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Abstract

In the inter-ELM phase of H-mode plasmas at ASDEX Upgrade, MHD modes
appear in the magnetic signature. They exhibit a frequency range up to several
hundred kHz and can be observed through pick-up coils. This thesis aims to
localize their radial position in the plasma as well as to find the velocity with
which they move to compare it to plasma drifts.
Possible driving causes for the modes follow from a TOKAMAK stability con-
sideration. An overview of mode types is given. The mode structure is charac-
terized by two parameters, the poloidal mode number m and the toroidal mode
number n. It is discussed how the magnetic topology, especially the safety fac-
tor, determines the mode structure. This relation to the safety factor presents
a possibility to localize the modes. The applied diagnostics are presented and
a program to compute the mode numbers is explained. This includes a new
subroutine for the determination of the poloidal mode number. Calculation of
diamagnetic drift velocities was done in a recent bachelor’s thesis through a
novel fitting routine, which is also explained.
Based on several examples from the type-I ELM regime, the localization and
velocity calculation is demonstrated. The localization consistently yields a po-
sition close to the separatrix, the precision is ultimately limited by the range of
the equilibrium reconstruction. A clear discrepancy in the velocity compared
to plasma drifts is shown which hints at the presence of a wave phenomenon
adding a phase velocity.
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Kurzfassung

In der inter-ELM Phase sogenannter H-Moden Plasmen am ASDEX Upgrade
TOKAMAK erscheinen MHD-Moden in der Magnetik. Sie haben einen Fre-
quenzbereich bis zu mehreren hundert kHz und können mittels Induktionsspulen
beobachtet werden. Ziel dieser Arbeit ist deren radiale Lokalisierung im Plasma
sowie die Bestimmung der Geschwindigkeit der Moden, um sie mit Plasmadriften
zu vergleichen.
Mögliche Auslöser und Treiber von Moden folgen aus einer Betrachtung der
TOKAMAK Stabilität. Ein Überblick verschiedener Typen von Moden wird
gezeigt. Die Modenstruktur ist durch zwei Parameter charakterisiert, die poloidale
Modenzahl m und die toroidale Modenzahl n. Es wird diskutiert wie die mag-
netische Topologie, im Speziellen der Sicherheitsfaktor, verantwortlich für die
Modenstruktur ist. Diese Beziehung zum Sicherheitsfaktor bietet eine Möglichkeit
zur Lokalisierung der Moden. Verwendete Diagnostiken werden vorgestellt und
ein Programm zur Bestimmung der Modenzahlen wird erklärt. Dies beinhal-
tet eine neuartige Subroutine für die poloidale Modenzahlbestimmung. Dia-
magnetische Driften wurden kürzlich in einer Bachelorarbeit mit einer neuen
Fitroutine berechnet, die ebenfalls erklärt wird.
Anhand von einigen Beispielen aus dem Typ-I ELM Regime wird die Lokalisierung
und Geschwindigkeitsberechnung demonstriert. Bei der Lokalisierung wird wieder-
holt eine Position nahe der Separatrix erhalten, die Präzision ist durch die
Reichweite des Equilibriums limitiert. Eine eindeutige Diskrepanz zwischen
der Modengeschwindigkeit und den Plasmadriften wird gezeigt, was auf ein
Wellenphänomen mit zusätzlicher Phasengeschwindigkeit hindeutet.
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Chapter 1

Introduction

1.1 Why fusion?

In the race for the major energy source of the future, the final word has not
been spoken. The landscape of energy provision has to transform in order to sus-
tain the development of humanity. From the year 1999 to 2019, the worldwide
primary energy consumption has increased by 52%. [1] While the COVID-19
pandemic has curbed economic growth and energy demand on a global level, the
long-term trend is thought to continue. At the same time, an important goal is
to reduce the emission of greenhouse gases, foremost carbon dioxide, which is
proven to be the driving cause of the current global warming. [2]
Burning fossil fuels has been a dependable energy source for decades. In 2019,
still over 80% of all primary energy consumption was covered by combustion,
mostly of fossils. [1] Its fault lies in the release of carbon from the earth’s crust
into the atmosphere. Also, the availability of these resources on the planet is
ultimately limited.
There is anticipation of so-called renewable energy sources. These are supposed
to stay available without the need for vanishing resources while having no trou-
bling impact on the environment. The term includes forms such as hydropower,
wind power and solar power.
While countries like Austria can make substantial use of hydropower, this is
bound to geographical conditions and not an option everywhere in the world.
Additionally, the large-scale implementation of river power plants such as the
Three Gorges Dam in China can have disastrous humanitarian and ecological
consequences. [3]
Conventional wind power allows for sustainable generation of electricity. The
drawback is the weather dependence which makes it seasonal in some regions.
Only facilities in advantaged areas like offshore can effectively cover base load.
This, in turn, requires very long power lines and therefore power losses. One
ecological point of criticism is bird strike. [4]
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There are different forms of solar energy usage. Especially photovoltaics is
a field of current research and could see major efficiency improvements in the
near future. [5] However, all forms of solar energy depend on direct sunlight and
are restricted to daytime hours, making also them problematic for base load.
The most hotly debated option is nuclear energy, to this day only available from
nuclear fission power plants. It has the advantages of large power capacity, lo-
cation independence and the lack of carbon dioxide emission. The consequences
of possible malfunctions in such power plants are tremendous. Even in orderly
operation, the process puts out highly problematic waste whose final disposal is
still unsolved. With a required isolation time in the range of a million years for
contaminants [6], the issues of nuclear fission generally outweigh the benefits.
A great deal of research is devoted to devising an energy source that is depend-
able and powerful while it spares the environment and can be deployed every-
where. Nuclear fusion is a bearer of hope, with the upsides of nuclear fission,
but without the threat of catastrophe and potentially no long-term radioactive
waste.

1.2 Nuclear fusion reactions

Energy can be retrieved from nuclear reactions due to the mass defect, cor-
responding to the binding energy within nuclei. The relevant quantity is the
binding energy EB per constituents, which are generally called nucleons. There
is an empirical relation between the mass number A of a stable nucleus and the
binding energy per nucleon. A graphical representation can be seen in figure
1.1, which shows the direction of reaction that allows energy release as pink ar-
rows. The inverse of the binding energy per nucleon −EB/A, measured in MeV
is plotted over the mass number A. It is strictly negative and has a minimum in
the nucleus of iron at A = 56, as indicated by a vertical, grey line. Any nucleus
more massive than that can set energy free via fission. On the other hand,
lighter nuclei beginning from sole protons can release energy by fusing with
others. Three relevant nuclides, deuterium 2D, tritium 3T and helium 4He, are
highlighted as an orange circle, a red triangle and a blue diamond, respectively.
Other nuclides appear as green hexagons in figure 1.1.
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Figure 1.1: Inverse binding energy per nucleon −EB/A over mass number A
for selected nuclides, shown as green hexagons. An orange circle stands for
deuterium 2D, a red triangle for tritium 3T and a blue diamond for helium 4He.
The vertical, grey line indicates the strongest binding at A = 56 for iron. The
arrows in pink are directed towards binding energy release. (data from [7][8])

Most of the sun’s power stems from the so-called pp-cycle. It revolves around
the fusion of protons to helium nuclei amongst beta plus decay. However, the
starting reaction between two protons is very slow, which makes it unfeasible
for implementation.
There are numerous thinkable fusion reactions for energy provision on earth.
However, they are not all equally favorable based on the availability of their
reactants, interaction cross-section, or possible radioactivity of their final prod-
ucts. Helium, like in the pp-cycle, is a preferable product. The most straight-
forward reaction would be two deuterons to one helium nucleus according to
equation 1.1.

2D+ 2D −→ 4He + 23.8MeV (1.1)

Unfortunately, this three-body collision is illegal for free particles because of
momentum conservation. The one nuclear reaction that is prospectively going
to realize energy production is that of a deuteron and triton, like in equation
1.2.

2D+ 3T −→ 4He + 1n + 17.6MeV (1.2)

It satisfies momentum conservation and releases 17.6MeV of energy in the cen-
ter of mass frame. The interaction cross-section has its maximum at a center of
mass frame energy of 65 keV for the reactants. [9]
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Unlike in fission, this process knows no chain reaction and has a threshold
energy due to the electromagnetic repulsion of the nuclei. In addition, the re-
leased energy from fusion reactions drives the reactants apart. Energy must
be invested first to start the reaction, then the fusion fuel must be confined. If
enough power is released, it can provide the threshold energy for a self-sustained
fusion reaction. There is Lawson’s criterion which formulates the physical re-
quirements for this situation. It is shown in equation 1.3 with the particle
density n, temperature T and the confinement time τE. Note that the confine-
ment time is not the duration of confinement, but rather a time constant for
the loss of stored thermal energy.

n · T · τE ≥ const. (1.3)

Several ideas have been put forward to fulfill Lawson’s criterion, with only two
of them possessing relevance today, magnetic confinement and inertial confine-
ment. In the following, a closer look is taken at the TOKAMAK, one form of
technical realization for magnetic confinement.

1.3 Magnetic confinement

The approach in magnetic confinement utilizes deuterium and tritium fuel at
comparably low density with high thermal energy. Due to collisions at high
thermal velocity, the molecules in the fuel get ionized, meaning that they break
up into charged ions and electrons which can be manipulated by electric and
magnetic fields. Such a fully ionized gas is called a plasma. Charged, free
particles will follow magnetic field lines in a circular or spiral motion. This
effect called gyration is a consequence of the Lorentz force and the foundation
of magnetic confinement.
Given a particle with defined charge q and mass m, the angular frequency ω
of the gyration in a magnetic field 1B is fixed to equation 1.4. It will couple to
electromagnetic waves of the same frequency. The gyration radius is variable
and changes with the kinetic energy of the particle.

ω =
q · | 1B|
m

(1.4)
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In a simplified, classical picture, a homogeneous magnetic field inhibits
charged particles from escaping in perpendicular direction to the field lines.
However, the particles can freely move parallel to the field lines and therefore
violate confinement in a bounded fusion device. The solution of choice is to bend
the field lines to a circular shape so that they close within the fusion device and
never lead particles outside. A donut-like shape, a so-called torus, is the result.
One can easily see that the magnetic field is then no longer homogeneous, with
higher field strength on the inside of the torus than on the outboard side. Also,
the confined particles move on orbits in an accelerated motion.
A gyrating particle under the influence of an additional constant force moves
with a constant drift velocity. The direction is not that of the acting force, but
given by the vector product of magnetic field and force vectors. Particle drifts
can be derived from the guiding center approach, which dissects the position
vector in a gyration radial vector and a gyration center vector. [10] The result

is the drift velocity 1vD in equation 1.5, with the acting force 1F , the magnetic
field 1B and the particle charge q. Note that the drift as a uniform motion is
independent of particle mass, but changes with the sign of charge.

1vD =
1F × 1B

q · | 1B|2 (1.5)

The torus shape firstly dictates two extra forces, one from the gradient of the
magnetic field and the other being the centripetal force based on the curvature.
Both are directed to the outboard side of the torus. They cause affected particles
to drift along the vertical axis, which shall be called z. Since the velocity
is charge dependent, positive ions and electrons get separated and cause an
electric field, also along the z-axis.
The electric field 1E acts as a force on charged particles and likewise creates a
drift. The charge dependence of that force cancels that of the drift so that all
particles drift in an equal direction, which is to the outboard side. An expression
for the resulting drift velocity 1vExB is given in equation 1.6, charge dependence
is notably absent. Particles follow the direction of the initial cause to these drifts
and move out of the torus. Again, a loss of confinement is the consequence.

