

LSTM Autoencoders for Botnet Detection

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Masterstudiums

Embedded Systems

eingereicht von

Jan de Bettignies
Matrikelnummer 00927468

an der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.-Ing. Tanja Zseby

Mitwirkung: Dipl.-Ing. Alexander Hartl

Wien, 09.12.2021 ___________________________

 Jan de Bettignies

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit gemäß dem Code of Conduct

– Regeln zur Sicherung guter wissenschaftlicher Praxis, insbesondere ohne

unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen

Hilfsmittel, angefertigt wurde. Die aus anderen Quellen direkt oder indirekt

übernommenen Daten und Konzepte sind unter Angabe der Quelle

gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland in

gleicher oder in ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Wien, 09.12.2021 _______________________

 Jan de Bettignies

ľ Copyright 2021 Ja♪ de Bettig♪ieſ

Abstract

Securing the Internet against malicious attacks is an ever evolving task. In this thesis, we aim

at the detection of botnet traffic using two different machine learning methods: a random forest

and LSTM autoencoder.

For our experiments, we use the public ISOT data set created by the Information Security and

Object Technology (ISOT) research lab of the University of Victoria in Canada. It contains

benign and botnet traffic and has been used in related work.

We select a random forest (RF) algorithm for its simplicity, ease of use, good classification per-

formance and explainability. We compare it to a long short term memory (LSTM) autoencoder

which is a variant of a neural network autoencoder. It is a more recent and complex algorithm

that aims to extract not readily apparent information from the examined data, however the

explainability is difficult.

We choose to compare a supervised approach (RF) with an unsupervised LSTM autoencoder

and apply them to our data set using features as similar as possible in both machine learning

models, with regards to the different characteristics of the two. The features can’t be exactly

the same because of the fundamental difference of a flow-based (random forest) vs. a packet-

based (LSTM autoencoder) algorithm. A flow-based algorithm aggregates all packets in a set

of statistical parameters which implies that a flow has to be terminated before calculating the

characteristics. In contrast, a packet-based algorithm considers each individual packet and can,

if necessary, try to compute a connection between those packets, even when a flow is still ac-

tive. In the field of botnet detection, this can be of advantage as even an ongoing attack can

be detected. Both algorithms are subject to a hyperparameter tuning. We also analyze which

features influence detection for both the random forest and LSTM autoencoder algorithms.

The RF easily outclasses the LSTM autoencoder, achieving a ROC-AUC of 0.99 compared to

0.64 for the LSTM autoencoder. This shows that the LSTM autoencoder may not be the best

choice for this task.

I

Kurzfassung

Der Schutz des Internets vor bösartigen Angriffen ist eine nicht enden wollende Herausforderung,

die sich stetig weiterentwickelt. In dieser Arbeit geht es um die Erkennung von Botnet-Daten

mit Hilfe zweier verschiedener Machine-Learning Methoden: einem Random Forest und einem

LSTM Autoencoder. Für unsere Experimente verwenden wir den öffentlichen ISOT-Datensatz,

der vom Forschungslabor Information Security and Object Technology (ISOT) der Universität

von Victoria, Kanada erstellt wurde. Der Datensatz enthält sowohl “gutartigen” Datenverkehr

als auch “bösartigen” Botnet-Datenverkehr, und wurde bereits in ähnlichen Arbeiten verwen-

det.

Wir wählen einen random forest (RF) Algorithmus, der sich durch seinen einfachen Aufbau,

seine Anwenderfreundlichkeit, gute Klassifizierungsleistung sowie eine gute Erklärbarkeit der

Ergebnisse auszeichnet. Wir vergleichen ihn mit einem Long Short Term Memory (LSTM)

Autoencoder, einer Variante eines Neuronalen Netz Autoencoders. Diese Art von Algorithmus

ist neuartiger und komplexer, und ist in der Lage, auch nicht augenscheinliche Informatio-

nen aus den untersuchten Daten zu extrahieren; allerdings ist die Erklärbarkeit der Ergebnisse

sehr kompliziert. Wir vergleichen hierbei einen “überwachten” (supervised) Ansatz (RF) mit

einem “nicht-überwachten” (unsupervised) LSTM Autoencoder und wenden beide Algorithmen

mit möglichst ähnlichen Features für unseren Datensatz an. Da die beiden Algorithmen sich

grundlegend unterscheiden, ist es nicht möglich, exakt dieselben Features für beide einzuset-

zen: bei einem Random Forest handelt es nämlich sich um einen flow-basierten Algorithmus,

wohingegen eine LSTM autoencoder paket-basiert operiert. Ein flow-basierter Algorithmus ag-

gregiert alle Pakete in ein Set und extrahiert statistischer Parameter, was implizit bedeutet, dass

die Übertragung des gesamten Flows beendet sein muss, bevor seine Charakteristika berechnet

werden können. Im Gegensatz dazu untersucht ein paket-basierter Algorithmus jedes einzelne

Paket und kann, wenn nötig, auch bereits während der Übertragung eines Flows eine Verbindung

zwischen den Paketen berechnen. In Bezug auf Botnet-Erkennung kann dies von großem Vorteil

sein, weil es die Erkennung einer Attacke bereits im Moment ihrer Durchführung ermöglicht.

Beide Algorithmen werden einem Hyperparameter-Tuning unterzogen. Außerdem untersuchen

III

wir, welche Features die Detektionsfähigkeit sowohl des Random Forests als auch des LSTM

Autoencoders beeinflussen.

Der RF erreicht einen besten ROC-AUC Wert von 0.99 und ist hiermit dem LSTM Autoencoder

(maximale ROC-AUC 0.64) in unserer Anwendung stark überlegen.

Acknowledgments

First and foremost, I am grateful to my thesis supervisor, Professor Tanja Zseby, and my tu-

tor, Alexander Hartl. Their invaluable feedback and advice was always appreciated and their

extraordinarily fast answers to my question at all times of the day or night were crucial in this

endeavor.

I would like to extend my sincere thanks to Johanna for her unwavering support and belief in

me, for proofreading and feedback. Getting through this thesis would not have been possible

without her help.

Furthermore, I would like to thank all my friends and colleagues for their invaluable help on

this journey: Birgit, Anna, Leopold, Stefan, Michael, Isabella, my colleagues of the “ZID-Raum

Gang”, and Sophie, Kathi, Pia, Alex, Emil, Clara and Ralph.

Finally, I would like to express my sincere gratitude to my family for their continued encourage-

ment and support throughout my studies.

V

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 2

1.3 Approach . 3

1.4 Contribution . 4

1.5 Structure . 5

2 Background 7

2.1 Botnet typography . 8

2.1.1 Storm botnet . 9

2.1.2 Waledac botnet . 10

2.1.3 ZeuS botnet . 10

2.2 Machine learning algorithms . 10

2.2.1 Random Forest . 11

2.2.2 Long Short-Term Memory (LSTM) Neural network 13

3 State of the Art 17

4 Methodology 23

4.1 data set . 23

4.1.1 Random Forest data set . 24

4.1.2 LSTM Autoencoder data set . 24

4.1.3 Artifacts in the data sets . 28

4.2 Metrics . 30

4.3 Implementation . 31

4.3.1 Random Forest . 32

4.3.2 LSTM implementation . 33

VII

5 Experiments 35

5.1 Experiments with Random Forest . 35

5.2 Experiments with LSTM autoencoder . 38

6 Results 45

6.1 Results of Random Forest . 45

6.2 Results of LSTMs . 48

7 Discussion 53

7.1 Interpretation of results of Random Forest experiments 53

7.2 Interpretation of results of LSTM autoencoder experiments 55

7.3 Major findings . 57

8 Conclusion 59

A Figures for Dataset and Random Forest 61

B Figures for LSTM 65

List of Figures

2.1 Decision tree with all important keywords and parameters. 11

2.2 Decision tree. 12

2.3 Random forest algorithm. Each decision tree casts one vote (A, B or C), the final

classification is decided by simple majority. In this case with 3 votes for A, 2 for

B and 1 for C the final decision is A. 12

2.4 A single cell of an LSTM. 14

2.5 Schematic of an exemplar 2-layer autoencoder. The hidden layer (a.k.a. code) h

is the innermost layer. 14

4.1 Overview of inter packet times in the raw ISOT data set. 28

4.2 Histogram of minimum inter-arrival time (in seconds) between packets in benign

flows of the extracted data set for the random forest. 29

4.3 Histogram of minimum inter-arrival time (in seconds) between packets in mali-

cious flows of the extracted data set for the random forest. 29

4.4 Histogram of negative minimum inter-arrival time (in seconds) between packets

in benign flows of the extracted data set for the random forest. 29

4.5 Histogram of positive minimum inter-arrival time (in seconds) between packets

in benign flows of the extracted data set for the random forest. 29

4.6 Histogram of negative inter-arrival time between packets (in milliseconds) of the

extracted data set for the LSTM autoencoder. 30

4.7 Histogram of positive inter-arrival time between packets (in milliseconds) of the

extracted data set for the LSTM autoencoder. 30

4.8 Flowchart of RF experiment preparation. 32

4.9 Flowchart of LSTM experiment preparation. 33

6.1 ROC curve of the best performing experiment. 49

6.2 ROC curve of the worst performing experiment. 49

IX

7.1 Accuracy of all RF experiments. 54

7.2 Precision of all RF experiments. 54

7.3 Recall of all RF experiments. 55

7.4 F1 score of all RF experiments. 55

7.5 ROC-AUC of all RF experiments. 55

7.6 Mean squared error of the benign destination transport port at each timestep and

experiment. 56

7.7 Mean squared error of the malicious destination transport port at each timestep

and experiment. 56

7.8 Mean squared error of the benign flow direction at each timestep and experiment. 56

7.9 Mean squared error of the malicious flow direction at each timestep and experiment. 56

7.10 Mean squared error of the benign interarrival time at each timestep and experiment. 57

7.11 Mean squared error of the malicious interarrival time at each timestep and ex-

periment. 57

7.12 Mean squared error of the benign IP total length at each timestep and experiment. 57

7.13 Mean squared error of the malicious IP total length at each timestep and experiment. 57

1.1 Minimum negative interarrival time in milliseconds in backward direction. 61

1.2 Minimum positive interarrival time in milliseconds in backward direction. 61

1.3 Normalized minimum interarrival time in backward direction. 62

1.4 Minimum negative interarrival time in milliseconds in forward direction. 62

1.5 Minimum positive interarrival time in milliseconds in forward direction. 62

1.6 Normalized minimum interarrival time in forward direction. 62

1.7 Maximum negative interarrival time in milliseconds in forward direction. 62

1.8 Maximum positive interarrival time in milliseconds in forward direction. 62

1.9 Normalized maximum interarrival time in forward direction. 63

1.10 Mean negative interarrival time in milliseconds in forward direction. 63

1.11 Mean positive interarrival time in milliseconds in forward direction. 63

1.12 Normalized mean interarrival time in forward direction. 63

1.13 Standard deviation interarrival time in milliseconds in forward direction. 63

1.14 Variance interarrival time in milliseconds in forward direction. 63

1.15 Normalized standard deviation interarrival time in forward direction. 64

1.16 Normalized variance interarrival time in forward direction. 64

2.1 ACK flag in benign flows. 65

2.2 ACK flag in malicious flows. 65

2.3 CWR flag in benign flows. 66

2.4 CWR flag in malicious flows. 66

2.5 ECE flag in benign flows. 66

2.6 ECE flag in malicious flows. 66

2.7 FIN flag in benign flows. 66

2.8 FIN flag in malicious flows. 66

2.9 NS flag in benign flows. 66

2.10 NS flag in malicious flows. 66

2.11 PSH flag in benign flows. 67

2.12 PSH flag in malicious flows. 67

2.13 SYN flag in benign flows. 67

2.14 SYN flag in malicious flows. 67

2.15 URG flag in benign flows. 67

2.16 URG flag in malicious flows. 67

2.17 Reconstruction error and threshold of experiment ISOTbaseline. 67

2.18 Reconstruction error and threshold of experiment ISOT 000. 68

2.19 Reconstruction error and threshold of experiment ISOT 001. 68

2.20 Reconstruction error and threshold of experiment ISOT 002. 68

2.21 Reconstruction error and threshold of experiment ISOT 003. 68

2.22 Reconstruction error and threshold of experiment ISOT 004. 68

2.23 Reconstruction error and threshold of experiment ISOT 010. 69

2.24 Reconstruction error and threshold of experiment ISOT 011. 69

2.25 Reconstruction error and threshold of experiment ISOT 012. 69

2.26 Reconstruction error and threshold of experiment ISOT 013. 69

2.27 Reconstruction error and threshold of experiment ISOT 014. 69

2.28 Reconstruction error and threshold of experiment ISOT 015. 69

2.29 Reconstruction error and threshold of experiment ISOT 016. 70

2.30 Reconstruction error and threshold of experiment ISOT 017. 70

2.31 Reconstruction error and threshold of experiment ISOT 018. 70

2.32 Reconstruction error and threshold of experiment ISOT 019. 70

2.33 Reconstruction error and threshold of experiment ISOT 020. 70

2.34 Reconstruction error and threshold of experiment ISOT 021. 70

2.35 Reconstruction error and threshold of experiment ISOT 022. 71

2.36 Reconstruction error and threshold of experiment ISOT 023. 71

2.37 Reconstruction error and threshold of experiment ISOT 024. 71

2.38 Reconstruction error and threshold of experiment ISOT 030. 71

2.39 Reconstruction error and threshold of experiment ISOT 031. 71

2.40 Reconstruction error and threshold of experiment ISOT 032. 72

2.41 Reconstruction error and threshold of experiment ISOT 033. 72

2.42 Reconstruction error and threshold of experiment ISOT 034. 72

2.43 Reconstruction error and threshold of experiment ISOT 035. 72

2.44 Reconstruction error and threshold of experiment ISOT 036. 72

2.45 Reconstruction error and threshold of experiment ISOT 037. 72

2.46 Reconstruction error and threshold of experiment ISOT 040. 73

2.47 Reconstruction error and threshold of experiment ISOT 041. 73

2.48 Reconstruction error and threshold of experiment ISOT 042. 73

2.49 Reconstruction error and threshold of experiment ISOT 043. 73

2.50 Reconstruction error and threshold of experiment ISOT 044. 73

2.51 Reconstruction error and threshold of experiment ISOT 045. 73

2.52 Reconstruction error and threshold of experiment ISOT 050. 74

2.53 Reconstruction error and threshold of experiment ISOT 051. 74

2.54 Reconstruction error and threshold of experiment ISOT 052. 74

2.55 Reconstruction error and threshold of experiment ISOT 053. 74

2.56 Reconstruction error and threshold of experiment ISOT 054. 74

2.57 Reconstruction error and threshold of experiment ISOT 055. 74

2.58 Reconstruction error and threshold of experiment ISOT 060. 75

2.59 Reconstruction error and threshold of experiment ISOT 061. 75

2.60 Reconstruction error and threshold of experiment ISOT 062. 75

2.61 Reconstruction error and threshold of experiment ISOT 063. 75

2.62 Reconstruction error and threshold of experiment ISOT 064. 75

2.63 Reconstruction error and threshold of experiment ISOT 065. 75

2.64 Reconstruction error and threshold of experiment ISOT 066. 76

2.65 Reconstruction error and threshold of experiment ISOT 067. 76

2.66 Reconstruction error and threshold of experiment ISOT 068. 76

2.67 Reconstruction error and threshold of experiment ISOT 069. 76

2.68 Reconstruction error and threshold of experiment ISOT 0610. 76

2.69 Reconstruction error and threshold of experiment ISOT 0611. 76

2.70 Reconstruction error and threshold of experiment ISOT 070. 77

2.71 Reconstruction error and threshold of experiment ISOT 071. 77

2.72 Reconstruction error and threshold of experiment ISOT 072. 77

2.73 Reconstruction error and threshold of experiment ISOT 073. 77

2.74 Reconstruction error and threshold of experiment ISOT 080. 77

2.75 Reconstruction error and threshold of experiment ISOT 081. 77

2.76 Reconstruction error and threshold of experiment ISOT 082. 78

2.77 Reconstruction error and threshold of experiment ISOT 083. 78

2.78 Reconstruction error and threshold of experiment ISOT 084. 78

1

Chapter 1

Introduction

1.1 Motivation

Over the last decades, the danger of botnets has only increased. A bot is “a program that is

installed on a system in order to enable that system to automatically perform a task or set of

tasks typically under the command and control of a remote administrator” [1], and a botnet is

“a concerted network of bots capable of acting on instructions generated remotely” [1]. Botnets

rely on infecting a large number of hosts to perform their malicious activity; this sets them

apart from a targeted attack where only a few very specific hosts are attacked (an expamle

would be the Stuxnet virus [2]). As a general rule, the more hosts a botnet can infect, the more

successful (and to some extent resilient) a botnet is because it can leverage much more band-

width for its activities [3]. A botnet can cause significant damage to public and private entities

over its lifetime, whether through distributed denial of service (DDoS) attacks, downloading of

additional malware, sending spam mail or theft of credentials. As an example, the ZeuS botnet

was specialized in stealing banking information and responsible for more than ✩100 million in

damages [4].

With the advent of the Internet of Things (IoT), the dangerousness of botnets has only in-

creased [5]. Especially botnets specialized on compromising IoT devices have proven to be able

to leverage significant attack and disruptive power [6]. These botnets rely on compromising any

internet-connected device – a smart watch or a wireless camera for example. Botnet detection

mechanisms able to detect the infiltration or infection of a host are crucial to mitigate damages

from the botnet or to reduce the amount of spam sent over the Internet.

Detection of malicious activity, in this case botnet activity, can be compared to a cat-and-

mouse game where the cat represents the detection algorithm while the mouse is the botnet.

Both have to constantly evolve to keep an edge over their counterpart. Any solution can be

outmatched and deceived by the threat actor given enough time and resources, rendering it less

2 1. Introduction

effective to detect new and emerging threats.

These constant new and emerging threats have shown a limit to the practice of using Indi-

cators of Compromise (IoC) for detection. Indicators of Compromise are artifacts that can be

used “[...] to indicate a computer intrusion and detect cyber-attacks in an early stage” [7] and

are observed on a computer or computer network. The response has been to turn to algorithms

designed to detect malicious activity that do not use specific Indicators of Compromise [3]. A

myriad of different algorithms and implementation strategies can be applied to this problem and

not all of them have so far been investigated.

The evolving threat landscape makes any rigid, monolithic solution virtually impossible and very

quickly obsolete [3]. A single, comprehensive solution for any and all threats is impossible, rather

multiple different strategies have to be combined. The approach of this thesis is to concentrate

on one specific category of threats, in this case botnets, and to examine different approaches for

its mitigation. The drastic increase in computational power opens new possibilities to tackle the

challenges faced by detection algorithms against malicious actors.

