the parameters. A rem-
edy to this problem are model order reduction strategies [QR14], in short MOR strate-
gies. The idea is to add an additional layer of approximation to reduce the computa-
tional costs by a significant margin while keeping the discretization error to a tolerable
level. The efficiency of such methods is gained by the so-called offline-online decomposi-
tion of the computational routine. In the offline stage, one precomputes several potentially
costly auxiliary quantities which are independent of the parameters. These preparations
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allow for rapid simulations of varying τ in the online stage. Reduced order models of
this form have been successfully applied to many different branches of computational sci-
ence, such as fluid dynamics [QR07, SR18, HSMR20, KNBR21], fluid-structure interaction
[LQR12, NBR21], optimal control problems [NRMQ13, SBMR18, ZBF+20], and shape opti-
mization [QR03, LR10, SJC20]. In the context of fractional diffusion, one of the pioneering
works in this direction has been presented in [WGP17], where it was observed experimentally
that solutions to fractional PDEs exhibit a low-rank structure. Further MOR strategies have
been applied to the harmonic extension setting [ACN19] and quadrature schemes [DAC+21],
whose empirical findings support the conjecture that the solution manifold to the fractional
Poisson problem (1.1) is compressible. One of the first rigorous results in this direction were
given in [BGZ20]. Coupling a MOR method with a quadrature scheme, it is shown that the
surrogate converges uniformly for all s ∈ [smin, smax] to the DEM approximation of (1.1)
at exponential rates. Here, 0 < smin < smax < 1 are user-provided fixed parameters that
determine in which interval one wishes to query the solution map. We finally also mention
[MN11, MN18, ABDN19] where rational Krylov methods have been applied to reduce the
computational costs in the evaluation of the DEM approximation.
A broad spectrum of powerful algorithms exists which allow one to approximate solu-

tions to fractional PDEs for a few particular instances of the parameters. What many
MOR strategies are still lacking, however, is the ability to efficiently approximate the entire
solution manifold for all admissible values of the parameters. Furthermore, many schemes
are tailored to the particular problem setup and need to distinguish e.g., between the ap-
proximation of elliptic and evolutionary problems. The latter often include solutions to
complex-valued problems even if the differential operator and the data are real. The desire
for numerical schemes which mitigate these disadvantages is a philosophy we adopt in this
thesis.
On the basis of [DS19, DS21, DH21, DHS21], we present a unified MOR method to

approximate solutions to fractional diffusion problems of elliptic and parabolic type. Using
the DEM as a starting point, a finite element method is applied to write the discrete
solution as matrix-vector product of the form fτ (L)b. To diminish the computational
costs, we establish a MOR strategy in terms of a rational Krylov method (RKM) which
projects the matrix approximation to a low-dimensional space where a direct computation
of the eigensystem is feasible. The particular choice of the subspace depends on a collection
of parameters Ξ := {ξ0, . . . , ξk} ⊂ R, the so-called poles. The latter have a crucial impact
on the performance of the RKM and need to be selected a priori. We propose several
attractive pole selection strategies which allow us to approximate solutions to elliptic and
parabolic fractional diffusion problems simultaneously. The core of this thesis is the analysis
of these poles. One of our main results is the intriguing fact that the pole set Ξ can be
chosen independently of the fractional parameters. Its proof is based on the observation
that the parametric function fτ , stemming from the particular problem, can be classified
as Cauchy-Stieltjes, complete Bernstein, or Laplace-Stieltjes function. This unified point of
view allows us to bound the approximation error by the third Zolotarëv problem. Inspired
by these results, we prove uniform convergence rates when choosing the poles according
to solutions of the third Zolotarëv problem. Unlike prior works, the approximation so
obtained does not degenerate as the spatial fractional exponent approaches an integer. We
also provide the description of an error certificate which allows us to assess the quality of a
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large class of poles where no theoretical bounds for the error are available. While the scope
of this thesis is limited to real matrices only, it can be easily seen that our results carry
over to the complex Hermitian case.
In the final part of this thesis, we provide deep insights in several other MOR strategies

advocated by the literature and show that these methods can be interpreted as variants
of conventional rational Krylov methods. The theoretical insights so obtained allow us to
leverage our analysis for RKMs to develop new convergence proofs for several of the studied
schemes. They suggest how to design novel and improve available methods and allow for a
direct comparison of the algorithms.

1.1 Structure of the Thesis

For the reader’s convenience, we give a brief overview of the structure of this manuscript
and provide a survey of the main components of each individual chapter.

– After some remarks on notation, we gather in Chapter 2 several well-known results to
find a common ground for further discussions. We review the basics of Sobolev theory
and recall the notion of Bochner integrals and Bochner spaces. We also provide a
brief exposition on some special functions that shall be useful later on and remind the
reader of the foundations of matrix functions.

– To encompass the full scope of this thesis, we review the theory of interpolation spaces
in an abstract Hilbert space framework. As special cases, fractional Sobolev spaces
are discussed together with several of their equivalent definitions.

– Given a generic differential operator L, we introduce, in Chapter 4, its fractional
power Ls of order s ∈ (0, 1) as operator of interpolation and provide three equivalent
characterizations of the latter

1. using the eigensystem of L,
2. as improper integral over parametric reaction-diffusion equations,

3. as Dirichlet-to-Neumann map of a degenerate PDE on an artificially extruded
cylinder CΩ = Ω× R+.

We study regularity properties of solutions to (1.1) and highlight the differences to
the integer-order regime. Finally, several other possible definitions of Ls are discussed
when L = −Δ.

– In Chapter 5, we give a brief survey of the foundations of fractional calculus. We
introduce the Caputo fractional derivative of order α ∈ [0, 1] as the time-fractional
differential operator of our choice and consider its interaction with Ls in the context
of fractional evolution equations.

– Chapter 6 is devoted to the discretization of fractional PDEs. For this purpose, we
choose the finite element method as underlying discretization method for the spatial
variable. Using the three charaterizations of Ls, presented in Chapter 4, as a starting
point, we introduce
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1. the discrete eigenfunction method,

2. a quadrature scheme,

3. the harmonic extension method,

to approximate solutions to elliptic and parabolic problems of fractional diffusion type.
We show that the computation of the DEM surrogate boils down to the evaluation of
a matrix-vector product fτ (L)b, where L is a finite element matrix approximation of
L, b a vector stemming from the given data, and fτ a parametric matrix function.
On the other hand, we rewrite the surrogates obtained by the quadrature scheme and
the harmonic extension method as matrix-vecor product of the form rτ (L)b, where
rτ is a rational function that can be seen as rational approximation of fτ .

– The rational Krylov method enters the stage in Chapter 7 as the model order reduction
scheme of our choice to approximate the discrete solution map τ 4→ fτ (L)b efficiently.
For this purpose we establish, in dependency of the pole set Ξ = {ξ0, . . . , ξk} ⊂ R,
the rational Krylov space QΞk+1(L,b) of dimension k+1 in which the rational Krylov
approximation uk+1 ≈ fτ (L)b is found via Rayleigh-Ritz extraction.

– We introduce, in Chapter 8, the notion of Cauchy-Stieltjes, complete Bernstein, and
Laplace-Stieltjes functions and prove that fτ has membership in at least one of these
classes. This unified point of view allows us to bound the rational Krylov error in
terms of a particular rational approximation problem which is the key ingredient of
our analysis.

– A connection between the rational approximation problem mentioned above and the
third Zolotarëv problem is established in Chapter 9. After a concise survey of loga-
rithmic potential theory, we derive explicit solutions to the third Zolotarëv problem
which can be used to minimize the upper bound derived in Chapter 8.

– Chapter 10 constitutes the heart of this thesis and is devoted to the selection of
poles Ξ = {ξ0, . . . , ξk} to build the rational Krylov space QΞk+1(L,b). We present a
broad spectrum of pole selection strategies that are suitable for the approximation of
fractional PDEs. A systematical comparison of these poles provides deep insights in
their strengths, weaknesses, and similarities. To quantify the performance of Ξ, we
either provide rigorous analytical results or present a description of an error certificate
which allows one to assess the quality of several pole sets even if no bounds for the
error are available. A variety of numerical experiments are presented that underpin
the main results of this chapter.

– In the final chapter of this thesis, we present a selection of MOR methods for fractional
diffusion problems that are based on rational approximation. We demonstrate that
several of these schemes can be interpreted as RKMs. This changed point of view
allows us to develop new convergence proofs and suggests how to design novel and
improve available algorithms.
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1.2 Remarks on Notion

Throughout this thesis, the natural numbers N are understood as the set of all strictly
positive integers and we set N0 := N ∪ {0} by convention. We designate by R+ the set
of all strictly positive real numbers and define R+0 := R+ ∪ {0}. The sets R− and R−0 are
understood accordingly. By C := C ∪ {∞} we denote the extended complex plane and set
R := R ∪ {∞}. For each z ∈ C we write �z and 
z to denote the real and imaginary part
of z, respectively. The argument arg(z) of z ∈ C \ {0} is defined as the angle φ ∈ (−π, π]
of z = reiφ, r ∈ R+, in polar coordinates. The power function zs is defined in the usual
way zs := es ln(z), where we use the branch-cut at R−0 for the logarithm. Unless stated
otherwise, the reader is encouraged to think of the letter λ as a scalar and real quantity,
whereas z typically denotes a (possibly) complex one. For any function f(z) that is defined
on a subset D ⊂ C of the complex plane with D ∩ R 8= ∅, we again use the same letter f
to refer to its restriction f : D ∩ R → C. If necessary, however, we shall write f(λ) instead
of f(z) to emphasize which domain of definition is meant. Likewise, for any function f(λ)
defined on a subset of the real line that extends analytically to the complex plane we write
f(z) to denote its analytic continuation. The support of the function f(z) is defined by

supp f := {z ∈ D : |f(z)| > 0},

where | · | labels the absolute value and A the closure of A ⊂ C. We use the shorthand
notation

1/A := {1/a : a ∈ A}, −A := {−a : a ∈ A}.

A property is said to hold almost everywhere (a.e.) in A if it holds in A \N where N is a
subset of A with zero Lebesgue measure.
Consistently, we use bold lower-case letters for vectors and bold capital letters for matri-

ces. Provided a symmetric and positive definite matrix M ∈ Rd×d, we define

"x"M :=
�
(x,x)M, (x,y)M := xTMy, x,y ∈ Rd.

The Euclidean norm and inner product on Rd, d ∈ N, is abbreviated by

"x"2 := x · y := "x"I, (x,x)2 := (x,y)I,

where I ∈ Rd×d labels the unit matrix. The matrix M is said to be diagonalizable if there
exists some U ∈ Rd×d invertible such that UMU−1 = D, where D = diag(λ1, . . . , λd) is a
diagonal matrix with entries λ1, . . . , λd. We denote the open ball with center x ∈ Rd and
radius r ∈ R+ in Rd by

Bε(x) := {x ∈ Rd : "x"2 < r}.

The distance between two subsets A,B ⊂ C of the complex plane is defined by

dist(A,B) := inf{"a− b"2 : a ∈ A, b ∈ B}.
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Furthermore, we write a < b to indicate a ≤ Cb for some constant C ∈ R+ that is inde-
pendent of of a, b, the finite element mesh size h, the rational Krylov parameter k, and the
quadrature parameter q.
For any Hilbert space H we denote with (u, v)H the scalar product on H and "u"H :=�
(u, u)H its norm. Whenever we refer to a Banach space (H, " · "H) as Hilbert space, we

mean that its norm induces a scalar product (·, ·)H on H, obtained by polarization identity,
such that (H, (·, ·)H) is a Hilbert space. A linear operator B : H → Ĥ between two Hilbert
spaces is said to be bounded (or continuous) if

"Bu"Ĥ < "u"H

for all u ∈ H. The sum of two Hilbert spaces, H+ Ĥ, is defined as the smallest vector space
that contains both H and Ĥ. The dual space of H is always understood in the topological
sense and is labeled as H#. It is equipped with the operator norm

"f"H� := sup
v∈H

�f, v�
"v"H ,

where �f, v� := f(v) denotes the dual pairing. Its inner product is defined by

(g, f)H� := �g,Rf�,

where R : H# → H denotes the Riesz isomorphism defined by

(Rf, v)H = �f, v�, v ∈ H.
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In this chapter, we gather several important results that shall serve us as foundation for
upcoming discussions. In the first section, we recall some common textbook knowledge on
Sobolev spaces which provides the corner stone of classical interpolation theory. The latter
makes heavy use of Hilbert-valued integrals whence we provide a concise survey of Bochner
integrals and Bochner spaces in Section 2.2. In Section 2.3, we provide a succinct overview
of the Laplace transform and some special functions that arise in the study of fractional
evolution equations. Finally, for the numerical approximations presented in the second half
of this thesis, we review the theory of matrix functions in Section 2.4 and state some results
that are the building block of our analysis later on.

2.1 Classical Sobolev Theory

Throughout this thesis, we shall be concerned with function spaces defined on a subset Ω
of Rd, d ∈ N. We limit ourselves to domains that allow for a local parametrization of the
boundary using Lipschitz continuous functions.

Definition 2.1. An open, bounded, and connected set Ω ⊂ Rd, is said to be a Lipschitz
domain if for all x = (x1, . . . , xd) ∈ ∂Ω there exists some ε > 0 and a bijective function
Φ : B1(0)→ Bε(x) such that

– Φ and Φ−1 are Lipschitz continuous,

– Φ({x ∈ B1(0) : xd = 0}) = ∂Ω ∩Bε(x),

– Φ({x ∈ B1(0) : xd < 0}) = Ω ∩Bε(x),

– Φ({x ∈ B1(0) : xd > 0}) = (Rd \ Ω) ∩Bε(x).

For the remainder of this thesis, the set Ω is always assumed to be a Lipschitz domain
in the sense stated above. Sometimes we require stronger regularity assumptions on Ω, in
which case Ω is said to be a C∞-domain if its local parametrization Φ from Definition 2.1
is smooth.
The definition of Sobolev spaces on Ω relies on the theory of distributions [Rud74, Yos95,

AF03, McL00, Eva10] and requires some further preparations. For this purpose, we denote
by Ck(Ω), k ∈ N0, the function space consisting of all real-valued k-times continuously
differentiable functions on Ω with range in R and set

C∞(Ω) :=
�
k∈N0

Ck(Ω).
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For brevity, we define C(Ω) := C0(Ω). The gradient, the divergence, and the Laplacian are
defined in the usual way

∇u :=

�
∂u

∂x1
, . . . ,

∂u

∂xd

�
, div(w) :=

d!
j=1

∂wj

∂xj
, Δu := div(∇u) =

d!
j=1

∂2u

∂2xj
.

The space of square-integrable functions on Ω is defined by

L2(Ω) := {u : Ω→ R : "u"L2(Ω) < ∞}, "u"2L2(Ω) :=

�
Ω
|u(x)|2 dx.

Endowed with its natural inner product

(u, v)L2(Ω) :=

�
Ω
u(x)v(x) dx,

L2(Ω) is a Hilbert space. To introduce the notion of weak differentiability, we present the
set of test functions

D(Ω) := C∞0 (Ω) := {v ∈ C∞(Ω) : supp v ⊂ Ω compact}.

The space is equipped with the topology defined by the following notion of convergence:

vj → 0 :⇐⇒ ∃K ⊂ Ω compact: supp vj ⊂ K and ∀γ ∈ Nd
0 : D

γvj → 0 uniformly in K,

where we use multi-index notation

γ = (γ1, . . . , γd), Dγ =
∂|γ|

∂xγ11 . . . ∂xγdd
, |γ| :=

d!
j=1

γj .

Its topological dual space

D#(Ω) := {f : C∞0 (Ω)→ R : f is continuous and linear}

is called the space of distributions. We introduce the set of locally integrable functions

L1loc(Ω) := {u : Ω→ R :
�
K
u(x) dx < ∞ for all K ⊂ Ω compact}.

Recall that any function u ∈ L1loc(Ω) defines a distribution Fu ∈ D#(Ω) in the sense of

�Fu, v� :=
�
Ω
u(x) v(x) dx, v ∈ D(Ω),

where �Fu, v� = Fu(v) denotes the duality pairing. Distributions of this form are called
regular distributions. For the remainder of this thesis, we identify any regular distribution
with the function u by whom it is generated.
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Clearly, any u ∈ C∞0 (Ω) is contained in L1loc(Ω). Since u vanishes at the boundary of ∂Ω,
integration by parts reveals�

Ω
Dγu(x)v(x) dx = (−1)|γ|

�
Ω
u(x)Dγv(x) dx, v ∈ C∞0 (Ω).

This provides the motivation to introduce the weak derivative Dγu of the regular distribu-
tion u ∈ L1loc(Ω) by

�Dγu, v� :=
�
Ω
Dγu(x)v(x) dx := (−1)|γ|

�
Ω
u(x)Dγv(x) dx, v ∈ C∞0 (Ω).

Clearly, if u is sufficiently smooth, then all classical and weak derivatives coincide. In light
of these considerations, we introduce the Sobolev space of order one as

H1(Ω) := {u ∈ L2(Ω) : ∇u ∈ [L2(Ω)]d}, "u"2H1(Ω) := "u"2L2(Ω) + "∇u"2L2(Ω),

where the L2-norm of vector-valued functions v : Ω→ Rd is defined by

"v"L2(Ω) :=

�
Ω
"v(x)"22 dx.

Occasionally, we shall write H0(Ω) = L2(Ω). Sobolev spaces of arbitrary order k ∈ N are
defined inductively

Hk(Ω) := {u ∈ L2(Ω) : ∇u ∈ [L2(Ω)]d}, "u"2Hk(Ω) := "u"2L2(Ω) + "∇u"2Hk−1(Ω),

The space Hk(Ω) equipped with

(u, v)Hk(Ω) := (u, v)L2(Ω) + (∇u,∇v)Hk−1(Ω)

is a Hilbert space. An equivalent but less practical characterization reads [AF03]

Hk(Ω) = C∞(Ω)
�·�

Hk(Ω)
, (2.1)

where C∞(Ω)
�·�

Hk(Ω) denotes the closure of C∞(Ω) with respect to the norm " · "Hk(Ω). As
a consequence, each u ∈ Hk(Ω) can be approximated by a sequence of smooth functions.
While L2-functions in general do not allow for pointwise evaluation, the following theorem
shows that the trace evaluation of Sobolev functions is well-defined; see e.g., [AF03].

Theorem 2.2 (Trace theorem). There exists a linear operator tr : H1(Ω) → L2(∂Ω) with
the properties

" tru"L2(Ω) < "u"H1(Ω), ∀u ∈ H1(Ω) ∩ C(Ω) : tru = u|∂Ω.
This result allows one to include boundary conditions in the sense of

H1
0 (Ω) := {u ∈ H1(Ω) : tru = 0}.

In accordance with (2.1), there holds

H1
0 (Ω) = C∞0 (Ω)

�·�H1(Ω) . (2.2)

The availability of trace operations allow us to present the generalized integration by parts
formula for Sobolev functions.

14



2 Preliminaries

Theorem 2.3. Let n ∈ Rd the outer normal vector to ∂Ω, u ∈ H1(Ω), and v ∈ [H(Ω)]d.
Then there holds �

Ω
∇u · v dx = −

�
Ω
u div v dx+

�
∂Ω
(tr v · n) tru ds.

Under suitable assumptions on the Sobolev order k, one can expect u ∈ Hk(Ω) to be
continuous. To make matters precise, we introduce the norm

"u"2
Ck(Ω)

:=
!
|γ|≤k

sup
x∈Ω

|Dγu(x)|

to formalize the following result.

Theorem 2.4. Let k ∈ N and m ∈ N0 with k − d
2 > m. Then the embedding Hk(Ω) ⊂

Cm(Ω) is continuous, i.e.,

"u"Hk(Ω) < "u"Cm(Ω).

The following theorem gathers two important results that shall be frequently referred to
in the further course of this thesis. It can be found in several textbooks, e.g., [AF03, Eva10].

Theorem 2.5. Let k ∈ N0.

1. If m ∈ N with m > k, then the embedding Hm(Ω) ⊂ Hk(Ω) is compact.

2. The embedding H1
0 (Ω) ⊂ H1(Ω) is continuous, i.e.,

"u"H1(Ω) < "∇u"L2(Ω).

It turns out to be fruitful to introduce Sobolev spaces with negative exponents. This is
usually done in the following manner.

Definition 2.6. For all k ∈ N we define the space H−k(Ω) :=
�
Hk
0 (Ω)

�# as the dual space
of Hk

0 (Ω).

2.2 Bochner Theory

The purpose of this section is to generalize the theory of the Lebesgue integral and Sobolev
spaces for functions of the form u : (0, T ) → H, where T ∈ R+ ∪ {∞} and H is a Hilbert
space that we assume to be fixed throughout this section. This is a classical field of research
and can be found in e.g., [Boc33, Hil53, Mik78, Yos95]. Reminiscent of standard Lebesgue
theory, the integrability of H-valued functions is built upon the theory of step functions,
for which we introduce the indicator function of I ⊂ R by

✶I(t) :=

�
1, if t ∈ I,

0, else.

For simplicity, we assume H to be separable henceforth, meaning that H contains a dense
subset of countable cardinality.
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Definition 2.7. A function S : (0, T )→ H is called step function (or simple) if there exists
some n ∈ N, a family of pairwise disjoint sets (Ij)nj=1 ⊂ (0, T ) with finite Lebesgue measure,
and (hj)nj=1 ⊂ H, such that

S(t) =

n!
j=1

hj✶Ij (t).

We denote the set of all step functions with S((0, T );H).
The integral of functions contained in S((0, T );H) is defined in the expected fashion.

Definition 2.8. Let S ∈ S((0, T );H) with

S(t) =
n!
j=1

hj✶Ij (t).

Then the Bochner integral of S is defined as� T

0
S(t) dt :=

n!
j=1

hjλ(Ij), (2.3)

where λ(Ii) denotes the Lebesgue measure of Ij.

It can be readily verified that (2.3) defines a linear operator from S((0, T );H) to H. To
generalize this concept for arbitrary u : (0, T )→ H, we agree on the following terminology.
Definition 2.9. A function u : (0, T ) → H is called Bochner-integrable if there exists a
sequence of step functions (Sn)n∈N ⊂ S((0, T );H) with the properties

– for almost all t ∈ (0, T )
lim
n→∞Sn(t) = u(t),

– there holds

lim
n→∞

� T

0
"Sn(t)− u(t)"H dt = 0. (2.4)

The space of Bochner-integrable functions is denoted by L1(0, T ;H). For any u ∈ L1(0, T ;H)
we define the Bochner integral as� T

0
u(t) dt := lim

n→∞

� T

0
Sn(t) dt. (2.5)

One shows that

– the integral in (2.4) exists in the classical sense of Lebesgue,

– (2.5) is independent of the particular choice of the sequence of step functions,
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whence the Bochner integral is well-defined. Reminiscent of classical Lebesgue theory, a con-
venient criterion for Bochner-integrability can be expressed in terms of Bochner-measurable
functions [Mik78].

Definition 2.10. A function u : (0, T )→ H is said to be Bochner-measurable (or strongly
measurable) if there exists a sequence of step functions (Sn)n∈N ⊂ S((0, T );H) such that for
almost all t ∈ (0, T )

lim
n→∞ "Sn(t)− u(t)"H = 0.

Proposition 2.11. There holds

1. u : (0, T ) → H is Bochner-measurable if and only if t 4→ (u(t), v)H is Lebesgue-
measurable for all v ∈ H,

2. u ∈ L1(0, T ;H) if and only if u : (0, T ) → H is Bochner-measurable and "u(·)"H ∈
L1((0, T )).

Further well-known properties of the Bochner integral are listed in the following lemma
(cf. [Mik78]), where we introduce the convolution of u, v ∈ L1(0, T ;H) as

(u ∗ v)(t) :=

� ∞
−∞

ũ(t− τ)ṽ(τ) dτ,

with

w̃(t) :=

�
w(t), t ∈ (0, T ),
0, t 8∈ (0, T ), w ∈ L1(0, T ;H).

Lemma 2.12 (Elementary properties).

1. For all u ∈ L1(0, T ;H) there holds####� T

0
u(t) dt

####
H
≤
� T

0
"u(t)"H dt.

2. If Ĥ is another Hilbert space and B : H → Ĥ a bounded linear operator, then

B

� T

0
u(t) dt =

� T

0
Bu(t) dt.

3. If u ∈ L1(0, T ;H) and v ∈ H, then t 4→ (u(t), v)H is Lebesgue-integrable and�� T

0
u(t) dt, v

�
H
=

� T

0
(u(t), v)H dt.

4. If u, v ∈ L1(0, T ;H), then u ∗ v ∈ L1(0, T ;H).
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A fundamental field of study in integration theory is the question under which conditions
one can interchange the integral and the limit of a sequence of functions.

Theorem 2.13 (Lebesgue’s dominated convergence theorem). Let (un)n∈N be a sequence
in L1(0, T ;H) with un(t) → u(t) a.e. in (0, T ) and g ∈ L1((0, T )) such that for all n ∈ N
there holds "un(t)"H ≤ |g(t)| a.e. in (0, T ). Then u ∈ L1(0, T ;H) and

lim
n→∞

� T

0
"u(t)− un(t)"H dt = 0, lim

n→∞

� T

0
un(t) dt =

� T

0
u(t) dt.

The Lp-Bochner spaces are a straightforward generalization of their scalar counterpart.

Definition 2.14. For each p ∈ N ∪ {∞} we define the Bochner space Lp(0, T ;H) as the
vector space of equivalence classes of almost everywhere coinciding Bochner-measurable func-
tions such that "u"Lp(0,T ;H) < ∞, where

"u"Lp(0,T ;H) :=


�
 T
0 "u(t)"pH dt

� 1
p
, if p ∈ N,

inf{C ∈ R+ : "u(t)"H ≤ C for almost all t ∈ (0, T )}, if p =∞.

There holds Lp(0, T ;H) ⊂ Lq(0, T ;H) if q ≤ p. For all p ∈ N∪{∞} the space Lp(0, T ;H)
is a Banach space. Only if p = 2, the norm "u"L2(0,T ;H) comes from an inner product

(u, v)L2(0,T ;H) :=
� T

0
(u(t), v(t))H dt.

Now that we are familiar with Lebesgue spaces, we limit ourselves to the Hilbert space case
p = 2 and dedicate our attention to the definition of Bochner-Sobolev spaces. This requires
the notion of differentiation for Hilbert-valued functions.

Definition 2.15. A function u : (0, T )→ H is said to be differentiable in t ∈ (0, T ) if there
exists some v ∈ H such that

lim
δ→0

t+δ∈(0,T )

u(t+ δ)− u(t)

δ
= v in H.

We call v =: u# the derivative of u. By C1((0, T );H) we denote the set of all differentiable
functions u : (0, T )→ H whose derivatives are continuous.

Accordingly, the set Ck((0, T );H), k ∈ N0 ∪{∞}, is understood in the expected manner.
This notion of differentiation can be essentially relaxed. We proceed as in the real-valued
case.

Definition 2.16. A function u : (0, T )→ H is said to be weakly differentiable if there exists
some v ∈ H such that

∀w ∈ C∞0 ((0, T )) :
� T

0
v(t)w(t) dt = −

� T

0
u(t)∂tw(t) dt.
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We call v =: ∂tu the weak derivative of u. Thereupon, the Bochner-Sobolev space of order
k ∈ N is inductively defined by

H1((0, T );H) := {u ∈ L2(0, T ;H) : ∂tu ∈ L2(0, T ;H)}
and

Hk((0, T );H) := {u ∈ L2(0, T ;H) : ∂tu ∈ Hk−1((0, T );H)}, k ≥ 2.
Several important properties of Bochner-Sobolev spaces follow from the respective prop-

erty of H. The reader is encouraged to compare the following results for H1((0, T );H) with
the corresponding ones of classical Sobolev spaces.

Lemma 2.17. The space H1((0, T );H) equipped with the inner product

(u, v)H1((0,T );H) :=
� T

0
(u(t), v(t))H + (∂tu(t), ∂tv(t))H dt

is a separable Hilbert space. Moreover,

1. the embedding H1((0, T );H) ⊂ C([0, T ];H) is continuous,

2. there holds the integration by parts formula� T

0
(∂tu(t), v(t))H dt = (u(T ), v(T ))H − (u(0), v(0))H −

� T

0
(∂tv(t), u(t))H dt

for all u, v ∈ H1((0, T );H).

2.3 Preliminaries from Fractional Calculus

In this section we recall the definition of the Laplace transform and remind the reader of
some of its well-known properties. Moreover, we make ourselves familiar with the Gamma
function and the (generalized) Mittag-Leffler function which are key ingredients in the study
of fractional evolution equations.

2.3.1 The Laplace Transform

The Laplace transform is a crucial tool for the analysis of fractional evolution equations and
allows one to transform the latter to algebraic equations which are typically easier to deal
with. We take our definition from the classical work of Widder [Wid43], see also [Die10],
where the interested reader may find a comprehensive treatment of this matter.

Definition 2.18. Let u : R+0 → C be a function and T, z0,M ∈ R+ with the property

∀t > T : e−z0t|u(t)| ≤ M,

� T

0
|u(t)| dt < ∞. (2.6)

Then the Laplace transform of u is defined by

L [u](z) :=

� ∞
0

e−ztu(t) dt, �z > z0.
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For some elementary functions, the Laplace transform can be computed directly.

Example 2.19. Consider the function u(t) = ect for some c ∈ R. Then u satisfies (2.6)
with z0 = c, M = 1, and arbitrary T ∈ R+. Its Laplace transform evaluates to

L [u](z) =

� ∞
0

e(c−z)t dt =
e(c−z)t

c− z

$$$$∞
0

=
1

z − c

for all z ∈ C with �z > c.

We cite here some well-known properties of L .

Lemma 2.20. Let u1 and u2 denote two functions defined on R+0 such that their Laplace
transform exists.

1. The Laplace transform is a linear operator, i.e.,

L [cu1 + u2](z) = cL [u1](z) +L [u2](z)

for all c ∈ R.

2. There holds

L [u1 ∗ u2](z) = L [u1](z)L [u2](z). (2.7)

3. If U1(t) =

 T
0 u1(t) dt, then

L [U1](z) =
1

z
L [u1](z).

4. For all k ∈ N there holds

L [∂kt u](z) = zkL [u](z)−
k!

j=1

zk−j∂k−jt u(0). (2.8)

The function u can be recovered from L [u] by the inverse Laplace transform, also known
as Bromwich integral, Fourier-Mellin integral, or Mellin’s inverse formula.

Theorem 2.21. Let u satisfy (2.6) and γ ∈ R be larger than the real part of all singularities
of U(z) := L [u](z). Then there holds

u(t) = L −1[U ](t) :=
1

2πi

� γ+i∞

γ−i∞
eztU(z) dz.
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2.3.2 The Gamma Function

In integer-order calculus the factorial function plays prominent role because it allows one
to succinctly comprehend the derivatives of several elementary functions. The Gamma
function can be seen as counterpart to the factorial function in fractional-order calculus
and is defined by

Γ(λ) :=

� ∞
0

e−ζζλ−1 dζ, λ ∈ R+. (2.9)

Elementary considerations of the theory of improper integrals reveal that the integral exists.
The importance of Γ in fractional calculus is laid out in the following theorem.

Theorem 2.22. For all λ ∈ R+ there holds Γ(λ+ 1) = λΓ(λ).

Proof. This follows directly from the integration by parts formula, since

Γ(λ+ 1) =

� ∞
0

e−ζζλ dζ =
�
−e−ζζλ

$$$∞
0
+ λ

� ∞
0

e−ζζλ−1 dζ
�

= λ

� ∞
0

e−ζζλ−1 dζ = λΓ(λ).

Since

Γ(1) =

� ∞
0

e−ζ dζ = 1,

it follows by induction that

∀n ∈ N : Γ(n+ 1) = n!.

Therefore, the Gamma function can be seen as a natural generalization of the factorial
function. Other useful values of the Gamma function are

Γ

�
1

2

�
=

√
π, Γ(λ)Γ(1− λ) =

π

sin(πλ)
, λ ∈ (0, 1).

An extension of Theorem 2.22 is obtained by the equivalent identity

Γ(λ) =
Γ(λ+ 1)

λ
, λ ∈ R+. (2.10)

Note that the right-hand side of (2.10) is meaningful not only for λ ∈ R+ but also if
λ ∈ (−1, 0). Consequently, we may use (2.10) as definition for Γ(λ) whenever λ ∈ (−1, 0).
The latter is not included in the original definition (2.9) since the integral does not converge
on R−0 . Provided this extended definition of Γ, we may return to (2.10) to inductively
define Γ(λ) for all values of λ ∈ R \ −N0. The function so obtained is again called Gamma
function, abbreviated with the same letter Γ, and is plotted in Figure 2.1. Its poles are
given by the negative natural numbers including zero. For the later use, we compute the
Laplace transform of the power function.
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Figure 2.1: Gamma function Γ(λ) on (−5, 4] \ {−4,−3,−2,−1, 0}.

Lemma 2.23. Let α > −1 and u(t) = tα. Then there holds for all z ∈ C with �z > 0

L [u](z) =
Γ(1 + α)

z1+α
.

Proof. This follows directly from the substitution ζ = zt since

L [u](z) =

� ∞
0

e−zttα dt =
1

zα+1

� ∞
0

e−ζζα dζ =
Γ(1 + α)

z1+α
.

One final result that we mention explicitly is the following integral identity, which is
known as Euler’s integral of the first kind or Euler’s Beta function, see e.g., [Die10, Theorem
D.6].

Lemma 2.24. Let α, β ∈ R+. Then there holds� 1
0
(1− ζ)α−1ζβ−1 dζ =

Γ(α)Γ(β)

Γ(α+ β)
.

2.3.3 The Mittag-Leffler Function

The Mittag-Leffler function has been considered in [Mai20] as “queen function” of fractional
calculus. Its importance in fractional differential equations is comparable to the one of
the exponential function in the theory of ordinary differential equations. Its origin goes
back to the work of the Swedish mathematician Mittag-Leffler [ML03], who defined the
Mittag-Leffler function as

Eα(z) :=
∞!
j=0

zj

Γ(αj + 1)
, α ∈ R+,
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for all z ∈ C. The generalized or two-parameter Mittag-Leffler function has been introduced
50 years later [Aga53] and reads

Eα,β(z) :=

∞!
j=0

zj

Γ(αj + β)
, α, β ∈ R+, (2.11)

for all z ∈ C. Note that

– Eα,β(0) = 1/Γ(β),

– Eα,1(z) = Eα(z),

– E1,1(z) = E1(z) = ez.

Therefore, Eα and Eα,β can be seen as generalizations of the exponential function. For some
other choices of the parameters, the (generalized) Mittag-Leffler function can be expressed
in terms of elementary functions, such as [Pod99, p. 17-18]

E2(−z2) = cos(z), E2(z
2) = cosh(z), E1,2(z

2) =
ez − 1

z
.

Each of the functions listed above is an entire function. As the following theorem shows,
the same applies to any admissible configuration of α and β.

Lemma 2.25. Let α, β ∈ R+ and z ∈ C. Then the power series (2.11) defining Eα,β(z) is
absolutely convergent.

Proof. See [Die10, Theorem 4.1].

Remark 2.26. By direct substitution in (2.11), it is possible to define Eα,β also for α = 0,
which yields a power series with finite convergence radius. If β ∈ R+, there holds for all
z ∈ C with |z| < 1

E0,β(z) :=
∞!
j=0

zj

Γ(β)
=

1

Γ(β)

∞!
j=0

zj =
1

Γ(β)

1

1− z
. (2.12)

In the context of fractional differential equations, it turns out to be fruitful to see (2.12) as
motivation to define

E0,β(λ) :=
1

Γ(β)

1

1− λ
, λ ∈ R−0 .

Remark 2.27. We mention that further generalizations of Eα,β exist in terms of the three-
parameter Millag-Leffler function. However, the present scope of presentation is sufficient
for the purpose of this thesis.

To provide an intuitive illustration of the generalized Mittag-Leffler function, we plot Eα,β

on the real line for different values of α and β in Figure 2.2. Unlike the classical exponential
function, we note that Eα,β might be negative for some values of its arguments.
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Figure 2.2: Generalized Mittag-Leffler function on the real line for α ∈ [0, 2], in the sense
of Remark 2.26, and β = 1 (left) and α = 1 and β ∈ [0.25, 2] (right).

Remark 2.28. We highlight that the numerical implementation of the generalized Mittag-
Leffler function is a nontrivial task in itself. Stable algorithms that allow one to evaluate
Eα,β for all admissible values of α and β have been proposed only recently and can be found
in [WT07, PK09, Gar15].

The asymptotic behaviour of Eα,β(z) in C is of importance in the analysis of fractional
evolution equations. In case of the exponential function, it is well-known that for z = reiφ,

1. ez → 0 for r → ∞ if |φ| > π
2 ,

2. ez remains bounded for r → ∞ if |φ| = π
2 ,

3. |ez| → ∞ for r → ∞ if |φ| < π
2 .

The following theorem can be seen as generalization of the third point of the result above,
where we write arg(z) to denote the argument φ of z = reiφ ∈ C \ {0}. For simplicity, we
restrict ourselves to the case α < 2.

Theorem 2.29. Let α ∈ (0, 2), β ∈ R+, (zn)n∈N a sequence in Sα := {z ∈ C : arg(z) > απ
2 }

with |zn| → ∞. Then there holds Eα,β(zn) → 0. Moreover, there exists some constant
cα,β ∈ R+, only depending on α and β, such that

∀z ∈ Sα : |Eα,β(z)| ≤ cα,β
1 + |z| .

Proof. See [Pod99, Theorem 1.6].

The sectoral domain Sα from Theorem 2.29 is depicted in Figure 2.3. We see that for
small values of α the area in which Eα,β(z) converges to zero, as |z| → ∞, increases. A
consequence of this observation is the following technical lemma, which turns out to be
important for our analysis in Chapter 10.
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R
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απ
2

Figure 2.3: Sectoral domain Sα from Theorem 2.29 marked in blue.

Lemma 2.30. Let a ∈ R+ be fixed, τ = (α, β, t, s) ∈ (0, 1]× R+ × R+ × (0, 1] with β ≥ α,
s+ α < 2, and cα,β as in Theorem 2.29. Then there holds�

iR

$$$$Eα,β(−tαzs)

a+ z

$$$$ dz ≤ 2cτ := 2cα,β
�
a−1 + s−1 ln(1 + t−α)

�
.

Proof. Let z ∈ iR \ {0} with 
z > 0 such that z = re
iπ
2 for some r ∈ R+. Then there holds

arg(tαzs) = arg
�
tαrse

iπs
2

�
=

πs

2
.

Therefore, arg(−tαzs) = π(1− s
2). Theorem 2.29 reveals

|Eα,β(−tαzs)| ≤ cα,β
1 + tα|z|s (2.13)

provided that π(1− s
2) >

απ
2 . The latter is satisfied since α+ s < 2. Analog computations

show that (2.13) remains valid for 
z < 0. We deduce�
iR

$$$$Eα,β(−tαzs)

a+ z

$$$$ dz ≤ cα,β

�
iR

1

1 + tα|z|s
1

|a+ z| dz

≤ 2cα,β
� ∞
1

dz

z + tαz1+s
+ 2cα,β

� 1
0

dz

a

= 2cα,β

� ∞
1

dz

z1+s(z−s + tα)
+
2cα,β
a

.

Employing the substitution ξ = z−s + tα reveals�
dz

z1+s(z−s + tα)
= − ln(z

−s + tα)

s

z→∞−−−→ − ln(t
α)

s
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and thus �
iR

$$$$Eα,β(−tαzs)

a+ z

$$$$ dz ≤ 2cα,β
s
(− ln(tα) + ln(1 + tα)) +

2cα,β
a

= 2cα,β

�
1

s
ln

�
1 + tα

tα

�
+
1

a

�
,

which directly implies the conjecture.

Two further properties that we cite here are the following well-known results that shall
prove convenient in the further course of action.

Lemma 2.31. Let α, β ∈ R+, t, λ ∈ R+0 , k ∈ N0, E
(k)
α,β(t) = ∂kt Eα,β(t), and u(t) =

tαk+β−1E(k)α,β(−tαλ). Then there holds

L [u](z) =
k!zα−β

(zα + λ)k+1
, �z > λ

1
α .

Proof. See [Pod99, eq. (1.80)].

Lemma 2.32. There holds for all i ∈ N0� t

0
(t− τ)α−1Eα,α(−(t− τ)αλ)τ i dτ = Γ(i+ 1)tα+iEα,α+i+1(−tαλ).

Proof. See [MN11, MN18] and also [Pod99, p.25].

2.4 Matrix Functions

The theory of matrix functions is an integral part of this thesis and therefore deserves
some discussion. Our interest lies in the analysis of expressions of the form f(L)b, where
L ∈ RN×N , N ∈ N, is a matrix, b ∈ RN a vector, and f a complex-valued function. Several
possibilities exist to introduce such functions of matrices [Hig08, HJ91]. For the scope of
this thesis, we shall always assume that L is diagonalizable, in which case the following
definition is a straightforward one.

Definition 2.33. Let L be a diagonalizable matrix such that L = UDU−1 for some invert-
ible U ∈ RN×N and D = diag(λ1, . . . , λN ). Assume that f is analytic in a neighborhood of
the spectrum of L. Then

f(L) := Uf(D)U−1, f(D) := diag(f(λ1), . . . , f(λN )).

Clearly, λ1, . . . , λN are the eigenvalues of L and U can be choosen as matrix whose
columns contain the eigenvectors of L. A few immediate consequences that shall be useful
in the sequel are listed in the following lemma.

Lemma 2.34. Let f and g denote two functions that are analytic in a neighborhood of the
spectrum of L. Then there holds
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C
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ext(C)

ω(C)(z) = 1

ω(C)(z) = 0

Figure 2.4: Contour C and its interior int(C), hatched in blue, where ω(C)(z) = 1 holds. For
all z in the unbounded component ext(C) we have ω(C)(z) = 0.

1. af(L) + g(L) = (af + g)(L) for all a ∈ C,

2. f(L)g(L) = (fg)(L) = g(L)f(L),

3. the spectrum of f(L) coincides with {f(λ1), . . . , f(λN )}.
One of the key ingredients in our analysis is the Cauchy integral formula for matrix

functions. Before we state its result, we first present its well-known scalar variant, which
requires some further terminology from complex integration [Hen93, Rud74]. A nonempty
open subset of the complex plane is called region. If a region is connected, it is said to be a
component. An integration contour C is a finite union of nonintersecting piecewise regular
Jordan curves [Hen93], traversed in the positive sense, whose winding number

ω(C)(z) := 1

2πi

�
C

dζ

z − ζ
, z ∈ C \ C,

satisfies ω(C)(z) = 1 if z is in the interior int(C) of C and ω(C)(z) = 0 if z is in the exterior
ext(C) of C. Here, the interior and exterior of C are defined as the bounded and unbounded
component of C \ C, respectively. With this at hand, the scalar Cauchy integral formula
now reads as follows [Hen93, Rud74], cf. Figure 2.4.

Theorem 2.35. Let C be an integration contour and f a function that is analytic in int(C)
and extends continuously to C. Then there holds for all z ∈ int(C)

f(z) =
1

2πi

�
C
f(ζ)

z − ζ
dζ. (2.14)

If we now define the expression �
C
f(ζ)(L− ζI)−1 dζ

as limit of Riemann sums in the the matrix norm on the respective matrix space, one
can prove the following straightforward generalization of (2.14), which is also known as
Cauchy-Dunford or Dunford-Taylor formula for matrices [DS88, Güt10].

Theorem 2.36. Let C be an integration contour such that the spectrum of L is contained
in int(C). Assume that f is analytic in int(C) and extends continuously to C. Then there
holds

f(L) =
1

2πi

�
C
f(ζ)(L− ζI)−1 dζ.
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Proof. Let a < b, γ : [a, b] → R a parametrization of C, (zj)nj=0 a partition of [a, b] with
a = z0 < · · · < zn = b, and (ηj)nj=1 a corresponding sequence of nodes with ηj ∈ [zj−1, zj ]
for all j ∈ {1, . . . , n}. Then there holds�

C
f(ζ)(L− ζI)−1 dζ =

� b

a
f(γ(ζ))γ#(ζ)(L− γ(ζ)I)−1 dζ

= lim
n→∞

n!
i=1

(zi − zi−1)f(γ(ηi))γ#(ηi)(L− γ(ηi)I)
−1

= lim
n→∞

n!
i=1

(zi − zi−1)f(γ(ηi))γ#(ηi)U(D− γ(ηi)I)
−1U−1.

After pulling U and U−1 out of the sum, we arrive at
1

2πi

�
C
f(ζ)(L− ζI)−1 dζ = UD̂U−1, (2.15)

where D̂ := diag(λ̂1, . . . λ̂N ) with

λ̂j =
1

2πi
lim
n→∞

n!
i=1

(zi − zi−1)f(γ(ηi))γ#(ηi)(λj − γ(ηi))
−1.

Recognizing the latter as Riemann sum for the corresponding scalar function, we deduce

λ̂j =

� b

a
f(γ(ζ))γ#(ζ)(λj − γ(ζ))−1 dζ =

1

2πi

�
C

f(ζ)

λ− ζ
dζ = f(λj)

for all j = 1, . . . , N , where the last equality follows from Theorem 2.35. Recalling (2.15),
we thus conclude

1

2πi

�
C
f(ζ)(L− ζI)−1 dζ = Uf(D)U−1 = f(L).

Theorem 2.36 remains valid if we deform the contour to the negative real line, in which
case, under suitable regularity assumptions on f , there exists some real-valued function
µ : R+ → R such that

f(L) =

� ∞
0

µ(ζ)(L+ ζI)−1 dζ.

We state this result in a slightly more general version in the following theorem, where we
replace (L+ζI)−1 with a generic matrix kernel g(L, ζ). Its proof follows in complete analogy
to the one of Theorem 2.36.

Theorem 2.37. Assume that f : R+ → R satisfies an integral representation of the form

f(λ) =

� ∞
0

µ(ζ)g(λ, ζ) dζ,

where µ : R+ → R and g : R+ × R+ → R are functions such that the integral is absolutely
convergent. Then there holds

f(L) =

� ∞
0

µ(ζ)g(L, ζ) dζ.
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3 Abstract Interpolation Theory

One of our main interests lies in the study of fractional PDEs of the form

(−Δ)su = f in Ω,
u = 0 on ∂Ω,

(3.1)

where s ∈ (0, 1) and f ∈ L2(Ω). Before we give a precise definition of the operator (−Δ)s,
we need to specify its domain of definition. In the limit s = 1, we have (−Δ)1 = −Δ, in
which case we may multiply the PDE in (3.1) with a test function v ∈ H1

0 (Ω), integrate
over Ω, and apply integration by parts to observe

∀v ∈ H1
0 (Ω) :

�
Ω
∇u · ∇v dx =

�
Ω
fv dx.

Standard results from elliptic PDEs can be applied to see that this weak formulation has
a unique solution u ∈ H1

0 (Ω), whence H1
0 (Ω) is the right Hilbert space to study (−Δ)s if

s = 1. On the other hand, if we define (−Δ)0 := I to be the identity operator and neglect
the boundary conditions, (3.1) reduces to u = f ∈ L2(Ω). Therefore, L2(Ω) provides the
natural domain of definition of the fractional Laplacian if s = 0. For s ∈ (0, 1), one can
expect that the domain of (−Δ)s lies in between L2(Ω) and H1

0 (Ω). The purpose of this
chapter is to provide a mathematical framework for these purely heuristic considerations,
which leads us to the study of interpolation spaces.

3.1 Interpolation Spaces

Interpolation spaces are a classical field of study [LM72, BL76, Tri78, Tar07] and can be
defined between any two Banach spaces (B0, " · "0) and (B1, " · "1) that are linear subspaces
of some larger vector space. One considers the spaces B0 ∩ B1 and B0 + B1, which are,
equipped with the norms

"u"B0∩B1 := max{"u"0, "u"1},
"u"B0+B1 := inf{"u0"0 + "u1"1 : u = u0 + u1, u0 ∈ B0, u1 ∈ B1},

Banach spaces themselves. A Banach space B that satisfies B0 ∩ B1 ⊂ B ⊂ B0 + B1 with
continuous embeddings is said to be an interpolation space.
The subject simplifies if B1 ⊂ B0 are Hilbert spaces with dense and continuous embedding,

in which case B0 ∩ B1 = B1 and B0 + B1 = B0; see [CWHM15] for a detailed study of this
particular setting. If the embedding is also compact, the Hilbert spaces are separable and
one can resort to a countable basis of B1, which, due to density, also forms a basis of
B0. These assumptions are sufficient for the purpose of our investigations which is why we
include them in our definition of admissibility.
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Definition 3.1. A pair of Hilbert spaces H = (H0,H1) is called interpolation couple if H1
is dense in H0 and the embedding H1 ⊂ H0 is compact.

The literature provides a large variety of different interpolation methods. A very natural
one is based on spectral decomposition [LM72, Bra93, CWHM15].

3.1.1 Spectral Interpolation

For the sake of a more compact notation, let (·, ·)i and " · "i denote the inner products and
norms on Hi, i = 0, 1, respectively, and H#i its dual space. Provided that H = (H0,H1) is
an interpolation couple, there holds H1 ⊂ H0 and therefore H#0 ⊂ H#1. Upon identifying H0
with its dual space, this yields the chain of inclusions

H1 ⊂ H0 ∼= H#0 ⊂ H#1. (3.2)

It shall prove convenient to relabel H−1 := H#1 and no longer distinguish between H0 and
H#0 henceforth, i.e., we identify each function f ∈ H0 with the functional v 4→ (f, v)0, which
we call f again, such that

∀v ∈ H0 : �f, v� = (f, v)0, (3.3)

where �·, ·� denotes the dual pairing. Under these premises, the triple (H1,H0,H−1) is said
to be a Gelfand triple. The space H−1 equipped with

(g, f)−1 := (g, f)H−1 = �g,Rf�, "f"−1 := "f"H−1 =
�
(f, f)−1 = sup

v∈H1

�f, v�
"v"H1

,

is a Hilbert space, where R : H−1 → H1 denotes the Riesz isomorphism which identifies H1
with its dual space by

(Rf, v)1 = �f, v�, f ∈ H−1, v ∈ H1. (3.4)

The following observation serves as starting point for further discussions and follows from
standard arguments for self-adjoint and compact operators, cf. [CWHM15, Theorem 3.4].

Theorem 3.2. The Riesz isomorphism R is self-adjoint and compact. There exists an
orthogonal basis (ϕ̃j)∞j=1 of H1 where each ϕ̃j is an eigenfunction of R to the eigenvalue λ̃j.
There holds λ̃1 ≥ λ̃2 ≥ · · · > 0 and λ̃j → 0 as j → ∞.

For convenience, we introduce the normalized family of eigenfunctions ϕj := ϕ̃j/"ϕ̃j"0 ∈
H1 and set λj := λ̃−1j . By construction, we have ϕj = λjRϕj . Together with (3.4) and
(3.3) we find

∀v ∈ H1 : (ϕj , v)1 = λj(Rϕj , v)1 = λj�ϕj , v� = λj(ϕj , v)0

for all j ∈ N. Since H1 is dense in H0, (ϕj)∞j=1 is an orthonormal basis of H0 and the
following result is valid.
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Corollary 3.3. Let H = (H0,H1) be an interpolation couple. Then there exists an or-
thonormal basis (ϕj)∞j=1 of H0 and a sequence 0 < λ1 < λ2 < . . . with the property λj → ∞
as j → ∞ such that

∀v ∈ H1 : (ϕj , v)1 = λj(ϕj , v)0.

Throughout what follows, let uj := (ϕj , u)0 denote the spectral components of u ∈ H0.
Then

"u"20 = (
∞!
j=1

ujϕj ,

∞!
i=1

uiϕi)0 =

∞!
j=1

∞!
i=1

ujui(ϕj , ϕi)0 =
∞!
j=1

u2j (3.5)

for any u ∈ H0. Similarly, if u ∈ H1, there holds

"u"21 = (
∞!
j=1

ujϕj ,

∞!
i=1

uiϕi)1 =

∞!
j=1

∞!
i=1

ujui(ϕj , ϕi)1 =

∞!
j=1

λju
2
j . (3.6)

The following definition should now come as no surprise.

Definition 3.4. Let s ∈ [0, 1] and H = (H0,H1) an interpolation couple. We define the
interpolation norm " · "Hs of H by

"u"2Hs :=

∞!
j=1

λsju
2
j , uj = (ϕj , u)0.

The interpolation space of H is defined by

[H0,H1]s := {u ∈ H0 : "u"Hs < ∞}.

For all s ∈ [0, 1] the norm " · "Hs comes from an inner product. It reads

(u, v)Hs :=

∞!
j=1

λsjujvj , (3.7)

which makes [H0,H1]s a Hilbert space itself. For obvious reasons, we call (3.7) the inter-
polation scalar product on [H0,H1]s. By construction, the interpolation space is strictly
intermediate

H1 � [H0,H1]s � H0
for all s ∈ (0, 1) and satisfies the interpolation condition [H0,H1]0 = H0 and [H0,H1]1 = H1
with equality of the norms. Several other properties of [H0,H1]s that match our under-
standing of interpolation are listed in the following lemma.

Lemma 3.5. Let 0 < s1 < s2 < 1 and s ∈ [0, 1]. Then

1. ([H0,H1]s1 , [H0,H1]s2) is an interpolation couple,
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2. there holds the reiteration property

[[H0,H1]s1 , [H0,H1]s2 ]s = [H0,H1](1−s)s1+ss2
with equivalent norms,

3. there holds for all u ∈ H1
"u"Hs < "u"s0"u"1−s1 .

Proof. See Proposition 6.1, Theorem 6.1, and Proposition 2.3 in [LM72], respectively.

In view of (3.2), it is a natural question to ask whether the pairing (H−1,H0) is admissible
for space interpolation. We proceed in this direction with a positive result; cf. [Tar07,
Chapter 41].

Proposition 3.6. If H = (H0,H1) is an interpolation couple, then H# := (H−1,H0) is an
interpolation couple as well.

Proposition 3.6 allows us to form the interpolation space of the dual pairing H# =
(H−1,H0), which raises the question how [H−1,H0]s relates to the interpolation space of
the original interpolation couple H. To elaborate this in detail, let (ϕ#j)∞j=1 ⊂ H0 denote
the system of H−1-orthonormal eigenfunctions with eigenvalues (λ#j)∞j=1 associated to H

# in
the sense of Corollary 3.3, such that

∀v ∈ H0 : (ϕ#j , v)0 = λ#j(ϕ
#
j , v)−1.

Then the dual eigenpairs (ϕ#j , λ
#
j)
∞
j=1 can be expressed in terms of the eigenpairs of the

original interpolation couple (ϕj , λj)∞j=1 in the following convenient manner; cf. [BP15,
DS21].

Theorem 3.7. For all j ∈ N there holds

ϕ#j =
�

λjϕj , λ#j = λj .

Proof. Following [BP15, Proposition 4.1], we invoke (3.3), (3.4), and Corollary 3.3 to observe
for any v ∈ H0

(ϕj , v)0 = �ϕj , v� = (ϕj ,Rv)1 = λj(ϕj ,Rv)0 = λj(ϕj , v)−1. (3.8)

Choosing v = ϕi for some i ∈ N we find

(ϕj , ϕi)0 = (
�

λjϕj ,
�

λjϕi)−1,

which shows that (
�

λjϕj)
∞
j=1 is a H−1-orthonormal system of eigenfunctions. Since

0 = (ϕj , v)−1 = λ−1j (ϕj , v)0, v ∈ H0,

for all j ∈ N implies that v = 0, it is also a basis and the proof is complete.
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Theorem 3.7 is the key ingredient to show that the interpolation norm of the dual inter-
polation couple may be obtained from extrapolating the interpolation norm of the original
one. Here and throughout the remainder of this chapter, we write " · "H�s to denote the
interpolation norm of the dual interpolation couple H# = (H−1,H0).
Theorem 3.8. Let s ∈ [0, 1] and f ∈ [H−1,H0]1−s. Then there holds

"f"2H�1−s =

∞!
j=1

λ−sj �f, ϕj�2. (3.9)

Proof. It follows from (3.8) combined with (3.3) that

(f, ϕj)−1 =
1

λj
�f, ϕj�. (3.10)

Thanks to Theorem 3.7, we conclude

"f"2H�1−s =
∞!
j=1

(λ#j)
1−s(f, ϕ#j)

2
−1 =

∞!
j=1

λ2−sj (f, ϕj)
2
−1 =

∞!
j=1

λ−sj �f, ϕj�2.