1vExB =
1E × 1B

| 1B|2 (1.6)

Magnetic confinement consistent in the scope of classical effects can be achieved
with a twisted magnetic field in torus shape. Such a field geometry can be
thought of as a superposition of a purely toroidal field component, as described
above, and one that runs along the short circumference of the torus, a poloidal
component. This causes partial annihilation of the drift, averaged along a field
line, and allows currents to relax the charge separation that causes the outwards
drift, the so-called Pfirsch-Schlüter currents.
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A helically twisted magnetic field can be produced with a complex coil geom-
etry and is realized in machines called Stellerators. The other implementation
of a torus-shaped fusion device is the TOKAMAK. It generates a toroidal mag-
netic field with designated coils. A central solenoid amidst the torus produces
a varied magnetic flux that induces a toroidally directed current through the
plasma. From this plasma current, a poloidal magnetic field arises. The over-
lay of toroidal and poloidal magnetic field leads to the necessary twisted field
lines. Unlike a Stellerator, a TOKAMAK is toroidally symmetrical, meaning
completely invariant against toroidal rotation. Due to the induction principle,
TOKAMAK operation is temporally limited to pulses, which can be seen as a
downside. On the other hand, the coil architecture is much simpler and the prin-
ciple more elegant compared to the Stellerator. It also has an inherent ohmic
plasma heating due to the current.
In magnetic confinement devices, helium nuclei as reaction products underlie
confinement and exchange energy with fusion fuel, thereby heating it. Neutrons
as neutral particles leave the plasma, so their energy becomes usable for electric-
ity generation. Once fusion reactions occur at a significant rate, the so-called
helium ash needs to be expelled from the plasma together with possible impuri-
ties. In most modern fusion devices, the outer layers of the plasma are directed
onto a set of plates called a divertor. It absorbs the thermal energy of the im-
pinging plasma while protecting other parts of the vessel from it. Additional
field coils shape the plasma in the respective form, which will be discussed in
chapter 1.4.
This thesis is based on ASDEX Upgrade, a mid-sized TOKAMAK in divertor
configuration. A sectional drawing of this machine can be seen in figure 1.2. It
includes the vessel and various inlet tubes in blue and grey and magnetic field
coils in bronze. The plasma inside the vessel is shown as a purple glow.
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Figure 1.2: Sectional drawing of ASDEX Upgrade. There is the vessel and
various inlet tubes drawn in blue and grey and magnetic field coils in bronze.
The plasma inside the vessel is shown as a purple glow. (picture from [11])

1.4 Flux surfaces

A toroidal plasma consists of nested surfaces defined by constant magnetic flux
φ, the flux surfaces. The innermost flux surface, collapsed to one dimension,
is known as the magnetic axis. On the other hand, the outermost magnetic
surface that still closes inside the plasma vessel is called the separatrix.
At this point, coordinates to parameterize a torus shall be introduced. Two
different sets can be seen in figure 1.3. Depending on utilization, cylindrical
coordinates can be chosen, including the radius R, the vertical coordinate z and
the toroidal angle φ. The major radius R0 denotes the distance from the central
z-axis to the magnetic axis. Another coordinate system can be constructed from
the minor radius r, measured from the magnetic axis, the poloidal angle θ and
again the toroidal angle φ.
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Figure 1.3: Different coordinates for a torus, including the radius R, vertical
coordinate z, toroidal angle φ, major radius R0, minor radius r and poloidal
angle θ. (picture from [12])

Some more terms are commonly used for localities around the torus. Because
of the weaker magnetic field at the previously mentioned outboard side, this is
also called the low field side (LFS), as opposed to the inwards facing high field
side (HFS). The plane defined by z = zaxis is called the midplane, lying parallel
to ground level at the height of the magnetic axis.
In figure 1.4, a cross section through a plasma at ASDEX Upgrade is shown. It
features nested flux surfaces as dashed, red lines. Those inside of the separatrix
are closed, others lying outside appear to split up. The separatrix itself can
be seen as a solid blue line. Surrounding vessel components are included in
grey in the picture. The plasma cross section is not circular, but elongated
and asymmetrical. Note that the magnetic axis is not exactly at half the vessel
height, which is generally not the case.
At the bottom, the separatrix crosses itself to a so-called x-point. This is a
feature of the divertor configuration. ASDEX Upgrade has a special, closed
lower divertor and an open upper divertor, both visible as grey structures in
figure 1.4 below and above the plasma, respectively. Field lines outside of the
separatrix are directed onto the divertor where plasma flow is absorbed. The
portion of the plasma outside of the separatrix is therefore called the scrape-off
layer (SOL).
Instead of the minor radius r, so-called flux coordinates are often used. In the
scope of this thesis, the coordinate ρpol is employed as defined in equation 1.7.
It is based on the magnetic flux through a poloidally oriented surface ψ at a
given location. The definition includes the magnetic flux at the separatrix ψsep

and that at the magnetic axis ψ0. This coordinate makes sense, because many
quantities are constant on flux surfaces and a function of ρpol, such as the mode
numbers introduced in chapter 1.5.

ρpol =

�
ψ − ψa

ψsep − ψa
(1.7)
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Figure 1.4: Cross section of a TOKAMAK plasma. Flux surfaces are shown
as dashed, red lines, closed inside the separatrix and diverging outside. The
separatrix itself appears as a solid blue line with the x-point at the bottom.
Surrounding vessel components are included in grey in the picture.

The twisting of field lines can be expressed as a field line slope α as in equa-
tion 1.8 with the poloidal field component Bpol and the toroidal field component
Btor.

α = arctan
Bpol

Btor
(1.8)

The field line slope is a local variable. A related, global quantity can be defined
from the revolutions of field lines around the torus, toroidally and poloidally,
respectively. It is named the safety factor q, equal to the number of toroidal
revolutions of a field line per poloidal revolution of the same field line. The safety
factor is constant on each flux surface and can basically be any real number. In
the case that a field line closes in itself after a finite number of revolutions, q
takes on a rational number. Flux surfaces for which this is fulfilled are called
rational surfaces. In a TOKAMAK plasma, q is a bijective function of ρpol. It
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is therefore possible to relate a certain radial position and flux surface in the
plasma to a numeric safety factor.
Towards the separatrix, the safety factor goes to infinity. Near the plasma edge,
its value is constituted mostly by the x-point seen in figure 1.4. The field line
slope, for instance at the outboard midplane, is therefore very unlike the safety
factor, which must be taken into account when a global quantity is defined. This
is possible through an alternative poloidal coordinate, the so-called straight field
line angle θ∗. Its defining property is that in the (θ∗, φ) basis, the field line
slope is a constant of θ∗ and φ. This leads to the self-titled straight field lines.
In figure 1.5, the course of magnetic field lines is shown in the (θ, φ) plane in
figure 1.5a and in the transformed (θ∗, φ) system in figure 1.5b.
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Figure 1.5: Comparison of the magnetic field line course in a) the (θ, φ) and b)
in the (θ∗, φ) plane with the straight field line angle θ∗.
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1.5 Phenomenology of modes

While TOKAMAK experiments already reach significant particle densities and
temperatures, the remaining issue is to reach a sufficient confinement time. In
addition to the classical model of the plasma, so-called neoclassical trajectories
must be considered. Due to collisions, particles can transition between trajecto-
ries in a random walk. This increases transport of particles and heat out of the
plasma. Moreover, research from the past decades show that in fact, TOKA-
MAK plasmas behave in a turbulent fashion which dominates transport. There
are different types of modes in a fusion plasma, which arise from instabilities or
excitations, intertwined with transport phenomena.
As the plasma particles are bound to magnetic field lines by gyration and vice
versa, it is often said that the magnetic flux is frozen into the plasma. This
means that any broadening or reshaping of the plasma is accompanied by a
change in the magnetic field. Near the plasma edge, so-called MHD modes
manifest as displacement of magnetic field lines and can be detected through
inductivity.
For energetic reasons, MHD modes are restricted to rational surfaces. [13] This
leads to a forced periodicity based on the closed field line structure. Different
harmonics are possible, which can be characterized by two mode numbers, the
poloidal mode number m and the toroidal mode number n. The mode numbers
can be thought of as the numbers of maxima along a poloidal or toroidal revolu-
tion, respectively. Due to the periodic boundary conditions on rational surfaces,
both mode numbers are not independent. The relation reads as equation 1.9.
A mathematical motivation of the mode number concept will be given later in
chapter 2.2.

q =
m

n
(1.9)

As the plasma moves due to various drifts, such as 1vExB, the modes are in motion
as well. Depending on what drives a mode, the drift velocity differs. Various
driving causes for modes are introduced in chapter 2.3. The mode movement
shows as a periodic signal with a frequency depending on the velocity and mode
numbers when measured at a fixed location around the torus.
The direction of any drift in the plasma is strictly perpendicular to the magnetic
field because it arises from a vector product with the magnetic field as shown
in equation 1.5. The orientation of drifts with positive sign is denoted as co-
current direction, the opposite is called the counter-current direction. However,
other forms of motion may be observed in modes. Due to restoring forces in
the displaced magnetic field or fluid pressure in the plasma, modes can wander
along field lines. Such phenomena are unified under the term MHD waves and
are treated in chapter 2.4.
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1.6 Thesis goals

The localization of MHD modes by means of the flux coordinate ρpoloidal is
the primary goal of this thesis. The approach is the determination of both the
poloidal mode numberm and the toroidal mode number n of the same structure.
Under the assumption of the locality at a rational flux surface, the safety factor
q corresponds to m/n. From knowledge of the safety factor profile, owed to a
high-resolution equilibrium reconstruction, the position in ρpol can be found.
The scope also includes the velocity determination of aforementioned modes.
Through the quotient of frequency and mode number, the rate at which the
structure passes the coils can be found. It is converted into the velocity in per-
pendicular direction to the local magnetic field on the outboard midplane. This
can be compared to the drift velocities in the plasma.
Drift velocity profiles over ρpol are determined from measured profiles. If agree-
ment between the mode velocity and the drift at the ascertained position is
found, this acts as a double-check for the localization.
In the next chapter, a glimpse into the underlying MHD equations is taken. A
lot of the terminology in plasma edge physics is explained in more depth. The
different types of expected MHD modes are characterized.
The third chapter lists all the plasma diagnostics that provide important data
for the analyses in the thesis. Short descriptions of their functioning principle
and peculiarities are given.
Chapter four deals with the computation of mode numbers. This is done with
a dedicated program originally devised by Felician Mink and adapted for this
thesis. [14] The details of its functionality are explained and visualized. Sources
of error and further processing of the results are shown.
In the fifth chapter, the results of the localization and velocity calculation for se-
lected discharges are presented. It is shown how the results contradict previous
conceptions about the nature of the modes. Possible explanations are discussed.
The last chapter gives a short summary and outlook on future research.
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Chapter 2

MHD description of
TOKAMAK plasmas

The behaviour of a plasma under the influence of magnetic and electric fields is
described by the theory of magnetohydrodynamics, shortly referred to as MHD.
It treats plasma as a many-body, multi-species fluid and attributes typical fluid
properties such as density, temperature and pressure to it.
To derive a closed set of equations of MHD, the system is first simplified to a
one-species fluid. In the scope of this thesis, it is justified by the overwhelming
abundance of deuterium ions (Z = 1) compared to other species in the plasma
and the fact that electrons yield nearly no contribution to the mass density. The
terms ion fluid and electron fluid are used in the following for these separate
but interacting subsystems. The following equations 2.1 to 2.14 stem from the
book ”Magnetohydrodynamic Stability of Tokamaks” by Hartmut Zohm. [13]
A defining property of plasma is quasi-neutrality, meaning equal ion and electron
particle densities ni = ne = n for a Z = 1 plasma. Through intra-species
collisions of ions and electrons, the plasma can become thermalized and gain a
defined ion temperature Ti and electron temperature Te. These two quantities
do not have to coincide. The mass density ρm reads as equation 2.1.

ρm = ni ·mi + ne ·me ≈ n ·mi (2.1)

Also the center of mass velocity 1v is dominated by the ion fluid velocity 1ui, seen
in equation 2.2.

1v =
1

ρm
(n ·mi · 1ui + n ·me · 1ue) ≈ 1ui (2.2)

The electrons do, however, contribute to the current density according to equa-
tion 2.3.

1j = e · n(1ui − 1ue) (2.3)
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By describing the plasma as a gas of free particles, also a pressure can be
defined according to the ideal gas law, comprised of an ion fluid contribution
and an electron fluid contribution, as seen in 2.4.

p = pi + pe = n · kB(Ti + Te) (2.4)

Based on these quantities, MHD equations are formulated. There is the conti-
nuity equation of mass density, equation 2.5.

∂ρm
∂t

+ 1∇ · (ρm1v) = 0 (2.5)

Continuity must also hold for the charge density ρel. Quasi-neutrality commands
the charge density to be zero, so the result is the vanishing divergence of the
current density 1j in equation 2.6.