There are different types of machine learning algorithms which can be used to classify data.

We select two of them, namely the random forest and a long short-term memory (LSTM) au-

toencoder. Since our data set is very large, the random forest is a promising approach, as it

can handle large numbers of features in a data set [8]. Moreover, this type of algorithm has a

simple architecture and short processing times and is therefore also applicable in low resource

environments. However, Althibiti et al. [9] stress the limited ability of traditional machine learn-

ing algorithms, such as RF, to detect dynamic and complex cyber attacks on applications in

comparison to deep learning approaches. A long short-term memory neural network is a deep

learning approach; it has a much higher computational complexity, yet it is capable of remember-

ing values of arbitrary intervals and consequently to predict known and unknown intrusions [9].

We will compare the random forest and LSTM autoencoder in order to see how they perform

in detecting botnet traffic.

1.2 Research Questions

Our goal is to detect botnet traffic in our chosen data set and compare two machine learning al-

gorithms, namely random forest and LSTM autoencoder, in their ability to detect this malicious

traffic. For this we formulate the following research questions:

1. What detection performance can be achieved with a simple random forest classifier based

on aggregate flow features?

1.3. Approach 3

2. Can the detection performance be improved if we use an LSTM autoencoder classifier

based on per-packet features?

3. How does the choice of hyperparameter settings influence the detection performance of the

two algorithms?

In order to assess the detection performance, we use different standard performance metrics such

as accuracy, precision, recall, F1-score and ROC-AUC, and compare the results to those found

in literature.

1.3 Approach

In a first step, it is necessary to find and choose a suitable data set that would accommodate

the following requirements:

Ţ it accurately represents a network,

Ţ has a large enough sample size of both benign and malicious traffic,

Ţ has the benign and malicious data labeled,

Ţ the complete data set must be available for public use and

Ţ contain botnet data from different botnets.

We select the data set created by the Information Security and Object Technology (ISOT) re-

search lab from the University of Victoria, Canada [10] because it corresponds to all of the

criteria mentioned above. The data set includes malicious flows from three different botnets:

ZeuS, Waledac and Storm. A more comprehensive background on the different botnets can be

found in Chapter 2. For our use, the data set has to be rearranged and the features needed for

our experiments have to be extracted from the original files. There is no better imitation than

the original, hence the ISOT lab used real traffic data as benign data. However, there is an

ethical constraint on using malicious data ”in the wild”, and propagating such malicious data is

illegal, therefore the malicious data is artificially generated and then combined with the benign

data by the ISOT lab.

We will compare two different machine learning methods: a random forest algorithm and a

LSTM autoencoder. The implementation of the random forest is already provided and only

some changes to accommodate for the new data set are made. The LSTM implementation on

the other hand is written from scratch. We select the random forest algorithm for its simple

4 1. Introduction

architecture and short processing times, and the LSTM autoencoder for its capability of extract-

ing complicated structures even when they are not readily apparent.

For each of the implementations, a baseline experiment is carried out against which the success

of any hyperparameter change is compared to. Additionally, the random forest implementation

is also used as a reference point.

1.4 Contribution

We compare two methods to detect malicious activity, especially botnets. We show that a

random forest is a solid method for botnet detection, whereas a LSTM autoencoder did not

perform as well in our experiments.

Our contribution in this thesis is:

Ţ We examine the capacity of the random forest algorithm to detect malicious attacks by

evaluating the following key metrics: receiver operating characteristic area under curve,

accuracy, f1-score, precision and recall. We also investigate the relevance of specific features

for the classification by calculating the Gini importance of a feature.

Ţ Additionally, we perform an evaluation of the influence of hyperparameters for the random

forest classifier’s performance. The random forest algorithm benefits, as a general rule

for this data set, from a higher tree depth but only up to a certain point. For a tree

depth beyond this point, the metrics do not improve and may even decrease while the

computation times only increase. We observe that the maximum minimum number of

samples per leaf (MMSL) does not have a great impact in the data set we used.

Ţ We also examine the ability of a three-layer LSTM autoencoder algorithm to detect mali-

cious attacks by evaluating the following key metrics: receiver operating characteristic area

under curve, accuracy, f1-score, precision and recall. We evaluate the model by calculating

the threshold and the resulting mean squared errors of all features.

Ţ After hyperparameter tuning, for the chosen data set, we find that the influence of different

LSTM autoencoder hyperparameters is very small; it could therefore be possible to use

a “standard” set of parameters and not have to tune the algorithm. This cuts down

drastically the time to deployment of the LSTM autoencoder.

Ţ We tried to reduce the needed number of packets by only considering the first 10 packets

in a flow of a LSTM autoencoder, but due to the bad performance of the algorithm this

1.5. Structure 5

goal was not achieved. The small number of packets exchanged could have given the

opportunity to react in time to prevent the malicious attacker from compromising the

network.

Ţ Both machine learning models are trained and tested on the same data set and evaluated

by similar metrics in order to be able to compare them to each other as good as possible.

Ţ We try to use features as similar as possible in both machine learning models, with regards

to the different characteristics of the two algorithms. The features can’t be exactly the same

because of the fundamental difference between a flow-based vs a packet-based algorithm.

In short, a flow-based algorithm aggregates all packets in a set of statistical parameters

whereas a packet-based algorithm considers each individual packet and can, if necessary,

try to compute a connection between those packets.

Ţ Some artifacts and peculiarities are found in the ISOT [10] data set, specifically a negative

inter arrival time in few specific packets. In addition, we notice that the interarrival times

for benign packets are, in this data set, often higher than those of the malicious samples.

1.5 Structure

In chapter 2, we will give a short introduction to the different types and variants of botnets and

an overview of their capabilities as well as an introduction to two machine learning algorithms;

namely random forest and LSTM neural network. The state of the Art and current research

will be presented in chapter 3. In chapter 4, the data set, metrics and implementation will be

introduced. In chapter 5, all experiments will be shown. Chapter 6 will explain the results of the

experiments described in the previous chapter. A discussion of these results is found in chapter

7. At last, chapter 8 will reach a conclusion.

6 1. Introduction

7

Chapter 2

Background

There are multiple different approaches to detect malicious activity in computer networks, there-

fore a short overview shall be presented:

A first approach is based on an existing knowledge of a certain behavior and useful signatures

(e.g. specifically named files in certain locations), thus called signature-based. By searching for

known identities of each specific intrusion event signature based intrusion detection systems are

efficient at identifying known attack patterns, however they always need to be updated regu-

larly and are always only as good as their recency [11]. A good example for this technique can

be found in Bhatia et al. [12]. Unfortunately, signature based systems are wholly incapable of

detecting new and unknown botnets for they can only detect structures they already know [13]

which leads us to other approaches, such as DNS-based detection systems. These techniques

rely on detecting particular patterns of DNS information generated by either the bot or the bot

master trying to communicate with each other which differ from patterns of DNS information in

normal traffic. However, botnets (e.g., fast flux) managed to adapt themselves to the situation

so that DNS systems are no longer effective in detecting them. Different types of DNS-based

detection systems are introduced by Schonewille et al. [14], Dagon et al. [15] and Choi et al. [16].

As the process of analyzing DNS traffic is very complex and furthermore not able to provide

information on botnet propagation, this type of systems is not applied regularly anymore. An-

other way to identify botnet C&C traffic is to use deep packet inspection. In this approach

the payload is inspected; for this purpose, the single packets are inspected with regards to the

content they transport on their payload. As each single packet is observed thoroughly, this

approach takes a lot of time which makes it less applicable. Göbel et al. [17] for example created

a system based on passive traffic monitoring to detect suspicious IRC nicknames, servers and

server ports. Strayer at al. [18] use a two-stage system based on inspecting the payload content.

A more recent approach that is also used in practice is to search for behavioral anomalies in a

network. Here, the focus lies on abnormal patterns in network traffic, and not on the content of

8 2. Background

the information being transmitted. The main advantage of this method is its ability to detect

unknown botnet threats. This can happen by either attack behavior or operational behavior

analysis. In attack behavior analysis the characteristics of attacks are examined, which means

that this is only applicable after a botnet is already propagated, established and the attack is

started. As this analysis interferes with the normal communication it is possible for the bot

master to be aware of being observed [19]. In contrast, operational behavior analysis focuses on

the bots’ characteristics, C&C servers and communications or bot master behavior. In order to

do so the network traffic is collected for a specific period and analyzed in order to identify bots

or their activities [19]. More details about his approach can be found in 2.2. The reader shall

be directed to Chandola et al. [20] for a much more in-depth look on the origins of anomaly

detection not only in the context of Internet security.

2.1 Botnet typography

A botnet is “a concerted network of bots capable of acting on instructions generated remotely” [1].

A bot is “a program that is installed on a system in order to enable that system to automatically

perform a task or set of tasks typically under the command and control of a remote adminis-

trator” [1] and this remote administrator is usually a malicious actor has taken command of

this computer, unnoticed by the “original” owner of the computer. These bots are under the

total control of the malicious actor and can be used for a number of tasks – sending spam mail,

infecting other devices, participating in a DDoS attack, etc. [3] In recent time (see the Mirai

botnet [21], [6]), the restriction that a botnet infects only desktop computers (PCs) has eroded,

and increasingly any web-connected device, from PCs to mobile phones to surveillance cameras,

can be transformed into a bot. One strategy to create a botnet is to create a so-called worm.

RFC4949 describes a worm as the following: “A computer program that can run independently,

can propagate a complete working version of itself onto other hosts on a network, and may con-

sume system resources destructively.” [22]. The important distinction to a virus is that a worm

can and will operate independently of any input to infect as many other targets as possible.

A virus on the other hand does not share the self-replicating abilities of a worm, as such it

must be delivered by other means to a target. Oftentimes this is done with phishing or drive-by

download, with targeted attacks being used for more critical/sensitive infrastructures. A drive-

by download is an unwanted and unknown download of malware.

A botnet can be structured according to two different principles: either centralized, hierarchical

or a decentralized, peer-to-peer setup; hybrid botnets are also known [3].

A centralized botnet follows a very clear top-down structure starting with one or more defined

2.1. Botnet typography 9

servers which are directly controlled by the malicious actors. At each subsequent level, the bots

receive the commands from a single defined node while no connection is made between nodes on

the same level. On the other hand, a peer-to-peer structure follows no such clearly defined rules,

and any node can communicate with any other node. The command and control (C&C, aka

C2) servers are interspersed in this network, and it is, looking from the outside, never exactly

clear which nodes are the C&C servers. Hybrid botnets mix both structures [3].

Fast-fluxing is a method first observed on a large-scale malware in 2006 by the Strom network

to increase persistence [23]. In essence, the domain name is associated to a large number of

IP addresses which are changed extremely rapidly – an IP address can be changed every 300

seconds. As a consequence, IP address blocking is no longer a viable mitigation strategy against

malware using the fast-flux technique.

Distributed Denial of Service (DDoS) attacks are attacks in which a very large number of devices

simultaneously and repeatedly try to connect to a single known host in order to overload the

host with connection attempts and deny any service from the host [24].

The data set used in the research contains three malicious actors that were introduced to a host

of benign data: The Storm, Waledac and ZeuS botnets, which are described below.

2.1.1 Storm botnet

With the first detection made in January 2007, the Storm botnet rapidly propagated with the

use of a self-replicating worm. At one point, over 2.6 million devices [25] were infected with the

worm and together accumulated a computing power well beyond the computing power of the su-

percomputers at the time. The botnet used a modified version of a peer-to-peer communication

protocol to communicate between the different bots. Additionally, a fast-flux DNS changing

method was also implemented to make tracking of the botnet more difficult. To render any in-

vestigation more difficult and potentially dangerous, a self-defense mechanism was implemented:

an automatic DDoS attack was launched against any entity repeatedly querying addresses of

the botnet. Beginning in early 2008, the botnet was used in phishing attacks and at the same

time introduced encrypted communication to enable the botnet to resell parts of the network

or its services [23]. Its primary role was the distribution of malware and pharmaceutical spam,

a characteristic it shares with the Waledac botnet. The botnet’s decline started in 2008, when

German security researchers successfully reverse-engineered the botnet and published a tool to

take over certain parts of the botnet.

10 2. Background

2.1.2 Waledac botnet

Sharing similarities with the Storm network, the Waledac botnet first appeared in December

2008. It is based on a peer-to-peer communication structure controlled by over 270 Internet

domains [26]. As with the Storm botnet, this worm automatically starts DDoS attacks against

any entity investigating it. The botnet was a major spam distribution network while additionally

segments of the botnet were rented out to interested parties for their own spam distribution

(rates were 200⩾500 per million spam messages). Further similarities, for example major code

reuse, were shared with the Kelhios botnet. Beginning in February 2008, Microsoft initiated the

take-down of the botnet by seizing all internet domains used as C2 servers [27].

2.1.3 ZeuS botnet

The ZeuS (aka Zbot) malware family first appeared in July 2007 and is characterized as a Trojan

malware. It was distributed via drive-by downloading or phishing attacks. After infection, a

botnet comprised of compromised hosts in the target network is set up. The C2-server is con-

trolled directly by the attacker. This botnet can be used to launch attacks against other targets

or simply spread in the victim network to gain intelligence about the network and/or exfiltrate

data. The gained intelligence from the initial attack vector can then be used for follow-on at-

tacks including ransomware (CryptoLocker) or theft of banking details (ex.: keystroke logging).

The take-down by the FBI (Federal Bureau of Investigation; a federal law enforcement agency

of the United States of America) in 2010 prompted the release of the source code by the author.

This source code was then used in multiple successor versions by different threat actors, the

biggest being GameOver ZeuS by the original author [28].

2.2 Machine learning algorithms

Our aim is to increase security in the connected world. Therefore, we need to find a way to

differentiate between benign and malicious traffic. In our case we define malicious traffic as any

data generated or received by bots with a different intention than legitimate users.

There is a plethora of approaches to identify and categorize malicious traffic such as simple

statistics, machine learning algorithms, rule based algorithms, indicators of compromise based

algorithms, etc. [3] The advantage of machine learning algorithms is that they are able to learn

from known data and subsequently categorize unknown data [9]. For our study, we choose

two different machine learning algorithms, namely RF and LSTM autoencoder, in order to not

only examine but also to compare them. The underlying principles and characteristics of these

2.2. Machine learning algorithms 11

Fig. 2.1: Decision tree with all important keywords and parameters.

algorithms will be explained in the following paragraphs.

2.2.1 Random Forest

One way to make decisions is answering a series of simple closed questions arranged in the form

of a so-called decision tree. Starting from a root node, each answer to a closed question leads

to a next one up to a maximum number of questions, called the maximum tree depth.

Each of the branches has its ending point in a so-called leaf, where a decision is finally made; in

our case the traffic being categorized as either benign or malicious. In order to ensure that each

leaf is reachable, a minimum number of samples has to reach this leaf in order to be counted as

a valid result. This minimum is called the minimum number of samples per leaf (min samples

leaf, hereafter MSL). Depending on how wide or narrow a tree is desired to be, the MSL can be

increased in order to eliminate the branches with only very few samples reaching the leaf. This

process is called pruning [29]. What has just been described is illustrated in figure 2.1

One single decision tree can be prone to errors. Therefore, by using a great number of differ-

ent, independently trained decision trees (like trees in a forest) and subsequently pooling their

results, we can reduce the overall decision error. This multitude of decision trees is called a

random forest. Each decision a single tree reaches is like a “vote”; all trees voting for a category

leads to the overall decision “winner” who gains the most votes by number. This final voting

decision is then the result of the random forest algorithm, as shown in figure 2.3 [30].

A random forest algorithm is a supervised machine learning algorithm. These types of algo-

rithms are based on the principle that a data set with known results is fed to the algorithm

to train it. Afterwards, the results of the algorithm can be compared to the already known

12 2. Background

Fig. 2.2: Decision tree.

Fig. 2.3: Random forest algorithm. Each decision
tree casts one vote (A, B or C), the Ąnal classiĄ-
cation is decided by simple majority. In this case
with 3 votes for A, 2 for B and 1 for C the Ąnal
decision is A.

correct results, therefore this method is called supervised [3]. One characteristic of a supervised

algorithm is that for proper training and testing labeled data is necessary. Therefore, it works

only for previously known attacks or attack profiles. Random forests base their decisions on an

entire flow, in our case all packets sent between two specific hosts and ports in a certain range

of time from connection establishment to disconnection. In order to be applicable to a random

forest, the data has to be aggregated, i.e. an entire flow is condensed into a certain number

of metrics/ characteristics (e.g. number of packets sent, total number of tcp flags,. . .). The

algorithm then decides on the basis of these characteristics, not on the single packets. Due to

this necessary aggregation, the algorithm is not able to perform real time predictions for it can

only start assessing after a flow has terminated.

The main advantages of using the method of a random forest are that the underlying principle

is simple to comprehend and, especially in decision trees, the results can be retraced easily.

Also, it is not complicated to calculate the importance of individual features in respect to the

complete data set. However, the interpretability of a random forest is harder than of a single

decision tree owing to the fact that a multitude of trees are taken together and pooled.

The computational complexity is rather low and usually accompanied by a short computation

time. In particular, training times can be manageable in comparison to other machine learning

algorithms, such as e.g. neural networks. Moreover, a random forest algorithm can be used both

in a regression and in a classification role, making it a versatile machine learning method.

2.2. Machine learning algorithms 13

2.2.2 Long Short-Term Memory (LSTM) Neural network

A neural network aims to replicate the way a brain works: just like synapses send an electrical

signal to trigger neurons, the algorithm triggers with a certain probability (called weight) a

node, which in turn can trigger other nodes ([31]). Abu-Nimeh et al. [8] describe the concept

very clearly: “The neurons are not powerful by themselves, however, when connected to others

they can perform complex computations. Weights on the interconnections are updated when the

network is trained, hence significant interconnection play more role during the testing phase.”

The distinguishing features between different feed-forward neural networks are the number of

neurons in a layer and whether all neurons of one layer can trigger all neurons of the subsequent

layer (called dense or fully-connected) or not (called sparse connection). A feed-forward neural

network is also not able to process sequential data, which is the main drawback of this type of

neural network.