One readily verifies that the right-hand side of (3.9) coincides with the interpolation norm
on [H0,H1]#s, so that the following result is valid; see [LM72, Theorem 6.2] and [CWHM15].
Corollary 3.9. For all s ∈ [0, 1] there holds

[H0,H1]#s = [H−1,H0]1−s
and their norms coincide.

The discussion above allows us to interpret [H0,H1]s and [H−1,H0]s as one single scale
of interpolation spaces

Hs := {f ∈ H−1 :
∞!
j=1

λsj�f, ϕj� < ∞}

for all s ∈ [−1, 1]; cf. [BP15]. We therefore define

[H0,H1]−s := [H0,H1]#s = [H−1,H]1−s (3.11)

for all s ∈ [0, 1].
Remark 3.10. As indicated at the beginning of this section, the requirements on the in-
terpolation couple might be essentially relaxed. Many of the results presented above remain
valid if the embedding H1 ⊂ H0 is only continuous. The treatment of these scenarios re-
quires a generalized version of the spectral theorem in which case the spectrum of R is no
longer discrete; see e.g., [LM72] for this particular setting.
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Figure 3.1: K-functional KH(ζ, ui) of H = ((L2(Ω), " · "L2(Ω)), (H
1
0 (Ω), "∇ · "L2(Ω))) for

u1(x) = 1 (red), u2(x) = sin(πx) sin(πy) (blue), and u3(x) = xy (green) with
x = (x, y) ∈ Ω = (0, 1)2.

3.1.2 The K-Method

A conceptually different but equivalent approach for defining [H0,H1]s is obtained by the
K-method, also referred to as real method of interpolation or Peetre’s method [Pee63, BL76,
Tri78, BS88, Bra93, McL00, Tar07, Lun09, CWHM15]. Unlike the spectral approach, the
K-method does not rely on spectral theory and also works if H0 and H1 are only Banach
spaces. The following definition is at the heart of its exposition.

Definition 3.11. Let H = (H0,H1) be an interpolation couple. We define the K-functional
of H by

KH : R
+ ×H0 → R

(ζ, u) 4→ KH(ζ, u) := inf
v∈H1

�
"u− v"20 + ζ2"v"21.

As illustrated in Figure 3.1, KH(·, u) is a nonnegative, nondecreasing, concave, and con-
tinuous function on R+ for each u ∈ H0 [BS88]. Since H1 is dense in H0, we have

lim
ζ→0+

KH(ζ, u) = 0

and there holds the estimate

KH(ζ, u) ≤ min{"u"0, ζ"u"1}. (3.12)

Therefore,

lim
ζ→∞

KH(ζ, u) = "u"0.

The present form of the K-functional is less suited to directly access its value. A step
towards a more explicit representation requires the well-known existence and uniqueness
result by Lax-Milgram.
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Theorem 3.12 (Lax-Milgram). Let H be a Hilbert space, f ∈ H#, and a(·, ·) : H × H a
bilinear form on H. Assume that there exists some constants c1, c2 ∈ R+ such that for all
u, v ∈ H there holds

|a(u, v)| ≤ c1"u"H"v"H, a(u, u) ≥ c2"u"2H.
Then the problem: Find u ∈ H such that

∀v ∈ H : a(u, v) = f(v)

has a unique solution u ∈ H and there holds the stability estimate

"u"H ≤ 1

c2
"f"H� .

Lax-Milgram’s theorem allows us to derive a representation of the minimizer of KH(ζ, u)
in terms of the eigenpairs (ϕj , λj)∞j=1 of H = (H0,H1).
Lemma 3.13. For all ζ ∈ R+ and u ∈ H0 there exists a unique minimizer v = v(ζ, u) ∈ H1
of the K-functional such that�

"u− v"20 + ζ2"v"21 = inf
v∈H1

�
"u− v"20 + ζ2"v"21.

Moreover, v is the unique solution of the variational problem: Find v ∈ H1 such that

∀w ∈ H1 : (v, w)0 + ζ2(v, w)1 = (u,w)0. (3.13)

It can be expressed in terms of the excitations uj = (ϕj , u)0 of u by

v =
∞!
j=1

uj
1 + ζ2λj

ϕj . (3.14)

Proof. Standard tools from calculus of variation reveal that the K-functional possesses a
unique minimizer. To see that the latter satisfies (3.14), we proceed as in [Bra93, Theorem
B.2] and make the ansatz

v =

∞!
j=1

vjϕj

with coefficients (vj)∞j=1 ⊂ R. Invoking (3.5) and (3.6), we observe

"u− v"20 + ζ2"v"21 =
∞!
j=1

�
(uj − vj)2 + ζ2λjv

2
j

�
. (3.15)

Noting that each summand on the right-hand side of (3.15) is nonnegative, it follows

K2
H(ζ, u) =

∞!
j=1

inf
vj∈R
�
(uj − vj)2 + ζ2λjv

2
j

�
.

For all j ∈ N, the infimum is attained by vj = uj/(1 + ζ2λj). We conclude that (3.14)
is valid. Plugging (3.14) into (3.13) with w = ϕj shows that v solves the variational
formulation (3.13), which, according to Theorem 3.12, has a unique solution. This completes
the proof.

35



3 Abstract Interpolation Theory

The value of KH(ζ, u) can now be written in the following compact form.

Corollary 3.14. Let ζ ∈ R+, u ∈ H0, and v the unique solution to (3.13). Then there
holds

K2
H(ζ, u) = (u− v, u)0 =

∞!
j=1

ζ2λju
2
j

1 + ζ2λj
.

Proof. This is a direct consequence of (3.14).

The identity (3.14) shows that v = v(ζ, u) is linear in u, that is,

v(ζ, cu+ w) = cv(ζ, u) + v(ζ, w)

for all c ∈ R and u,w ∈ H0. Therefore
K2
H(ζ, cu) = "cu− v(ζ, cu)"20 + "v(ζ, cu)"21 = |c|"u− v(ζ, u)"20 + |c|"v(ζ, u)"21 = |c|K2

H(ζ, u).

Direct computations reveal that also

KH(ζ, u+ w) ≤ KH(ζ, u) +KH(ζ, w)

holds. Since KH(ζ, u) = 0 for all ζ ∈ R+ if and only if u = 0, we conclude that KH(ζ, ·) is
a norm on H0. Thanks to (3.12) and the continuous embedding H1 ⊂ H0, we arrive at the
following result.

Proposition 3.15. For all ζ ∈ R+ fixed, the functional KH(ζ, ·) ∈ H#0 is an equivalent
norm on H0.
Before we proceed with the main theorem of this section, we state a useful integral identity

that can be found in [BS87, Chapter 10.4] and [Yos95, Chapter 9.11], see also [Bal60].

Lemma 3.16. For all s ∈ (0, 1) there holds� ∞
0

ζ−s

1 + ζ
dζ =

π

sin(πs)
.

We are now in position to prove the following conjecture which is the driving motivation
of our interest in K-functionals (cf. [Bra93, Theorme B.2]).

Theorem 3.17. Let H = (H0,H1) be an interpolation couple and s ∈ (0, 1). Then there
holds for all u ∈ [H0,H1]s

"u"2Hs =
2 sin(πs)

π

� ∞
0

ζ−2s−1K2
H(ζ, u) dζ. (3.16)

Proof. We apply Corollary 3.14 to see that� ∞
0

ζ−2s−1K2
H(ζ, u) dζ =

� ∞
0

∞!
j=1

λju
2
j

ζ1−2s

1 + ζ2λj
dζ.
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Each summand is nonnegative whence we may interchange the series with the integral to
deduce � ∞

0
ζ−2s−1K2

H(ζ, u) dζ =
∞!
j=1

λju
2
j

�� ∞
0

ζ1−2s

1 + ζ2λj
dζ

�
.

The transformation ζ 4→ ζ2λj combined with Lemma 3.16 gives� ∞
0

ζ1−2s

1 + ζ2λj
dζ =

λsj
2λj

� ∞
0

ζ−s

1 + ζ
dζ =

λsj
2λj

π

sin(πs)
.

Hence, we finally arrive at� ∞
0

ζ−2s−1K2
H(ζ, u) dζ =

π

2 sin(πs)

∞!
i=1

λsju
2
j =

π

2 sin(πs)
"u"2Hs .

The square root of the integral on the right-hand side of (3.16) is often referred to as
K-norm. We set

"u"2Ks
H
:=
2 sin(πs)

π

� ∞
0

ζ−2s−1K2
H(ζ, u) dζ.

Theorem 3.17 states that the interpolation norm and the K-norm coincide. A respective
integral representation for the interpolation scalar product (·, ·)Hs on [H0,H1]s is now easily
derived.

Corollary 3.18. Let H = (H0,H1) be an interpolation couple, s ∈ (0, 1), u ∈ [H0,H1]s,
and v = v(ζ) the unique solution of (3.13). Then there holds for all w ∈ H0

(u,w)Hs =
2 sin(πs)

π

� ∞
0

ζ−2s−1(u− v(ζ), w)0 dζ.

Proof. Due to the first identity in Corollary 3.14 there holds

"u"2KHs =
2 sin(πs)

π

� ∞
0

ζ−2s−1K2
H(ζ, u) dζ =

2 sin(πs)

π

� ∞
0

ζ−2s−1(u− v(ζ), u)0 dζ,

which shows that

(u,w)KHs :=
2 sin(πs)

π

� ∞
0

ζ−2s−1(u− v(ζ), w)0 dζ (3.17)

satisfies "u"2KHs
= (u, u)KHs , i.e., (3.17) induces the K-norm. On the other hand, it follows

from Theorem 3.17 that (u, u)Hs = "u"2Hs = "u"2Ks
H
= (u, u)KHs . The claim now holds due

to the polarization identity.

We highlight one final property that links the K-functional of the dual interpolation
couple with the one of original pairing.
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Lemma 3.19. Let H = (H0,H1) be an interpolation couple and H# = (H−1,H0). For each
ζ ∈ R+ and f ∈ H−1 let v# denote the minimizer of KH�(ζ, f) in the sense of Lemma 3.13.
Then there holds

v# =
∞!
j=1

�f, ϕj�
1 + ζ2λj

. (3.18)

In particular, v# coincides with the minimizer of KH(ζ, f) if f ∈ H0.

Proof. Denoting with (ϕ#j , λ
#
j)
∞
j=1 the eigenpairs of H

# in the sense of Corollary 3.3, we apply
(3.14), Theorem 3.7, and (3.10) to deduce

v# =
∞!
j=1

(f, ϕ#j)−1
1 + ζ2λ#j

ϕ#j =
∞!
j=1

λj
(f, ϕj)−1
1 + ζ2λj

ϕj =
∞!
j=1

�f, ϕj�
1 + ζ2λ2j

ϕj ,

which proves (3.18). Clearly, if f ∈ H0, then �f, ϕj� = (f, ϕj)0 and the remainder of the
proof follows from (3.14).

Remark 3.20. Another characterization of the interpolation space that is closely related
to the K-method is the so-called J-method of interpolation [McL00, CWHM15]. However,
since the latter leads to an integral representation of "u"Hs that follows from (3.16) by a
simple substitution, we do not discuss this approach here.

3.1.3 The Trace Method

The K-method allows one to characterize the interpolation norm as improper integral over
the positive real line. The trace method, which is the main objective of this section, is
inherently different and relies on the following weighted Bochner-Sobolev spaces.

Definition 3.21. Let s ∈ (0, 1) and H be a Hilbert space. We define the space L2s(R+;H)
of all Bochner-measurable functions v : R+ → H such that� ∞

0
ζ1−2s"v(ζ)"2H dζ < ∞.

Further, we set

H1
s (R+;H) := {v ∈ L2s(R+;H) : v# ∈ L22(R+;H)},

where v# = ∂ζv is the weak derivative of v in the sense of Definition 2.16. Provided an
interpolation couple H = (H0,H1), we define the space

Vs(H) := H1
s (R+;H0) ∩ L2s(R+;H1)

and endow it with the norm

"v"2Vs(H) :=
�
R+

ζ1−2s
�"v(ζ)"21 + "v#(ζ)"20

�
dζ.
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In line with [LM72, BL76, Tri78, Tar07], the purpose of this section is to characterize
[H0,H1]s as space of trace functions. This is done in several steps. Following [CDDS11,
Proposition 2.1], we first show that the trace operator

tr0 : Vs(H) −→ [H0,H1]s,
v 4→ tr0 v := v(0),

is continuous, i.e., we prove the existence of some constant C ∈ R+ such that

" tr0 v"Hs ≤ C"v"Vs(H) (3.19)

for all v ∈ Vs(H). To this end, we note that any v ∈ Vs(H) satisfies v(ζ) ∈ H0 for all
ζ ∈ R+ and thus admits a representation of the form

v(ζ) =
∞!
j=1

vj(ζ)ϕj , vj(ζ) = (ϕj , v(ζ))0.

Therefore, the norm on the right-hand side of (3.19) evaluates to

"v"2Vs(H) =
�
R+

∞!
j=1

ζ1−2s
�
λj |vj(ζ)|2 + |v#j(ζ)|2

�
dζ

=

∞!
j=1

�
R+

ζ1−2s
�
λj |vj(ζ)|2 + |v#j(ζ)|2

�
dζ,

(3.20)

where the integral and series can be interchanged since each summand is nonnegative. We
conclude that the spectral coefficients vj(ζ) are contained in H1

s (R+) := H1
s (R+;R) for all

j ∈ N. This space is amenable to trace evaluation, see e.g., [BM89], so that

"v"2Vs(H) ≥
∞!
j=1

|vj(0)|2 inf
φj∈H1

s (R+)
φj(0)=1

�
R+

ζ1−2s
�
λj |φj(ζ)|2 + |φ#j(ζ)|2

�
dζ. (3.21)

These computations show that a proof of (3.19) is closely related to the minimization
problem: Find φj ∈ H1

s (R+) such that

φj = argmin
φj∈H1

s (R+)
φj(0)=0

�
R+

ζ1−2s
�
λj |φj(ζ)|2 + |φ#j(ζ)|2

�
dζ, j ∈ N. (3.22)

Standard tools from calculus of variation reveal that (3.22) has a unique minimizer that
satisfies the Euler-Lagrange equation

φ##j (ζ)−
1− 2s

ζ
φ#j(ζ)− λjφj(ζ) = 0, in R+, (3.23a)

φj(0) = 1. (3.23b)
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The ODE (3.23a) is a so-called Bessel differential equation. If s = 1
2 , two linear independent

solutions are given by e−
√
λjζ and e

√
λjζ . The integrability condition on φj ∈ H1

s (R+)
implies that φj(ζ) = cje

−
√
λjζ , cj ∈ R, is the solution we are looking for. If s 8= 1

2 , one has
to resort to so-called modified Bessel functions of first and second kind. They are defined
by

Is(ζ) :=

∞!
j=0

ζ2j+s

j!Γ(j + s+ 1)22j+s
, Ks(ζ) :=

π

2

I−s(ζ)− Is(ζ)

sin(πs)
, s ∈ (−1, 1),

respectively. The key features of these functions are collected in the following lemma and
can be found in [AS64, Section 9.6], see also [NOS15].

Lemma 3.22. Let s ∈ (−1, 1). Then there holds

1. ζsKs(
�

λjζ) and ζsIs(
�

λjζ) are two linearly independent solutions of (3.23a),

2. Ks(ζ) decreases exponentially as ζ → ∞,

3. Is(ζ) increases exponentially as ζ → ∞,

4. Ks(ζ) is real and positive on R+,

5. Ks(ζ) behaves like ζ−s as ζ → 0+. More precisely, there holds

lim
ζ→0+

ζsKs(ζ) = 2
s−1Γ(s), (3.24)

6. Ks(ζ) = K−s(ζ),

7. and finally,

∂

∂ζ
(ζsKs(ζ)) = −ζsK1−s(ζ). (3.25)

According to the first property in Lemma 3.22, the family of solutions to (3.23a) is given
by

φj(ζ) = cjζ
sKs(

�
λjζ) + djζ

sIs(
�

λjζ), cj , dj ∈ R.

Since Is increases exponentially and thus Is 8∈ H1
s (R+), the only nontrivial contribution in

this linear combination comes from Ks which is plotted in Figure 3.2. Hence, the solution
we are seeking for is of the form

φj(ζ) = cjζ
sKs(

�
λjζ). (3.26)

Thanks to (3.24), we can choose cj = 21−sλ
s
2
j /Γ(s) such that the initial condition φj(0) = 0

is satisfied. For the later use, we collect these findings in the following proposition.
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Figure 3.2: Modified Bessel functions of second kind Ks(ζ) on [0, 1] for different orders
s ∈ [0.1, 0.9].

Proposition 3.23. Let s ∈ (0, 1) and j ∈ N. Then the unique minimizer of (3.22) is given
by

φj(ζ) =
21−s

Γ(s)
(
�

λjζ)
sKs(

�
λjζ). (3.27)

The following technical lemma is instrumental for further discussions.

Lemma 3.24. Let s ∈ (0, 1) and j ∈ N. Then there holds

lim
ζ→0+

ζ1−2sφ#j(ζ) = −dsλ
s
j , ds := 2

1−2sΓ(1− s)

Γ(s)
.

Proof. We apply (3.25) and the chain rule to observe

φ#j(ζ) =
21−s

Γ(s)

∂

∂ζ

�
(
�

λjζ)
sKs(

�
λjζ)
�
= −2

1−s

Γ(s)

�
λj(
�

λjζ)
sK1−s(

�
λjζ).

Invoking (3.24) we obtain

lim
ζ→0+

ζ1−2sφ#j(ζ) = − lim
ζ→0+

21−s

Γ(s)

�
λ1+sj ζ1−sK1−s(

�
λjζ)

= − lim
ζ→0+

21−s

Γ(s)
λsj(
�

λjζ)
1−sK1−s(

�
λjζ) = −21−2sΓ(1− s)

Γ(s)
λsj

and the proof is complete.

In view of (3.21), we are interested in the value of the integral with respect to the
minimizer φj . This is the subject of the following lemma, see also [CDDS11, BCdPS13,
NOS15].
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Lemma 3.25. Let s ∈ (0, 1), ds as in Lemma 3.24, j ∈ N, and φj defined by (3.26). Then
there holds �

R+

ζ1−2s
�
λj |φj(ζ)|2 + |φ#j(ζ)|2

�
dζ = dsλ

s
j .

Proof. We multiply the Bessel ODE (3.23a) with ζ1−2sφj and integrate over R+ to deduce� ∞
0

ζ1−2sφ##j (ζ)φj(ζ) + (1− 2s)ζ2sφ#j(ζ)φj(ζ)− ζ1−2sλj |φj(ζ)|2 dζ = 0.

Integration by parts of the first integrand and rearrangement the terms reveals� ∞
0

ζ1−2s
�|φ#j(ζ)|2 + λj |φj(ζ)|2

�
dζ = ζ1−2sφ#j(ζ)φj(ζ)

$$∞
ζ=0

.

From the properties 2. and 7. in Lemma 3.22 we see that both φj(ζ) and φ#j(ζ) decrease
exponentially as ζ → ∞. Therefore,

lim
ζ→∞

ζ1−2sφ#j(ζ)φj(ζ) = 0.

To compute the limit as ζ → 0+, we apply Lemma 3.24 and φj(0) = 1 to see that

lim
ζ→0+

ζ1−2sφ#j(ζ)φj(ζ) = −dsλ
s
j .

Hence, �
R+

ζ1−2s(λj |φj(ζ)|2 + |φ#j(ζ)|2) dζ = dsλ
s
j .

As a consequence of (3.21), Proposition 3.23, and Lemma 3.25, we deduce the continuity
of the trace operator.

Theorem 3.26. Let H = (H0,H1) be an interpolation couple, s ∈ (0, 1), and ds defined as
in Lemma 3.24. Then there holds for all v ∈ Vs(H)

" tr0 v"Hs ≤
�

ds"v"Vs(H).

As a by-product of the proof of Theorem 3.26, we obtain the following result, where we
define the s-minimal extension U ∈ Vs(H) of u ∈ [H0,H1]s by

U(ζ) :=
∞!
j=1

ujφj(ζ)ϕj , (3.28)

with φj as in (3.27).

Corollary 3.27. Let H = (H0,H1) be an interpolation couple, s ∈ (0, 1), and U the s-
minimal extension of u ∈ [H0,H1]s. Then there holds

"U"Vs(H) = inf
v∈Vs(H)
tr0 v=u

"v"Vs(H). (3.29)
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Proof. Due to Proposition 3.23, (3.21) holds with equality if U is the s-minimal extension
of u. This immediately implies (3.29).

The fact that tr0 U = u for any u ∈ [H0,H1]s shows that tr0 : Vs(H) → [H0,H1]s is
surjective and thus

[H0,H1]s = tr0(Vs(H))

for all s ∈ (0, 1). One readily verifies that

"u"EHs := inf
v∈Vs(H)
tr0 v=u

"v"Vs(H)

is a norm on [H0,H1]s. Provided the right normalization constant, it coincides with the
interpolation norm on [H0,H1]s for all s ∈ (0, 1).
Theorem 3.28. Let H = (H0,H1) be an interpolation couple, s ∈ (0, 1), ds defined as in
Lemma 3.24, and u ∈ [H0,H1]s. Then there holds

"u"Hs =
1√
ds

"u"EHs . (3.30)

Proof. According to Corollary 3.27, (3.30) is equivalent to

"u"Hs =
1√
ds

"U"Vs(H),

where U is the s-minimal extension of u. Due to (3.20), the latter satisfies

"U"2Vs(H) =
∞!
j=1

u2j

�
R+

ζ1−2s
�
λj |φj(ζ)|2 + |φ#j(ζ)|2

�
dζ.

By Lemma 3.24 it follows that

"U"2Vs(H) = ds

∞!
j=1

λsju
2
j = ds"u"2Hs

and the proof is complete.

3.2 Fractional Sobolev spaces

In this section, we apply the abstract interpolation theory presented above to the case
where H0 and H1 are Sobolev spaces. The latter turn out to provide the right framework
to study fractional powers of differential operators and shall serve us as a starting point
for our further discussions in Chapter 4. We state some of their intriguing properties and
provide several equivalent characterizations which are frequently used in the literature.
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3.2.1 The Space Hs(Ω)

We start our discussion in the absence of boundary conditions on the bounded Lipschitz
domain Ω ⊂ Rd, d ∈ N. Due to the first property in Theorem 2.5, the space H1(Ω) is
compactly embedded in L2(Ω). Since C∞0 (Ω) ⊂ H1(Ω) and C∞0 (Ω) is dense in L2(Ω), we
conclude that H = (L2(Ω), H1(Ω)) is an interpolation couple so that the following definition
is meaningful.

Definition 3.29. For all s ∈ (0, 1) we define fractional Sobolev spaces and norms of H =
(L2(Ω), H1(Ω)) by

Hs(Ω) := [L2(Ω), H1(Ω)]s, "u"Hs(Ω) := "u"Hs .

Fractional Sobolev spaces satisfy several properties that are reminiscent of the respective
ones from classical Sobolev theory. The following lemma is a straightforward generalization
of the integer-order case and allows one to apply density arguments.

Lemma 3.30. For all s ∈ (0, 1) the space C∞(Ω) is dense in Hs(Ω).

Proof. See [McL00, Theorem 3.25].

Theorem 2.4 shows that Sobolev functions u ∈ Hk(Ω) are at least continuous if k > d
2 .

A similar statement holds for Hs(Ω); see [NPV12, Theorem 8.2].

Theorem 3.31. If s > d
2 , then the embedding Hs(Ω) ⊂ C(Ω) is continuous.

Finally, we state the following compactness result which constitutes the fractional coun-
terpart to the first claim in Theorem 2.5 and can be found in [McL00].

Theorem 3.32. For all s ∈ (0, 1) the embedding Hs(Ω) ⊂ L2(Ω) is compact.

Section 3.1 shows that the interpolation space of an interpolation coupleH = (H0,H1) can
be characterized in a spectral fashion, via improper integrals, and as space of trace functions.
If H0 and H1 are Hilbert spaces of functions u : Ω → R, several other characterizations
exist that are frequently used in the literature [McL00, NPV12, BRS16, DL21]. One rather
explicit way of defining Hs(Ω) is due to the almost simultaneous contributions of Aronszajn
[Aro55], Gagliardo [Gag58], and Slobodeckij [Slo58]. As shown in [LM72, AF03], the space
Hs(Ω) consists of all u ∈ L2(Ω) such that�

Ω

�
Ω

|u(x)− u(y)|
"x− y"d+2s2

dx dy < ∞, (3.31)

where " · "2 denotes the Euclidean norm. The square root of (3.31) is often referred to as
Slobodeckij seminorm and constitutes, after adding the term "u"L2(Ω), a norm on Hs(Ω)
that is equivalent to "u"Hs(Ω).
Under certain regularity assumptions on Ω, which are in particular satisfied for bounded

Lipschitz domains, there holds the so-called extension property : For any s ∈ (0, 1) there
exists an extension operator E : Hs(Ω)→ Hs(Rd) such that [NPV12, Theorem 5.4]

E(u)|Ω = u, "E(u)"Hs(Rd) < "u"Hs(Ω), (3.32)
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where

Hs(Rd) := {u ∈ L2(Rd) : "u"Hs(Rd) < ∞}
and

"u"2Hs(Rd) := "u"2L2(Rd) +

�
Rd

�
Rd

|u(x)− u(y)|
"x− y"d+2s2

dx dy.

Note that the inequality in (3.32) reveals that

u 4→ inf
U∈H1(Rd)
U |Ω=u

"U"Hs(Rd)

is an equivalent norm on Hs(Ω). Hence, we obtain yet another characterization (c.f. [LM72]
Theorem 9.1 and 9.2) in the form of

Hs(Ω) = {U |Ω : U ∈ Hs(Rd)}.
Remark 3.33. The space Hs(Rd) can be equivalently characterized by means of the Fourier
transformation or as interpolation space between L2(Rd) and H1(Rd). Unlike in the case of
bounded domains, however, the embedding H1(Rd) ⊂ L2(Rd) is continuous but not compact
(cf. Remark 3.10).

3.2.2 The Spaces Hs
0(Ω) and H

1
2
00(Ω)

We are interested in the inclusion of homogeneous Dirichlet boundary conditions in frac-
tional Sobolev spaces. This is a delicate task that can be done in several mathematically
distinct ways. For now, we proceed as before and define Hs

0(Ω) as interpolation space of the
pairing H = ((L2(Ω), " · "L2(Ω)), (H

1
0 (Ω), "∇ · "L2(Ω))), which, due to Theorem 2.5, indeed

is an interpolation couple.

Definition 3.34. For all s ∈ (0, 1) we define fractional Sobolev spaces and norms of H =
(L2(Ω), H1

0 (Ω)) by

Hs
0(Ω) := [L

2(Ω), H1
0 (Ω)]s, "u"Hs

0(Ω)
:= "u"Hs .

Remark 3.35. Sometimes it is useful to define Hs
0(Ω) also for values of s > 1. A natu-

ral approach to do this is obtained by means of the orthonormal system of eigenfunctions
(ϕj)

∞
j=1 ⊂ H1

0 (Ω) satisfying

(∇ϕj ,∇v)L2(Ω) = (ϕj , v)L2(Ω), v ∈ H1
0 (Ω).

Recognizing that there is no reason to restrict s in Definition 3.4 to [0, 1], we define for all
s > 1

Hs
0(Ω) := {u ∈ L2(Ω) : "u"Hs

0(Ω)
< ∞}, "u"2Hs

0(Ω)
:=

∞!
j=1

λsju
2
j .

The space (Hs(Ω), " · "Hs(Ω)), s > 1, is understood accordingly.
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The following observation is a natural one and can be found in e.g., [McL00].

Proposition 3.36. For all s ∈ (0, 1) the embedding Hs
0(Ω) ⊂ Hs(Ω) is continuous.

In view of (2.2), it is a natural question to ask whether Hs
0(Ω) coincides with the closure

of C∞0 (Ω) with respect to the fractional Sobolev norm " · "Hs(Ω). If s 8= 1
2 , this is indeed

the case [LM72, Theorem 11.6].

Theorem 3.37. Let s ∈ (0, 1) \ {12}. Then there holds

Hs
0(Ω) = C∞0 (Ω)

�·�Hs(Ω)
.

If s = 1
2 , there holds the strict inclusion

H
1
2
0 (Ω) � C∞0 (Ω)

�·�
H

1
2 (Ω) ,

which shows that H
1
2
0 (Ω) is a special case. The latter is called Lions-Magenes space and is

often written as H
1
2
00(Ω). Its discrepancy to C∞0 (Ω)

�·�
H

1
2 (Ω) can be made more explicit by

means of the identity [LM72, Theorem 11.7]

H
1
2
00(Ω) =

�
u ∈ H

1
2 (Ω) :

�
Ω

|u(x)|2
dist(x, ∂Ω)

dx < ∞
�
.

This shows 1 ∈ C∞0 (Ω)
�·�

H
1
2 (Ω) but 1 8∈ H

1
2
00(Ω). A characterization of H

s
0(Ω) which works

for all s ∈ (0, 1) is obtained by
Hs
0(Ω) = {u ∈ Hs(Rd) : suppu ⊂ Ω},

see [BSV15, Section 3.1.3] and references therein.
If s = 1, [L2(Ω), H1

0 (Ω)]1 = H1
0 (Ω) and there exists a well-defined trace operator according

to Theorem 2.2. On the other hand, [L2(Ω), H1
0 (Ω)]0 = L2(Ω) in which case a reasonable

notion of traces does not exist. Only for s close to 1, one can thus hope for a meaningful
trace operator. The following theorem addresses this matter.

Theorem 3.38. For all s ∈ (12 , 1] there exists a linear operator tr : Hs(Ω)→ L2(∂Ω) with
the properties

∀u ∈ Hs(Ω) : " tru"L2(∂Ω) < "u"Hs(Ω), ∀u ∈ Hs(Ω) ∩ C(Ω) : tru = u|∂Ω.
Proof. See [LM72, Theorem 9.4] and [McL00, Theorem 3.37 and 3.38].

Provided s > 1
2 , the space H

s
0(Ω) can be interpreted as kernel of the trace operator, i.e.,

Hs
0(Ω) = {u ∈ Hs(Ω) : tru = 0}, s ∈ (12 , 1).

Except for the special case s = 1
2 , the interpolation space does not “see” the boundary

conditions prescribed by H1
0 (Ω) in the absence of a well-defined trace; see [LM72, Theorem

11.1].
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Theorem 3.39. The space C∞0 (Ω) is dense in Hs(Ω) if and only if 0 < s ≤ 1
2 . In particular,�

Hs
0(Ω) = Hs(Ω), 0 < s < 1

2 ,

Hs
0(Ω) � Hs(Ω), 1

2 ≤ s < 1.

Remark 3.40. In the special case s = 1
2 , there holds

H
1
2
0 (Ω) = H

1
2
00(Ω) � C∞0 (Ω)

�·�
H

1
2 (Ω) = H

1
2 (Ω).

In accordance with the integer-order case, we conclude this section with the definition of
fractional Sobolev spaces of negative order.

Definition 3.41. For all s ∈ (0, 1) we define the negative fractional Sobolev space

H−s(Ω) := (Hs
0(Ω))

# ,

whose norm we denote with " · "H−s(Ω).
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4 Fractional Diffusion Operators

In this chapter we introduce the fractional powers Ls, s ∈ (0, 1), of the diffusion operator

L : H1
0 (Ω)→ H−1(Ω)

u 4→ − div(A∇u) + cu,
(4.1)

where

– A ∈ L∞(Ω;Rd×d),

– A is symmetric,
A(x) = A(x)T , x ∈ Ω,

– A is uniformly positive definite,

yTA(x)y ≥ cp"y"22, (x,y) ∈ Ω× Rd, (4.2)

for some cp ∈ R+,

– and c ∈ L∞(Ω) with c(x) ≥ 0 almost everywhere in Ω.
Our definition of Ls relies on the theory of interpolation operators. Leveraging our knowl-
edge from Chapter 3, we present three equivalent characterizations of Ls which allow us to
circumvent its nonlocal character at the cost of

1. an infinite family of local eigenvalue problems,

2. an improper integral over solutions to parametric reaction-diffusion problems,

3. a degenerate elliptic PDE in a d+ 1-dimensional domain.

We derive a weak formulation of the fractional diffusion problem: Find u : Ω→ R such that

Lsu = f, in Ω,
u = 0, on ∂Ω.

(4.3)

As special case, we study solutions to (4.3) when L = −Δ and investigate several of its
intriguing properties. In the final section of this chapter, we discuss two alternative defini-
tions of the fractional powers of the Laplacian and comment on similarities and differences
to the definition we pursue in this manuscript.
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4.1 Definition and Characterizations

The literature advocates a variety of mathematically distinct definitions to introduce frac-
tional powers of differential operators [DWZ17, BBNS18, LPG+20, DL21]. Only if Ω = Rd,
they are known to be equivalent [Kwa17]. If Ω is bounded, there exist at least three
nonequivalent ways to incorporate boundary conditions in the definition of Ls. A natural
one that shall serve us as the definition of the fractional diffusion operator is based on
interpolation theory. To make matters precise, let H = (H0,H1) be an interpolation couple
and [H0,H1]s its interpolation space. Recalling (3.11), we consider the problem: Given
u ∈ [H0,H1]s find f ∈ [H0,H1]−s such that

∀v ∈ [H0,H1]s : �f, v� = (u, v)Hs . (4.4)

Thanks to Riesz’s representation theorem, there exists a unique solution f ∈ [H0,H1]−s
that satisfies (4.4). Therefore, the following definition is well-defined.

Definition 4.1. Let H = (H0,H1) be an interpolation couple and s ∈ [0, 1]. We define the
interpolation operator of H of order s by

Ls
H : [H0,H1]s → [H0,H1]−s

u 4→ Ls
Hu := f,

where f is the unique solution to (4.4).

Along with a suitable choice of H0 and H1, our goal is to define the fractional powers of
(4.1) as operator of interpolation in the sense of Definition 4.1. To this end, we introduce
the bilinear from (·, ·)H1

L(Ω)
: H1

0 (Ω)×H1
0 (Ω)→ R associated to L by

(u, v)H1
L(Ω)

:= (A∇u,∇v)L2(Ω) + (cu, v)L2(Ω). (4.5)

The latter induces a norm on H1
0 (Ω) by

"u"H1
L(Ω)

:=
�
(u, u)H1

L(Ω)
, (4.6)

which makes
�
H1
0 (Ω), " · "H1

L(Ω)

�
a Hilbert space. By construction, there holds

�Lu, v� = (u, v)H1
L(Ω)

(4.7)

for all v ∈ H1
0 (Ω). It follows from (4.2), c ≥ 0 a.e. in Ω, and the boundedness of A and c

that

cp"∇u"L2(Ω) ≤ "u"H1
L(Ω)

≤ "A"L∞(Ω;Rd×d)"∇u"L2(Ω) + "c"L∞(Ω)"u"L2(Ω).

Thanks to the second claim in Theorem 2.5, we deduce

"∇u"L2(Ω) < "u"H1
L(Ω)

< "∇u"L2(Ω),

whence (4.6) is an equivalent norm onH1
0 (Ω). We conclude that the pairingH = ((L2(Ω), "·

"L2(Ω)), (H
1
0 (Ω), " · "H1

L(Ω)
)) is an interpolation couple, whose interpolation norm we denote

by " · "Hs
L(Ω). These considerations lead us to the central definition of this chapter.
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Definition 4.2 (Fractional Diffusion Operator). Let L be defined by (4.1) and s ∈ [0, 1].
We define the fractional power Ls of L as interpolation operator of the interpolation couple
H =

�
(L2(Ω), " · "L2(Ω)), (H

1
0 (Ω), " · "H1

L(Ω)
)
�

of order s. We call Ls the fractional diffusion
operator.

Remark 4.3. Throughout this thesis, we restrict ourselves to homogeneous Dirichlet bound-
ary conditions. For the treatment of nonhomogeneous boundary conditions of Dirichlet and
Neumann type we refer to [APR17, HMP21, LPG+20].

By construction, the fractional diffusion operator Ls satisfies

�Lsu, v� = (u, v)Hs
L(Ω), v ∈ H1

0 (Ω), (4.8)

where (·, ·)Hs
L(Ω) denotes the interpolation scalar product of H. There holds

L0 = I, L1 = L.

Arguably the most prominent example of a fractional diffusion operator is the fractional
Laplacian (−Δ)s, which is contained in Definition 4.2 as special case upon setting A(x) =
I ∈ Rd×d and c ≡ 0 in (4.1).

4.1.1 Spectral Representation

A more intuitive representation of fractional diffusion operators is obtained by spectral
expansion. In view of Corollary 3.3, the action of Ls on u ∈ Hs

0(Ω) can be written by
means of the L2-orthonormal basis of eigenfunctions (ϕj)∞j=1 ⊂ H1

0 (Ω), satisfying

(ϕj , v)H1
L(Ω)

= λj(ϕj , v)L2(Ω), v ∈ H1
0 (Ω). (4.9)

Since

f :=

∞!
j=1

λsjujϕj , uj = (ϕj , u)L2(Ω),

satisfies

�f, v� =
∞!
j=1

∞!
i=1

λsjujvi�ϕj , ϕi� =
∞!
j=1

∞!
i=1

λsjujvi(ϕj , ϕi)L2(Ω) =

∞!
j=1

λsjujvj = (u, v)H1
L(Ω)

for all u, v ∈ H1
0 (Ω), we arrive at the following spectral representation of the fractional

diffusion operator.

Theorem 4.4. For all s ∈ [0, 1] and u ∈ Hs
0(Ω) there holds

Lsu =
∞!
j=1

λsjujϕj . (4.10)
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Example 4.5. We consider a one-dimensional example with L = −Δ in Ω = (−L,L),
L > 0, in which case the normalized solutions to the eigenproblem (4.9) are given in closed
form. There holds

ϕj(x) =
1√
L
sin

�
jπx

L

�
, λj =

j2π2

L2
,

for all j ∈ N such that

(−Δ)su(x) =
∞!
j=1

�
j2π2

L2

�s
uj√
L
sin

�
jπx

L

�
, uj =

1√
L

�
sin
�jπx

L

�
, u

�
L2((−L,L))

.

Let now u(x) = sin(πx) and L = 1. Then u = ϕ1 and (−Δ)su evaluates to

(−Δ)su(x) =
∞!
j=1

(jπ)2s(ϕj , ϕ1)L2((−1,1)) sin(jπx)

= π2s"ϕ1"2L2((0,1)) sin(πx) = π2s sin(πx).

One of the characteristic properties of Ls is its nonlocal nature. We say that an operator
L : H → Ĥ between two Hilbert spaces H and Ĥ of functions u : Ω → R is local if for all
x ∈ Ω and u ∈ H the value (Lu)(x) only depends on the values of u|Bε(x) for all ε > 0.
Operators of the formN : H → Ĥ which do not satisfy this condition are said to be nonlocal.
While classical integer-order differential operators are local, Ls, s ∈ (0, 1), is a prototypical
example of a nonlocal operator. This has the intriguing consequence that a function u
might be identically zero in some neighborhood of x ∈ Ω whereas Lsu(x) 8= 0. Moreover,
the eigenvalues of Ls depend nonlinearly on the fractional exponent whence manipulations
of the domain Ω directly affect the value of Lsu(x) for any x ∈ Ω. Although not explicitly
visible in its expression, the reader should be reminded that there is always a domain Ω
intrinsically linked to the operator Ls.
Further properties of Ls follow directly from its spectral representation (4.10) and, among

others, justify the abbreviation L−s := (Ls)−1.

Lemma 4.6.

1. For all s ∈ (0, 1) and f ∈ H−s(Ω) there holds

L−sf =
∞!
j=1

λ−sj �f, ϕj�ϕj .

2. For all −1 < s1 < s2 < 1 with s1 + s2 ∈ (0, 1) there holds

Ls1Ls2 = Ls2Ls1 = Ls1+s2 .
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4.1.2 Integral Formulas

The spectral representation formula (4.10) is convenient to gain insights in some elementary
properties of fractional diffusion operators. To design numerical approximations for these
objects, however, alternative characterizations are often useful. In this section we show
that Ls allows the interpretation as improper integral over parameterized reaction-diffusion
problems. For this purpose, we state two important preliminary results. The first one can
be found in [Bal60, BS87, Yos95]. A complete proof is provided in Section 8.1.1.

Theorem 4.7. Let s ∈ (0, 1) and λ ∈ R+. Then there holds

λs =
sin(πs)

π

� ∞
0

ζs−1
λ

λ+ ζ
dζ. (4.11)

An intuitive approach for defining fractional differential operators is to formally replace
λ in (4.11) with L. Recalling Remark 3.35, the following theorem states that this approach
is indeed justified.

Proposition 4.8. Let s ∈ (0, 1), u ∈ H2
0 (Ω), ζ ∈ R+, and ṽ(ζ) the unique solution of the

problem: Find ṽ(ζ) ∈ H1
0 (Ω) such that

∀v ∈ H1
0 (Ω) : (ṽ(ζ), v)Hs

L(Ω) + ζ(ṽ(ζ), v)L2(Ω) = (u, v)H1
0 (Ω)

.

Then there holds ζs−1ṽ(ζ) ∈ L1(R+;L2(Ω)).

Proof. See [Bal60, BS87, Yos95] for a more general framework and the proof of [BP15,
Theorem 2.1] for this particular setting.

For the sake of a more explicit notation, we write (L+ζ I)−1Lu instead of ṽ(ζ) henceforth
and understand the respective differential operators in the weak sense. In this terminology,
Proposition 4.8 states that

sin(πs)

π

� ∞
0

ζs−1(L+ ζ I)−1Lu dζ (4.12)

exists as Bochner integral for any u ∈ H2
0 (Ω). In light of (4.11), the following theorem

shows that (4.12) indeed coincides with our definition of Ls if u ∈ H2
0 (Ω).

Theorem 4.9. Let s ∈ (0, 1) and u ∈ H2
0 (Ω). Then there holds

Lsu =
sin(πs)

π

� ∞
0

ζs−1(L+ ζ I)−1Lu dζ (4.13)

in the sense of Bochner.

Proof. Recalling Proposition 4.8, we apply the transformation ζ 4→ ζ−
1
2 to deduce

sin(πs)

π

� ∞
0

ζs−1(L+ ζ I)−1Lu dζ =
2 sin(πs)

π

� ∞
0

ζ1−2s(ζ2L+ I)−1Lu dζ.
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Decomposing the integrand on the right-hand side in its spectral components, we find

ζ2(ζ2L+ I)−1Lu =
∞!
j=1

ζ2λjuj
ζ2λj + 1

ϕj =
∞!
j=1

ujϕj − uj
ζ2λj + 1

ϕj = u− (ζ2L+ I)−1u.

Therefore,

sin(πs)

π

� ∞
0

ζs−1(L+ ζ I)−1Lu dζ =
2 sin(πs)

π

� ∞
0

ζ−2s−1(u− (ζ2L+ I)−1u) dζ.

Denoting with g(ζ) the integrand on the right-hand side and cs := 2 sin(πs)/π, we apply the
third property in Lemma 2.12 combined with Corollary 3.18 to conclude for all v ∈ Hs

0(Ω)�
cs

� ∞
0

g(ζ) dζ, v

�
L2(Ω)

= cs

� ∞
0

ζ−2s−1(u− (ζ2L+ I)−1u, v)L2(Ω) dζ

= (u, v)Hs
L(Ω) = (L

su, v)L2(Ω).

Hence
sin(πs)

π

� ∞
0

ζs−1(L+ ζ I)−1Lu dζ = cs

� ∞
0

g(ζ) dζ = Lsu.

Inspection of the proof above shows that the integral on the right-hand side of (4.13) can
be reformulated as

Lsu =
2 sin(πs)

π

� ∞
0

ζ−2s−1(u− (ζ2L+ I)−1u) dζ = 2 sin(πs)
π

� ∞
0

ζ1−2s(ζ2L+ I)−1Lu dζ,

which is used in [DS19, DS21, DH21] and [BP15] as starting point to define the fractional
powers of L, respectively.
Note that integral formulas for L−s can be deduced from existing representations of Ls

using the second claim in Lemma 4.6. Invoking Theorem 4.9, we find

L1−s = sin(π(1− s))

π

� ∞
0

ζ−s(L+ ζ I)−1L dζ.

Applying L−1 on both sides combined with sin(π(1−s)) = sin(πs), we arrive at the following
theorem; cf. [BP15, Theorem 2.1].

Theorem 4.10. Let s ∈ (0, 1) and f ∈ L2(Ω). Then there holds

L−sf = sin(πs)
π

� ∞
0

ζ−s(L+ ζ I)−1f dζ. (4.14)

The identity (4.14) is known as Balakrishnan’s formula [Bal60], Dunford-Taylor represen-
tation [Yag10, Section 2.7 (p. 92)], or Kato’s formula [Kat60, Theorem 2 with simplification
λ = 0]. It is arguably among the most prominent representations of inverse fractional dif-
fusion operators and has been applied in e.g., [BP16, BGZ20, DAC+21, DH21, DHS21].
Needless to say, the presented collection of representation formulas for Ls is far from

complete. One final identity we want to mention is based on the so-called heat semigroup
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[AF03, Section 7] and relies on the Gamma function Γ and its properties. We apply Γ(1−
s) = −sΓ(−s) (cf. Section 2.3.2), integration by parts, and the substitution ζ = λt, λ ∈ R+,
to deduce for all s ∈ (0, 1)

−sΓ(−s) = Γ(1− s) =

� ∞
0

ζ−se−ζ dζ

= −
� ∞
0

ζ−s
d

dζ

�
e−ζ − 1

�
dζ

= −s

� ∞
0

ζ−s−1(e−ζ − 1) dζ = −sλ−s
� ∞
0

t−s−1(e−λt − 1) dt.

Rearrangement of the terms yields

λs =
1

Γ(−s)

� ∞
0

t−s−1(e−λt − 1) dt, λ ∈ R+. (4.15)

Purely formally for now, we replace λ with L to obtain a possible definition of Ls in terms
of the Bochner integral

1

Γ(−s)

� ∞
0

t−s−1(e−tLu(x, t)− u(x, t)) dt, (4.16)

where U(x, t) := e−tLu(x) is the heat-semigroup, that is, the unique solution of the heat
equation

∂tU + LU = 0, in Ω× R+, (4.17a)
U = 0, on ∂Ω× R+, (4.17b)
U = u, on Ω× {0}. (4.17c)

The formula (4.16) has been applied in [CdTGG20] to introduce fractional powers of the
Laplacian. After spectral decomposition, the identity (4.15) can be applied to (4.16) to
show that the operator so obtained matches our understanding of Ls.

Theorem 4.11. Let s ∈ (0, 1) and u ∈ Hs
0(Ω). Then there holds

Lsu(x) =
1

Γ(−s)

� ∞
0

t−s−1(U(x, t)− u(x, t)) dt,

where U is the solution to (4.17).

Proof. See [ST10, Sti10] for a detailed proof.

The counterpart to (4.15) for negative exponents reads

λ−s =
1

Γ(s)

� ∞
0

ts−1etλ dt

and gives rise to the heat-semigroup representation for the inverse fractional diffusion op-
erator

L−sf = 1

Γ(s)

� ∞
0

t1−se−tLf dt,

where e−tLf(x) satisfies (4.17) with f in place of u. This once more shows that the nonlo-
cality of Ls can be compensated by means of an improper integral over local problems.
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4.1.3 Harmonic Extension

The previous two sections show that Ls can be expressed as infinite series over the family of
eigenpairs in (4.9) or as weighted integral over solutions to standard PDEs. An inherently
different point of view is gained by means of the trace method. Initiated by the work of
Caffarelli and Silvestre [CS07] and contributors [ST10, CT10, CDDS11, BCdPS13], it has
been a driving force in the study of fractional diffusion problems [NOS15, BMN+18, AG18,
ACN19, MR20b, BMS20]. We recall the definition of the extension space Vs(H) of the
couple H = ((L2(Ω), " · "L2(Ω)), (H

1
0 (Ω), " · "H1

L(Ω)
)) as

Vs(H) = H1
s (R+;L2(Ω)) ∩ L2s(R+;H1

0 (Ω))

If we consider the elements of Vs(H) as functions in the extended variable (x, ζ) ∈ Ω×R+
with values in R rather than as a function in ζ ∈ R+ with Hilbert-valued range, we can
write its norm as

"v"2Vs(H) =
� ∞
0

ζ1−2s
�
"v(x, ζ)"H1

L(Ω)
+ "∂ζv(x, ζ)"L2(Ω)

�
dζ

=

� ∞
0

ζ1−2s
�
Ω
"∇xv(x, ζ)"2A(x) + c(x)|v(x, ζ)|2 + |∂ζv(x, ζ)|2 dx dζ

=

�
CΩ

ζ1−2s
�
c(x)|v(x, ζ)|2 + "∇xv(x, ζ)"2A(x) + |∂ζv(x, ζ)|2

�
d(x, ζ),

where "y"2A(x) := yTA(x)y, ∇x denotes the gradient with respect to the x-variable, and
CΩ := Ω× R+ a semi-infinite cylinder. Introducing the quantities

ĉ(x, ζ) := c(x), Â(x, ζ) :=

�
A(x) 0
0 1

�
∈ R(d+1)×(d+1), (4.18)

we see that "v"2Vs(H) can be written in more succinct form

"v"2Vs(H) =
�
CΩ

ζ1−2s
�
ĉ"v"22 + "∇v"2

Â

�
d(x, ζ) =: "v"2H1

Ls (CΩ).

To emphasize this changed point of view, we write H̊1
s (CΩ) instead of Vs(H) henceforth.

With this in mind, we recall that the s-minimal extension U ∈ H̊1
s (CΩ) of u ∈ Hs

0(Ω) satisfies

"U"H1
Ls (CΩ) = inf

v∈H̊1
s (CΩ)

tr0 v=u

"v"H1
Ls (CΩ),

where tr0 v(x, ζ) = v(x, 0) is the trace operator evaluating v at the bottom of the cylinder
CΩ. Standard tools from calculus of variation reveal that U is a solution to the PDE: Find
U ∈ H̊1

s (CΩ) such that

−LU + 1− 2s
ζ

∂ζU + ∂2ζU = 0, in CΩ, (4.19a)

U = 0, on ∂Ω× R+, (4.19b)
U = u, on Ω× {0}, (4.19c)
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where the derivatives are understood in the weak sense. Note that the PDE (4.19a) can be
written in compact form

div(ζ1−2sÂ∇U) + ζ1−2sĉU = 0, (4.20)

which is a standard elliptic PDE and thus uniquely solvable. Recognizing this fact, we
introduce the conormal derivative of U as

∂U
∂ns

(x, ζ) := − lim
ζ→0+

ζ1−2s∂ζU(x, ζ), (4.21)

where n denotes the unit outer normal to CΩ at Ω× {0}. The quantity (4.21) can be seen
as weighted normal derivative of U and allows us to write the fractional Laplacian in the
following convenient manner; cf. [CS07, CDDS11].

Theorem 4.12. Let s ∈ (0, 1), ds defined as in Lemma 3.24, u ∈ Hs
0(Ω), and U the unique

solution to (4.19). Then there holds

Lsu = − 1
ds

∂U
∂ns

. (4.22)

Proof. By definition of the s-minimal extension of u there holds

U(ζ) =
∞!
j=1

ujφj(ζ)ϕj ,

where φj is as in (3.27). Thanks to Lemma 3.24 we find

− 1
ds
lim
ζ→0+

ζ1−2s∂ζφj(ζ) = λsj ,

so that (4.22) follows by superposition.

The harmonic extension problem (4.19) is illustrated in Figure 4.1. It provides a powerful
tool to localize Lsu, so that the value of Lsu(x) only depends on the behaviour of U(x, ζ) in
an arbitrary small neighborhood of (x, 0). Note that for s = 1

2 the PDE (4.19) is a standard
elliptic problem (with weight equal to one) on the semi-infinite cylinder CΩ. According to
Theorem 4.12, the operator L 1

2 maps the Dirichlet data u to the normal derivative of the
solution U at the bottom of CΩ. The same holds true if s 8= 1

2 in consideration of the weight
function ζ1−2s, whence Ls can be seen as a Dirichlet-to-Neumann operator.
Under suitable manipulations of the boundary condition (4.19c), the action of the inverse

fractional operator is obtained in a similar fashion. Consider the mixed boundary value
problem: Find U ∈ H̊1

s (CΩ) such that
div(ζ1−2sÂ∇U) + ζ1−2sĉU = 0, in CΩ, (4.23a)

U = 0, on ∂Ω× R+, (4.23b)
∂U
∂ns

= dsf, on Ω× {0}, (4.23c)

for some f ∈ H−s(Ω), where ds is the normalization from Lemma 3.24. Then u = L−sf is
recovered from (4.23) via trace evaluation [CDDS11, Lemma 2.2].
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Ω

ζ

x

CΩ

div(ζ1−2s∇ÂU) + ζ1−2sĉU = 0U
=
0

U
=
0

trU = u

Figure 4.1: Harmonic extension problem in the semi-infinite cylinder CΩ = Ω× R+.

Theorem 4.13. Let s ∈ (0, 1), f ∈ H−s(Ω), and U the unique solution to (4.23). Then
there holds

L−sf(x) = (tr0 U)(x) = U(x, 0).

4.2 The Fractional Diffusion Problem

We are interested in solutions to nonlocal PDEs of the form: Find u ∈ Hs
0(Ω) such that

Lsu = f, (4.24)

where s ∈ (0, 1) and f ∈ H−s(Ω). To derive a variational formulation for this problem,
we apply both sides of (4.24) to an arbitrary test function v ∈ Hs

0(Ω) and invoke (4.8) to
deduce

∀v ∈ Hs
0(Ω) : (u, v)Hs

L(Ω) = �f, v�. (4.25)

Existence and uniqueness of solutions to this problem are the subject of the following
theorem.

Theorem 4.14. Let s ∈ (0, 1) and f ∈ H−s(Ω). Then there exists a unique solution
u ∈ Hs

0(Ω) to (4.25) which is given by

u =

∞!
j=1

λ−sj �f, ϕj�ϕj (4.26)

and there holds the stability estimate

"u"Hs
0(Ω)

< "f"H−s(Ω).
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Proof. We plug (4.26) into (4.25), choose v = ϕi for some i ∈ N, and consult (4.9) to
confirm that

(u, ϕi)Hs
L(Ω) =

∞!
j=1

λ−sj �f, ϕj�(ϕj , ϕi)H1
L(Ω)

=

∞!
j=1

�f, ϕj�(ϕj , ϕi)L2(Ω) = �f, ϕi�.

Since (ϕj)∞j=1 is a basis of H
s
0(Ω), it follows that u indeed solves (4.25). Its uniqueness and

the stability estimate are a direct consequence of the Lax-Milgram theorem.

The previous theorem shows that the inverse fractional diffusion operator L−s : H−s(Ω)→
Hs
0(Ω) is an operator of order 2s. This “shift property”, however, holds only in a limited

range. As shown in [Gru16] for the fractional Laplacian, see also [LPG+20], the expected
shift is essentially valid until the regularity Hs+ 1

2 (Ω) is reached. Here, we again make use of
the extended definition of fractional Sobolev spaces for s > 1 in the sense of Remark 3.35.

Theorem 4.15. Let Ω ⊂ Rd be a C∞-domain, s ∈ (0, 1), ρ ∈ (12 , 2 + 1
2), f ∈ Hρ(Ω), and

u the unique solution to (4.25) with L = −Δ. Then there holds for all ε > 0

u ∈
�
Hρ+2s
0 (Ω), if ρ ≤ 1

2 ,

H
1
2
−ε+2s

0 (Ω), if ρ ∈ (12 , 2 + 1
2).

Moreover, ρ ∈ (12 , 2 + 1
2) implies u ∈ Hρ+2s

0 (Ω) if and only if f = 0.