1∇ ·1j = 0 (2.6)

A force balance equation for the mass density is given in equation 2.7, where
D denotes the substantial derivative. It includes a diamagnetic term based on
the pressure gradient 1∇p and the Lorentz force. The contribution of the electric
field for ions and electrons evens out here.

ρm
D1v

Dt
= −1∇p+1j × 1B (2.7)

The motion of the electron fluid is described by Ohm’s law in equation 2.8.

1E + 1v × 1B = η1j +
1

e · n (
1j × 1B − 1∇pe)− me

e

∂ 1ue

∂t
(2.8)

Maxwell’s equations read as equation 2.9 to 2.12 in the context of a plasma.

1∇ · 1E = 0 (2.9)

1∇ · 1B = 0 (2.10)

1∇× 1E = −∂ 1B

∂t
(2.11)

1∇× 1B = µ0 ·1j + �0µ0 · ∂
1E

∂t
(2.12)

Lastly, the pressure shall be related to the mass density through an adiabatic
index γa, like in equation 2.13.

d

dt

�
p

ργa
m

�
= 0 (2.13)

In an equilibrium, partial time derivatives in a force balance like equation 2.7
shall vanish. MHD equilibria are therefore characterized by equation 2.14.

1∇p = 1j × 1B (2.14)
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The closed set of equations 2.5 to 2.13 may be simplified under specific assump-
tions. In fusion plasmas, the Ohmic resistivity η and inertia of electron mass
me is mostly negligible. Eliminating them leads to the ideal MHD equations.
For a toroidally symmetrical plasma with a stationary toroidal magnetic field
Btor like in a TOKAMAK, the system can be further simplified to the reduced
MHD equations. Without giving details on the derivation here, an equilibrium
in a TOKAMAK fulfills the Grad-Shafranov equation 2.15. [14] It is crucial for
reconstructing the magnetic field structure in TOKAMAK operation.

R
∂

∂R

�
1

R

∂ψ

∂R

�
+

∂2ψ

∂z2
+ µ0(2πR)2

dp

dψ
+ (2π)2RBφ

d(RBφ)

dψ
= 0 (2.15)

2.1 Formation of the Edge transport barrier

Upon overcoming a threshold of heating power, a TOKAMAK plasma can
switch into the so-called H-mode (high confinement mode) as opposed to the L-
mode(low confinement mode). [15] In this operational scenario, a radial electric
field, in the direction of the minor radius r, is formed, accompanied by a strong
velocity shear. The exact causality of which comes first is still being researched,
but the relation between electric field and velocity follows from the treatment
of drift velocities in chapter 1.3.
The velocity shear can be understood as different radial layers of the plasma
near the plasma edge moving at different velocities, which has consequences
for transport over the plasma edge. Turbulence, which is the driving cause of
transport in L-mode, manifests in vortices near the plasma edge, also known as
eddies. In H-mode, turbulence is strongly suppressed, lowering ion transport
nearly to neo-classical expectations. There are contrasting images to how ex-
actly the suppression happens, either by decorrelation of the turbulent eddies
or rather by thinning of vortices to the point that they no longer carry radial
transport. Either way, the velocity shear appears to form a barrier against
transport just inside of the plasma edge, known as the edge transport barrier
or ETB. [16]
Large gradients of particle density, temperature or resulting pressure could nor-
mally not form as transport would relax them. The ETB allows a steepening
of these quantities in a narrow layer at the edge of the plasma. An example for
such a pressure profile is shown in figure 2.1. It features its steepest gradient
between ρpol = 0.98 and 1. The name given to the area of increased gradients
is pedestal.
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Figure 2.1: Radial electron pressure profile near the plasma edge. The region
with the steepest gradient is called the pedestal.

A pressure gradient acts a force that gives rise to another drift, the diamag-
netic drift. It depends on the particle charge q and is separated in ion respec-
tively electron diamagnetic drift. Electrons drift parallel to the drift based on
the radial electric field, positive ions in antiparallel direction. Accordingly, these
directions are termed electron diamagnetic and ion diamagnetic direction. The
drift velocity expression is given in equation 2.16.

1vdia =
1∇p× 1B

qn| 1B|2 (2.16)

The H-mode is an important discovery as it can substantially improve con-
finement in fusion plasmas. However, the increased energy stored inside of the
pedestal poses a threat to plasma-facing components if released. The edge trans-
port barrier can be briefly broken down by an edge localized mode or ELM. Such
events are observed periodically in H-mode and will be discussed in chapter 2.2.
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2.2 MHD stability and the ELM cycle

A plasma in an equilibrium situation is not necessarily stable against deviations.
To investigate the stability of a system without fully solving the underlying
equations, a linearization is often instructive. The following deduction is again
based on [13]. Quantities Q are written as the sum of their equilibrium value
Q0 and first order deviation Q1, like equation 2.17.

Q = Q0 +Q1 (2.17)

The velocity deviation is defined as the time derivative of a displacement vector
1ξ, while the equilibrium value is zero.

1v = ��1v0 + 1v1 =
∂1ξ

∂t
(2.18)

With this, the non-stationary force balance equation 2.7 becomes the equation
of motion for the displacement 2.19, simplified to a linear force operator F̂.

ρm
∂21ξ

∂t2
= F̂1ξ (2.19)

Equation 2.19 is solved by 1ξ(t) = 1ξ0 · e−iωt. For a real ω, the solution is a
stable oscillation. However, for an imaginary ω with ω2 < 0, the deviation
grows exponentially. This reflects a case in which perturbations lead to a loss
of confinement.
The separated, time independent part of the displacement can be decomposed
in the (θ∗, φ) system. Equation 2.20 shows the explicit form, with the mode
numbers m and n giving the periodicity in the exponent. It is energetically
most favorable for instabilities to appear at rational surfaces where the safety
factor equals the quotient of m and n.

1ξ0(r, θ
∗, φ) =

	
m,n

1ξm,n(r) · e−i(mθ∗+nφ) (2.20)

To identify the sources of instability in the force operator F̂, equation 2.19 is
integrated with the complex conjugated displacement 1ξ∗ to yield δW in equation
2.21. It gives the energy gain to the system caused by the displacement.

δW = −1

2

�
1ξ∗ · F̂1ξ · dV (2.21)

Five terms follow from the operation, which are not written explicitly here for
simplicity. The first three of those are strictly positive and therefore only sta-
bilize the plasma. Any negative contribution to δW acts in a destabilizing way.
The first potentially negative term depends on the inner product of pressure
gradient 1∇p0 and field line curvature κ. The pressure gradient points against
minor radius direction in an equilibrium and is therefore negative in (r, θ, φ)
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coordinates. On the other hand, the curvature is positive on the high field side
and negative on the low field side in the same coordinate system. The pressure
causes instabilities on the low field side of the torus, where an outwards plasma
expansion is energetically favourable. They are known as a pressure driven in-
stabilities or, because of their expanding nature, ballooning instabilities. On
the high field side, the same effect is stabilizing.
There is another term with negative sign, proportional to the current density in
field direction 1j0�. Its effect are current driven instabilities. Instead of expand-
ing, these instabilities release energy by kinking of field lines, which causes the
plasma edge to peel off. This explains their other naming as peeling instabilities.
In an H-mode plasma, the aforementioned modes can impair confinement to the
point of a complete breakdown of the ETB. Such an event is known as an ELM
or more specifically an ELM crash. A portion of energy and particle density is
lost from the plasma edge, which not only disrupts confinement, but can also
damage elements of the plasma vessel. Consequently, the pressure gradient as
well as the current density are greatly reduced after an ELM crash. The in-
stabilities thereby loose their driving cause so that the plasma regains stability.
Due to the heating power, an ETB is restored.
The ELM returns in cycles which are characterized by an ELM frequency and
different phases within one period. [17] The whole cycle lasts, depending on
operational parameters, from milliseconds to some ten milliseconds. Different
types of ELMs are discerned, for instance the type-I ELM cycle with a low fre-
quency and large crashes. The modes treated in this thesis occur in the type-I
ELM cycle in the inter- or pre-ELM phase, the last phase after the restoring of
the pedestal leading right up to the ELM crash.
The peeling-ballooning model is an explanation for the ELM cycle. It states that
only the combination of peeling and ballooning instabilities can cause an ELM
crash to happen. The pressure gradient first reaches a critical limit at which not
yet identified instabilities increase transport and stop the gradient from growing
further. In this state, the pedestal width increases until the peeling ballooning
mode is unstable and causes a major transport event. [18][19][20]
As it is derived from linear MHD, the peeling-ballooning model has limited
applicability and must be supplemented by non-linear theories in some cases.
Indeed, peeling-ballooning cannot explain every characteristic of the ELM cycle
known experimentally. [20]
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2.3 Mode types in the pedestal

In between ELM crashes, different types of instabilities can be formed. Some
act as precursors to an ELM and are thought to be responsible for triggering
a crash. [21] However, another important role of modes near the plasma edge
is driving transport in the inter-ELM phase. This limits the achievable edge
gradients such as that of the pressure. ELM crashes depend on critical limits,
therefore instabilities can delay the crash, affect the length of ELM cycles and
play a role in possible ELM-free scenarios. Here, a few different types of modes
shall be discussed.

2.3.1 Ideal ballooning modes

This type of modes is already introduced in the peeling-ballooning model. It
is driven by the pressure gradient and moves with the plasma velocity from
equation 1.6 caused by the radial electric field. [21] However, according to an-
other source based on the simulation code JOREK, the poloidal velocity of these
modes is the plasma velocity plus half the ion diamagnetic velocity in equation
2.16, in addition to the projection of a parallel velocity. [22] Such a velocity
parallel to the magnetic field is associated with MHD waves, which are treated
in chapter 2.4.
A plasma under ideal conditions suppresses any magnetic displacement with
compensation currents. At the location of an ideal mode, where the displace-
ment 1ξ is at a maximum, there is hence no magnetic displacement. The mea-
sured position depends on magnetic signals and can therefore differ. [23]

2.3.2 Ideal peeling modes

Peeling modes are driven by currents near the plasma edge. Their propagation
is also the plasma velocity from the electric field. [21] They suffer from the same
position measurement offset as ideal ballooning modes. [23]

2.3.3 Resistive ballooning modes

Adding a finite electrical resistivity to the physical picture of the plasma gives
rise to further mode types. The resistivity in a plasma follows the temperature
dependency in equation 2.22, therefore it plays a role at the outer layers of the
plasma where temperatures are low. [24]

η ∼ T−3/2 (2.22)

A resistive plasma can not perfectly compensate magnetic displacement, resis-
tive modes are thus measured at their actual position. The type of resistive
ballooning mode moves with the plasma velocity vExB. [21] Again, there is an-
other source based on the JOREK code, which finds a poloidal velocity of vExB

plus the projection of a parallel velocity. This would imply a velocity difference
between ideal and resistive ballooning modes. [22]
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2.3.4 Electron temperature gradient modes

The dependence on the electron temperature profile means that these modes
move with the electron diamagnetic velocity and direction. They are considered
to be micro-instabilities due to their large wave vector and high frequency. [21]

2.3.5 Microtearing modes

Tearing modes are anomalies, or tears, in the magnetic field line structure. Such
structures are frozen into the electron fluid and therefore also move with the
electron diamagnetic velocity. Magnetic islands can be formed, which are closed
field lines at a small scale. Figure 2.2 gives an example with field lines drawn
in red. This illustrates the concept, however tearing modes can exist in other
non-homogeneous magnetic arrangements.

Figure 2.2: Illustration of a tearing mode with closed field lines, a magnetic
island. Magnetic field lines are drawn in red.

Microtearing modes are micro-instabilities, characterized by a wave vector
smaller than in electron temperature gradient modes and high frequency. [21]

2.4 MHD waves

In the scope of ideal MHD, displacement of field lines causes wave phenomena,
the so-called Alfvén waves. In contrast to the previously described modes, these
waves can progress along, meaning parallel to, magnetic field lines.
Any harmonic wave takes a linear restoring force to propagate. In the case of
MHD waves, it can be derived from the equilibrium equation 2.14. Identifying
the current density and using Ampere’s law for it leads to equation 2.23.