To process sequential data, the neural network has to be expanded with a feedback loop that has

the ability to commit to memory and recall previous states and implement them to the current

input. When a feedback loop with these characteristics is implemented to a feed-forward neural

network, the result is a so-called recurrent neural network. The most important part of a recur-

rent neural network is its hidden layer where the crucial part of the work is done. These hidden

units can be regarded as a storage of the whole network where the end-to-end information is

remembered. This approach can be used for supervised classification learning. As Le et al.

state: “The preceding output is also related to the current output of a sequence, and the nodes

between the hidden layers are no longer connectionless; instead, they have connections. Not only

the output of the input layer but also the output of the last hidden layer acts on the input of the

hidden layer.” [32]

The recurrent neural network suffers from two problems as a consequence of the introduction of

the feedback loop. One problem is the vanishing gradient descent, where events become smaller

over time and eventually disappear. The other is the exploding gradients problem where the

long-term components (i.e. weights of the feedback loop) grow exponentially fast. [33] To over-

come the vanishing gradient descent problem, a feedback loop with a non-linear loss function

is introduced to enable the recurrent neural network a special memory of previous events [34].

A neural network with all of these aspects combined is then called a Long Short-Term Mem-

ory (LSTM) neural network. There are no better words to explain and summarize LSTMs

than Bontemps [35]: “ The LSTM node structure enables a phenomenon called backpropagation

14 2. Background

Fig. 2.4: A single cell of an LSTM. Fig. 2.5: Schematic of an exemplar 2-layer autoen-
coder. The hidden layer (a.k.a. code) h is the in-
nermost layer.

through time. By calculating for each hidden layer the partial derivatives of the output, weight

and input values, the system can move backwards to trace the evolving error between real output

and predicted output. Afterwards, the network uses the derivative of this evolution to adapt its

weights and decrease prediction error. This learning method is named Gradient Descent. [...] a

prediction is made focusing on two features: the value of a sample and its position at a specific

time. This means that two input samples at different times may have the same value, but their

outputs will very probably differ. It is because a LSTM RNN is stateful, i.e. has a “memory”,

which changes in response to inputs.”

Another type of an artificial neural network is a so-called autoencoder. In its simplest form

it consists of an encoder mapping the input into the code and a decoder mapping the code to

a reconstruction of the input connected by at least one hidden layer. Input and output layer

have the same number of neurons (nodes) and it is the latter’s purpose to reconstruct the in-

puts by minimizing the difference between the two layers, therefore it is trained to minimize

the reconstruction errors. As it is a feedforward neural network, the training is through back-

propagation of the error. For anomaly detection, autoencoders are trained to learn to replicate

the training data’s characteristics [36]. If confronted with anomalies, the reconstruction error

increases, therefore this error is used a score for anomaly detection [37]. Madani et al. [38]

describe “Due to the bottleneck in the representation layer, the autoencoder is forced to encode

only approximately the underlying concepts that resemble the input. As a result, the model often

learns useful properties of the input data in order to achieve necessary reconstruction ability.“

An example of an autoencoder is shown in Figure 2.5.

We can combine multiple layers of neural networks in a certain way to create an LSTM autoen-

coder. The decoder then takes this compressed information and tries to reconstruct the original

data [39]. As such, a LSTM Autoencoder offers a new approach to the detection of botnets in

a network by combining the advantages of a LSTM neural network with the advantages of an

2.2. Machine learning algorithms 15

Ra♪dom Foreſt LSTM autoe♪coder
ſuperviſed u♪ſuperviſed
Ćow-baſed packet-baſed
aggregated data raw data
after Ćow e♪d duri♪g Ćow
ſome explai♪ability low explai♪ability
tree-baſed artiĄcial ♪eural ♪etwork-baſed
labeled data for trai♪i♪g⁄teſti♪g ♪o labeled data ♪eeded

Tab. 2.1: Differences and similarities of a random forest and a LSTM autoencoder

autoencoder. These include: capacity to extract critical information, recollection of previous

events.

In contrast to a random forest, an LSTM autoencoder is an unsupervised machine learning al-

gorithm. According to Xia et al. [39], “ [a] classic autoencoder is a feedforward fully-connected

neural network, where the number of neurons in the input layer and the output layer are the

same and where there are much fewer neurons in the hidden layers than in the input and output

layers.” In our case, we replace the mentioned feedforward neural network by a LSTM neural

network. The algorithm works on a packet-based principle, analyzing all the packets individu-

ally within each flow. Because the LSTM autoencoder does not need to aggregate a flow, it can

perform a real time prediction and classification and even allows a user to terminate malicious

flows instantly from the outside during an ongoing attack. As any outliers are reconstructed

with a higher error, anomalies including previously unknown attacks can be detected. However,

it is not possible to follow the algorithm’s reasoning behind a decision, it is a “black-box” where

only the input and output are known. This means that the decision is hardly explainable.

Through the process of compressing and decompressing the decoded data is compared to the

data before it had been encoded, however it is not compared to an external source and therefore

not supervised. Because it does not need supervision, we do not need to label the data for

training or testing which spares time and resources in the preprocessing stage. Also, the flows

do not need to be aggregated. The main drawbacks of this method is the great computational

complexity, a classifier decision that is difficult to explain and the longer computational time an

experiment takes. Its great benefit is the capability of extracting not readily apparent informa-

tion and memorizing a sequence of events.

A quick comparison of both algorithms can be seen in 2.1. Both these types of algorithms work

very well for machine learning, so we decided to compare them with the same data set and see

how each of them performs.

16 2. Background

17

Chapter 3

State of the Art

At the moment, there is no consensus about a data set to use, methods to compare against or

even metrics to compare the methods. Many different groups have used different data sets and

different metrics in their research which makes it very difficult if not nigh impossible to define

a standard to which one’s results can be compared to. What makes the situation even more

complex is the diverging nomenclature applied to the metrics.

The following authors examined the performance of random forest, sometimes comparing to

other machine learning methods, in botnet detection:

In 2013, Garg et al. [40] implemented three different algorithms: one Naive Bayesian (NB),

a k-nearest neighbor and a C4.5 decision tree. All of them were tested on the ISOT [10] data

set and achieved a recall of 0.99, 0.995 and 0.90 for the NB, k-NN and C4.5, respectively.

In 2014, Stevanovic and Pedersen [41] implemented eight different algorithms: Naive Bayesian

(NB), Bayesian Network classifier, logistic regression (LR), an artificial neural network (ANN),

a support vector machine with linear kernel (SVMlin), the C4.5 decision tree (DT), random tree

(RT) and random forest (RF). All experiments were done on the ISOT [10] data set. The RF

showed the overall best results (precision, F1-score, Matthews correlation coefficient), only for

the recall the NB showed better results, whereas the LR mostly performed least.

In the same year, Beigi et al. [29] decided to implement a C4.5 decision tree with reduced

error pruning algorithm. For their experiments, they used a combination of the ISOT [10] and

ISCX [42] data sets and achieved a recall of 0.75 with a false positive rate of 0.25.

Three years later, in 2017,Alejandre et al. [43] implemented a C4.5 decision tree algorithm

and tested it on a combination of the ISOT [10] and ISCX [42] data sets. They reported a recall

of 0.9946 and a false positive rate of 0.0057, picturing the good performance of the decision tree.

In comparison to Beigi et al. [29], the results are far better which could be due to the reduced

error pruning Beigi used back in 2014.

18 3. State of the Art

Four different algorithms were implemented byWai et al. [44] in 2018: support vector machine

(SVM), decision tree (DT), random forest (RF) and a 3-layer Multi-Layer Perceptron (MLP)

with 432 neurons in the first layer and 600 in the other two. Tested with a combination of the

LBNL [45], ISCX [42] and Stratosphere IPS [46] data sets, the best result in respect to recall

and false positive rate (FPR) was achieved using the MLP.

Also, in 2018, Abraham et al. [11] implemented five different machine learning algorithms: a

logistic regression (LR), a Naive Bayesian (NB), a support vector machine (SVM), a random

forest (RF) and a feed-forward neural network (ff-NN). All algorithms were tested with the

Stratosphere IPS [46] data set. The F1-scores as well as the AUC showed worst results in NB,

whereas the highest scores were achieved by RF.

At the same time, Bahsi et al. [47] created a custom data set to test two different machine

learning algorithms: a decision tree and a k-nearest neighbor. Unfortunately, they did not give

any details regarding the exact nature of either of the algorithms. They report an accuracy of

0.9897 with the decision tree and 0.9497 with the k-NN algorithm.

In December 2018, Haq and Singh [48] implemented three machine learning algorithms: k-

means clustering, C4.5 decision tree and a combination of both. All were tested on a combination

of ISOT [10] and CTU13 [46] data sets. They used a peculiar metric consisting of the sum of

false positives and false negatives divided by the total number of packets. They achieved a rate

of 0.549094 with the k-means clustering, 0.097277 with the C4.5 and 0.219069 when both are

combined. As this metric is said to picture the “percentage of incorrect instances” the C4.5

decision tree shows the best result in achieving the lowest score.

Over the last quinquennial, following authors examined the performance of LSTMs, autoen-

coders and LSTM autoencoders, sometimes comparing them to other machine learning methods,

aiming to detect DDoS attacks, botnets, general intrusions as well as anomalies:

In 2016, Bontemps et al. [35] implemented a LSTM with a hidden layer of 23 neurons. Using

four different thresholds, they analyzed the algorithm with the KDDCup99 [49] data set. At a

threshold of 0.69, a recall of 0.86 with no false positives was achieved. Lowering the threshold

to 0.66 gave a recall of 0.94 but two false positives. With a threshold of 0.62, the algorithm

achieved a recall of 0.98 with 16 false positives. Lastly, a threshold of 0.52 resulted in a recall

of 1 but 32 false positives.

In the same year, Kim et al. [50] implemented a LSTM with a hidden layer of 80 neurons.

With the KDDCup99 [49] data set, the algorithm achieved an accuracy of 0.9693 with a recall

of 0.9888 and a false alarm rate of 0.1004.

Also, Torres et al. [51] implemented a 128 neuron LSTM and performed all experiments on

19

the CTU13 [46] data set in 2016. They reported an Attack Detection Rate (also known as recall)

of 0.809 with a False Positive Rate (FPR) of 0.030.

In 2018, Fu et al. [52] implemented a long short-term memory neural network. Unfortunately,

no details as to the exact parameters are given. Tested on the NSL-KDD [49] data set, the LSTM

achieved a recall of 0.9885, accuracy of 0.9752 and false alarm rate of 0.0875.

In the same year, Yin et al. [53] implemented a 4-layer LSTM with 122 neurons in the first,

80 neurons in the second, 20 in the third and 3 in the last layer. Using the ISCX [42] data set,

their algorithm achieved a precision of 0.6986, accuracy of 0.6900 and F-score of 0.6851.

Also in 2018, Mirza and Cosan [54] implemented eight different machine learning algorithms:

LSTM, GRU, bidirectional LSTM (Bi-LSTM), 1-layer neural network, LSTM with last pooling,

LSTM with max pooling, LSTM with mean pooling and a deep autoencoder LSTM. The LSTM,

Bi-LSTM, and NN used a threshold of 0.08; the GRU a threshold of 0.006; the mean pooling

LSTM a threshold of 0.079 and all others 0.076. The highest F1-score was observed in the deep

autoencoder LSTM and LSTM with max pooling, the best AUC score of 0.9519 was achieved

by the LSTM.

Using the CSIC 2010 [55] data set, Althubiti et al. [9]in April 2018 tested a long short-term

memory (LSTM) neural network. The algorithm achieved an accuracy of 0.9997, precision of

0.995 and recall of 0.995.

A couple of months later, Althubiti et al. [56] implemented a 3-layer LSTM neural network

with 10 neurons in layer 1, 6 neurons in the hidden layer and 5 in the output layer. They

tested the algorithm with the CIDDS [57] data set and report an accuracy of 0.8483, precision

of 0.8514, recall of 0.8834 and false positive rate 0.1722.

In early 2019, Roopak et al. [58] implemented four different machine learning algorithms:

Multi-Layer Perceptron (MLP) with three layers, a 1-dimensional convoluted neural network

(1d-CNN) with two layers, a 1-layer LSTM with 128 neurons and a combined 1d-CNN with

LSTM. Used on the CICIDS 2017 [59] data set, they achieved the best accuracy and recall for

the combination of 1d-CNN with LSTM, whereas the best precision was achieved by the LSTM

alone.

In November 2019, Gwon et al. [60] implemented two long short-term memory neural net-

works: one with a single, 100-neuron layer and the other with a 100-neuron and a 10-neuron

layer. The first LSTM achieved an accuracy of 0.9942 and a F1-score of 0.9947, while the second

reached an accuracy of 0.9972 with a F1-score of 0.9975.

Kasongo and Sun [34] in 2020 implemented a 3-layer LSTM with a total of 90 neurons while

withholding the exact distribution between the layers. They used the NSL-KDD [49] data set

20 3. State of the Art

and achieved a validation accuracy of 0.9951 with an F1-score of 0.9943 and a test accuracy of

0.8699.

In 2021, Min et al. [61] implemented a novel memory Autoencoder (MemAE) and tested

it on three different data sets: the NSL-KDD [49],UNSW-NB15 [62] and the CICIDS 2017

[59]. Their modified autoencoder solves an oversimplification problem inherent to autoencoders

by introducing a memory module which aims to prevent the autoencoder from reconstructing

anomalous samples well. In their experiments, they achieved a ROC-AUC score of 0.9681 for

the NSL-KDD data set, a score of 0.9113 for UNSW-NB15 and 0.9101 for CICIDS2017.

As a general rule, a classification LSTM which has often been used in these publications has

a higher accuracy than a LSTM autoencoder for anomaly detection.

To complete the picture, the following authors who in the last five years used different ap-

proaches than random forest or LSTMs or LSTM autoencoders to detect intrusions, anomalies

or botnets are presented shortly:

In 2016, Al-Jarrah et al. [63] implemented a randomized data partitioned learning model

(RDPLM) and tested them using the ISOT [10] data set. The reported accuracy is 0.999845,

with a recall of 0.9942 and a false alarm rate of 0.0009.

In 2017, Yin et al. [53] implemented multiple variants of a recurrent neural network (RNN)

and tested them on the NSL-KDD [49] data set. One RNN with 80 hidden nodes and a learning

rate of 0,1 achieved a training accuracy of 0.9981 and a test accuracy of 0.6855. Another one with

80 hidden nodes and a learning rate of 0,5 had a training accuracy of 0.9953, testing accuracy

of 0.6467. False positive rates were all around 0.002 and recall between 0.1150 and 0.8349.

In the same year, Koli and Chavan [64] implemented a randomized data partitioned learning

model (RDPLM) and tested it on the ISOT [10] data set. Their results were an accuracy of

0.99984, F-measure of 0.995 and FAR of 0.00008.

In Summer 2018, Chen et al. [65] implemented two neural networks: one convolutional neural

network with 3 layers of 20 neurons each, and the same setup but combined with a decision tree.

Using the CTU [46] and PeerRush [66] data sets, they achieved an accuracy of 0.947 and 0.986

respectively.

In December 2018, Nomm and Bahsi [67] created a custom data set with which to test their

implementations of a SVM and Isolation Forest. The SVM achieved an accuracy of 0.9315 with

a precision of 0.9627, while the isolation forest had an accuracy of 0.9561 and precision of 0.9860.

Based on the heterogeneous state of the art we decide to include many different metrics such

that a comparison to at least some other works could be made. In Table 3.1, all the papers are

summarized.

21

Pa
pe

r
Ye

ar
G

oa
l

R
F⁄

D
T

LS
T

M
O

th
er

ſ
da

ta
ſe

t
St

ev
an

ov
ic

et
al

.⟦
41

⟧
20

14
Bo

t♪
et

de
te

ct
io

♪
x

x
IS

O
T

W
ai

et
al

.⟦
44

⟧
20

18
Bo

t♪
et

de
te

ct
io

♪
x

x
LB

N
L,

IS
C

X
,I

PS
Ab

ra
ha

m
et

al
.⟦

11
⟧

20
18

Bo
t♪

et
de

te
ct

io
♪

x
x

IP
S

Al
ej

an
dr

e
et

al
.⟦

43
⟧

20
17

Bo
t♪

et
de

te
ct

io
♪

x
IS

O
T

,I
SC

X
Ba

hs
ie

ta
l.

⟦4
7⟧

20
18

Bo
t♪

et
de

te
ct

io
♪

x
cu

ſt
om

Be
ig

ie
ta

l.
⟦2

9⟧
20

14
Bo

t♪
et

de
te

ct
io

♪
x

IS
O

T
,I

SC
X

G
ar

g
et

al
.⟦

40
⟧

20
13

Bo
t♪

et
de

te
ct

io
♪

x
x

IS
O

T
H

aq
et

al
.⟦

48
⟧

20
18

Bo
t♪

et
de

te
ct

io
♪

x
x

IS
O

T
,C

T
U

13
Ro

op
ak

et
al

.⟦
58

⟧
20

19
D

D
oS

at
ta

ck
de

te
ct

io
♪

x
x

N
SL

-K
D

D
,U

N
SW

-N
B1

5,
C

IC
ID

S1
7

To
rr

es
et

al
.⟦

51
⟧

20
16

Bo
t♪

et
de

te
ct

io
♪

x
C

T
U

13
Y

in
et

al
.⟦

68
⟧

20
18

Bo
t♪

et
de

te
ct

io
♪

x
IS

C
X

M
ir

za
et

al
.⟦

54
⟧

20
18

I♪
tr

uſ
io

♪
de

te
ct

io
♪

x
x

♪o
t

ſp
ec

iĄ
ed

K
im

et
al

.⟦
50

⟧
20

16
I♪

tr
uſ

io
♪

de
te

ct
io

♪
x

K
D

D
C

up
99

K
as

on
go

et
al

.⟦
34

⟧
20

20
I♪

tr
uſ

io
♪

de
te

ct
io

♪
x

N
SL

-K
D

D
Al

th
ub

iti
et

al
.⟦

9⟧
20

18
I♪

tr
uſ

io
♪

de
te

ct
io

♪
x

C
SI

C
20

10
Al

th
ub

iti
et

al
.⟦

56
⟧

20
18

A
♪o

m
al

y
de

te
ct

io
♪

x
C

ID
D

S
Bo

nt
em

ps
et

al
.⟦

35
⟧

20
16

A
♪o

m
al

y
de

te
ct

io
♪

x
K

D
D

C
up

99
G

wo
n

et
al

.⟦
60

⟧
20

19
I♪

tr
uſ

io
♪

de
te

ct
io

♪
x

♪o
t

ſp
ec

iĄ
ed

Fu
et

al
.⟦

52
⟧

20
18

I♪
tr

uſ
io

♪
de

te
ct

io
♪

x
N

SL
-K

D
D

M
in

et
al

.⟦
61

⟧
20

21
A

♪o
m

al
y

de
te

ct
io

♪
x

x
N

SL
-K

D
D

,U
N

SW
-N

B1
5,

C
IC

ID
S1

7
Y

in
et

al
.⟦

53
⟧

20
17

I♪
tr

uſ
io

♪
de

te
ct

io
♪

x
N

SL
-K

D
D

N
om

m
et

al
.⟦

67
⟧

20
18

A
♪o

m
al

y
de

te
ct

io
♪

x
cu

ſt
om

K
ol

ie
ta

l.
⟦6

4⟧
20

17
Bo

t♪
et

de
te

ct
io

♪
x

IS
O

T
Al

-J
ar

ra
h

et
al

.⟦
63

⟧
20

16
Bo

t♪
et

de
te

ct
io

♪
x

IS
O

T
C

he
n

et
al

.⟦
65

⟧
20

18
Bo

t♪
et

de
te

ct
io

♪
x

C
T

U
,P

ee
rR

uſ
h

Ta
b.