The statement of Theorem 4.15 stands in strong contrast to the classical shift theorem
known from the integer-order case. The latter states that the smoothness of the domain
and the data implies the smoothness of the solution itself. However, even if Ω = B1(0) is
the unit ball and f ∈ C∞(Ω), the solution to (4.24) is not expected to be more regular than

H
1
2
+2s

0 (Ω). To see that this “s-gain” is indeed sharp, we consider the fractional Laplacian
on Ω = (0, 2π) in which case the eigenfunctions and eigenvalues with homogeneous Dirichlet
boundary conditions are given by ϕj(x) = sin(πx) and λj = j2. Following [LPG+20], we
define

f(x) :=

∞!
j=1

1√
j ln(j + 1)

sin(jx). (4.27)

By means of the substitution y = ln(x+ 1) it follows f ∈ L2(Ω) since

"f"2L2(Ω) =

∞!
j=1

1

j ln2(j + 1)
≤
� ∞
1

dx

x ln2(x+ 1)
=

� ∞
ln(2)

dy

(ey − 1)y2 < ∞.

But f 8∈ Hρ
0 (Ω) for any ρ ∈ R+ since

"f"2Hρ
0 (Ω)

=
∞!
j=1

j2ρ

j ln2(j + 1)
≥

∞!
j=1

1

j
=∞.
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The solution to (4.24) with f as in (4.27) is given by

u(x) =
∞!
j=1

j−2s√
j ln(j + 1)

sin(jx)

and "u"
H2s+ρ

0 (Ω)
= "f"Hρ

0 (Ω)
for any ρ ∈ R+. The latter implies that u ∈ H2s

0 (Ω) and

u 8∈ H2s+ε
0 (Ω) for any ε > 0, that is, the regularity estimate stated above cannot be

improved.
The lack of regularity is essentially due to the behaviour of u close to the boundary of Ω.

In the interior of Ω, it is known that the smoothness of the data implies smoothness of the
solution. For x close to ∂Ω, however, there holds

u(x) ∼

��
dist(x, ∂Ω)2s + v(x), if s ∈ (0, 12),
dist(x, ∂Ω)| ln(dist(x, ∂Ω))|+ v(x), if s = 1

2 ,

dist(x, ∂Ω) + v(x), if s ∈ (12 , 1),
(4.28)

for some smooth function v defined on Ω; see [Gru16] for the case where Ω is a C∞-domain
and [CS16] when only limited regularity is available. The singular behaviour of u should
be taken into account in the design of numerical schemes, e.g., in terms of a refined mesh
towards the boundary of Ω.
We conclude this section with a comparison of solutions to (4.25) for different values of the

fractional parameter on the L-shape domain Ω = (0, 1)2 \([0.5, 1]× [0, 0.5]) with f = 1. The
singular behaviour of u predicted by (4.28) is mirrored in Figure 4.2. While u is essentially
smooth in the interior of Ω, its limited regularity becomes visible in a neighborhood of ∂Ω.
For s close to zero, the fractional Laplacian (−Δ)s is close to the identity operator, whence
the solution is nearly constant in the interior. Towards the boundary, the zero trace is
imposed which forces (−Δ)su(x) to decrease rapidly as x approaches ∂Ω.

Figure 4.2: Solution u to (4.25) for L = −Δ and s = 0.2 (left), s = 0.5 (middle), and
s = 0.8 (right) on the L-shape domain.

4.3 Non-Equivalent Definitions of the Fractional Laplacian

The definition of Ls as interpolation operator is a natural one. There exist, however, several
reasonable ways to give meaning to the fractional powers of differential operators that are
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mathematically distinct from the one obtained by Definition 4.2. We mention here only two
that frequently appear in the literature and restrict ourselves to L = −Δ. As preparation,
we provide the following definition.

Definition 4.16. Let x ∈ Rd and u a function defined on Rd \ {x} such that u ∈ L1(Rd \
Bε(x)) for all ε > 0. We define the Cauchy principal value of u by

P.V.
�
Rd

u(y) dy := lim
ε→0

�
Rd\Bε(x)

u(y) dy.

The Cauchy principal value allows one to assign values to certain integrals which do not
exist in the classical sense of Lebesgue. Consider e.g., the scalar function u(x) = x−2, which
is not integrable on R, i.e., the limits

lim
ε→0−

� ε

−∞
1

x2
dx, lim

ε→0+

� ∞
ε

1

x2
dx,

and therefore �
R

1

x2
dx = lim

ε→0−

� ε

−∞

1

x2
dx+ lim

ε→0+

� ∞
ε

1

x2
dx

do not exist. Due to symmetry, however, the singularity averages out when the Cauchy
principle value is employed

P.V.
�
R

1

x2
dx = lim

ε→0

�� −ε
−∞

1

x2
dx+

� ∞
ε

1

x2
dx

�
= 0.

Clearly, if an integral exists in the classical sense, it coincides with its principal value.

4.3.1 The Integral Fractional Laplace

We introduce the so-called integral fractional Laplacian as singular integral operator on Ω
[NPV12, LPG+20], where the zero extension ũ of u is defined by

ũ(x) :=

�
u(x), x ∈ Ω,
0, x ∈ Rd \ Ω.

Definition 4.17. For all s ∈ (0, 1) we define the integral fractional Laplacian by

(−Δ)sIu(x) := Cd,s P.V.
�
Rd

ũ(x)− ũ(y)

"x− y"d+2s2

dy, Cd,s := 2
2s sΓ(s+ d

2)

π
d
2Γ(1− s)

. (4.29)

The integral fractional Laplacian is well-defined for all u ∈ C∞0 (Ω) and extends to Hs
0(Ω)

by density. If s ∈ [12 , 1), the integrand in (4.29) is not contained in L1(Rd) due to the
singularity at y = x. Thanks to the symmetrical structure of the integral, however, the
singularity averages out, causing the limit in (4.29) to be finite. If s ∈ (0, 12), the integral�

Rd

ũ(x)− ũ(y)

"x− y"d+2s2

dy
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exists as improper integral and the Cauchy principal value can be omitted. An equivalent
representation of (−Δ)sI that works for all s ∈ (0, 1) without Cauchy’s principal value reads

(−Δ)sIu(x) = −Cd,s

2

�
Rd

ũ(x+ y)− 2ũ(x) + ũ(x− y)

"y"d+2s2

dy. (4.30)

The interested reader is directed to [NPV12] for further details. Just like for (−Δ)s, the
value of (−Δ)sIu(x) depends not only on the behaviour of u near x but on the values of
u in the entire domain, rendering the operator to be nonlocal. In particular, the function
u might be identically zero in a neighborhood of x but (−Δ)su(x) 8= 0. Consider e.g., a
nonnegative function u ∈ C∞0 (Ω) and x ∈ Rd \ suppu. Then

(−Δ)su(x) = Cd,s P.V.
�
suppu

u(x)− u(y)

"x− y"d+2s2

dy

= Cd,s P.V.
�
suppu

−u(y)

"x− y"d+2s2

dy < 0.

While obvious for (−Δ)s, it is not clear at first sight why (4.29) should yield a reasonable
generalization of the classical Laplacian. One prominent approach to motivate (4.29) as
variant of the fractional Laplacian is based on a probabilistic model [Val09, BV16] which
describes the random walk of a particle with jumps of arbitrary step size. To see this, let
us start with the integer case s = 1, Ω = R, a prescribed time step τ ∈ R+, and a step size
h ∈ R+. Let u(x, t) denote the probability of a particle being at point x at time t. If we
assume that the particle jumps with probability 1

2 either to its left or its right, we have

u(x, t+ τ) =
1

2
u(x+ h, t)− 1

2
u(x− h, t).

Assuming the relation 2τ = h2, we obtain

u(x, t+ τ)− u(x, t)

τ
=

u(x+ h, t)− 2(u, x, t) + u(x− h, t)

h2
.

Letting τ and h approach zero, we arrive at the well-known heat equation

∂tu = Δu.

The integral fractional Laplacian allows jumps of arbitrary step size to enter the model.
For this purpose, let s ∈ (0, 1) and denote with P a probability measure on N defined by

P(N ) := cs
!
j∈N

1

j1+2s
, cs :=

 ∞!
j=1

1

j1+2s

−1 ,
for any N ⊂ N. As illustrated in Figure 4.3, the motion of the particle in Rd at each time
step τ is then defined by jhn, where n ∈ ∂B1(0) is a random direction chosen according
to a uniform distribution, j ∈ N a random parameter chosen according to the probability
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(x, t)

1 n

h
h

h

(x+ jhn, t+ τ)

Figure 4.3: Random walk of a particle at time t and t+ τ .

distribution P, and h ∈ R the minimal step size. The probability of the particle being at
point x at time t+ τ now reads

u(x, t+ τ) =
cs

|∂B1(0)|
�
∂B1(0)

!
j∈N

u(x+ jhn, t)

j1+2s
dσ, (4.31)

where


∂B1(0)

· dσ denotes the surface integral over the unit sphere. The right-hand side of
(4.31) can be seen as the sum over all probabilities of the particle being at time t at any
other location x + jhn, for some direction n ∈ B1(0) and j ∈ N, times the probability of
jumping from there to x. The change of variable n 4→ −n gives

u(x, t+ τ) =
cs

|∂B1(0)|
�
∂B1(0)

!
j∈N

u(x− jhn, t)

j1+2s
dσ,

so that

u(x, t+ τ) =
cs

2|∂B1(0)|
�
∂B1(0)

!
j∈N

u(x+ jhn, t) + u(x− jhn, t)

j1+2s
dσ.

Since cs/(2|∂B1(0)|) normalizes the above integral, we derive

u(x, t+ τ)− u(x, t) =
cs

2|∂B1(0)|
�
∂B1(0)

!
j∈N

u(x+ jhn, t) + u(x− jhn, t)− 2u(x)
j1+2s

dσ.

Setting τ = h2s, we obtain

u(x, t+ τ)− u(x, t)

τ
=

cs
2|∂B1(0)|

�
∂B1(0)

!
j∈N

h
u(x+ jhn, t) + u(x− jhn), t)− 2u(x)

(jh)1+2s
dσ.

For fixed n, we recognize the sum as Riemann sum for an integral. Under the given as-
sumptions on τ and h, we take the limit h → 0 and use polar coordinates to finally arrive
at

∂tu(x, t) =
cs

2|∂B1(0)|
�
∂B1(0)

� ∞
0

u(x+ rn, t) + u(x− rn, t)− 2u(x, t)
|r|1+2s dr dn

=
cs

2|∂B1(0)|
�
Rd

u(x+ y, t)− 2u(x, t) + u(x− y, t)

"y"d+2s2

dy.
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The constant in front of the integral evaluates to cs/(2∂B1(0)) = Cd,s. In view of (4.30),
the expression above is precisely what is defined in (4.29) and therefore provides a reasonable
definition of the fractional Laplacian on Ω = Rd. If Ω � Rd is a bounded subset of Rd,
then the definition of (−Δ)sI is still coherent with this probabilistic interpretation with the
modification that particles hitting the boundary of Ω are destroyed. The particular choice
of the normalization in (4.29) ensures that, under reasonable assumptions on u, one has
[DL21]

lim
s→0+

(−Δ)sIu(x) = u(x), lim
s→1−

(−Δ)sIu(x) = −Δu(x).

Throughout the last two decades, the integral fractional Laplacian has evoked a significant
amount of research activity [WGP17, BLP19a, FKM20, ADS21, FMP21] and appears to
be, together with our definition of (−Δ)s, the most popular choice to define the fractional
powers of the Laplacian. Worth mentioning, however, the operators (−Δ)s and (−Δ)sI
are indeed inherently different. As shown in [SEV14], the smallest eigenvalue of (−Δ)sI
is known to be strictly smaller than the one of (−Δ)s. Furthermore, the eigenfunctions
of the integral fractional Laplace are only Hölder continuous while the eigenfunctions of
(−Δ)s coincide with those of −Δ and thus are smooth if Ω is smooth. Finally, we refer to
[CS16, Gru16] to see that solutions to the fractional Poisson problem involving the integral
fractional Laplacian behave like

u(x) ∼ dist(x, ∂Ω)s + v(x)

for x close to ∂Ω, where v is a smooth function defined on Ω.

4.3.2 The Regional Fractional Laplace

Somewhat unnatural, the integral fractional Laplacian accesses values of u outside its orig-
inal domain of definition Ω. One possibility to overcome this inconvenience is provided
by the regional fractional Laplacian (sometimes also called restricted fractional Laplacian),
which restricts the integration domain in (4.29) to Ω [GM05, GM06, Gua06].

Definition 4.18. For all s ∈ (0, 1) we define the regional fractional Laplacian by

(−Δ)sRu(x) := Cd,s P.V.
�
Ω

u(x)− u(y)

"x− y"d+2s2

dy.

Both (−Δ)sI and (−Δ)sR are distinct mathematical objects since

(−Δ)sIu(x) = Cd,s P.V.
�
Rd

ũ(x)− ũ(y)

"x− y"d+2s2

dy

= Cd,s P.V.
�
Ω

u(x) + u(y)

"x− y"d+2s2

dy + Cd,s

�
Rd\Ω

u(x)

"x− y"d+2s2

dy

= (−Δ)sRu(x) + Cd,s

�
Rd\Ω

u(x)

"x− y"d+2s2

dy.
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Unlike the integral fractional Laplacian, the random motion of particles modeled by (−Δ)sR
allows for jumps from the exterior into the domain Ω, but are either reflected in Ω or
killed when reaching the boundary ∂Ω, see for instance [BBC03, CKS10, GM05]. For
further details and nice surveys on differences and similarities between various versions of
the fractional Laplacian we refer to the expositions [DWZ17, LPG+20, DL21].
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5 Fractional Evolution Equations

The previous chapter deals with the fractional powers of the spatial differential operator
L. The purpose of this chapter is to give a brief survey over the field of fractional calculus
in order to introduce the time-fractional derivative ∂αt of order α ∈ (0, 1] in the sense of
Caputo. Provided the terminology, we investigate fractional evolution equations of the form

∂αt u+ Lsu = f, in Ω× (0, T ), (5.1a)
u = 0, on ∂Ω× (0, T ), (5.1b)
u = u0, on Ω× {0}, (5.1c)

where T ∈ R+, s ∈ [0, 1], f ∈ L∞(0, T ;L2(Ω)), and u0 ∈ L2(Ω). We derive a variational
formulation for this problem, prove its unique solvability, and provide an explicit represen-
tation of the solution in terms of the eigenfunctions of L.

5.1 Fractional Calculus

Provided a smooth function u and some end time T ∈ R+ ∪ {∞}, which we assume to be
fixed throughout this section, the subject of interest in fractional calculus is to interpolate
the sequence of differentials and integrals

. . . ∂2t u(t), ∂tu(t), u(t),

� t

0
u(τ) dτ,

� t

a

� τ1

a
u(τ) dτ dτ1, . . . , t ∈ (0, T ),

where u : (0, T ) → H is a function with values in a Hilbert space H. The interest in
these problems has deepened throughout the last decades; see [Baz01, Ana18, LP12] for the
abstract Bochner framework and [Die10, Pod99, MR93, OS74, SKM93, Mai10, BDST12,
FS21] for H = R. Our main focus lies in the definition of fractional time-derivatives ∂αt .
One possible way of doing this, which is also the one we pursue in this thesis, comes in two
stages. First, one introduces the fractional integral Jα of order α, to define, in the second
stage, ∂αt as “inverse” of Jα.

5.1.1 Fractional Integrals

The driving force in the development of fractional integrals is the so-called Cauchy formula
for repeated integration

Jnu(t) :=

� t

0

� τ1

0
· · ·
� τn−1

0
f(τn) dτn . . . dτ2 dτ1 =

1

(n− 1)!
� t

0
(t− τ)n−1u(τ) dτ, (5.2)
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see [SKM93, eq. (2.16)] for the scalar case and [Mai10, eq. (1.1)] for the Bochner framework.
The formula holds for all n ∈ N, u ∈ C([0, T ];H), and follows from a standard induction
argument. Due to Theorem 2.22, (5.2) can be written in terms of the Gamma function

Jnu(t) =
1

Γ(n)

� t

0
(t− τ)n−1u(τ) dτ. (5.3)

Observing that there is no reason to restrict (5.3) to integer values of n only, we arrive at
the following classical definition.

Definition 5.1. Let α ∈ R+ and u ∈ L1(0, T ;H). We define the Riemann-Liouville frac-
tional integral by

Jαu(t) :=
1

Γ(α)

� t

0
(t− τ)α−1u(τ) dτ, t ∈ (0, T ). (5.4)

By convention, we set J0u(t) := u(t).

More succinctly, the Riemann-Liouville fractional integral can be written as convolution
operator

Jαu(t) = (u ∗ Kα)(t), Kα(t) :=
tα−1

Γ(α)
I . (5.5)

Both u and Kα are contained in L1(0, T ;H). Hence, according to the fourth property in
Lemma 2.12, Jα is well-defined and Jαu ∈ L1(0, T ;H). Due to (5.3), Jα coincides with the
classical repeated integral whenever α ∈ N. Several well-known properties from standard
integration theory are preserved by our generalization.

Lemma 5.2. Let α ∈ R+0 and u ∈ L1(0, T ;H). Then there holds

1. Jα is a linear operator,

2. JαJβu(t) = JβJαu(t) = Jα+βu(t) for β ∈ R+ and almost all t ∈ (0, T ),
3. for all n ∈ N0 with n < α and almost all t ∈ (0, T )

∂nt J
αu = Jα−nu. (5.6)

Proof. The first property is clear. The second is a direct consequence of (5.5) and the fact
that the convolution is commutative, associative, and Kα ∗Kβ = Kα+β . The third one holds
since, by the second property,

∂nt J
αu = ∂nt J

nJα−nu = Jα−nu.

We mention that even for smooth functions, the order of differentiation and integration in
(5.6) cannot be interchanged without further ado. To provide a more intuitive understanding
of fractional integrals, we consider the following example, where we set H = R.

66



5 Fractional Evolution Equations

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0 1 2 3 4

0

2

4

6

8

t

J
α
u
(t
)

0 0.5 1 1.5 2

0

2

4

6

8

t

J
α
u
(t
)

Figure 5.1: Riemann-Liouville fractional integral Jαu(t) for u(t) = 1 (left) and u(t) = et

(right) and different orders α ∈ [0, 2].

Example 5.3. Let s > −1 and u(t) = ts. Since u ∈ L1(0, T ) := L1(0, T ;R), its Riemann-
Liouville fractional integral Jαu is well-defined for all α ∈ R+0 and can be computed explicitly.
After the substitution ζ = τ

t , we apply Lemma 2.24 to infer

Jαu(t) =
1

Γ(α)

� t

0
(t− τ)α−1τ s dτ

=
1

Γ(α)
ts+α

� 1
0
(1− ζ)α−1ζs dζ =

Γ(s+ 1)

Γ(s+ α+ 1)
ts+α,

which can be seen as a straightforward generalization of the integer-order case. We illustrate
the fractional integrals of u for s = 0 and different orders α in Figure 5.1. In accordance
with Definition 5.1, we observe that for all positive values of α the fractional integral is zero
in t = 0. For small values, the function Jαu(t) exhibits an algebraic singularity in t = 0.
Increasing values of the exponent, however, improve its regularity close to the origin.

Remark 5.4. It can be shown that Jα indeed improves the smoothness properties of its
arguments. Roughly spoken, Jαu(t) can be written as sum of two expressions one of which
is better behaved than u, while the other one might be nonsmooth in 0 but infinitely differ-
entiable elsewhere [Die10, Theorem 2.5].

The Riemann-Liouville integral satisfies continuity properties with respect to both the
fractional exponent and the input function u. Exemplarily, we give the following statement.

Proposition 5.5. Let α ∈ R+0 and (un)n∈N ⊂ C([0, T ];H) a sequence of functions that
converges uniformly to some u ∈ C([0, T ];H). Then there holds for almost all t ∈ (0, T )

lim
n→∞ Jαun(t) = Jαu(t) in H.
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Proof. Following [Die10, Theorem 2.7], we apply the first point in Lemma 2.12 to observe

"Jαun(t)− Jαu(t)"H ≤ 1

Γ(α)

� t

0
(t− τ)α−1"un(τ)− u(τ)"H dτ

≤ 1

Γ(α)
sup

τ∈[0,T ]
"un(τ)− u(τ)"H

� t

0
(t− τ)α−1 dτ

≤ Tα

Γ(α)
sup

τ∈[0,T ]
"un(τ)− u(τ)"H,

which converges to zero as n → ∞.
This result allow us to look at another instructive example that shall be instrumental for

further discussions.

Example 5.6. Consider the exponential function u(t) = etλ for some λ > 0. Thanks to
Proposition 5.5 and Example 5.3 we have

Jαu(t) = Jα

 ∞!
j=0

tjλj

j!

 = ∞!
j=0

λj

j!
Jα(tj) =

∞!
j=0

λjtj+α

Γ(j + α+ 1)
= tαE1,α+1(tλ)

for all α ∈ R+0 . These fractional integrals of u are illustrated in Figure 5.1 for α ∈ [0, 2]
and λ = 1. The example shows that fractional integrals do not reproduce the exponential
function in the same manner as the integer ones do.

5.1.2 Fractional Differentiation

The definition of the fractional integral is straightforward. More delicate is the situation
for fractional derivatives. One cannot simply allow for negative values of α in (5.4) without
suffering from substantial regularity limitations on u. To overcome this difficulty, several
mathematically distinct definitions of time-fractional differential operators have been pro-
posed. We refer to the monographs [SKM93, Pod99, Die10] for detailed expositions. Among
the most prominent ones, there are Riemann-Liouville and Caputo fractional derivatives,
which are defined as the left- and the right inverse of the fractional integral, respectively. On
its natural domain of definition, the latter is not invertible which is why these two notions
of fractional differentiation do not coincide in general. The Caputo fractional derivative,
however, turns out to be the more natural choice when it comes to actual applications. We
therefore introduce it as the fractional derivative in the following definition [Cap67, Cap69].
Here and throughout, we write %·& to denote the ceiling function.
Definition 5.7. Let u : (0, T ) → H, α ∈ R+0 , and n = %α&. The fractional derivative of
order α is defined by

∂αt u(t) := Jn−α∂nt u(t), t ∈ (0, T ),

whenever ∂nt u ∈ L1(0, T ;H).
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The expression ∂αt u(t) can be seen as classical (weak) derivative of u that is perturbed by
a fractional integral of suitable order. A more explicit representation of ∂αt for all α 8∈ N0
follows by direct substitution

∂αt u(t) =
1

Γ(n− α)

� t

0
(t− τ)n−α−1∂nt u(τ) dτ.

This integral representation makes it clear that the whole evolution history of u needs to be
taken into account to evaluate ∂αt u(t) for one t ∈ (0, T ), rendering the fractional derivative
to be nonlocal. Note that all classical derivatives are recovered from ∂αt whenever α ∈ N.
Hence, ∂αt is a local operator if and only if α ∈ N0. The reader is encouraged to compare
the following properties for fractional derivatives with the corresponding ones from classical
calculus.

Lemma 5.8. For all α ∈ R+0 the fractional derivative ∂αt is a linear operator. Moreover,
there holds for almost every t ∈ (0, T )

1. ∂αt ∂
m
t u(t) = ∂α+mt u(t) for all m ∈ N,

2. ∂αt J
mu(t) = ∂α−mt u(t) for all m ∈ N with m ≤ α,

3. ∂αt is a right-inverse of Jα, that is,

Jα∂αt u(t) = u(t). (5.7)

Proof. The linearity of ∂αt follows from the linearity of Jα and the integer-order derivative.
To confirm property 1, we write n = %α& to deduce for almost all t ∈ (0, T )

∂αt ∂
m
t u(t) = Jn−α∂n+mt u(t) = Jn+m−(α+m)∂n+mt u(t) = ∂α+mt u(t),

where we use that n+m = %α+m&. Similarly, there holds

∂αt J
mu(t) = Jn−α∂n−mt u(t) = Jn−m−(α−m)∂n−mt u(t) = ∂α−mt u(t),

proving property 2. The last one is a direct consequence of the second claim in Lemma 5.2,
since

Jα∂αt u(t) = JαJn−α∂nt u(t) = Jn∂nt u(t) = u(t).

Note that not every relation can be carried over from the classical setting in a direct
fashion. In general, the properties 1 to 3 in Lemma 5.8 do not hold after interchanging the
order of the operators even if u is smooth. Moreover, ∂αt ∂

β
t u(t) 8= ∂α+βt u(t) for arbitrary

values of α, β ∈ R+.
The domain of ∂αt can be made more explicit by means of so-called absolutely continuous

functions [Die10]. To simplify matters, we study the required regularity assumptions on u
by means of the following instructive example.
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Figure 5.2: Fractional derivative ∂αt u(t) of u(t) = t
3
2 (left) and u(t) = e

3t
4 (right) for different

orders α ∈ [0, 2].

Example 5.9. Let n = %α&, and u(t) = ts for some s ∈ R. We compute

∂nt u(t) =

����
Γ(s+1)
Γ(s−n+1) t

s−n, if s > n− 1 or s ∈ [n− 1,−∞) \ {n− 1, n− 2, · · · },
0, if s ∈ {n− 1, n− 2, . . . , 0},
(−1)n Γ(−s+n)Γ(−s) ts−n, if s ∈ −N.

(5.8)

To ensure ∂nt u ∈ L1(0, T ), we thus require s ∈ {n− 1, . . . , 0} or s > n− 1 = ,α-, where ,·-
denotes the floor function. Under these assumptions on s, we infer from (5.8) and Example
5.3 that

∂αt u(t) = Jn−α∂nt u(t) =

�
Γ(s+1)
Γ(s−α+1) t

s−α, if s > n− 1,
0, if s ∈ {0, . . . , n− 1},

which can be seen as straightforward generalizations of the integer-order case. We choose
s = 3

2 and α ∈ [0, 2] to plot the fractional derivatives of u(t) in Figure 5.2. For α = 3
2 , the

fractional derivative of u is identically one. For larger values of α, the derivatives possess
a pole at t = 0 while smaller values of the exponent improve the smoothness of ∂αt u(t).

Another intriguing example is the following.

Example 5.10. We compute the fractional derivative of order α ∈ R+0 of u(t) = etλ for
some λ ∈ R+ fixed. Thanks to the absolute convergence of the exponential series, Proposition
5.5, and Example 5.3, there holds with n = %α&

Jn−αu(t) =
∞!
j=0

Jn−α((λt)j)
j!

=
∞!
j=0

Γ(j + 1)λjtj+n−α

j!Γ(j + n− α+ 1)
=

∞!
j=0

λjtj+n−α

Γ(j + n− α+ 1)
. (5.9)
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t u∂2
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Figure 5.3: Illustration of R∂αt (red) and ∂αt (cyan) for α ∈ (1, 2).

Since

∂nt u(t) = λnetλ,

we deduce from (5.9)

∂αt u(t) = λnJn−α(etλ) = λn
∞!
j=0

λjtj+n−α

Γ(j + n− α+ 1)
= λntn−αE1,n−α+1(tλ),

which is depicted for λ = 3
4 and different orders α ∈ [0, 2] in Figure 5.2.

In its present form, the fractional derivative of order α is defined for allH-valued functions
that satisfy ∂nt u ∈ L1(0, T ;H), where n = %α&. If α ∈ (0, 1), Example 5.9 shows that for
u(t) = ts we require s ≥ 0 to ensure that ∂αt is well-defined. This implies ∂tu ∈ L2(0, T ;H)
so that u ∈ H1((0, T );H). This is rather prohibitive in view of the fact that the regularity
of solutions to fractional PDEs is limited. To mitigate this problem, we introduce an
alternative definition of fractional time-derivatives in the form of the Riemann-Liouville
fractional derivative.

Definition 5.11. Let u : (0, T ) → H, α ∈ R+0 , and n = %α&. We define the Riemann-
Liouville fractional derivative by

R∂
α
t u(t) := ∂nt J

n−αu(t), t ∈ (0, T ).

Since J0u = u, Riemann-Liouville fractional derivatives coincide with all classical deriva-
tives of u whenever α is an integer and

R∂
α
t u(t) =

1

Γ(n− α)
∂nt

� t

0
(t− τ)n−α−1u(τ) dτ

if α 8∈ N0. The differences between our definition of the fractional derivative and the one in
the sense of Riemann-Liouville is made visible in Figure 5.3. Unlike ∂αt , R∂αt first applies
the fractional integral of suitable order followed by an appropriate number of integer-order
derivatives. This definition demands less regularity and can be applied to functions u where
∂αt u is not even defined. To emphasize this matter, we examine the Riemann-Liouville
fractional derivative of the power function u(t) = ts to compare its regularity requirements,
encoded in the exponent s, to the ones imposed by Example 5.9.
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Example 5.12. We are interested in the computation of the Riemann-Liouville fractional
derivative of the function u(t) = ts. Since u ∈ L1(0, T ) is a necessary condition for
Jn−αu(t), n = %α&, and thus also for R∂

α
t u(t) = ∂nt J

n−αu(t), to be defined, we require
s > −1. Thanks to Example 5.3, we have

R∂
α
t u(t) = ∂nt J

n−αu(t) =
Γ(s+ 1)

Γ(s+ n− α+ 1)
∂nt (t

n−α+s). (5.10)

If α−s ∈ N, then the right-hand side of (5.10) is the classical nth derivative of a polynomial
of degree n− (α− s) ∈ {0, 1, . . . , n− 1}. We find

R∂
α
t u(t) = 0

whenever α− s ∈ N. On the other hand, if α− s 8∈ N, there holds

R∂
α
t u(t) =

Γ(s+ 1)

Γ(s− α+ 1)
ts−α.

Noting that s > n − 1 implies α − s 8∈ N, we conclude, in view of Example 5.9, that
∂αt u(t) = R∂

α
t u(t) whenever u(t) = ts and s > n − 1. The Riemann-Liouville fractional

derivative, however, is also meaningful if s ∈ (−1, n− 1]. In particular, if α ∈ (0, 1), then

R∂
α
t u(t) =

�
0, if s = α− 1,
Γ(s+1)
Γ(s−α+1) t

s−α, if s ∈ (−1,∞) \ {α− 1}, (5.11)

whereas ∂tu(t) = sts−1 8∈ L1(0, T ) for all s ∈ (−1, 0) so that ∂αt u(t) = Jn−α∂tu(t) is not
well-defined in this case.

The power function is a showcase for the different regularity requirements imposed by
∂αt and R∂

α
t . Indeed one can show that the domain of R∂αt is a super set of the one of

∂αt [Die10, Pod99]. Not only the domains, however, but also the operators themselves are
inherently different as the following example shows.

Example 5.13. We compute the Riemann-Liouville fractional derivative of u(t) = etλ for
some λ ∈ R+. Thanks to Proposition 5.5 and Example 5.3, we find that

Jn−αu(t) =
∞!
j=0

Jn−α((λt)j)
j!

=

∞!
j=0

Γ(j + 1)λjtj+n−α

j!Γ(j + n− α+ 1)
=

∞!
j=0

λjtj+n−α

Γ(j + n− α+ 1)
.

Hence,

R∂
α
t u(t) = ∂nt

 ∞!
j=0

λjtj+n−α

Γ(j + n− α+ 1)

 = ∞!
j=0

λjtj−α

Γ(j − α+ 1)
= t−αE1,1−α(λt).

Comparing these results with those obtained in Example 5.10, we see that ∂αt and R∂
α
t are

indeed inherently different operators.
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The following lemma follows from straightforward adaptions of Lemma 5.8 to the Riemann-
Liouville setting.

Lemma 5.14. For all α ∈ R+0 the Riemann-Liouville fractional derivative R∂
α
t is a linear

operator. Moreover, there holds for almost every t ∈ (0, T )
1. ∂mt R∂

α
t u(t) = R∂

α+m
t u(t) for all m ∈ N,

2. R∂
α
t u(t) = ∂mt Jm−αu(t) for all m ∈ N with m ≥ α,

3. R∂
α
t is a left-inverse of of Jα, that is,

R∂
α
t J

αu(t) = u(t).

Proof. The linearity of ∂αt follows from the linearity of Jα and the integer-order derivative.
Property 1 holds since

∂mt R∂
α
t u(t) = ∂m+nt Jn−αu(t) = ∂m+nt Jm+n−(m+α)u(t)

and m+ n = %m+ α&. Similarly, there holds

∂mt Jm−αu(t) = ∂nt ∂
m−n
t Jm−nJn−αu(t) = ∂nt J

n−αu(t) = R∂
α
t u(t),

proving property 2. To confirm the last conjecture, we apply the second point in Lemma
5.2 to see that

R∂
α
t J

αu(t) = ∂nt J
n−αJαu(t) = ∂nt J

nu(t) = u(t).

Despite being a driving force in the development of fractional calculus, the Riemann-
Liouville derivative has yet taken only a minor role in applied modern science. One of the
reasons for this issue is laid out in the following proposition; see e.g., [CM11] for a proof.

Proposition 5.15. Let α ∈ R+ \ N, n = %α&, and u ∈ Hn((0, T );H). Then there holds

R∂
α
t u(t) =

n−1!
j=1

∂jt u(0)

Γ(j − α+ 1)
tj−α + Jn−α∂nt u(t). (5.12)

Equation (5.12) shows that Riemann-Liouville fractional derivatives have a singularity at
the origin t = 0. Therefore, differential equations involving these derivatives do not allow
for initial conditions of the form (5.1c) but require modifications that only have a limited
physical meaning. Moreover, (5.11) shows that

R∂
α
t (1) =

1

Γ(1− α)
t−α, α ∈ (0, 1).

Hence, the Riemann-Liouville fractional derivative of constant functions is not identically
zero if α 8∈ N, which contradicts our natural understanding of derivatives. As the following
theorem shows, ∂αt can be seen as regularization of R∂αt which “subtracts” the terms causing
the singularity. For simplicity, we restrict ourselves to the case α ∈ [0, 1] and refer to [Die10,
Theorem 3.1] and [Baz01, Section 1.2] for a more general treatment of this subject.
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Theorem 5.16. For all α ∈ [0, 1] there holds

∂αt u(t) = R∂
α
t (u(t)− u(0)). (5.13)

In accordance with Example 5.9 and 5.12, this result shows that ∂αt and R∂
α
t , α ∈ [0, 1],

coincide for all functions u that vanish at the origin, provided that both derivatives are
defined. While the left-hand side of (5.13) exists if ∂αt u(t) exists, the right-hand side is
meaningful if R∂αt u(t), which imposes less regularity assumptions on u, and u(0) are well-
defined. The latter condition is weaker than the previous one which allows us to extend the
definition of ∂αt in the following manner, where we again limit ourselves to α ∈ [0, 1].
Definition 5.17. For all α ∈ [0, 1] we define the fractional derivative of order α by

∂αt u(t) := R∂
α
t (u(t)− u(0)), t ∈ (0, T ). (5.14)

Remark 5.18. Definition 5.17 is not the most general version of the Caputo fractional
derivative that can be found in the literature. If ∂αt is the derivative of order α ∈ (0, 1), one
can expect a natural interpretation of ∂αt u(t) for functions being contained in the interpo-
lation space Hα((0, T );H) := [H0,H1]α, where H0 = L2(0, T ;H) and H1 = H1((0, T );H).
Indeed, one can show that (5.14) is meaningful for all u ∈ Hα((0, T );H) if α > 1

2 . In case
of 0 < α ≤ 1

2 , one has to resort to density arguments. In its present form, however, our
definition of ∂αt is sufficient for the scope of this thesis and we direct the interested reader
to [GLY15, Kar18, LS21] for a detailed investigation of this matter.

Remark 5.19. It goes without saying that ∂αt and R∂
α
t do not cover all possible definitions

of fractional in-time differentiation operators that can be found in the literature. We name
e.g., the Grünwald-Letnikov and the Miller-Ross sequential derivative [Pod99, Die10], which
generally lead to operators that are distinct from the ones inspected here.

A classical approach for solving scalar fractional differential equations is based on the
Laplace transform. Therefore, we require one final technical result before building the
bridge to fractional parabolic equations.

Lemma 5.20. For all α ∈ (0, 1] there holds

L [∂αt u](z) = zαL [u](z)− zα−1u(0).

Proof. Recalling (5.5), we write

∂αt u(t) = (K1−α ∗ ∂tu)(t), K1−α(t) = t−α

Γ(1− α)
I .

We successively apply (2.7), Lemma 2.23, and (2.8) to deduce

L [∂αt u](z) = L [K1−α](z)L [∂tu](z) = zα−1(zL [u](z)−u(0)) = zαL [u](z)−zα−1u(0).
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5 Fractional Evolution Equations

5.2 Weak Formulation, Existence, and Uniqueness

We now come to the core of this chapter and consider the fully space-time fractional diffusion
equation

∂αt u+ Lsu = f, in Ω× (0, T ), (5.15a)
u = 0, on ∂Ω× (0, T ), (5.15b)
u = u0, on Ω× {0}, (5.15c)

where α ∈ (0, 1], T ∈ R+, s ∈ [0, 1], f ∈ L∞(0, T ;L2(Ω)), and u0 ∈ L2(Ω). To derive
a weak formulation for this problem, we consider u : (0, T ) → Hs

0(Ω) as a function with
Hilbert-valued range. Assuming ∂αt u(t) ∈ H−s(Ω), we may apply a test function v ∈ Hs

0(Ω)
on both sides of (5.15a) to deduce, after identifying L2(Ω) with its dual space, for almost
all t ∈ (0, T )

�∂αt u(t), v�+ �Lsu(t), v� = (f(t), v)L2(Ω).

To give meaning to the initial condition (5.15c), we require u ∈ C([0, T ];L2(Ω)). Invoking
(4.7), we arrive at the weak formulation: Find u ∈ L2(0, T ;Hs(Ω)) ∩ C([0, T ];L2(Ω)) with
∂αt u ∈ L2(0, T ;H−s(Ω)) such that for almost all t ∈ (0, T )

∀v ∈ Hs
0(Ω) : �∂αt u(t), v�+ (u(t), v)Hs

L = (f(t), v)L2(Ω), (5.16a)

u(0) = u0. (5.16b)

To find a solution to this problem, we make the ansatz

u(t) =

∞!
i=1

ui(t)ϕi

and test (5.16a) with v = ϕj for some j ∈ N. This shows that for all j ∈ N there must hold

∂αt uj(t) + λsjuj(t) = fj(t), (5.17a)

uj(0) = u0,j , (5.17b)

where fj(t) = (ϕj , f(t))L2(Ω) and u0,j = (ϕj , u0)L2(Ω). Following [Pod99, p. 140], we apply
the Laplace transform on both sides of equation (5.17a) to arrive, after consulting Lemma
5.20, at the algebraic equation

zαL [uj ](z)− zα−1u0,j + λsjL [uj ](z) = L [fj ](z).

Rearranging the terms reveals

L [uj ](z) =
zα−1u0,j
zα + λsj

+
L [fj ](z)

zα + λsj
. (5.18)

Invoking Lemma 2.31 with k = 0 and β = 1, we infer that

L −1
�
zα−1u0,j
zα + λsj

	
(t) = Eα,1(−tαλsj)u0,j .
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5 Fractional Evolution Equations

To compute the inverse Laplace transform of the second term in (5.18), we apply the second
property in Lemma 2.20 followed by Lemma 2.31 with k = 0 and β = α to find

L −1
�

L [fj ](z)

zα + λsj

	
(t) = fj(t) ∗ L −1

�
1

zα + λsj

	
(t)

= fj(t) ∗ tα−1Eα,α(−tαλsj) =

� t

0
(t− τ)α−1Eα,α(−(t− τ)αλsj)fj(τ) dτ.

By the linearity of the Laplace transform, we conclude that the unique solution to (5.17)
can be expressed as

uj(t) = Eα(−tαλsj)u0,j +

� t

0
(t− τ)α−1Eα,α(−(t− τ)αλsj)fj(τ) dτ.

Summation of these scalar solutions over every eigenmode yields the following result; see
also [NOS16, BLP17b].

Theorem 5.21. Let α ∈ (0, 1], s ∈ [0, 1], f ∈ L∞(0, T ;L2(Ω)), and u0 ∈ L2(Ω). Then
(5.16) possesses a unique solution u ∈ L2(0, T ;Hs(Ω)) ∩ C([0, T ];L2(Ω)) with ∂αt u ∈
L2(0, T ;H−s(Ω)) that satisfies

u(t) = Eα(−tαLs)u0 +

� t

0
(t− τ)α−1Eα,α(−(t− τ)αLs)f(τ) dτ

:=
∞!
j=1

�
Eα,1(−tαλsj)u0,j +

� t

0
(t− τ)α−1Eα,α(−(t− τ)αλsj)fj(τ) dτ

�
ϕj ,

(5.19)

where u0,j = (ϕj , u0)L2(Ω) and fj(t) = (ϕj , f(t))L2(Ω).

For regularity estimates of solutions to (5.16) when Ls = (−Δ)s we direct the reader to
[NOS16], see also [SY11]. Note that for the integer-order case α = s = 1, the well-known
variation-of-constants formula for local parabolic problems is recovered

u(t) = e−tLu0 +
� t

0
e−(t−τ)Lf(τ) dτ.

For arbitrary right-hand side functions f ∈ L∞(0, T ;L2(Ω)), the integral in (5.19) cannot
be computed explicitly and requires numerical approximation. In a few particular scenarios,
however, it can be expressed in terms of elementary functions.

Corollary 5.22. Let α ∈ (0, 1], s ∈ [0, 1], f(t) =
"n

i=0 t
ivi for some n ∈ N and vi ∈

L2(Ω), and u0 ∈ L2(Ω). Then (5.16) possesses a unique solution u ∈ L2(0, T ;Hs(Ω)) ∩
C([0, T ];L2(Ω)) with ∂αt u ∈ L2(0, T ;H−s(Ω)) that satisfies

u(t) = Eα(−tαLs)u0 +
n!
i=0

Γ(i+ 1)tα+iEα,α+i+1(−tαLs)vi

:=

∞!
j=1

�
Eα(−tαλsj)u0,j +

n!
i=0

Γ(i+ 1)tα+iEα,α+i+1(−tαλsj)vi,j

�
ϕj ,

where u0,j = (ϕj , u0)L2(Ω) and vi,j = (ϕj , vi)L2(Ω).
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Proof. Due to

(ϕj , f(t))L2(Ω) =

n!
i=0

tivi,j ,

the series representation (5.19) evaluate to

uj(t) = Eα(−tαλsj)u0,j +
n!
i=0

vi,j

� t

0
(t− τ)α−1Eα,α(−(t− τ)αλsj)τ

i dτ.

The conjecture now follows from Lemma 2.32.

We mention that also for α = 0 the equation (5.16a) has a unique solution that can
be expressed in terms of the Mittag-Leffler function in the sense of Remark 2.26. In this
regime, the fractional derivative degenerates to ∂αt = ∂0t = I in which case f(t) = f is
assumed to be constant and the initial condition (5.16b) is neglected.

Theorem 5.23. Let α = 0, s ∈ [0, 1], and f ∈ L2(Ω). Then there exists a unique solution
to (5.16a) which is given by

u = E0(−Ls) :=

∞!
j=1

fj
1 + λsj

, fj = (ϕj , f)L2(Ω).

Proof. If α = 0, (5.16a) can be written as

∀v ∈ Hs
0(Ω) : (u, v)Hs

L̃
= (f, v)L2(Ω),

where L̃ := L+ I. The claim now follows from Theorem 4.14 and the observation that the
eigenvalues (λ̃j)∞j=1 of L̃ satisfy λ̃j = λj + 1 for all j ∈ N, where λj is the jth eigenvalue of
L.
Remark 5.24. The situation is very similar if α ∈ (1, 2), which is commonly referred to as
fractional wave equation. Provided an additional condition on the first derivative of u, its
solution can also be expressed in terms of the generalized Mittag-Leffler Eα,β(−tαλs) with
α ∈ (1, 2); see [LS21, OS18].

The impact of the fractional parameters on solutions to (5.16) for L = −Δ, Ω = (0, 1)2,
f ≡ 0, and

u0(x) =

�
1, if (x− 0.5)(y − 0.5) ≥ 0,
0, else,

x = (x, y) ∈ Ω,

is reported in Figure 5.4. The example illustrates solutions to the fractional in-space,
fractional in-time, and a fully space-time fractional diffusion equation. The diffusion process
is faster when the value of s increases or α decreases.
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Figure 5.4: Evolution of the solutions u to the fractional heat equation (5.16) when
L = −Δ for t = 0.01, 0.05, 0.1 (from left to right) and (α, s) ∈
{(1, 0.75), (0, 75, 1), (0, 75, 0.75)} from top to bottom.
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6 Numerical Approximation of Fractional
Diffusion Problems

The literature provides an ample coverage on the numerical treatment of fractional el-
liptic PDEs [ILTA05, ILTA06, NOS15, BP15, Vab15, MN18, HLM+18, BLP19b, HMP21,
DS21, DH21, HKL+21b, HKL+21a, Vab21a, Vab21b], space-fractional evolution equations
[BLP17a, AM17, MR20b, Vab21c], time-fractional evolution equations [Lub88, JLZ15, KW21,
FRW21], and fully space-time fractional PDEs [MN11, YTLI11, NOS16, BLP17b, Rie20,
DHS21]. One way or another, any of the schemes listed above has to compensate for the
nonlocality of the problem. In this chapter we present three different localization techniques
to approximate fractional diffusion problems of elliptic and parabolic type.

1. The previous two chapters show that solutions to fractional PDEs can be expressed
explicitly by means of the eigenfunctions of the integer-order differential operator L.
Hence, the solution can be made available by means of the local eigenvalue problems

(ϕj , v)H1
L(Ω)

= λj(ϕj , v)L2(Ω), v ∈ H1
0 (Ω),

which can be computed using standard tools from finite element theory.

2. In Section 4.1.2, it is shown that the inverse fractional diffusion operator can be
interpreted as Bochner integral

L−sf = sin(πs)
π

� ∞
0

ζ−s(L+ ζ I)−1f dζ, f ∈ L2(Ω).

The integral can be discretized using a quadrature whose evaluation requires the
solution to multiple standard reaction-diffusion problems.

3. According to Theorem 4.13, L−sf can be recovered from the PDE

−LU + 1− 2s
ζ

U + ∂2ζU = 0, in CΩ,
U = 0, on ∂Ω× R+,

∂U
∂ns

= dsf, on Ω× {0}.

Therefore, the nonlocal problem can be localized at the cost of solving a degenerate
PDE in a d+ 1-dimensional domain.

Clearly, the exact solutions to the respective local problems mentioned above are analytically
not available and thus require numerical approximation. The discretization scheme of our
choice is the finite element method, which we briefly introduce in the following section.
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6.1 The Finite Element Method

We intend to gather a minimum of information to provide a superficial understanding of the
material and refer the interested reader to the monographs [Cia02, Tho06] for an in-depth
review on this topic. Throughout what follows, we assume Ω ⊂ Rd, d ∈ {1, 2, 3}, and
denote with Th a partition of Ω into intervals, triangles, and tetrahedrons in one, two, and
three dimensions, respectively, whose components T ∈ Th we call elements. The subscript
h indicates that discretized objects are considered.

Definition 6.1. A triangulation Th of Ω is called regular if

1. the intersection of the interior of two distinct elements of Th is empty,

2. the intersection of two elements of Th is either empty or a common face, edge, or
vertex of both,

3. the domain is covered by the elements Ω = ∪T∈ThT .

Depending on the shape of the elements, a triangulation fulfills different regularity as-
sumptions. Here and in what follows, diam(T ) and |T | denotes the diameter and the
length/area/volume of T , respectively.

Definition 6.2. A family of triangulations (Th)h∈R+
0

is called

– shape-regular if there exists some constant c ∈ R+ such that

max
T∈Th

diam(T )d

|T | ≤ c,

– quasi-uniform if c ∈ R+ exists such that

min
T∈Th

diam(T ) ≥ cmax
T∈Th

diam(T ).

Shape regular triangulations have the convenient property that their elements do not
degenerate in the sense that all angles are strictly bounded away from 0 and 180 degrees.
In a quasi-uniform triangulation all elements have nearly the same size. Having ourselves
familiarized with these concepts, we now introduce a finite element as follows [Cia02].

Definition 6.3. The triplet (T, VT ,ΨT ) is said to be a finite element if

1. T ⊂ Rd is a bounded and closed set with non-empty interior and piecewise smooth
boundary,

2. VT is a function space on T of finite dimension n ∈ N,

3. ΨT = {ψT,1, . . . , ψT,n} is a basis of the dual space V #T of VT .

In Definition 6.3, the space VT is often referred to as space of shape functions and ΨT

are the degrees of freedom (dofs).
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Definition 6.4. Let Th be a regular triangulation of Ω and (T, VT ,ΨT ) a finite element
for each T ∈ Th. We call the space of shape functions, where the dofs shared between two
neighboring elements coincide,

Vh := {u ∈
�
T∈Th

VT : ∀ψ ∈ ΨTi ∩ΨTj : ψ(u|Ti) = ψ(u|Tj )},

a finite element space.

A large variety of finite element spaces exist to discretize H1
0 (Ω) efficiently. We provide

here the description of a standard one that shall be used in all our numerical implementa-
tions. Provided a triangulation Th, we set VT = P1(T ) for all T ∈ Th, where Pk(T ) denotes
the space of polynomials of degree k on T . Noting that dimVT = d+ 1, we define the dofs
ΨT := {ψT,1, . . . , ψT,d+1} by

ψT,1(u) := u(Vi), i = 1, . . . , d+ 1,

for all u ∈ VT , where {V1, . . . , Vd+1} is the set of vertices of T . Imposing u(Vi) = 0 if
Vi ∈ ∂Ω, we obtain the so-called Lagrange finite element space of order one with vanishing
trace

P01 (Th) := {u ∈ C(Ω) : u|T ∈ P1(T ) ∀T ∈ Th, u|∂Ω = 0 on ∂Ω}.

Before we proceed with the first of three approximation schemes, we fix some further
notation. For a fixed finite element space Vh with basis (bh,j)Nj=1, N ∈ N, we introduce the
mass matrix M = (M)Ni,j=1 ∈ RN×N of Vh as

Mij := (bh,j , bh,i)L2(Ω), i, j = 1, . . . , N.

In dependency of the differential operator L, we introduce, recalling (4.5), the stiffness
matrix A = (A)Ni,j=1 ∈ RN×N by

Aij := (bh,j , bh,i)H1
L(Ω)

, i, j = 1, . . . , N.

Both M and A are symmetric and positive definite by construction. For any vh ∈ Vh we
denote with vh = (vh,1, . . . , vh,N )

T ∈ RN×1 the coefficient vector of vh such that

vh =
N!
j=1

vh,jbh,j .

6.2 The Discrete Eigenfunction Method

In this section, we make use of the so-called discrete eigenfunction method (DEM) [BP15,
BLP17b, LPG+20, Hof20], see also [ILTA05, ILTA06, YTLI11], to approximate solutions to
fractional PDEs generated by the elliptic and self-adjoint differential operator L. For this
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purpose, we choose Vh ⊂ H1
0 (Ω) to be a finite element space and (ϕh,j)Nj=1 ⊂ Vh its basis

consisting of discrete eigenfunctions with the property

∀vh ∈ Vh : (ϕh,j , vh)Hs
L(Ω) = λh,j(ϕh,j , vh)L2(Ω), (ϕh,i, ϕh,j)L2(Ω) = δij , (6.2)

for all i, j = 1, . . . , N , where δij denotes the Kronecker delta. The quantities (λh,j)Nj=1 ⊂ R+
are the discrete eigenvalues.
The DEM presumes that the solution u is given analytically in terms of the continuous

eigenvalues and eigenfunctions of the differential operator L as

u =

m!
i=0

ui, ui =

∞!
j=1

fτ
i (λj)(ϕj , bi)L2(Ω)ϕj , (6.3)

where m ∈ N, fτ
i is a problem-specific function that depends on a collection of parameters

encoded in the vector τ ∈ Θ ⊂ Rp, p ∈ N, and bi corresponds to the given data of the PDE,
which is assumed to be in L2(Ω) for simplicity. In light of the results presented in Section
4.2 and 5.2, the following configurations are of interest for us.

– In stationary fractional diffusion problems like the ones treated in Theorem 4.14, one
has m = 0, the parametric function fτ

0 (λ) = fs(λ) = λ−s is a power function with
exponent τ = s ∈ Θ = (0, 1), and b0 = b ∈ L2(Ω) corresponds to the source term f
in (4.25).

– In homogeneous fractional evolution equations, we have, in view of Theorem 5.21, a
representation formula of the form (6.3) with m = 0, fτ

0 (λ) = fτ (λ) = Eα(−tαλs),
τ = (α, t, s) ∈ Θ = (0, 1]×R+0 × [0, 1], and b0 = b ∈ L2(Ω) being the initial condition
u0 of the PDE (5.16).

– If we include a source term of the form f(t) =
"n

i=0 t
ivi in (5.16) for some n ∈ N and

vi ∈ L2(Ω), Corollary 5.22 shows that we requirem = n, fτ
i (λ) = tα+iEα,α+i+1(−tαλs),

τ = (α, t, s) ∈ Θ = (0, 1]× R+ × [0, 1], and bi = vi for i = 0, . . . , n.

– In the degenerate parabolic case α = 0, mentioned in Theorem 5.23, we are interested
in the configuration m = 0, fτ

0 (λ) = fτ (λ) = (1 + λs)−1, τ = s ∈ Θ = (0, 1), and
b ∈ L2(Ω) being the time-independent right-hand side function.

The idea of the DEM is to replace the infinite series in (6.3) by means of a finite sum over
the discrete eigenvalues and eigenfunctions, that is,

uDem
h :=

m!
i=0

uDem,i
h , uDem,i

h :=

N!
j=1

fτ
i (λh,j)(ϕh,j , bi)L2(Ω)ϕh,j . (6.4)

More succinctly, the DEM approximation can be written in terms of the matrix

L :=M−1A ∈ RN×N ,

where M and A denote the mass and stiffness matrix, respectively. Although elementary,
the following observation gathers crucial ingredients for our further discussion.
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Lemma 6.5. The matrix L is positive definite, diagonalizable, and its eigenvectors are
exactly the coefficient vectors of (ϕh,j)Nj=1, i.e.,

Lϕh,j = λh,jϕh,j , j = 1, . . . , N. (6.5)

Proof. The fact that L is positive definite and diagonalizable follows from the observation
that L =M−1A is similar to the matrixM− 1

2AM− 1
2 , which is positive definite and diago-

nalizable itself. To proof the remainder of the statement, we deduce from the first identity
in (6.2) that

Aϕh,j = λh,jMϕh,j ,

whence (6.5) holds after multiplication with M−1 from the left.

Remark 6.6. Even though both M and A are sparse and symmetric, the matrix L itself is
neither sparse nor symmetric.

The matrix L can be seen as matrix approximation of the integer-order differential opera-
tor L. If we collect its eigenvectors columnwise in the matrixU = [ϕh,1, . . . ,ϕh,N ] ∈ RN×N ,
it follows from the second identity in (6.2) that UTMU = I. Hence

M = U−TU−1, (6.6)

where U−T := (UT )−1. Two elementary consequences of (6.6) that shall be useful in the
further course of this manuscript are stated below, where for any b ∈ L2(Ω) we write
b = (b1, . . . , bN )

T ∈ RN×1 to label the coefficient vector of the L2-orthogonal projection of
b onto Vh, i.e.,

bj = (ϕh,j , b)L2(Ω), j = 1, . . . , N .

Lemma 6.7. Let U = [ϕh,1, . . . ,ϕh,N ] ∈ RN×N denote the matrix whose columns contain
the eigenvectors of L.

1. If uh ∈ Vh, then
"uh"L2(Ω) = "U−1uh"2.

2. Let b ∈ L2(Ω) and ej ∈ RN be the jth unit vector for any j ∈ {1, . . . , N}. Then

(ϕh,j , b)L2(Ω) = (ej ,U
−1b)2.

Proof. This is a direct consequence of (6.6) since

"uh"2L2(Ω) = (Muh,uh)2 = (U
−TU−1uh,uh)2 = (U−1uh,U−1uh)2 = "U−1uh"22

proves the first conjecture and

(ϕh,j , b)L2(Ω) = (Uej ,Mb)2 = (ej ,U
TMb)2 = (ej ,U

−1b)2

the latter.
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We are now in position to write the coefficient vector of the DEM approximation in the
following compact form.

Theorem 6.8. The coefficient vector uDem
h of the DEM approximation (6.4) satisfies

uDem
h =

m!
i=0

fτ
i (L)bi.