1∇p = 1j × 1B =
1

µ0

�
1∇× 1B

�
× 1B = −1∇ B2

2µ0
+

1

µ0

�
1B · 1∇

�
1B (2.23)
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The first term in the final expression of equation 2.23 is also known as the mag-
netic pressure. It resists the compression of field lines. In the second term,
the inner product of magnetic field and its gradient accounts for the field line
curvature. The resulting so-called field line tension acts to straighten curved
field lines. [13]
Two types of waves are described by equation 2.23, the compressional Alfvén
waves caused by the magnetic pressure and the shear Alfvén waves that stem
from the field line tension. Both these Alfvén wave types move parallel to the
magnetic field. Sound waves can occur in a plasma like in a neutral gas as
oscillations of the kinetic pressure p. In conjunction with a magnetic field, they
lead to so-called magnetosonic waves, the third type of MHD wave. They can
propagate in a direction independent of the magnetic field. [25]
The group velocity of Alfvén waves is called the Alfvén velocity vA as seen in
equation 2.24. [26]

vA =
B√
µ0ρ

(2.24)

Being a moving displacement of the magnetic field, an MHD wave can be picked
up by magnetic diagnostics just as MHD modes. However, relation 1.9 for the
safety factor generally does not hold. Instead, an offset can occur, for instance
q = (2m + 1)/2n. The resulting frequency as detected by pick-up coils is the
Alfvén frequency fA. When entering the relation for q stated above, equation
2.25 follows. [26]

fA =





 vA
2πR

m− nq

q





 = 



 vA
2πR

1

2q





 (2.25)
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2.5 State of MHD mode understanding

As of the beginning of this thesis, a phenomenon of high frequency modes ap-
pearing during the inter ELM phase is known. They display toroidal mode
numbers of between n = 1 and 10 and move in the electron diamagnetic direc-
tion. Modes typically align in straight lines of constant frequency over mode
number (f/n) quotients. The logical conclusion is that they move at the same
velocity, which implies an origin at the same flux surface. Such a mode struc-
ture is called a branch, it describes a composition of harmonic oscillations with
a shared origin. The f/n relation can be linearly fitted with a pass through the
f = 0, n = 0 origin. Several branches with individual slope and overlapping
mode numbers may appear at the same time. [14]
The modes are thought to be pressure driven in nature. Because of that and
their appearance late in the ELM cycle, when the edge pressure gradient is read-
ily built up, the suspicion is that these modes sit at the position of the steepest
electron pressure gradient.
If an according branch with poloidal mode numbers and constant f/m could
be identified, the localization would be simple through m/n. However, the
calculation of poloidal mode numbers is more intricate and requires additional
input, as explained in section 4.1.2. Furthermore, the result often shows a less
straight-forward structure compared to n. While the modes corresponding to
the n calculation can be found at the same frequencies, they might not show
the same lineup in branches. Sometimes modes are aligned, but with no pass
through the f = 0, m = 0 origin and therefore no constant f/m relation. Also,
coherent branches in the n spectrum can be broken up into several linear m
lineups with parallel shifts between them.
It is therefore necessary to develop a more derived physical picture of these
modes to localize them.

26



Chapter 3

Plasma diagnostics

Different systems called diagnostics exploit various physical effects to extract
information about the condition of the plasma. An overview of the diagnos-
tics that are relevant for the mode number determination as well as for the
calculation of flux surface and velocity profiles is given below.

3.1 Pick-up coils

There is a number of different pick-up coils installed around the ASDEX Up-
grade TOKAMAK. They are divided into different arrays for distinct purposes.
This thesis utilizes two coil arrays, one is spread in poloidal direction at a single
toroidal position, the other one is toroidally spread on the outboard midplane.
Since they are scanning for phenomena near the plasma edge such as ballooning
modes, they are known as the poloidal ballooning array and the toroidal bal-
looning array. A depiction of the localities of these coils is given in figure 3.1,
with a poloidal section through ASDEX Upgrade and the poloidal ballooning
array in figure 3.1a and a toroidal section and the toroidal ballooning array in
figure 3.1b. [27]
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a b

Figure 3.1: Distribution of a) the poloidal balloning coil array in a poloidal
section and b) the toroidal ballooning coil array in a toroidal section of ASDEX
Upgrade.

All these coils inductively detect MHD modes as temporally changing devi-
ations from the equilibrium. In the mentioned arrays, the coil axes are pointed
in minor radius direction, in which the magnetic field component vanishes in
an equilibrium. The raw signal of each coil is therefore the induced voltage due
to the change of radial magnetic flux at the respective coil position. Intensity,
frequency and relative phase between coils can be retrieved from the signals.
An example for the toroidal ballooning array coil B31-14 is shown in figure 3.2,
with the time derivative of the radial magnetic field in arbitrary units over time.
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Figure 3.2: Raw signal of AUGD:MHI, B31-14, #36327. The time derivative of
the radial magnetic field, proportional to the induced voltage signal of the coil
is plotted in arbitrary units over time.

The further processing of each signal is explained in chapter 4.1.

3.2 Charge exchange recombination spectroscopy

Fusion experiments like ASDEX Upgrade utilize plasma heating via the injection
of a neutral deuterium beam. This allows to probe temperature and drift of
impurity ions. In the process called charge exchange, an electron is transferred
from the neutral deuterium atom D to a positive ion I of a different sort. The
ion generally adopts an excited energy state, denoted with ∗. A deexcitation
with emission of characteristic radiation γ follows. The whole process is written
down in equation 3.1. [28]

D + IZ+ −→ D+ + I(Z−1)+∗ −→ D+ + I(Z−1)+ + γ (3.1)

Spectroscopy of the characteristic radiation yields a Doppler-broadened peak. If
the impurity ions possess a thermal velocity distribution, it can be fitted with a
Maxwell-Boltzmann distribution. Its width accounts for the temperature of the
impurities, the position of its maximum gives the drift velocity. As the emitting
particles are ions, the drift is the sum of the plasma velocity and the impurity
ion diamagnetic drift, which have opposing signs in the pedestal.
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The interest lies not in the temperature and drift of impurities, but in that
of the main plasma ions. The assumtion that impurity ions are thermalized
with the same temperature as the main ions is usually fair, note however, that
drift velocities depend on the charge of drifting particles. The charge state of
plasma impurities depending on the abundance of various elements is unified
under the effective number Zeff . It tells how the impurities drift on average.
The charge cancels out for the plasma velocity in equation 1.6, but it affects the
ion diamagnetic drift from equation 2.16.

3.3 Thomson scattering

An electromagnetic wave interacts with free, charged particles. The particles
get excited to a harmonic oscillation following the electric field and emit an
electromagnetic wave that interferes with the incident wave. This can equally
be viewed as a scattering of the wave. For elastic scattering at low energies,
where the particle recoil can be neglected, the phenomenon is known as Thomson
scattering. In plasma physics, it is an important diagnostic tool.
The electron fluid in a fusion plasma forms a scattering medium. The intensity
of the scattered radiation is proportional to the number of scattering events
which translates to the electron density n. For scattering on moving particles,
a Doppler shift occurs. With sufficient intensity, the spectrum of the scattered
radiation reflects the velocity distribution in the electron fluid. Assuming that
it is thermalized, the electron temperature Te can be computed from the width
of the spectrum. If both quantities n and Te are known, the electron pressure pe
can be calculated with equation 2.4, together with its gradient and the resulting
drift velocity.
At ASDEX Upgrade, there are two lasers that send out pulses for Thomson
scattering. Both are directed vertically in z direction. One of them probes
through the core of the plasma while the other one examines the plasma near
the edge. The scattered radiation is measured at different positions to give a
temporal and spatial resolution of the Thomson scattering signals. [29] Through
identification of flux surfaces, it is possible to infer the measured quantities in
other locations inside the separatrix such as at the midplane.
The localization of the measured profiles can suffer from an offset. The so-called
two point model gives a hint to where a profile correctly belongs. In accordance,
fitted Thomson scattering data are often shifted to match the position of Te =
100 keV with the separatrix. The velocity profiles presented in this thesis were
created in consideration of the two-point model. [30]
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3.4 Electron cyclotron emission

The gyrating electrons emit a cyclotron radiation at harmonics of their cyclotron
frequency from equation 1.4. Its dependence on the field B hints to the position
of its origin in the plasma. With the input of the magnetic field distribution
from an equilibrium reconstruction, the source can be localized.
The one quantity that can be deduced from the cyclotron radiation is the elec-
tron temperature. ECE can yield a profile of temperature over flux surface, or
radial position, like Thomson scattering. The optical properties of the plasma
are relevant. In the case that the plasma is highly absorbing to cyclotron ra-
diation, it radiates like a black body. This leads to a direct relation between
intensity and electron temperature. No particle density information can be
gathered from ECE since radiation intensity only accounts for temperature in
this case.
The density, in turn, affects the transparency of the plasma. In the case of
a transparent plasma, the temperature determination must account for this in
forward modeling.
The crucial advantage of ECE is the high sample rate, which is up to 1 MHz at
ASDEX Upgrade. This ensures a faster reaction to change in the profile than
for instance in the Thomson scattering diagnostic. [31]

3.5 Integrated data analysis

The integrated data analysis IDA is a computational diagnostic that unifies
input from several diagnostics including Thomson scattering and ECE. Infor-
mation from the different sources is merged in the frame of Bayesian statistics.
[21] This enables trustworthy results with good resilience against errors from
individual diagnostics. IDA produces radial profiles of electron density and
electron temperature as well quantities derived from that. The standard sample
rate is set to 1 kHz. [32]

3.6 Electric field evaluation

It is not possible to measure the radial electric field at the plasma edge directly.
To deduce it, the movement of charged particles under its influence can be used.
The EER diagnostic uses data from CXRS to set up a force balance equation
for the ion fluid and reconstruct the electric field Er. It is a computational
diagnostic like IDA. The sample rate can be varied. To increase confidence, data
may be averaged over ELMs. This can be problematic because the magnitude
of the electric field changes throughout the ELM cycle and the result might not
correspond to the desired time window. The EER data in graphs within this
thesis are not averaged.
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3.7 Singly charged helium spectroscopy

Neutral helium atoms are injected into the plasma for diagnostic purposes.
Through inelastic collisions, they get fully ionized when reaching a thermal
equilibrium. Close to the separatrix, where the energy density is not very high,
these atoms can become ionized to He1+, which has electronic states equivalent
to hydrogen. Characteristic light of He1+ is observed and its velocity distri-
bution is obtained from the Doppler shift of the characteristic lines. The drift
velocity helps to set up a force balance to find the electric field, the respective
diagnostic is abbreviated as HES. Due to the helium ions in that state being
non-thermalized, ion temperatures for electric field calculation must be added
in from other diagnostics like CXRS.

3.8 Integrated data equilibrium

Different diagnostics as well as the knowledge of flux surface structure and mag-
netic field rely on a reconstruction of the magnetic equilibrium. It is calculated
by numerical solving of the Grad-Shafranov equation 2.15. The integrated data
equilibrium IDE is an advanced reconstruction with a sampling rate of 200Hz.
Its radial resolution is comprised by 257 data points. The outermost closed flux
surface included lies at ρpol = 0.995. This allows to access a precise safety factor
close to the plasma edge. [33]
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Chapter 4

Method

The determination of mode numbers based on magnetic signals is an automated
process. It was originally implemented in the program mode determination.py by
Felician Mink in the course of his dissertation. [14] An adaptation for a python 3
environment followed in September 2020 by Markus Roth. Further expansions
including a routine for the poloidal mode number determination were added
during the making of this thesis. The program flow shall be explained in the
following.

4.1 Mode determination program

Since a specific phase in the ELM cycle before the crash is of interest, the sig-
nals must get chopped to respective time windows, a process in the following
referred to as ELM synchronization. Because the ELM crashes are visible in the
coil signals as large amplitudes, flank triggering is used to determine the exact
time point of each crash as the most precise method. The ELM synchronization
is then performed according to times relative to the ELM crash. [14]
From the signal time traces of each coil, numeric Fourier transforms (FFT) are
calculated. The FFT relies on partition into time windows.
In mode determination.py, these windows are identical to the time windows that
emerge in ELM synchronization. This means that a Fourier transform is cal-
culated for each detected ELM cycle. It is possible to map the result to a
histogram of intensity over frequency component and time. A frequency dis-
cretization arises from the computation and leads to the resolution of the result.
Corresponding to each frequency in each time window, a mode number is fitted
later on.
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For the calculation of mode numbers, it is necessary to gather phase infor-
mation of the signals. The phase ϕi(ω) follows from equation 4.1. The arcus
tangens of the quotient between the imaginary and the real part of the trans-
formed signal S̃i(ω) is taken for each coil, indexed by i.