3.
1:

O
th

er
w

or
ks

22 3. State of the Art

23

Chapter 4

Methodology

In this chapter, we first describe the methodology we use in this thesis. We give a short intro-

duction on the data set and explain how we adjust it for both our machine learning algorithms.

Afterwards, the metrics with which the outcomes are evaluated are described. Finally, we present

how the implementation for both the random forest and LSTM autoencoder is accomplished.

4.1 data set

For the analysis, we use the ISOT data set [10]. The authors, the Internet research group of

the University of Victoria, describe how multiple already existing publicly available data sets

containing benign and malicious data were combined. The benign data was combined from the

Traffic Lab at Ericsson Research in Hungary [69] and the Lawrence Berkeley National Laboratory

(LBNL) [45]. Data from the LBNL consists of the network trace of short periods of up to one

hour taken during five different days. The Traffic Lab data was captured during a 43-hour long

measurement. The malicious data comes from a honeypot installed by the French chapter of the

honeynet project [70]. These different data sets were then unified in a single data set to create

the ISOT data set.

Before the data set can be used for our experiments, it has to be prepared. We will explain

the steps taken for the random forest data set in section 4.1.1 and for the LSTM autoencoder

in section 4.1.2. Since the original data set is available in a packet capture (pcap) format, we

first have to extract all the features intended to be analyzed and convert them to a comma-

separated value (csv) format. Since a pcap formatted file is packed-based, the conversion also

has to aggregate the packets into their original flows to which the individual packets are then

assigned. For this, we use go-flows [71], a tool provided by the Institute of Telecommunications

of the TU Vienna.

24 4. Methodology

4.1.1 Random Forest data set

Based on Williams et al. [72], we decide to select similar features as stated to have a reference to

compare to. As the random forest algorithm is a flow-based method, we calculate the following

43 features during the extraction from the pcap files:

Ţ source and destination transport port and protocol identifier

Ţ Total count of packets sent (forward as well as backward)

Ţ Total count of bytes sent (forward as well as backward)

Ţ Minimum, mean, maximum, standard deviation and variance of the IP total length (for-

ward as well as backward)

Ţ Minimum, mean, maximum, standard deviation and variance of the inter arrival time

measured in milliseconds (ms) (forward as well as backward)

Ţ Total count of the different TCP flags, which are: SYN, ACK, FIN, PSH, RST, URG,

CWR and ECE (forward as well as backward)

With the extraction of these features for both benign and malicious data, we reduce the 11GB

pcap datafile to two csv files with 487MB in total, which correspond to flow-based features of

2,114,608 benign flows and 52,659 botnet flows. Both botnet and benign data are then labeled,

shuffled together and split into two parts to create the training and testing data sets. The

further process is explained in section 4.3.1. A list of all features used is found in table 4.2.

4.1.2 LSTM Autoencoder data set

For the LSTM autoencoder data set, the following parameters are applied for the feature ex-

traction: bidirectional flows are enabled, idle timeout and active timeout are set to 300s. The

300s seconds are chosen because the default Idle Timeout of the TCP protocol is 300 seconds

(or 5 minutes) [73], [74]. At the same time, the following features, inspired from [72], are saved

per packets:

Ţ destination port

Ţ flow direction, assessed by the source and destination IP address

Ţ inter-arrival time between one packet and the next packet

Ţ total length of the IP packet

4.1. data set 25

Name of feature Mi♪imum Maximum
ſourceTra♪ſportPort 0 65,535
deſti♪atio♪Tra♪ſportPort 0 65,535
protocolIde♪tiĄer 1 17
packetTotalCou♪t, fwd 1 1,346,271
octetTotalCou♪t, fwd 28 1,978,876,600
mi♪ ipTotalLe♪gth, fwd 28 1,500
mea♪ ipTotalLe♪gth, fwd 28 1,500
max ipTotalLe♪gth, fwd 28 1,500
ſtdev ipTotalLe♪gth, fwd 0 1,032.38
varia♪ce ipTotalLe♪gth, fwd 0 1,065,800
mi♪ i♪terPacketTime mſ, fwd -3,615,251 299,999
mea♪ i♪terPacketTime mſ, fwd -3,516,144 299,999
max i♪terPacketTime mſ, fwd -3,516,144 299,999
ſtdev i♪terPacketTime mſ, fwd 0 2,756,703.87
varia♪ce i♪terPacketTime mſ, fwd 0 7,599,416,225,312
tcpSy♪TotalCou♪t, fwd 0 100
tcpAckTotalCou♪t, fwd 0 1,346,271
tcpFi♪TotalCou♪t, fwd 0 19
tcpPſhTotalCou♪t, fwd 0 433,251
tcpRſtTotalCou♪t, fwd 0 100
tcpUrgTotalCou♪t, fwd 0 1
tcpCwrTotalCou♪t, fwd 0 6
tcpEceTotalCou♪t, fwd 0 6
packetTotalCou♪t, bwd 0 11,716
octetTotalCou♪t, bwd 0 14,200,949
mi♪ ipTotalLe♪gth, bwd 0 1,237
mea♪ ipTotalLe♪gth, bwd 0 1,237
max ipTotalLe♪gth, bwd 0 1,500
ſtdev ipTotalLe♪gth, bwd 0 780.65
varia♪ce ipTotalLe♪gth, bwd 0 609,408
mi♪ i♪terPacketTime mſ, bwd -21,597 255,554
mea♪ i♪terPacketTime mſ, bwd 0 255,554
max i♪terPacketTime mſ, bwd 0 255,554
ſtdev i♪terPacketTime mſ, bwd 0 112,632.92
varia♪ce i♪terPacketTime mſ, bwd 0 12,686,174,184.5
tcpSy♪TotalCou♪t, bwd 0 7
tcpAckTotalCou♪t, bwd 0 11,716
tcpFi♪TotalCou♪t, bwd 0 4
tcpPſhTotalCou♪t, bwd 0 2,708
tcpRſtTotalCou♪t, bwd 0 1
tcpUrgTotalCou♪t, bwd 0 0
tcpCwrTotalCou♪t, bwd 0 0
tcpEceTotalCou♪t, bwd 0 0

Tab. 4.1: Features used for the RF experiments and their minima and maxima before normalization. The
negative values are discussed in section 4.1.3.

26 4. Methodology

Name of feature Mi♪imum Maximum
deſti♪atio♪Tra♪ſportPort 0 65535
ĆowDirectio♪ 0 1
i♪terPacketTimeMilliſeco♪dſ -3604211.5 299999.99
ipTotalLe♪gth 28 1500
SYN 0 1
FIN 0 1
RST 0 1
PSH 0 1
ACK 0 1
URG 0 0
ECE 0 1
CWR 0 1
NS 0 0

Tab. 4.2: Features used for the LSTM autoencoder and their minima and maxima before normalization. The
negative values are discussed in section 4.1.3.

Ţ TCP flags (SYN, FIN, RST, PSH, ACK, URG, ECE, CWR, NS)

This reduces the original 11GB pcap file to a 2.5GB csv file consisting of 455,577 flows with a

combined total of more than 149 million packets. Unfortunately, the packets are not distributed

evenly within all of the flows; much to the contrary: a flow can have anything between one and

2,582,839 packets. Padding all of the flows to the maximum length of 2,582,839 packets would

consume an unworkable amount of memory, hence the decision to pad all flows to a maximum

of ten packets. At the same time, for flows with more than ten exchanged packets, we only use

the first ten and discard all others. Table 4.3 shows an overview of the problem faced and the

approximate distribution within the different subsets.

The botnet data is split from the complete data set and held in reserve for the testing set.

Meanwhile, the rest of the data set (all benign data) is split into three different sets: a training

set, a validation set and a testing set. The training set is given to the algorithm so it can learn

to recognize characteristics of the benign data set. During this phase, the LSTM autoencoder

sets the probability of being activated, the so-called weight (as shown in figure 2.4), for each

neuron of each LSTM layer. This enables the autoencoder to remember similar benign data

and to differentiate anomalies from it. Afterwards, validation is carried out using only benign

data as well to check if the algorithm managed to learn the characteristics well. However, the

algorithm is not supposed to learn the entire data set perfectly “by heart”, called overfitting –

it is only supposed to detect major characteristics. Neither overfitting nor underfitting (when

the autoencoder is not capable of reconstructing the training data) are wanted.

To ensure that the algorithm doesn’t over- or underfit, we use the validation data set verification

of the fact. The validation data set is only used to get an idea of the performance of the model,

4.1. data set 27

Total ♪umber Mi♪imum Maximum
Total
Flowſ 455,577
Packetſ 149,000,000 1 2,582,839

Trai♪i♪g
Flowſ 258,975
Packetſ 2,589,750 10 10

Validatio♪
Flowſ 114,968
Packetſ 1,149,680 10 10

Teſti♪g
Flowſ 81,634
Packetſ 816,340 10 10

Tab. 4.3: Number of Ćows and packet distribution within Ćows

ML model Trai♪i♪g Validatio♪ Teſti♪g
RF be♪ig♪ + maliciouſ - be♪ig♪ + maliciouſ
LSTM autoe♪coder be♪ig♪ be♪ig♪ be♪ig♪ + maliciouſ

Tab. 4.4: Overview of the data set parts used in the two models

and is not used to calculate the threshold, which described in more detail in 4.3.2 Finally, the

algorithm is challenged by the testing data set, which contains not only benign but also malicious

(botnet) data. The aim of this stage is to verify the algorithm’s performance in differentiating

between these types of data [75].

The training set consists of more than 258,000 flows, with the validation set having more than

114,000 flows. Of the around 81,000 flows in the testing set, between 70 and 80 percent of those

are botnet flows. The testing set is chosen randomly from the total number of flows available in

the data set that remains (complete set ∩ training set ∩ validation set).

In order to test the questions made in Section 1.2, a LSTM autoencoder is created. In our

case, three Long Short-Term Memory (LSTM) neural networks are chained together to create

an encoder stage, to which is added a decoder stage with the same structure but in inverse

order. This forms the 3-layer symmetric LSTM autoencoder that is subsequently used in the

experiments.

Building upon a neural network, a key piece of information for a LSTM neural network is the

change the input has undergone in time. As such, the input tensor of a LSTM autoencoder is

three-dimensional: the flows x packets x features. Owing to the decision to limit the maximum

number of packets per flow to 10, we can say that the LSTM has 10 timesteps to consider.

28 4. Methodology

Fig. 4.1: Overview of inter packet times in the raw ISOT data set.

4.1.3 Artifacts in the data sets

We also observe that a few packets in the ISOT data set have a negative packet inter-arrival time

which is in theory impossible because the inter-arrival time defines the time between subsequent

packets which cannot be negative. However, within this data set we find a few hundred packets

with negative inter-arrival times. We find a few packets with a negative inter packet time

at around - 3,600 seconds that may be caused by an internal computer clock difference, such

as a change in time zone or in daylight saving time. Negative inter-arrival times just below

0 (between - 0.01 and 0 sec) could be attributed to internal clock errors or synchronization

problems. A negative inter packet time between the two former mentioned categories could also

be attributed to wrong settings of computer clocks. However, we also see three packets with an

inter packet time smaller than - 20,000 sec. This can happen when the system time and date are

set completely wrong as it can happen occasionally in a real environment. All in all, only 300

of more than 15,000,000 packets showed this behavior. Since we discover this only after several

experiments, we do not remove those values and continue working with the ISOT data set. The

plot 4.1 gives the exact breakdown in ranges of time and the exact number at each range.

For the flow-based extracted data set, the two plots 4.2 and 4.3 show the distribution of the

minimum inter-arrival time in seconds of the benign and malicious flows. All extracted flows

(in csv format) will, compared to the raw pcap, show more occurrences of negative inter-arrival

times because all flows that are in use while one-time jump happens will experience this time

jump. For a clearer picture of the inter-arrival time of benign flows, the distribution of the

positive inter-arrival time is shown in figure 4.5 and the negative inter-arrival time in figure 4.4;

table 4.5 summarizes the prevalence of inter-arrival times in the different data sets. Additional

figures about the distribution of the inter-arrival times are shown in annex A. Further analysis

on the origins of the negative inter-arrival times show that only the part of the ISOT data set

from the Lawrence Berkeley National Laboratory (LBNL) [45] is impacted by this problem.

4.1. data set 29

♪egative IAT ISOT (%) ♪egative IAT cſv (%) total cſv
be♪ig♪ packetſ 300 (0.002%) 62350 (0.318%) 19,632,070
be♪ig♪ Ćowſ - 62097 (2.93%) 2,114,608
maliciouſ packetſ - 0 590,292
maliciouſ Ćowſ - 0 52,659

Tab. 4.5: Negative inter-arrival times (IAT) in the raw ISOT and extracted csv data set

Fig. 4.2: Histogram of minimum inter-arrival time
(in seconds) between packets in benign Ćows of the
extracted data set for the random forest.

Fig. 4.3: Histogram of minimum inter-arrival time
(in seconds) between packets in malicious Ćows of
the extracted data set for the random forest.

According to the authors of the data set [10], they replayed all added attacks and a subnet with

benign data in which the attacks are embedded in. The raw data from the LBNL was merged

with this generated data, but not replayed on a network card. The raw data from the LBNL

does however not have these inconsistencies with the negative inter-arrival times, which leads

to the assumption that some kind of problem occurred during the merging process. Such a

problem might happen because the LBNL data was not replayed on the network card with the

other data.

For a more in-depth analysis of the inter-arrival times in the data set, we extracted this

feature from the data set and generated a few histogram plots from it. We checked if the inter-

Fig. 4.4: Histogram of negative minimum inter-
arrival time (in seconds) between packets in benign
Ćows of the extracted data set for the random for-
est.

Fig. 4.5: Histogram of positive minimum inter-
arrival time (in seconds) between packets in benign
Ćows of the extracted data set for the random for-
est.

30 4. Methodology

Fig. 4.6: Histogram of negative inter-arrival time
between packets (in milliseconds) of the extracted
data set for the LSTM autoencoder.

Fig. 4.7: Histogram of positive inter-arrival time
between packets (in milliseconds) of the extracted
data set for the LSTM autoencoder.

arrival times correlate with the labels, and find that all malicious packets have an inter-arrival

time greater than or equal to 0 while some benign packets have negative inter-arrival times.

As discussed above, it is in theory possible to find such discrepancies, due to problems in the

data set generation. Figure 4.7 shows that for malicious packets, the prevalence of larger inter-

arrival times decreases rapidly while for benign packets this decrease is much less pronounced.

The malicious packets show a small peak in the interval between 200s and 250s, but for benign

packets a similar peak is shifted towards higher inter-arrival times in the area around 250s.

Figure 4.7 shows the distribution of all packets with positive inter-arrival times while figure

4.6 shows the distribution of packets in the data set for the LSTM autoencoder with negative

inter-arrival times.

4.2 Metrics

In the context of our topic, True Positives (TP) are malicious data instances (packets or flows)

correctly identified as being malicious. True Negatives (TN) on the other hand are data packets

correctly identified by the algorithm as being non-malicious. False Positives (FP) are non-

malicious packets which are mistakenly identified as malicious. False Negatives (FN) are mali-

cious packets which are erroneously classified by the algorithm to be non-malicious.

A multitude of different metrics exist, by which one can compare binary classifications. In our

case, we concentrate on the recall, precision, accuracy, F1 score and receiver operating charac-

teristic area under curve (ROC-AUC).

The recall is calculated by dividing the true positives by the sum of true positives and false

negatives and shows the probability by which a malicious sample is correctly identified by the

machine learning algorithm. It is also sometimes called the true positive rate, sensitivity or hit

rate.

4.3. Implementation 31

Recall − TP

TP + FN
(4.1)

The precision is defined as the number of true positives divided by the sum of true positives

and false positives. It therefore shows the number of correctly identified malicious samples in

proportion to the total count of samples classified as malicious.

Precision − TP

TP + FP
(4.2)

When dividing the sum of all correctly classified samples by the total number of samples (cor-

rectly and falsely classified) the result is called the accuracy.

Accuracy − TP + TN

TP + TN + FP + FN
(4.3)

The F1 score is calculated as the harmonic mean of the precision and recall.

F1 − 2TP

2TP + FP + FN
(4.4)

Whether a good choice of parameters can also lead to a good result in terms classifying malware

correctly is pictured by the receiver operating characteristic area under curve (ROC-AUC). The

recall is being plotted as a function of the false positive rate resulting in a curve. The area under

this curve aims to get as near as possible to 1 being the perfect score whilst a value of 0.5 denotes

that the classifier under test is no better than a pure random guesser. For the random forest

algorithm, we need to use the predict proba function from SKlearn - in which the prediction

probabilities are calculated as the mean predicted class probabilities of the trees in a forest [76]

- to calculate the ROC-AUC score, since otherwise the score would be computed just on the

binary classifier label which is of course nonsensical.

4.3 Implementation

We start with a description of the random forest implementation and then continue with the

implementation of the LSTM autoencoder.

32 4. Methodology

Fig. 4.8: Flowchart of RF experiment preparation.

4.3.1 Random Forest

As mentioned in section 4.1, we use the ISOT data set. A random forest is a flow-based algorithm,

thus we extract the flows with 43 features from the original data set. The feature extraction is

described in section 4.1.1 where a list of all features used is found in table 4.2.

NaN values are undefined values or fillers for values that are missing, so that in our case, when

for example only the forward part of a flow is available, all computations on the backward part

of the flow (such as standard deviation, mean, etc.) are set to NaN. Since the NaNs are, in

this case, a representation of a non-existing entry, we can set them to zero. All features are

normalized with a min-max scaler that was provided by SKlearn [76] as well; it scales each

feature to a range between 0 and 1. The scaling is usually necessary in neural network based

methods to adjust every feature to the same interval so that the algorithm does not attach

special importance to features with larger numbers. For tree-based methods, scaling does not

influence results. However, since we scaled the data for the LSTM, we also include this step for

the RF classifier. The flows are shuffled so the algorithm can’t learn from the order of the flows.