Proof. W.l.o.g. we assume m = 0 in (6.4) so that, after omitting the index i,

uDem
h =

N!
j=1

fτ (λh,j)(ϕh,j , b)L2(Ω)ϕh,j =

N!
j=1

fτ (λh,j)(ej ,U
−1b)2ϕh,j , (6.7)

where the second identity follows from Lemma 6.7. Noting that the coefficient vector of
ϕh,j is exactly the jth column of U, the right-hand side of (6.7) can be written in matrix
language

uDem
h = Ufτ (D)U−1b,

where D = diag(λh,1, . . . , λh,N ). This implies the claim.

The discrete eigenfunction method is a popular scheme to approximate fractional diffu-
sion problems [ILTA05, ILTA06, YTLI11, BP15, BP16, BLP17a, BLP17b, DS19, LPG+20,
BGZ20, Hof20, DS21, DH21, DAC+21, DHS21]. For the lowest order Lagrangian finite
element spaces, quasi-optimal convergence rates have been shown in [BP15, Theorem 4.3]
for the stationary problem. These results have been generalized in [BP16] to a large class
of differential operators that includes the ones we are interested in. For simplicity, we
state the corresponding result here for the special case where Ω is convex and refer to
[BP15, BP16, Lei18] for the general framework.

Theorem 6.9 (Convergence of the DEM - elliptic case). Let Ω ⊂ Rd be a bounded and
convex domain, Th a quasi-uniform triangulation on Ω, Vh = P01 (Th) the Lagrange finite
element space of order one with vanishing trace, s ∈ (0, 1), f ∈ H2−2s

0 (Ω) in the sense of
Remark 3.35, and uDem

h the DEM approximation of u = L−sf . Then there holds

"u− uDem
h "L2(Ω) < ln(h−1)h2"f"H2−2s

0 (Ω).

We emphasize that the assumptions in Theorem 6.9 can be essentially relaxed at the
cost of slower convergence rates. Roughly spoken, the rate of convergence depends on the
smoothness of Ω such that e.g., for the L-shape domain, one can show a decay of the error
like O(h 4

3
−ε) for any ε > 0.

In classical PDEs, the quality of approximation can significantly benefit from high-order
schemes, where the function space Vh = P01 (Th) is enriched with polynomials of higher
degree. Analogous results apply to nonlocal problems under a suitable refinement of the
triangulation. The interested reader is referred to [BMS20] for a detailed discussion on these
so-called hp-finite element methods.
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The performance of the DEM in the time-dependent regime has been systematically stud-
ied in [BLP17a] for the lowest order case and α = 1. These results have been generalized
in [BLP17b] for arbitrary fractional exponents α ∈ (0, 1]. Exemplarily, we state the cor-
responding result for the homogeneous space-time fractional diffusion problem when Ω is
convex and refer to [BLP17b, Theorem 3.3], see also [Lei18, Theorem III.3], for the more
general setting.

Theorem 6.10 (Convergence of the DEM - parabolic case). Let Ω ⊂ Rd be a bounded and
convex domain, Th a quasi-uniform triangulation on Ω, Vh = P01 (Th), α ∈ (0, 1], β ∈ R,
s ∈ (0, 1), u0 ∈ H2

0 (Ω), and uDem
h the DEM approximation of u = Eα,β(−tαLs)u0. Then

there holds for all t ∈ R+

"u(t)− uDem
h (t)"L2(Ω) < max{1, ln(t−α)}h2"u0"H2

0 (Ω)
.

6.3 Quadrature Approximations

Another approach for computing solutions to fractional PDEs are quadrature approxima-
tions [BP15, BP16, BLP17a, BLP17b, Lei18, BLP19b, BGZ20, Rie20, DAC+21, AN21,
DZ21], see also [DH21]. Thanks to Theorem 4.10, solutions to stationary fractional diffu-
sion problems might be written in integral form

u = L−sf = sin(πs)
π

� ∞
0

ζ−s(L+ ζ I)−1f dζ, f ∈ L2(Ω).

Upon replacing the integrand with our finite element approximations, we obtain an integral
representation of the DEM approximation as the following lemma shows.

Lemma 6.11. Let uDem
h = L−sf be the DEM approximation of u = L−sf . Then there

holds

uDem
h =

sin(πs)

π

� ∞
0

ζ−s(L+ ζI)−1f dζ. (6.8)

Proof. This is a direct consequence of Theorem 2.37 and the scalar version of Balakrishnan’s
formula

λ−s =
sin(πs)

π

� ∞
0

ζ−s(λ+ ζ)−1 dζ.

The idea is now to approximate the integral in (6.8) by a suitable quadrature

uQuad
h,m :=

m!
j=1

ωjη
−s
j (L+ ηjI)

−1f ≈ sin(πs)
π

� ∞
0

ζ−s(L+ ζI)−1f dζ = L−sf , (6.9)

where (ωj)mj=1 ⊂ R and (ηj)mj=1 ⊂ R+0 label the quadrature weights and nodes, respectively.
Schemes of this form have been proposed in [BP15, BP16, Lei18, BLP19b, Rie20, DAC+21].
One that we shall mention here explicitly is the so-called sinc quadrature method advocated
in [BP15, BP16, Lei18, BLP19b]; see [LB92, Ste12] for a nice survey on sinc methods.
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Provided the integers n−, n+ ∈ N and the sinc parameter q ∈ R+, the weights and nodes
of this quadrature are given by

ωj =
q sin(πs)

π
ejq, ηj = ejq,

for all j = −n−, . . . , n+, which is obviously an approximation of the form (6.9) after a
suitable index shift. Hence, we define

uSinc
h,q :=

q sin(πs)

π

n+!
j=−n−

e(1−s)jq(L+ ejqI)−1f . (6.10)

The approximation so obtained has the benefit that it requires multiple solutions to standard
reaction-diffusion problems which can be computed efficiently in parallel. Its quality of
approximation essentially hinges on the performance of the scalar quadrature and can be
quantified in the following manner [BLP19b, Theorem 3.2].

Theorem 6.12. Let s ∈ (0, 1) and q ∈ R+. Then there holds

"uDem
h − uSinc

h,q "M <
 e

−π2

2q

sinh(π
2

2q )
+

e−(1−s)qn−

1− s
+

e−sqn+

s

 "f"M. (6.11)

The first term on the right-hand side of (6.11) is the contribution of the quadrature error
over the bounded integration domain [e−qn− , eqn+ ], while the latter can be seen as truncation
errors. In practice, it is desirable to balance the three exponentials on the right-hand side
of (6.11), which can be achieved by

π2

2q
≈ sqn+ ≈ (1− s)qn−.

As suggested in [BLP19b], we therefore impose

n+ =



π2

2sq2

�
, n− =



π2

2(1− s)q2

�
, (6.12)

such that only the sinc parameter q ∈ R+ needs to be determined a priori. The surrogate
so obtained satisfies

"uDem
h − uSinc

h,q "M <
�
1

s
+

1

1− s

� e
−π2

2q

sinh(π
2

2q )
+ e

−π2

2q

 "f"M. (6.13)

Asymptotically, the upper bound behaves like�
1

s
+

1

1− s

�
e
−π2

2q "f"M, as q→ 0+.

Remark 6.13. Combining Theorem 6.9 with (6.13) allows one to bound the total discrep-
ancy between to the exact solution u = L−sf and the sinc approximation (6.10).
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Our discussions from above show that quadrature approximations of fractional diffusion
problems come in two stages. First, a finite element method is applied to replace the exact
solution u with the DEM approximation uDem

h , which, in the second stage, is approxi-
mated by a quadrature scheme. This second layer of approximation is reflected as rational
approximation of the power function fτ (λ) = λ−s in the following theorem; cf. [Hof20].

Theorem 6.14. Let s ∈ (0, 1), q ∈ R+, and

rSinc(λ) :=
q sin(πs)

π

n+!
j=−n−

e(1−s)jq(λ+ ejq)−1.

Then there holds

uSinc
h,q = rSinc(L)f .

Proof. This is a direct consequence of (6.10) and the first property in Lemma 2.34.

In view of these results, one cannot expect uSinc
h,q to be more accurate than uDem

h . The
latter, however, requires diagonalization of the matrix L, which has O(N3) complexity,
whereas the dominant computational effort in the evaluation of uSinc

h,q amounts to n :=
n− + n+ + 1 linear solves. Since typically n 3 N , the sinc method is computationally
considerably cheaper than the DEM approximation.
Also for time-dependent problems, quadrature schemes provide an attractive tool to ap-

proximate the accurate but expensive DEM solution [BLP17a, BLP17b, Lei18, Rie20]. Pro-
vided an integration contour C that encloses the spectrum of L, Cauchy’s integral theorem
states that we may write the Mittag-Leffler function as

Eα(−tαλs) =
1

2πi

�
C
Eα(−tαz)

λ− z
dz.

Due to Theorem 2.36, it follows

Eα(−tαLs) =
1

2πi

�
C
Eα(−tαz)(L− zI)−1 dz. (6.14)

The authors of [BLP17a, BLP17b, Lei18] make use of the hyperbolic contour

C = {z(ζ) : ζ ∈ R}, z(ζ) := b(cosh(ζ) + i sinh(ζ)),

where 0 < b < λh,1/
√
2 is a parameter. Along with this choice, the integral in (6.14) can

be written as

Eα(−tαLs) =
1

2πi

� ∞
−∞

Eα(−tαz(ζ)s)z#(ζ)(L− ζI)−1 dζ.

Given a suitable choice of n−, n+ ∈ N and the quadrature spacing q ∈ R+, a sinc approxi-
mation to the homogeneous fractional evolution equation is given by

uSinc
h,q (t) :=

q

2πi

n+!
j=−n−

Eα(−tαz(ζj)
s)z#(ζj)(L− ζjI)

−1u0, ζj := jq. (6.15)
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Using similar techniques as for the elliptic case, it can be shown that the approximation error
decays exponentially in q, see [BLP17a] for α = 1 and [BLP17b] for the fully space-time
fractional regime. Unlike (6.10), however, the computation of (6.15) requires the solution
to complex-valued problems even if both L and u0 are real.

6.4 Tensor FEM for the Extension Method

One final approach that we mention here is the harmonic extension method that inter-
prets the fractional diffusion operator as Dirichlet-to-Neumann map [CS07, ST10, CT10,
CDDS11, BCdPS13]. According to Theorem 4.13, Ls can be localized by means of the
degenerate elliptic PDE

div(ζ1−2sÂ∇U) + ζ1−2sĉU = 0, in CΩ, (6.16a)
U = 0, on ∂Ω× R+, (6.16b)

∂U
∂ns

= dsf, on Ω× {0}, (6.16c)

where CΩ = Ω×R+ and Â and ĉ are defined by (4.18). To derive a variational formulation
for (6.16), we multiply (6.16a) with a test function v ∈ H̊1

s (CΩ), integrate over the cylinder,
and apply integration by parts to deduce

∀v ∈ H̊1
s (CΩ) :

�
CΩ

ζ1−2s
�
Â∇U · ∇v + ĉUv

�
d(x, ζ) = ds(f, v(x, 0))L2(Ω). (6.17)

Theorem 6.15. Let s ∈ (0, 1) and f ∈ L2(Ω). Then there exists a unique solution U ∈
H̊1
s (CΩ) to (6.17).

Proof. This is a direct consequence of the Lax-Milgram theorem.

In its present form, the solution to (6.17) is computationally out of reach since it is
formulated on the unbounded domain CΩ = Ω × R+. To make the variational formulation
amenable to finite element discretization, we proceed as in [NOS15] and pose the problem
on the truncated domain Ccut

Ω := Ω × (0, ζcut) for some ζcut ∈ R+: Find Ucut ∈ H̊1
s (Ccut

Ω )
such that

∀v ∈ H̊1
s (Ccut

Ω ) :

�
Ccut
Ω

ζ1−2s
�
Â∇Ucut · ∇v + ĉUcutv

�
d(x, ζ) = ds(f, v(x, 0))L2(Ω), (6.18)

where H̊1
s (Ccut

Ω ) := {v ∈ L2s(Ccut
Ω ) : ∇v ∈ L2s(Ccut

Ω ), v = 0 on ∂Ω × (0, ζcut) ∪ Ω × {ζcut}}.
The following proposition justifies this approach.

Proposition 6.16. Let λmin denote the smallest eigenvalue of L, U the solution to (6.17),
and Ũcut the zero extension of the solutions to (6.18) with ζcut ≥ 1. Then there holds

"∇(U − Ũcut)"L2
s(CΩ) < e−

λminζcut
4 "f"L2(Ω).

Proof. A key ingredient in the proof is the representation formula (3.28) and the exponential
decay of φj in the extended direction. We refer to [NOS15, Lemma 3.3] for details.
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To approximate (6.18), a tensor finite element method is proposed in [NOS15], see also
[BMN+18]. To make matters precise, let Th denote a triangulation on Ω, 0 = ζ0 < · · · <
ζm = ζcut a partition of [0, ζcut], Ij := [ζj−1, ζj ] for all j = 1, . . . ,m, and Icut := {Ij : j =
1, . . . ,m}. A mesh on Ccut

Ω can then be defined in a tensor product fashion

T Ccut
Ω

h := Th ⊗ Icut := {T × I : T ∈ Th, I ∈ Icut}.

On this grid, a tensor finite element space is obtained by

V
Ccut
Ω

h := {w ∈ C
�Ccut
Ω

�
: w|T×J ∈ P1(T )⊗ P1(J) ∀T × J ∈ T Ccut

Ω
h ,

w(·, ζcut) = 0, u(x, ζ) = 0 on ∂Ω× (0, ζcut)},
(6.19)

where P1(T )⊗P1(J) := {p(x)q(ζ) : p ∈ P1(T ), q ∈ P1(J)}. Alternatively, the finite element
space (6.19) can be written as

V
Ccut
Ω

h = span{bΩi (x)bcut
j (ζ) : i = 1, . . . , N, j = 0, . . . ,m}, (6.20)

where (bΩj )
N
j=1 and (b

cut
j )

m
j=0 denote a basis of the finite element space in x- and ζ-direction,

respectively. With this at hand, the discrete Galerkin formulation to (6.18) now reads: Find
Uh ∈ V

Ccut
Ω

h such that

∀vh ∈ V
Ccut
Ω

h :

�
Ccut
Ω

ζ1−2s
�
Â∇Uh · ∇vh + ĉUhvh

�
d(x, ζ) = ds(f, vh(x, 0))L2(Ω). (6.21)

In accordance with the continuous problem, (6.21) has a unique solution by the Lax-Milgram
theorem. In light of Theorem 4.13, the finite element approximation to the stationary
fractional diffusion problem is then obtained by

uExt
h,ζcut(x) := Uh(x, 0). (6.22)

A deeper analysis of the harmonic extension problem shows that the solution behaves rea-
sonably well in x-direction but has an algebraic singularity at ζ = 0. This lack of regularity
can be compensated by choosing the partition (ζj)mj=0 of (0, ζcut) in a geometrically refined
manner towards 0, that is,

ζj =

�
j

m

�g
ζcut, j = 0, . . . ,m, (6.23)

for some grading parameter g > 1. Assuming that the finite element space V
Ccut
Ω

h is con-
structed in this graded manner, one can prove the following result [NOS15, Theorem 5.4].

Theorem 6.17. Let Ω be convex, s ∈ (0, 1), g > 3
2s in (6.23), ζcut > 1, f ∈ H1−s

0 (Ω), N the

number of elements contained in T CcutΩ
h , λmin the smallest eigenvalue of L, and u = L−sf .

Then there holds

"u− uExt
h,ζcut"L2(Ω) <

�
e−
√

λminζcut
4 + ζscutN− 1

d+1

�
"f"H1−s

0 (Ω). (6.24)
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Choosing ζcut ≈ log(N ) balances both terms in (6.24) and yields

"u− uExt
h,ζcut"L2(Ω) < | ln(N )|sN− 1

d+1 "f"H1−s
0 (Ω),

which resembles, up to the logarithmic factor, the classical a priori estimate for the finite
element method applied to L in d+ 1 dimensions. However, the original problem is posed
on Ω ⊂ Rd which is why the convergence rate is still sub-optimal due to the presence of the
artificial dimension in ζ-direction. The implementation of hybrid hp-finite element methods
allows one to overcome these limitations [BMN+18].

Remark 6.18. The truncation of the cylinder can be avoided using a spectral method in
the extended direction. The interested reader is directed to [AG18] for details.

In Theorem 6.14 it is shown that the sinc quadrature approximation can be interpreted as
matrix-vector product of the form rSinc(L)b where rSinc represents a rational approximation
of the power function λ−s. As noted in [Hof20, Theorem 2], the same also applies to the
extension method if L = −Δ.
Theorem 6.19. Let ds be defined by Lemma 3.24, uExt

h,ζcut
the extension approximation

(6.22), V ζcut = span{bζcut0 , . . . , bζcutm } with bζcutj as in (6.20), and (ψj , µj) the eigenfunctions
and eigenvalues of the one-dimensional eigenvalue problem

∀v ∈ V ζcut : (ζ1−2sψ#j , v
#)L2((0,ζcut)) = µj(ζ

1−2sψj , v)L2((0,ζcut)), j = 0, . . . ,m.

Then there holds

uExt
h,ζcut = rExt(L)f ,

where

rExt(λ) := ds

m!
j=0

ψj(0)
2

λ+ µj
.

Although one can expect the DEM approximation to be closer to the exact solution,
uExt
h,ζcut

is computationally more efficient since m is typically significantly smaller than N .
The extension technique developed in [NOS15] can be adapted to space-time fractional

diffusion problems [NOS16]. The idea is to rewrite the fractional parabolic equation (5.15)
as quasi-stationary elliptic problem with dynamic boundary conditions

div(ζ1−2sÂ∇U) + ζ1−2sĉU = 0, in CΩ × (0, T ), (6.25a)
U = 0, on (∂Ω× R+)× (0, T ), (6.25b)

ds∂
α
t U +

∂U
∂ns

= dsf, on (Ω× {0})× (0, T ), (6.25c)

U = u0, on (Ω× {0})× {0}. (6.25d)

Similarly to the elliptic case, one derives a variational formulation for (6.25) on the truncated
domain Ccut

Ω × (0, T ). An in-depth analysis on this matter can be found in [NOS16] for
α ∈ (0, 1] and [MR20b] for α = 1 using hp-finite element methods.
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The previous chapter provides the description of three algorithms to approximate solutions
of fractional PDEs. These sulutions u = u(τ ) depend on multiple parameters, such as the
spatial fractional order s ∈ (0, 1) or the order of the fractional time derivative α ∈ (0, 1],
which we collect in the parameter vector τ ∈ Θ ⊂ Rp, p ∈ N. In the further course of this
thesis, we choose the discrete eigenfunction method as a starting point to approximate the
entire solution manifold {u(τ ) : τ ∈ Θ}. The dominant computational costs of the DEM
boil down to the evaluation of a parametric matrix-vector product fτ (L)b, where

– L = M−1A ∈ RN×N is a diagonalizable positive definite (but not necessarily sym-
metric) matrix-approximation of the integer-order differential operator L,

– b ∈ RN some coefficient vector stemming from the user-provided data,

– fτ a matrix function that corresponds to the particular problem at hand and depends
on the parameter vector τ ∈ Θ.

The matrix fτ (L) is typically dense. Its evaluation requires the knowledge of all eigen-
values and eigenvectors of L which is a task of O(N3) complexity. Due to limitations in
computational resources, one is obliged to resort to model order reduction strategies if N
is large. These schemes strive to reduce the computational costs by a significant margin
while keeping the discretization error to a tolerable level. While the sinc and the extension
approximation presented in the previous chapter already diminish the costs of conventional
DEMs, one might still need O(100) classical PDE solves1 to ensure the accuracy for a single
solve of the fractional PDE. The purpose of this chapter is to alleviate the expenses of com-
puting fτ (L)b using a standard model order reduction strategy in the form of the rational
Krylov method (RKM) [Güt10, Ruh84, Saa81, HL97]. To this end, we take the point of
view that the mesh parameter h in the DEM is small, causing N to be large, to ensure an
accurate approximation of the continuous solution. We take the surrogate so obtained as
our underlying truth solution. To emphasize this novel perspective, we therefore omit the
h-dependency in our notation for the remainder of this thesis and assume L ∈ RN×N to be
a fixed positive definite matrix of dimension N / 1.
The key idea of each RKM is the extraction of a surrogate uk+1 from a search space

QΞk+1(L,b) of dimension k+13 N with the property uk+1 ≈ fτ (L)b. Essential questions
are:

1. How to choose the low-dimensional search space QΞk+1(L,b)?
2. How to extract uk+1 from QΞk+1(L,b)?

The first point is addressed in the following section.
1In case of the extension method, this is understood in the sense of Theorem 6.19.
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7.1 The Rational Krylov Space

Throughout the remainder of this thesis, we designate the smallest and largest eigenvalues
of L with λmin and λmax, respectively, and introduce the spectral interval of L as Σ :=
[λmin, λmax] ⊂ R+. One of the central definitions of this chapter is stated below, where we
write R = R ∪ {∞}.
Definition 7.1. In dependence of the parameter set Ξ = {ξ0, . . . , ξk} ⊂ R \ Σ, whose
elements are called poles, we introduce the polynomial

qΞ(λ) :=

k�
j=0
ξj !=∞

(λ− ξj). (7.1)

For all k ∈ N0 we define the rational Krylov space of L and b with pole set Ξ by

QΞk+1(L,b) := span{qΞ(L)−1b, qΞ(L)−1Lb, . . . , qΞ(L)−1Lkb}.

Remark 7.2. Although not explicit in our notation, the reader is encouraged to always
associate the index k + 1 in the expression QΞk+1(L,b) to the cardinality of the pole set Ξ.
In case we compare the pole sets of two rational Krylov spaces QΞj (L,b) and QΞk (L,b) for
some j, k ∈ N, we write Ξj and Ξk, respectively, for more clarity in exposition.

Note that

– Ξ ⊂ R\Σ implies that the inverse of qΞ(L) exists such that QΞk+1(L,b) is well-defined,
– the rational Krylov space is independent of the particular ordering of the poles,

– if ξj =∞ for one j = 0, . . . , k, then b ∈ QΞk+1(L,b).
In its original form, Definition 7.1 goes back to the Russian mathematician Nikolay Krylov
[Kry31], who investigated subspace approximations based on the polynomial Krylov space

Kk+1(L,b) := span{b,Lb, . . . ,Lkb}.

Clearly, the polynomial case is recovered from QΞk+1(L,b) if one sets Ξ = {∞, . . . ,∞} such
that qΞ ≡ 1. Other commonly used configurations are
– Ξ = {ξ, . . . , ξ} for some ξ ∈ R \ Σ, in which case QΞk+1(L,b) is known as shift-and-

invert Krylov space [MN04, EH06],

– Ξ = {∞, 0,∞, 0, . . . }, which yields the so-called extended Krylov space [DK98, KS10].

In order to provide more information about the particular structure of QΞk+1(L,b), we
introduce the set of polynomials PN of maximal degree N . The minimal polynomial pminL,b ∈
PN of b with respect to L is defined as the unique monic polynomial of lowest degree such
that pminL,b(L)b = 0, see [Wei60]. This allows us to introduce the invariance index of L and
b.
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Definition 7.3. The invariance index I ∈ N of L and b is defined by

I := deg(pminL,b),

where deg(pminL,b) is the degree of the minimal polynomial pminL,b.

As shown in [Güt10], the invariance index I of L and b is related to the rational Krylov
space of L and b in the following manner.

Proposition 7.4. Let I ∈ N denote the invariance index of L and b. Then there holds

dimQΞk+1(L,b) = min{k + 1, I}.
Whenever we have a sequence of pole sets satisfying Ξ1 ⊂ Ξ2 ⊂ . . . with |Ξk| = k, the

denominator polynomials qΞk
of two consecutive spaces differ only by a linear factor such

that the rational Krylov spaces are nested

QΞ1
1 (L,b) ⊂ · · · ⊂ QΞI

I (L,b) = QΞI+1

I+1 (L,b) = · · · .

Note that I is independent of the poles, hence QΞI (L,b) = KI(L,b) for any Ξ ⊂ R \ Σ.
Recognizing this fact, we now focus on a more specific characterization ofQΞk+1(L,b), which,
among others, justifies its nomenclature.

Lemma 7.5. Let k ∈ N0.

1. The rational Krylov space of L and b with poles in Ξ is a polynomial Krylov space of
L and qΞ(L)

−1b, i.e.,

QΞk+1(L,b) = Kk+1(L, qΞ(L)
−1b).

2. There holds

QΞk+1(L,b) = span{rk(L)b : rk(λ) = pk(λ)/qΞ(λ), pk ∈ Pk}.

3. If Ξ = {∞, ξ, . . . , ξ} for some ξ ∈ R \ Σ, then the rational Krylov space of L and b
with poles in Ξ is a polynomial Krylov space of (L− ξI)−1 and b, i.e.,

QΞk+1(L,b) = Kk+1((L− ξI)−1,b) = span{b, (L− ξI)−1b, . . . , (L− ξI)−kb}.

4. If all poles are finite and pairwise distinct, then

QΞk+1(L,b) = span{(L− ξ0I)
−1b, . . . , (L− ξkI)

−1b}.

Proof. See [Güt10].

The first property allows one to transfer several properties that apply to polynomial
Krylov spaces to the rational Krylov setting. While the second conjecture is useful for
analytical considerations, the third and fourth property are of interest for computational
purposes.
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7.2 Rayleigh-Ritz Extraction

Throughout this section, we assume f to be a generic function defined on the spectral
interval Σ of L. With the specification of the rational Krylov space at hand, we now obtain
the rational Krylov approximation of f(L)b via so-called Rayleigh-Ritz extraction, that is

uk+1 := Vf(Lk+1)V
Tb, Lk+1 := VTLV, (7.2)

where V ∈ RN×(k+1) is a matrix whose columns form an orthonormal basis of QΞk+1(L,b)
with respect to the Euclidean inner product. For the sake of brevity, we call each such
matrix a (·, ·)2-orthonormal basis of QΞk+1(L,b). The matrix P := VVT ∈ RN×N is the
orthogonal projector of RN onto QΞk+1(L,b), i.e.,

P2 = P, range(P) = QΞk+1(L,b), P = PT .

Hence, uk+1 allows the interpretation as matrix-vector product of the projected matrix Lk+1

and VTb, the orthogonal projection of b onto QΞk+1(L,b), in the coordinate space Rk+1.
If k 3 N , the rational Krylov approximation can be computed with standard algorithms
for dense matrices.
In practical scenarios, V is orthonormal with respect to some generic inner product (·, ·)

customized for the current application. E.g., in finite element problems, (·, ·) is typically
the discrete L2-inner product (·, ·)M, whereM denotes the mass matrix. To generalize (7.2)
for these applications, we introduce the concept of pseudo-inverse matrices [BIG03].

Definition 7.6. Let k ∈ N with k+1 ≤ N , V ∈ RN×(k+1) a matrix with linear independent
columns, and (·, ·) an inner product on RN . We introduce the Moore-Penrose inverse V† ∈
R(k+1)×N of V as the unique solution of the systems of linear equations

VV†V = V, (V†V)∗ = V†V,

V†VV† = V†, (VV†)∗ = VV†,
(7.3)

where for any P ∈ RN×N , P∗ is the adjoint of P with respect to the inner product (·, ·),
i.e.,

(Pv,w) = (v,P∗w), v,w ∈ RN .

By construction, there holds

(VV†)2 = VV†, (VV†)∗ = VV†.

Therefore, P := VV† is the orthogonal projector onto the span of V with respect to the
inner product (·, ·). Other useful properties of V† are collected in the following lemma,
where we write Ik+1 ∈ R(k+1)×(k+1) to denote the unit matrix of dimension k + 1.

Lemma 7.7. There holds

1. V†V = Ik+1,
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2. (VT)† = T−1V† for any T ∈ R(k+1)×(k+1) invertible.

Proof. See [Güt10, p. 16].

The presence of V† gives rise to the following generalization of (7.2).

Definition 7.8. Let V ∈ RN×(k+1) be a basis of QΞk+1(L,b). We define the rational Krylov
approximation of f(L)b as

uk+1 := Vf(Lk+1)V
†b ∈ QΞk+1(L,b), Lk+1 := V†LV ∈ R(k+1)×(k+1).

The matrix Lk+1 is often referred to as compression of L on QΞk+1(L,b) and requires the
choice of a particular basis V. For any other basis W ∈ RN×(k+1) of QΞk+1(L,b), however,
there exists some transformation matrix T ∈ R(k+1)×(k+1) such that W = VT. It follows
from Lemma 7.7 that

L̂k+1 :=W†LW = T−1V†LVT = T−1Lk+1T. (7.4)

Hence, the compression L̂k+1 obtained by W is similar to the compression Lk+1 obtained
by V. The rational Krylov approximation uk+1 is entirely independent of the particular
basis and thus well-defined.

Lemma 7.9. Let V and W denote two bases of QΞk+1(L,b) with compressions

Lk+1 = V†LV, L̂k+1 =W†LW.

Then there holds

Vf(Lk+1)V
†b =Wf(L̂k+1)W

†b.

Proof. This is a direct consequence of (7.4) and the second property in Lemma 7.7 since

Wf(L̂k+1)W
†b = VTf(T−1Lk+1T)T

−1V†b = Vf(Lk+1)V
†b.

Our matrix L is of the form L = M−1A. A straightforward implementation of Lk+1

would thus require the inversion of the mass matrix M. Orthonormalizing V with respect
to the discrete L2-inner product (·, ·)M allows one to overcome this inconvenience.

Lemma 7.10. Let V be an (·, ·)M-orthonormal basis of QΞk+1(L,b), L = M−1A, and
Lk+1 = V†LV. Then there holds

1. V† = VTM,

2. Lk+1 = VTAV.

Proof. By direct substitution, one verifies that VTM satisfies (7.3) so that V† = VTM.
The second claim follows from the first one since V†LV = VTMLV = VTMM−1AV =
VTAV.
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Provided that V is orthonormal with respect to (·, ·)M, Lemma 7.10 shows that the
rational Krylov approximation can be evaluated via

uk+1 = Vf(Ak+1)V
TMb, Ak+1 = VTAV,

without explicitly computing M−1. Recognizing this fact, we choose

(·, ·) := (·, ·)M, " · " := " · "M (7.5)

as our standard inner product and norm henceforth and say that a basis V ∈ RN×(k+1) is
orthonormal if it is orthonormal with respect to (·, ·). Our analysis is carried out in this
discrete L2-setting which appears to be a natural one to study the finite element problems
we are interested in.

7.2.1 Properties of the Rational Krylov Method

In this section we collect several remarkable properties of the rational Krylov method which
provide the corner stones of our analysis. At first, we study under which assumptions the
rational Krylov approximation is exact.

Proposition 7.11. Let I be the invariance index of L and b, V a basis of QΞk+1(L,b), and
uk+1 = Vf(Lk+1)V

†b. If k + 1 ≥ I, then there holds uk+1 = f(L)b.

Proof. [Güt10, Lemma 3.11].

It is worth mentioning that f(L)b ∈ QΞk+1(L,b) for some k + 1 < I does not imply
exactness of the rational Krylov approximation, cf. [Güt10, Remark 3.12]. However, if

f ∈ Pk/qΞ := {pk/qΞ : pk ∈ Pk},
the rational Krylov approximation is exact even if k + 1 < I.
Lemma 7.12. Let V be a basis of QΞk+1(L,b), Lk+1 = V†LV, and rk ∈ Pk/qΞ. Then the
rational Krylov approximation of rk(L)b is exact, i.e.,

rk(L)b = Vrk(Lk+1)V
†b.

Proof. See [Güt10, Lemma 4.6].

A fundamental ingredient in the analysis of RKMs is the following definition which, due
to (7.4) and the fact that similar matrices share the same eigenvalues, is well-defined.

Definition 7.13. Let V be a basis of QΞk+1(L,b) and Lk+1 = V†LV its compression. The
eigenvalues (µ(k)j )

k
j=0 of Lk+1 are called rational Ritz values.

The nomenclature µ(k)j , j = 0, . . . , k, is intended remind the reader that the rational Ritz
values of L onQΞk+1(L,b) are typically not contained in the rational Ritz values on any larger
space. They are contained, however, in the spectral interval of L and play a fundamental
role in Rayleigh-Ritz approximations. Their relation to rational Krylov approximations is
laid out in the following theorem and can be found in [Güt10, Theorem 4.8].
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Figure 7.1: Rational function r2 from Theorem 7.14 with poles in Ξ = {∞, ξ1, ξ2} that in-
terpolates f in the rational Ritz values Λ = {µ(2)0 , µ

(2)
1 , µ

(2)
2 } of L on QΞk+1(L,b).

Theorem 7.14. Let V be a basis of QΞk+1(L,b), Lk+1 = V†LV, and uk+1 = Vf(Lk+1)V
†b.

Then there holds

uk+1 = rk(L)b,

where rk ∈ Pk/qΞ is a rational function that interpolates f in the rational Ritz values
Λ = {µ(k)0 , . . . , µ

(k)
k } of L on QΞk+1(L,b).

To clarify the situation, we depict the rational interpolant from Theorem 7.14 for k = 2
and Ξ = {∞, ξ1, ξ2} in Figure 7.1. The rational function r2 = p2/qΞ has its poles in {ξ1, ξ2}
and interpolates f in the rational Ritz values µ

(2)
0 , µ

(2)
1 , and µ

(2)
2 . Since the latter are

pairwise distinct, the numerator polynomial p2 is uniquely determined by the interpolation
property p2(µ

(2)
j ) = f(µ

(2)
j ) for all j = 0, 1, 2. Recalling (7.5), another remarkable property

we cite here is the following variant of [Güt10, Lemma 4.5].

Proposition 7.15. Let V be a basis of QΞk+1(L,b), Lk+1 = V†LV, χk+1 ∈ Pk+1 the
characteristic polynomial of Lk+1, and r∗k+1 = χk+1/qΞ. Then there holds

"r∗k+1(L)b" = min
rk+1∈P∞

k+1/qΞ
"rk+1(L)b",

where P∞k+1/qΞ denotes the set of all rational functions rk+1 ∈ Pk+1/qΞ with monic numer-
ator polynomial.

The quality of the rational Krylov approximation clearly depends on the rational Krylov
space and the way it is extracted from it. As shown in [Güt10, Theorem 4.10], an extraction
according to Definition 7.8 yields a quasi-optimal surrogate. We adapt this result in the
following theorem to the discrete L2-norm (7.5), which better suits the study of our problem,
and write

"f"E := sup
λ∈E

|f(λ)|
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to denote the supremum norm on E ⊂ C.

Theorem 7.16. Let V be an orthonormal basis of QΞk+1(L,b), Lk+1 = V†LV, and uk+1 =

Vf(Lk+1)V
†b. Then there holds

"f(L)b− uk+1" ≤ 2"b" min
rk∈Pk/qΞ

"f − rk"Σ. (7.6)

Proof. Let pk ∈ Pk be arbitrary and rk = pk/qΞ. Due to Lemma 7.12 there holds rk(L)b =
Vrk(Lk+1)V

†b whence

"f(L)b− uk+1" = "f(L)b− rk(L)b+Vrk(Lk+1)V
†b−Vf(Lk+1)V

†b"
≤ "f(L)b− rk(L)b"+ "V(rk − f)(Lk+1)V

†b". (7.7)

Let now U denote the matrix of orthonormalized eigenvectors of L, then

f(L)− rk(L) = U(f(D)− rk(D))U
−1,

where D = diag(λ1, . . . , λN ) is the diagonal matrix containing the eigenvalues of L. Apply-
ing the first property in Lemma 6.7 twice we observe

"f(L)b− rk(L)b" = "(f(D)− rk(D))U
−1b"2

≤ max
j=1,...,N

|f(λj)− rk(λj)|"U−1b"2 ≤ "f − rk"Σ"b",

bounding the first term on the right-hand side of (7.7). To estimate the latter, we ap-
ply the second claim in Lemma 7.10 to see that Lk+1 is symmetric and positive defi-
nite. Hence, there exists some (·, ·)2-orthonormal matrix Uk+1 ∈ R(k+1)×(k+1) such that
Lk+1 = Uk+1Dk+1U

T
k+1, where Dk+1 = diag(µ

(k)
0 , . . . , µ

(k)
k ) is the diagonal matrix contain-

ing the rational Ritz values of L on QΞk+1(L,b). Since the latter are contained in Σ, it
follows from orthonormal properties of V and Uk+1 that

"V(rk − f)(Lk+1)V
†b" = "(rk − f)(Lk+1)V

†b"2
= "Uk+1(rk − f)(Dk+1)U

T
k+1V

†b"2
≤ max

j=0,...,k
|rk(µ(k)j )− f(µ

(k)
j )|"Uk+1V

†b"2 ≤ "rk − f"Σ"V†b"2.

Since V is orthonormal, there holds "V†b"2 = "VV†b". Noting that P := VV† is the
orthonormal projector onto QΞk+1(L,b), we find

"V(rk − f)(Lk+1)V
†b" ≤ "rk − f"Σ"b".

Combining our findings from above yields

"f(L)b− uk+1" ≤ 2"f − rk"Σ"b". (7.8)

The conjecture now follows from the observation that the numerator pk of rk = pk/qΞ was
chosen arbitrary whence (7.8) remains valid if we take the minimum over all pk ∈ Pk.
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Remark 7.17. Inspection of the proof above shows that the upper bound (7.6) can be im-
proved to

"f(L)b− uk+1" ≤ 2"b" min
rk∈Pk/qΞ

"f − rk"E , E := σ(L) ∪ σ(Lk+1),

where σ(L) and σ(Lk+1) denotes the (discrete) spectra of the matrices L and Lk+1, respec-
tively. This is a min-max problem on a discrete set which might be considerably smaller than
the continuous one, especially if the eigenvalues of L are not uniformly distributed across Σ.
Since the eigenvalues of Lk+1 are analytically not available, however, one is often obliged
to resorts to (7.6).

Remark 7.18. In Definition 7.1 we require the pole set to be contained in the real line. We
mention that the results presented above also hold in the more general case where Ξ ⊂ C\Σ,
C = C ∪ {∞}. The problems that we are interested in, however, are real whence it is
computationally convenient to restrict the pole set to the real line in order to avoid complex
arithmetic.

7.2.2 Computational Aspects

We dedicate our attention to the numerical implementation of the rational Krylov sur-
rogate uk+1 = Vf(Lk+1)V

†b. Since its dominant computational costs come from the
evaluation of the basis, we focus in this section on the efficient numerical realization of
V. Ideally, the construction of V is both efficient and numerically stable. A proce-
dure that satisfies each of these demands is the rational Arnoldi algorithm. Given an
orthonormal basis of QΞj+1(L,b), the idea is to choose a vector uj ∈ QΞj+1(L,b) such
that wj+1 := (I − ξ−1j+1L)

−1Luj ∈ QΞj+2(L,b) \ QΞj+1(L,b). By a standard Gram-Schmidt
procedure, this allows us to orthogonalize wj+1 against all previous basis vectors in order
to incrementally construct a basis for a rational Krylov space QΞj+2(L,b) given a basis
for QΞj+1(L,b). The theoretical justification for this approach is provided in the following
lemma, where, for the moment, we restrict ourselves to poles that are nonzero; see [Güt10,
Lemma 5.1] for a proof.

Lemma 7.19. Let Ξ ⊂ R \ (Σ ∪ {0}). Then there exists a vector uj ∈ QΞj+1(L,b) with the
property (I− ξ−1j+1L)

−1Luj ∈ QΞj+2(L,b) \ QΞj+1(L,b) if and only if j + 1 < I.

Remark 7.20. If all poles are finite, Lemma 7.19 remains in force if we replace (I −
ξ−1j+1L)

−1Luj by (L − ξj+1I)
−1uj which appears to be more natural in light of the original

definition of the rational Krylov space. The former, however, is meaningful also for infinite
poles in which case (I− 1

∞L)−1Luj = Luj designates a polynomial Krylov step.

The vector uj provided by Lemma 7.19 is called continuation vector. To simplify matters,
we choose this vector, given an orthonormal basis [v0, . . . ,vj ] of QΞj+1(L,b), as uj = vj
henceforth (c.f. Remark 7.21) and refer to [Ruh84, Güt10] for a more general treatment of
this matter. Provided a set of poles Ξ ⊂ R \ (Σ ∪ {0}), the rational Arnoldi algorithm now
proceeds as follows: Starting with v0 := ṽ0/"ṽ0", ṽ0 := (I− ξ−10 L)−1b, one incrementally
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generates the new basis vector according to

ṽj+1 := (I− ξ−1j+1L)
−1Lvj −

j!
i=0

(vi, (I− ξ−1j+1L)
−1Lvj)vi, vj+1 :=

ṽj+1
"ṽj+1" ,

for j = 0, . . . , k− 1. Worth mentioning, the orthonormalization coefficients hi,j := (vi, (I−
ξ−1j+1L)

−1Lvj), i ≤ j, can be used to obtain a compression of L without explicitly computing
V†LV; see e.g., [Güt10, Chapter 5] for details. In Algorithm 1, we therefore store these
coefficients in the Hessenberg matrix

Hk+1 :=

����
h0,0 . . . . . . h0,k

h1,0
...

. . .
...

0 hk,k−1 hk,k

���� ∈ R(k+1)×(k+1),

where we set hj+1,j := "ṽj+1".

Algorithm 1 Rational Arnoldi Algorithm
Input: L ∈ RN×N , b ∈ RN×N , Ξ = {ξ0, . . . , ξk} ⊂ R \ (Σ ∪ {0})
function RationalArnoldi(L, b, Ξ)

ṽ0 = (I− ξ−10 L)−1b
h1,0 = "ṽ0"
v0 = h−11,0ṽ0
for j = 0, . . . , k − 1 do

wj+1 = (I− ξ−1j+1L)
−1Lvj

for i = 0, . . . , j do
hi,j = (vi,wj+1)

end for
ṽj+1 = wj+1 −

"j
i=0 hi,jvi

hj+1,j = "ṽj+1"
vj+1 = h−1j+1,jṽj+1

end for
end function

Output: Basis V = [v0, . . . ,vk] of QΞk+1(L,b) and matrix Hk+1 = (hi,j)
k
i,j=0.

In its present form, the rational Arnoldi algorithm does not allow for poles at zero. This
inconvenience, however, can be overcome if one applies the rational Arnoldi algorithm to
the preprocessed matrix L̃ := L− σI and poles Ξ̃ := {ξ0 − σ, . . . , ξk − σ} for some suitable
shift σ ∈ R \ Ξ. Since QΞk+1(L,b) = QΞ̃k+1(L̃,b), one might equally well build a basis for
the latter Krylov space having nonzero poles.

Remark 7.21. There are two possible scenarios in which case Algorithm 1 breaks down
in the sense that vj+1 = 0. The first one eventuates as soon as the invariance index
j + 1 = I is reached and is often referred to as lucky breakdown, since in this case the
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rational Krylov approximation is already exact (c.f. Proposition 7.11). Conversely, a so-
called unlucky breakdown occurs whenever the enrichment of the basis terminates before the
invariance index is reached. In this case, uj = vj does not satisfy the desired property from
Lemma 7.19 such that (I − ξ−1j+1L)

−1Lvj ∈ span{v0, . . . ,vj}. However, our choice of the
continuation vector uj is fairly standard in the literature and we have never observed such
an unlucky breakdown in any of our experiments.

The bottle neck of each rational Arnoldi algorithm is the computation of solutions to
the shifted linear systems of equations (I − ξ−1j+1L)

−1Lvj . The latter reduces to a matrix-
vector product if ξj+1 =∞. Therefore, a legitimate question is whether the choice of finite
poles pays off taking into account the additional complexity compared to polynomial Krylov
methods. The following example addresses this matter.

Example 7.22. Consider the heat equation

∂tu−Δu = 0, in Ω× R+,
u = 0, on ∂Ω× R+,
u = u0, on Ω× {0},

on the unit square Ω = (0, 1)2 with initial condition

u0(x) = xy(1− x)(1− y), x = (x, y) ∈ Ω.
We apply the discrete eigenfunction method using Vh = P01 (Th) as finite element space over
a quasi-uniform triangular mesh Th. The DEM surrogate can be written as uDem = e−tLu0.
The latter is approximated using a rational Krylov space QΞk+1(L,b) with poles in

– Ξinf = {∞, . . . ,∞}, which yields a polynomial Krylov method,

– Ξsi = {1, . . . , 1}, which yields a shift-and-invert Krylov method.

In dependency of the mesh parameter h, we introduce the discrete L2-error

E(k,Ξ, t, h) := "e−tLu0 −Ve−tLk+1V†u0",

where V is an orthonormal basis of QΞk+1(L,b) and Lk+1 = V†LV. We depict the quantity
E(k,Ξ, 0.1, h) in Figure 7.2 for decreasing mesh sizes h = 0.04, 0.02, 0.01. The error of the
orthogonal projection VV†e−0.1Lu0 of e−0.1Lu0 onto the respective Krylov space is indicated
by the triangles and serves as a benchmark for the best possible approximation within the
search space. In accordance with Theorem 7.16, the latter almost perfectly matches the
actual Krylov approximation error.

We further observe that the number k required by the polynomial Krylov method to achieve
a desired accuracy is almost proportional to the mesh parameter h. In contrast, the accuracy
of the RKM using Ξsi as pole set appears to be independent of h. For all values of the mesh
size, the latter reaches machine precision whenever k ≈ 15 irrespectively of the problem size.
Under the assumption that each iteration involves a linear system of dimension N ×N that
can be solved in O(N) operations, the benefits of finite poles quickly justify the additional
computational complexity.
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Figure 7.2: Error E(k,Ξ, 0.1, h) for h = 0.04 (top left), h = 0.02 (top right), and h = 0.01
(bottom) with Ξ ∈ {Ξinf,Ξsi}. The triangles indicate the orthogonal projection
of the DEM surrogate e−0.1Lu0 onto the respective Krylov space.

As the previous example shows, the challenge with Krylov subspace methods is to find the
subtle trade-off between finite poles, which typically yield better search spaces, and poles
at infinity, which are computationally less expensive. Since this is still a matter of ongoing
research [GS21] and far beyond the scope of this thesis, we only want to provide a superficial
overview of some aspects which should be included in the decision of the particular selection
of poles and the computation of the basis.

– A general rule of thumb is that for small N the higher computational effort of rational
Krylov methods does not pay off compared to their polynomial counterparts.

– If N is of moderate size that allows the systems of equations to be solved using a
direct solver, it is convenient to choose Ξ in a way such that the poles do not vary
often. In this case, one can compute a factorization for the matrix I− ξ−1j+1L once and
for all in order to efficiently query v 4→ (I − ξ−1j+1L)

−1Lv for all poles that share the
same value.
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– If N is large, direct solvers entail extensive memory requirements whence one is typi-
cally obliged to resort to iterative methods. In this regime, there is no computational
advantage in solving multiple linear systems with the same poles.

– Typically, one does not solve the linear system involving L = M−1A but resorts to
the equivalent problem

(M− ξ−1j+1A)ṽj+1 =Mvj , (7.10)

which is computationally convenient since both M and A are symmetric and sparse.

– The performance of iterative methods hinges on the condition number of L. The
latter is typically large and thus requires the implementation of a preconditioner.
If the matrix comes from a differential operator of the form (4.1), efficient multigrid
preconditioner are available whose convergence rates are independent of the respective
pole and the mesh size.

– If all poles are pairwise distinct, then by Lemma 7.5

QΞk+1(L,b) = span{(L− ξ0I)
−1b, . . . , (L− ξkI)

−1b}.

This allows one to distribute each task (L− ξjI)
−1b, j = 0, . . . , k, to one processor in

order to solve the systems of equations efficiently in parallel. In favour of numerical
stability, the resulting vectors are then orthonormalized to obtain the desired basis
of QΞk+1(L,b). Compared to the sequentially executed rational Arnoldi algorithm,
however, the parallel approach is more prone to numerical instabilities which needs
to be counteracted by repeated orthogonalization runs in each step. A more general
point of view on parallel Arnoldi algorithms is given in [Güt10, BG17].

– If the linear systems of equations are tackled by iterative methods, one possibility to
accelerate the computations even further is to terminate the iteration before machine
precision is attained. These so-called inexact solves give rise to a perturbed rational
Krylov basis and have been systematically studied in [LM98, Güt10, GS21].

– A rather recent tool that can be applied to build the rational Krylov space are so-
called H-matrices [Hac99]. H-matrices are blockwise low-rank matrices that can be
stored at logarithmic-linear complexity and allow for efficient approximations of in-
verse FEM matrices [FMP13, AFM21]. The latter can be employed to efficiently
compute solutions to (7.10).
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The key ingredient of each rational Krylov method is the particular selection of its poles.
Typically, these parameters are chosen based on some upper bound η of the rational Krylov
error

"f(L)b− uk+1" ≤ η(f,L,b,Ξ)

that quantifies the performance of the RKM in dependence of Ξ. One possible choice of η
is provided by Theorem 7.16 via

η(f,L,b,Ξ) = 2"b" min
rk∈Pk/qΞ

"f − rk"Σ.

Whenever rk ≈ f in Σ, the poles of rk should constitute good poles for building the rational
Krylov space. In fractional diffusion problems, however, the function f = fτ that we are
interested in typically depends on a parameter vector τ ∈ Θ ⊂ Rp, p ∈ N, such as

– the power function fτ (λ) = λ−s with τ = s ∈ Θ = [0, 1],
– functions of Mittag-Leffler type fτ (λ) = Eα,β(−tαλs) with τ ∈ {(α, β, t, s) ∈ [0, 1]×
R+ × R+ × [0, 1] : β ≥ α}.

– We also aim to incorporate the power function fτ (λ) = λs, τ = s ∈ Θ = [0, 1], with
positive exponent in our analysis, which is of interest in the application of forward
fractional diffusion operators, the computation of interpolation norms, and the im-
plementation of time-stepping schemes for time-dependent problems generated by a
fractional-in-space differential operator.

In all these cases, any possible rational approximation rτk ≈ fτ heavily depends on the
problem-specific parameters and is thus unfeasible whenever τ 4→ uk+1 ≈ fτ (L)b is queried
for multiple instances of the parameter. While the precise choice of the poles is discussed
systematically in Chapter 10, we provide here the necessary preparations and quantify the
rational Krylov error by an upper bound of the form η(fτ ,L,b,Ξ) = η1(f

τ ,L,b)η2(L,Ξ)
which allows us to choose Ξ independently of τ . Following [DHS21], we proceed in three
steps.

1. In the first step, we show that the functions we are interested in are either of Cauchy-
Stieltjes, complete Bernstein, or Laplace-Stieltjes type, i.e., they admit a representa-
tion of the form

fτ (λ) =

� ∞
0

µτ (ζ)g(λ, ζ) dζ, g(λ, ζ) ∈ {(λ+ ζ)−1, λ/(λ+ ζ), e−ζλ}, (8.1)

where µτ is a real-valued function such that the integral is absolutely convergent.
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2. Leveraging our knowledge gained, we apply Theorem 2.37 to write fτ (L)b and its
rational Krylov surrogate as

fτ (L)b =

� ∞
0

µτ (ζ)g(L, ζ) dζ, Vfτ (Lk+1)V
†b =

� ∞
0

µτ (ζ)Vg(Lk+1, ζ)V
†b dζ,

for any basis V of QΞk+1(L,b) with Lk+1 = V†LV. Since

"fτ (L)b−Vfτ (Lk+1)V
†b" =

####� ∞
0

µτ (ζ)
�
g(L, ζ)−Vg(Lk+1, ζ)V

†b
�
dζ

####
≤
� ∞
0

µτ (ζ)"g(L, ζ)−Vg(Lk+1, ζ)V
†b" dζ,

(8.2)

the main objective of the second part of this chapter is to quantify the rational Krylov
error of either of the three kernel functions

"g(L, ζ)−Vg(Lk+1, ζ)V
†b" ≤ ηg(Ξ, ζ) (8.3)

by some suitable upper bound ηg which is entirely independent of the parameter τ .

3. Finally, in the remainder of this chapter, we combine (8.2) and (8.3) to derive estimates

"fτ (L)b− uk+1" ≤ η1(f
τ ,L,b)η2(L,Ξ)

for all functions of the form (8.1).

8.1 Stieltjes and Complete Bernstein Functions in Fractional
Diffusion Problems

8.1.1 Cauchy-Stieltjes Functions

One possible definition of Cauchy-Stieltjes functions is obtained by setting g(λ, ζ) = 1/(λ+
ζ) in (8.1). In slightly more general form, the definition we shall use throughout this thesis
is the following [SSV12, Ber08].

Definition 8.1. A function f : R+ → R is said to be a Cauchy-Stieltjes function if

f(λ) =
ω

λ
+ θ +

� ∞
0

µC(ζ)

λ+ ζ
dζ (8.4)

for ω, θ ∈ R+0 and some nonnegative real-valued function µC such that the integral is abso-
lutely convergent. The function µC is called Cauchy-Stieltjes density and (ω, θ, µC) is the
Cauchy-Stieltjes triple of f . We denote the set of all Cauchy-Stieltjes functions by CS.

There is a one-to-one relation between f ∈ CS and its respective Cauchy-Stieltjes triple
(ω, θ, µC), whence the map µC 4→ f is commonly referred to as Cauchy-Stieltjes transform
[EMOT54]. Typical examples of Cauchy-Stieltjes functions are [SSV12, p. 13-14]

ln(1 + λ)

λ
=

� ∞
1

ζ−1

λ+ ζ
dζ,

arctan
�√

λ
�

√
λ

=

� 1
0

(4ζ)−
1
2

λ+ ζ
dζ, (8.5)
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iR

R

C1θ

C3θ
C4r

C2R

Figure 8.1: Integration contour C(θ, r, R) defined by (8.6).

where ω = θ = 0 in (8.4). For some f ∈ CS, the corresponding density function can be
computed explicitly. To see this, assume f to be analytic in C \R−0 and define the contour
C(θ, r, R) := C1θ + C2R − C3θ − C4r , depicted in Figure 8.1, where

C1θ (ζ) := ζe−iθ, C2R(φ) := Reiφ

C3θ (ζ) := ζeiθ, C4r (φ) := re−iφ

�
(ζ, φ) ∈ [r,R]× (−π, π), (8.6)

for some θ ∈ (0, π) and 0 < r < R. By Cauchy’s integral formula, cf. Theorem 2.35, we
find for all λ ∈ (r,R)

f(λ) =
1

2πi

�
C(θ,r,R)

f(z)

λ− z
dz

=
1

2πi

� R

r

f(ζe−iθ)e−iθ

λ− ζe−iθ
− f(ζeiθ)eiθ

λ− ζeiθ
dζ +

1

2π

� θ

−θ

Rf(Reiφ)eiφ

λ−Reiφ
− r

f(re−iφ)e−iφ

λ− re−iφ
dφ.

If we assume

lim
|z|→∞

|f(z)| = 0, lim
|z|→0

|zf(z)| = 0, (8.7)

uniformly in arg(z) ∈ (−π, π), we can send R → ∞ and r → 0, causing the latter integral
to vanish. In combination with θ → π, we thus obtain, after the transformation ζ 4→ −ζ,

f(λ) =

� ∞
0

µC(ζ)

λ+ ζ
dζ, µC(ζ) =

1

2πi
lim
φ→π

�
f(ζeiφ)− f(ζe−iφ)

�
. (8.8)

We arrive at the following result.
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Lemma 8.2. Let f be analytic in C\R−0 so that (8.7) holds. Then f ∈ CS and its Cauchy-
Stieltjes density µC is given by

µC(ζ) =
1

2πi
lim
φ→π

�
f(ζeiφ)− f(ζe−iφ)

�
. (8.9)

Although (8.9) provides a convenient tool to determine Cauchy-Stieltjes densities for some
f ∈ CS, we emphasize that the analysis provided in the sequel can be applied to any f ∈ CS
without the explicit knowledge of µC . For this purpose, the following proposition is often
useful, where we use the notation

H	>0 := {z ∈ C : 
z > 0}, H	<0:= {z ∈ C : 
z < 0},
H	≥0 := {z ∈ C : 
z ≥ 0}, H	≤0:= {z ∈ C : 
z ≤ 0},

for the (closed) upper and lower complex half plane, respectively.

Proposition 8.3. A function f : R+ → R is a Cauchy-Stieltjes function if and only if

1. f(λ) ∈ R+0 for all λ ∈ R+,

2. f has an analytic extension to the slit plane C \ R−0 , that we call f again, such that
f(z) ∈ H	≤0 for all z ∈ H	>0.

Proof. See [Ber08, Theorem 3.2].