ϕi(ω) = arctan

�
Im(S̃i(ω))

Re(S̃i(ω))

�
(4.1)

Due to inductive coupling of the coils to other vessel components, the signals
suffer from so-called intrinsic coil phases which alter the measured phase. They
are dependent on frequency and differ between coils, which can affect the mode
determination. The coils can be modeled as parallel resonant circuits. [27] Mea-
surements on their characteristics result in so called transfer functions TFi(f).
These are meant to correct the signal phases according to equation (4.2).

ϕ�
i(f) = ϕi(f) + TFi(f) (4.2)

The transfer functions have been measured several times at ASDEX Upgrade,
and are tabulated in assorted files. [27] The mode determination.py program
reads the right files, corresponding to the chosen discharge number, and incor-
porates the values to correct the signal phases.

4.1.1 Determination of toroidal mode numbers

From the Fourier transform of each calibrated signal, the phase is calculated. It
reads as equation (4.1), which is naturally limited to a co-domain of ±π. This
information is linked to the position of each coil in terms of toroidal angle. The
mode number corresponds to the slope in a signal phase over coil position plot.
Since the toroidal mode number is invariant under transformations in φ, this
process is rather straight forward.
In the simplest case, two coils could attain a mode number, but this would yield
no information on the quality of the result. The mode determination program
performs a linear regression requiring three or more coils with the residual as a
measure for trustworthiness.
The original signal phase gets convoluted into a [-π,π] interval, which means that
the phase shift between two coils has an upper bound of 2π. Moreover, ascending
phases can appear as descending, and other way round. To compensate, the
program divides into a positive and a negative regression loop. Alternating
phases in the coil array do not make sense in the physical image of the modes.
For the positive loop, each phase with a lower value than the one before it is
shifted up by 2π, creating a monotonically ascending array. The exact opposite
is done for the negative loop. A linear regression is done in each of the loops
and the one with the smallest residual is accepted as the result.
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One can see that the detectable mode number is then limited to a phase
shift of 2π between the farthest neighboring coils. In the case of the outboard
toroidal array, the coils B31-14 and B31-40 are separated by 1.5 rad. This would
bring the maximum detectable n to approximately 4.
To enable a larger range, the program offers the option of fit order. A number
of shifts is created. For the positive loop, the phase of the last coil in the array
is shifted up by 2π and a linear regression is done. The other phases are then
shifted one by one and regressions are created likewise. This process is repeated
up to a total shift of fit order times 2π in the last coil with every monotonically
ascending combination. The respective negative shifts are performed for the
negative loop.
For toroidal calculation, sometimes a fit order of 6 is required, which leads to a
considerable number of shifts and therefore computing time. In the end, out of
all the positive and negative shifts, the one with the smallest residual is taken.
Also the residual of that linear fit is saved. Such a fit with according shifts is
performed for every frequency step in every time window. [14]
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Figure 4.1: Graphical example for the solving of a best mode number fit. The
coil position is at the abscissa, the phase is indicated at the ordinate. Green
crosses as actual phases, black circles as measured phases, blue triangles as
positive shifts and red triangles as negative shifts. Black, blue and red lines
show the linear fits. The result with the smallest residual is -5.

Figure 4.1 is a graphical representation of the fitting process. For the sake of
clarity, only four coils are included and the fit order equals 1. The coil position
is at the abscissa, the phase is indicated at the ordinate. Green crosses indicate
where the actual phases lie, black circles represent the measured phases without
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shifts. The positively shifted phases are blue triangles and the negatively shifted
phases are red triangles. Black, blue and red lines indicate the fit through each
combination of shifts. The one with the smallest residual is where the green
crosses exactly overlay the red triangles and the mode number is correctly iden-
tified to be -5. This example is composed of artificial coil positions and phases
with no noise added. It is solved by the very algorithm in mode determination.py.
At the end of the determination process stands a histogram of intensity over
a mode number versus frequency plane. Each fit that comes out at a certain
frequency and mode number contributes to the intensity at that position in the
histogram. In addition, the inverse of the residual is used to weigh it so worse
fits contribute less. The intensity is then normalized to its global maximum.
An example plot for the n determination is shown in figure 4.2. The colorbar
on the right explains the color coding. Increasing intensity leads from black
over red and yellow to white. For the plot, the color coding may be chosen so
that features of interest are emphasized. In figure 4.2, there is a bright spot at
n = 1. This is a structure from inside the plasma, referred to as the core mode,
which moves in ion diamagnetic direction and appears in most histograms. It
is not subject of this thesis. Other modes can be seen which are arranged in
branches and likely lie in the pedestal. Due to their progression in the electron
diamagnetic direction, they display negative n.

Figure 4.2: Intensity histogram over frequency and mode number n. The col-
orbar on the right explains the color coding of intensity, increasing from black
over red and yellow to white. MHD modes can be seen as intensity maxima in
the negative n range.
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The intrinsic coil phases are corrected by means of the transfer functions
introduced in chapter (4.1). An improving effect of the transfer functions is
shown in figure 4.3. The case without transfer functions in figure 4.3a shows
a displacement of intensity for some of the modes, which is greatly reduced by
including the transfer functions in figure 4.3b.

a

b

Figure 4.3: Example for a mode determination result a) without and b) with
included transfer functions. Modes are partly displaced in a), but in correct,
linear arrangement in b).
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4.1.2 Determination of poloidal mode numbers

The determination of poloidal mode numbers m requires additional input and
is therefore more intricate. In the usual (θ, φ) system, m is not a good quantum
number. As the local magnetic field varies along a poloidal revolution, so does
the wave vector. The TOKAMAK is symmetrical to toroidal transformations,
but not to poloidal ones.
It is for the same reason that the local magnetic field line slope is distinct from
the safety factor, a global quantity. To find the true poloidal mode number
m, the fitting procedure must be done in a basis where m is a good quantum
number. The transformation θ to θ∗ is not linear, but bijective and must be
numerically extracted from a magnetic equilibrium reconstruction for each lo-
cality.
The coils measure the temporal derivative of the radial electric field, so the coil
positions are radially projected to flux surfaces. The closer a coil sits to a flux
surface, the more accurately the (θ∗, φ) coordinates are transferred. Therefore,
modes at the plasma edge can be localized more precisely than in the core. Since
each coil position is known in the (θ, φ) system, the transformation to θ∗ can
be done. It is founded on the IDE equilibrium reconstruction and calculated
using functions from the 2020 MAP EQ library by Giovanni Tardini. [34] The
poloidal ballooning coil array can then be assigned to straight field line angles.
Importantly, field lines and therefore modes lie equidistantly on flux surfaces in
the (θ∗, φ) frame. This allows to infer the poloidal mode number m as a global
quantity from phase shifts between local coils. The whole poloidal ballooning
coil array lies relatively tightly packed at the low field side.
As the transformation depends on the radial position in the plasma, a ρpol lo-
cality must be assumed for the calculation. This causes the whole process to
be an iterative one, as the correct ρpol input can only be verified through the
mode number result.
The mode numbers m follow from a set of linear regressions of phase over coil
position, the process is equivalent to the n determination described in the pre-
vious section. The slope of the linear fit with the smallest residual equals the
mode number result.
Figure 4.4 displays the result of a poloidal mode number determination. The
labels and colorbar are alike figure 4.2.
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Figure 4.4: Intensity histogram over frequency and mode number m. The col-
orbar on the right explains the color coding of intensity, increasing from black
over red and yellow to white. MHD modes can be seen as intensity maxima in
the negative m range.

Increasing the fit order and allowing larger phase shifts can be used to en-
hance the detection of high m, just as in the n determination. However, the fact
that all the coils sit in close proximity to one another, and in nearly equidis-
tant positions, causes small phase shifts in between and allows detection of high
m by default. High fit order hardly changes the result of program runs for
poloidal mode number determination. An in-depth look into the effect of the
coil positions, the fit order and arising errors is taken in the next section.

4.1.3 Artifacts in mode number determination

To interpret mode number histograms like figure 4.2, it is essential to understand
what happens when the periodicity of a mode can not be resolved. There
are natural limits to the highest and lowest detectable mode numbers. The
separation of ballooning coils Δφ sets a resolution, which can be pushed to
certain extent with the fit order. If the phase shift between the closest sitting
pair of coils exceeds 2π, the measurement becomes ambiguous. This sets the
absolute mode number boundary nmax, seen in equation 4.3.

nmax =
2π

Δφmin
(4.3)
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A simulation with coil positions φi and artificial phases ϕi of known mode
number was created to test the limits of the routine. The signals representing a
mode number n are at first created like equation 4.4. To mimic the convolution
that results from the FFT in measured signals, the phases are then transformed
to a ±π co-domain.

ϕi = n · φi (4.4)

In practical operation, the routine has to work with phases impaired by noise.
This leads to a statistical error in the mode numbers. It is simulated by im-
pinging the artificial phases with a normally distributed random error with an
amplitude in the order of 10% the signal strength. To investigate the statistical
effect, the calculation is repeated 100 times for each mode number.
For the determination of the poloidal m, the coil position in the straight field
line angle θ∗ is used for the calculation. Therefore, the mode number limit is
dependent on ρpol of the equilibrium, as is θ∗. The calculated coil positions for
the equilibrium at ρpol = 0.98 of #36069 are listed in table 4.1, those for the
outermost equilibrium layer ρpol = 0.995 of the same discharge in table 4.2.

coil θ∗

B31-05 -0.17761
B31-06 -0.12664
B31-07 -0.07680
B31-02 -0.02786
B31-08 +0.02871
B31-09 +0.08083
B31-10 +0.13453

Table 4.1: Positions of coils of the poloidal ballooning array in the straight field
line angle, calculated for #36069, ρpol = 0.98.

coil θ∗

B31-05 -0.15010
B31-06 -0.10704
B31-07 -0.06492
B31-02 -0.02356
B31-08 +0.02428
B31-09 +0.06833
B31-10 +0.11371

Table 4.2: Positions of coils of the poloidal ballooning array in the straight field
line angle, calculated for #36069, ρpol = 0.995.
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Figures 4.5 and 4.6 simulate the cases for ρpol = 0.98 and ρpol = 0.995,
respectively. Green crosses indicate the actual mode numbers, red circles show
the determination results for fit order zero and blue diamonds those for fit order
2. The phases represent a branch with mode numbers −75,−95,−115,−135
and −155. As can be seen in figure 4.5, the mode numbers down to −115 are
recognized correctly with both fit order zero and 2. This can be treated as a
minimum performance, as the coils sit closer together for higher ρpol, which
enhances the limit according to equation 4.3. All of the investigated modes are
situated in the pedestal, so further outwards than ρpol = 0.98.
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Figure 4.5: Simulated mode number detection for the poloidal ballooning array
at #36069, ρpol = 0.98. The ordinate is a frequency axis in arbitrary units,
which is of no importance here. Phases are overlaid with noise to yield a realistic
distribution of results. Green crosses indicate the actual mode numbers, red
circles show the determination results for fit order zero and blue diamonds for
fit order 2. Mode numbers down to −115 are identified correctly. Artifacts
congregate in a line parallel to the actual branch.
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Figure 4.6 with ρpol = 0.995 shows a detection limit of −135, again for fit
order zero and 2. For the given example, this equals a phase shift of just under
Δϕ = 2π between neighboring coils.
Other than at the correct positions, results congregate at parallelly shifted po-
sitions. This shift amounts approximately the maximum detectable mode num-
ber. It is constant, meaning that the linear structure of the branch is reproduced
at the shifted position.
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Figure 4.6: Simulated mode number detection for the poloidal ballooning array
at #36069, ρpol = 0.995. The ordinate is a frequency axis in arbitrary units,
which is of no importance here. Phases are overlaid with noise to yield a realistic
distribution of results. Green crosses indicate the actual mode numbers, red
circles show the determination results for fit order zero and blue diamonds for
fit order 2. Mode numbers down to −135 are identified correctly. Artifacts
congregate in a line parallel to the actual branch.