Afterwards, the data set is split into a training (70%) and a testing (30%) part.

The maximum depth and MSL range are then provided as hyperparameters to a search of the

best combination of hyperparameters based on a evolutionary genetic algorithm. The properties

of this genetic algorithm [77] are the default parameters given by the Python SKlearn [76]

implementation:

Ţ Gene mutation probability: 0.10

Ţ Gene cross over probability: 0.5

Ţ Tournament size: 3

Ţ Number of generations: 6

The random forest implementation is also provided by the python 3 package SKlearn [76] with

a Number of trees of 1+ Number of features / 2, the tree depth resulting from the genetic

4.3. Implementation 33

Fig. 4.9: Flowchart of LSTM experiment preparation.

algorithm as well as the minimum number of samples per leaf (MSL).

The best random forest selected by the genetic algorithm is then subject to a feature importance

check and chosen as the result of the experiment. The importance of this feature for classification

is based on the Gini impurity, which calculated as follows:

G −
nc�

i=1
pi · (1 ⩾ pi) (4.5)

nc denotes the number of classes while pi denotes the ratio of classes in a branch. The feature

importance is then calculated as the mean of the Gini impurity of all branches. The sum of all

features is equal to 1. It can also be interpreted as the normalized total reduction of criterion

brought by that feature [76], as explained in the SKlearn metrics. Figure 4.8 shows all steps

taken to prepare the data set for the random forest experiments.

4.3.2 LSTM implementation

The Python 3 programming language is used with the Keras [78] package and tensorflow back-

end [79] to create the machine learning model and experiments. Keras is a high-level application

programming interface (API) that provides a vast array of machine learning building blocks, such

as implementations of neural networks, LSTMs, etc.

Section 4.1 describes the ISOT [10] data set used. The feature extraction is then described in

section 4.1.2. The data set consisting of only benign data is used for training, validation and

testing (after being mixed with malicious data) whereas the malicious data is only used for test-

ing. The benign parts for testing are shuffled together with the botnet data, while the training

and testing sets are shuffled individually. Since not all flows are of the same length, we need to

either cut off or add packets to a flow to achieve uniformity. We decide to let each flow contain

ten packets (time steps). Thus, we introduce a padding for all the flows containing less than ten

packets. This padding is created with the Keras [78] pad sequences command with parameters

‘padding’ and ‘truncating’ set to ‘post’. It is padded with ‘2’ for all features. This padding is

recognized and then masked for the experiments.

34 4. Methodology

Afterwards, the data is normalized with a MinMaxScaler [76] using the fit transform command.

Since the MinMaxScaler can only work with 2-dimensional data, but the LSTM autoencoder

needs 3 dimensions, the complete data structure is reshaped to the correct dimensions: num-

ber of samples x time steps x features. Then, a masking layer is introduced to recognize the

0-padding time steps so they wouldn’t be trained on. After this normalization, we start with

the experiments.

First, the LSTM autoencoder is trained on the training data set to recognize benign data. To

re-examine whether this process is successful, validation is carried out. The validation data set

is however not used to calculate any statistics or key results (such as the threshold) for the

model. For the testing part, both benign and malicious data is used. Only at this stage to we

calculate the threshold, the method is detailed below.

In an autocencoder, the difference between benign and malicious data is portrayed by a recon-

struction error. The metric used for the reconstruction error ist the mean squared error. A very

good description is found in Xia et al. 2015 [39]: “[normal data is] much easier to reconstruct

than outliers [,therefore] the larger the difference between the output (i.e. the reconstructed input)

and the original input, the more likely it is that the corresponding data is an outlier.” The more

the data before encoding and after decoding diverges, the higher this error and subsequently

the probability of it being malicious data is. The threshold is the cutoff line between data being

classified as benign or malicious: all data with a reconstruction error lower than the threshold is

classified as benign, all data with a reconstruction error greater than the threshold as malicious.

For an interval from 0 to 1 in steps of 0.01, at each step the F1-score of the respective threshold

is calculated. The threshold with the highest F1-score is then selected as the threshold by which

the experiment results are classified. In our work, we use the testing data for this.

The LSTM encoding layer consists of three LSTMs provided by Keras [78]. With all layers using

sigmoid recurrent activation, in the first two of these layers the return sequences parameter is

set to ‘true’, whilst the third one is set to ‘false’. Between the encoding and decoding layer, we

introduce a RepeatVector in order to turn the data passing the auto encoder back into the right

dimension for the decoder.

The decoding layer also consists of three LSTMs with sigmoid recurrent activation, yet the re-

turn sequences parameter set to ‘true’ for all of them. In order to enable the reconstruction of

the data set a dense layer is introduced. We select the mean squared error as the loss function

for the auto encoder.

Figure 4.9 shows all steps taken to prepare the data set for the long short-term memory exper-

iments, and the code is uploaded to a Github repository [80].

35

Chapter 5

Experiments

5.1 Experiments with Random Forest

A random forest is an evolution of a decision tree algorithm. As with forests and trees, it is

an amplification using many decision trees at the same time and later pooling or averaging

their subsequent results. Finally, the random forest classifier’s result is the output selected by

a majority of the individual random trees. This process is more robust, especially against over-

fitting of the individual trees to a training set. However, it is a form of supervised learning

algorithms, needing labeled training data. In terms of supervised learning algorithms, a random

forest is a simple and easy to follow approach. Therefore, it was an initial choice for this thesis.

It is described in more detail in Section 2.2.1

First, the shuffled and labeled data set is split into two parts, one of which is used for the

training and the other for the testing stage. During the training stage, labeled data is given

to the algorithm from which it can learn how to distinguish benign and malicious data. To

re-examine whether this learning process was successful, for the testing stage the remaining part

of the data set is unlabeled before it is given to the algorithm and a testing is carried out. As

the labels are saved separately, we can compare the classification results of the testing with

them and see how well the algorithm performs. The data set used in both stages is described in

section 4.1.

For the first six experiments with the previous normalization, the maximum minimum num-

ber of sample leafs (hereafter MMSL) is set to three, the maximum tree depth is also set to

three. However, we discovered that for each of these experiments one feature has over 99%

feature importance. We thus gradually eliminate the following features from the feature list:

minimum inter arrival time of packets in forward direction, minimum inter arrival time of pack-

ets in backward direction, mean inter arrival time of packets in forward direction, maximum

inter arrival time of packets in forward direction and standard deviation of inter arrival time

36 5. Experiments

Number Number of featureſ MMSL max depth
1 38 3 3
2 38 4 4
3 38 5 5
4 38 6 6
5 38 7 7
6 38 8 8
7 38 9 9
8 38 10 10
9 38 11 11
10 38 12 12
11 38 13 13
12 38 14 14
13 38 15 15
14 38 16 16
15 38 17 17
16 38 18 18
17 38 19 19
18 38 20 20
19 38 25 25
20 38 30 30
21 38 35 35

Tab. 5.1: Experiments made with the Random Forest algorithm

of packets in forward direction. At the end, we are left with 38 different features. All other

parameters are kept as is.

These MMSL and max depth values are set as maxima, which means that the algorithm applies

values up to the set ones: with a MMSL of three, the algorithm can choose to build random

forests consisting of decision trees which have a minimum number of samples per leaf of one,

two or three.

For the next seventeen experiments (RF 1 -RF 21), the number of features is kept at 38 but the

MMSL and the maximum depth are both incrementally increased from 4 to 20 in each subse-

quent experiment. This is to check if a higher number of samples per leaf or a higher maximum

depth can significantly impact the results of the random forest algorithm. Afterwards, three

more experiment are made with a larger spacing, in our case 25, 30 and 35. The aim is to check

how the detection performance evolves with different parameters.

An overview of the features used can be found in table 5.2, and the experiments and their pa-

rameters can be found in table 5.1. The random forest experiments were run on a computer

with a GPU with 2 GB VRAM, 8 core CPU and 16 GB RAM.

5.1. Experiments with Random Forest 37

Featureſ uſed Featureſ removed
ſourceTra♪ſportPort mi♪ i♪terPacketTime mſ, fwd
deſti♪atio♪Tra♪ſportPort mea♪ i♪terPacketTime mſ, fwd
protocolIde♪tiĄer max i♪terPacketTime mſ, fwd
packetTotalCou♪t, fwd ſtdev i♪terPacketTime mſ, fwd
octetTotalCou♪t, fwd mi♪ i♪terPacketTime mſ, bwd
mi♪ ipTotalLe♪gth, fwd
mea♪ ipTotalLe♪gth, fwd
max ipTotalLe♪gth, fwd
ſtdev ipTotalLe♪gth, fwd
varia♪ce ipTotalLe♪gth, fwd
varia♪ce i♪terPacketTime mſ, fwd
tcpSy♪TotalCou♪t, fwd
tcpAckTotalCou♪t, fwd
tcpFi♪TotalCou♪t, fwd
tcpPſhTotalCou♪t, fwd
tcpRſtTotalCou♪t, fwd
tcpUrgTotalCou♪t, fwd
tcpCwrTotalCou♪t, fwd
tcpEceTotalCou♪t, fwd
packetTotalCou♪t, bwd
octetTotalCou♪t, bwd
mi♪ ipTotalLe♪gth, bwd
mea♪ ipTotalLe♪gth, bwd
max ipTotalLe♪gth, bwd
ſtdev ipTotalLe♪gth, bwd
varia♪ce ipTotalLe♪gth, bwd
mea♪ i♪terPacketTime mſ, bwd
max i♪terPacketTime mſ, bwd
ſtdev i♪terPacketTime mſ, bwd
varia♪ce i♪terPacketTime mſ, bwd
tcpSy♪TotalCou♪t, bwd
tcpAckTotalCou♪t, bwd
tcpFi♪TotalCou♪t, bwd
tcpPſhTotalCou♪t, bwd
tcpRſtTotalCou♪t, bwd
tcpUrgTotalCou♪t, bwd
tcpCwrTotalCou♪t, bwd
tcpEceTotalCou♪t, bwd

Tab. 5.2: Features used by random forest

38 5. Experiments

5.2 Experiments with LSTM autoencoder

An introduction to LSTMs is presented in section 2.2.2. Several hyperparameters are relevant

for an LSTM autoencoder: batch size, epochs and the number of neurons in each layer. The

number of neurons in a layer is interesting to illuminate because too small a number can lead to

very poor results but too many can lead to very long durations of the experiments. To generate a

reference to which all experiments can be compared to, a first experiment named ISOT baseline

was made with the following hyperparameters, shown in 5.3, originating from a combination of

two papers: [35] for using “approximately 23 neurons per layer”, which we round to 20, and [34]

for using 5 neurons in the last layer.

In a first set we set the neurons in layer 1 and 2 to 100 each, while in layer 3 we change them

from 10 to 50 in steps of 10 while batch size and epochs are (identical to the baseline) 50. These

experiments are called ISOT 000 to 004.

Name Neuro♪ſ Layer 1 Neuro♪ſ Layer 2 Neuro♪ſ Layer 3 Batch ſize Epochſ
ISOT baſeli♪e 20 20 5 50 50
ISOT 000 100 100 10 50 50
ISOT 001 100 100 20 50 50
ISOT 002 100 100 30 50 50
ISOT 003 100 100 40 50 50
ISOT 004 100 100 50 50 50

Tab. 5.3: Baseline and Ąrst set of LSTM autoencoder experiments

For the next set, the batch size of the two experiments showing the highest AUC (002 and

003), see section 6.2 for all results, was varied from 30 to 120 in changing steps (30, 40, 60, 70,

120) in order to check the impact of the batch size on the AUC. The AUC was calculated by

using the auc-function from the SKlearn metrics module, using the trapezoidal rule [76]. We

skip batch size 50 as we already simulated with these hyperparameters in the previous set. The

experiments are called ISOT 010 to 019.

5.2. Experiments with LSTM autoencoder 39

Name Neuro♪ſ Layer 1 Neuro♪ſ Layer 2 Neuro♪ſ Layer 3 Batch ſize Epochſ
ISOT 010 100 100 40 30 50
ISOT 011 100 100 30 30 50
ISOT 012 100 100 40 40 50
ISOT 013 100 100 30 40 50
ISOT 014 100 100 40 60 50
ISOT 015 100 100 30 60 50
ISOT 016 100 100 40 70 50
ISOT 017 100 100 30 70 50
ISOT 018 100 100 40 120 50
ISOT 019 100 100 30 120 50

Tab. 5.4: Second set of LSTM autoencoder experiments

In a next step, the neurons in layer 1 and 2 are set to 200 each due to the consideration

that the more neurons are used the higher the AUC could get as each neuron saves information,

therefore the more neurons are available, the more information about the data set can be saved

by the algorithm and recalled when evaluating unknown data. At the same time, layer 3 is set

to 40 neurons as this number had previously shown consistent results using the same batch sizes

of 30, 40, 60, 70 and 120. These series of experiments are called ISOT 020 to 024.

Name Neuro♪ſ Layer 1 Neuro♪ſ Layer 2 Neuro♪ſ Layer 3 Batch ſize Epochſ
ISOT 020 200 200 40 30 50
ISOT 021 200 200 40 40 50
ISOT 022 200 200 40 60 50
ISOT 023 200 200 40 70 50
ISOT 024 200 200 50 120 50

Tab. 5.5: Third set of LSTM autoencoder experiments

We set a set called ISOT 030 to 037 with the following hyperparameters:

Ţ Batch size 50

Ţ Epochs 50

Ţ Neurons layer 1 200

Ţ Neurons layer 2 200

Ţ Neurons layer 3 ranging from 40 to 110 in steps of 10

This set is based upon the set 000 to 004 while having the doubled number of neurons in layer 1

and 2. As the result from 000 to 002 were not satisfactory in terms of AUC we choose to start

40 5. Experiments

with 40 neurons in layer 3 and going up to 110 in order to check the effect of a higher number

of neurons in layer 3 on the AUC:

Name Neuro♪ſ Layer 1 Neuro♪ſ Layer 2 Neuro♪ſ Layer 3 Batch ſize Epochſ
ISOT 030 200 200 40 50 50
ISOT 031 200 200 50 50 50
ISOT 032 200 200 60 50 50
ISOT 033 200 200 70 50 50
ISOT 034 200 200 80 50 50
ISOT 035 200 200 90 50 50
ISOT 036 200 200 100 50 50
ISOT 037 200 200 110 50 50

Tab. 5.6: Fourth set of LSTM autoencoder experiments

Following the assumption that a higher number of neurons correlates to a higher AUC, we

start two further sets raising the neurons of layer 1 and 2 to 300 (ISOT 04*) and 400 (ISOT 05*)

each. These two series of experiments are both based on ISOT 02* with a batch size varying

from 30–70 in steps of 10 and 120.

Name Neuro♪ſ Layer 1 Neuro♪ſ Layer 2 Neuro♪ſ Layer 3 Batch ſize Epochſ
ISOT 040 300 300 40 30 50
ISOT 041 300 300 40 40 50
ISOT 042 300 300 40 50 50
ISOT 043 300 300 40 60 50
ISOT 044 300 300 40 70 50
ISOT 045 300 300 40 120 50
ISOT 050 400 400 40 30 50
ISOT 051 400 400 40 40 50
ISOT 052 400 400 40 500 50
ISOT 053 400 400 40 60 50
ISOT 054 400 400 40 70 50
ISOT 055 400 400 40 120 50

Tab. 5.7: Fifth and sixth sets of LSTM autoencoder experiments

To investigate the effect of a changed number of neurons in layer 2 we devise a series of

experiments based on ISOT 04*/05* in which we set the neurons of layer 1 to 500 whilst altering

the neurons in layer 2 between 250 and 500. Thus we have the following experiments ISOT 06*:

5.2. Experiments with LSTM autoencoder 41

Name Neuro♪ſ Layer 1 Neuro♪ſ Layer 2 Neuro♪ſ Layer 3 Batch ſize Epochſ
ISOT 060 500 500 40 30 50
ISOT 061 500 250 40 30 50
ISOT 062 500 500 40 40 50
ISOT 063 500 250 40 40 50
ISOT 064 500 500 40 50 50
ISOT 065 500 250 40 50 50
ISOT 066 500 500 40 60 50
ISOT 067 500 250 40 60 50
ISOT 068 500 500 40 70 50
ISOT 069 500 250 40 70 50
ISOT 0610 500 500 40 120 50
ISOT 0611 500 250 40 120 50

Tab. 5.8: Seventh of LSTM autoencoder experiments

As we do not observe big differences between 250 and 500 neurons in layer 2, a new batch

(ISOT 07*) is devised for further investigation. For that reason, the neurons in layer 1 are

increased to 500 or 1000 with the neurons in layer 2 being reduced to 120 or 250. Layer 3 is

kept to 40 neurons; the batch size and epochs are kept at 50.

Name Neuro♪ſ Layer 1 Neuro♪ſ Layer 2 Neuro♪ſ Layer 3 Batch ſize Epochſ
ISOT 070 1000 250 40 50 50
ISOT 071 1000 120 40 50 50
ISOT 072 500 250 40 50 50
ISOT 073 500 120 40 50 50

Tab. 5.9: Eighth set of LSTM autoencoder experiments

Finally, we want to test the benefits of a very high number of neurons in layer 1 in respect

to the increase of computation time needed for such experiments. We set up a series of five

experiments to test whether such an increase in neurons is even beneficial. In ISOT 08* we

increase the neurons of layer 1 from 1000 to 2000.

Name Neuro♪ſ Layer 1 Neuro♪ſ Layer 2 Neuro♪ſ Layer 3 Batch ſize Epochſ
ISOT 080 1000 500 40 50 50
ISOT 081 1200 500 40 50 50
ISOT 082 1500 500 40 50 50
ISOT 083 1800 500 40 50 50
ISOT 084 2000 500 50 50 50

Tab. 5.10: Ninth sets of LSTM autoencoder experiments

An overview of all experiments can be found in table 5.11 on the following page. The results

will be presented in Chapter 6.2 and discussed in Chapter 7. The LSTM autoencoder experi-

ments were run on a computer with a GPU with 12 GB VRAM, 16 core CPU and 100 GB RAM.