Example 8.4. Since the function

f(z) :=
1

z(1 + z2)

possesses poles at ±i, we find that f cannot be extended analytically to the slit plane C\R−0 .
By Proposition 8.3, there holds f 8∈ CS. On the other hand, the function

h(λ) :=

√
λ+ c

λ
∈ CS

for all c ∈ R+, since it is nonnegative on R+ and any z ∈ H	>0 satisfies

arg(h(z)) = arg(
√
z + c)− arg(z) = 1

2
arg(z + c)− arg(z) ∈ (−π, 0).

Provided that f is a real-valued function defined on R+, it follows by the Schwarz reflec-
tion principle [Hen93] that any possible analytic continuation of f must satisfy f(z) = f(z).
Hence, Proposition 8.3 shows that f maps the upper half plane to the lower half plane and
vice versa. Several other remarkable properties of Cauchy-Stieltjes functions are listed in
the following proposition, which are often useful to derive the Cauchy-Stieltjes membership
of some function from available f, g ∈ CS.
Proposition 8.5.

1. The set CS is a convex cone: af + bg ∈ CS for all a, b ∈ R+0 and f, g ∈ CS.
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2. The set CS is closed under pointwise limits: if (fn)n∈N ⊂ CS converges pointwise to
some f , then f ∈ CS.

3. Let f, g ∈ CS, f 8= 0, c ∈ R+, and s ∈ [0, 1]. Then there holds

1

f( 1λ)
∈ CS, 1

λf(λ)
∈ CS, f

cf + 1
∈ CS, g ◦ 1

f
∈ CS, fsg1−s ∈ CS.

Proof. See [SSV12, Theorem 2.2] for the first two claims and [Ber08, p. 9] for the latter.

The importance of Cauchy-Stieltjes functions in fractional diffusion problems is due to
Balakrishnan’s formula, which shows that f(λ) = λ−s ∈ CS for all s ∈ [0, 1]. This member-
ship also easily follows from Proposition 8.2 since f satisfies (8.8) and

µC(ζ) =
1

2πi
lim
φ→π

�
f(ζeiφ)− f(ζe−iφ)

�
=
1

2πi
lim
φ→π

�
ζ−seiφs − ζ−se−iφs

�
= ζ−s

sin(πs)

π
.

We manifest this important observation in the following theorem.

Theorem 8.6. For all s ∈ [0, 1] there holds λ−s ∈ CS. If s ∈ (0, 1), then

λ−s =
sin(πs)

π

� ∞
0

ζ−s

λ+ ζ
dζ, λ ∈ R+. (8.10)

The fractional power function f(λ) = λ−s, s ∈ [0, 1], shall serve us as paradigm of
a Cauchy-Stieltjes function arising from elliptic fractional diffusion problems. We stress,
however, that the results provided in the sequel also apply to other possibly interesting
functions of fractional diffusion type, e.g.,

1

λs + c
∈ CS, 1

(λ+ c)s
∈ CS, c ∈ R+0 .

Note that not all functions we are interested in have Cauchy-Stieltjes membership. Con-
sider e.g., the fractional power function f(z) = zs with positive exponent s ∈ (0, 1). Then

f(i) = eiπs = cos(πs) + i sin(πs) ∈ H	>0.

Since i ∈ H	>0, it follows from Proposition 8.3 that f 8∈ CS. Nevertheless, we can exploit
(8.10) to deduce

λs

λ
= λs−1 =

sin(π(s− 1))
π

� ∞
0

ζs−1

λ+ ζ
dζ.

Multiplication with λ combined with the symmetry of sin around π
2 gives

λs =
sin(πs)

π

� ∞
0

ζs−1
λ

λ+ ζ
dζ, (8.11)

which has already been noted in Theorem 4.7. We conclude that λs can be written as (8.1)
with resolvent-type kernel g(λ, ζ) = λ/(λ + ζ). Functions of this form are called complete
Bernstein functions and are the matter of the following section.
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8.1.2 Complete Bernstein Functions

Definition 8.7. A function f : R+ → R is said to be a complete Bernstein function if

f(λ) = ωλ+ θ +

� ∞
0

µB(ζ)
λ

λ+ ζ
dζ (8.12)

for ω, θ ∈ R+0 and some nonnegative real-valued function µB such that the integral is abso-
lutely convergent. The function µB is called Bernstein density and (ω, θ, µB) is the complete
Bernstein triple of f . We denote the set of all complete Bernstein function by CB.

Similarly to Cauchy-Stieltjes functions, the triplet (ω, θ, µB) is uniquely determined by
the function f and vice versa. Typical examples of complete Bernstein functions are [SSV12]

ln(1 + λ) =

� 1
0

ζ−1
λ

λ+ ζ
dζ,

√
λ
�
1 + e−2

√
λ
�
=
2

π

� ∞
0

cos2(
√
ζ)√

ζ

λ

λ+ ζ
dζ.

A systematic list of complete Bernstein functions combined with their respective Bernstein
densities, if available, can be found in [SSV12]. The one that is of utmost interest for us is
the matter of the following theorem.

Theorem 8.8. For all s ∈ [0, 1] there holds λs ∈ CB.

Proof. The conjecture follows from (8.11).

The first equivalence in the following proposition is a direct consequence of the integral
representation of Cauchy-Stieltjes and complete Bernstein functions. For the remaining
ones we refer to Proposition 7.1 and Theorem 7.3 in [SSV12].

Proposition 8.9. There holds f ∈ CB if and only if f(λ)/λ ∈ CS. Assuming f 8≡ 0, then

f ∈ CB ⇐⇒ 1

f
∈ CS ⇐⇒ λ

f(λ)
∈ CB. (8.13)

Since f(z) = 1/z = z/|z|2 maps H	≥0 onto H	≤0 and vice versa, we infer from the first
equivalence in (8.13) and Proposition 8.3 the following characterization of CB.
Proposition 8.10. A function f : R+ → R is a complete Bernstein function if and only if

1. f(λ) ∈ R+0 for all λ ∈ R+,

2. f has an analytic continuation to the complex slit plane C\R−0 such that f(z) ∈ H	≥0
for all z ∈ H	>0.

The different characterizations of CS and CB, stated in Proposition 8.3 and 8.10, are
illustrated in Figure 8.2. We sample several points along the unit circle and plot their
image under the Cauchy-Stieltjes and complete Bernstein map z−

1
2 and z

1
2 , respectively. In

both cases, the nodes are mapped to the right-half plane, however, in the Cauchy-Stieltjes
case the nodes contained in H	>0 are mapped to the lower-half plane whereas zs preserves
the sign of their imaginary part. In view of this close relation between CB and CS, the
following properties should come as no surprise.
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iR

R

z−
1
2

iR

R
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z
1
2

iR

R

Figure 8.2: Action of z−
1
2 ∈ CS and z

1
2 ∈ CB on arguments on the unit circle.

Lemma 8.11.

1. The set CB is a convex cone: af + bg ∈ CB for all a, b ∈ R+0 and f, g ∈ CB.

2. The set CB is closed under pointwise limits: if (fn)n∈N ⊂ CB converges pointwise to
some f , then f ∈ CB.

3. Let f, g ∈ CB with f 8= 0, c ∈ R+, and s ∈ [0, 1]. Then there holds

1

f( 1λ)
∈ CB, λf

� 1
λ

�
∈ CB, f(λ)

cλ+ 1
∈ CB, λ

f(λ)
∈ CB, fsg1−s ∈ CB.

Proof. See [SSV12, Section 7].

The following result comes in handy if one wants to construct new Cauchy-Stieltjes or
complete Bernstein functions from given functions in CS or CB. For the sake of brevity we
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use A ◦ B as a shorthand for {a ◦ b : a ∈ A, b ∈ B}. Its proof is a direct consequence of
Proposition 8.3 and 8.10.

Corollary 8.12. There holds

1. CB ◦ CS ⊂ CS,

2. CS ◦ CB ⊂ CS,

3. CB ◦ CB ⊂ CB,

4. CS ◦ CS ⊂ CB.

Apart from λs, the set of complete Bernstein functions contains several interesting func-
tions of fractional type, such as

λs + c ∈ CB, λs

cλs + 1
∈ CB, c ∈ R+0 ,

for all s ∈ [0, 1]. In combination with CS, they cover a majority of the most important
functions that arise from stationary fractional diffusion problems. In fractional evolution
equations, however, we are interested in functions of the form fτ (λ) = Eα,β(−tαλs). Even
in the integer-order case α = β = s = 1, the latter is not contained in CS ∪ CB since for
any z = reiφ we have

e−z = e−r cosφe−ir sinφ = e−r cosφ (cos(r sinφ)− i sin(r sinφ)) . (8.14)

Provided that φ ∈ (0, π2 ) there holds z ∈ H	>0 but for e.g., r = 1, we have 
(e−z) < 0
whence e−λ 8∈ CB. On the other hand, if we choose r = 3π/(2 sinφ) there holds


(e−z) = −e−
3π cotφ

2 sin

�
3π

2

�
= e−

3π cotφ
2 > 0,

whence e−λ 8∈ CS by Proposition 8.3. To complete our systematic classification, we intro-
duce one final class of functions which turns out to be the missing ingredient to unify the
problems that we are interested in.

8.1.3 Laplace-Stieltjes Functions

Definition 8.13. A function f : R+ → R is said to be a Laplace-Stieltjes function if there
exists a nonnegative real-valued function µL such that

f(λ) =

� ∞
0

µL(ζ)e
−ζλ dζ. (8.15)

The function µL is called Laplace-Stieltjes density of f . We denote the set of all Laplace-
Stieltjes functions by LS.
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More succinctly, (8.15) can be written as f(λ) = L [µL](λ) whence there is a one-to-
one correspondence between the function f and its Laplace-Stieltjes density µL [Wid43].
Well-known examples of Laplace-Stieltjes functions include

1− e−λ

λ
=

� 1
0

e−ζλ dζ,
1

λ+ c
=

� ∞
0

e−cζe−ζλ dζ, c ∈ R+0 . (8.16)

Given some f ∈ LS, the respective Laplace-Stieltjes density is obtained by applying the
inverse Laplace transform, that is, µL = L −1[f ]. For a large class of functions, the latter is
known explicitly. To apply the results provided in the sequel, however, it suffices to know
whether a function is contained in LS without the explicit knowledge of µL. A convenient
tool for this purpose is the well-known characterization of LS as the set of completely
monotonic functions.

Definition 8.14. A function f ∈ C∞(R+) is said to be completely monotonic if

(−1)nf (n)(λ) ≥ 0, λ ∈ R+,

for all n ∈ N0. We denote the set of all completely monotonic functions with CM.

As shown in [Ber29], the set CM coincides with LS.
Theorem 8.15 (Bernstein). If f ∈ CM, then f is the Laplace transform of a unique
function µL : R+ → R+0 such that

f(λ) =

� ∞
0

µL(ζ)e
−ζλ dζ. (8.17)

Conversely, whenever µL : R+ → R+0 is a function with the property L [µL](λ) < ∞ for all
λ ∈ R+, then λ 4→ L [µL](λ) is completely monotonic. In particular, we have LS = CM.

As a direct consequence, we find that any f ∈ LS is a nonnegative, decreasing, and
convex function. As such, the limit

f(0+) := lim
λ→0+

f(λ) (8.18)

exists. The function f(λ) = λ−1 ∈ LS shows, however, that the value of f(0+) is not
necessarily finite. Another well-known property that follows from (8.17) is the following
result, see [Wid43].

Lemma 8.16. Any f ∈ LS allows for an analytic continuation to the right half plane
{z ∈ C : �z > 0}.
To establish a connection between LS and the function classes introduced in the previous

sections, we apply the second identity in (8.16) and Fubini’s theorem to conclude for all
f ∈ CS

f(λ) =

� ∞
0

µC(ζ)

λ+ ζ
dζ =

� ∞
0

� ∞
0

µC(ζ)e
−ζse−sλ ds dζ =

� ∞
0

e−sλ
� ∞
0

µC(ζ)e
−ζs dζ ds.

This proves the following result.
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Lemma 8.17. There holds CS ⊂ LS. Moreover, for any function f ∈ CS with Cauchy-
Stieltjes density µC the Laplace-Stieltjes density µL of f is given by

µL(ζ) =

� ∞
0

µC(s)e
−ζs ds.

Note that the inclusion is indeed strict since for f(λ) = e−λ there holds

(−1)nf (n)(λ) = (−1)n(−1)ne−λ = e−λ ≥ 0

for all λ ∈ R+. Hence, by Bernstein’s theorem, we find e−λ ∈ LS but e−λ 8∈ CS.
Remark 8.18. Due to CS ⊂ LS any Cauchy-Stieltjes function is completely monotonic.
The connection between LS = CM and CB is that any f ∈ CB satisfies f # ∈ CM, see
[SSV12, Theorem 3.2]. However, not every function with this property is a complete Bern-
stein function. The collection of all functions f : R+ → R that satisfy f # ∈ CM is the set
of Bernstein functions. This is the superset of CB whose elements can be written as

f(λ) = ω + θλ+

� ∞
0

µ(ζ)(1− e−ζλ) dζ (8.19)

for ω, θ ∈ R+0 and some nonnegative real-valued function µ such that the integral is absolutely
convergent. There holds f ∈ CB if and only if µ in (8.19) is completely monotonic.

A few remarkable properties of Laplace-Stieltjes functions are listed in the following
lemma.

Lemma 8.19.

1. The set LS is a convex cone: af + bg ∈ LS for all a, b ∈ R+0 and f, g ∈ LS.

2. The set LS is closed under pointwise convergence: if (fn)n∈N ⊂ LS converges point-
wise to some f , then f ∈ LS.

3. The set LS is closed under multiplication: fg ∈ LS for all f, g ∈ LS.

4. There holds LS ◦ CB ⊂ LS.

5. If f ∈ LS and g is positive on R+, then f ◦ g ∈ LS. In particular, f(cλ) ∈ LS for
any c ∈ R+.

6. If f : R+ → R+0 with ln ◦f ∈ LS, then f ∈ LS.

Proof. See Corollary 1.6 and Theorem 3.6 in [SSV12] for the first four assertions and [Mer12,
Lemma 3.4] for the latter.

Provided these tools, our goal is to prove that functions arising from time-dependent
fractional diffusion problems have Laplace-Stieltjes membership, i.e.,

f(λ) = Eα,β(−tαλs) ∈ LS (8.20)
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for all α ∈ (0, 1], β ≥ α, t ∈ R+0 , and s ∈ [0, 1]. Recalling Remark 2.26, we also want to
include the extremal case α = 0, whence it is fruitful to define

eα,β(t, λ) :=

�
Eα,β(tλ), if α > 0,
1
Γ(β)(1 + λ)−1, if α = 0.

(8.21)

Theorem 8.20. If (α, β, t, s) ∈ ΘL := {(α, β, t, s) ∈ [0, 1]×R+×R+0 × [0, 1] : β ≥ α}, then
there holds eα,β(−tα, λs) ∈ LS.

Since (1 + λ)−1 ∈ CM, it follows from Theorem 8.15 that the proof holds if α = 0. To
confirm the conjecture for α ∈ (0, 1] we require the following intermediate result.
Lemma 8.21. Let α, β ∈ R+. Then Eα,β(−λ) ∈ LS if and only if α ∈ (0, 1] and β ≥ α.

Proof. See [Sch96] for the explicit derivation of the Laplace-Stieltjes density and [Mil99] for
a shorter proof validating only the membership itself.

Proof of Theorem 8.20. Under the given assumptions on α and β, the fifth property in
Lemma 8.19 reveals that Eα,β(−tαλ) ∈ LS for any t ∈ R+0 . By the fourth property in
Lemma 8.19, the composition of the latter with λs ∈ CB, s ∈ [0, 1], is a Laplace-Stieltjes
function itself and Theorem 8.20 is proved.

For some values of the parameters, the results of Theorem 8.20 can be confined. For this
purpose, let us consider the integer-order case α = 1. In analogy to (8.14), we find that for
all z = reiφ

e−z
s
= e−r

seiφs = e−r
s cos(φs)e−ir

s sin(φs). (8.22)

Provided that s ∈ (0, 12) and φ ∈ (−π, π), (8.22) converges uniformly to zero as r → ∞.
Furthermore, ze−z → 0 as z → 0. Applying Lemma 8.2, we find that e−λs ∈ CS if s ∈ (0, 12)
and its Cauchy-Stieltjes density evaluates to

µC(ζ) =
1

2πi
lim
φ→π

�
e−ζ

seiφs − e−ζ
se−iφs

�
=
1

2πi

�
e−ζ

seiπs − e−ζ
se−iπs

�
=
1

π
e−ζ

s cos(πs) sin(ζs sin(πs)).

For arbitrary α ∈ [0, 1], the situation can be generalized as follows (cf. [YTLI11, Proposition
4.4] and [MN18, Example 4.3]).

Proposition 8.22. If (α, β, t, s) ∈ ΘC := {(α, β, t, s) ∈ ΘL :
α
2+s < 1}, then eα,β(−tα, λs) ∈

CS and the Cauchy-Stieltjes density is given by

µC(ζ) = − 1
π

 �Eα,β(−tαζseiπs)

�
.

Proof. The cases where either of the parameters α, t, or s are zero follow from the fact
that constant functions as well as (1 + λs)−1, s ∈ [0, 1], are contained in CS. For the
remainder of this proof, let us therefore assume that α, t, and s are strictly positive such
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that eα,β(−tα, λs) = Eα,β(−tαλs). We check under which restrictions on the parameters
the requirements (8.7) are satisfied such that Lemma 8.2 can be applied. Clearly, the
second property in (8.7) holds for all admissible values of α, β, t, and s. To investigate the
behaviour of |f(z)| as z → ∞, we consult Theorem 2.29 to infer

arg(−tαzs) ∈
�απ
2

, π
�

=⇒ |Eα,β(−tαzs)| ≤ cα,β
1 + tα|z|s . (8.23)

Utilizing polar coordinates z = reiφ, the left-hand side of (8.23) reads

arg(−tαzs) = arg(−eiφs) = π − φs ∈
�απ
2

, π
�
.

In terms of φ, the condition can be reformulated as φ ∈ (0, (2−α)π2s ). To guarantee

lim
|z|→∞

|Eα,β(−tαzs)| = 0

uniformly in φ ∈ (0, π), we thus require
(2− α)π

2s
> π,

or equivalently, α
2 + s < 1. Since |Eα,β(−tαλs)| → 0 for increasing values of λ ∈ R and

|Eα,β(−tαzs)| = |Eα,β(−tαzs)| = |Eα,β(−tαzs)|, we deduce that |Eα,β(−tαzs)| converges
uniformly to 0 as |z| → ∞ if arg(z) ∈ (−π, π) and α

2 + s < 1. Thanks to Lemma 8.2, we
deduce Eα,β(−tαλs) ∈ CS with Cauchy-Stieltjes density

µC(ζ) =
i

2π

�
Eα,β(−tαζseiπs)− Eα,β(−tαζse−iπs)

�
=

i

2π

∞!
j=0

(−tαζs)k · 2i sin(jπs)
Γ(αj + β)

= − 1
π



∞!
j=0

�−tαζseiπs
�j

Γ(αj + β)
= − 1

π

Eα,β(−tαζseiπs).

For the reader’s convenience, we conclude this section with an illustration of the system-
atic classification of the fractional power function and f(λ) = eα,β(−tα, λs) in Figure 8.3.
For f(λ) = λs, we see that in the extremal case s = 0 the function is in the intersection
of CS and CB. For fτ (λ) = eα,β(−tα, λs) the critical case α

2 + s = 1 only guarantees
membership in the Laplace-Stieltjes set.

8.2 Approximability of the Matrix Kernels

The previous section allows us to take the unified point of view that the DEM approximation
of fractional diffusion problems is obtained by evaluating a matrix-vector product of the
form fτ (L)b, where fτ is either of Stieltjes or complete Bernstein type. The computations
in (8.2) show that the approximability of these functions hinges on the approximability of
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λs

0−1 1

s

(0, 0) (1, 0)

(0, 1) (1, 1)

ΘL \ΘCS

ΘCS

s
+

α
2
=
1

s

α

eα,β(−tα, λs)

Figure 8.3: Classification of the fractional power function λs, s ∈ [−1, 1], and the Mittag-
Leffler type function eα,β(−tα, λs) for (α, s) ∈ [0, 1]2, fixed t > 0, and β ≥ α.
The cyan, green, and red areas indicate Cauchy-Stieltjes, complete Bernstein,
and Laplace-Stieltjes membership of the respective function.

the respective matrix kernels. Recognizing this fact, the main purpose of this section is to
provide an upper bound for the rational Krylov approximation error in the form of

"g(L, ζ)−Vg(Lk+1, ζ)V
†b" ≤ ηg(Ξ, ζ), (8.24)

where V is an orthonormal basis of QΞk+1(L,b), Lk+1 = V†LV its compression, g(λ, ζ) ∈
{(λ+ ζ)−1, λ/(λ+ ζ), e−ζλ}, and ηg(Ξ, ζ) an upper bound depending on Ξ and ζ only. We
start our investigation with the Cauchy-Stieltjes kernel.

8.2.1 The Resolvent Kernel

Let V be an orthonormal basis of the rational Krylov space QΞk+1(L,b) and Lk+1 = V†LV.
Due to Theorem 7.16, we may bound the resolvent error by

"(L+ ζI)−1b−V(Lk+1 + ζIk+1)
−1V†b" ≤ 2"b" min

rk∈Pk/qΞ
"(λ+ ζ)−1 − rk(λ)"Σ (8.25)

for any ζ ∈ R+0 , where Σ is the spectral interval of L. To bound the right-hand side of
(8.25), we introduce, recalling (7.1), the following rational interpolant of (λ+ ζ)−1 which is
an integral part of our analysis; cf. [Güt10, Section 7.5.2].

Definition 8.23. Provided a set of nodes Λ = {σ0, . . . , σl} ⊂ C, l ∈ N, we define for any
ζ ∈ C the rational interpolant rζΛ,Ξ by

rζΛ,Ξ(λ) :=
1− rΛ,Ξ(λ)

rΛ,Ξ(−ζ)
λ+ ζ

, rΛ,Ξ(λ) :=
qΛ(λ)

qΞ(λ)
∈ Rl+1,k+1. (8.26)

116



8 A Unified Analysis of Rational Krylov Methods in Fractional Diffusion

Recalling deg(qΞ) = |{ξ ∈ Ξ : ξ 8=∞}| for any Ξ ⊂ C, we collect in the following Lemma
several properties of the rational interpolant, which, among others, justify its nomenclature;
cf. [Güt10, DHS21].

Lemma 8.24. Let Λ = {σ0, . . . , σl} ⊂ C and ζ ∈ C.

1. Let n = deg(qΛ), m = deg(qΞ), and j = max{n,m}. Then rζΛ,Ξ ∈ Pj−1/qΞ.

2. rζΛ,Ξ interpolates the resolvent in Λfin := {σ ∈ Λ : σ 8=∞}, i.e.,

∀σ ∈ Λfin : rζΛ,Ξ(σ) =
1

σ + ζ
.

3. The absolute error is given by

1

λ+ ζ
− rζΛ,Ξ(λ) =

1

λ+ ζ

rΛ,Ξ(λ)

rΛ,Ξ(−ζ)
. (8.27)

Proof. Let c = rΛ,Ξ(−ζ), then there holds

rζΛ,Ξ(λ) =

cqΞ(λ)−qΛ(λ)
cqΞ(λ)

λ+ ζ
=

cqΞ(λ)− qΛ(λ)

cqΞ(λ)(λ+ ζ)
∈ Rj,m+1.

The original definition of rΛ,Ξ in (8.26) shows, however, that −ζ is a root of both the
denominator and the numerator polynomial, whence in fact rζΛ,Ξ ∈ Pj−1/qΞ as claimed.
The second property follows from rΛ,Ξ(σ) = 0 for all σ ∈ Λfin. The third one holds since

1

λ+ ζ
− rζΛ,Ξ(λ) =

rΛ,Ξ(λ)
rΛ,Ξ(−ζ)
λ+ ζ

=
1

λ+ ζ

rΛ,Ξ(λ)

rΛ,Ξ(−ζ)
.

Since deg(qΞ) ≤ k + 1, it follows from the first property of the previous lemma that
rζΛ,Ξ ∈ Pk/qΞ if |Λ| ≤ k+ 1. In this case, the rational interpolant is an admissible choice to
bound the right-hand side of (8.25). Together with the third property in Lemma 8.24, we
deduce

"(L+ ζI)−1b−V(Lk+1 + ζIk+1)
−1V†b" ≤ 2"b""(λ+ ζ)−1 − rζΛ,Ξ(λ)"Σ

≤ 2"b""(λ+ ζ)−1"Σ "rΛ,Ξ(λ)"Σ|rΛ,Ξ(−ζ)| .
(8.28)

These observations allow us to derive an upper bound of the form (8.24) when g(L, ζ) is
the resolvent function; cf. [MR20a, DHS21].

Theorem 8.25. Let ζ ∈ C, V an orthonormal basis of QΞk+1(L,b), and Lk+1 = V†LV.
Then there holds

"(L+ ζI)−1b−V(Lk+1 + ζIk+1)
−1V†b" ≤ 2"b""(λ+ ζ)−1"Σ min

rk+1∈Pk+1/qΞ

"rk+1"Σ
|rk+1(−ζ)| .

Proof. This follows from (8.28) after taking the minimum over all Λ with |Λ| ≤ k + 1.

The proof of Theorem 8.25 holds without any restrictions on Ξ ⊂ R\Σ. As shown below,
the situation is different in the complete Bernstein case, where we require ∞ ∈ Ξ to bound
the rational Krylov approximation error.

117



8 A Unified Analysis of Rational Krylov Methods in Fractional Diffusion

8.2.2 The Complete Bernstein Kernel

The complete Bernstein kernel g(L, ζ) = L(L+ ζI)−1 bears a close relation to the Cauchy-
Steiltjes kernel. It is thus not surprising that the derivation of its upper bound follows in a
similar fashion. A subtle modification of Definition 8.23 reads as follows.

Definition 8.26. Provided a set of nodes Λ = {σ0, . . . , σl} ⊂ C, l ∈ N, we define for any
ζ ∈ C the rational interpolant r̂ζΛ,Ξ by

r̂ζΛ,Ξ(λ) := λ rζΛ,Ξ(λ).

The following observations are a direct consequence of Lemma 8.24.

Lemma 8.27. Let Λ = {σ0, . . . , σl} ⊂ C and ζ ∈ C.

1. Let n = deg(qΛ), m = deg(qΞ), and j = max{n,m}. Then r̂ζΛ,Ξ ∈ Pj/qΞ.

2. r̂ζΛ,Ξ satisfies the interpolation property

r̂ζΛ,Ξ(σ) =
σ

σ + ζ

for all σ ∈ Λfin = {σ ∈ Λ : σ 8=∞}.
3. The absolute error is given by

λ

λ+ ζ
− r̂ζΛ,Ξ(λ) =

λ

λ+ ζ

rΛ,Ξ(λ)

rΛ,Ξ(−ζ)
.

The main result of this section is stated in the following theorem; cf. [DHS21, Lemma 4].

Theorem 8.28. Let ζ ∈ C, V an orthonormal basis of QΞk+1(L,b), and Lk+1 = V†LV.
Assume that ∞ ∈ Ξ. Then there holds

"L(L+ ζI)−1b−VLk+1(Lk+1 + ζIk+1)
−1V†b" ≤ 2"b""λ/(λ+ ζ)"Σ min

rk∈Pk/qΞ

"rk"Σ
|rk(−ζ)| .

Proof. We apply Theorem 7.16 to observe

"L(L+ ζI)−1b−VLk+1(Lk+1 + ζIk+1)
−1V†b" ≤ 2"b" min

rk∈Pk/qΞ
"λ/(λ+ ζ)− rk(λ)"Σ.

Since ∞ ∈ Ξ, there holds deg(qΞ) ≤ k. The first property in Lemma 8.27 reveals that
r̂ζΛ,Ξ ∈ Pk/qΞ is an admissible choice to bound the minimum above if |Λ| ≤ k. If this is the
case, we may consult the third property in Lemma 8.27 to deduce

"L(L+ ζI)−1b−VLk+1(Lk+1 + ζIk+1)
−1V†b" ≤ 2"b""λ/(λ+ ζ)− r̂ζΛ,Ξ(λ)"Σ

≤ 2"b""λ/(λ+ ζ)"Σ "rΛ,Ξ(λ)"Σ|rΛ,Ξ(−ζ)| .

Since Λ is arbitrary, we may take the minimum over all Λ with |Λ| ≤ k to confirm that the
claim is valid.
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8.2.3 The Exponential Kernel

The treatment of the exponential kernel g(L, ζ) = e−ζL is more delicate. In line with
[DKZ09, MR20a, DHS21], we apply the second identity in (8.16) to rewrite e−ζλ via inverse
Laplace transform

e−ζλ = L −1[(λ+ ·)−1](ζ) = 1

2πi

�
iR

eζz

λ+ z
dz, (8.29)

where iR denotes the integration path starting at −i∞ and ending in i∞. Given an or-
thonormal basis V of QΞk+1(L,b) and Lk+1 = V†LV, we apply Theorem 2.36, after the
transformation z 4→ −z, to deduce

e−ζLb−Ve−ζLk+1V†b =
1

2πi

�
iR

eζz
�
(L+ zI)−1b−V(Lk+1 + zIk+1)

−1V†b
�
dz. (8.30)

These computations show that the approximability of the exponential kernel e−ζL, ζ ∈ R+0 ,
is closely related to the approximability of the resolvent (L+zI)−1 with z ∈ iR. An intuitive
approach to bound (8.30) would be to apply Theorem 8.25 so that

"e−ζLb−Ve−ζLk+1V†b" ≤ 1

2π

�
iR

"(λ+ z)−1"Σ min
rk+1∈Pk+1/qΞ

"rk+1"Σ
|rk+1(−z)| dz

≤ 1

2π

�
iR

1

|λmin + z| dz min
rk+1∈Pk+1/qΞ

"rk+1"Σ
inf{|rk+1(z)| : z ∈ iR} ,

which bears a close resemblance to the estimates derived in Theorem 8.25 and 8.28. Unfor-
tunately, the upper bound so obtained is not meaningful since�

iR

1

|λmin + z| dz =∞.

More careful computations allow one to overcome this difficulty. For convenience, we intro-
duce the following definition.

Definition 8.29. For all Ξ = {ξ0, . . . , ξk} ⊂ C we define the rational function rΞ ∈
Rk+1,k+1 by

rΞ(z) := r−Ξ,Ξ(z) =
k�

j=0
ξj !=∞

z + ξj
z − ξj

.

The following technical lemma can be found in the proof of [MR20a, Theorem 2] and is
instrumental for our approach.

Lemma 8.30. Let Ξ = {ξ0, . . . , ξk} ⊂ −Σ ∪ {∞}, m = deg(qΞ), and

h(λ, ζ) :=
1

2πi

�
iR

eζz(λ+ z)−1rΞ(λ)rΞ(−z)−1 dz.

Then there holds for all λ ∈ Σ and ζ ∈ R+0

|h(λ, ζ)| ≤ 2γm|rΞ(λ)|, γm := 2.23 +
2

π
ln

�
4m

 
λmax
λminπ

�
.
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If we restrict all finite poles to the negative spectral interval, we can bound the rational
Krylov approximation error of the matrix kernel g(L, ζ) = e−ζL as follows; see [MR20a,
Theorem 2] for the case where L is symmetric.

Theorem 8.31. Let ζ ∈ R+0 , V an orthonormal basis of QΞk+1(L,b) with poles Ξ ⊂ −Σ ∪
{∞}, m = deg(qΞ), γm as in Lemma 8.30, and Lk+1 = V†LV. Then there holds

"e−ζLb−Ve−ζLk+1V†b" ≤ 4γm"b""rΞ"Σ. (8.31)

Proof. Due to the first property in Lemma 8.24, there holds rζ−Ξ,Ξ ∈ Pk/qΞ. By Lemma
7.12, we find that rζ−Ξ,Ξ(L)b = Vrζ−Ξ,Ξ(Lk+1)V

†b. Subtracting eζzrζ−Ξ,Ξ(L)b and adding
eζzVrζ−Ξ,Ξ(Lk+1)V

†b inside the integral of (8.30) combined with (8.27) reveals

e−ζLb−Ve−ζLk+1V†b =
1

2πi

�
iR

eζz(L+ zI)−1rΞ(L)rΞ(−z)−1b dz

− 1

2πi

�
iR

eζzV(Lk+1 + zIk+1)
−1rΞ(Lk+1)rΞ(−z)−1V†b dz

= h(L, ζ)b−Vh(Lk+1, ζ)V
†b,

with h(λ, ζ) as in Lemma 8.30. We apply Theorem 7.16 to find that

"e−ζLb−Ve−ζLk+1V†b" ≤ 2"b" min
rk∈Pk/qΞ

"h(λ, ζ)− rk(λ)"Σ ≤ 2"b""h(λ, ζ)"Σ.

The inequality (8.31) now follows directly from Lemma 8.30.

8.3 Approximability of Stieltjes and Complete Bernstein
Functions

In this section, we leverage our insights gained to bound the rational Krylov approximation
error for Stieltjes and complete Bernstein functions. Recalling (8.18), the central statement
of this chapter is stated in the theorem below.

Theorem 8.32. Let V be an orthonormal basis of QΞk+1(L,b), Lk+1 = V†LV, and uk+1 =

Vf(Lk+1)V
†b.

1. Let f ∈ CS with ω and θ as in (8.4). If θ = 0, then

"f(L)b− uk+1" ≤ 2f(λmin)"b" min
rk+1∈Pk+1/qΞ

"rk+1"Σ
inf{|rk+1(λ)| : λ ∈ R−0 }

. (8.32)

Assuming ∞ ∈ Ξ, then (8.32) holds even if θ 8= 0.
2. Let f ∈ CB with ω and θ as in (8.12) and assume ∞ ∈ Ξ. If ω = 0, then there holds

"f(L)b− uk+1" ≤ 2f(λmax)"b" min
rk∈Pk/qΞ

"rk"Σ
inf{|rk(λ)| : λ ∈ R−0 }

. (8.33)

Assuming {∞,∞} ⊂ Ξ, then (8.33) holds even if ω 8= 0.
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3. Assume Ξ ⊂ −Σ ∪ {∞}, m = deg(qΞ), and γm as in Lemma 8.30. If f ∈ LS, then

"f(L)b− uk+1" ≤ 4γmf(0+)"b""rΞ"Σ. (8.34)

Proof. Let f ∈ CS and (ω, θ, µC) its Cauchy-Stieltjes triple. If θ = 0, then

f(L)b− uk+1 = ω
�
L−1b−VL−1k+1V

†b
�

+

� ∞
0

µC(ζ)
�
(L+ ζI)−1b−V(Lk+1 + ζIk+1)

−1V†b
�
dζ.

We apply triangle inequality to deduce

"f(L)b− uk+1" ≤ ω"L−1b−VL−1k+1V
†b"

+

� ∞
0

µC(ζ)"(L+ ζI)−1b−V(Lk+1 + ζIk+1)
−1V†b" dζ.

Invoking Theorem 8.25 with ζ = 0 and ζ ∈ R+, respectively, we arrive at

"f(L)b− uk+1" ≤ 2
�

ω

λmin
+

� ∞
0

µC(ζ)

λmin + ζ
dζ

�
"b" min

rk+1∈Pk+1/qΞ

"rk+1"Σ
inf{|rk+1(λ)| : λ ∈ R−0 }

= 2f(λmin)"b" min
rk+1∈Pk+1/qΞ

"rk+1"Σ
inf{|rk+1(λ)| : λ ∈ R−0 }

.

Clearly, if ∞ ∈ Ξ, then b ∈ QΞk+1(L,b) so that any additional contribution in the form of
θb = θVV†b is computed exactly.
To prove the second claim, let f ∈ CB and (ω, θ, µB) its complete Bernstein triple. Since

∞ ∈ Ξ and ω = 0, it follows from Theorem 8.28

"f(L)b− uk+1" ≤
� ∞
0

µB(ζ)"L(L+ ζI)−1b−VLk+1(ζIk+1 + Lk+1)
−1V†b" dζ

≤ 2"b"
� ∞
0

µB(ζ)
λmax

ζ + λmax
dζ min

rk∈Pk/qΞ

"rk"Σ
inf{|rk(λ)| : λ ∈ R−0 }

= 2 (f(λmax)− θ) "b" min
rk∈Pk/qΞ

"rk"Σ
inf{|rk(λ)| : λ ∈ R−0 }

,

which directly implies (8.33). Assume now {∞,∞} ⊂ Ξ. Noting that qΞ ∈ Pk−1, it
follows from the second property in Lemma 7.5 that Lb = rk(L)b, rk(λ) = λqΞ(λ)/qΞ(λ) ∈
Pk/qΞ, is contained in QΞk+1(L,b) so that any additional contribution in the form of ωLb =
ωVV†Lb is computed exactly.
Finally, if f ∈ LS with Laplace-Stieltjes density µL, we apply Theorem 8.31 to deduce

"f(L)b− uk+1" ≤
� ∞
0

µL(ζ)"e−ζLb−Ve−ζLV†b" dζ

≤ 4γm"b""rΞ"Σ
� ∞
0

µL(ζ) dζ = 4γmf(0+)"b""rΞ"Σ.
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Remark 8.33. The very same upper bounds as in Theorem 8.32 can be obtained using
so-called skeleton approximations [DKZ09, MR20a, Ose07] or the Hermite-Walsh formula
for rational interpolants [Wal60, Theorem VIII.2], [BR09, p. 24], [BG12].

Theorem 8.32 is an integral part of our analysis and thus deserves some further discus-
sions. The inequalities (8.32) and (8.33) show that the choice of a “good” pole set Ξ is
closely related to rational functions that are uniformly as small as possible on Σ and as
large as possible on R−0 if f ∈ CS ∪ CB. The involved constants depend on the function f
evaluated at the extremal eigenvalues of L. Our results suggest that one should ensure

– ∞ ∈ Ξ if θ 8= 0 and f ∈ CS,
– {∞,∞} ⊂ Ξ if θ, ω 8= 0 and f ∈ CB,

which is computationally inexpensive since it involves polynomial Krylov steps only. The
estimate derived for Laplace-Stieltjes functions is seemingly different from the ones obtained
in (8.32) and (8.33). The quality of the poles is related to the maximal deviation of rΞ in Σ
and the constant in (8.34) involves the value of f at 0. The latter is not necessarily finite as
the function λ−1 ∈ LS shows. As noted in [MR20a, Remark 4], however, this inconvenience
can be tackled in the following manner: Given f ∈ LS it follows from the fifth property in
Lemma 8.19 that f̃(λ) := f(λ + c) ∈ LS for any c ∈ R+. Provided that c ∈ (0, λmin), we
may thus define L̃ := L− cI such that f̃(L̃) = f(L) and f̃(0) = f(c) < ∞ by construction.
The third claim in Theorem 8.32 reveals

"f(L)b− uk+1" = "f̃(L̃)b−Vf̃(L̃k+1)V
†b" ≤ 4γmf(c)"b""rΞ"Σ̃,

where L̃k+1 := Lk+1− cIk+1 and Σ̃ := [λmin− c, λmax+ c] ⊂ R+. This allows one to recover
a meaningful upper bound on the basis of the modified spectral interval Σ̃. Since the ratio
of λmin−c and λmax−c is smaller than the one of the unchanged spectral interval, values of
c close to λmin lead to worse condition numbers but to smaller constants f(c). On the other
hand, if f̃ happens to be completely monotonic even for some c < 0, a smaller condition
number at the cost of a larger constant f(c) might be obtained.
In all our experiments, we find that the logarithmically increasing factor γm in (8.34) is

somewhat pessimistic. If f ∈ LS extends continuously to the imaginary axis and satisfies
a certain decay condition, it is possible to replace γm with an absolute constant. In view of
Lemma 8.16, the key idea is to bring, instead of its kernel, the function f itself via Cauchy’s
integral formula in the form of

f(z) =
1

2πi

�
iR

f(z)

λ− z
dz,

cf. [MN18]. The upper bound so obtained is very similar to the minimization problems in
(8.32) and (8.33) but involves the imaginary axis instead of R−0 .

Theorem 8.34. Let f ∈ LS, V be an orthonormal basis of QΞk+1(L,b), Lk+1 = V†LV,
and uk+1 = Vf(Lk+1)V

†b. Assume that f extends continuously to the imaginary axis such
that |f(z)| → 0 as |z| → ∞ for �z ≥ 0 and

cf :=

�
iR

$$$$ f(z)

λmin + z

$$$$ dz < ∞. (8.35)
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Then there holds

"f(L)b− uk+1" ≤ cf
π
"b" min

rk+1∈Pk+1/qΞ

"rk+1"Σ
inf{|rk+1(z)| : z ∈ iR} .

Proof. Due to the assumptions on f , we may use the imaginary axis in Cauchy’s integral
theorem to write

f(L)b =
1

2πi

�
iR

f(z)(L− zI)−1b dz,

uk+1 = Vf(Lk+1)V
†b =

1

2πi

�
iR

f(z)V(Lk+1 − zIk+1)
−1V†b dz.

Since f is a real-valued function defined on R+, it follows by the Schwarz reflection principle
[Hen93] that f(z) = f(z). After the transformation z 4→ −z, we thus obtain

f(L)b =
1

2πi

�
iR

f(−z)(L+ zI)−1b dz

=
1

2πi

�
iR

f(z)(L+ zI)−1b dz =
1

2πi

�
iR

f(z)(L+ zI)−1b dz,

and analogously

uk+1 =
1

2πi

�
iR

f(z)(Lk+1 + zIk+1)
−1b dz.

Triangle inequality combined with Corollary 8.25 reveals

"f(L)b− uk+1" ≤ 1

2π

�
iR

|f(z)|"(L+ zI)−1b−V(Lk+1 + zIk+1)
−1V†b" dz

≤ 1

π
"b"
�
iR

$$$$ f(z)

λmin + z

$$$$ dz min
rk+1∈Pk+1/qΞ

"rk+1"Σ
inf{|rk+1(z)| : z ∈ iR} ,

as to be proved.
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9 Zolotarëv’s Rational Approximation
Problems

The previous chapter shows that for a large class of fractional diffusion problems the rational
Krylov error can be bounded in terms of a rational approximation problem. In view of
Theorem 8.32, it is desirable to extract surrogate from a rational Krylov space QΞk+1(L,b)
with poles Ξ = {ξ0, . . . , ξk} choosen according to

min
Ξ⊂R

|Ξ|=k+1
min

rk+1∈Pk+1/qΞ

"rk+1"Σ
inf{|rk+1(z)| : z ∈ R−0 }

(9.1)

if fτ ∈ CS. If f ∈ CB, we fix ξ0 = ∞ and are interested in (9.1) with Pk+1 replaced by
Pk. If f ∈ LS satisfies (8.35), Theorem 8.34 motivates us to minimize (9.1) with iR in
place of R−0 . Either of these configurations can be reduced to the so-called generalized third
Zolotarëv problem: Find r∗k ∈ Rk,k such that

"r∗k"Σ
inf{|r∗k(z)| : z ∈ B} = inf

rk∈Rk,k

"rk"Σ
inf{|rk(z)| : z ∈ B} , B ∈ {R−0 , iR}. (9.2)

Roughly spoken, the set Ξ should be chosen according to the poles of a rational function
that is uniformly small on Σ and uniformly large on B. In view of (8.34), another rational
approximation problem that we are interested in is encoded in the quantity

min
Ξ⊂−Σ
|Ξ|=k

"rΞ"Σ, (9.3)

which involves rational functions that are uniformly small on the spectral interval. This
minimization problem is known as Zolotarëv’s minimal deviation problem and turns out to
be a special case of the generalized third Zolotarëv problem. In this chapter, we analyze
(9.2) and (9.3) to provide the foundation for various pole selection strategies presented in
Chapter 10.

9.1 The Third Zolotarëv Problem

We consider (9.2) in the following more general form: Given two nonempty and disjoint
subsets of the complex plane A, B ⊂ C, we search for a rational function r∗k ∈ Rk,k with
the property

sup{|r∗k(z)| : z ∈ A}
inf{|r∗k(z)| : z ∈ B} = inf

rk∈Rk,k

sup{|rk(z)| : z ∈ A}
inf{|rk(z)| : z ∈ B} . (9.4)
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The problem (9.4) is known as the generalized third Zolotarëv problem on (A,B) [Gon69,
Tod84, PP88, Ach92, Wac13, RTW20]. Its systematical study goes back to the Russian
mathematician Jegor Zolotarëv in the second half of the 19th century [Zol77] and was
originally posed on A = {λ ∈ R : |λ| ≤ 1} and B = {λ ∈ R : |λ| ≥ c} for some c > 1. The
quantity

Zk(A,B) := inf
rk∈Rk,k

sup{|rk(z)| : z ∈ A}
inf{|rk(z)| : z ∈ B}

is called Zolotarëv number of (A,B). An equivalent representation which is frequently used
in the literature reads [Gon69, IT95]

Zk(A,B) = inf
rk∈RB

k,k

sup
z∈A

|rk(z)|, RB
k,k := {rk ∈ Rk,k : inf

z∈B
|rk(z)| = 1}.

A few immediate observations are the following.

Lemma 9.1. There holds

1. Z0(A,B) = 1,

2. (Zk(A,B))k∈N0 is a decreasing sequence in R+0 ,

3. A1 ⊂ A2 and B1 ⊂ B2 implies Zk(A1,B1) ≤ Zk(A2,B2),

4. Zk+j(A,B) ≤ Zk(A,B)Zj(A,B),

5. Zk(A,B) = Zk(B,A) and r∗k minimizes Zk(A,B) if and only if 1/r∗k minimizes Zk(B,A).

Proof. The first statement is clear. The properties 2 to 4 follow from the observation that
the infimum/supremum on a subset is larger/smaller than the one on the original set. The
last claim follows from

Zk(A,B) = inf
rk∈Rk,k

sup{|rk(z)| : z ∈ A}
inf{|rk(z)| : z ∈ B} = inf

rk∈Rk,k

sup{1/|rk(z)| : z ∈ B}
inf{1/|rk(z)| : z ∈ A} = Zk(B,A).

Therefore, r∗k minimizes Zk(A,B) if and only if

sup{1/|r∗k(z)| : z ∈ B}
inf{1/|r∗k(z)| : z ∈ A} = Zk(B,A).

An equivalent formulation of (9.4) is obtained by the generalized fourth Zolotarëv problem:
Find r̂k ∈ Rk,k such that

sup
z∈A∪B

|r̂k(z)− ✶A,B(z)| = inf
rk∈Rk,k

sup
z∈A∪B

|rk(z)− ✶A,B(z)|, (9.5)

where

✶A,B(z) :=

�
1, z ∈ A,

−1, z ∈ B.

125
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For real intervals it was shown in [Ach92, Chapter 9] that the third and fourth Zolotarëv
problem is equivalent in the sense that every solution r∗k of (9.4) is related to r̂k satisfying
(9.5) via

r̂k(z) =
1− Zk(A,B)
1 + Zk(A,B)

r∗k(z)−
�

Zk(A,B)
r∗k(z) +

�
Zk(A,B)

.

As shown in [IT95], this result remains in force if A and B are subsets of the complex plane.

Remark 9.2. Inspired by the close collaboration with his fellow mathematician Pafnuty
Chebyschev, Zolotarëv posed in total four fundamental best approximation problems which
are known as the four Zolotarëv problems. The first and the second one deal with best-
approximation properties of polynomials.

Remark 9.3. Zolotarëv problems have been studied in more general form in [LS94, LS01],
where the infimum is taken over Rk,m, m ∈ N, instead of Rk,k. This theory could be used to
optimize the Krylov space under the condition that a fraction of the poles must be infinite.

The third Zolotarëv problem finds applications in many different branches of modern
science, e.g., Alternating Directional Implicit (ADI) methods for solving Sylvester matrix
equations [BVY62, Leb77, Bec11, Wac13], singular value decompositions [NF16, BT17], and
generalized eigenvalue problems [GPTV15]. In view of Theorem 8.32 and 8.34, our main
focus lies in the discussion of the following questions:

1. Can the extremal rational function r∗k in (9.4) be determined explicitly?

2. How fast does Zk(A,B) decay for increasing values of k?

To answer these questions, we avail ourselves of well-known tools from logarithmic potential
theory which allow us to characterize the distribution of the roots and poles of r∗k in terms
of the so-called equilibrium measure. A closely related concept, the so-called condenser
capacity, then provides the necessary information to quantify the rate of convergence of the
Zolotarëv number as k → ∞.

9.2 Preliminaries from Logarithmic Potential Theory

This section is intended for those who want to acquire the basics of modern logarithmic
potential theory as quickly as possible. In-depth reviews of this matter can be found in
[Lan72, Ran95, ST97]. For an excellent beginner’s guide in the context of rational approx-
imations we refer to [LS06, Saf10].

9.2.1 The Classical Case

One of the fundamental problems that have contributed to the development of this field of
research is the following electrostatic problem: Provided a compact set A in the complex
plane, we want to distribute a collection of like-charged particles on A such that a minimal
energy configuration is attained. Here, the distribution of charges is represented by the
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9 Zolotarëv’s Rational Approximation Problems

set of probability measures on A and the energy between two particles is modeled to be
proportional to the reciprocal of the distance between them. We formalize these ideas in
the following fundamental definition.

Definition 9.4. Let A ⊂ C be a compact set. We introduce M(A) as the set of all Borel
probability measures supported on A. The logarithmic potential of ν ∈ M(A) is defined by

Uν(z) :=

�
ln

1

|z − t|dν(t)

for all z ∈ A. The quantity

I(ν) :=

�
Uν dν =

� �
ln

1

|z − t| dν(t) dν(z)

is said to be the logarithmic energy of ν. The logarithmic energy of A is defined by

VA := inf
ν∈M(A)

I(ν). (9.6)

The goal of the electrostatic problem is to find a measure ν ∈ M(A) such that the infimum
in (9.6) is attained. According to the fundamental theorem of Frostman, this problem has
a unique solution [Ran95, Theorem 3.3.4].

Theorem 9.5 (Frostman). Let A ⊂ C be compact with finite logarithmic energy VA < ∞.
Then there exists a unique measure νA ∈ M(A) with the property

I(νA) = VA.

The unique measure νA provided by Theorem 9.5 is called equilibrium measure of A and
satisfies the following property, where we refer to the outer boundary ∂∞A of A ⊂ C as the
boundary of the unbounded component of the complement of A.

Lemma 9.6. Let A ⊂ C be compact with VA < ∞ and νA the equilibrium measure of A.
Then there holds supp νA ⊂ ∂∞A.

Of particular importance in logarithmic potential theory is the following quantity that is
intrinsically linked to the equilibrium measure of A.

Definition 9.7. Let A ⊂ C be compact. Then the logarithmic capacity of A is defined by

cap(A) := e−VA . (9.7)

If VA =∞ in (9.7), then cap(A) = 0 by definition. Such sets are called polar sets. From
the electrostatic point of view, these are the sets that are “too small” to hold a charge. Any
subset of a polar set is a polar set itself. Moreover, any polar set has Lebesgue measure
zero. The converse is not true. Lemma 9.6, M(∂∞A) ⊂ M(A), and the uniqueness of
the equilibrium measure show that one can “fill up” the holes of a set without changing its
logarithmic capacity. More precisely, there holds the following result.
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Proposition 9.8. Let A ⊂ C be compact with positive logarithmic capacity and νA its
equilibrium measure. Then there holds

cap(∂∞A) = cap(A).

Further remarkable properties of the logarithmic capacity are listed in the following
lemma.

Lemma 9.9. Let A and B denote two compact subsets of the complex plane.

1. The logarithmic capacity is monotone, i.e., A ⊂ B implies that cap(A) ≤ cap(B).
2. For all a, b ∈ C there holds cap(aA+ b) = |a| cap(A).

3. If A has area A, then cap(A) ≥
�

A
π .

4. If A has diameter D, then cap(A) ≤ D
2 .

Proof. See [Ros97, Theorem 1.2].

The logarithmic capacity is a nonnegative set function that in a sense determines the
geometry of its arguments. There holds cap(∅) = 0. Moreover, by the second property
in Lemma 9.9, we have that cap is invariant under rotations and translations whence it
bears a close resemblance to the Lebesgue measures. Unlike the latter, however, it is not
additive which makes the evaluation of cap(A) a highly nontrivial task. For some geometries,
well-known tools from complex analysis can be consulted to determine cap(A) analytically.
Recalling that every simply connected set has “no holes”, that is, it is path-connected such
that every path between two points can be continuously transformed into any other such
path while preserving the two endpoints in question, we state the following result which is
a consequence of the Riemann mapping theorem.

Lemma 9.10. Let A ⊂ C be simply connected and compact. Then there exists a unique real
number ρ ∈ R+0 and a holomorphic function R with nonvanishing derivative which maps the
complement of A onto Bρ(0)

c
.

Proof. See [Hen93, Corollary 5.10d] and [Saf10, Theorem 3.5].

The map R in Lemma 9.10 is commonly referred to as Riemann map of A and is illus-
trated in Figure 9.1. We call mod(A) := ρ the Riemann modulus of A. For some simple
geometries, mod(A) is known analytically, in which case the capacity of A can be determined
in the following convenient manner [Saf10, p. 20].

Theorem 9.11. Let A ⊂ C be simply connected and compact. Then there holds

cap(A) = mod(A).

Typical examples of complex subsets whose capacity can be computed using Theorem
9.11 include [Lan72, Ran95]

– closed discs A = Br(x) with cap(Br(x)) = r,

– ellipses E with semi-axes a and b, satisfying cap(E) = (a+ b)/2,

– the union of two disjoint intervals cap([−b,−a] ∪ [a, b]) = √
b2 − a2/2.
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C\A

A

R

Bρ(0)

C \Bρ(0)

Figure 9.1: Illustration of the Riemann map R that maps the complement of A to the
complement of Bρ(0), where ρ = mod(A) is the Riemann modulus of A.

9.2.2 Generalizations to Signed Measures

For the later use, it turns out to be fruitful to generalize the above concepts for signed
measures ν ∈ M(A,B) defined by

M(A,B) := {ν = νA − νB : νA ∈ M(A), νB ∈ M(B)}.

The following definition is now essential [Gon69].

Definition 9.12. Let A ⊂ C be compact and B ⊂ C closed, having positive logarithmic
capacity each, with dist(A,B) > 0. Then the pair (A,B) is called a condenser and the sets
A and B are called plates.

A straightforward generalization of Definition 9.4 reads as follows.

Definition 9.13. Let (A,B) be a condenser. The logarithmic potential of ν ∈ M(A,B) is
defined by

Uν(z) :=

�
ln

1

|z − t|dν(t)

for all z ∈ A. The quantity

I(ν) :=

�
Uν dν =

� �
ln

1

|z − t| dν(t) dν(z)

is said to be the logarithmic energy of ν. The logarithmic energy of the condenser (A,B) is
defined by

V(A,B) := inf
ν∈M(A,B)

I(ν). (9.8)

In line with Theorem 9.5, for each condenser (A,B) there exists a unique solution ν(A,B)
to the energy problem (9.8) that we call equilibrium measure of the condenser. Its support
is contained in ∂(A∪B), but not necessarily in ∂∞(A∪B). The equilibrium measure is the
key instrument for providing solutions to the third Zolotarëv problem. To quantify the rate
of decay of Zk(A,B), we require the following terminology.
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C\(A∪B)

Aρ

A B

R

Figure 9.2: Illustration of the Riemann map R that maps the complement of A ∪ B to the
annulus Aρ, where ρ = mod(A,B) is the Riemann modulus of the condenser
(A,B).

Definition 9.14. The capacity of the condenser (A,B) is defined by

cap(A,B) :=
1

V(A,B)
.

A few remarkable properties of condenser capacities are listed in the following lemma
[Lan72, Güt10].

Lemma 9.15. Let (A,B) be a condenser. Then there holds

1. cap(∂A, ∂B) = cap(A,B),

2. cap(T (A), T (B)) for any analytic map T : C → C with nonvanishing derivative,

3. A1 ⊂ A2 and B1 ⊂ B2 imply that cap(A1,B1) ≤ cap(A2,B2).
The computation of condenser capacities is a difficult task. Similar to the classical case,

however, standard tools from complex analysis can be consulted to compute cap(A,B) for
some particular plate configurations. If A and B are connected closed sets, not single points,
and do not separate the plane, then their complement Ω = (A ∪ B)c is a nonempty, open,
and doubly connected set [Hen93]. The latter means that for any two points in Ω there are
two different paths that cannot be smoothly deformed into each other. By the Riemann
mapping theorem for doubly connected regions [Hen93, Theorem 5.10h], Ω can be mapped
conformally to the annulus Aρ := {z ∈ C : 1 < |z| < ρ} for some ρ > 1. We summarize
these results in a form that is suitable for the study of condenser capacities.