As can be seen from table 4.1 and 4.2, the poloidal ballooning array is dis-
tributed nearly equidistantly, which means that the difference between the limit
for fit order zero and the theoretical maximum for infinite fit order, given by
equation 4.3, becomes negligible. Thus, increasing of the fit order does not
drastically improve the poloidal mode number detection limit.
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While the poloidal ballooning array is nearly equidistant, the toroidal bal-
looning coils are placed irregularly. Table 4.3 holds the fixed toroidal angles of
the toroidal ballooning array.

coil φ

B31-40 +2.79148
B31-14 +0.50754
B31-03 -0.53576
B31-01 -1.09941
B31-02 -1.48711
B31-12 -1.53725
B31-13 -2.69327

Table 4.3: Positions of coils of the toroidal ballooning array in the toroidal angle.
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Figure 4.7: Simulated mode number detection for the toroidal ballooning array.
The ordinate is a frequency axis in arbitrary units, which is of no importance
here. Phases are overlaid with noise to yield a realistic distribution of results.
Green crosses indicate the actual mode numbers, red circles show the determi-
nation results for fit order zero and blue diamonds for fit order 2. Mode numbers
down to −2 are identified correctly with fit order zero, down to −5 is enabled
with fit order 2. Artifacts congregate in several locations parallel to the actual
branch.
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The situation is investigated in figure 4.7. A mode branch including mode
numbers −1,−2,−3,−4,−5,−10 and −12 is used. The result in figure 4.7 has
the same color coding as in figure 4.5. Clearly, the detection for fit order zero
is limited to −2, fit order 2 allows down to −5. This is very unsatisfactory as
many of the investigated phenomena exceed these mode numbers.
Excluding coil B31-40 increases this limit because that coil is localized farthest
from any other. This layout is simulated in figure 4.8. Fit order zero yields
correct mode numbers down to −5. However, with a fit order of 2 the n = −10
mode can still be recognized, which is typically sufficient. Artifacts copy the
linear structure of the branch in parts, but in various locations.
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Figure 4.8: Simulated mode number detection for the toroidal ballooning array
excluding B31-40. The ordinate is a frequency axis in arbitrary units, which
is of no importance here. Phases are overlaid with noise to yield a realistic
distribution of results. Green crosses indicate the actual mode numbers, red
circles show the determination results for fit order zero and blue diamonds for
fit order 2. Mode numbers down to −5 are identified correctly with fit order
zero, down to −10 is enabled with fit order 2. Artifacts congregate in several
locations parallel to the actual branch.

Irregularly placed coils at fit order zero limit the slope of the fit to 2π between
the farthest pair of neighboring coils. Increasing fit order pushes the detectable
mode number towards the theoretical limit in equation 4.3, which is governed
by the closest sitting coils. Artifacts, meaning wrongly identified modes, appear
at mode numbers subjected to a parallel shift. The amount of shift depends on
the arrangement of coils. The artifacts might gather at more than one center.
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At last, some systematical errors shall be discussed. There could, for in-
stance, be an error in the transfer functions, which would lead to wrong phase
information. If the phases in each coil are off by the same margin, the result is
of course unaffected. An error that is linearly increasing or decreasing from one
coil to the next can explain a parallel up- respectively downshift in the detected
mode numbers. The slope of the branch is preserved in this case, only causing
a parallel shift. If the error is frequency dependent, the slope of a branch can
be affected.
The coil position angles cannot produce a parallel shift for all mode numbers
because they are in the denominator of the calculation. However, an error can
influence all mode numbers with a constant factor if the coil positions are off
by the same factor. This is the case if the equilibrium is evaluated at the wrong
position for m determination, for instance.

4.2 Identification of mode branches

Identification of branches stands as the goal of mode number determination.
For the naked eye, these linear structures are often apparent. However, bias on
the side of the operator or misidentification of structures can lead to errors in
the interpretation. The goal of this section is to explain a computational tool
that helps to reason mode identification numerically.
In the emergent histograms, modes can be recognized as lightly coloured centers
of intensity. Their exact mode numbers and frequencies may be sharply defined,
other times their identification is more ambiguous. Figure 4.9 shows a close-up
of a well defined mode focal point and falling off intensity to each side. It stems
from a toroidal mode number determination of #36069.
In figure 4.10, a close-up of several modes is seen. They belong to the poloidal
mode number histogram of discharge #36069. The intensities overlap so that
individual positions are indistinguishable. Generally, poloidal mode number
histograms seem to produce less clear images of modes. It is often helpful to
start with a toroidal mode determination and look for poloidal mode numbers
at the resulting frequencies.
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Figure 4.9: Close-up of a well defined mode in a toroidal mode number his-
togram. A focal point with high intensity, as well as a surrounding area with
falling off intensity, are clearly visible.

Figure 4.10: Close-up of an area with several modes in a poloidal mode number
histogram. The intensities of the modes somewhat overlap and make individual
positions indistinguishable.
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A routine was devised to recognize modes in histograms with auxiliary input
from the operator. It sports different functions.
The first function applies a least square fit of a normal distribution to find the
precise focal point of a mode. As the intensity falls off all around, this is an
eligible distribution. The function requires initial parameters as input, which
include mode number and frequency, respective width and amplitude. This, of
course, means influence from the operator. Anyway, the fit will only converge
to peaks and is therefore stable against false positives. The validity of results
can be assessed from the width and the amplitude after optimization. If the
width is disproportional to the width of the mode or the amplitude vastly differs
from the maximum intensity of considered mode, the fit cannot be trusted. For
clear modes like in figure 4.9, the function yields promising results. Cross checks
with areas lacking visible modes show that the fit mostly ends at the maximum
iteration number and raises RuntimeError.
For the case that a mode is too distorted for the fit to converge, there is the
alternative to calculate its center of intensity. This is done by a second func-
tion, which also takes initial inputs. The calculation takes a rectangular area
in account, which is specified by the operator through the center and size. The
function then calculates the center of intensity within this area. Unlike for the
fit, a small change of the initial parameters will always affect the result. This
method is hence more prone to bias. On the upside, the calculation of the cen-
ter will always yield a result and can be the right choice for distorted modes.
Furthermore, there is also the option of directly entering the coordinates to a
mode, which then entirely relies on the operators assessment.
Once at least three modes are added in one of the described ways, a linear re-
gression can be fitted. This yields a slope which is necessary for the localization
and velocity calculation of a branch. An additional parameter is the offset, ex-
pressed as frequency at mode number zero, as not every branch seems to cross
the coordinate origin. A standard error for the slope is also returned, but not
for the offset. The uncertainties of the slopes given in the next chapter are based
on this.
Which modes form a branch together is, again, evaluated by the operator. A
comparison of related poloidal and toroidal mode number histograms is often
helpful in deciding this. More than one branch can be defined which allows
comparison between differently moving modes.
For #36069, a number of identified modes together and two branches are indi-
cated in the poloidal and toroidal mode number histogram, shown in figure 4.11
and 4.12, in that order. Branches and the modes belonging to them are then
highlighted in bright green.
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Figure 4.11: Poloidal mode number histogram of #36069 with several modes
indicated as green crosses and two branches fitted through as green lines.

Figure 4.12: Toroidal mode number histogram of #36069 with several modes
indicated as green crosses and two branches fitted through as green lines.

To compare the various drift velocities to mode frequencies, a mode velocity
projected to the perpendicular field direction must be calculated. The formula
used is equation 4.5, where f/n is the branch slope, Bpol/|B| the fraction of
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poloidal component to absolute magnetic field and 2πR the torus circumference
on the outboard midplane. Uncertainties in f/n are linearly transferred to the
mode velocity.

vmode =
f

n
· Bpol

|B| · 2πR (4.5)

The frequency of a mode measured at a fixed position suffers from the so-
called barber pole effect. This can be thought of as a helical line drawn around a
pole. When the pole rotates, the line seems to move along the axis of the pole.
Modes sitting at magnetic field lines underlie the same phenomenon, where
direction of movement is toroidal. However, this is no physical velocity. To
yield a perpendicular velocity without this contribution, the factor Bpol/|B| is
multiplied. [35]

The safety factor used for localization is the quotient of toroidal and poloidal
branch slopes f/n and f/m, equation 4.6.

f

n
:
f

m
=

m

n
(4.6)

Uncertainties given for m/n follow from error propagation of the slopes.

4.3 Drift velocities

To find the ion diamagnetic and electron diamagnetic velocities according to
equation 2.16, density and temperature profiles are needed. The density n is
measured by the Thomson scattering diagnostic, together with the electron tem-
perature Te. The ion temperature Ti on the other hand can be taken from the
CXRS diagnostic. The data come as points resolved in space and time. As the
analysis is focused on the pre-ELM phase, the data must be temporally filtered
in the sense of ELM synchronization. In the presented cases, the ELM window
for the profiles stretches from −5.5ms to the ELM onset. The window is longer
compared to the mode determination to gather more data from the profiles,
which reduces statistical errors later in the process.
As the gradient is needed in equation 2.16, suitable coordinates must be found
to calculate it. On the midplane, the gradient in curved coordinates can be sim-
plified to just the partial derivative in R. Ideally, the data should be given over
the radius R on the midplane. Thomson scattering uses a vertically directed
laser, so the acquisition points sit at a fixed radius in different z-positions. Like
other quantities, density and temperature are assumed to be constant on a flux
surface. With the help of a flux coordinate, it is possible to map data points
to the midplane. The program fusionfit by Philip A. Schneider aids this pro-
cess. All transformations between cylindrical and flux coordinates depend on
an equilibrium reconstruction. Thomson scattering acquisition points are being
linked to ρpol values. The entire profiles are then shifted to match the position
of Te = 100 keV with the separatrix at ρpol = 1 according to the two-point
model. [30]
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Following this, all profiles are mapped to R so the gradient can be calculated in
SI units. The data acquisition of CXRS is already resolved in the radius R and
does not need correction with respect to the separatrix.
The raw data over radius are approximated with a spline function. Each data
point from the diagnostics comes with an error estimate which acts as a weight
for the spline. In addition to the spline function itself, the confidence of the
result is of interest. The errors of individual data are already included in the
calculation as weights for the spline. Instead, the confidence of the spline is
determined via a sampling algorithm using the covariance of the spline param-
eters. Normally distributed vectors are created 100 times and multiplied to the
matrix square root of the covariance matrix. The resulting vectors are added to
the parameter vector to create a set of normally distributed parameter vectors
for the spline. From this set, a standard deviation can be calculated. The credit
for this method goes to Dirk Nille.
Splines are advantageous because they can be differentiated easily. With the
method explained above, it is also easy to translate errors to the derivative of
a function. Hence profiles and gradients of temperature and density are avail-
able as analytical functions. The relevant pressure gradient can then be easily
calculated as equation 4.7.

∇p = kB(∇n · T + n · ∇T ) (4.7)

An example for the electron density of #36327 is given in figure 4.13, with
data points as red dots and the spline function as a blue line. The very narrow
confidence interval is indicated by green, dashed lines.
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Figure 4.13: Data points in red, spline fit in blue and fit confidence in green for
the electron density profile of #36327.
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Finished velocity profiles for #36327 can be seen in figure 4.14. The ion
diamagnetic velocity fit appears as a red line, with the confidence interval as
rose, dashed lines. The electron diamagnetic velocity is shown as a blue line,
with the confidence interval as cyan, dashed lines.
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Figure 4.14: Fitted profiles of ion diamagnetic velocity in red, with confidence
interval in rose as well as electron diamagnetic velocity in blue and confidence
interval in cyan, all from #36327.
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Chapter 5

Localization

Applying the methods presented in the previous chapter, data from several
discharges are investigated. Each discharge is discussed with respect to its
plasma parameters and operational regime. The histograms are then analyzed
for their relevant features. Especially, the slope of mode branches is determined.
With help of IDE equilibrium reconstructions, an attempt is made to localize
the modes.