42 5. Experiments

Tab. 5.11: Experiments made with the LSTM autoencoder algorithm

Name Neurons layer 1 Neurons layer 2 Neurons layer 3 Batch size Epochs

ISOT 000 100 100 10 50 50

ISOT 001 100 100 20 50 50

ISOT 002 100 100 30 50 50

ISOT 003 100 100 40 50 50

ISOT 004 100 100 50 50 50

ISOT 010 100 100 40 30 50

ISOT 011 100 100 30 30 50

ISOT 012 100 100 40 40 50

ISOT 013 100 100 30 40 50

ISOT 014 100 100 40 60 50

ISOT 015 100 100 30 60 50

ISOT 016 100 100 40 70 50

ISOT 017 100 100 30 70 50

ISOT 018 100 100 40 120 50

ISOT 019 100 100 30 120 50

ISOT 020 200 200 40 30 50

ISOT 021 200 200 40 40 50

ISOT 022 200 200 40 60 50

ISOT 023 200 200 40 70 50

ISOT 024 200 200 40 120 50

ISOT 030 200 200 40 50 50

ISOT 031 200 200 50 50 50

ISOT 032 200 200 60 50 50

ISOT 033 200 200 70 50 50

ISOT 034 200 200 80 50 50

ISOT 035 200 200 90 50 50

ISOT 036 200 200 100 50 50

ISOT 037 200 200 110 50 50

ISOT 040 300 300 40 30 50

ISOT 041 300 300 40 40 50

ISOT 042 300 300 40 50 50

ISOT 043 300 300 40 60 50

5.2. Experiments with LSTM autoencoder 43

ISOT 044 300 300 40 70 50

ISOT 045 300 300 40 120 50

ISOT 050 400 400 40 30 50

ISOT 051 400 400 40 40 50

ISOT 052 400 400 40 50 50

ISOT 053 400 400 40 60 50

ISOT 054 400 400 40 70 50

ISOT 055 400 400 40 120 50

ISOT 060 500 500 40 30 50

ISOT 061 500 250 40 30 50

ISOT 062 500 500 40 40 50

ISOT 063 500 250 40 40 50

ISOT 064 500 500 40 50 50

ISOT 065 500 250 40 50 50

ISOT 066 500 500 40 60 50

ISOT 067 500 250 40 60 50

ISOT 068 500 500 40 70 50

ISOT 069 500 250 40 70 50

ISOT 0610 500 500 40 120 50

ISOT 0611 500 250 40 120 50

ISOT 070 1000 250 40 50 50

ISOT 071 1000 120 40 50 50

ISOT 072 500 250 40 50 50

ISOT 073 500 120 40 50 50

ISOT 080 1000 500 40 50 50

ISOT 081 1200 500 40 50 50

ISOT 082 1500 500 40 50 50

ISOT 083 1800 500 40 50 50

ISOT 084 2000 500 40 50 50

44 5. Experiments

45

Chapter 6

Results

6.1 Results of Random Forest

The random forest experiments always contained both a training as well as a testing stage. For

the testing stage the following results are achieved:

Due to previous experiments, albeit based on a different normalization, showing too high of an

importance for 5 features, these were removed from the feature list. In experiment 1 the feature

importance did not single out one feature. Instead, 16 features were selected by the algorithm,

4 of them reaching an importance from 10 - 22% and the rest showing less than 10%.

These results are shown in Table 6.1.Experiments 1 to 15 selected the maximum possible tree

depth. However, when it came to the leaves, only experiment 2, 4, 6, 10 chose the maximum

available number. All others showed a lower number of leaves compared to the tree depth.

The random forest algorithm polls the classification result from each tree and selects the final

classification with a majority vote. The best results show the best combination of parameters.

A general trend towards a better accuracy was found in experiments with a greater tree depth,

until a maximum of 22. This also applies for the F1-score, precision and recall. However, the

best ROC-AUC is found with a tree depth of 16.

All experiments showed an accuracy from 0.97538- 0.994743, the best experiments matching

the results found in literature with the ISOT data set, see table 6.2. In our experiments, the

ROC-AUC was between 0.9753 - 0.99825. As this metric could not be found in literature, the

results could not be compared. The F1-score was found to be in the range from 0.0 - 0.890467

and could also not be directly compared to literature results. Precision and Recall were also

evaluated and were found to be between 0.0 – 0.99168, respectively 0.0 – 0.87730. This wide

range observed in recall is due to experiment 6, which consistently showed the worst results also

in all other metrics (ROC-AUC 0.97538, F1 0.0, precision 0.0, recall 0.0).

When gradually increasing the maximum tree depth, a higher tree depth generally correlates to

46 6. Results

better results in all metrics with experiment 19 scoring best except in ROC-AUC and precision

(ROC-AUC 0.99671, F1 0.89046, accuracy 0.99474, recall 0.87730, precision 0.90414). The best

precision results (0.99168) were achieved by experiment 2.

An overview of all results of the random forest experiments can be found in table 6.1 on the

next page.

6.1. Results of Random Forest 47

N
um

be
r

N
r

of
fe

at
ur

eſ
M

M
SL

m
ax

de
pt

h
be

ſt
M

SL
be

ſt
de

pt
h

RO
C

A
U

C
A

cc
ur

ac
y

Pr
ec

iſi
o♪

R
ec

al
l

F1
-ſ

co
re

1
38

3
3

3
3

0.
97

53
80

0.
97

56
44

0.
0

0.
0

0.
0

2
38

4
4

1
4

0.
98

56
87

0.
97

87
64

0.
99

16
81

0.
12

93
88

0.
22

13
92

3
38

5
5

4
5

0.
99

02
02

0.
98

38
40

0.
95

38
64

0.
35

38
13

0.
51

59
29

4
38

6
6

3
6

0.
99

22
39

0.
98

95
31

0.
91

92
46

0.
62

61
06

0.
74

40
02

5
38

7
7

7
7

0.
99

43
61

0.
99

09
36

0.
89

65
52

0.
71

05
36

0.
79

19
63

6
38

8
8

4
8

0.
99

52
50

0.
99

19
84

0.
89

53
35

0.
75

96
62

0.
82

19
22

7
38

9
9

8
9

0.
99

62
98

0.
99

24
45

0.
88

71
09

0.
79

04
14

0.
83

59
45

8
38

10
10

3
10

0.
99

69
38

0.
99

28
80

0.
89

21
09

0.
80

51
27

0.
84

63
42

9
38

11
11

2
11

0.
99

75
75

0.
99

34
03

0.
90

36
38

0.
81

63
05

0.
85

76
89

10
38

12
12

4
12

0.
99

77
87

0.
99

36
71

0.
90

29
73

0.
82

94
38

0.
86

45
78

11
38

13
13

1
13

0.
99

77
83

0.
99

39
52

0.
90

18
01

0.
84

36
47

0.
87

16
92

12
38

14
14

2
14

0.
99

77
32

0.
99

42
14

0.
90

26
58

0.
85

48
23

0.
87

79
71

13
38

15
15

2
15

0.
99

77
70

0.
99

44
48

0.
90

42
70

0.
86

35
38

0.
88

33
98

14
38

16
16

2
16

0.
99

82
53

0.
99

45
28

0.
90

18
07

0.
87

02
95

0.
88

56
77

15
38

17
17

1
17

0.
99

79
45

0.
99

45
94

0.
90

11
30

0.
87

40
84

0.
88

73
36

16
38

18
18

1
17

0.
99

79
45

0.
99

45
94

0.
90

11
30

0.
87

40
84

0.
88

73
36

17
38

19
19

1
17

0.
99

79
45

0.
99

45
94

0.
90

11
30

0.
87

40
84

0.
88

73
36

18
38

20
20

3
19

0.
99

72
94

0.
99

46
69

0.
90

44
53

0.
87

35
15

0.
88

86
74

19
38

25
25

3
22

0.
99

67
16

0.
99

47
43

0.
90

41
47

0.
87

73
04

0.
89

04
67

20
38

30
30

3
28

0.
99

33
04

0.
99

47
06

0.
90

46
59

0.
87

49
68

0.
88

95
16

21
38

35
35

2
22

0.
99

64
00

0.
99

47
37

0.
90

45
78

0.
87

64
83

0.
89

02
51

Ta
b.

6.
1:

R
es

ul
ts

of
th

e
ra

nd
om

fo
re

st
ex

pe
rim

en
ts

48 6. Results

Experime♪t Accuracy Recall Falſe Alarm Rate MCC Std dev F-meaſure
Al-Jarrah S3 0.999845 0.9942 0.00009 0.9927 0.0031
REPTree 0.999819 0.9930 0.00011 0.9915 0.0028
RTree 0.999816 0.9905 0.00008 0.9913 0.0032
C4.5 0.999811 0.9930 0.00011 0.9911 0.0020
DNN 0.999575 0.9869 0.00029 0.9801 0.0041
SMO 0.999491 0.9962 0.00015 0.9758 0.0033

Tab. 6.2: Results of experiments found in literature [63] using the ISOT data set.

6.2 Results of LSTMs

The aim of our experiments was to find a set of hyperparameters for the LSTM autoencoder

which show optimal performance. We measure these performances with the Receiver Operating

Characteristic - Area Under Curve (ROC-AUC, or simply AUC). As mentioned in section 4.2,

the ROC is created by plotting the true-positive rate against the false-positive rate for different

thresholds. For varying the threshold, different MSE values were used as decision boundary

between benign and malicious. Samples that got a result above the threshold are classified as

malicious. The area encompassed under the ROC-curve, the ROC-AUC, describes how well a

classifier can detect malicious activity. An AUC of 1 would imply a perfect classifier detecting

without any false positives or false negatives, whereas an AUC of 0.5 describes a classifier

randomly choosing the classifications. Therefore, the effective usable results range between

AUC 0.5 and 1. All further metrics have already been described in chapter 4.2.

Based on a literature review by Abraham et al. 2018 [11] the maximum achieved ROC-AUC

score is 0.99 with the Stratosphere IPS data set [46]. This is set as a benchmark for our

experiments to compete against. The experiments are run as described in chapter 5.2.

At first, we performed a separate normalization for benign and botnet data. With this we

achieved very good results (ROC-AUC >0.9999 with thresholds between 01. and 0.3), however

such a normalization is not correct because it can introduce bias in the classes which influences

the detection performance. In addition, we detected negative inter packet time values in the

benign data set (but not in the botnet data). These artifacts are outliers only in the benign data

an therefore cause a large shift in the normalized values. It is thus likely that the previously

reported good results were only caused by the wrong normalization in combination with outlier

from the artifacts. Regrettably, this mistake was undiscovered for a while. As soon as we became

aware of this mistake, the normalization was repeated, this time with botnet and benign data

using the same normalization, and the experiments were repeated. These new results cannot

match the previous ones. We notice that the best AUC is achieved by Experiment ISOT 045 at

0.637. All other experiments (except one) achieve an AUC of at least 0.507. The threshold of

6.2. Results of LSTMs 49

Fig. 6.1: ROC curve of the best performing exper-
iment.

Fig. 6.2: ROC curve of the worst performing ex-
periment.

all simulations is set at 0, because this gave the best results for the classifier. The ROC-curve

for ISOT 045 ist shown in 6.1 and for the worst performing experiment (ISOT 011) in 6.2. All

results discussed in this section are shown in table 6.3 in a concise manner. In the appendix

B, the MSE for the TCP flags, benign or malicious, are found. Additionally, the reconstruction

error and threshold with its F1-score with the scatterplot of benign and malicious packets are

also in the annex. The reconstruction error is calculated as the mean square of the predicted

data-points subtracted from the real data-points.

50 6. Results

Tab. 6.3: Results of LSTM autoencoder experiments

name threshold AUC accuracy precision recall f1-score

ISOT 000 0.0 0.546989 0.723802 0.723802 1.0 0.839774

ISOT 001 0.0 0.566206 0.723802 0.723802 1.0 0.839774

ISOT 002 0.0 0.601628 0.723802 0.723802 1.0 0.839774

ISOT 003 0.0 0.583936 0.723802 0.723802 1.0 0.839774

ISOT 004 0.0 0.527389 0.723802 0.723802 1.0 0.839774

ISOT 010 0.0 0.569080 0.723802 0.723802 1.0 0.839774

ISOT 011 0.0 0.449944 0.723802 0.723802 1.0 0.839774

ISOT 012 0.0 0.549964 0.723802 0.723802 1.0 0.839774

ISOT 013 0.0 0.577193 0.723802 0.723802 1.0 0.839774

ISOT 014 0.0 0.607330 0.723802 0.723802 1.0 0.839774

ISOT 015 0.0 0.542848 0.723802 0.723802 1.0 0.839774

ISOT 016 0.0 0.540393 0.723802 0.723802 1.0 0.839774

ISOT 017 0.0 0.544407 0.723802 0.723802 1.0 0.839774

ISOT 018 0.0 0.599773 0.723802 0.723802 1.0 0.839774

ISOT 019 0.0 0.580644 0.723802 0.723802 1.0 0.839774

ISOT 020 0.0 0.568908 0.723802 0.723802 1.0 0.839774

ISOT 021 0.0 0.507493 0.723802 0.723802 1.0 0.839774

ISOT 022 0.0 0.520279 0.723802 0.723802 1.0 0.839774

ISOT 023 0.0 0.530840 0.723802 0.723802 1.0 0.839774

ISOT 024 0.0 0.549771 0.723802 0.723802 1.0 0.839774

ISOT 030 0.0 0.542477 0.723802 0.723802 1.0 0.839774

ISOT 031 0.0 0.605210 0.723802 0.723802 1.0 0.839774

ISOT 032 0.0 0.568096 0.723802 0.723802 1.0 0.839774

ISOT 033 0.0 0.549595 0.723802 0.723802 1.0 0.839774

ISOT 034 0.0 0.515042 0.723802 0.723802 1.0 0.839774

ISOT 035 0.0 0.570335 0.723802 0.723802 1.0 0.839774

ISOT 036 0.0 0.535696 0.723802 0.723802 1.0 0.839774

ISOT 037 0.0 0.527929 0.723802 0.723802 1.0 0.839774

ISOT 040 0.0 0.578619 0.723802 0.723802 1.0 0.839774

ISOT 041 0.0 0.557202 0.723802 0.723802 1.0 0.839774

ISOT 042 0.0 0.605636 0.723802 0.723802 1.0 0.839774

ISOT 043 0.0 0.553386 0.723802 0.723802 1.0 0.839774

6.2. Results of LSTMs 51

Tab. 6.3: Results of LSTM autoencoder experiments

name threshold AUC accuracy precision recall f1-score

ISOT 044 0.0 0.547465 0.723802 0.723802 1.0 0.839774

ISOT 045 0.0 0.637169 0.723802 0.723802 1.0 0.839774

ISOT 050 0.0 0.557609 0.723802 0.723802 1.0 0.839774

ISOT 051 0.0 0.595246 0.723802 0.723802 1.0 0.839774

ISOT 052 0.0 0.542238 0.723802 0.723802 1.0 0.839774

ISOT 053 0.0 0.579823 0.723802 0.723802 1.0 0.839774

ISOT 054 0.0 0.586144 0.723802 0.723802 1.0 0.839774

ISOT 055 0.0 0.515051 0.723802 0.723802 1.0 0.839774

ISOT 060 0.0 0.522367 0.723802 0.723802 1.0 0.839774

ISOT 061 0.0 0.540737 0.723802 0.723802 1.0 0.839774

ISOT 062 0.0 0.597789 0.723802 0.723802 1.0 0.839774

ISOT 063 0.0 0.544951 0.723802 0.723802 1.0 0.839774

ISOT 064 0.0 0.554115 0.723802 0.723802 1.0 0.839774

ISOT 065 0.0 0.508448 0.723802 0.723802 1.0 0.839774

ISOT 066 0.0 0.557912 0.723802 0.723802 1.0 0.839774

ISOT 067 0.0 0.552052 0.723802 0.723802 1.0 0.839774

ISOT 068 0.0 0.554237 0.723802 0.723802 1.0 0.839774

ISOT 069 0.0 0.505602 0.723802 0.723802 1.0 0.839774

ISOT 0610 0.0 0.551995 0.723802 0.723802 1.0 0.839774

ISOT 0611 0.0 0.511414 0.723802 0.723802 1.0 0.839774

ISOT 070 0.0 0.593541 0.723802 0.723802 1.0 0.839774

ISOT 071 0.0 0.512012 0.723802 0.723802 1.0 0.839774

ISOT 072 0.0 0.524455 0.723802 0.723802 1.0 0.839774

ISOT 073 0.0 0.556778 0.723802 0.723802 1.0 0.839774

ISOT 080 0.0 0.573426 0.723802 0.723802 1.0 0.839774

ISOT 081 0.0 0.593448 0.723802 0.723802 1.0 0.839774

ISOT 082 0.0 0.608244 0.723802 0.723802 1.0 0.839774

ISOT 083 0.0 0.541571 0.723802 0.723802 1.0 0.839774

ISOT 084 0.0 0.561229 0.723802 0.723802 1.0 0.839774

52 6. Results

53

Chapter 7

Discussion

7.1 Interpretation of results of Random Forest experiments

We shall first concentrate on interpreting the results of our random forest experiments: overall,

the random forest achieves solid results. Our lowest ROC-AUC is at 0.97538 while the highest

achieves 0.99825. The lowest ROC-AUC is reached by RF 1, having a maximum tree depth of

3 whereas the best result is achieved by RF 14 with a maximum tree depth of 16. It has to be

mentioned that experiment RF 1 is definitely an outlier compared to all other experiments; the

next better experiment RF 2 (with a tree depth of 4) already scores a ROC-AUC of 0.98568.

We assume this being due to the overall trend that shows a correlation of better results with

a higher tree depth. Analogous to the popular game called Twenty Questions, where players

have to guess a term by only asking questions answerable with “yes” or “no” and often a certain

minimum number of questions are necessary for the players to find the correct answer, it is also

possible that a certain minimum tree depth is necessary for a good classification.

The recall is found to be in an interval between 0.0 and 0.87730 and follows the trend set by the

ROC-AUC. RF 1 shows the worst results and RF 19 the best, the same situation is to be found

concerning the F1 score which scores between 0.0 and 0.89046. These metrics are consistent

within the picture that a higher tree depth leads to better results.

When looking at the minimum samples per leaf (MSL), we see that the optimizer, except in

RF 1, RF 5 and RF 7, never came close to maxing out this parameter.

When only looking at the precision, one might be led to the misassumption that experiment

RF 2 performs well. However, when also considering ROC-AUC, recall and F1 score, it is ob-

vious that this is not the fact. This is, with the ROC-AUC, the only metrics in which RF 19

is not showing the best results. The overall precision is high, but there ist definitely room for

improvement.