Lemma 9.16. Let (A,B) be a condenser whose plates are connected, not single points, and
do not separate the plane. Then there exists a unique real number ρ > 1 and a holomorphic
function R with nonvanishing derivative which maps the complement of A ∪ B onto the
annulus Aρ := {z ∈ C : 1 < |z| < ρ}.
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The quantity ρ in Lemma 9.16 is called Riemann modulus of Ω = (A ∪ B)c. For our
purpose, it is more natural to associate ρ directly to the condenser (A,B) rather than
to Ω, whence we introduce the Riemann modulus mod(A,B) of the condenser (A,B) as
mod(A,B) := ρ. The latter is depicted in Figure 9.2. If mod(A,B) is available, the capacity
of (A,B) can be computed as follows.

Theorem 9.17. Let (A,B) be a condenser whose plates are connected, not single points,
and do not separate the plane. Then there holds

cap(A,B) =
1

ln (mod(A,B))
.

Example 9.18. We want to compute the capacity of the condenser (A,B), where A =
BR1(0) is compact and B = BR2(0)

c is closed with R1 < R2. Since R1(z) = z/R1 is
holomorphic with nonvanishing derivative in Ω = (A ∪ B)c and maps Ω onto the annulus
AR2/R1

, it follows from Lemma 9.16 that R2/R1 is the Riemann modulus of (A,B) and
thus, by Theorem 9.17,

cap(A,B) =
1

ln
�
R2
R1

� .
9.3 Solutions and Upper Bounds to the Third Zolotarëv

Problem

We return to the third Zolotarëv problem and establish a connection to logarithmic potential
theory. For this purpose, we introduce the following notion of convergence in M(A,B).

Definition 9.19. Let A ⊂ C be compact. A sequence of measures (νk)k∈N ⊂ M(A) is said
to be weak-star convergent to some ν ∈ M(A) if

lim
k→∞

�
f dνk =

�
f dν (9.9)

for all f ∈ C(A). For a condenser (A,B), a sequence of signed measures (νk)k∈N ⊂ M(A,B)
is said to be weak-star convergent to some ν ∈ M(A,B) if (9.9) holds for all f ∈ C(A∪B).
In both cases, we write νk

∗→ ν.

For a complex subset Λ := {σ(k)1 , . . . , σ
(k)
k } we define the associated normalized counting

measure by

νk :=
1

k

k!
j=1

δ
σ
(k)
j

,

where δz denotes the Dirac unit measure in the point z ∈ C. For the pairing (Λ,Ξ),
where Ξ = {ξ1, . . . , ξk} = {ξ(k)1 , . . . , ξ

(k)
k } ⊂ C is another subset of the complex plane, the

associated normalized signed counting measure is defined by

νk :=
1

k

k!
j=1

δ
σ
(k)
j

− 1
k

k!
j=1

δ
ξ
(k)
j

. (9.10)
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Defining rΛ,Ξ as in (8.26)1, the logarithmic potential of the normalized signed counting
measure νk associated to Λ and Ξ relates to the absolute value of rΛ,Ξ via

Uνk(z) =
1

k

k!
j=1

ln

�
1

|z − σ
(k)
j |

�
− 1

k

k!
j=1

ln

�
1

|z − ξ
(k)
j |

�

= −1
k
ln

 k�
j=1

|z − σ
(k)
j |
+ 1

k
ln

 k�
j=1

|z − ξ
(k)
j |


= −1
k
ln

 k�
j=1

|z − σ
(k)
j |

|z − ξ
(k)
j |

 = − ln |rΛ,Ξ(z)| 1k ,

see also [Saf10, Güt10]. This observation is a key ingredient in the proof of the following
result [Gon67, Gon69, LS94].

Theorem 9.20. Let (A,B) be a condenser. Then there holds

lim
k→∞

(Zk(A,B))
1
k = e

− 1
cap(A,B) . (9.11)

Let ν(A,B) be the equilibrium measure of the condenser, Λ = {σ(k)1 , . . . , σ
(k)
k } ⊂ A, Ξ =

{ξ(k)1 , . . . , ξ
(k)
k } ⊂ B, and νk the associated normalized signed counting measure defined by

(9.10). If νk
∗→ ν(A,B), then there holds

lim
k→∞

�
sup{|rΛ,Ξ(z)| : z ∈ A}
inf{|rΛ,Ξ(z)| : z ∈ B}

� 1
k

= e
− 1

cap(A,B) . (9.12)

The importance of Theorem 9.20 is twofold. First, (9.11) shows that the Zolotarëv number
converges geometrically to zero as k → ∞, that is,

Zk(A,B) ≤ C(A,B)e
− k

cap(A,B) (9.13)

for some positive constant C(A,B) ∈ R+. Note that cap(A,B) cannot be replaced by any
smaller number and, due to Theorem 9.17,

Zk(A,B) ≤ C(A,B)ρ
−k, ρ := mod(A,B), (9.14)

if A and B are connected, not single points, and do not separate the plane. On the other
hand, (9.12) shows that an asymptotically optimal rational function can be obtained if one
distributes the zeros and poles according to the equilibrium measure of the condenser (A,B).
The literature provides a variety of different possibilities to construct such sequences so that
νk

∗→ ν(A,B) holds [WR66, Wac88, EW91, Sta91, Sta92, Sta93]. We mention here only two.

1Here we set σ
(k)
0 = ξ

(k)
0 = ∞ and identify Σ and Λ with {∞, σ

(k)
1 . . . , σ

(k)
k } and {∞, ξ

(k)
1 . . . , ξ

(k)
k },

respectively.
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1. If the plates of the condenser (A,B) are connected, not single points, and do not sep-
arate the plane, then by Lemma 9.16 there exists a Riemann map R that transplants
the complement of A ∪ B to the annulus Aρ, where ρ = mod(A,B) is the modulus of
the condenser. The generalized Fejér points of order k are defined by [Wal65, Sta91]

σ
(k)
j := R−1

�
e

2πij
k

�
, j = 1, . . . , k,

ξ
(k)
j := R−1

�
ρe

2πij
k

�
, j = 1, . . . , k,

(9.15)

and provide asymptotically minimal rational functions for the third Zolotarëv prob-
lem. Clearly, the availability of (ξ(k)j )

k
j=1 hinges on the knowledge of the mappingR. If

A and B are e.g., bounded polygons, then R can be constructed as a doubly-connected
Schwarz–Christoffel mapping [Hu98].

2. Another approach has been presented in [Bag69]. Provided two starting points σ1 ∈ A
and ξ1 ∈ B with Λ := {σ1} and Ξ := {ξ1}, the generalized Leja points are defined
inductively by

σ
(k)
j+1 := σj+1 := argmax

z∈A
|rΛ,Ξ(z)|,

ξ
(k)
j+1 := ξj+1 := argmin

z∈B
|rΛ,Ξ(z)|.

(9.16)

Unlike the generalized Fejér points, this procedure generates a nested sequence of
roots and nodes.

Any sequence of rational functions generated by either of the two methods mentioned above
satisfies

lim
k→∞

�
sup{|rΛ,Ξ(z)| : z ∈ A}
inf{|rΛ,Ξ(z)| : z ∈ B}

� 1
k

= e
− 1

cap(A,B) . (9.17)

Although useful in practice, (9.17) provides no information about the optimality of rΛ,Ξ
for finite k. Indeed, both (9.15) and (9.16) generally fail to recover solutions to the third
Zolotarëv problem whenever k < ∞. Likewise, (9.13) only reveals the rate of convergence
but does not say anything about the constant C(A,B). In practice, however, one is often
interested in quantifying the value of C(A,B) to estimate the smallest k ∈ N such that the
value of Zk(A,B) falls below a user-defined threshold. The derivation of rigorous estimates
for Zk(A,B) involving arbitrary condenser is still a subject of ongoing research. Under
rather general assumptions on A and B, the value of C(A,B) can be estimated by means of
the so-called total rotation of the plates [RTW20]. In the following, we investigate a few
particular geometries for which an optimal rational function and the value of C(A,B) are
known explicitly.

9.3.1 Real, Symmetric, and Normalized Intervals

A solution to (9.4) for the condenser (A,−A), A = [δ, 1], δ ∈ (0, 1), was derived almost
150 years ago by Zolotarëv [Zol77]. The explicit representation of r∗k makes heavy use of
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elliptic integrals and Jacobi elliptic functions, which we briefly recall here. To this end, we
introduce the incomplete elliptic integral of first kind K : [0, π2 ] × [0, 1) → R+ defined by
[AS64, Section 17], [OLBC10, Section 19]

K(φ, k) :=
� φ

0

dθ�
1− k2 sin2 θ

.

The parameter k is called elliptic modulus. If φ = π
2 , one sets K(k) := K(π2 , k) which is

named complete elliptic integral of first kind. There holds [AS64, Section 17]

K(0) = π

2
, K(k) ≈ 1

2
ln

�
16

1− k2
�
as k→ 1−. (9.18)

Remark 9.21. The definition of K is not unique in the literature. In many textbooks, the
elliptic modulus k is replaced by the parameter m = k2.

For the later use, we further introduce the Grötzsch ring function µ : (0, 1)→ R+0 as

µ(k) :=
π

2

K(√1− k2)
K(k) .

Together with the complete elliptic integral of first kind, the function µ is depicted in
Figure 9.3. Unlike K, the Grötzsch ring function is strictly decreasing and can by bounded
by [OLBC10, eq. (19.2.8)]

ln

�
(1 + 4

√
1− k2)2
k

�
≤ µ(k) ≤ ln

�
2(1 +

√
1− k2)
k

�
≤ ln

�
4

k

�
, (9.19)

which shows

µ(k) ≈ ln
�
4

k

�
as k→ 0+.

Moreover, it follows from (9.18) that

lim
k→1−

µ(k) = 0.

Finally, we also introduce the Jacobi elliptic function dn which is “inversely” defined by
[AS64, Section 16], [OLBC10, Section 22]

dn(z, k) :=

�
1− k2 sin2 φ, z = K(φ, k),

for all k ∈ [0, 1) and z ∈ C. As a function of z with fixed k, dn is even, meromorphic,
and doubly periodic with real period 2K(k) and imaginary period 4iK(√1− k2). For real
arguments, the function is illustrated in Figure 9.3.
Given the terminology provided above, we are now in position to state the central defi-

nition of this chapter.
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Figure 9.3: Illustration of the Jacobi elliptic function dn(λ, k) (left) with real argument
λ ∈ [−5, 5] and elliptic modulus k ∈ [0, 1]. On the right, we see the complete
elliptic integral K(k) of first kind (blue) and the Grötzsch ring function µ(k)
(red) on (0, 1).

Definition 9.22. Let k ∈ N and δ ∈ (0, 1). We define the Zolotarëv points of order k on
[δ, 1] as

Z(k)j := dn

�
2(k − j) + 1

2k
K(δ#), δ#

�
, δ# :=

�
1− δ2, (9.20)

for all j = 1, . . . , k.

Our interest in these points is due to the following theorem [Tod84, Ach92, IT95].

Theorem 9.23. Let δ ∈ (0, 1), A = [δ, 1], and
�Z(k)j

�k
j=1

the Zolotarëv points of order k on
A. Then

r∗k(λ) =
k�

j=1

λ−Z(k)j

λ+ Z(k)j

(9.21)

solves the third Zolotarëv problem (9.4) on the condenser (A,−A).

The Zolotarëv points on A = [δ, 1] are depicted in Figure 9.4 for δ = 0.01 as roots and
poles of the solution (9.21) to the third Zolotarëv problem on (A,−A). The nodes are
roughly geometrically distributed across the interval. In accordance with the theory, r∗k is
uniformly small on A and uniformly large on −A.

Remark 9.24. In practice, one is often interested in the evaluation of (9.20) for small
values of δ. In this regime, the evaluation of δ# is prone to cancellation errors. To counteract
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Figure 9.4: Solution (9.21) to the third Zolotarëv problem on the condenser (A,−A) with
A = [δ, 1] and δ = 0.01 on −A (left) and A (right). The red dots indicate the
poles and zeros of r∗k which coincide with the negative and positive Zolotarëv
points on A, respectively.

this, it is advisable to resort to the asymptotic formulas [AS64, (16.15.3) and (17.3.26)]

dn(z,
�
1− δ2) ≈ 1

cosh(z)
+

δ2

4
(sinh(z) cosh(z) + z)

tanh(z)

cosh(z)
,

K(
�
1− δ2) ≈ 1

2
ln

�
16

δ2

�
,

for small values of δ.

Given an explicit solution to the third Zolotarëv problem on (A,−A), our main focus now
lies in the derivation of explicit bounds for the Zolotarëv number Zk(A,−A). Whenever
A = [δ, 1] ⊂ R+, the Riemann modulus ρδ := mod(A,−A) of the condenser is known
explicitly and reads [BT17]

ρδ = e
π2

µ(δ) ,

where µ is the Grötzsch ring function. Thanks to (9.14) we obtain

Zk(A,−A) ≤ CAρ
−k
δ ,

where CA = CA,−A ∈ R+. To quantify the latter, a product formula for Zk(A,−A) has been
derived2 in [BT17] and reads

Zk(A,−A) = 4ρ−kδ
∞�
j=1

(1 + ρ−4jkδ )4

(1 + ρ2kδ ρ−4jkδ )4
.

2More precisely, the authors of [BT17] corrected an erroneous formula that was originally derived in [Leb77,
eq. (1.11)] but contained some typos.
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Figure 9.5: Absolute error |4e− π2

µ(δ) − 4e−
π2

ln(4δ−1) | for δ ∈ [10−16, 12 ].

This is the key ingredient in the derivation of a rigorous upper bound of the Zolotarëv
number for real, symmetric, and normalized intervals A = [δ, 1] with δ ∈ (0, 1).
Theorem 9.25. Let δ ∈ (0, 1) and A = [δ, 1]. Then there holds for all k ∈ N

Zk(A,−A) ≤ 4ρ−kδ , ρδ =
eπ

2

µ(δ)
, (9.22)

where µ is the Grötzsch ring function.

Proof. See [BT17, Corollary 3.2].

Remark 9.26. The estimate is sharp in a sense that neither 4 nor ρδ can be replaced by
any smaller/larger number, respectively.

Assuming that δ is reasonably small, we can make the upper bound in (9.22) more
intuitive. Invoking µ(k) ≤ ln( 4k) from (9.19), we deduce the slightly weaker bound

Zk(A,−A) ≤ 4e−
π2k

ln(4δ−1) , (9.23)

which does not involve the Grötzsch ring function. Numerically, we observe in Figure 9.5

that already for δ = 10−5 the error |4e− π2

µ(δ) − 4e−
π2

ln(4δ−1) | is in the range of 10−3. Since
the problems that we are interested in typically have large condition numbers, causing
δ 3 1, we observe that the sub-optimality of (9.23) compared to (9.22) is negligible. For
the reader’s convenience, we therefore use (9.23) in our final estimates to make our analysis
more amenable to those who are less familiar with the Grötzsch ring function.

9.3.2 Arbitrary Real Intervals

The previous section provides solutions and upper bounds to the third Zolotaëv problem on
(A,B) when A = [δ, 1] for some δ ∈ (0, 1) and B = −A. In view of Theorem 8.32 and 8.34,
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however, our main interest lies in the treatment of condensers where A = Σ ⊂ R+ is the
spectral interval of L and B either the negative real line or the imaginary axis. In this section,
we generalize the results from Section 9.3.1 to arbitrary disjoint real intervals A ⊂ R+ and
B ⊂ R−0 , which includes (A,B) = (Σ,R−0 ) as special case. The main idea in the treatment
of these problems is to transform (A,B) to the symmetric condenser ([δ, 1], [−1,−δ]) for
some suitable δ ∈ R+, apply available results from the previous section, and transform the
obtained solution back to the original configuration. The success of this approach hinges
on the underlying transformation which in some sense needs to preserve the optimality
property of solutions to the third Zolotarëv problem. The right transformations to do this
are Möbius transformations which we briefly recall here.
A function T : C → C is said to be a Möbius transformation if

T (z) =
az + b

cz + d
(9.24)

for a quadruple of complex parameters a, b, c, d ∈ C satisfying ad − bc 8= 0. There holds
T (∞) = a

c and T (−d
c ) = ∞. As such, any Möbius transformation can be seen as a

biholomorphic function on the extended complex plane. After resolving w = (az+b)/(cz+d)
for z, the inverse of (9.24) is given by

T−1(z) =
−dz + b

cz − a
, (9.25)

which makes T−1 a Möbius transformation itself. Any Möbius transformation is uniquely de-
termined by its action on three points: Provided the triples (z1, z2, z3) ∈ C3 and (w1, w2, w3) ∈
C3, each pairwise distinct, there exists exactly one Möbius transformation T with the prop-
erty T (zi) = wi for all i = 1, 2, 3. To compute the latter, we note that

T (z) :=
(z2 − z)(z3 − z1)

(z2 − z1)(z3 − z)
(9.26)

is a Möbius transformation which maps z1 to 1, z2 to 0, z3 to ∞. Accordingly, the same
applies to the wi if we replace zi by their prescribed images in (9.26). This proves the
following result.

Lemma 9.27. Let (z1, z2, z3) and (w1, w2, w3) be pairwise distinct triples contained in the
extended complex plane. Then there exists exactly one Möbius transformation T with the
property T (zi) = wi for i = 1, 2, 3, which is obtained by resolving

(w2 − w)(w3 − w1)

(w2 − w1)(w3 − w)
=
(z2 − z)(z3 − z1)

(z2 − z1)(z3 − z)
(9.27)

for w.

If one of the zi or wi is infinite, it needs to be canceled before resolving for w. E.g., if
w3 =∞, then the left-hand side of (9.27) evaluates to

(w2 − w)(1− w1
w3
)

(w2 − w1)(1− w
w3
)
=

w2 − w

w2 − w1
.
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Since (9.24) is the composition of translations, rotations, dilations, and inversions along the
unit circle, it holds that any Möbius transformation maps circles to circles if we interpret
straight lines as circles that pass through infinity.
Of profound importance in the study of Möbius transformations is the cross-ratio of four

pairwise distinct points z1, z2, z3, z4 ∈ C defined by

(z1, z2; z3, z4) :=
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)
.

Note that the cross-ratio is the image of z1 under the Möbius transformation T that maps
z2 to 1, z3 to 0, and z4 to ∞. Due to (9.27), it is invariant under the action of the latter,
i.e.,

(z1, z2; z3, z4) = (T (z1), T (z2);T (z3), T (z4)). (9.28)

Moreover, it provides a convenient criterion to check whether four points lie on the same
circle. Since (9.26) maps the circle C, uniquely defined by the triple (z2, z3, z4), to the real
axis, there holds z1 ∈ C if and only if T (z1) = (z1, z2; z3, z4) ∈ R.
Coming back to the third Zolotarëv problem, the following lemma shows that the Zolotarëv

number is invariant under Möbius transformations; see also [BT17, MR20a].

Lemma 9.28. Let T be a Möbius transformation and (A,B) a condenser. Then there holds

Zk(A,B) = Zk(T (A), T (B)).

Proof. Let T denote an arbitrary Möbius transformation. Then there holds

Zk(A,B) = inf
r∈Rk,k

sup{|rk(z)| : z ∈ A}
inf{|rk(z)| : z ∈ B} = inf

r∈Rk,k

sup{|rk(T−1(z))| : z ∈ T (A)}
inf{|rk(T−1(z))| : z ∈ T (B)} .

Since rk ◦ T−1 ∈ Rk,k, we find

Zk(A,B) = inf
r∈Rk,k

sup{|rk(z)| : z ∈ T (A)}
inf{|rk(z)| : z ∈ T (B)} = Zk(T (A), T (B)).

Following [BT17, MR20a], our plan is to apply Lemma 9.28 to a Möbius transformation
that transplants (A,B) to the symmetric condenser ([δ, 1], [−1,−δ]) for some δ < 1 suitably
chosen. The description of this transformation is provided in the following statement.

Lemma 9.29. Let −∞ ≤ a < b ≤ 0 < c < d and

δ[a,b;c,d] :=
(
√
γ − 1)2
γ − 1 < 1, (9.29)

where γ := (d, a; b, c) is the cross-ratio of d, a, b, and c. Then the Möbius transformation
T[a,b;c,d] defined by any three of the following conditions

T[a,b;c,d](a) = −1, T[a,b;c,d](b) = −δ[a,b;c,d], T[a,b;c,d](c) = δ[a,b;c,d], T[a,b;c,d](d) = 1,

(9.30)

satisfies

T[a,b;c,d]([a, b]) = [−1,−δ[a,b;c,d]], T[a,b;c,d]([c, d]) = [δ[a,b;c,d], 1].
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Proof. Let δ < 1 be arbitrary but fixed for the moment and define T[a,b;c,d] to be the Möbius
transformation uniquely determined by the first three conditions in (9.30) after replacing
δ[a,b;c,d] with δ. We have to determine δ such that T[a,b;c,d] = 1 holds. Due to (9.28), the
latter is equivalent to

(d, a; b, c) = (1, T[a,b;c,d](a);T[a,b;c,d](b), T[a,b;c,d](c)). (9.31)

By direct substitution we find that (9.31) is equivalent to

γ =
(1 + δ)2

(1− δ)2
.

Rearranging the terms, we arrive at the quadratic equation

δ2 + δ
2(1 + γ)

(1− γ)
+ 1 = 0.

Recalling δ < 1 and γ > 1, we finally deduce

δ =
(
√
γ − 1)2
γ − 1 = δ[a,b;c,d]

and the conjecture is valid.

Upon defining

ρ[a,b] := e
− π2

ln(4b/a) , 0 < a < b,

we leverage our knowledge about normalized and symmetric condensers to obtain a solution
to the third Zolotarëv problem on arbitrary real condensers whose plates are intervals; see
also [Leb77, Akh90, BT17, MR20a].

Theorem 9.30. Let A = [c, d] ⊂ R+, B = [a, b] ⊂ R−0 ∪ {−∞}, T = T[a,b;c,d], δ = δ[a,b;c,d],

and
�
Z(k)j

�k
j=1

the Zolotarëv points on [δ, 1]. Then

r∗k(λ) =
k�

j=1

λ− T−1(Z(k)j )

λ− T−1(−Z(k)j )
(9.32)

solves the third Zolotarëv problem (9.4) on the condenser (A,B) and

Zk(A,B) ≤ 4ρ−k[δ,1]. (9.33)

Proof. The inequality (9.33) follows from Lemma 9.28 and (9.23) since

Zk(A,B) = Zk(T (A), T (B)) = Zk([δ, 1], [−1,−δ]) ≤ 4e−
π2k

ln(4δ−1) = 4ρ−k[δ,1].
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To confirm that (9.32) actually minimizes Zk(A,B), we note that r∗k has its roots in
{T−1(Z(k)1 ), . . . , T−1(Z(k)k )} and its poles in {T−1(−Z(k)1 ), . . . , T−1(−Z(k)k )}. The same
applies to the rational function

k�
j=1

T (λ)−Zj

T (λ) + Zj
= (r̄∗k ◦ T )(λ),

where r̄∗k is the solution to the third Zolotarëv problem on ([δ, 1], [−1,−δ]) obtained by
Theorem 9.23. Since r̄∗k ◦ T ∈ Rk,k, it follows that r∗k = c(r̄∗k ◦ T ) for some c ∈ R. This
reveals

sup{|r∗k(z)| : z ∈ A}
inf{|r∗k(z)| : z ∈ B} =

sup{|r∗k(T−1(z))| : z ∈ T (A)}
inf{|r∗k(T−1(z))| : z ∈ T (B)}

=
sup{|r̄∗k(λ)| : λ ∈ [δ, 1]}
inf{|r̄∗k(λ)| : λ ∈ [−1,−δ]} = Zk([δ, 1], [−1,−δ]) = Zk(A,B),

where the last equality follows from Lemma 9.28. This proves the claim.

Theorem 9.30 allows us to derive explicit minimizer for the problem (9.2) when B = R−0 .
Our proof closely follows [MR20a, Lemma 4].

Theorem 9.31. Let κ = λmin/λmax, δ[λmin,λmax] := 2κ− 1− 2√κ2 − κ, and

T[λmin,λmax](z) :=
−z(δ[λmin,λmax] + 1) + 2λmaxδ[λmin,λmax]

z(δ[λmin,λmax] + 1)− 2λmax
.

Then there holds δ[λmin,λmax] = δ[−∞,0;λmin,λmax], T[λmin,λmax](z) = T[−∞,0;λmin,λmax](z), and

T−1[λmin,λmax]
(z) =

2λmax
δ[λmin,λmax] + 1

z + δ[λmin,λmax]

z + 1
.

In particular,

r∗k(λ) =
k�

j=1

λ− T−1[λmin,λmax]
(Z(k)j )

λ− T−1[λmin,λmax]
(−Z(k)j )

(9.34)

solves the third Zolotarëv problem on the condenser (Σ,R−0 ) whenever Z(k)1 , . . . ,Z(k)k are the
Zolotarëv points on [δ[λmin,λmax], 1]. There holds

Zk(Σ,R−0 ) ≤ 4ρ−k[δ[λmin,λmax],1]
≤ 4ρ−k[λmin,4λmax]

. (9.35)

Proof. We compute

γ := (λmax,−∞; 0, λmin) = λmax
λmax − λmin

.
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By direct substitution, we find

δ[−∞,0;λmin,λmax] =
(
√
γ − 1)2
γ − 1 = δ[λmin,λmax].

Straightforward computations confirm that T[λmin,λmax] maps −∞, 0, and λmax to −1,
−δ[λmin,λmax], and 1, respectively. Thanks to Lemma, 9.27 we deduce T[λmin,λmax](z) =

T[−∞,0;λmin,λmax](z). The representation formula for T−1[λmin,λmax]
follows from (9.25). The

fact that (9.34) solves the third Zolotarëv problem on (Σ,R−0 ) is a direct consequence of
Theorem 9.30. The same applies to the first inequality in (9.35). To prove the latter, we
write δ[λmin,λmax] in more convenient form (cf. [MR20a, Lemma 4])

δ[λmin,λmax] =
λmax − λmax

�
1− λmin

λmax

λmax + λmax

�
1− λmin

λmax

,

which follows from elementary computations. Due to
√
1− x ≤ 1 − x

2 for all x ∈ [0, 1] we
deduce

δ[λmin,λmax] ≥
λmax − λmax(1− λmin

2λmax
)

λmax + λmax(1− λmin
2λmax

)
≥

λmin
2

2λmax − λmin
2

≥ λmin
4λmax

=
1

4κ
.

The second inequality in (9.35) now follows from δ[ 1
4κ
,1] = δ[λmin,4λmax] and the fact that

ρ[a,b] decreases as the ratio a
b decreases.

Remark 9.32. In its present form, δ[λmin,λmax] is prone to cancellation errors and one
should resort to the equivalent representation [MR20a, Lemma 4]

δ[λmin,λmax] =
λmax − λmax

�
1− λmin

λmax

λmax + λmax

�
1− λmin

λmax

.

To derive a solution to (9.3), we first compute the solution of the third Zolotarëv problem
on the condenser (Σ,−Σ). To this end, let γ be the cross-ratio of (λmax,−λmax,−λmin, λmin).
Then by direct substitution we find

γ =
(λmax + λmin)

2

(λmax − λmin)2

and (9.29) evaluates to

δ[−λmax,−λmin;λmin,λmax] =
λmin
λmax

.

The Möbius transformation T = T[−λmax,−λmin;λmin,λmax] is uniquely determined by three of
the four conditions in (9.30) and reads

T (z) =
z

λmax
.
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Recalling Definition 8.29, we thus derive from Theorem 9.30 that

r∗k(λ) =
k�

j=1

λ− λmaxZ(k)j

λ+ λmaxZ(k)j

= rZ(λ), Z = {−λmaxZ(k)1 , . . . ,−λmaxZ(k)k },

solves the third Zolotarëv problem on the condenser (Σ,−Σ) whenever Z(k)1 , . . . ,Z(k)k are
the Zolotarëv points on [λmin/λmax, 1]. Since rZ(−λ) = 1/rZ(λ), there holds

Zk(Σ,−Σ) = sup{|rZ(λ)| : λ ∈ Σ}
inf{|rZ(−λ)| : λ ∈ Σ} =

sup{|rZ(λ)| : λ ∈ Σ}
inf{1/|rZ(λ)| : λ ∈ Σ}

= sup{|rZ(λ)|2 : λ ∈ Σ} = "rZ"2Σ.
Hence

min
Ξ⊂−Σ
|Ξ|=k

"rΞ"Σ ≤ "rZ"Σ =
�

Zk(Σ,−Σ). (9.36)

Even more, one can show that rZ satisfies a Chebyshev type alternance property on Σ which
allows one to prove that Z indeed minimizes Zolotarëv’s minimal deviation problem: Find
Ψ ⊂ −Σ, |Ψ| = k, such that

"rΨ"Σ = min
Ξ⊂−Σ
|Ξ|=k

"rΞ"Σ. (9.37)

We collect these findings in one of the main theorems of this section and refer to e.g.,
[Wac13] for that fact that (9.36) actually holds with equality.

Theorem 9.33. Let δ = λmin/λmax, Z(k)1 , . . . ,Z(k)k the Zolotarëv points on [δ, 1], and Z :=
{−λmaxZ(k)1 , . . . ,−λmaxZ(k)k }. Then there holds

"rZ"Σ = min
Ξ⊂−Σ
|Ξ|=k

"rΞ"Σ ≤ 2ρ−
k
2

[λmin,λmax]
.

9.3.3 Perpendicular Intervals Parallel to the Axes

The final ingredient to bound the rational Krylov approximation error for functions of
fractional diffusion type is the third Zolotarëv problem on the condenser (Σ, iR). Such
configurations have been studied in [BT00]. More specifically, the authors deal with geome-
tries where the second plate is a line segment parallel to the imaginary axis. After a linear
transformation, one can assume that the latter is given by B = [−il, il] for some l ∈ R+
suitably chosen. Let now rZ , as in Theorem 9.33, be the solution to Zolotarëv’s minimal
deviation problem on Σ. Then |rZ(z)| = 1 for all z ∈ iR such that

Zk(Σ,B) ≤ sup{|rZ(z)| : z ∈ Σ}
sup{|rZ(z)| : z ∈ B} = "rZ"Σ.

In other words, the third Zolotarëv problem of the condenser (Σ,B), B = [−il, il] for some l ∈
R+, can be bounded by Zolotarëv’s minimal deviation problem. It was discovered in [BT00]
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that rZ satisfies at least necessary optimality conditions, provided that l is sufficiently large.
As of yet, it is not known whether rZ yields the true global minimum of Zk(Σ,B). If l =∞,
however, any other rational function with possibly complex poles yields at most a twofold
decrease of the error. We summarize these observations in a form that is suitable for the
study of our problems and direct the interested reader to [DKZ09, Theorem 4.3] for a proof.

Proposition 9.34. Let rZ denote the solution to Zolotarëv’s minimal deviation problem on
Σ as in Theorem 9.33. Then there holds�

Zk(Σ,−Σ)
2

≤ Zk(Σ, iR) ≤
�

Zk(Σ,−Σ).

In particular,

Zk(Σ, iR) ≤ 2ρ−
k
2

[λmin,λmax]
.
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In Chapter 6 it is shown that a large class of fractional diffusion problems can be approxi-
mated by matrix-vector products of the form fτ (L)b, where L ∈ RN×N is the finite element
matrix approximation of the differential operator, b ∈ RN×N a vector, and fτ a parametric
matrix function, such as the fractional power or the generalized Mittag-Leffler function. In
Chapter 7, a model order reduction strategy in the form of a rational Krylov method is
employed to approximate fτ (L)b efficiently. The quality of the surrogate depends on the
rational Krylov space QΞk+1(L,b) and the way it is extracted from it. Thanks to Theorem
7.16, the latter is quasi-optimal such that the performance of the method effectively hinges
on a good choice of the search space, or equivalently, of its poles Ξ = {ξ0, . . . , ξk} ⊂ R \ Σ.
This chapter is devoted to the choice of these poles and consists of four parts.
In the first part, we avail ourselves of some pole distributions that are mostly familiar

to the experts of the model order reduction community and show their suitability to the
approximation of fractional PDEs. For some of these configurations, we rigorously prove
exponential convergence rates that are uniform in the parameter τ . For those pole dis-
tributions that do not allow for such error bounds, we present, in the course of Section
10.2, a computable guaranteed upper bound for the rational Krylov error to assess their
quality. Based on the insights gained we propose, in the third part, two novel pole selection
algorithms that are competitive with or superior to many of the aforementioned pole sets.
The remainder of this chapter underpins our analytical findings by a variety of numerical
examples. We perform a detailed parameter study to illuminate the impact of changing
values of τ on the Krylov approximation and provide a systematical comparison of the pole
distributions.

10.1 Analysis of Selected Pole Configurations

The precise choice of the pole set Ξ may depend on the matrix L, the vector b, and the
function fτ . Ideally, one would like to choose the poles in a way such that the error is
small for all possible configurations of L, b, and fτ . This, however, is a difficult or even
impossible task. Hence, one is typically obliged to trade off various aspects against each
other. The following properties should be incorporated in the selection process of Ξ.

– The dependence of the pole set on the parameter τ : In many practical applications
[BOKG+14, SV16, AR19, ACR21], one is interested in querying the solution map
τ 4→ fτ (L)b for multiple instances of the parameter. If the poles are independent
of τ , one can compute the basis V of QΞk+1(L,b), its compression Lk+1, and the
coordinate vector V†b once and for all in the so-called offline stage. During the
online stage, for each new parameter queried the surrogate is found in the coordinate
space by computing fτ (Lk+1)V

†b at negligible extra costs.
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– The dependence on L and b: What information must be provided by the user to
compute the pole set? Do the poles depend on L or b?

– The presence of analytical results: In practice, one wishes to choose the smallest
integer k ∈ N such that the approximation error falls below a user-defined tolerance.
This in turn requires the availability of guaranteed upper bounds of the rational Krylov
error.

– The performance of the rational Krylov approximation in the limit case: If τ 4→
fτ (L)b is a multi-query problem with τ ∈ Θ ⊂ Rp, p ∈ N, it is desirable to choose
the poles in such a way that the approximation error remains uniformly bounded for
all values of τ ∈ Θ and does not degenerate e.g., when the fractional parameters
approach an integer.

– The presence of hierarchical structures: From a computational point of view, it is
desirable to adaptively enrich the rational Krylov space until the sought accuracy
is obtained. This, however, is only feasible if the poles form an infinite parameter
sequence such that QΞk (L,b) ⊂ QΞk+1(L,b) for all k ∈ N.

Under consideration of the above listed properties, we analyze and compare several pole
selection strategies and demonstrate their suitability to the fractional diffusion framework.
We emphasize that the originality of this section does not lie so much in the presentation
of these poles, for which we have partially drawn inspiration from existing literature, as in
their systematic study and rigorous analysis in nonlocal diffusion processes.

10.1.1 Zolotarëv Poles

We start our presentation with poles chosen according to the third Zolotarëv problem.
Provided a suitable choice of the condenser, these parameters have proven themselves as
excellent poles for RKMs [DKZ09, Güt10, Güt13, DS19, MR20a, DS21, DH21, DHS21].
A selection of plates that perfectly fits the analytical framework presented in Chapter 8
is A = Σ and B ∈ {−Σ, iR}, where Σ = [λmin, λmax] denotes the spectral interval of the
matrix L. In light of these results, we state one of the integral definitions of this chapter.

Definition 10.1. Let k ∈ N, δ = λmin/λmax, and Z(k)1 , . . . ,Z(k)k the Zolotarëv points of
order k on [δ, 1]. The Zolotarëv poles of order k on −Σ are defined by

Z := {−λmaxZ(k)1 , . . . ,−λmaxZ(k)k }.

We set Z∞ := Z ∪ {∞}. Further, let δ[λmin,λmax] and T[λmin,λmax] be as in Theorem 9.31
and Ẑ(k)1 , . . . , Ẑ(k)k the Zolotarëv points of order k on [δ[λmin,λmax], 1]. The Zolotarëv poles of
order k on R−0 are defined by

Ẑ := {T−1[λmin,λmax]
(−Ẑ(k)1 ), . . . , T−1[λmin,λmax]

(−Ẑ(k)k )}

and Ẑ∞ := Ẑ ∪ {∞}.
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The pole set Z has been analyzed in [DKZ09] for computing matrix exponentials in evolu-
tionary problems, in [DS19] for applying positive fractional powers of differential operators,
and in [DS21, DH21] for solving stationary fractional diffusion problems. In a more gen-
eral framework, Z and Ẑ have been studied in [MR20a] for Cauchy- and Laplace-Stieltjes
functions under the assumption that L is symmetric. Generalization to positive definite
but not necessarily symmetric matrices as well as complete Bernstein functions have been
conducted in [DHS21].
What makes Z and Ẑ attractive choices for functions of fractional diffusion type is the fact

that they are completely independent of the parameter τ and solely require the knowledge
of the extremal eigenvalues of L. Thanks to our careful preparations provided in Chapter
8 and 9, we are in position to quantify their performance analytically. Starting with the
Zolotarëv poles on R−0 , we state one of the central results of this chapter.

Theorem 10.2 (Ẑ∞-pointwise convergence). Let ΘC be defined as in Proposition 8.22, V
an orthonormal basis of QẐ∞

k+1(L,b), Lk+1 = V†LV, and uk+1 = Vfτ (Lk+1)V
†b. Then

"fτ (L)b− uk+1" ≤ 8Cτρ
−k
[λmin,4λmax]

"b",

where

Cτ :=

��
λ−smin, if fτ (λ) = λ−s and s ∈ (0, 1),
λsmax, if fτ (λ) = λs and s ∈ (0, 1),
Eα,β(−tαλsmin), if fτ (λ) = Eα,β(−tαλs) and (α, β, t, s) ∈ ΘC.

Proof. Starting with the case fτ (λ) = λ−s, we make use of Theorem 8.6 to recall that
fτ ∈ CS for all s ∈ (0, 1). As such, we may apply Theorem 8.32 and Theorem 9.31 to find

"L−sb− uk+1" ≤ 2λ−smin"b" min
rk+1∈Pk+1/qẐ∞

"rk+1"Σ
inf{|rk+1(λ)| : λ ∈ R−0 }

≤ 2λ−smin"b" min
rk∈Pk/qẐ

"rk"Σ
inf{|rk(λ)| : λ ∈ R−0 }

= 2λ−sminZk(Σ,R−0 )"b" ≤ 8λ−sminρ−k[λmin,4λmax]
"b".

If fτ (λ) = λs, we apply Theorem 8.8 to recall fτ ∈ CB for all s ∈ (0, 1). The complete
Bernstein part of Theorem 8.32 combined with Theorem 9.31 now reveals

"Lsb− uk+1" ≤ 2λsmax"b" min
rk∈Pk/qẐ

"rk"Σ
inf{|rk(λ)| : λ ∈ R−0 }

= 2λsmaxZk(Σ,R−0 )"b" ≤ 8λsmaxρ−k[λmin,4λmax]
"b".

To complete the proof of this theorem, we apply Proposition 8.22 to see that Eα,β(−tαλs) ∈
CS if (α, β, t, s) ∈ ΘC. Hence, we may use the first claim in Theorem 8.32 combined with
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Theorem 9.31 to finally arrive at

"Eα,β(−tαLs)b− uk+1" ≤ 2Eα,β(−tαλsmin)"b" min
rk+1∈Pk+1/qẐ∞

"rk+1"Σ
inf{|rk+1(λ)| : λ ∈ R−0 }

≤ 2Eα,β(−tαλsmin)"b" min
rk∈Pk/qẐ

"rk"Σ
inf{|rk(λ)| : λ ∈ R−0 }

≤ 2Eα,β(−tαλsmin)Zk(Σ,R−0 )"b"
≤ 8Eα,β(−tαλsmin)ρ

−k
[λmin,4λmax]

"b".

Remark 10.3. In the case of fτ (λ) ∈ {λ−s, Eα,β(−tαλs)}, Theorem 10.2 remains valid if
we extract the rational Krylov surrogate from QZk (L,b) instead of QZ∞

k+1(L,b). For fτ (λ) =
λs, however, the presence of b in the basis portfolio is essential.

Including an additional pole at infinity grants uniform convergence rates in all admissible
configurations of the parameter when fτ (λ) ∈ {λ−s, λs}.
Theorem 10.4 (Ẑ∞-uniform convergence). Assume that λmin ≥ 1.

1. Let V be an orthonormal basis of QẐ∞
k+1(L,b), Lk+1 = V†LV, and uk+1 = VL−sk+1V

†b.
Then there holds

max
s∈[0,1]

"L−sb− uk+1" ≤ 8ρ−k[λmin,4λmax]
"b".

2. Let Ẑ∞∞ := Ẑ∞∪{∞}, V be an orthonormal basis of QẐ∞∞
k+2(L,b), Lk+1 = V†LV, and

uk+1 = VLs
k+1V

†b. Then there holds

max
s∈[0,1]

"Lsb− uk+2" ≤ 8λmaxρ−k[λmin,4λmax]
"b".

Proof. Revisiting Theorem 10.2, we see that, due to λ−smin ≤ 1, it suffices to prove that
"L−sb− uk+1" ≤ 8ρ−k[λmin,4λmax]

"b" (10.1)

holds in the extremal cases s = 0, 1. If s = 0, then L−sb = b = VV†b = uk+1 and the
inequality trivially holds true. For s = 1, (10.1) directly follows from Theorem 8.25 with
ζ = 0 and Theorem 9.31 since

"L−1b− uk+1" ≤ 2

λmin
"b" min

rk+1∈Pk+1/qẐ∞

"rk+1"Σ
|rk+1(0)|

≤ 2

λmin
"b" min

rk∈Pk/qẐ

"rk"Σ
inf{|rk(λ)| : λ ∈ R−0 }

=
2

λmin
Zk(Σ,R−0 )"b" ≤ 8

λmin
ρ−k[λmin,4λmax]

"b".

Similarly, {∞,∞} ⊂ Ẑ∞∞ implies that the rational Krylov approximation is exact for both
L0b = b and L1b = Lb. Recognizing this fact, the second conjecture now follows from
Theorem 10.2.
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The previous two theorems deserve some further discussions. Our analysis shows that
Ẑ∞ provides an excellent pole set for approximating positive and negative fractional powers
of differential operators. If Ẑ∞ is enriched with an additional pole at infinity, which is
computationally inexpensive, the error remains uniformly bounded for all admissible values
of s. Likewise, the very same rational Krylov space can be employed for approximating
space-time fractional diffusion problems as long as (α, β, t, s) ∈ ΘC. Although we observe
numerically that the error bound remains in force if (α, β, t, s) ∈ ΘL ⊃ ΘC, our analytical
tools do not include convergence results in this regime. This inconvenience can be overcome
by means of the pole set Z. As preparation, we make the following elementary but crucial
observation.

Lemma 10.5. Let V be an orthonormal basis of QΞk+1(L,b), Lk+1 = V†LV, and uk+1 =

Vfτ (Lk+1)V
†b. Assume that Ξ ⊂ R−0 ∪ {∞} contains at least one pole at infinity.

1. If fτ ∈ CS, then there holds

"fτ (L)b− uk+1" ≤ 2fτ (λmin)"b""rΞ"Σ. (10.2)

2. Let fτ ∈ CB with ω as in (8.12). If ω = 0, then there holds

"fτ (L)b− uk+1" ≤ 2fτ (λmax)"b""rΞ"Σ. (10.3)

Assuming {∞,∞} ⊂ Ξ, then (10.3) holds even if ω 8= 0.
Proof. Since ∞ ∈ Ξ implies deg(qΞ) ≤ k, there holds rΞ ∈ Pk/qΞ. Therefore,

min
rk∈Pk/qΞ

"rk"Σ
inf{|rk(λ)| : λ ∈ R−0 }

≤ "rΞ"Σ
inf{|rΞ(λ)| : λ ∈ R−0 }

= "rΞ"Σ,

where the equality follows from |rΞ(λ)| ≥ 1 for λ ∈ R−0 . The claim now follows from
Theorem 8.32.

The previous lemma combined with the third claim in Theorem 8.32 shows that the
RKM error can be bounded by Zolotarëv’s minimal deviation problem irrespectively of
fτ ∈ CS ∪ CB ∪ LS. This allows us to simultaneously approximate solutions to fractional
diffusion problems of elliptic and parabolic type.

Theorem 10.6 (Z∞-pointwise convergence). Let ΘL be defined as in Theorem 8.20, cτ as
in Lemma 2.30 with a = λmin, V an orthonormal basis of QZ∞

k+1(L,b), Lk+1 = V†LV, and
uk+1 = Vfτ (Lk+1)V

†b. Then there holds

"fτ (L)b− uk+1" ≤ 4Cτρ
− k

2

[λmin,λmax]
"b",

where

Cτ :=

��
λ−smin, if fτ (λ) = λ−s and s ∈ (0, 1),
λsmax, if fτ (λ) = λs and s ∈ (0, 1),
cτ
π , if fτ (λ) = Eα,β(−tαλs) and (α, β, t, s) ∈ ΘL.

(10.4)

If (α, β, t, s) ∈ ΘC, then (10.4) remains valid if we replace cτ
π by Eα,β(−tαλsmin).
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Proof. Since fτ (λ) = λ−s ∈ CS, we may apply the first property in Lemma 10.5 to find
"L−sb− uk+1" ≤ 2λ−smin"b""rZ∞"Σ = 2λ−smin"b""rZ"Σ.

In this case, the claim directly follows from Theorem 9.33. The case fτ (λ) = λs can
be verified in analogously. To complete the proof, let now fτ (λ) = Eα,β(−tαλs) and
(α, β, t, s) ∈ ΘL. According to Theorem 8.20 we have fτ ∈ LS. Since fτ extends contin-
uously to the imaginary axis, Theorem 8.34 is applicable, whence we deduce with Lemma
2.30

"Eα,β(−tαLs)b− uk+1" ≤ cτ
π
"b" min

rk+1∈Pk+1/qZ∞

"rk+1"Σ
inf{|rk+1(z)| : z ∈ iR}

≤ cτ
π
"b" min

rk∈Pk/qZ

"rk"Σ
inf{|rk(z)| : z ∈ iR}

≤ cτ
π
"b" "rZ"Σ

inf{|rZ(z)| : z ∈ iR} .

Since |rZ | is identically one on the imaginary axis, it follows from Theorem 9.33

"Eα,β(−tαLs)b− uk+1" ≤ cτ
π
"rZ"Σ"b" ≤ 2cτ

π
ρ
− k

2

[λmin,λmax]
"b".

If (α, β, t, s) ∈ ΘC, then Eα,β(−tαλs) ∈ CS according to Proposition 8.22 and the claim
follows in analogy to the case where fτ (λ) = λ−s.

Remark 10.7. If fτ (λ) ∈ {λ−s, Eα,β(−tαλs)}, Theorem 10.6 remains valid if the rational
Krylov approximation is extracted from QZk (L,b) instead of QZ∞

k+1(L,b); cf. Remark 10.3.

As the following theorem shows, Z is the key ingredient to approximate the DEM ap-
proximation uniformly in τ for all admissible values of the parameter. This comes at the
cost of slightly weakened convergence rates.

Theorem 10.8 (Z∞-uniform convergence). Assume that λmin ≥ 1.
1. Let V be an orthonormal basis of QZ∞

k+1(L,b), Lk+1 = V†LV, and uk+1 = VL−sk+1V
†b.

Then there holds

max
s∈[0,1]

"L−sb− uk+1" ≤ 4ρ−
k
2

[λmin,λmax]
"b".

2. Let Z∞∞ := Z∞ ∪ {∞}, V an orthonormal basis of QZ∞∞
k+2(L,b), Lk+1 = V†LV, and

uk+1 = VLs
k+1V

†b. Then there holds

max
s∈[0,1]

"Lsb− uk+2" ≤ 4λmaxρ−
k
2

[λmin,λmax]
"b".

3. Let γk be defined by Lemma 8.30, eα,β(t, λ) as in (8.21), V an orthonormal basis of
QZ∞
k+1(L,b), Lk+1 = V†LV, uk+1 = Veα,β(−tα,Ls

k+1)V
†b, βmin ∈ R+, and Θβmin

:=
{(α, β, t, s) ∈ ΘL : β ≥ βmin}. Then there holds

max
τ∈Θβmin

"eα,β(−tα,Ls)b− uk+1" ≤ 8γkmax
�

1

Γ(βmin)
, 1

�
ρ
− k

2

[λmin,λmax]
"b". (10.5)
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Proof. Arguing as in the proof of Theorem 10.4, it suffices to show that

"L−sb− uk+1" ≤ 4ρ−
k
2

[λmin,λmax]
"b" (10.6)

for all s = 0, 1. If s = 0, then the rational Krylov approximation is exact and the inequality
trivially holds true. For s = 1, (10.6) follows from Theorem 8.25 with ζ = 0 since

"L−1b− uk+1" ≤ 2

λmin

"rZ"Σ
|rZ(0)|"b" =

2

λmin
"rZ"Σ"b" ≤ 4ρ−

k
2

[λmin,λmax]
"b",

where the last inequality holds due to Theorem 9.33. The second conjecture follows from
the observation that {∞,∞} ⊂ Z∞∞ implies that the rational Krylov approximation is exact
for both L0b = b and L1b = Lb.
To complete the proof, let fτ (λ) = eα,β(−tα, λs) with τ = (α, β, t, s) ∈ Θβmin

. According
to Theorem 8.20 we have eα,β(−tα, λs) ∈ LS and thus by the third point in Theorem 8.32

"eα,β(−tα,Ls)− uk+1" ≤ 4γkfτ (0)"b""rZ"Σ.

The uniform error bound is now a direct consequence of Theorem 9.33 and the observation
that

max
τ∈Θβmin

fτ (0) = max

�
1

Γ(βmin)
, 1

�
.

The decay rate obtained by the Zolotarëv poles on −Σ entail the factor 12 in the exponent
but lead to a better constant ρ[λmin,λmax] ≥ ρ[λmin,4λmax]. Comparing these results to the ones
obtained by Ẑ, we find with κ = λmax/λmin

ρ[λmin,4λmax] = e
π2

ln(16κ) = e
π2

ln(16)+ln(κ)

> e
π2

ln(16)+2 ln(κ) = e
π2

2 ln(4)+2 ln(κ) = e
π2

2 ln(4κ) = ρ
1
2

[λmin,λmax]
.

(10.7)

Therefore, for large condition numbers κ, we have that ρ[λmin,4λmax] ≈ ρ2[λmin,λmax]
.

For fixed values of (α, β, t, s) ∈ ΘL, Theorem 10.6 shows that the rational Krylov
approximation error decreases with purely exponential convergence rates when fτ (λ) =
Eα,β(−tαλs). The involved constant cτ , however, deteriorates as either of the parameter
approaches zero. Provided that the parameter β is bounded away from zero, (10.5) attests
the rational Krylov surrogate uniform convergence in the parameters at the cost of the
additional logarithmic factor encoded in γk. The degeneration of our upper bound as βmin
approaches zero, however, is in a sense reasonable since the series representation of Eα,β

diverges in this case.

Remark 10.9. In order to implement the poles based on Zolotarëv’s rational approxima-
tion problems, one requires the knowledge of the extremal eigenvalues of L. The latter are
typically not available, in which case one replaces them by some numerical approximations
0 < λL ≤ λmin < λmax ≤ λU to build the pole set thereupon. The performance of the
surrogate uk+1 so obtained deteriorates only logarithmically if the approximations of λmin
and λmax become worse.
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We complete this section with an illustration of the Zolotarëv poles on −Σ and R−0 with
Σ = [1, 1000] in Figure 10.1. The elements of Z are roughly geometrically distributed across
the negative spectral interval and accumulate at −λmin and −λmax. On the other hand,
the Zolotarëv poles on R−0 are sampled over the entire negative real line but cluster around
−Σ.
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−105 −103 −101 −10−1
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k

Figure 10.1: Zolotarëv poles on −Σ (left) and R−0 (right) for Σ = [1, 1000] and different
orders k.

10.1.2 EDS Poles

In general, Zolotarëv poles of order k have no common element with the Zolotarëv poles of
order k + 1 which is inconvenient if one wishes to incrementally build the rational Krylov
space until the desired accuracy is reached. A nested counterpart of the poles provided by Ẑ
and Z has been presented in [DKZ09, MR20a] and is based on the theory of equidistributed
sequences (EDS). The idea is to mimic the optimality property of Zolotarëv’s poles in an
asymptotic sense. More precisely, one makes use of the fact that the squared Zolotarëv
points on [δ, 1], δ ∈ (0, 1), are asymptotically distributed according to the measure [DKZ09]

νδ(t) =
1

2K(√1− δ2)

� t

δ2

dy�
(y − δ2)y(1− y)

(10.8)

with

νδ

��Z(k)j

�2�
=
2(k − j) + 1

2k
, j = 1, . . . , k. (10.9)

One can try now to replace the right-hand side of (10.9) by an infinite sequence of nodes
(sj)j∈N ⊂ [0, 1], which fill the interval in an almost uniform manner, in order to “inversely”
describe an approximation for the Zolotarëv points. The weak-star limit of the normalized
counting measure associated to (sj)j∈N should then be given by the Lebesgue measure on
[0, 1] and coincides with the one generated by the right-hand side of (10.9). To create a
mathematical framework for this problem, we give the following definition [Cha68].
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Definition 10.10. A sequence (sj)j∈N ⊂ R is said to be equidistributed on [a, b] ⊂ R if

lim
j→∞

|{s1, . . . , sj} ∩ [c, d]|
j

=
d− c

b− a

for all subintervals [c, d] ⊂ [a, b].
Provided an EDS (sj)j∈N, the normalized counting measure associated to the sequence

(ξ2j )j∈N ⊂ R, which we define by the relation

νδ(ξ
2
j ) = sj , j ∈ N,

is weak-star convergent to (10.8). In other words, the poles E := {−ξ1, . . . ,−ξk} are asymp-
totically distributed like the Zolotarëv poles on [−1,−δ]. This allows one to proof the
following result which we have essentially taken from [DKZ09, Theorem 4.4].

Theorem 10.11. Let δ ∈ (0, 1), A = [δ, 1], νδ defined by (10.8), and (sj)j∈N ⊂ [0, 1) an
equidistributed sequence on [0, 1]. Set

ξj :=
√
yj , νδ(yj) = sj , j ∈ N, (10.10)

and E = {−ξ1, . . . ,−ξk}. Then the rational function rE satisfies

lim
k→∞

"rE"
1
k
A = ρ

− 1
2

[δ,1]. (10.11)

We call ξ1, . . . , ξk the EDS points on A. Note that (10.11) implies

"rE"A < ρ
− k

2

[δ,1]. (10.12)

The roots y1, . . . , yk in (10.10) can be computed numerically, e.g., by Newton’s method.
Asymptotically optimal poles on −Σ or R−0 are obtained by applying either a scaling or
a Möbius transformation to the elements of E , respectively. To complete the description
of these poles, it remains to be clarified how one can construct equidistributed sequences
explicitly. The following result addresses this matter [Cha68].

Lemma 10.12. For all r ∈ Q the sequence (sj)j∈N defined by

sj := jr − ,jr-

is an equidistributed sequence on [0, 1].

In all our experiments we choose r = 1/
√
2 which is why we make it part of the following

definition.

Definition 10.13. Let δ = λmin/λmax and ξ1, . . . , ξk the EDS points on [δ, 1] generated by
the sequence sj := j/

√
2− ,j/√2-. We define the EDS poles on −Σ as

E := {−λmaxξ1, . . . ,−λmaxξk},
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and set E∞ := E ∪ {∞}. Accordingly, let δ[λmin,λmax] and T[λmin,λmax] be as in Theorem 9.31
and ξ̂1, . . . , ξ̂k the EDS points on [δ[λmin,λmax], 1] generated by (sj)j∈N. We define the EDS
poles on R−0 as

Ê := {T−1[λmax,λmax]
(−ξ̂1), . . . , T

−1
[λmin,λmax]

(−ξ̂k)}

and set Ê∞ := Ê ∪ {∞}.
Only one new pole is added at each stage to the k previously selected parameters which

are left unchanged. This makes E and Ê an attractive nested alternative to Z and Ẑ,
respectively. Similarly to their competitors, pole sets based on EDS are independent of the
parameter τ , the vector b, and solely require some rough spectral bounds for the extremal
eigenvalues of L. Thanks to Theorem 10.11, their performance can be quantified as follows.