5.1 #33211

This first discharge was chosen for its clear display of modes, even though edge
profiles and velocities are missing. It is described as evolution of the pedestal
in the inter-ELM phase with varying triangularity. The toroidal magnetic field
is nearly −2.5T, the plasma current is about 0.8MA. The plasma is heated
by neutral beam injection and electron cyclotron resonance heating. Table 5.1
holds the parameters that characterize the plasma. A time interval from 2.5 s
to 3 s is selected, in which heating power and radiation are stable.

Btor −2.487T
Iplasma 0.800MA
q95 5.052
PECRH 1.423MW
PNBI 5.019MW

Table 5.1: Parameters of #33211.
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Figure 5.1 shows the toroidal mode number histogram of discharge #33211.
It displays a very clear branch of eight modes spanning through the negative n
range. The core mode sits at n = 2 here. The modes at n = −4 and n = −5
produce artifacts on the right. Upon close inspection, the modes n = −1,
n = −6 and n = −7 appear split as if possessing two separate maxima. Fitting
with a normal distribution suggests that they are in fact separate modes.

Figure 5.1: Toroidal mode number histogram of #33211. Modes down to n = −8
appear in the left half of the image. On the right, the modes n = −4 and n = −5
produce artifacts.
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Figure 5.2 shows the fitted positions of eight aligned modes in #33211 as
green crosses. The branch assembled by these modes is indicated by a green
line and has a slope of −29.27± 0.50 kHz and an offset of −1.87 kHz.

Figure 5.2: Toroidal mode number histogram of #33211. The mode branch is
identified with green crosses and a green line.

From the double maxima, which lie off the first branch, another branch can
be constructed. This is shown in figure 5.3, resulting is a slope of −29.29 ±
0.56 kHz and an offset of 10.25 kHz, almost parallel to the first branch. Table
5.2 gives the fitting results of all the modes.
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Figure 5.3: Toroidal mode number histogram of #33211. An alternative branch
through the outlying modes is identified with green crosses and a green line.

mode n f (kHz)

branch 1

1 -1.13 27.0
2 -1.96 55.3
3 -2.85 83.8
4 -3.69 109.9
5 -4.76 140.3
6 -5.79 165.0
7 -6.69 193.8
8 -7.69 221.5

branch 2

1 -0.66 29.3
2 -5.59 175.8
3 -6.69 204.7

Table 5.2: Modes in the n histogram of #33211 with mode numbers and fre-
quencies.
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Continuing with the poloidal mode numbers, figure 5.4 shows a histogram
of #33211 with the equilibrium evaluated at ρpol = 0.98, in the pedestal. A
core mode is visible in bright yellow at about m = 15. As the poloidal mode
number is evaluated in the pedestal region, this is not the correct m of the core
mode. In the negative m range, there are five modes arranged in a branch, the
fifth of which is very faint. The branch reaches to closely under 150 kHz. On
the positive m side, two artifacts appear, which correspond to the two topmost
modes of aforementioned branch. Above their frequency, there is some intensity
which could be vaguely identified as three modes. Due to the position, it is
likely that this is also an artifact belonging to negative m. However, it does not
seem to align with the branch, being shifted but nearly parallel to it.

Figure 5.4: Poloidal mode number histogram of #33211 applying ρpol = 0.98. A
branch of five modes slopes in the left half of the image. On the right, artifacts
are visible.
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The five modes and the branch they form are marked in figure 5.5 with
green crosses and a green line. All mode numbers and frequencies are given in
table 5.3. The branch results in a slope of −4.44 ± 0.29 kHz and an offset of
−23.48 kHz.

Figure 5.5: Poloidal mode number histogram of #33211 with ρpol = 0.98. The
mode branch is identified with green crosses and a green line.

mode m f (kHz)

1 -11.19 28.9
2 -18.65 55.7
3 -25.26 83.6
4 -29.15 113.6
5 -37.67 142.6

Table 5.3: Modes in the m histogram of #33211 and ρpol = 0.98 with mode
numbers and frequencies.

From the quotient of the slopes, the safety factor can be estimated. However,
one problem is that especially the branch in m shows a significant offset. Based
on the artifacts described in chapter 4.1.3, an artificial offset could occur while
the slope is correctly preserved. Another argument for an offset are the wave
phenomena discussed in chapter 2.4. When neglecting the offsets and assuming
correct slopes, the safety factor follows from figure 5.2 and 5.5 to q = 6.58±0.45.
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Based on the equilibrium reconstruction IDE, q equals 4.85 at ρpol = 0.98,
so clearly below the estimate based on the mode numbers. As mentioned before,
the localization process is an iterative one with changes to the ρpol input.
Figure 5.6 shows another poloidal mode number histogram of #33211. The
equilibrium is evaluated at ρpol = 0.995, the outermost position available. As
can be seen, this increases the mode numbers while maintaining the general
structure compared to ρpol = 0.98. Green crosses indicate the modes, the branch
is shown as a green line. The result is a slope of −3.74± 0.25 kHz and an offset
of −23.53 kHz. The modes are listed in table 5.4.

Figure 5.6: Poloidal mode number histogram of #33211 with ρpol = 0.995. The
mode branch is identified with green crosses and a green line.

mode m f (kHz)

1 -13.30 28.9
2 -22.15 55.7
3 -30.00 83.6
4 -34.62 113.6
5 -44.74 142.6

Table 5.4: Modes in the m histogram of #33211, ρpol = 0.995 with mode
numbers and frequencies.
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To examine the safety factor further inside of the plasma, yet another poloidal
mode number determination is performed at ρpol = 0.94. The result can be seen
in figure 5.7. The structure of the histogram is preserved compared to the pre-
vious cases in figure 5.5 and 5.6, as the mode numbers are only changed by a
multiplicative factor. Green crosses indicate the modes, a green line depicts the
branch with a slope of −5.41± 0.36 kHz and an offset of −23.83 kHz. Table 5.5
holds the individual modes.

Figure 5.7: Poloidal mode number histogram of #33211 with ρpol = 0.94. The
mode branch is identified with green crosses and a green line.

mode m f (kHz)

1 -9.24 28.9
2 -15.39 55.7
3 -20.85 83.6
4 -24.06 113.6
5 -31.04 142.6

Table 5.5: Modes in them histogram of #33211, ρpol = 0.94 with mode numbers
and frequencies.
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Figure 5.8 shows the q profile based on IDE as green triangles, next to m/n
as purple circles with error bars, based on the branch slopes for each position.
Table 5.6 holds the corresponding numbers. The m/n values lie above the q
profile, while the relative difference shrinks slightly towards the separatrix. It
could be concluded that both values converge outside of ρpol = 0.995, which
would be the locality of the modes.
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Figure 5.8: Safety factor over flux coordinate for #33211. The green triangles
indicate the profile from IDE, the purple circles with error bars show the m/n
values found.

ρpol m/n q

0.94 5.41± 0.37 3.97
0.98 6.58± 0.45 4.85
0.995 7.82± 0.54 5.82

Table 5.6: Values of q from IDE, along with m/n at each position for #33211.
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5.2 #36068

This discharge is focused on the type-I ELM regime in a plasma with high
triangularity. It shows a mode structure in the pedestal and unlike in #33211,
drift velocity profiles are available. Table 5.7 gives the operational parameters.
The following analysis is based on the interval from 4.8 s to 5.3 s in the discharge.

Btor −2.502T
Iplasma 1.056MA
q95 4.189
PICRH 3.725MW
PNBI 5.009MW

Table 5.7: Parameters of #36068.

To begin with, the toroidal mode numbers of #36068 can be seen in figure
5.9. There is a core mode at n = 1 and a fairly visible branch stretching with
negative slope from n = −1 to −9. Artifacts in the right half of the image
between 100 and 150 kHz are likely produced by the modes n = −4 and −5.
Any remaining intensity cannot be assigned to any specific structure.

Figure 5.9: Toroidal mode number histogram of #36068. A core mode at n = 1
and a branch from n = −1 to −9 are visible.
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The mentioned branch is fully identified and fitted in figure 5.10. The branch
has a slope of −25.88± 0.64 kHz and an offset of 4.50 kHz. All detected modes
are listed in table 5.8.

Figure 5.10: Toroidal mode number histogram of #36068. The mode branch is
identified with green crosses and a green line.

mode m f (kHz)

1 -0.94 24.8
2 -1.87 50.9
3 -2.87 80.0
4 -3.81 106.3
5 -4.99 132.3
6 -5.90 164.2
7 -6.89 188.7
8 -7.79 202.9
9 -8.79 225.5

Table 5.8: Modes in the n histogram of #36068 with mode numbers and fre-
quencies.
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The respective poloidal mode numbers are shown in figure 5.11. An equilib-
rium reconstruction at ρpol = 0.995 is applied. Apart from the core mode, the
structures are much less clear than in figure 5.9. Two modes between 100 and
150 kHz are most apparent. A rather faint one aligned with them lies below.
There is another visible mode around 200 kHz, but not aligned with the others.

Figure 5.11: Poloidal mode number histogram of #36068 with ρpol = 0.995. A
core mode and individual modes in the negative m range from 100 to 200 kHz
are visible.

63



Figure 5.12 shows the corresponding fit. Three aligned modes could be
detected and form a branch with a slope of −3.97 ± 0.52 kHz and an offset of
−23.58 kHz. The mode numbers and frequencies are held in table 5.9.

Figure 5.12: Poloidal mode number histogram of #36068 with ρpol = 0.995.
The mode branch is identified with green crosses and a green line.

mode m f (kHz)

1 -26.38 78.7
2 -31.70 106.3
3 -39.84 133.0

Table 5.9: Modes in the m histogram of #36068, ρpol = 0.995 with mode
numbers and frequencies.
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The poloidal mode number determination for ρpol = 0.94 and 0.98 is per-
formed as well, which differs from ρpol = 0.995 only by a factor again. Only the
results for m/n of the branches are presented here, as well as for the following
discharges. Figure 5.13 displays them as purple circles with error bars, along
with the respective q profile of #36068 as green triangles. The values are listed
in table 5.10. For each equilibrium position, m/n is greater than q. In this case,
the modes seem to be localized outside of ρpol = 0.995 as well.
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Figure 5.13: Safety factor over flux coordinate for #36068. The green triangles
indicate the profile from IDE, the purple circles with error bars show the m/n
values found.

ρpol m/n q

0.94 4.33± 0.58 3.43
0.98 5.50± 0.73 4.38
0.995 6.52± 0.87 5.24

Table 5.10: Values of q from IDE, along with m/n at each position for #36068.
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Thanks to sufficient CXRS data, velocity profiles are available for #36068.
Figure 5.14 compares the vExB data from EER and the electron diamagnetic
velocity based on chapter 4.3 to the velocity of the modes, projected perpen-
dicularly to the magnetic field. Green circles with error bars depict vExB, the
blue line with cyan uncertainty shows the electron diamagnetic velocity and the
purple line with violet uncertainty is the mode velocity. Based on where the
modes are localized, R and 1B as used in equation 4.5 change and give rise to
the purple curve. As can be easily judged, the mode velocity vastly exceeds the
combined electric field and electron diamagnetic drift, so an additional effect
must be involved.
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Figure 5.14: Comparison of velocity profiles over flux coordinate for #36068.
Green circles with error bars depict vExB, the blue line with cyan uncertainty
shows the electron diamagnetic velocity and the purple line with violet uncer-
tainty is the mode velocity.
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5.3 #36069

In many respects, this discharge is similar to #36068 as it also lies in the regime
of high triangularity type-I ELMs. The heating power with ICRH is slightly
higher while the plasma current is lower compared to #36068. A difference can
be seen in the increased q95. The parameters can be seen in table 5.11. As a
time interval, 5.7 s to 6.2 s is chosen.

Btor −2.502T
Iplasma 0.797MA
q95 5.415
PICRH 3.749MW
PNBI 5.061MW

Table 5.11: Parameters of #36069.
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In figure 5.15, the histogram of toroidal mode numbers for #36069 can be
seen. Its core mode appears at n = 1. Most prominently, there are two clearly
separated branches in this discharge, both with negative n. The steeper one
reaches from n = −1 to −7. Diffuse intensity corresponding to n = −8 is
to faint for clear identification. On the right, artifacts arise from the modes
n = −3, −4 and to a lesser degree n = −5. The flatter branch includes the
mode numbers −2,−3 and −4. As both branches converge near the coordinate
origin, n = −1 of the steep branch and n = −2 of the flat branch are hard to
distinguish.