High precision and accuracy imply that only a very small amount of benign flows are classified

54 7. Discussion

Fig. 7.1: Accuracy of all RF experiments. Fig. 7.2: Precision of all RF experiments.

as being malicious. This does not mean, however, that the algorithm correctly differentiates

between benign and malicious flows when relying only on the precision. One must also consider

the recall, which describes how well an algorithm correctly identifies malicious flows in relation

to the total number of malicious flows. Our results show an overall smaller recall, implying

that quite an amount of malicious flows are classified to be benign in our experiments. This is

exemplified in experiments RF 1 and RF 2 - both have high accuracy and RF 2 has the best

precision of all experiments - but their recall and F1-score is abysmal. However, considering the

greater danger presented by a successful malware attack on a target it is crucial to detect as

many malicious activities as possible. Therefore, a high recall is desired, even at the expense of

a lower precision.

In previous experiments (see section 5.1) we had to remove five features until the feature impor-

tance was distributed among more than one feature. All of them involve the inter arrival time

between packets, four out of five in the forwards direction and one in the backwards direction.

When looking at the individual values of these features, we see that, for three of these features

(mean, max, std dev), in the whole extracted data set there are only two distinct intervals, one

of which corresponds to the malicious flows, the other one belonging to benign flows. Since for

the data set generation a benign and a malicious data set were combined that originated from

different networks, it is quite likely that different inter-arrival times occurred in the different

data sets. Nevertheless, between the ISOT and LBNL data sets no direct differences or depen-

dencies can be observed.

7.2. Interpretation of results of LSTM autoencoder experiments 55

Fig. 7.3: Recall of all RF experiments. Fig. 7.4: F1 score of all RF experiments.

Fig. 7.5: ROC-AUC of all RF experiments.

7.2 Interpretation of results of LSTM autoencoder experiments

According to our results, the batch size does not appear to have any influence on the ability of

the algorithm to classify our data as shown by experiments ISOT 01*, 02*, 04*, 05*, 06*.

Also, there is no greater benefit in increasing the neurons in layer 1 and 2 to more than 400

for the results do not get better whereas the computational time increases tremendously. The

neurons in layer 3 are best to be kept much smaller than the number of timesteps time the

number of per-packet features, with an absolute maximum of 100 and 30 or 40 showing better

results than the rest.

When assessing the mean squared error (MSE) for each feature and each time step, we can

conclude that most, if not all, of the TCP flags do not impact the results of our experiments. In

benign as well as malicious data, the MSE for the CWR, ECE, FIN, NS, PSH, RST, SYN and

URG is always 0. A likely explanation for this observation is that these flags are almost never

used in the data set and do not bring an advantage. The MSE for the remaining flag, ACK, can

be greater than 0, in the case of benign as well as in the case of malicious data. This is not a

surprise as ACK is one of the most used flags in the TCP protocol and is set in all packets of

the TCP conversation (with the exception of connection setup and teardown).

56 7. Discussion

Fig. 7.6: Mean squared error of the benign desti-
nation transport port at each timestep and experi-
ment.

Fig. 7.7: Mean squared error of the malicious des-
tination transport port at each timestep and exper-
iment.

Fig. 7.8: Mean squared error of the benign Ćow
direction at each timestep and experiment.

Fig. 7.9: Mean squared error of the malicious Ćow
direction at each timestep and experiment.

Contrary to the flags, we can observe a slightly different behavior for the other features, namely

destination transport port (figure 7.12), flow direction (figure 7.13), inter arrival time and IP

total length. We can also see that timestep 2 has the lowest mean squared error, implying that

it is the easiest to reconstruct. The IP total length shows an MSE smaller than 0.005 in all

cases, see figure 7.11. Overall, we observe that – except for the inter arrival time – time step 9

hardly ever shows an MSE other than 0 which leads to the assumption that time step 9 might

have been padded often. Interestingly, the mean squared error of the malicious samples for the

destination transport port (Figure 7.12) is for all LSTM autoencoder experiments always less

than 0.04. This means that the LSTM autoencoder can reconstruct the malicious samples quite

well. This can be the result of an over-simplification on the part of the autoencoder and is a

pitfall of this class of neural networks. For a deeper dive into this fascinating topic, we refer

to [61]. Also, as Iglesias, Hartl et al. [81] describe, the measure of “outlierness” is difficult for

algorithms leveraging local feature space interpretation. Some additional plots can be found in

the appendix B.

7.3. Major Ąndings 57

Fig. 7.10: Mean squared error of the benign inter-
arrival time at each timestep and experiment.

Fig. 7.11: Mean squared error of the malicious
interarrival time at each timestep and experiment.

Fig. 7.12: Mean squared error of the benign IP
total length at each timestep and experiment.

Fig. 7.13: Mean squared error of the malicious IP
total length at each timestep and experiment.

7.3 Major findings

We use similar features for both machine learning algorithms but they still differ because of

their different approach. For this reason, we cannot compare them directly but look at their

performance under equitable conditions. Despite its simpler design, the random forest far out-

performs the results of the more recent LSTM autoencoder. We observe the general trend that

a higher tree depth is beneficial for the performance of the random forest up to a certain point

(tree depth 19 in our experiments), after which the performance stabilizes on a high level with

the MSL always staying at a low number between one to six. We also observe the great influence

the normalization has on the algorithm: when normalizing (by mistake) benign and botnet data

separately we achieve very good results and the algorithm can distinguish benign from botnet

activity. In our case the extremely strong effect could have been caused by the combination of

the wrong normalization together with outliers in the benign data. The outliers were caused

by artifacts in the data set, that have not been reported by previous users of the data set. In

contrast, with a correct normalization, this did not work. The LSTM autoencoder shows much

worse results and thus cannot make use of its theoretical advantage: to detect malicious activity

after a few packets. Also, it should be noted that choosing different values for the hyperpa-

58 7. Discussion

rameters do not have a great influence on the performance in our experiments; however, this

observation is only valid for the chosen data set and might not be applicable for different data.

Irrespective of the hyperparameters, the TCP flags seem not to have much influence on the clas-

sification in both LSTM autoencoder and random forest. The distribution of the inter-arrival

time for benign samples is distinct from that of the malicious samples: benign samples have a

much greater proportion of higher inter-arrival times, a behavior that is not indicated by the

malicious samples. Additionally, the raw ISOT data set displayed some negative inter-arrival

times, which is of course not possible and probably caused by the merging of different data sets

when the ISOT data was generated. Considering these facts, one must be cautious when using

this feature for training with this data set. The negative interarrival times are only found in

the parts imported from the Lawrence Berkeley National Laboratory (LBNL) [45]. However,

the “original” LBNL data set does not have these artifacts in the inter-arrival time and it is

therefore likely that the error occurred during the merging.

59

Chapter 8

Conclusion

Our aim was to check whether a LSTM autoencoder detects a botnet infection in a network

more accurately than a random forest. We can assert that the random forest algorithm detects

malicious data much better than the LSTM autoencoder, the best result shown by a LSTM

autoencoder being 0.637169 in comparison to 0.999481 achieved by the RF.

In respect to the reliability to detect malicious data with a ROC-AUC greater than 0.99 we can

also confirm that the random forest achieves this goal.

The different hyperparameters of the LSTM autoencoder do not have a big influence on the

detection probability of our data set. This is contrary to the random forest, where we can

definitely conclude that choosing the correct tree depth is crucial for a good classification. The

main advantage of the random forest algorithm is that it is not very resource intensive. From

our observation, a single LSTM autoencoder experiment can take up 15 hours while the RF

experiments never took longer than two hours. Additionally, to run such intense experiments as

a LSTM autoencoder, extremely capable hardware is needed, whereas a RF can be performed by

much less capable hardware. Since an LSTM autoencoder uses per-packet features, the prepro-

cessed data set is much larger than that of a random forest. Compounded by the fact that due

to gradient descent (epochs) the whole data set had to be iterated multiple times, the resource

consumption is much higher for a LSTM autoencoder.

However, our findings are limited by the quality of the data set. We used a data set generated by

ISOT [10], but the interarrival times of the flows seem to be influenced by the generation process

so that we had to remove 5 features in order to get a correctly performing RF experiment. It

would be desirable to check whether similar results can be achieved when using other data sets.

Furthermore, a consensus on a standard set of metrics would be of great advantage to compare

results. Future research could also concentrate on the explainability of the different algorithms,

in particular the LSTM autoencoder. Additionally, further investigation into whether the LSTM

autoencoder can correctly classify flows with more than 10 packets per flow or is prone to over-

60 8. Conclusion

simplification could be worthwhile.

We conclude, that the RF is much more capable than the LSTM autoencoder considering the

requirements and constraints of our data set.

61

Appendix A

Figures for Dataset and Random
Forest

Fig. 1.1: Minimum negative interarrival time in
milliseconds in backward direction.

Fig. 1.2: Minimum positive interarrival time in
milliseconds in backward direction.

62 A. Figures for Dataset and Random Forest

Fig. 1.3: Normalized minimum interarrival time in backward direction.

Fig. 1.4: Minimum negative interarrival time in
milliseconds in forward direction.

Fig. 1.5: Minimum positive interarrival time in
milliseconds in forward direction.

Fig. 1.6: Normalized minimum interarrival time in forward direction.

Fig. 1.7: Maximum negative interarrival time in
milliseconds in forward direction.

Fig. 1.8: Maximum positive interarrival time in
milliseconds in forward direction.

63

Fig. 1.9: Normalized maximum interarrival time in forward direction.

Fig. 1.10: Mean negative interarrival time in mil-
liseconds in forward direction.

Fig. 1.11: Mean positive interarrival time in mil-
liseconds in forward direction.

Fig. 1.12: Normalized mean interarrival time in forward direction.

Fig. 1.13: Standard deviation interarrival time in
milliseconds in forward direction. Fig. 1.14: Variance interarrival time in millisec-

onds in forward direction.

64 A. Figures for Dataset and Random Forest

Fig. 1.15: Normalized standard deviation interar-
rival time in forward direction. Fig. 1.16: Normalized variance interarrival time in

forward direction.

65

Appendix B

Figures for LSTM

The following figures show the mean squared error of all reconstructed benign and malicious

flows.

Fig. 2.1: ACK Ćag in benign Ćows. Fig. 2.2: ACK Ćag in malicious Ćows.

66 B. Figures for LSTM

Fig. 2.3: CWR Ćag in benign Ćows. Fig. 2.4: CWR Ćag in malicious Ćows.

Fig. 2.5: ECE Ćag in benign Ćows. Fig. 2.6: ECE Ćag in malicious Ćows.

Fig. 2.7: FIN Ćag in benign Ćows. Fig. 2.8: FIN Ćag in malicious Ćows.

Fig. 2.9: NS Ćag in benign Ćows. Fig. 2.10: NS Ćag in malicious Ćows.

67

Fig. 2.11: PSH Ćag in benign Ćows. Fig. 2.12: PSH Ćag in malicious Ćows.

Fig. 2.13: SYN Ćag in benign Ćows. Fig. 2.14: SYN Ćag in malicious Ćows.

Fig. 2.15: URG Ćag in benign Ćows. Fig. 2.16: URG Ćag in malicious Ćows.

Fig. 2.17: Reconstruction error and threshold of experiment ISOTbaseline.

68 B. Figures for LSTM

Fig. 2.18: Reconstruction error and threshold of
experiment ISOT 000.

Fig. 2.19: Reconstruction error and threshold of
experiment ISOT 001.

Fig. 2.20: Reconstruction error and threshold of
experiment ISOT 002.

Fig. 2.21: Reconstruction error and threshold of
experiment ISOT 003.

Fig. 2.22: Reconstruction error and threshold of experiment ISOT 004.

69

Fig. 2.23: Reconstruction error and threshold of
experiment ISOT 010.

Fig. 2.24: Reconstruction error and threshold of
experiment ISOT 011.

Fig. 2.25: Reconstruction error and threshold of
experiment ISOT 012.

Fig. 2.26: Reconstruction error and threshold of
experiment ISOT 013.

Fig. 2.27: Reconstruction error and threshold of
experiment ISOT 014.

Fig. 2.28: Reconstruction error and threshold of
experiment ISOT 015.

70 B. Figures for LSTM

Fig. 2.29: Reconstruction error and threshold of
experiment ISOT 016.

Fig. 2.30: Reconstruction error and threshold of
experiment ISOT 017.

Fig. 2.31: Reconstruction error and threshold of
experiment ISOT 018.

Fig. 2.32: Reconstruction error and threshold of
experiment ISOT 019.

Fig. 2.33: Reconstruction error and threshold of
experiment ISOT 020.

Fig. 2.34: Reconstruction error and threshold of
experiment ISOT 021.

71

Fig. 2.35: Reconstruction error and threshold of
experiment ISOT 022.

Fig. 2.36: Reconstruction error and threshold of
experiment ISOT 023.

Fig. 2.37: Reconstruction error and threshold of experiment ISOT 024.

Fig. 2.38: Reconstruction error and threshold of
experiment ISOT 030.

Fig. 2.39: Reconstruction error and threshold of
experiment ISOT 031.

72 B. Figures for LSTM

Fig. 2.40: Reconstruction error and threshold of
experiment ISOT 032.

Fig. 2.41: Reconstruction error and threshold of
experiment ISOT 033.

Fig. 2.42: Reconstruction error and threshold of
experiment ISOT 034.

Fig. 2.43: Reconstruction error and threshold of
experiment ISOT 035.

Fig. 2.44: Reconstruction error and threshold of
experiment ISOT 036.

Fig. 2.45: Reconstruction error and threshold of
experiment ISOT 037.

73

Fig. 2.46: Reconstruction error and threshold of
experiment ISOT 040.

Fig. 2.47: Reconstruction error and threshold of
experiment ISOT 041.

Fig. 2.48: Reconstruction error and threshold of
experiment ISOT 042.

Fig. 2.49: Reconstruction error and threshold of
experiment ISOT 043.

Fig. 2.50: Reconstruction error and threshold of
experiment ISOT 044.

Fig. 2.51: Reconstruction error and threshold of
experiment ISOT 045.

74 B. Figures for LSTM

Fig. 2.52: Reconstruction error and threshold of
experiment ISOT 050.

Fig. 2.53: Reconstruction error and threshold of
experiment ISOT 051.

Fig. 2.54: Reconstruction error and threshold of
experiment ISOT 052.

Fig. 2.55: Reconstruction error and threshold of
experiment ISOT 053.

Fig. 2.56: Reconstruction error and threshold of
experiment ISOT 054.

Fig. 2.57: Reconstruction error and threshold of
experiment ISOT 055.

75

Fig. 2.58: Reconstruction error and threshold of
experiment ISOT 060.

Fig. 2.59: Reconstruction error and threshold of
experiment ISOT 061.

Fig. 2.60: Reconstruction error and threshold of
experiment ISOT 062.

Fig. 2.61: Reconstruction error and threshold of
experiment ISOT 063.

Fig. 2.62: Reconstruction error and threshold of
experiment ISOT 064.

Fig. 2.63: Reconstruction error and threshold of
experiment ISOT 065.

76 B. Figures for LSTM

Fig. 2.64: Reconstruction error and threshold of
experiment ISOT 066.

Fig. 2.65: Reconstruction error and threshold of
experiment ISOT 067.

Fig. 2.66: Reconstruction error and threshold of
experiment ISOT 068.

Fig. 2.67: Reconstruction error and threshold of
experiment ISOT 069.

Fig. 2.68: Reconstruction error and threshold of
experiment ISOT 0610.

Fig. 2.69: Reconstruction error and threshold of
experiment ISOT 0611.

77

Fig. 2.70: Reconstruction error and threshold of
experiment ISOT 070.

Fig. 2.71: Reconstruction error and threshold of
experiment ISOT 071.

Fig. 2.72: Reconstruction error and threshold of
experiment ISOT 072.

Fig. 2.73: Reconstruction error and threshold of
experiment ISOT 073.

Fig. 2.74: Reconstruction error and threshold of
experiment ISOT 080.

Fig. 2.75: Reconstruction error and threshold of
experiment ISOT 081.

78 B. Figures for LSTM

Fig. 2.76: Reconstruction error and threshold of
experiment ISOT 082.

Fig. 2.77: Reconstruction error and threshold of
experiment ISOT 083.

Fig. 2.78: Reconstruction error and threshold of experiment ISOT 084.

79

Bibliography

[1] J. Livingood, N. Mody, and M. O’Reirdan, “Recommendations for the Remediation

of Bots in ISP Networks,” RFC 6561, Mar. 2012. [Online]. Available: https:

//rfc-editor.org/rfc/rfc6561.txt

[2] “The real story of stuxnet, how kaspersky lab tracked down the malware that stymied iran’s

nuclear-fuel enrichment program,” https://spectrum.ieee.org/the-real-story-of-stuxnet,

Oct 2021.

[3] M. Stevanovic and J. Pedersen, “Machine learning for identifying botnet network traffic,”

Apr 2013.

[4] “Fbi most wanted,” https://www.fbi.gov/wanted/cyber/evgeniy-mikhailovich-bogachev,

Oct 2021.

[5] S. Dange and M. Chatterjee, “Iot botnet: The largest threat to the iot network,” in Data

Communication and Networks, L. C. Jain, G. A. Tsihrintzis, V. E. Balas, and D. K. Sharma,

Eds. Singapore: Springer Singapore, 2020, pp. 137–157.

[6] J. Margolis, T. T. Oh, S. Jadhav, Y. H. Kim, and J. N. Kim, “An In-Depth Analysis of

the Mirai Botnet,” in 2017 International Conference on Software Security and Assurance

(ICSSA), Jul. 2017, pp. 6–12.

[7] Z. Long, L. Tan, C. He, and S. Zhou, “Collecting indicators of compromise from unstruc-

tured text of cybersecurity articles using neural-based sequence labelling,” 2019 Interna-

tional Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2019.

[8] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A comparison of machine learning

techniques for phishing detection,” in Proceedings of the anti-phishing working groups 2nd

annual eCrime researchers summit, 2007, pp. 60–69.

[9] S. Althubiti, W. Nick, J. Mason, X. Yuan, and A. Esterline, “Applying Long Short-Term

Memory Recurrent Neural Network for Intrusion Detection,” in SoutheastCon 2018, Apr.

2018, pp. 1–5, iSSN: 1091-0050.

[10] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, J. Felix, and P. Hakimian,

“Detecting p2p botnets through network behavior analysis and machine learning,” in 2011

Ninth Annual International Conference on Privacy, Security and Trust, 2011, pp. 174–180.