Theorem 10.14. Let V be an orthonormal basis of QΞk+1(L,b), Lk+1 = V†LV, uk+1 =

Vfτ (Lk+1)V
†b, fτ ∈ {λ−s, λs} with s ∈ (0, 1) or fτ (λ) = Eα,β(−tαλs) with (α, β, t, s) ∈

ΘL.

1. If Ξ = E∞, then there holds

"fτ (L)b− uk+1" < ρ
− k

2

[λmin,λmax]
"b".

2. If Ξ = Ê∞ and fτ (λ) ∈ {λ−s, λs} then

"fτ (L)b− uk+1" < ρ−k[λmin,4λmax]
"b". (10.13)

Moreover, (10.13) remains valid for fτ (λ) = Eα,β(−tαλs) if (α, β, t, s) ∈ ΘC.

Proof. We start with Ξ = E∞. If fτ (λ) ∈ {λ−s, λs}, it follows from Lemma 10.5 that

"fτ (L)b− uk+1" < "rE"Σ"b".

Let now Ē denote the EDS poles on −A = [−1,−δ] with δ = λmin/λmax. Observing that
rĒ ◦ T = rE if T (z) = z/λmax, it follows from (10.12)

"fτ (L)b− uk+1" < "rĒ ◦ T"Σ"b" = "rĒ"A"b" < ρ
− k

2

[δ,1]"b" = ρ
− k

2

[λmin,λmax]
"b".

If fτ (λ) = Eα,β(−tαλs) ∈ LS, we may apply Theorem 8.34 and Lemma 2.30 to find

"Eα,β(−tαLs)b− uk+1" < "b" min
rk+1∈Pk+1/qE∞

"rk+1"Σ
inf{|rk+1(z)| : z ∈ iR}

≤ "b" min
rk∈Pk/qE

"rk"Σ
inf{|rk(z)| : z ∈ iR}

≤ "b" "rE"Σ
inf{|rE(z)| : z ∈ iR} ≤ "b""rE"Σ
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since |rE(z)| = 1 for all z ∈ iR and the proof follows just like in the previous case. If
Ξ = Ê∞, then fτ ∈ CS ∪ CB under the given restrictions on the parameters. We may thus
consult Theorem 8.32 to find

"fτ (L)b− uk+1" < "b" min
rk+1∈Pk+1/qÊ∞

"rk+1"Σ
inf{|rk+1(λ)| : λ ∈ R−0 }

≤ "b" min
rk∈Pk/qÊ

"rk"Σ
inf{|rk(λ)| : λ ∈ R−0 }

.

Let now Ẽ denote the EDS poles on −A = [−1,−δ[λmin,λmax]]. Noting that rẼ ◦T[λmin,λmax] ∈
Pk/qÊ , we deduce from the mapping properties of T[λmin,λmax]

"fτ (L)b− uk+1" < "b" "rẼ ◦ T[λmin,λmax]"Σ
inf{|(rẼ ◦ T[λmin,λmax])(λ)| : λ ∈ R−0 }

=
"rẼ"A

inf{|rẼ(λ)| : λ ∈ −A} = "rẼ"A,

since |rẼ(λ)| ≥ 1 for all λ ∈ R−0 . The claim now follows from (10.12) and the second
inequality in (9.35).
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Figure 10.2: Maximum norm "rΞ"Σ on Σ = [1, 1000] for Ξ ∈ {E ,Z} (left) and EDS poles
on −Σ for various k (right).

The price one has to pay for the nested structure of the EDS poles is that explicit constants
in their estimates are not available. We observe experimentally, however, that already for
small values of k, "rE"Σ provides a decent approximation to "rZ"Σ. To see this, we plot
the maximal deviation of rΞ on Σ = [1, 1000] for Ξ ∈ {E ,Z} in Figure 10.2. From the very
beginning, "rE"Σ behaves qualitatively very similar to the true minimizer "rZ"Σ and decays
like O(ρ−k/2[1,1000]). One can thus expect E and Ê to provide a competitive nested alternative

to Z and Ẑ, respectively.
Before we proceed with the so-called spectral poles, we plot the point set E for Σ =

[1, 1000] in Figure 10.2. The EDS poles exhibit a repeated pattern that, after a few itera-
tions, is qualitatively similar to the one obtained by the Zolotarëv poles.
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10.1.3 Spectral Poles

In some sense, pole sets based on the third Zolotarëv problem are built on the assumption
that the eigenvalues of L are uniformly distributed across Σ. If the spectral density of
the operator is nonuniform, e.g., when the eigenvalues accumulate at an end point of Σ,
more refined pole configurations might exist. In this section, we discuss two pole generation
algorithms that include spectral information about the particular matrix L. The first one
has been proposed in [GK13] and is closely related to the method described in [DLZ10,
DS11]. Its main idea is to quantify the error in terms of a rational function involving the
poles and rational Ritz values of L on QΞk+1(L,b). Instrumental for this approach is the
so-called Hermite-Walsh formula for rational interpolants; see [Wal60, Theorem VIII.2],
[BR09, BG12, Güt13, Tre19].

Theorem 10.15. Let C ⊂ C be an integration contour, f a function that is analytic in
Int(C) and extends continuously to C, rfk ∈ Rn,k a rational function with poles in Ξ =
{ξ0, . . . , ξk} ⊂ C that interpolates f in the nodes Λ = {σ0, . . . , σn} ⊂ C, and rΛ,Ξ defined
by (8.26). Then there holds for all z ∈ Int(C)

f(z)− rfk (z) =
1

2πi

�
C

rΛ,Ξ(z)

rΛ,Ξ(ζ)

f(ζ)

z − ζ
dζ. (10.14)

Provided that fτ ∈ CS with Cauchy-Stieltjes triple (0, 0, µC), formula (10.14) remains
valid if we bend the contour to the negative real axis such that, after the transformation
ζ 4→ −ζ, we obtain

fτ (λ)− rf
τ

k (λ) =

� ∞
0

rΛ,Ξ(λ)

rΛ,Ξ(−ζ)

µτ
C(ζ)

λ+ ζ
dζ, λ ∈ R+. (10.15)

Let now V be an orthonormal basis of QΞk+1(L,b) and Lk+1 its compression. Then by
Theorem 7.14, there holds for uk+1 = Vfτ (Lk+1)V

†b

uk+1 = rτk (L)b,

where rτk ∈ Pk/qΞ interpolates fτ in the rational Ritz values Λ = {µ(k)0 , . . . , µ
(k)
k } of L on

QΞk+1(L,b). We apply (10.15) to deduce

"fτ (L)b− uk+1" =
####� ∞
0

µτ
C(ζ)(L+ ζI)−1

rΛ,Ξ(L)b

rΛ,Ξ(−ζ)
dζ

####
≤ "rΛ,Ξ(L)b"

####� ∞
0

µτ
C(ζ)

|rΛ,Ξ(−ζ)|(L+ ζI)−1 dζ
#### . (10.16)

The goal is now to choose the next pole ξk+1 in a way such that the upper bound provided
by (10.16) is minimized. According to Proposition 7.15, rΛ,Ξ already minimizes "rk(L)b"
among all monic rational functions with prescribed denominator qΞ. Hence, it suffices to
solely focus on the integrand and we wish to choose the next pole ξk+1 ∈ R−0 such that
|rΛ,Ξ(−ζ)| becomes as large as possible on R+. For this purpose, the authors of [GK13]
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proposed to place the new pole at the location of a global minimizer of |rΛ,Ξ(−ζ)|, i.e.,

ξk+1 := − argmin
ζ∈R+

0

|rΛ,Ξ(−ζ)| = argmin
ζ∈R−

0

|rΛ,Ξ(ζ)| = argmin
ζ∈R−

0

k�
j=0
ξj !=∞

$$$$$ζ − µ
(k)
j

ζ − ξj

$$$$$ . (10.17)

Typically, one does not compute ξk+1 by minimizing (10.17) over the parameter continuum
but instead over a discrete training set. For bounded parameter domains, it is common to
use a uniform grid which is adaptively refined to ensure that no local minima are skipped.
Over unbounded domains, as it is the case here, the situation is more delicate. One pos-
sibility is to introduces two cut-off parameters n−c , n+c ∈ R+ and discretize the bounded
domain [−n−c , n+c ] under a uniform grid. A discretization for R−0 is then obtained by the
exponential map ζ 4→ −eζ . Since we use such a discretization of R−0 in any of our numerical
experiments, we incorporate it in the following definition.

Definition 10.16. Let n−c , n+c ∈ R+ and T n±ctrain ⊂ R−0 a training set of −[e−n−c , en+c ]. The
pole set Ŝ∞ = {ξ0, . . . , ξk} is defined inductively by ξ0 :=∞ and

ξk+1 := argmin

ζ∈T n±c
train

|rΛ,Ξ(ζ)|, (10.18)

where Λ = {µ(k)0 , . . . , µ
(k)
k } are the rational Ritz values of L on QŜ∞k+1(L,b). We call Ŝ :=

{ξ1, . . . , ξk} the spectral poles on R−0 .

Definition 10.16 provides a promising pole candidate whenever fτ ∈ CS. Let now fτ ∈ CB
and rf

τ

k ∈ Rn,k a rational function with poles in Ξ = {ξ0, . . . , ξk} that interpolates fτ in
Λ = {σ0, . . . , σn}. Then rf

τ

k (λ)/λ interpolates fτ (λ)/λ in Λ. Since fτ (λ)/λ ∈ CS by
Proposition 8.9, we may apply (10.15) to confirm that

fτ (λ)

λ
− rf

τ

k (λ)

λ
=

� ∞
0

rΛ,Ξ(λ)

rΛ,Ξ(−ζ)

µτ
C(ζ)

λ+ ζ
dζ, (10.19)

where µτ
C is the Cauchy-Stieltjes density of f

τ (λ)/λ. Multiplying (10.19) by λ reveals

fτ (λ)− rf
τ

k (λ) =

� ∞
0

rΛ,Ξ(λ)

rΛ,Ξ(−ζ)
µτ
C(ζ)

λ

λ+ ζ
dζ, (10.20)

which can be seen as a variant of the Hermite-Walsh formula for complete Bernstein func-
tions. Therefore, the same arguments as in the Cauchy-Stieltjes case can be applied to
conclude that Ŝ provides a promising pole candidate for all fτ ∈ CB.
In accordance with poles based on the third Zolotarëv problem, a sampling of Ξ over

the entire negative real line does not seem natural when Laplace-Stieltjes functions are
involved. In view of (8.29) a more intuitive selection of the training set could be T n±ctrain ⊂ iR
in (10.18) which has the disadvantage of complex poles even though both L and b are
real. A different approach which circumvents this difficulty has been presented in [DLZ10].
Originally proposed for the exponential function, the authors advocate to sample the poles
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over −Σ, which requires the discretization of a bounded domain only. This restriction can
be justified for all functions of Stieltjes and complete Bernstein type since Lemma 10.5
and the third point in Theorem 8.32 show that the rational Krylov error can be bounded
by "rΞ"Σ, whose minimum is attained by the Zolotarëv poles Z on −Σ. The latter are
contained in −Σ and thus justify the restriction to this bounded domain. These arguments
provide the necessary motivation to introduce the following variant of Definition 10.16.

Definition 10.17. Let Ttrain be a training set of −Σ. The pole set S∞ = {ξ0, . . . , ξk} is
defined inductively by ξ0 :=∞ and

ξk+1 := argmin
ζ∈Ttrain

|rΛ,Ξ(ζ)|.

We call S := {ξ1, . . . , ξk} the spectral poles on −Σ.

In view of (10.17), S allows the interpretation as greedy approximation of the problem:
Find Ψ ⊂ −Σ with |Ψ| = k such that

"rΛ,Ψ"Σ = min
Ξ⊂−Σ
|Ξ|=k

"rΛ,Ξ"Σ, (10.21)

where Λ = {µ(k)0 , . . . , µ
(k)
k } are the rational Ritz values of L on QΞk+1(L,b). This can be

viewed as a variation of Zolotarëv’s minimal deviation problem (9.37) where the numerator
of rΞ is replace by the characteristic polynomial of Lk+1 for better adjustments towards
the true spectrum of L. In view of the fact that the Zolotarëv poles are build on the
assumption that the spectral density of L is uniform, it can be expected that the minimizer
of (10.21) does not significantly differ from the solution to Zolotarëv’s original minimal
deviation problem whenever L satisfies such a property.

Remark 10.18. Due to the close relation between S and Z, an alternative strategy to define
Ŝ could be to greedily minimize (10.21) over Ttrain ⊂ [−1,−δ[λmin,λmax]], with δ[λmin,λmax] as
in Theorem 9.31, and transplant the poles so obtained to the entire negative real line using
the Möbius transformation T[λmin,λmax]. We do not further pursue this approach.

To confirm experimentally that the pole set S may provide a reasonable approximation
to Zolotarëv’s minimal deviation problem, we compare the maximal deviation of rS on
Σ = [1, 1000] to the one obtained by the minimizer rZ for two different matrices of dimension
N = 1000. The first matrix is defined by L1 := diag(1, . . . , N) ∈ RN×N such that its
spectrum is uniformly distributed across Σ. In this case, Figure 10.3 shows that the pole
set S provides a decent approximation to the true solution Z. The situation is rather
different if the eigenvalues do not satisfy such a uniform pattern. The right plot in Figure
10.3 depicts "rS"Σ for the diagonal matrix L2 ∈ RN×N with λmin = 1, λmax = 1000, and 998
towards 1 geometrically refined eigenvalues on [1, 2]. In this regime, the rational function
rS does not become uniformly small on Σ since the spectrum of L2 biases the selection of
the poles.
To visualize the impact of the spectral density on the parameter selection, we plot the

spectral poles on −Σ for different orders in Figure 10.4 for the matrices L1 and L2. In the

158



10 Pole Selection Strategies

0 5 10 15 20 25 30 35

10−8

10−6

10−4

10−2

100

k

"r
Ξ
" Σ

S
Z

0 5 10 15 20 25 30 35

10−8

10−6

10−4

10−2

100

k

"r
Ξ
" Σ

S
Z

Figure 10.3: Maximum norm "rΞ"Σ on Σ = [1, 1000] with Ξ ∈ {S,Z} for the matrices L1
(left) and L2 (right).
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Figure 10.4: Spectral poles S on −Σ = [−1000,−1] for different orders k and the matrices
L1 (left) and L2 (right).

uniform case, we observe that S exhibits a similar pattern to the one depicted in Figure
10.1 for the Zolotarëv poles on −Σ. In contrast, the poles computed for the matrix L2
accumulate at −λmin which can be traced back to the cluster of eigenvalues of L2 which is
located there.
From a computational point of view, both S and Ŝ provide an attractive choice of poles

as they are independent of the parameter τ and the vector b. While S avoids the difficulty
of discretizing an unbounded domain, it requires, unlike Ŝ, rough estimates of the spectral
region of L. Even though the rational Ritz values need to be recomputed in each step, which
makes spectral poles computationally more demanding than their Zolotarëv competitors,
the parameters ξ0, . . . , ξk remain unchanged and are thus convenient for adaptively building
the rational Krylov space. Moreover, in contrast to the poles based on the third Zolotarëv
problem, the presence of (µ(k)j )

k
j=0 allows for better adjustments towards the true discrete

spectrum of L. Even though no analytical results are available, there is empirical evidence
that such spectral methods outperform both Zolotarëv and EDS poles whenever the operator

159



10 Pole Selection Strategies

exhibits a strong nonuniform spectral density.

10.1.4 Weak Greedy Poles

The pole sets presented up to this point exhibit different degrees of adaption to the data
of the problem. Zolotarëv and EDS poles are the most general ones in the sense that
they only require some rough bounds on the extremal eigenvalues of L. Spectral poles are
tailored to the particular matrix and differ even if two matrices share the same extremal
eigenvalues. For poles chosen according to so-called weak greedy algorithms, we go one
step further and adjust the poles not only to the matrix but also to the vector b. The
selection of these parameters is very popular in the reduced basis literature to alleviate the
computational costs when evaluating solutions to parametric PDEs but has not attracted
as much attention in RKMs yet. We refer to [DPW13, CD15] for a general survey over weak
greedy algorithms and [ACN19, BGZ20, DS21, DAC+21, DH21, DH21] for their application
to fractional diffusion problems. Using fτ ∈ CS as a starting point, one can bound the
rational Krylov approximation error by the triangle inequality

"fτ (L)b− uk+1" ≤
� ∞
0

µτ
C(ζ)"(L+ ζI)−1b−V(Lk+1 + ζIk+1)

−1V†b" dζ, (10.22)

where V is an orthonormal basis of QΞk+1(L,b) and Lk+1 = V†LV. Unlike in the previous
two sections, we do not apply spectral arguments to bound (10.22) by a scalar rational
approximation problem. Instead, the goal is to directly minimize this upper bound by
choosing each consecutive pole according to

ξk+1 := − argmax
ζ∈R+

0

Ek+1(ζ), Ek+1(ζ) := "(L+ ζI)−1b−V(Lk+1 + ζIk+1)
−1V†b".

(10.23)

Clearly, (10.23) cannot be realized in practice. Even if we replace R+0 with a discrete
training set T n±ctrain ⊂ R+0 of finite cardinality, the scheme requires the evaluation of (L +
ζI)−1b for multiple values of ζ which is precisely what weak greedy algorithms seek to
avoid. To counteract this, the idea is to replaces the true approximation error with a
computable quantity which allows the selection to be done in a practically feasible manner
while retaining the same performance as (10.23). The following lemma is dedicated to the
identification of such an error indicator; see also [DAC+21, Lemma 5.1].

Lemma 10.19. Let V be an orthonormal basis of QΞk+1(L,b), Lk+1 = V†LV, and ζ ∈ R+0 .
Then there holds

1

λmax + ζ
"rk+1(ζ)" ≤ Ek+1(ζ) ≤ 1

λmin + ζ
"rk+1(ζ)", (10.24)

where rk+1(ζ) := b− (L+ ζI)V(Lk+1 + ζIk+1)
−1V†b is the residual.

Proof. Using Ek+1(ζ) = "(L+ ζI)−1rk+1(ζ)", we deduce

Ek+1(ζ) ≤ "(L+ ζI)−1""rk+1(ζ)" = 1

λmin + ζ
"rk+1(ζ)",
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where the norms are understood as the vector and the associated matrix norm, respectively.
This proves the second inequality in (10.24). On the other hand, there holds rk+1(ζ) =
(L+ ζI)((L+ ζI)−1b−V(Lk+1 + ζIk+1)

−1V†b). Hence,

"rk+1(ζ)" ≤ "L+ ζI"Ek+1(ζ) ≤ (λmax + ζ)Ek+1(ζ),

which implies the first inequality in (10.24).

The quantity "rk+1(ζ)" is called residual based error estimator. On bounded domains,
(10.24) shows that "rk+1(ζ)" is equivalent to the true approximation error Ek+1(ζ). Hence,
if we restrict ζ to some bounded interval [a, b] ⊂ R+0 and select the samples using "rk+1(ζ)"
as surrogate for Ek+1(ζ), we obtain

Ek+1(ξk+1) ≥ 1

λmax + ξk+1
"rk+1(ξk+1)"

≥ 1

λmax + b
max
ζ∈[a,b]

"rk+1(ζ)" ≥ λmin + a

λmax + b
max
ζ∈[a,b]

Ek+1(ζ).

In view of these results, a competitive selection of poles for approximating the matrix
resolvent on [a, b] ⊂ R+0 might be obtained inductively by

ξk+1 := − argmax
ζ∈[a,b]

"rk+1(ζ)". (10.25)

The following theoretical tool is instrumental to quantify the quality of these poles.

Definition 10.20. For all k ∈ N we define the Kolmogorov k-width as

Kk := inf
dim(Vk)≤k

sup
ζ∈R+

0

inf
vk∈Vk

"(L+ ζI)−1b− vk"

and set K0 := supζ∈R+
0
"(L+ ζI)−1b" by convention.

The quantity Kk represents the best achievable decay for approximating the matrix re-
solvent. In practice, however, the optimal space, for which the infimum is attained, is
computationally out of reach. Therefore, the above quantity should be viewed as a bench-
mark for more practical choices of the approximation space. The success of weak greedy
algorithms is due to the following powerful result.

Theorem 10.21. Let 0 ≤ a < b < ∞, Ξ = {ξ0, . . . , ξk} with ξ0 =∞ and ξ1, . . . , ξk chosen
according to (10.25). Then there holds for any C0, c0 ∈ R+

∀k ∈ N0 : Kk ≤ C0e
−c0k =⇒ sup

ζ∈[a,b]
Ek+1(ζ) ≤ C0max

�√
2
λmax + b

λmin + a
, e

c0
6

�
e−

c0k
6 .

Proof. See [CD15, Corollary 8.4(iii)] and [DPW13, Corollary 3.3(iii)].
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According to Theorem 10.21, exponential convergence of the Kolmogorov k-width guar-
antees exponential convergence of the weak greedy algorithm. Thanks to Corollary 8.25,
we know that the former can be bounded by

Kk ≤ sup
ζ∈[a,b]

inf
vk∈QZ̃

k (L,b)

"(L+ ζI)−1b− vk" ≤ 2

λmin + a
Zk(Σ, [−b,−a])"b" (10.26)

for all k ∈ N, where Z̃ is the set containing the poles of Zolotarëv’s extremal rational
function on the condenser (Σ, [−b,−a]) in the sense of Theorem 9.30. This allows us to
prove the following result; c.f. [BGZ20, Lemma 3.1].

Corollary 10.22. Let 0 ≤ a < b < ∞, Ξ = {ξ0, . . . , ξk} with ξ0 =∞ and ξ1, . . . , ξk chosen
according to (10.25), and δ = δ[−b,−a;λmin,λmax] defined by (9.29). Then there holds

sup
ζ∈[a,b]

Ek+1(ζ) ≤ Cρ
− k

6

[δ,1]"b", C =
8

λmin + a
max

�√
2
λmax + b

λmin + a
, ρ

1
6

[δ,1]

�
.

Proof. It follows from Theorem 9.30 that

Zk(Σ, [−b− a]) ≤ 4ρ−k[δ,1],

Together with (10.26), this yields

Kk ≤ 8

λmin + a
ρ−k[δ,1]"b"

for all k ∈ N. The inequality remains valid if k = 0. Hence, the conjecture follows by
Theorem 10.21 with

c0 =
π2

ln(4δ−1)
, C0 =

8

λmin + a
.

The major disadvantage of Corollary 10.22 is the fact that (10.22) is limited to bounded
intervals [a, b] ⊂ R+. If by chance, however, the Cauchy-Stieltjes density µτ

C of fτ has
compact support, one can apply the weak greedy algorithm to any bounded superset [a, b] ⊃
suppµC to arrive at the following result.

Corollary 10.23. Let fτ ∈ CS with Cauchy-Stieltjes density µτ
C satisfying suppµτ

C ⊂ [a, b]
for 0 ≤ a < b < ∞, Ξ = {ξ0, . . . , ξk} with ξ0 =∞ and ξ1, . . . , ξk chosen according to (10.25),
δ and C as in Corollary 10.22, V be an orthonormal basis of QΞk+1(L,b), Lk+1 = V†LV,
and uk+1 = Vfτ (Lk+1)V

†b. Then

"fτ (L)b− uk+1" ≤ C̃ρ
− k

6

[δ,1]"b", C̃ := C

� b

a
µτ
C(ζ) dζ.

Proof. If µτ
C has compact support, it follows from (10.22) that

"fτ (L)b− uk+1" ≤
� b

a
µτ
C(ζ) dζ sup

ζ∈[a,b]
Ek+1(ζ).

The claim now follows from Corollary 10.22.
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Although Cauchy-Stieltjes functions exist whose density functions have compact support,
see e.g., (8.5), Corollary 10.23 is only of limited use since most of the functions that we are
interested in do not possess such a property. One possibility to mitigate this problem is
to sample the poles over a sufficiently large parameter domain so that the truncation error
falls below a user-defined threshold. Exemplary, we state the following result for the case
where fτ (λ) = λ−s; cf. [BLP19b].

Theorem 10.24. Let n−c , n+c ∈ R+, a = e−n
−
c , b = en

+
c , Ξ = {ξ0, . . . , ξk} with ξ0 =∞ and

ξ1, . . . , ξk chosen according to (10.25), C as in Corollary 10.22, s ∈ (0, 1), V an orthonormal
basis of QΞk+1(L,b), Lk+1 = V†LV, and uk+1 = VL−sk+1V

†b. Then

"L−sb− uk+1" ≤
�
2e−(1−s)n

−
c

λmin(1− s)
+
2e−sn

+
c

s
+ C

e(1−s)n
+
c − e−(1−s)n

−
c

1− s
ρ
− k

6

[λmin,4λmax]

�
"b".

(10.27)

Proof. Starting from Balakrishnan’s formula (8.10), we apply the substitution ζ 4→ ln(ζ) to
deduce from Theorem 2.37

L−sb =
sin(πs)

π

� ∞
−∞

e(1−s)ζ(L+ eζI)−1b dζ,

uk+1 =
sin(πs)

π

� ∞
−∞

e(1−s)ζV(Lk+1 + eζIk+1)
−1V†b dζ.

We split each of the two integrals in its three contributions over (−∞,−n−c ], [−n−c , n+c ], and
[n+c ,∞), apply the triangle inequality, and deduce, by definition of Ek+1(ζ),

"L−sb− uk+1" ≤
� −n−c
−∞

e(1−s)ζEk+1(e
ζ) dζ +

� n+c
−n−c

e(1−s)ζEk+1(e
ζ) dζ

+

� ∞
n+c

e(1−s)ζEk+1(e
ζ) dζ.

Invoking the orthonormal property of V and the fact that the rational Ritz values are
contained in Σ, we find� −n−c
−∞

e(1−s)ζEk+1(e
ζ) dζ ≤

� −n−c
−∞

e(1−s)ζ
�"(L+ eζI)−1b"+ "(Lk+1 + eζIk+1)

−1V†b"2
�
dζ

≤ "b"
� −n−c
−∞

e(1−s)ζ

λmin
dζ + "V†b"2

� −n−c
−∞

e(1−s)ζ
λmin

dζ.

Once more, we make use of the fact that V is an orthonormal basis to find "V†b"2 = "Pb",
where P := VV† is the orthogonal projector onto QΞk+1(L,b). Hence "V†b"2 = "Pb" ≤
"b". Direct evaluations of the integrals reveal� −n−c

−∞
e(1−s)ζEk+1(e

ζ) dζ ≤ 2 e−(1−s)n
−
c

(1− s)λmin
"b".
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Similar computations show� ∞
n+c

e(1−s)ζEk+1(e
ζ) dζ ≤

� ∞
n+c

e(1−s)ζ
�
"(L+ eζI)−1b"+ "(Lk+1 + eζIk+1)

−1V†b"2
�
dζ

≤ "b"
� ∞
n+c

e(1−s)ζ

eζ
dζ + "b"

� ∞
n+c

e(1−s)ζ
eζ

dζ

= 2"b"
� ∞
n+c

e−ζs dζ = 2
e−sn

+
c

s
"b".

To bound the third integral, we apply Corollary 10.22 and find� n+c
−n−c

e(1−s)ζEk+1(ζ) dζ ≤
� n+c
−n−c

e(1−s)ζ dζ sup
ζ∈[e−n−c ,en

−
c ]

Ek+1(ζ)

=
e(1−s)n

+
c − e−(1−s)n

−
c

1− s
sup

ζ∈[e−n−c ,en
+
c ]

Ek+1(ζ).

Combining all three integral estimates together with Corollary 10.23 we deduce

"L−sb− uk+1" ≤
�
2e−(1−s)n

−
c

λmin(1− s)
+
2e−sn

+
c

s
+ C

e(1−s)n
+
c − e−(1−s)n

−
c

1− s
ρ
− k

6

[δ,1]

�
"b".

The claim now follows from the observation that δ ≥ λmin
4λmax

. Therefore, ρ−
k
6

[δ,1] ≤ ρ
− k

6

[
λmin
4λmax

,1]
=

ρ
− k

6

[λmin,4λmax]
.

Theorem 10.24 can be seen as improvement of the results provided in [BGZ20], where
the slower convergence rates obtained by Z were used to show exponential convergence
of the Kolmogorov k-width. The first two contributions on the right-hand side of (10.27)
are caused by sampling the parameters only over the bounded domain [e−n

−
c , en

+
c ] instead

of R+0 . What these terms are concerned, it is desirable to choose n−c and n+c as large as
possible. On the other hand, large values of these parameters enlarge the sample domain
of the weak greedy algorithm, increasing the constant in the last term of (10.27).
Although analytically not fully understood, it is observed numerically that also for

fτ (λ) ∈ {λs, Eα,β(−tαλs)} the poles obtained by (10.25) provide an excellent choice for
building rational Krylov approximations if [a, b] is sufficiently large. However, our previous
results show that the approximability of fτ (L)b for any fτ ∈ CS ∪ CB ∪ LS is closely
related to the approximability of the (scalar-valued) resolvent function on the spectral in-
terval of L. In particular, the pole sets Z, E , and S are all contained in −Σ. A reasonable
choice for [a, b], which avoids the selection of the cut-off parameters n−c , n+c is thus given
by [a, b] = [λmin, λmax]. Before we manifest these observations in the central definition of
this section, we mention that the analysis provided above remains valid if we replace [a, b]
in (10.25) by a discrete training set, chosen either sufficiently fine to retain the accuracy of
the algorithm [CD15] or based on random selections of moderate size [CDDN20].
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Definition 10.25. Let Ttrain be a training set of Σ. The pole set G∞ = {ξ0, . . . , ξk} is
defined inductively by ξ0 :=∞ and

ξj+1 := − argmax
ζ∈Ttrain

"rk+1(ζ)", (10.28)

where rk+1(ζ) is the residual from Lemma 10.19. We call G := {ξ1, . . . , ξk} the weak greedy
poles on −Σ. Accordingly, the pole set Ĝ∞ = {ξ̂0, . . . , ξ̂k} is defined by ξ̂0 :=∞ and

ξ̂j+1 := − argmax
ζ∈T n±c

train

"rk+1(ζ)", (10.29)

where T n±ctrain ⊂ R−0 is a training set of [e−n
−
c , en

+
c ]. We call Ĝ := {ξ̂1, . . . , ξ̂k} the weak greedy

poles on R−0 .

Remark 10.26. It goes without saying that numerous other error estimators as well as a
priori parameter selections exist to approximate parametric PDEs of reaction-diffusion type;
see e.g., [RHP08, QRM11, MPT02] and references therein.

By construction, the weak greedy poles are nested. More importantly, they are inde-
pendent of the parameter and thus allow for an efficient querying of the solution map
τ 4→ fτ (L)b in the course of an online-offline decomposition. The bounds provided in
Theorem 10.27, however, suggest that the surrogate degenerates when s approaches an in-
teger. Hence, we cannot prove uniform convergence for s ∈ [0, 1] with the tools presented
above. Just like S and Ŝ, weak greedy poles require a user-provided training set to carry
out the maximization. Unlike their spectral counterparts, however, they are computed
using spatial error estimators which makes their implementation more demanding, both
from a computational and theoretical point of view. The key ingredient for an efficient
realization of (10.28) is the implementation of an online-offline routine. After an initial
computational investment, this allows one to query ζ 4→ "rk+1(ζ)" with complexity only
depending on k. To make matters precise, let V be an orthonormal basis of QΞk+1(L,b) and
Lk+1 = V†LV. If we define uC

k+1(ζ) := (Lk+1 + ζIk+1)
−1V†b to be the coordinate vector

of V(Lk+1 + ζIk+1)
−1V†b, we observe

"rk+1(ζ)"2 = "b− (L+ ζI)VuC
k+1(ζ)"2

= "b"2 − 2(b, (L+ ζI)VuC
k+1(ζ)) + "(L+ ζI)VuC

k+1(ζ)"2
= "b"2 − 2(b,LVuC

k+1(ζ)) − 2ζ(b,VuC
k+1(ζ)) + "LVuC

k+1(ζ)"2
+ 2ζ(LVuC

k+1(ζ),VuC
k+1(ζ)) + ζ2"VuC

k+1(ζ)"2.
Recalling L =M−1A, we define the quantities

cb := "b" ∈ R, v1 := VTAb ∈ Rk+1,

v2 := VTMb ∈ Rk+1, L2,k+1 := VTAM−1AV ∈ R(k+1)×(k+1),
(10.30)

so that, invoking the second property in Lemma 7.10,

"rk+1(ζ)"2 = c2b − 2(v1,uC
k+1(ζ))2 − 2ζ(v2,uC

k+1(ζ))2 + "uC
k+1(ζ)"2L2,k+1

+ 2ζ"uC
k+1(ζ)"2Lk+1

+ ζ2"uC
k+1(ζ)"22.

(10.31)

An efficient realization of (10.28) and (10.29) now
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1. computes (10.30) once and for all in the offline phase,

2. queries the right-hand side of (10.31) in the online phase for all ζ in the training set.

Note that the right-hand side of (10.31) only depends on the Krylov parameter k such that
its evaluation for several thousand values of ζ is feasible. Although efficient, the reader
should be warned that the implementation in its present form is prone to numerical round-
off errors. In double precision arithmetic, this leads to stagnation of the residual based error
indicator whenever "rk+1(ζ)" is in the range of 10−8. More careful computations allow one
to overcome these difficulties [Cas12, CEL14, BEOR14, YJN19].
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Figure 10.5: Maximum norm "rΞ"Σ on Σ = [1, 1000] for Ξ ∈ {G,Z} with L1 and b1 (top
left), L2 and b1 (top right), and L1 and b2 (bottom).

As shown in the previous section, the pole set S allows for an interpretation as ap-
proximate solution to the modified Zolotarëv deviation problem (10.21). This motivates
us to consider the following matrix-valued variant to the third Zolotarëv problem: Find
Ψ ⊂ B ⊂ R−0 with |Ψ| = k, such that

"rΛ,Ψ(L)b"
inf{|rΛ,Ψ(λ)| : λ ∈ B} = minΞ⊂B

|Ξ|=k

"rΛ,Ξ(L)b"
inf{|rΛ,Ξ(λ)| : λ ∈ B} , (10.32)
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where Λ contains the rational Ritz values of L on QΞk+1(L,b). Unlike (10.21), (10.32)
not only incorporates spectral information about the matrix L but also the one of the
vector b. Provided that b is uniformly excited by all eigenfunctions, it is thus reasonable
to believe that solutions to (10.32) behave qualitatively similar to the ones obtained by
(10.21) whenever B = −Σ. Likewise, if the spectral density of L is uniform, (10.32) should
yield solutions that are competitive with the ones obtained by the classical third Zolotarëv
problem.
To establish a connection to weak greedy poles, we assume that the rational Ritz values are

pairwise distinct. Then it follows from Theorem 7.14 that V(Lk+1+ζIk+1)
−1V†b coincides

with the rational interpolant rζΛ,Ξ(L)b defined in Definition 8.23 and, due to (8.27),

sup
ζ∈−B

Ek+1(ζ) = sup
ζ∈−B

"(L+ ζI)−1b−V(Lk+1 + ζIk+1)
−1V†b"

= sup
ζ∈−B

"(L+ ζI)−1
rΛ,Ξ(L)b

rΛ,Ξ(−ζ)
".

Hence,

1

λmax + | inf B|
"rΛ,Ξ(L)b"

inf{|rΛ,Ξ(ζ)| : ζ ∈ B} ≤ sup
ζ∈−B

Ek+1(ζ) ≤ 1

λmin

"rΛ,Ξ(L)b"
inf{|rΛ,Ξ(ζ)| : ζ ∈ B} ,

which proves that

"rΛ,Ξ(L)b"
inf{|rΛ,Ξ(ζ)| : ζ ∈ B}

is equivalent to the true approximation error Ek+1(ζ) if B is bounded. As such, the weak
greedy poles can be seen as approximation to the matrix-valued third Zolotarëv problem
(10.32). To illuminate this relation in more detail, we report the maximal deviation of
rG on Σ in Figure 10.5 for the diagonal matrices L1, L2 ∈ RN×N , N = 1000, used in
Figure 10.3 and different vectors b1, b2 ∈ RN . The vector b1 is the constant 1-vector,
which is uniformly excited by all eigenfunctions of the respective matrix. The second vector
b2 = (b2,1, . . . , b2,N )

T ∈ RN×1 is a linear combination of the first 100 eigenvectors only and
is defined by

b2,j :=

�
1, if j ≤ 100,
0, if j > 100.

It is observed in Figure 10.5 that the weak greedy poles on −Σ provide an excellent ap-
proximation to Zolotarëv’s minimal deviation problem if the eigenvalues of the matrix are
roughly equispaced and the vector is uniformly excited by all eigenfunctions. If either L or
b do not exhibit such a uniform pattern, the quantity "rG"Σ stagnates for increasing k.
The pole set G is illustrated in Figure 10.6 for different matrices, vectors, and orders.

As expected, G behaves qualitatively similar to Z for the uniform configuration L1 and
b1. The weak greedy poles accumulate at the right end point of −Σ if the biased matrix
L2 is involved. This effect is more dramatic than for the spectral poles. Unlike the latter,
however, G also depends on the particular vector. Therefore, the poles tend to cluster in
those regions of the spectral interval whose corresponding eigenspace contributes to the
excitation of b.
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Figure 10.6: Weak greedy poles G on −Σ = [−1000,−1] for L1 and b1 (top left), L2 and b1
(top right), and L1 and b2 (bottom).

10.1.5 Poles based on Rational Approximation

Up to this point, all presented pole configurations justify their selection based on the (simul-
taneous) approximability of the matrix kernels g(L, ζ) ∈ {(L − ζI)−1,L(L − ζI)−1, e−ζL}.
While this philosophy is the key ingredient for choosing parameter-independent pole sets,
one withholds at the same time valuable information which might allow for a better adjust-
ment towards the particular problem. If an approximation of fτ (L)b is desired only for
one single value of τ , it might be worthwhile to incorporate the particular parameter in the
choice of the poles. A conceptually straightforward approach to achieve this is provided by
Theorem 7.16 which states

"fτ (L)b− uk+1" ≤ 2"b" min
rk∈Pk/qΞ

"fτ − rk"Σ. (10.33)

To simplify matters, we set ξ0 =∞ henceforth. Then, according to (10.33), the poles of any
rational function rτk ∈ Rk,k that approximates fτ uniformly on Σ should constitute a good
selection of parameters for building the rational Krylov space. Using [AN17, AN18, AN19]
as a starting point, the authors of [ABDN19] make use of a Padé approximation of λ−s and
(1 + ζλs)−1, (s, ζ) ∈ (0, 1) × R+, in Σ to approximate L−sb and (I + ζLs)−1b efficiently.
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Numerical experiments in [ABDN19, DH21] confirm that its poles provide a competitive
choice for approximating the matrix-vector product for fixed parameters s and ζ.
What the upper bound (10.33) is concerned, it is desirable to choose the pole set Ξ

according to the ones of a rational function rBτ
k ∈ Rk,k that satisfies

"fτ − rBτ
k "Σ = min

rk∈Rk,k

"fτ − rk"Σ.

Any such function is said to be the best uniform rational approximation (BURA) of fτ on
Σ. Existence and uniqueness of this problem is a classical result [Ach92].

Theorem 10.27. If fτ ∈ C(Σ), then there exists a unique best uniform rational approxi-
mation of fτ on Σ.

The defect d ∈ N0 of the BURA rBτ
k ∈ Rk,k is defined by the integer

d := k −max{deg(pτk ), deg(qτΞ)},

where pτk ∈ Pk and qτΞ ∈ Pk are polynomials of minimal degree such that rBτ
k = pτk /q

τ
Ξ.

The defect is a useful tool in the identification of BURAs. Here, and in all what follows, we
say that a function g equioscillates between k extreme points in Σ if there exist k distinct
points λmin ≤ λ∗1 < · · · < λ∗k ≤ λmax such that

f(λ∗j ) = (−1)j+iini"g"Σ, j = 1, . . . , k,

for some iini ∈ {0, 1}.
Lemma 10.28. Let fτ ∈ C(Σ), rBτ

k ∈ Rk,k the BURA of fτ on Σ, and d its defect. Then
there holds for any rk ∈ Rk,k that rk = rBτ

k if and only if the error fτ − rk equioscillates
between at least 2k + 2− d points in Σ.

Proof. See [Ach92, Tre19].

The computation of BURAs is a highly nontrivial task. Only for a few particular config-
urations of fτ the latter is known analytically whence efficient numerical approximations
are essential. The main difficulty of such algorithms lies in the implementation of stable
procedures that yield accurate approximations for large values of k. The so-called BRASIL
algorithm (best rational approximation by successive interval length adjustment) has been
presented in [Hof21] and satisfies remarkable stability properties which allow one to com-
pute BURAs of high degree to many functions of fractional diffusion type. In light of
Lemma 10.28, its main idea is based on the observation that the BURA error fτ − rBτ

k

interpolates the function fτ at a certain number of interpolation nodes (xj)lj=0 ⊂ Σ, l ∈ N,
and equioscillates between a sequence of extremal points λ∗j ∈ (xj−1, xj). The BRASIL
algorithm now iteratively rescales the lengths of these intervals in order to equilibrate the
local errors. The proposed method is available in the baryrat1 Python package and can be
used as a black-box pole generator for building the rational Krylov space. In light of these
results, we provide the main definition of this section.

1https://github.com/c-f-h/baryrat
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Definition 10.29. In dependency of the function fτ ∈ C(Σ), we define the BURA poles
Bτ := {ξ(k)τ ,1, . . . , ξ

(k)
τ ,k} as the poles of the BURA rBτ

k ∈ Rk,k of fτ on Σ. We set B∞τ :=
Bτ ∪ {∞}.
In general, the BURA poles are neither nested nor independent of the parameter τ . Unlike

Z, E , S, and G, they are not contained in −Σ. More importantly, they might not even be
real as the function fτ (λ) = f(λ) = 1/(1+λ2) ∈ LS shows. Despite this inconvenience, we
observe experimentally that Bτ ⊂ R whenever fτ (λ) ∈ {λ−s, λs, Eα,β(−tαλs)}.
Due to (10.33), the performance of the pole set Bτ is inherently related to the speed of

convergence of the BURA as k approaches infinity. This subject has been studied intensively
throughout the second half of the last century [Gon67, Gon78, Par88, ST92, Pro94]. To
make matters precise, let rτk ∈ Rk,k be a rational function with poles in Ξ = {ξ(k)1 , . . . , ξ

(k)
k }

that interpolates fτ ∈ CS in the nodes Λ = {σ(k)0 , . . . , σ
(k)
k }. Then by definition of rBτ

k and
the Hermite-Walsh formula for Cauchy-Stieltjes functions (10.15) it follows that

"fτ − rBτ
k "Σ ≤ "fτ − rτk "Σ ≤ fτ (λmin)

"rΛ,Ξ"Σ
inf{|rΛ,Ξ(λ)| : λ ∈ R−0 }

,

where we assume ξ0 =∞. Distributing Λ and Ξ asymptotically according to the equilibrium
measure of the condenser (Σ,R−0 ), Theorem 9.20 yields

lim
k→∞

"fτ − rBτ
k "

1
k
Σ ≤ lim

k→∞

�
sup{rΛ,Ξ(λ) : λ ∈ Σ}
inf{rΛ,Ξ(λ) : λ ∈ R−0 }

� 1
k

= e
− 1

cap(Σ,R−0 ) (10.34)

whenever fτ ∈ CS. Invoking (10.20) accordingly, it follows in complete analogy that (10.34)
remains valid if fτ ∈ CB. Finally, if fτ ∈ LS extends continuously to the imaginary axis,
we infer from (10.14) with C = iR

"fτ − rBτ
k "Σ ≤ "fτ − rτk "Σ ≤ cfτ

"rΛ,Ξ"Σ
inf{|rΛ,Ξ(z)| : z ∈ iR} ,

where cfτ is defined by (8.35). Hence, if cfτ < ∞ and Λ and Ξ are distributed according
to the equilibrium measure of the condenser (Σ, iR), it follows from Theorem 9.20

lim
k→∞

"fτ − rBτ
k "

1
k
Σ = e

− 1
cap(Σ,iR) ≤ e

− 1√
cap(Σ,−Σ) , (10.35)

where the last inequality holds due to Proposition 9.34. We are now in position to show
that the rational Krylov surrogate based on BURA poles asymptotically performs at least
as good as the one based on Zolotarëv’s poles.

Theorem 10.30. Let V be an orthonormal basis of QB∞
τ

k+1(L,b), Lk+1 = V†LV, and uk+1 =

Vfτ (Lk+1)V
†b.

1. If fτ (λ) = Eα,β(t
αλs) and (α, β, t, s) ∈ ΘL, then

"fτ (L)b− uk+1" < ρ
− k

2

[λmin,λmax]
"b". (10.36)
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2. If fτ (λ) ∈ {λ−s, λs} with s ∈ (0, 1), then

"fτ (L)b− uk+1" < ρ−k[λmin,4λmax]
"b". (10.37)

Moreover, (10.37) remains valid for fτ (λ) = Eα,β(−tαλs) if (α, β, t, s) ∈ ΘC.

Proof. At first, we apply Theorem 7.16 to see that

"fτ (L)b− uk+1" < "b" min
rk∈Pk/qBτ

"fτ − rk"Σ = "b""fτ − rBτ
k "Σ. (10.38)

If fτ (λ) = Eα,β(−tαλs) and (α, β, t, s) ∈ ΘL, then fτ ∈ LS by Theorem 8.20. Moreover,
cfτ < ∞ thanks to Lemma 2.30. Thus, we may apply (10.35) to find

"fτ − rBτ
k "Σ < e

− k√
cap(Σ,−Σ) .

Invoking Theorem 9.20 and (9.23), we deduce

"fτ − rBτ
k "Σ <

�
Zk(Σ,−Σ) ≤ ρ

− k
2

[λmin,λmax]
,

whence (10.36) follows from (10.38) if fτ (λ) = Eα,β(−tαλs) and (α, β, t, s) ∈ ΘL. Thanks to
(10.7), it suffices to prove the second part of the conjecture. Let therefore fτ (λ) ∈ {λ−s, λs}
with s ∈ (0, 1) or fτ (λ) = Eα,β(−tαλs) with (α, β, t, s) ∈ ΘC, then fτ ∈ CS∪CB. Therefore,
(10.34) can be consulted to deduce by Theorem 9.20

"fτ − rBτ
k "Σ < e

− k

cap(Σ,R−0 ) < Zk(Σ,R−0 ) < ρ−k[λmin,4λmax]
,

where the last inequality follows from Theorem 9.31. Once more, we invoke (10.38) to see
that the claim is valid.

In practice, the exponential convergence rates provided by Theorem 10.30 turn out to be
rather pessimistic and one can hope for faster convergence rates in the form of

"fτ (L)b− uk+1" < e−Ck, (10.39)

for some constant C larger than the ones encoded in Theorem 10.30. As shown in [Par88,
Pro94, Pro05], see also [Rak16, Theorem 1] and [Güt10, Remark 7.8], there holds

lim
k→∞

"fτ − rBτ
k "

1
k
Σ ≥ e

− 2
cap(Σ,C) , (10.40)

where C ⊂ C is the integration contour that encloses the largest possible domain in which
fτ is still analytic. Due to Propositions 8.3, 8.10, and Lemma 8.16, we have, in the limit
case, C = R−0 whenever fτ ∈ CS ∪CB and C = iR if fτ ∈ LS. Hence, any possible constant
C satisfying (10.39) is at most two times larger than the respective constant obtained by
Theorem 10.30. It remains to be clarified whether equality can be attained in (10.40). As
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Figure 10.7: BURA poles Bτ of different orders k for fτ (λ) = λ−
1
2 (left) and fτ (λ) = e−

√
λ

(right).

shown in [ST92, Theorem 6.2.2], the latter applies to the class of so-calledMarkov functions,
that is, functions of the form

fτ (λ) =

�
dντ (ζ)

λ− ζ
,

where ντ is a complex measure with supp ντ ⊂ [a, b], −∞ ≤ a < b < ∞. Since fτ (λ) = λ−s

is a Markov function for all s ∈ (0, 1) with a = −∞, b = 0, and

dνs(ζ) =
sin(πs)

π
|ζ|−s dλ,

where dλ denotes the Lebesgue measure, we can improve the respective result of Theorem
10.30 in the following “optimal” manner.

Theorem 10.31. Let s ∈ (0, 1), V an orthonormal basis of QB∞
τ

k+1(L,b), Lk+1 = V†LV,
and uk+1 = VL−sk+1V

†b. Then there holds for all s ∈ (0, 1)

"L−sb− uk+1" < ρ−2k[λmin,4λmax]
"b".

Proof. This is a consequence of Theorem 7.16 and [ST92, Theorem 6.2.2].

Theorem 10.31 shows that RKMs can benefit from the choice Ξ = Bτ when uk+1 ≈ L−sb
is required for one single value of the parameter s ∈ (0, 1). Although we are not aware of
any comparable results for complete Bernstein and Laplace-Stieltjes functions, we observe
numerically that BURA poles are among the most competitive pole sets if the solution map
is approximated for one single value of the parameter only.
To complete the study of the BURA poles, we illustrate Bτ = {ξ(k)τ ,1, . . . , ξ

(k)
τ ,k} for the

functions fτ (λ) ∈ {λ− 1
2 , e−

√
λ} and different values of k in Figure 10.7. For both configu-

rations of fτ , the pole pattern looks rather similar. Although Bτ 8⊂ −Σ already for small
values of k, we observe that the poles tend to accumulate in the negative spectral interval.
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10.2 Stopping Criteria

Nested pole sequences allow for an adaptive enrichment of the rational Krylov space until
the sought accuracy is obtained. To take full advantage of their hierarchical structure,
reliable error estimators are indispensable to assess the quality of the surrogate. The central
objective of this section lies in the presentation of such estimators. In the first part, we
present two well-established a posteriori error estimators that are suitable for the treatment
of fractional diffusion problems. Although approved in many practical scenarios, these
tools might fail to replicate the true approximation error since a rigorous analysis of their
reliability is lacking. To mitigate this problem, we present, in the second part of this section,
the implementation of a computable upper bound which allows one to assess the quality of
approximations for a large class of poles where no analytical results are available.

10.2.1 Error Indicators

Throughout this section, let fτ ∈ CS ∪ CB ∪ LS, V an orthonormal basis of Qk(L,b),
Lk = V†LV, and uk = Vfτ (Lk)V

†b, where we refrain from our usual “k+ 1-indexing” for
more clarity in exposition. Our ambition lies in the description of a quantity ηk ∈ R+0 with
the property

"f(L)b− uk" ≈ ηk. (10.41)

For this purpose, we review two well-known techniques which can be found in existing
literature [Güt13, Güt10, DK94, KS10, DS11].

Difference of Iterates

A naive but practicable error indicator uses the triangle inequality as a starting point to
bound the rational Krylov approximation error by

"fτ (L)b− uk" ≤ "fτ (L)b− uk+d" − "uk+d − uk"

for some d ∈ N. Under the assumption that the RKM converges sufficiently fast, one
can expect the contribution "fτ (L)b− uk+d" to be small compared to "uk+d − uk". After
fixing the parameter d, a conceptually straightforward approach to obtain an error indicator
satisfying (10.41) is

ηk := "uk+d − uk".

The integer d is called delay integer. Typical choices of this parameter are e.g., d = 2
or d = 3. The evaluation of ηk can be carried out efficiently in the coordinate space
with complexity only depending on k and d. The indicator may fail to replicate the error
adequately when the approximation stagnates for n ≥ d iterations. In this case the value
of ηk is too optimistic and does not provide a reliable estimate for "fτ (L)b− uk".
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Estimates based on Geometric Convergence

For any pole set presented in the previous section, there is proof or at least evidence that
the corresponding rational Krylov approximation error decays at exponential rates. Hence,
is is reasonable to assume that the rational Krylov iterates satisfy the identities

"uk+d − uk" ≈ cρ−k, "uk+2d − uk+d" ≈ cρ−(k+d), (10.42)

for some c, ρ ∈ R+ and the delay integer d ∈ N. Following [KS10, Güt13] we define

χk := ln "uk+d − uk",

which can be computed explicitly once the iterates uk and uk+d are available. This in turn
allows us to estimate the value of ρ and c by

e−
χk+d−χk

d =
"uk+d − uk" 1

d

"uk+2d − uk+d" 1
d

=
c

1
dρ

k
d

c
1
dρ

k
d
−1 ≈ ρ,

and similarly

e
(k+d)χk−kχk+d

d ≈ c,

which follows from (10.42) by direct substitution. We apply the triangle inequality to deduce

"f(L)b− uk" ≤ "uk − uk+d"+ "uk+d − uk+2d"+ · · ·+ "uk+jd − f(L)b"

for any j ∈ N. Sending j to infinity yields

"f(L)b− uk" ≤ "uk − uk+d"+
∞!
j=1

"uk+jd − uk+(j+1)d"

≈ cρ−k + cρ−k
∞!
j=1

ρ−jd.

Assuming ρ > 1, we recognize the latter as geometric series which evaluates to

"f(L)b− uk" ≈ cρ−k

1− ρ−d
=: ηk,

cf. [DK94, KS10, Güt13]. In practice, it might happen that χk ≤ χk+d in which case ρ ≤ 1
such that ηk fails to mirror the error of the RKM. This typically indicates a stagnation of
the error and one should iterate further to recover a reliable error estimator.

10.2.2 A Certified Error Estimate

Although approved in many practical scenarios, it might happen that the error estimators
presented in Section 10.2.1 advocate to stop the enrichment of the search space before the
required accuracy is achieved. To address this inconvenience, we present the implementation
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of an error estimator that is guaranteed to bound the rational Krylov error. As a starting
point we use the estimates provided by (10.2), (10.3), and (8.34) to bound

"fτ (L)b− uk+1" ≤ 2cτk "rΞ"Σ"b", (10.43)

where we assume ξ0 =∞ and ω = θ = 0 in (8.4) and (8.12) for simplicity. The constant cτk
is defined by

cτk :=

��
fτ (λmin), if fτ ∈ CS,
fτ (λmax), if fτ ∈ CB,
4γkf

τ (0+), if fτ ∈ LS.

Provided that "rΞ"Σ is available, the right-hand side of (10.43) gives a computable upper
bound of the rational Krylov error which allows us to assess the quality of the approximation
even if no analytical results are known. It is clear that this bound can be crude, e.g., if
the poles are sampled over R−0 , which applies to Bτ and the respective “hat” pole sets
presented in Section 10.1. If we restrict ourselves to the poles contained in −Σ, however,
our analytical and numerical discussions support the conjecture that Ξ ∈ {E ,S,G} can be
seen as reasonable approximation to Zolotarëv’s minimal deviation problem on Σ if the
spectral properties of the data is uniform.
To get ones hands on the error certificate (10.43), we need to determine "rΞ"Σ in a reliable

way. A conceptually straightforward approach to compute the maximal deviation of rΞ is to
evaluate its absolute value over a discrete training set Ttrain ⊂ Σ and choose its maximizer
as approximation for "rΞ"Σ. Somewhat cumbersomely, the training set must be provided
by the user and needs to be chosen sufficiently fine to achieve a good approximation of
the true global extremum. To counteract this, we present the following lemma which is
instrumental in our computation of "rΞ"Σ.
Lemma 10.32. Let Ξ = {ξ1, . . . , ξk} ⊂ −Σ be a set of pairwise distinct poles with ξk <
· · · < ξ1. Then r#Ξ(λ) has exactly k − 1 zeros λ∗1, . . . , λ∗k−1 in R+ that are local extrema of
rΞ(λ). There holds −ξj < λ∗j < −ξj+1 for all j = 1, . . . , k − 1 and

r#Ξ(λ) = −2
k!

j=1

ξj
(λ− ξj)2

rΞj (λ), r##Ξ(λ) = −2
k!

j=1

ξj
(λ− ξj)2

�
r#Ξj
(λ)− 2

(λ− ξj)
rΞj (λ)

�
,

(10.44)

where Ξj = {ξ1, . . . , ξj−1, ξj+1, . . . , ξk}.
Proof. The function rΞ is smooth on the positive real axis and its roots are given by
−ξ1, . . . ,−ξk. As such, Rolle’s theorem guarantees the existence of at least k − 1 local
extrema λ∗1, . . . , λ∗k−1 such that λ

∗
j ∈ (−ξj ,−ξj+1) and r#Ξ(λ

∗
j ) = 0 for all j = 1, . . . , k − 1.

To see that there cannot be more roots of r#Ξ in R+, we note that rΞ has no zeros in R− and
thus at least one local extremum in each interval (ξj , ξj−1). Since rΞ ∈ Rk,k and rk 8≡ 0,
it has 2k − 2 extremal points in total. Therefore, the first part of the proof is valid. The
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identities in (10.44) follow from the generalized product rule

d

dλ

 k�
j=1

gj(λ)

 = k!
j=1

dgj
dλ
(λ)

k�
i=1
i!=j

gi(λ),

which holds for any collection of scalar and differentiable functions (gj)kj=1.

Thanks to Lemma 10.32, it suffices to compare the absolute values of rΞ(λmin) and
rΞ(λmax) with those obtained by the k − 1 local extrema rΞ(λ

∗
j ) to determine the max-

imal deviation of rΞ(λ) in Σ = [λmin, λmax]. We propose to compute (λ∗j )
k−1
j=1 by Newton’s

method on each subinterval utilizing the tools provided by Lemma 10.32. Feasible initial
values can be obtained by evaluating rΞ(λ) over a discrete training set T j

train ⊂ (−ξj ,−ξj+1),
j = 1, . . . , k − 1, of small cardinality. Provided that the initial value is sufficiently close to
the true zero of r#Ξ, Newton’s algorithm is guaranteed to converge to the desired solution as
the following lemma shows.

Lemma 10.33. Let Ξ = {ξ1, . . . , ξk} ⊂ −Σ be a set of poles with ξk < · · · < ξ1 and λ∗j the
unique root of r#Ξ in (−ξj ,−ξj+1) for some j ∈ {1, . . . , k−1}. Then there exists some ε > 0
with Bε(λ

∗
j ) ⊂ (−ξj ,−ξj+1) such that for all initial values λ∗j,0 ∈ Bε(λ

∗
j ) Newton’s method

converges to λ∗j .

Proof. This is a direct consequence of Kantorovich’s theorem [FV20].

We cannot quantify ε in Lemma 10.33 to choose T j
train ⊂ (−ξj ,−ξj+1) sufficiently fine to

guarantee λ∗j,0 ∈ Bε(λ
∗
j ) and thus convergence of Newton’s method in (−ξj ,−ξj+1). If it

does converge, however, we can be certain that its limit yields the desired local extrema of
rΞ. This observation suggests to start with a coarse training set and, if the iteration does
not converge after a few steps or leaves the interval (−ξj ,−ξj+1), restart Newton with an
initial value extracted from a refined training set. Even though this procedure guarantees
convergence only after some finite amount of refinements, we observe that the iteration is
fairly robust in the initial value and usually converges in a few steps if we choose |T j

train| = 20
using equispaced points. We summarize this approach in Algorithm 2.

Remark 10.34. The pole set Bτ is not necessarily contained in −Σ such that Algorithm
2 cannot be consulted to obtain a meaningful error indicator. Nevertheless, we can apply
Theorem 7.16 to assess the quality of the rational Krylov surrogate obtained by the BURA
rBτ
k of fτ on Σ by

"fτ (L)b− uk+1" ≤ 2ΔBτ "b", (10.45)

where ΔBτ := "fτ − rBτ
k "Σ. Although analytically not available, ΔBτ can be recovered

numerically as a by-product while computing Bτ and is thus directly at hand.
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Algorithm 2 Error Certification
Input: 0 < λL < λU with Σ ⊂ [λL, λU ], pole set Ξ = {ξ1, . . . , ξk} ⊂ −[λL, λU ] with

ξk < · · · < ξ1 and k ≥ 2, initial trainset size n ∈ N, and maximum iteration number
imax ∈ N for Newton’s method

1: function ComputeInnerMax(Ξ, n = 20, imax = 50) // default parameter
2: λ̄ = 0 // global maximum
3: for j = 1, . . . , k − 1 do
4: λ∗ = 0
5: while λ∗ 8∈ (−ξj ,−ξj+1) do
6: Ttrain = [−ξj +

1
2n ,−ξj +

1
2n +

ξj−ξj+1

n , . . . ,−ξj +
1
2n + (n− 1) ξj−ξj+1

n ]
7: λ0 = argmaxλ∈Ttrain |rΞ(λ)|
8: λ∗ = Newton(λ0, Ξ, imax) // Computes root of r#Ξ using (10.44)
9: n = 2n
10: end while
11: if |rΞ(λ∗)| > |rΞ(λ̄)| then
12: λ̄ = λ∗

13: end if
14: end for
15: return λ̄
16: end function
17:
18: function ComputeCertificate(λL, λU , Ξ)
19: λ̄ = ComputeInnerMax(Ξ)
20: ΔΞ = max{|rΞ(λL)|, |rΞ(λ̄)|, |rΞ(λU )|}
21: return ΔΞ
22: end function
Output: Error certificate ΔΞ = "rΞ"Σ with "fτ (L)b − Vfτ (Lk+1)V

†b" ≤ 2cτkΔΞ"b",
where cτk is as in (10.43).

10.3 Novel Pole Selection Algorithms

In real-world scenarios, one is interested in identifying the smallest parameter k ∈ N such
that the approximation error is smaller than a user-defined threshold. One possibility to
achieve this is to adaptively construct a pole set Ξ, compute the error certificate using
Algorithm 2, and stop the procedure once the upper bound is smaller than the desired
tolerance. We propose, using a similar concept as the one employed in [Bag69, DLZ10,
DS11, GK13], a novel pole distribution A = {ξ1, . . . , ξk} which combines the first two
stages and builds the rational Krylov space on the basis of the error certificate. The scheme
is specified in Algorithm 3 and shall serve us as definition for the pole set A, whose elements
we call automatic poles on −Σ.
In accordance with our previous notation, we set A∞ := {∞, ξ1, . . . , ξk}. The automatic

poles on −Σ are nested, independent of b and the parameter τ , and only require the knowl-
edge of some rough extremal bounds for the spectral interval. They aim to approximate
Zolotarëv’s minimal deviation problem in a greedy manner. Due to the symmetric relation
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Algorithm 3 Automatic Pole Selection Algorithm - A
Input: tolerance ε ∈ R+, 0 < λL < λU with Σ ⊂ [λL, λU ], b ∈ RN

1: ξ1 = −λL
2: ξ2 = −λU
3: A = {ξ1, ξ2}
4: k = 2
5: do
6: λ̄ = ComputeInnerMax(A)
7: ΔA = |rA(λ̄)| // |rA(λ)| = 0 for λ ∈ {λL, λU}
8: ξk+1 = −λ̄
9: A = A ∪ {ξk+1}
10: Relabel the poles so that ξk+1 < · · · < ξ1
11: k = k + 1
12: while 2cτkΔA"b" > ε // cτk defined as in (10.43)
Output: Pole set A such that "fτ (L)b− uk+1" < ε.

between its roots and poles, the global maximum of |rA| can be detected automatically
without the risk of missing a critical value. While A does not adapt to the actual spectrum
of L like the spectral poles S on −Σ, the latter only approximates the modified Zolotarëv
problem (10.21) which does not possess such a symmetry and thus requires to extract
the maximizer over a discrete training set. Moreover, the computation of A allows us to
directly access the maximal deviation of rA over Σ to obtain the certificate provided by
Algorithm 2 as a by-product. We cannot give a proof that our greedy algorithm generates
an asymptotically optimal solution to Zolotarëv’s minimal deviation problem. Nevertheless,
our empirical findings reported in Figure 10.8 indicate that the algorithm possesses such a
property.
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Figure 10.8: Automatic poles A on −Σ = [−1000,−1] for different values of k (left) and the
maximum norm "rΞ"Σ for Ξ ∈ {A,Z} (right).

In a sense, Algorithm 3 is not fully automatic since it necessitates the availability of some
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rough spectral bounds of the matrix L. A heuristic approach to overcome this restriction
is based on the observation that the extremal eigenvalues of Lk+1 typically provide good
approximations to the extremal eigenvalues of L. In light of the fact that the rational Ritz
values are contained in Σ, an automated variant of Algorithm 3 is obtained by iteratively
adapting the underlying spectral interval based on the extremal eigenvalues of Lk+1. This
allows us to generate information about the spectral region without any user-provided data.
Recognizing this fact, we present the fully automatic pole selection strategy for incremen-
tally building the set F = {ξ1, . . . , ξk} in Algorithm 4. We call F fully automatic poles on
−Σ and set F∞ := {∞, ξ1, . . . , ξk}.

Algorithm 4 Fully Automatic Pole Selection Algorithm - F
Input: tolerance ε ∈ R+, L ∈ RN×N , b ∈ RN

1: V = RationalArnoldi(L, b, Ξ = {∞,∞})
2: L2 = V†LV
3: Compute eigenvalues µ(1)0 , µ

(1)
1 of L2 and set µmin = µ

(1)
0 , µmax = µ

(1)
1

4: ξ1 = −µmin, ξ2 = −µmax
5: F = {ξ1, ξ2}
6: V = [v1,v2] = RationalArnoldi(L, b, Ξ = F)
7: k = 2
8: do
9: λ̄ = ComputeInnerMax(F)
10: ξk+1 = − argmax{|rF (µmin)|, |rF (λ̄)|, |rF (µmax)|}
11: ΔF = |rF (−ξk+1)|
12: F = F ∪ {ξk+1}
13: w = (I− ξ−1k+1L)

−1Lvk
14: Orthonormalize w against V to obtain new basis vector vk+1
15: Set V = [V,vk+1]
16: Lk+1 = V†LV
17: Compute extremal eigenvalues µ(k)0 and µ(k)k of Lk+1 and set µmin = µ

(k)
0 , µmax = µ

(k)
k

18: Relabel the poles so that ξk+1 < · · · < ξ1
19: k = k + 1
20: while 2cτk "b"ΔF > ε // cτk defined as in (10.43)
Output: Pole set F such that "fτ (L)b− uk+1" < ε.

Just like A, the fully automatic poles on −Σ are independent of b and, more importantly,
the parameter τ . They can be viewed as greedy approximation of Zolotarëv’s minimal
deviation problem where the underlying spectral interval Σ of L is adaptively replaced by
the spectral interval of the compression Lk+1. As a consequence, the pole set F requires
the computation of the smallest and largest rational Ritz value of L on QFk+1(L,b) in each
iteration, which makes its computation more demanding than the one of A. The former,
however, can be computed even if no information about the spectral region is available.
We illustrate the pole set F for different values of k in Figure 10.9 for λL = 1 and

λU = 1000 using the same matrices as in Figure 10.4. For k = 5 and the matrix L1, the
extremal rational Ritz values are µ

(5)
0 = 2.3 and µ

(5)
5 = 855.8, which explains why F is
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geometrically distributed across [−µ
(5)
5 ,−µ

(5)
0 ] instead of −Σ. For increasing orders, the

approximation of Σ through the smallest and largest rational Ritz value improves such
that F does not significantly differ from the automatic pole set A. For the matrix L2, we
observe [µ(5)0 , µ

(5)
5 ] ≈ [1.03, 1000] so that the true spectral interval of L2 is well approximated

already for small values of k. Therefore, it is not surprising that "rF"Σ yields similar results
compared to the ones obtained by A, as shown in Figure 10.10.
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Figure 10.9: Fully automatic poles F on −Σ = [−1000,−1] for L1 (left) and L2 (right).
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Figure 10.10: Maximum norm "rΞ"Σ on Σ = [1, 1000] for Ξ ∈ {F ,Z} with L1 (left) and L2
(right).

10.4 Numerical Examples

In the final section of this chapter we underpin the effectiveness of the presented poles and
compare their performance in the course of a few prototypical fractional diffusion problems.
Throughout, we set L = −Δ and denote with Vh = P01 (Th) the Lagrangian finite element
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space of order one with vanishing trace constructed through a quasi-uniform triangular
mesh on Ω = (0, 1)2 of mesh size h = 0.08. The FEM space gives rise to the matrix
approximation L =M−1A of the Laplacian, where M and A label the mass and stiffness
matrix, respectively. We choose b to be the coefficient vector of the L2-orthogonal projection
of the constant 1 function onto Vh in each of our experiments.
All numerical examples are implemented within the finite element library Netgen/NGSolve2

[Sch97, Sch14]. The evaluation of the Mittag-Leffler function is performed using the jscatter
software package3. Further details on the implementation of the poles are listed below.

– We define λL := 19 and λU := 489580 to be our upper and lower bounds of the
extremal eigenvalues of L, obtained by a numerical approximation.

– We use the special function library from Scipy4 to evaluate the elliptic integrals and
the Jacobi elliptic functions in the computation of Ξ ∈ {Z, Ẑ, E , Ê}.

– The spectral poles S are computed using a discrete training set Ttrain ⊂ [−λU ,−λL]
consisting of 106 geometrically distributed sampling points. For the pole set Ŝ, we
set n−c = n+c = 20 and use 106 equispaced sampling points in [−n−c , n+c ] to obtain the
training set T n±ctrain after the transformation λ 4→ −eλ.

– The weak greedy poles G are computed using a discrete training set Ttrain ⊂ [λL, λU ]
consisting of 104 geometrically distributed sampling points. For the pole set Ĝ, we
choose n−c = n+c = 20 and use 104 equispaced sampling points in [−n−c , n+c ] to obtain
the training set T n±ctrain after the transformation λ 4→ eλ.

– The BURA poles are computed using the BRASIL algorithm [Hof21] contained in the
baryrat5 Python package.

10.4.1 Parameter Study

The goal of this section is to illuminate the impact of the parameters on the rational Krylov
approximation. In particular, we are interested in the limit case as the fractional parameters
approach an integer or the time t approaches zero. Throughout, we limit ourselves to the
study of parameter independent pole sets. To make matters precise, we introduce the
discrete L2-error

E(k,Ξ) := "fτ (L)b−Vfτ (Lk+1)V
†b", (10.46)

where V is an orthonormal basis of QΞk+1(L,b). Starting with the stationary problem, we
depict the error E(6,Ξ) for fτ (λ) = λs, s ∈ [−1, 1], and different configurations of Ξ in
Figure 10.11. In light of Theorem 10.2 and 10.6, the error is expected to behave like

λ∗(s) :=

�
λsL, if s ∈ [−1, 0],
λsU , if s ∈ (0, 1],

2https://ngsolve.org/
3https://pypi.org/project/jscatter/
4https://docs.scipy.org/doc/scipy/reference/special.html
5https://github.com/c-f-h/baryrat
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Figure 10.11: Error E(6,Ξ) for fτ (λ) = λs, s ∈ [−1, 1], and various pole sets Ξ.

whenever Ξ ∈ {Z, Ẑ}. The example shows that this is indeed the case, even more, the
same seemingly applies also to all other pole sets. In particular, we observe for Ξ = Ĝ∞
that the upper bound obtained by Theorem 10.24 is to pessimistic as s approaches an
integer. At s = 0 the error reaches machine precision for all pole configurations since
L0b = b ∈ QΞk+1(L,b) in which case the RKM is exact. Furthermore, it seems that the
RKM error of Ẑ remains bounded as s → 1− even without the additional pole at infinity,
advocated by the second part of Theorem 10.4.
In the time-dependent regime one is interested in (10.46) for fτ (λ) = Eα,β(−tαλs).

We fix β = 1 and report the evolution of this quantity in Figure 10.12 using (α, s) ∈
{(0.5, 0.5), (0.6, 0.75)}. In the case of (α, s) = (0.5, 0.5) we are, according to Proposi-
tion 8.22, in the Cauchy-Stieltjes regime. Theorem 10.2 and 10.6 predict that the error
decays like O(Eα,1(−

√
tλL)) when t → ∞ and Ξ ∈ {Z, Ẑ}, which is precisely what we

observe in Figure 10.12. Since Eα,1(−tαλs) ∈ LS \ CS whenever s + α
2 ≥ 1, we can-

not confirm analytically that the error satisfies such a property if (α, s) = (0.6, 0.75) or
Ξ ∈ {E , Ê ,S, Ŝ,G, Ĝ,A,F}. However, our numerical experiments suggest that (10.46) can
be bounded using fτ (λL) regardless of the parameters and the poles.
Assuming that β is bounded away from zero, our analysis assures that the rational Krylov

surrogate of Eα,β(−tαLs)b converges uniformly in the parameters when Zolotarëv’s poles
are used. To confirm that E(6,Ξ) does not degenerate for any pole selection provided in
this chapter, we plot the limiting behaviour of the error for t → 0 in Figure 10.13. Not only
does the error remain uniformly bounded, it even converges to zero like O(tα). This is due
to Eα,β(−tαλs) ≡ 1 for t = 0, in which case the rational Krylov approximation is exact.
To understand the sensitivity of the error with respect to the fractional parameters, we

fix β = 1 and t = 1.5 to illustrate the spatial error as function of α and s in Figure
10.14. The quantity E(6,Z∞) is evaluated over a discrete parameter grid contained in
[0, 1]2, where the extended definition fτ (λ) = eα,β(−tα, λs), defined by (8.21), is used.
Whenever the Euclidean norm of (α, s) ∈ R2 is close to

√
2 or s 3 1, we see that the error

is small compared to other configurations of the fractional parameters. The former, in a
sense, underpins our observations from Figure 10.12 that the error is proportional to fτ (λL)
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Figure 10.12: Error E(6,Ξ) for fτ (λ) = Eα,1(−tαλs) with (α, s) = (0.5, 0.5) (left) and
(α, s) = (0.6, 0.75) (right) with t ∈ [0.1, 20] and various pole sets Ξ.
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Figure 10.13: Error E(6,Ξ) for fτ (λ) = Eα,1(−tαλs) with (α, s) = (0.6, 0.75), various pole
sets Ξ, and decreasing values of t.

irrespectively of (α, s) ∈ [0, 1]2 and thus decrease whenever α or s approach one. Contrary
to the proportionality to fτ (λL), the quality of the surrogate improves also for small values
of the spatial fractional parameter. This can be seen as a local approximation effect since
eα,1(−tα, λs) ≡ const. if s = 0, in which case the rational Krylov approximation is exact.
In this regime, the error appears to be less prone to increasing values of α. For the other
pole sets, we observe that the respective parameter plots look qualitatively similar.

10.4.2 Convergence Study

We now focus on a numerical confirmation of the convergence rates predicted by our analysis.
Starting with the stationary case, we monitor the error involving fτ (λ) = λs for s = −1

2
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Figure 10.14: Error E(6,Z∞) for fτ (λ) = eα,1(−1.5α, λs) and (α, s) ∈ [0, 1]2.

and s = 1
2 in Figure 10.15.

– In accordance with Theorem 10.31, the BURA poles yield a decay rate of order
O(ρ−2k[λL,4λU ]

) if s = −1
2 . The same seemingly holds true if s =

1
2 , which indicates

that our analysis, encoded in Theorem 10.30, might be too pessimistic in the regime
of positive exponents s.

– While RKMs build upon Ẑ∞ are expected to converge like ρ−k[λL,4λU ], we observe ex-
perimentally that the error behaves competitive with the one obtained by B∞τ and
frequently reaches machine precision before the predicted convergence rates become
visible. Unlike B∞τ , however, the very same search space can be employed to approx-
imate Lsb for any s ∈ [−1, 1] if Zolotarëv’s poles are used, while QBτ

k+1(L,b) needs to
be computed for s = −1

2 and s = 1
2 individually.

– As predicted by Theorem 10.6, the surrogate extracted from QZ∞
k+1(L,b) converges

like O(ρ−k/2[λL,λU ]
) if s = 1

2 . In the Cauchy-Stieltjes regime, i.e., s = −1
2 , the surrogate

first outperforms the predictions but finally, after leaving the preasymptotic range,
converges with the expected rate. A similar behaviour is observed for Ξ ∈ {E ,A,F},
which is reasonable since any of these poles imitates the optimality condition of Z.

– Similarly to what is said above, the error E(k, Ê∞) for fτ (λ) = λ
s
2 decays with the

rate predicted by the second claim in Theorem 10.14 but exceeds our expectations for
s = −1

2 .

– Even though Theorem 10.24 suggests that Ĝ∞ yields considerably slower convergence
rates than Ẑ∞, our experiment shows that the discrepancy between these two pole
sets is not that dramatic. Both weak greedy configurations yield attractive nested
alternatives to Ξ ∈ {Ẑ∞,Z∞} and perform qualitatively similar to the EDS poles.
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– Only for the spectral poles, we observe that the pole set on −Σ outperforms its
respective “hat” counterpart. For the other configurations, it might be worthwhile
to invest in poles that are contained in the entire negative real axis. In this regime,
however, our developed error certificate, presented in Algorithm 2, cannot be expected
to provide a reliable prediction about the true approximation error.
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Figure 10.15: Error E(k,Ξ) for different pole sets, fτ (λ) = λs, s = −1
2 (left), and s = 1

2
(right).

We are also interested in the numerical approximation of time-dependent problems. For
this purpose, we fix β = 1 and t = 1.5 to monitor (10.46) with fτ (λ) = Eα,β(−tαλs) as a
function in k for (α, s) ∈ {(0.5, 0.5), (0.9, 0.75)} in Figure 10.16.
– Similarly to the stationary case, we observe that the rational Krylov errors of Z, E ,
A, and F are almost coincident. In a sense, this is reasonable since all of these poles
aim directly for a minimization of "rΞ"Σ. The error initially decreases faster than
predicted by our theory and frequently reaches machine precision before the expected
convergence rates become visible.

– If (α, s) = (0.9, 0.75), there holds α
2 + s ≥ 1 whence fτ ∈ LS \CS. Even though The-

orem 10.2 and the second claim in Theorem 10.14 and 10.30 are no longer applicable,
our experiment provides evidence that the rate of convergence proven therein remains
valid even if α2 + s ≥ 1.

– Unlike in Figure 10.15, the BURA poles outperform each of its competitors by a
significant margin. If fτ (L)b needs to be computed for one single value of τ only,
B∞τ provides the best pole set for building the rational Krylov space.

Remark 10.35. In view of Remark 5.24, it might be of interest to approximate Eα,β(−tαLs)b
for α > 1. In this regime, however, we have fτ (λ) = Eα,β(−tαλs) 8∈ LS. Even though our
analysis is not applicable in this case, we observe numerically that the poles listed above
yield exponential convergence comparable to the ones obtained for α ∈ (0, 1].
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Figure 10.16: Error E(k,Ξ) for different pole sets, fτ (λ) = Eα,β(−tαλs), β = 1, t = 1.5,
(α, s) = (0.5, 0.5) (left), and (α, s) = (0.9, 0.75) (right).

We conclude this section with a systematic comparison of the presented pole configura-
tions in Table 10.1, incorporating (from top to bottom)

1. their ability to efficiently query the solution map τ 4→ fτ (L)b for multiple instances
of τ using the same search space,

2. nestedness of the poles as k increases, and hence their ability to incrementally improve
the accuracy of the surrogate,

3. the required user-provided data,

4. their ability to adapt to the spectral density of L,

5. their ability to adapt to the vector b,

6. the availability of theoretical convergence results,

7. the availability of a (reasonable) error certificate.

With the exception of the BURA poles, all pole sets are independent of the parameter and
thus suitable for multi-query problems in fractional diffusion. Among them, only Z and Ẑ
are not nested. In terms of available analytical results, the poles can be classified in four
groups. The first group contains Z and is the only one that allows for explicit error bounds
for arbitrary fτ of Stieltjes and complete Bernstein type. The second group comprises
Ẑ and Ĝ which provide a rigorous analysis only for some functions of fractional diffusion
type, namely fτ ∈ CS ∪ CB and fτ ∈ CS, respectively. The BURA and EDS poles can
be quantified in terms of their asymptotic convergence rates but explicit bounds for finite
k are not available. The last group entails the remaining configuration where no analytical
results are known to the author.
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In contrast to their respective “hat”-counterpart, the pole sets E ,S, and G are amenable
to our developed error certificate. Their computation requires the availability of explicit
bounds for λmin and λmax. On the other hand, Ŝ and Ĝ require the choice of the cut-off
parameters n−c , n+c as the underlying parameter domain is unbounded. Clearly, Algorithm
2 cannot be consulted to assess the quality of B∞τ . Nevertheless one can resort to (10.45) to
obtain a meaningful error indicator whenever the BURA poles are employed. Theoretically,
our error certificate is applicable to F . However, since F seeks to avoid the explicit com-
putation of λmin and λmax, computing "rF"Σ to control the rational Krylov error is only of
limited use.

Pole set Ξ Z Ẑ E Ê S Ŝ G Ĝ Bτ A F
multi-query � � � � � � � � × � �
nested × × � � � � � � × � �
user-provided S S S S S, Ttrain T n±ctrain S, Ttrain T n±ctrain S S -
spectral adapt. × × × × � � � � × × ×
vector adapt. × × × × × × � � × × ×
analysis � CS, CB ∼ ∼ × × × CS ∼ × ×
certificate � × � × � × � × � � ∼

Table 10.1: Properties of the pole sets, where S = {λL, λU} contains bounds for the spectral
region of L, n−c , n+c ∈ R+ are cut-off parameters, and Ttrain, T n

±
c

train training sets
of the respective parameter domain.
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11 Selected MOR Methods Based on
Rational Approximation

In the previous section it is shown that rational Krylov methods provide an attractive tool
to approximate solutions to fractional diffusion problems. The purpose of this chapter is
to draw parallels to existing model order reduction schemes that are based on or related to
rational approximation methods. In line with [DH21], we present the class of Reduced Basis
Methods (RBM) for fractional diffusion problems and prove that they can be interpreted as
variants of certain rational Krylov methods. These theoretical insights allow us to harness
our analysis for RKMs to develop new convergence proofs for several of the studied schemes.
They suggest how to design novel and improve available methods and allow for a direct
comparison of the algorithms.

11.1 Rational Approximation Methods

In Chapter 6 it is shown that the evaluation of the accurate but expensive discrete eigenfunc-
tion method boils down to the evaluation of a matrix-vector product of the form fτ (L)b,
where L ∈ RN×N is the discrete approximation of the differential operator, b ∈ RN a vec-
tor, and fτ a parametric function. Instead of computing the matrix function exactly, one
class of methods replaces fτ by a suitable rational function rτk ∈ Rk,k such that

urτk := rτk (L)b ≈ fτ (L)b. (11.1)

Any such method is called rational approximation method [Hof20, DH21] and has been
applied in e.g., [HLM+18, HLM+20, AN20, HKL+21b, HKL+21a, DH21, Vab21c]. The
computational benefit of urτk compared to fτ (L)b is due to the partial fraction decompo-
sition of rτk ,

rτk (λ) = cτ0 +

k!
j=1

cτj
λ− ξτj

, (11.2)

where (cτj )
k
j=0 are the residues and (ξτj )

k
j=1 the poles, which we assume to be pairwise distinct

for simplicity. Thanks to (11.2), the computation of urτk does not require the availability of
all eigenvectors of L but instead can be obtained by

urτk = cτ0b+
k!

j=1

cτj (L− ξτj I)
−1b,

which only involves k solves to shifted linear systems of equations. As noted in [Hof20], the
discrepancy between urτk and the exact matrix-vector product can be bounded directly in
terms of the approximation quality of the scalar function rτk ≈ fτ .
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Theorem 11.1. For all rτk ∈ Rk,k there holds

"fτ (L)b− urτk " ≤ "fτ − rτk "Σ"b". (11.3)

Proof. Let U ∈ RN×N denote the matrix of eigenvectors of L and D = diag(λ1, . . . , λN )
the diagonal matrix containing its eigenvalues. Invoking

fτ (L)b− urτk = U(fτ (D)− rτk (D))U
−1b

together with Lemma 6.7, we find

"fτ (b)− urτk " = "(fτ (D)− rτk (D))U
−1b"2

≤ max
j=1,...,N

|fτ (λj)− rτk (λj)|"U−1b"2 ≤ "fτ − rτk "Σ"b".

Note the close relation of this result to the one stated in Theorem 7.16. Roughly spoken,
the error obtained using the rational Krylov method with given poles ξ0 =∞ and (ξj)kj=1 ⊂
R \Σ is twice as large as the error obtained using the best possible rational approximation
method having these same poles.

Remark 11.2. Similar to Remark 7.17, (11.3) can be improved to a rational approximation
problem on the discrete spectrum σ(L) of L

"fτ (L)b− urτk " ≤ "fτ − rτk "σ(L)"b",
which might be smaller than the one posed on the continuum Σ.

In view of Theorem 7.14, any RKM falls in the class of rational approximation methods,
but whereas the denominator of the rational function is fixed (via selection of the pole set
Ξ) a priori, the numerator is determined automatically via Rayleigh-Ritz extraction. In
principle, this allows RKMs to approximate fτ (L)b for multiple instances of the parameter
while a direct choice of the residues (cτj )

k
j=0 typically approximates fτ (L)b only for one

single value of τ reasonably well.

11.1.1 Direct Rational Approximation - The BURA Method

A variant of rational approximation methods are so-called direct rational approximation
methods, where the numerator the denominator of rτk ∈ Rk,k are chosen a priori. In view of
Theorem 11.1, it is desirable to choose rτk as best uniform rational approximation of f

τ in Σ
[HLM+18, HLM+20, DH21, HKL+21b, HKL+21a], which can be computed numerically e.g.,
by means of the BRASIL algorithm developed in [Hof21]. As opposed to RKMs based on
BURA poles, these schemes require the knowledge of the residues (cτj )

k
j=0 in (11.2) which

makes them typically more prone to round-off errors. Due to the close relation between
Theorem 7.16 and 11.1, it is not surprising that the analysis of RKMs with BURA poles
immediately carries over to direct rational approximation schemes whenever rτk is chosen
to be the BURA of fτ in Σ. For completeness, we state here the respective counterpart to
Theorem 10.30 and 10.31.

Theorem 11.3. Let rBτ
k denote the BURA of fτ in Σ.
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11 Selected MOR Methods Based on Rational Approximation

1. If fτ (λ) = λ−s and s ∈ (0, 1), then

"fτ (L)b− u
rBτ
k

" < ρ−2k[λmin,4λmax]
"b".

2. If fτ (λ) = λs and s ∈ (0, 1), then

"fτ (L)b− u
rBτ
k

" < ρ−k[λmin,4λmax]
"b".

3. If fτ (λ) = Eα,β(−tαλs) and (α, β, t, s) ∈ ΘL, then there holds

"fτ (L)b− u
rBτ
k

" < ρ
− k

2

[λmin,λmax]
"b". (11.4)

Moreover, if (α, β, t, s) ∈ ΘC, then (11.4) remains valid if we replace ρ
− k

2

[λmin,λmax]
by

ρ−k[λmin,4λmax]
.

11.1.2 Reduced Basis Methods

Several recently proposed numerical schemes exploit the fact that the nonlocal character of
the fractional operator can be circumvented at the cost of parametric solutions to classical
reaction-diffusion problems. The reduced basis method [RHP08, QRM11, HRS15, QMN15]
is a prevalent choice for reducing the computational effort in the evaluation of these solutions
for multiple instances of the parameter and has recently sparked a considerable amount of
research activity in the fractional diffusion community [WGP17, ACN19, DS19, BGZ20,
DS21, ACR21, DH21]. In this section, we show that several recently proposed schemes
which are based on RBMs admit a representation in the rational Krylov framework. To
make matters precise, we consider the discrete parametric reaction-diffusion equation

(L+ ζI)w(ζ) = b

for a prescribed right-hand side b ∈ Rn and a parameter ζ ∈ R+0 := R+0 ∪ {∞} that
encodes the variability of the problem. We set w(∞) := b by convention. The RBM seeks
to approximate the manifold of solutions (w(ζ))ζ∈R+

0
in the low-dimensional reduced basis

space

VZ
k+1(L,b) := span{w(ζ0), . . . ,w(ζk)}, (11.5)

where 0 ≤ ζ0 < · · · < ζk are particular parameters which we refer to as snapshots1 through-
out this section and Z := {ζ0, . . . , ζk}. There holds dimVZ

k+1(L,b) = |Z| = k + 1 if b is
excited by sufficiently many eigenfunctions of L [DS19]. Recalling (7.5), the reduced basis
surrogate wk+1(ζ) ∈ VZ

k+1(L,b) of w(ζ) is computed via Galerkin projection, i.e.,

∀v ∈ VZ
k+1(L,b) : (b− (L+ ζI)wk+1(ζ),v) = 0, (11.6)

and is uniquely defined by this condition. As shown in [Güt10], it coincides with the
Rayleigh-Ritz approximation of w(ζ) extracted from the reduced basis space.

1Our terminology differs from standard RBM notation, where the term snapshot is typically employed to
refer to the solution w(ζj) instead of the parameter ζj itself.
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Lemma 11.4. Let W be an orthonormal basis of VZ
k+1(L,b), L̂k+1 =W†LW, and wk+1(ζ)

the reduced basis approximation of w(ζ) with snapshots in Z. Then there holds

wk+1(ζ) =W(L̂k+1 + ζIk+1)
−1W†b.

Proof. The proof follows the outline of [Güt10, Remark 3.5]. SinceWW† is the orthogonal
projector onto VZ

k+1(L,b), there holds for all v ∈ VZ
k+1(L,b)

(b− (L+ ζI)W(L̂k+1 + ζIk+1)
−1W†b,v)

= (WW†b−WW†(L+ ζI)W(L̂k+1 + ζIk+1)
−1W†b,v)

= (WW†b−W(L̂k+1 + ζIk+1)(L̂k+1 + ζIk+1)
−1W†b,v) = 0.

Since the reduced basis surrogate is uniquely defined by (11.6), we conclude that the con-
jecture is valid.

After an initial computational investment, the reduced space (11.5) allows us to evalu-
ate the coordinate vector of wk+1(ζ) in the basis {w(ζ0), . . . ,w(ζk)} for arbitrary ζ with
complexity only depending on k. Due to the fourth claim in Lemma 7.5, we immediately
obtain the following result.

Lemma 11.5. Let Z = {ζ0, . . . , ζk} ⊂ R+0 be pairwise distinct and Ξ = −Z. Then there
holds

VZ
k+1(L,b) = QΞk+1(L,b).

Note that Lemma 11.4 and 11.5 imply that the reduced basis approximation of w(ζ) with
snapshots in Z is nothing else but the rational Krylov approximation of w(ζ) with poles in
−Z. In the following, we show that similar results apply to two particular classes of reduced
basis methods which have been applied to fractional diffusion problems, namely ones based
on interpolation and on quadrature.

Interpolation-based Reduced Basis Methods

Two different model order reduction strategies have been recently proposed in [DS19, DS21],
which couple interpolation theory with reduced basis technology. Exploiting one of the
integral representations deduced in Section 4.1.2, the (forward) fractional operator with
positive exponent s ∈ (0, 1) is written as weighted integral over parametrized reaction-
diffusion problems

Lsu =
sin(πs)

π

� ∞
0

ζs−1(u− ζŵ(ζ)) dζ, ŵ(ζ) := (L+ ζI)−1u. (11.7)

Based on a selection of snapshots (ζj)kj=0 ⊂ R+0 , the integrand is approximated using a
RBM, yielding

bk+1 :=
sin(πs)

π

� ∞
0

ζs−1(u− ζŵk+1(t)) dζ,
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where ŵk+1 is defined as in (11.6) upon replacing b with u. As shown in [DS19, Theorem
4.3], the surrogate evaluates to

bk+1 =WL̂s
k+1W

†u, (11.8)

where W is an orthonormal basis of VZ
k+1(L,u) and L̂k+1 = W†LW. In [DS19] it was

proven that the scheme approximates Lsu at exponential convergence rates. Motivated by
these results, the authors of [DS21] proposed a version of (11.8) for the backward operator.
They confirmed experimentally that

uRB
k+1 :=Wfτ (L̂k+1)W

†b (11.9)

converges exponentially to L−sb if fτ (λ) = λ−s and W is a basis of VZ
k+1(L,b), but no

rigorous proof was known so far. The following theorem has been published in [DH21] and
allows one to close this gap in the literature.

Theorem 11.6. Let ζ ∈ R+0 , Z = {ζ0, . . . , ζk} ⊂ R+0 pairwise distinct. Then the reduced
basis approximation (11.9) with snapshots in Z coincides with the rational Krylov approxi-
mation uk+1 ∈ QΞk+1(L,b) of fτ (L)b with poles in Ξ = −Z.

Proof. According to Lemma 7.9, the rational Krylov approximation is independent of the
choice of the basis. In view of (11.9), it thus suffices to verify that the corresponding search
spaces QΞk+1(L,b) and VZ

k+1(L,b) coincide. This is true due to Lemma 11.5.

Since the reduced basis approximation (11.9) is essentially a RKM, all analytical results
presented in Chapter 10 also apply to uRB

k+1.
The second method presented in [DS21] is referred to as dual reduced basis approximation.

It follows a similar idea but is based on L−1. Since L−s = L−1L1−s, it follows from (11.7)
that the inverse operator can be expressed as

L−sb =
sin(πs)

π

� ∞
0

ζ−sL−1(b− ζw(ζ)) dζ.

The latter is again approximated utilizing reduced basis technology with prescribed snap-
shots Z = {ζ0, . . . , ζk} ⊂ R+0 by means of

uDual
k+1 :=

sin(πs)

π

� ∞
0

ζ−sL−1(b− ζwk+1(ζ)) dζ. (11.10)

It was shown in [DS21, Theorem 3.4] that (11.10) can be computed via

uDual
k+1 = L−1WL̂s−1

∗,k+1W
†b, L̂∗,k+1 :=W†L−1W,

whenever W is an orthonormal basis of VZ
k+1(L,b). If ζj = ∞ for one j ∈ {0, . . . , k}, this

surrogate can be interpreted as a postprocessed rational Krylov approximation as follows.

Theorem 11.7. Let s ∈ (0, 1), fτ (λ) = λs−2, uDual
k+1 the dual reduced basis approximation

(11.10) with snapshots Z = {ζ0, . . . , ζk} ⊂ R+0 , Ξ = −1/Z, V an orthonormal basis of
QΞk+1(L−1,L−1b), L∗,k+1 = V†L−1V, and uk+1 = Vfτ (L∗,k+1)V†L−1b. Assume ζ = ∞
for one ζ ∈ Z such that −1

ζ = − 1
∞ = 0 ∈ Ξ. Then there holds

uDual
k+1 = L−1uk+1. (11.11)
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Proof. W.l.o.g. we assume that ζ0 =∞ is the only infinite snapshot. Then there holds

VZ
k+1(L,b) = span{b, (L+ ζ1I)

−1b, . . . , (L+ ζkI)
−1b}

= span{b, (I+ ζ1L
−1)−1L−1b, . . . , (I+ ζkL

−1)−1L−1b}
= span{b, (ζ−11 I+ L−1)−1L−1b, . . . , (ζ−1k I+ L−1)−1L−1b}
= QΞk+1(L−1,L−1b).

Since 0 ∈ Ξ there holds (L−1)−1L−1b = b ∈ Qk+1(L
−1,L−1b). Hence b = VV†b so that

uk+1 = VLs−2
∗,k+1V

†L−1VV†b = VLs−2
∗,k+1L∗,k+1V

†b = VLs−1
∗,k+1V

†b.

On the other hand, we have

LuDual
k+1 =WL̂s−1

∗,k+1W
†b, L̂∗,k+1 =WTL−1W,

for any orthonormal basisW of VZ
k+1(L,b). Due to Lemma 11.5, V andW span the same

space. Hence, by Lemma 7.9, we deduce uk+1 = LuDual
k+1 so that (11.11) is valid.

In [DS21, Theorem 4.3], it was shown that

"L−sb− uDual
k+1 " < ρ

−k/2
[λmin,λmax]

�
"b", s > 1

2 ,

"L 1
2b", s ≤ 1

2 ,

if Z = −Z∞, in which case the quality of the approximation depends unfavorably on the
condition number whenever s ≤ 1

2 . Even worse, the dual reduced basis approximation has
the disadvantage that it is not online efficient: Even if W and L∗,k+1 are available, the
query s 4→ uDual

k+1 requires the performance of a matrix-vector product with L−1 and thus
depends on the problem size N . The latter can be avoided if one directly extracts the
surrogate from QΞk+1(L−1,L−1b) using the poles Ξ = −1/Z ∪ {0} and fτ (λ) = λs−1, or
equivalently, QΞk+1(L−1,b) with Ξ = −1/Z ∪ {∞} and f(λ) = λs. Motivated by these
results, we define the modified dual approximation as

uDual2
k+1 := VLs

∗,k+1V
†b, L∗,k+1 = V†L−1V, (11.12)

where V denotes a basis of QΞk+1(L−1,b). Even though (11.12) can be efficiently queried
once the basis and its compression is available, the computation of L∗,k+1 = V†L−1V
requires k + 1 additional linear solves which makes uDual2

k+1 more expensive compared to
conventional RKMs.

Quadrature-based Reduced Basis Methods

Another class of reduced basis schemes for elliptic fractional diffusion problems uses the
quadrature scheme presented in Section 6.3 as a starting point [BGZ20, DAC+21]. Provided
some weights (ωj)mj=1 and nodes (ηj)

m
j=1 defining a quadrature, we have, recalling (6.9),

uQuad
m =

m!
j=1

ωjη
−s
j w(ηj) ≈ sin(πs)

π

� ∞
0

ζ−sw(ζ) dζ = L−sb. (11.13)
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In every quadrature node a parametric reaction-diffusion problem must be approximated,
which turns out to be the method’s bottleneck. The overall costs of computing (11.13) is
essentially m queries of finite element solves for w(ζ). In practice, m is in the range of
O(100), see [BGZ20, DAC+21], resulting in a substantial computational effort if the costs
of computing w(ζ) are high. To mitigate this problem, the idea is to add an additional layer
of approximation in the form of a RBM. Given a collection of snapshots Z = {ζ0, . . . , ζk},
the quadrature-based reduced basis approximation is defined by

uQuad
m,k+1 :=

m!
j=1

ωjη
−s
j wk+1(ηj). (11.14)

Unlike uRB
k+1, one might not be able to extract uQuad

m,k+1 from the reduced basis space via
Rayleigh-Ritz extraction using the exact matrix function fτ (λ) = λ−s. This can be com-
pensated upon replacing fτ (λ) = λ−s with the rational approximation stemming from the
quadrature.

Theorem 11.8. Let uQuad
m,k+1 be the quadrature-based reduced basis approximation defined by

(11.14) with snapshots Z = {ζ0, . . . , ζk} ⊂ R+0 , V an orthonormal basis of QΞk+1(L,b) with
poles in Ξ = −Z, Lk+1 = V†LV, and

rQuad
m (λ) :=

m!
j=1

ωj
η−sj

λ+ ηj
.

Then there holds

uQuad
m,k+1 = VrQuad

m (Lk+1)V
†b. (11.15)

Proof. Recalling Theorem 11.6, we make use of the fact that any rational Krylov approxi-
mation is independent of the choice of the basis to write

wk+1(ηj) = V(Lk+1 + ηjIk+1)
−1V†b

for all j = 1, . . . ,m. Therefore,

uQuad
m,k+1 = V

m!
j=1

ωjη
−s
j (Lk+1 + ηjIk+1)

−1V†b = VrQuad
m (Lk+1)V

†b.

From a theoretical point of view, it is desirable to replace rQuad
m (λ) in (11.15) with the

exact matrix function fτ (λ) = λ−s, which has the benefit that the choice of a quadrature
rule as well as the tuning of its parameters can be avoided. By construction, the rational
Krylov surrogate so obtained coincides with uRB

k+1 if f
τ (λ) = λ−s in (11.9). In particular,

the integral in (11.13) can be computed exactly after replacing w(ζ) with wk+1(ζ) and
thus does not require the implementation of quadrature rules. Unlike uQuad

m,k+1, however, the
computation of uRB

k+1 requires the inversion and diagonalization of the compressed matrix
Lk+1 and is thus slightly more expensive than directly evaluating the quadrature sum in
(11.14). If k is small, the additional computational effort is negligible.
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Thanks to Theorem 11.8, the analysis of quadrature-based reduced basis approximation
directly follows from standard tools of RKMs. To see this, we interpret uRB

k+1 and uQuad
m,k+1 as

rational Krylov approximation of L−sb extracted from QΞk+1(L,b) in the sense of Theorem
11.6 and 11.8. By the triangle inequality it follows

"L−sb− uQuad
m,k+1" ≤ "L−sb− uRB

k+1"+ "uRB
k+1 − uQuad

m,k+1". (11.16)

The first expression on the right-hand side of (11.16) can be seen as the error caused
by the model order reduction scheme while the latter corresponds to the contribution of
the quadrature. Provided an orthonormal basis V of QΞk+1(L,b), Lk+1 = V†LV, and
e(λ) := λ−s − rQuad

m (λ), the second term can be written as

"uRB
k+1 − uQuad

m,k+1" = "VL−sk+1V
†b−VrQuad

m (Lk+1)V
†b"

= "e(Lk+1)V
†b"2 ≤ max

j=0,...,k
|e(µ(k)j )|"V†b"2,

where (µ(k)j )
k
j=0 are the rational Ritz values of L on QΞk+1(L,b). Since (µ(k)j )

k
j=0 ⊂ Σ and

P = VV† is the orthogonal projector on QΞk+1(L,b), it follows from "V†b"2 = "Pb" ≤ "b"

"L−sb− uQuad
m,k+1" ≤ "L−sb− uRB

k+1"+ "λ−s − rQuad
m (λ)"Σ"b". (11.17)

The first term in (11.17) is guaranteed to converge exponentially under a suitable choice of
the snapshots (or rather poles) advocated in Chapter 10. The second expression depends
on the particular scalar quadrature. Assuming that the latter converges exponentially, we
immediately derive exponential convergence rates for the quadrature-based reduced basis
approximation uQuad

m,k+1.
One particular example that fits in the general framework presented above has been stud-

ied in [BGZ20]. The authors choose the sinc approximation (6.10) as a starting point and
apply a RBM on top, resulting in the sinc quadrature-based reduced basis approximation

uSinc
q,k+1 :=

q sin(πs)

π

n+!
j=−n−

e(1−s)ηjwk+1(e
ηj ),

where q ∈ R+0 is the sinc parameter, ηj = jq for all j = −n−, . . . , n+, and n−, n+ ∈ N. The
snapshots are chosen as Z = −Ĝ ∪ {∞} sampled over the parameter domain [e−qn− , eqn+ ].
Its quality can be assessed by bounding the two terms in (11.17). The first contribution
can be quantified via Theorem 10.24 in terms of

"L−sb− uRB
k+1" ≤

�
2e(1−s)qn−

λmin(1− s)
+
2e−sqn+

s
+ C

e(1−s)qn+ − e−(1−s)qn−

1− s
ρ
− k

6

[λmin,4λmax]

�
"b".

(11.18)

The sinc quadrature is known to converge exponentially in q [BLP19b, Theorem 3.2],

"λ−s − rSinc
q (λ)"Σ <

 e
−π2

2q

sinh(π
2

2q )
+ e(1−s)qn+ + e−sqn−

 "b", (11.19)
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where rSinc
q is the rational function associated to uSinc

m,k+1 in the sense of Theorem 11.8.
Imposing the values of n+ and n− according to (6.12) guarantees the exponentials from
above to be balanced. The estimates (11.18) and (11.19) combined with (11.17) yield
exponential convergence of the scheme which has already been observed in [BGZ20, Theorem
2 & Lemma 3.2].
In its present form, the snapshots are sampled over [e−qn− , eqn+ ]. Therefore, the search

space depends unfavorably on the fractional power s if n− and n+ are chosen according to
(6.12). As discovered in [BGZ20], this problem can be mitigated if one chooses

n− =



π2

2sminq2

�
, n+ =



π2

2(1− smax)q2

�
, (11.20)

for some 0 < smin < smax < 1 fixed. Along with this choice, the exponential convergence
results from above is recovered with the benefit that s 4→ uSinc

q,k+1 can be efficiently queried
for multiple values of s ∈ [smin, smax].

11.2 Numerical Results

This section is devoted to a numerical comparison of the algorithms discussed above, in-
corporating efficiency, similarities, and performance with respect to several values of the
parameter s. For this purpose, we choose Ω, the finite element space Vh, the spectral
bounds, λL, and λU , and L as in Section 10.4 to study the convergence properties of

Ê(k, s) := "L−sb− ûk+1", (11.21)

where ûk+1 ∈ {uZolo
k+1 ,uDual

k+1 ,uDual2
k+1 ,uGreedy

k+1 ,uSinc
q,k+1,u

Direct
k+1 ,uBura

k+1 } denotes either of the
following surrogates.

1. We choose uZolo
k+1 as reduced basis approximation defined by (11.9) with fτ (λ) = λ−s.

The snapshots Z are chosen as Z = −Ẑ ∪ {∞}. Due to Theorem 11.6, this choice
is equivalent to a conventional rational Krylov approximation of L−sb with poles in
Ẑ∞.

2. By uDual
k+1 we label the dual reduced basis approximation (11.10) with snapshots Z =

−1/Z ∪ {∞} as in [DS21].
3. The surrogate uDual2

k+1 denotes the modified dual approximation (11.12) whose snap-
shots we choose according to Z = −Ẑ ∪ {∞}.

4. For the sinc quadrature approximation uSinc
q,k+1, we set smin := 0.2, smax := 0.8, q :=

0.15, and choose n− and n+ according to (11.20). The snapshots Z are chosen as
Z = −Ĝ∪{∞} sampled over a discrete training set T n±

train = T qtrain ⊂ [e−qn− , eqn+ ] as in
[BGZ20]. The set T qtrain is constructed using 10

4 equispaced points over [−qn−, qn+]
which are transformed to the desired parameter domain under the transformation
λ → eλ.
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5. We choose uGreedy
k+1 as reduced basis approximation (11.9) with fτ (λ) = λ−s. The

snapshots Z are chosen to be the same ones as for uSinc
q,k+1. Due to Theorem 11.6,

uGreedy
k+1 coincides with the conventional rational Krylov approximation of L−sb with
poles in Ĝ∞.

6. For the direct rational approximation method urτk =: u
Direct
k+1 , we choose rτk ∈ Rk,k

as the best uniform rational approximation of fτ (λ) = λ−s on Σ obtained by the
BRASIL algorithm [Hof21].

7. Finally, we choose uBura
k+1 as rational Krylov approximation of L−sb with poles in B∞τ .

The errors (11.21) between the exact matrix-vector product and its low-dimensional sur-
rogates obtained by the seven methods listed above are reported in Figure 11.1 for s ∈
{0.2, 0.8} and b denoting the coefficient vector of the L2-orthogonal projection of the con-
stant 1-function onto the FEM space.

– The two methods which rely on the BURA, that is, uBura
k+1 and uDirect

k+1 , provide the
best approximation among all tested methods irrespectively of the fractional order.
The observed rate of convergence matches our analytical findings stated in Theorem
10.31 and 11.3, respectively.

– In view of Theorem 7.16 and 11.1, it is not surprising that uBura
k+1 and uDirect

k+1 perform
qualitatively similar. In accordance with the theory, the direct BURA method slightly
outperforms uBura

k+1 for the given vector b. This is reasonable since uBura
k+1 only yields a

quasi-optimal rational approximation to fτ (λ) = λ−s on Σ, while the BURA provides
the best uniform rational approximation of fτ by definition.

– After a few iterations, the dual reduced basis approximation uDual
k+1 converges with

the predicted rate of O(ρ−k/2[λL,λU ]
). The modified dual reduced basis approximation

uDual2
k+1 comes at sufficiently less computational costs and outperforms its competitor
for reasonably large values of k.

– The approximations uSinc
q,k+1 and uGreedy

k+1 coincide for all values of k and s. The
additional quadrature discretization has no impact on the quality of uSinc

q,k+1 at all.
This is due to the small value of the sinc spacing q = 0.15 that causes the second
term in (11.16) to fall below machine precision, such that uSinc

q,k+1 ≈ uGreedy
k+1 . Indeed,

we observe numerically that for any λ ∈ Σ there holds λ−s ≈ rSinc
q (λ) up to machine

precision, where rSinc
q denotes the rational approximation of fτ (λ) = λ−s stemming

from the quadrature in the sense of Theorem 11.8.

– In line with our experiments presented in Section 10.4, the methods based on the
BURA provide the most accurate approximations across all scenarios and are specif-
ically tailored towards a particular choice of the fractional parameter. If, however,
solutions to (4.24) for several values of s are required, uZolo

k+1 , u
Dual2
k+1 , uSinc

q,k+1, and
uGreedy
k+1 outperform their competitors in terms of efficiency since they allow direct
querying of the solution for arbitrary s after an initial offline computation phase.
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The latter, however, is roughly twice as costly for the modified dual reduced basis
approximation compared to uZolo

k+1 , u
Sinc
q,k+1, and uGreedy

k+1 .

Zolo Dual Dual2 Greedy Sinc Direct Bura

ρ−k/2
[λL ,λU ]
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2k[λ

L ,4λ
U ]
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Figure 11.1: Error Ê(k, s) for s = 0.2 (left) and s = 0.8 (right) when b is the coefficient
vector of the L2-orthogonal projection of the constant 1-function onto Vh.

The coefficient vector b of the L2-orthogonal projection of the constant 1-function onto
the FEM space is roughly uniformly excited by all eigenvectors of L. In Figure 11.2, we
consider the coefficient vector arising from b(x) = sin(πx) sin(πy) ∈ H1

0 (Ω), x = (x, y) ∈ Ω,
with fractional parameter s = 1

2 . We observe that all methods converge with the same rates
as in the previous examples. Unlike in Figure 11.1, however, the direct BURA method
appears to be the least accurate approximation among all tested methods. This is due
to the smoothness of b, causing the excitations of b to decay quickly. Since the BURA is
entirely independent of the vector b, and thus not capable to adapt to its spectral properties,
uDirect
k+1 requires substantially more linear solves to reach a prescribed accuracy compared
to its rational Krylov competitors. The latter incorporate information about the vector in
the construction of the search space and can thus bias the surrogate towards the particular
choice of b.
For the reader’s convenience, we conclude this section with a systematic comparison of

the discussed methods in Table 11.1, incorporating (from top to bottom)

1. their ability to efficiently query the solution map s 4→ L−sb for multiple instances of
s using the same search space,

2. nestedness of their poles as k increases, and hence their ability to incrementally im-
prove the accuracy of the surrogate,

3. the required user-provided data.

For uZolo
k+1 , u

Dual
k+1 , and uDual2

k+1 , the respective search space is entirely independent of s
and allows to query the solution map irrespectively of the fractional parameter. After
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Figure 11.2: Error Ê(k, 0.5) when b is the coefficient vector of the L2-orthogonal projection
of b(x) = sin(πx) sin(πy), x = (x, y) ∈ (0, 1)2, onto Vh.

restriction to a proper subset [smin, smax] with 0 < smin < smax < 1 fixed, the same also
applies to uGreedy

k+1 and uSinc
q,k+1. The remaining approximations presented in Table 11.1

rely on explicit rational approximations of fτ (λ) = λ−s and have to be computed for
each s ∈ [0, 1] individually. Neither the Zolotarëv points nor the BURA poles of order
k are contained in the respective parameter set of order k + 1, which is computationally
inconvenient when adaptive accuracy control is required. Conversely, in the computation
of a basis spanning the search space of uGreedy

k+1 and uSinc
q,k+1 only one new function is added

at each stage to the k previously selected vectors which are left unchanged. As opposed
to the other approximations, uGreedy

k+1 and uSinc
q,k+1 do not require estimates on the spectral

region of L; however, they require a discrete training set T n±
train ⊂ [e−qn− , eqn+ ] whose range

is encoded in the choice of the sinc parameter q.

uZolo
k+1 uDual

k+1 uDual2
k+1 uGreedy

k+1 uSinc
q,k+1 uDirect

k+1 uBura
k+1

multi-query � × � [smin, smax] [smin, smax] × ×
nested × × × � � × ×
user-provided S S S T qtrain, q T qtrain, q S S

Table 11.1: Properties of the methods, where S = {λL, λU} contains bounds for the extremal
eigenvalues of L, T qtrain a training set of [e

−n− , en+ ], and q the sinc parameter.

The dominant computational effort for all methods is the solution of k parametric reaction-
diffusion equations. When using an optimal solver such as a multigrid method, this requires
O(kN) operations. Those methods which require diagonalization of a compressed matrix
have to expend a further O(k3) operations to do so, where typically k 3 N .
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