[11] B. Abraham, A. Mandya, R. Bapat, F. Alali, D. E. Brown, and M. Veeraraghavan, “A Com-

parison of Machine Learning Approaches to Detect Botnet Traffic,” in 2018 International

Joint Conference on Neural Networks (IJCNN), Jul. 2018, pp. 1–8.

https://rfc-editor.org/rfc/rfc6561.txt
https://rfc-editor.org/rfc/rfc6561.txt
https://spectrum.ieee.org/the-real-story-of-stuxnet
https://www.fbi.gov/wanted/cyber/evgeniy-mikhailovich-bogachev

80 BIBLIOGRAPHY

[12] J. Bhatia, R. Sehgal, and S. Kumar, “Honeynet based botnet detection using command

signatures,” in Advances in wireless, mobile networks and applications. Springer, 2011,

pp. 69–78.

[13] C. Li, W. Jiang, and X. Zou, “Botnet: Survey and case study,” in 2009 Fourth International

Conference on Innovative Computing, Information and Control (ICICIC). IEEE, 2009,

pp. 1184–1187.

[14] A. Schonewille and D.-J. Van Helmond, “The domain name service as an ids,” Research

Project for the Master System-and Network Engineering at the University of Amsterdam,

2006.

[15] D. Dagon, “Botnet detection and response,” in OARC workshop, vol. 2005, 2005.

[16] H. Choi, H. Lee, H. Lee, and H. Kim, “Botnet detection by monitoring group activities in

dns traffic,” in 7th IEEE International Conference on Computer and Information Technol-

ogy (CIT 2007), Oct 2007, pp. 715–720.

[17] J. Goebel and T. Holz, “Rishi: Identify bot contaminated hosts by IRC nickname

evaluation,” in First Workshop on Hot Topics in Understanding Botnets (HotBots 07).

Cambridge, MA: USENIX Association, Apr. 2007. [Online]. Available: https://www.usenix.

org/conference/hotbots-07/rishi-identify-bot-contaminated-hosts-irc-nickname-evaluation

[18] T. Strayer, D. Lapsely, R. Walsh, and C. Livadas, Botnet Detection Based on Network

Behavior, 10 2007, vol. 36, pp. 1–24.

[19] M. Eslahi, R. Salleh, and N. B. Anuar, “Bots and botnets: An overview of characteris-

tics, detection and challenges,” in 2012 IEEE International Conference on Control System,

Computing and Engineering, Nov 2012, pp. 349–354.

[20] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput.

Surv., vol. 41, 07 2009.

[21] “What is the mirai botnet?” https://www.cloudflare.com/learning/ddos/glossary/

mirai-botnet, Oct 2021.

[22] R. W. Shirey, “Internet Security Glossary, Version 2,” RFC 4949, Aug. 2007. [Online].

Available: https://rfc-editor.org/rfc/rfc4949.txt

[23] “Fast flux botnets still wreaking havoc on the internet according

to akamai research,” https://www.akamai.com/newsroom/press-release/

fast-flux-botnets-still-wreaking-havoc-on-internet-according-to-akamai-research, Oct

2021.

[24] “Krebsonsecurity hit with record ddos,” https://krebsonsecurity.com/2016/09/

krebsonsecurity-hit-with-record-ddos/, Oct 2021.

[25] T. Holz, M. Steiner, F. Dahl, E. W. Biersack, F. C. Freiling et al., “Measurements and

mitigation of peer-to-peer-based botnets: A case study on storm worm.” Leet, vol. 8, no. 1,

pp. 1–9, 2008.

https://www.usenix.org/conference/hotbots-07/rishi-identify-bot-contaminated-hosts-irc-nickname-evaluation
https://www.usenix.org/conference/hotbots-07/rishi-identify-bot-contaminated-hosts-irc-nickname-evaluation
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet
https://rfc-editor.org/rfc/rfc4949.txt
https://www.akamai.com/newsroom/press-release/fast-flux-botnets-still-wreaking-havoc-on-internet-according-to-akamai-research
https://www.akamai.com/newsroom/press-release/fast-flux-botnets-still-wreaking-havoc-on-internet-according-to-akamai-research
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/

BIBLIOGRAPHY 81

[26] J. Leyden, “Ms uses court order to take out waledac botnet,” Feb 2010. [Online]. Available:

https://www.theregister.com/2010/02/25/ms waledac takedown/

[27] “Spam kingpin peter levashov gets time served,” https://krebsonsecurity.com/2021/07/

spam-kingpin-peter-levashov-gets-time-served/, Oct 2021.

[28] “The life and death of the zeus trojan,” https://blog.malwarebytes.com/101/2021/07/

the-life-and-death-of-the-zeus-trojan/, Oct 2021.

[29] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, “Towards effective feature

selection in machine learning-based botnet detection approaches,” in 2014 IEEE Conference

on Communications and Network Security, Oct. 2014, pp. 247–255.

[30] J. Pickles, T. Stone, and T. Jacques, “Methylation-based algorithms for diagnosis: experi-

ence from neuro-oncology,” The Journal of Pathology, vol. 250, 02 2020.

[31] J. P. M. d. Sá, Pattern recognition : concepts, methods and applications. Berlin [u.a.]:

Springer, 2001.

[32] T.-T.-H. Le, J. Kim, and H. Kim, “An effective intrusion detection classifier using long

short-term memory with gradient descent optimization,” in 2017 International Conference

on Platform Technology and Service (PlatCon), 2017, pp. 1–6.

[33] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural

networks,” in Proceedings of the 30th International Conference on International Conference

on Machine Learning - Volume 28, ser. ICML’13. JMLR.org, 2013, p. III–1310–III–1318.

[34] S. M. Kasongo and Y. Sun, “A Deep Long Short-Term Memory based classifier for

Wireless Intrusion Detection System,” ICT Express, vol. 6, no. 2, pp. 98–103, Jun. 2020.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/S2405959519301699

[35] L. Bontemps, V. L. Cao, J. McDermott, and N.-A. Le-Khac, “Collective Anomaly Detec-

tion Based on Long Short-Term Memory Recurrent Neural Networks,” in Future Data and

Security Engineering, ser. Lecture Notes in Computer Science, T. K. Dang, R. Wagner,

J. Küng, N. Thoai, M. Takizawa, and E. Neuhold, Eds. Cham: Springer International

Publishing, 2016, pp. 141–152.

[36] J. An and S. Cho, “Variational autoencoder based anomaly detection using reconstruction

probability,” 2015.

[37] Y. Bengio, “Learning deep architectures for ai,” Found. Trends Mach. Learn., vol. 2, no. 1,

p. 1–127, jan 2009. [Online]. Available: https://doi.org/10.1561/2200000006

[38] P. Madani and N. Vlajic, “Robustness of deep autoencoder in intrusion detection

under adversarial contamination,” in Proceedings of the 5th Annual Symposium

and Bootcamp on Hot Topics in the Science of Security, ser. HoTSoS ’18. New

York, NY, USA: Association for Computing Machinery, 2018. [Online]. Available:

https://doi.org/10.1145/3190619.3190637

[39] Y. Xia, X. Cao, F. Wen, G. Hua, and J. Sun, “Learning discriminative reconstructions for

unsupervised outlier removal,” in 2015 IEEE International Conference on Computer Vision

(ICCV), 2015, pp. 1511–1519.

https://www.theregister.com/2010/02/25/ms_waledac_takedown/
https://krebsonsecurity.com/2021/07/spam-kingpin-peter-levashov-gets-time-served/
https://krebsonsecurity.com/2021/07/spam-kingpin-peter-levashov-gets-time-served/
https://blog.malwarebytes.com/101/2021/07/the-life-and-death-of-the-zeus-trojan/
https://blog.malwarebytes.com/101/2021/07/the-life-and-death-of-the-zeus-trojan/
http://www.sciencedirect.com/science/article/pii/S2405959519301699
https://doi.org/10.1561/2200000006
https://doi.org/10.1145/3190619.3190637

82 BIBLIOGRAPHY

[40] S. Garg, A. K. Singh, A. K. Sarje, and S. K. Peddoju, “Behaviour analysis of machine

learning algorithms for detecting P2P botnets,” in 2013 15th International Conference on

Advanced Computing Technologies (ICACT), Sep. 2013, pp. 1–4.

[41] M. Stevanovic and J. M. Pedersen, “An efficient flow-based botnet detection using

supervised machine learning,” in 2014 International Conference on Computing, Networking

and Communications (ICNC). Honolulu, HI, USA: IEEE, Feb. 2014, pp. 797–801.

[Online]. Available: http://ieeexplore.ieee.org/document/6785439/

[42] E. Biglar Beigi, H. Hadian Jazi, N. Stakhanova, and A. A. Ghorbani, “Towards effective

feature selection in machine learning-based botnet detection approaches,” in 2014 IEEE

Conference on Communications and Network Security, 2014, pp. 247–255.

[43] F. V. Alejandre, N. C. Cortés, and E. A. Anaya, “Feature selection to detect botnets using

machine learning algorithms,” in 2017 International Conference on Electronics, Communi-

cations and Computers (CONIELECOMP), Feb. 2017, pp. 1–7.

[44] F. K. Wai, Z. Lilei, W. K. Wai, S. Le, and V. L. L. Thing, “Automated Botnet Traffic

Detection via Machine Learning,” in TENCON 2018 - 2018 IEEE Region 10 Conference,

Oct. 2018, pp. 0038–0043.

[45] B. Nechaev, V. Paxson, M. Allman, and A. Gurtov, “On calibrating enterprise switch

measurements,” in Proceedings of the 9th ACM SIGCOMM Conference on Internet

Measurement, ser. IMC ’09. New York, NY, USA: Association for Computing Machinery,

2009, p. 143–155. [Online]. Available: https://doi.org/10.1145/1644893.1644910

[46] S. Garćıa, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of botnet detec-

tion methods,” Computers & Security, vol. 45, pp. 100–123, 09 2014.

[47] H. Bahşi, S. Nõmm, and F. B. L. Torre, “Dimensionality Reduction for Machine Learning

Based IoT Botnet Detection,” in 2018 15th International Conference on Control, Automa-

tion, Robotics and Vision (ICARCV), Nov. 2018, pp. 1857–1862.

[48] S. Haq and Y. Singh, “Botnet Detection using Machine Learning,” in 2018 Fifth Interna-

tional Conference on Parallel, Distributed and Grid Computing (PDGC), Dec. 2018, pp.

240–245.

[49] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the kdd

cup 99 data set,” in 2009 IEEE Symposium on Computational Intelligence for Security and

Defense Applications, 2009, pp. 1–6.

[50] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long Short Term Memory Recurrent Neural

Network Classifier for Intrusion Detection,” in 2016 International Conference on Platform

Technology and Service (PlatCon), Feb. 2016, pp. 1–5, iSSN: null.

[51] P. Torres, C. Catania, S. Garcia, and C. G. Garino, “An analysis of Recurrent Neural

Networks for Botnet detection behavior,” in 2016 IEEE Biennial Congress of Argentina

(ARGENCON), Jun. 2016, pp. 1–6, iSSN: null.

http://ieeexplore.ieee.org/document/6785439/
https://doi.org/10.1145/1644893.1644910

BIBLIOGRAPHY 83

[52] Y. Fu, F. Lou, F. Meng, Z. Tian, H. Zhang, and F. Jiang, “An Intelligent Network Attack

Detection Method Based on RNN,” in 2018 IEEE Third International Conference on Data

Science in Cyberspace (DSC), Jun. 2018, pp. 483–489.

[53] C. Yin, Y. Zhu, J. Fei, and X. He, “A Deep Learning Approach for Intrusion Detection

Using Recurrent Neural Networks,” IEEE Access, vol. 5, pp. 21 954–21 961, 2017.

[54] A. H. Mirza and S. Cosan, “Computer network intrusion detection using sequential LSTM

Neural Networks autoencoders,” in 2018 26th Signal Processing and Communications Ap-

plications Conference (SIU), May 2018, pp. 1–4, iSSN: null.

[55] C. Torrano-Giménez, A. Pérez-Villegas, and G. Á. Marañón, “An anomaly-based approach

for intrusion detection in web traffic,” 2010.

[56] S. A. Althubiti, E. M. Jones, and K. Roy, “LSTM for Anomaly-Based Network Intru-

sion Detection,” in 2018 28th International Telecommunication Networks and Applications

Conference (ITNAC), Nov. 2018, pp. 1–3, iSSN: 2474-1531.

[57] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, “Creation of flow-based data

sets for intrusion detection,” Journal of Information Warfare, vol. 16, no. 4, pp. 41–54,

2017. [Online]. Available: https://www.jstor.org/stable/26504117

[58] M. Roopak, G. Y. Tian, and J. Chambers, “Deep Learning Models for Cyber Security in

IoT Networks,” in 2019 IEEE 9th Annual Computing and Communication Workshop and

Conference (CCWC), Jan. 2019, pp. 0452–0457.

[59] I. Sharafaldin, A. Habibi Lashkari, and A. Ghorbani, “Toward generating a new intrusion

detection dataset and intrusion traffic characterization,” in ICISSP, 01 2018, pp. 108–116.

[60] H. Gwon, C. Lee, R. Keum, and H. Choi, “Network Intrusion Detection based on LSTM

and Feature Embedding,” arXiv:1911.11552 [cs, stat], Nov. 2019, arXiv: 1911.11552.

[Online]. Available: http://arxiv.org/abs/1911.11552

[61] B. Min, J. Yoo, S. Kim, D. Shin, and D. Shin, “Network anomaly detection using memory-

augmented deep autoencoder,” IEEE Access, vol. 9, pp. 104 695–104 706, 2021.

[62] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network intrusion

detection systems (unsw-nb15 network data set),” in 2015 Military Communications and

Information Systems Conference (MilCIS), 2015, pp. 1–6.

[63] O. Y. Al-Jarrah, O. Alhussein, P. D. Yoo, S. Muhaidat, K. Taha, and K. Kim, “Data Ran-

domization and Cluster-Based Partitioning for Botnet Intrusion Detection,” IEEE Trans-

actions on Cybernetics, vol. 46, no. 8, pp. 1796–1806, Aug. 2016.

[64] M. S. Koli and M. K. Chavan, “An advanced method for detection of botnet traffic using

intrusion detection system,” in 2017 International Conference on Inventive Communication

and Computational Technologies (ICICCT), Mar. 2017, pp. 481–485.

[65] S. Chen, Y. Chen, and W. Tzeng, “Effective Botnet Detection Through Neural Networks on

Convolutional Features,” in 2018 17th IEEE International Conference On Trust, Security

And Privacy In Computing And Communications/ 12th IEEE International Conference On

Big Data Science And Engineering (TrustCom/BigDataSE), Aug. 2018, pp. 372–378.

https://www.jstor.org/stable/26504117
http://arxiv.org/abs/1911.11552

84 BIBLIOGRAPHY

[66] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “Peerrush: Mining for unwanted p2p

traffic,” J. Inf. Secur. Appl., vol. 19, pp. 194–208, 01 2014.

[67] S. Nõmm and H. Bahşi, “Unsupervised Anomaly Based Botnet Detection in IoT Net-

works,” in 2018 17th IEEE International Conference on Machine Learning and Applications

(ICMLA), Dec. 2018, pp. 1048–1053.

[68] C. Yin, Y. Zhu, S. Liu, J. Fei, and H. Zhang, “An enhancing framework for botnet detec-

tion using generative adversarial networks,” in 2018 International Conference on Artificial

Intelligence and Big Data (ICAIBD), May 2018, pp. 228–234, iSSN: null.

[69] G. Szabó, D. Orincsay, S. Malomsoky, and I. Szabó, “On the validation of traffic classifica-

tion algorithms,” in Passive and Active Network Measurement, M. Claypool and S. Uhlig,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 72–81.

[70] “French chapter of the honeynet project,” https://www.honeynet.org/category/chapters/

france, Oct 2019.

[71] G. Vormayr, J. Fabini, and T. Zseby, “Why are my flows different? a tutorial on flow

exporters,” IEEE Communications Surveys Tutorials, vol. 22, no. 3, pp. 2064–2103, 2020.

[72] N. Williams, S. Zander, and G. Armitage, “A preliminary performance comparison of five

machine learning algorithms for practical ip traffic flow classification,” Computer Commu-

nication Review, vol. 36, pp. 5–16, 10 2006.

[73] “Transmission Control Protocol,” RFC 793, Sep. 1981. [Online]. Available: https:

//rfc-editor.org/rfc/rfc793.txt

[74] P. Cellier and K. Driessens, Machine Learning and Knowledge Discovery in

Databases: International Workshops of ECML PKDD 2019, Würzburg, Germany,

September 16–20, 2019, Proceedings, Part II, ser. Communications in Computer

and Information Science. Springer International Publishing, 2020. [Online]. Available:

https://books.google.at/books?id=N4PZDwAAQBAJ

[75] B. Ripley, Pattern recognition and neural networks. Cambridge University Press, 1996.

[76] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[77] M. Calzolari, “manuel-calzolari/sklearn-genetic: sklearn-genetic 0.4.0,” Apr. 2021. [Online].

Available: https://doi.org/10.5281/zenodo.4661178

[78] F. Chollet et al., “Keras,” https://keras.io, 2015.

[79] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,

Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,

https://www.honeynet.org/category/chapters/france
https://www.honeynet.org/category/chapters/france
https://rfc-editor.org/rfc/rfc793.txt
https://rfc-editor.org/rfc/rfc793.txt
https://books.google.at/books?id=N4PZDwAAQBAJ
https://doi.org/10.5281/zenodo.4661178
https://keras.io

BIBLIOGRAPHY 85

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine

learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online].

Available: https://www.tensorflow.org/

[80] “Github repository,” https://github.com/jdb858/autoencoder, Dec 2021.

[81] F. Iglesias Vázquez, A. Hartl, T. Zseby, and A. Zimek, Are Network Attacks Outliers? A

Study of Space Representations and Unsupervised Algorithms, 03 2020, pp. 159–175.

https://www.tensorflow.org/
https://github.com/jdb858/autoencoder

	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Research Questions
	Approach
	Contribution
	Structure

	Background
	Botnet typography
	Storm botnet
	Waledac botnet
	ZeuS botnet

	Machine learning algorithms
	Random Forest
	Long Short-Term Memory (LSTM) Neural network

	State of the Art
	Methodology
	data set
	Random Forest data set
	LSTM Autoencoder data set
	Artifacts in the data sets

	Metrics
	Implementation
	Random Forest
	LSTM implementation

	Experiments
	Experiments with Random Forest
	Experiments with LSTM autoencoder

	Results
	Results of Random Forest
	Results of LSTMs

	Discussion
	Interpretation of results of Random Forest experiments
	Interpretation of results of LSTM autoencoder experiments
	Major findings

	Conclusion
	Figures for Dataset and Random Forest
	Figures for LSTM
	Bibliography