Figure 5.15: Toroidal mode number histogram of #36069. The core mode is at
n = 1. Two branches of different slope are apparent in the negative n range.
On the right, artifacts of n = −3 to −5 are visible.
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Figure 5.16 highlights these features. The modes are listed in table 5.12.
For the steep branch, the fit yields a slope of −34.01± 0.53 kHz and an offset of
3.36 kHz. The flat branch results in a slope of −15.33± 1.61 kHz and an offset
of 8.10 kHz.

Figure 5.16: Toroidal mode number histogram of #36069. The modes and
branches are identified with green crosses and green lines.

mode n f (kHz)

branch 1

1 -0.90 33.1
2 -1.91 66.7
3 -2.79 98.9
4 -3.82 133.4
5 -4.66 164.4
6 -5.81 204.4
7 -6.96 235.9

branch 2

1 -1.86 35.7
2 -2.84 53.5
3 -3.86 66.4

Table 5.12: Modes in the n histogram of #36069 with mode numbers and
frequencies.
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The poloidal mode number histogram of #36069 with ρpol = 0.995 can
be seen in figure 5.17. The core mode mistakenly appears around m = 20,
being evaluated at the very edge. Both branches are much less recognizable.
Four modes of the steep branch show under 150 kHz. The flat branch hardly
shows any discernible modes, but intensity is seen below the steep branch. Its
frequency range is consistent with the flat branch from figures 5.15 to 5.16. At
roughly 30 kHz between m = −10 and −25 lies a broad island of intensity, which
might be the mergence of the lowest modes of both branches. On the right edge,
over m = 100, artifacts congregate.

Figure 5.17: Poloidal mode number histogram of #36069 applying ρpol = 0.995.
The core mode mistakenly appears at m = 20. A steep branch of four modes
appears. Intensity below suggests a flat branch. On the right, artifacts are
visible.
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The results of the fits are seen in figure 5.18. In the steep branch, the slope
is −3.70±0.38 kHz and the offset is −18.69 kHz. Fits for the intensity below, at
the frequencies corresponding to the flat branch of figure 5.16, indeed converge.
However, these results must be treated with caution, as the modes do not line
up nicely. The flat branch has a slope of −2.46 ± 0.42 kHz and an offset of
−15.33 kHz. Mode numbers and frequencies of the modes are listed in table
5.13.

Figure 5.18: Poloidal mode number histogram of #36069 with ρpol = 0.995.
The modes and branches are identified with green crosses and green lines.

mode n f (kHz)

branch 1

1 -13.67 33.8
2 -25.53 67.8
3 -30.06 98.9
4 -40.79 131.8

branch 2

1 -19.86 34.5
2 -27.95 50.5
3 -32.07 65.6

Table 5.13: Modes in the m histogram of #36069, ρpol = 0.995 with mode
numbers and frequencies.
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In figure 5.19, the q profile of #36069 is indicated as green triangles. It is
seen together with m/n for the steep branch as purple circles with error bars
and m/n for the flat as branch orange squares with error bars. The mode
determination is done at ρpol = 0.94, 0.98 and 0.995. All values can be found
in table 5.14. For the steep branch, the conclusion is once more that the modes
are localized outside of ρpol = 0.995. The flat branch could stem from a position
inside ρpol = 0.995, as its confidence interval overlaps with the profile.
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Figure 5.19: Safety factor over flux coordinate for #36069. The green triangles
indicate the profile from IDE, the purple circles with error bars show m/n for
the steep branch and the orange squares with error bars are the m/n values for
the flat branch.

ρpol m/n steep m/n flat q

0.94 6.10± 0.63 4.13± 0.82 4.51
0.98 7.77± 0.80 5.26± 1.05 5.72
0.995 9.19± 0.95 6.23± 1.24 6.86

Table 5.14: Values of q from IDE, along with m/n at each position for both
branches in #36069.
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Mode velocities for both of the branches are calculated and plotted over
ρpol in figure 5.20. The velocity of the steep branch is shown as a purple line
with violet uncertainty and that of the flat branch is shown as an orange line
with dark orange uncertainty. They are compared to vExB from EER as green
circles and the electron diamagnetic velocity as a blue line with cyan uncertainty.
Unfortunately, no error estimates could be computed for the vExB data from
EER in this discharge. The velocity of the flat branch can be explained by
the combination of vExB and the electron diamagnetic velocity near the edge.
Its large uncertainty reflects the f/n uncertainty in this branch. For the steep
branch, the observation matches that of #36068, where no drift velocity comes
close to explaining it.
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Figure 5.20: Comparison of velocity profiles over flux coordinate for #36069.
Green circles with error bars depict vExB, the blue line with cyan uncertainty
shows the electron diamagnetic velocity, the purple line with violet uncertainty
is the mode velocity of the steep branch and the orange line with dark orange
uncertainty is that of the flat branch.
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To evaluate the data from EER, they are compared to HES results as well as
the ion diamagnetic velocity based on chapter 4.3. Empirical evidence suggests
that near the plasma edge, the absolute values of vExB and ion diamagnetic
velocity are close to equal. [36] In that case, the ion fluid is in an equilibrium
where the residual velocity is zero.
Figure 5.21 compares vExB from EER as green circles and from HES as black
squares with error bars to the ion diamagnetic velocity as a red line with rose
uncertainty. For visual comparability, the vExB values are plotted into positive
vperp. There is disagreement in particular between the CXRS data and the
ion diamagnetic velocity. The HES data suggest a shape that is somewhat
reminiscent of the descent in the right of the red curve. However, its absolute
values are mostly lower than vi,dia, with a possible intersection near ρpol = 0.98.
Even when assuming a larger electric field, such that vExB is nearly vi,dia, the
drifts cannot explain the fastest mode velocity.
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Figure 5.21: Comparison of vExB from EER as green circles and from HES as
black squares with error bars to the ion diamagnetic velocity as a red line with
rose uncertainty. Plot over flux coordinate for #36069.
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5.4 #36327

Discharge #36327 is characterized by fast gas puff modulation with deuterium
gas. It shows type-I ELMs. The heating is done with ECRH and, to a lesser
extent, NBI. q95 varies throughout the discharge, but averages about 4.45 in
the considered time window. It stretches from 2.5 s to 4.0 s. All parameters are
covered in table 5.15.

Btor −2.500T
Iplasma 0.989MA
q95 ≈ 4.45
PECRH 3.968MW
PNBI 2.538MW

Table 5.15: Parameters of #36327.

Figure 5.22 shows the toroidal mode number histogram of #36327. The core
mode sits at low frequency. In a steep mode branch, modes from n = −1 to
−9 appear. They are fairly aligned except for n = −9, while other modes seem
stretched out and might be comprised of separate maxima. Modes with n = −4
to −6 produce artifacts in the right half of the figure, at around 140 kHz. Below
the steep branch, there are more modes. Not all of them can be assigned to one
flat branch, but seem to be part of several alignments.

Figure 5.22: Toroidal mode number histogram of #36327. The core mode lies
at low frequency. Modes down to n = −9 can be identified. On the right,
artifacts of n = −4 to −6 are visible. Below the steepest branch, more modes
are situated.
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Modes are marked in figure 5.23. A steep branch is drawn through modes
n = −1 to n = −8. It results in a slope of −27.37 ± 0.53 kHz and an offset of
1.82 kHz. Furthermore, a branch is fitted through four of the lowest possible
modes. This flat branch has a slope of −15.34 ± 0.65 kHz and an offset of
−2.15 kHz. All the marked modes are listed in table 5.16.

Figure 5.23: Toroidal mode number histogram of #36327. The modes and
branches are identified with green crosses and green lines.
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mode n f (kHz)

branch 1

1 -0.86 26.6
2 -1.91 51.3
3 -2.94 80.5
4 -3.94 110.0
5 -4.84 140.8
6 -5.80 157.3
7 -6.71 186.9
8 -7.88 215.6

branch 2

1 -1.87 26.3
2 -2.80 40.3
3 -4.86 74.6
4 -5.84 85.8

Table 5.16: Modes in the n histogram of #36327 with mode numbers and
frequencies.
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The respective poloidal mode number histogram of #36327 with ρpol = 0.995
can be seen in figure 5.24. Apart from the core mode, one intense mode at
around m = −15 and 25 kHz is visible. There are two more apparent, rather
wide modes between 100 and 150 kHz, which have artifacts on the right. Un-
fortunately, not all modes from figure 5.22 can be distinguished in figure 5.24,
as some might be merged together. Only the distribution of the lowest branch
can be recognized.

Figure 5.24: Poloidal mode number histogram of #36327 applying ρpol = 0.995.
Apart from the core mode, there is one intense mode at 25 kHz and two wide
modes between 100 and 150 kHz. The distribution of the lowest branch can be
recognized. On the right, artifacts are visible.
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Figure 5.25 contains the fits. A steep branch of three modes is indicated,
which has a slope of −4.30± 0.43 kHz and an offset of −34.44 kHz. The flatter
branch is also fitted through only three modes and shows a slope of −1.97 ±
0.14 kHz and an offset of −1.43 kHz. It also passes through the intense mode at
25 kHz, implying that this structure might be comprised of two modes directly
overlaid. All distinctly identified modes are held in table 5.17.

Figure 5.25: Poloidal mode number histogram of #36327 with ρpol = 0.995.
The modes and branches are identified with green crosses and green lines.

mode n f (kHz)

branch 1

1 -14.05 26.7
2 -35.21 110.8
3 -38.20 134.9

branch 2

1 -21.52 40.2
2 -36.49 72.3
3 -45.91 87.7

Table 5.17: Modes in the m histogram of #36327, ρpol = 0.995 with mode
numbers and frequencies.
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Figure 5.26 shows the q profile of #36327 with green triangles. The steep
branch is indicated as purple circles with error bars has lower m/n values than
the flat branch, which is shown as orange squares with error bars. Mode numbers
are evaluated at ρpol = 0.94, 0.98 and 0.995. The respective m/n and q results
are held in table 5.18. Both branches seem to be localized outside of ρpol = 0.995
because their m/n lies above the q profile. However, the steeper branch could
lie very closely outside, taking the uncertainty interval into account.
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Figure 5.26: Safety factor over flux coordinate for #36327. The green triangles
indicate the profile from IDE, the purple circles with error bars show m/n for
the steep branch and the orange squares with error bars are the m/n values for
the flat branch.

ρpol m/n steep m/n flat q

0.94 4.42± 0.45 5.41± 0.44 3.65
0.98 5.59± 0.57 6.84± 0.56 4.68
0.995 6.37± 0.65 7.79± 0.64 5.60

Table 5.18: Values of q from IDE, along with m/n at each position for both
branches in #36327.
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The comparison of velocities is depicted in figure 5.27. vExB from EER is
shown as green circles with error bars and the electron diamagnetic velocity as
a blue line with cyan uncertainty, the velocity of the steep branch is shown as
a purple line with violet uncertainty and that of the flat branch as an orange
line with dark orange uncertainty. Due to the long time interval from 2.5 to 4 s
in this discharge, EER data points appear in a large quantity and considerably
scattered. As for the flat branch, it could move with the combination of vExB

and electron diamagnetic velocity. The steep branch seems to move faster than
the drifts.
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Figure 5.27: Comparison of velocity profiles over flux coordinate for #36327.
Green circles with error bars depict vExB, the blue line with cyan uncertainty
shows the electron diamagnetic velocity, the purple line with violet uncertainty
is the mode velocity of the steep branch and the orange line with dark orange
uncertainty is that of the flat branch.
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5.5 #36650

The list of discharges is concluded by #36650 with low power separatrix fuelling
seeding. It sports a type-I ELM regime in a long, stable phase. Table 5.19 shows
the parameters of the discharge. A time window from 3.0 s to 4.5 s is regarded.

Btor −2.520T
Iplasma 0.997MA
q95 4.253
PECRH 2.627MW
PNBI 3.108MW

Table 5.19: Parameters of #36650.

The toroidal mode number histogram of the discharge is presented in figure
5.28. At n = 1 sits the core mode. Two very clear branches can be seen, with
five modes each. Even the steeper of the branches ends under 150 kHz. No
artifacts of strong intensity are visible.

Figure 5.28: Toroidal mode number histogram of #36650. At n = 1 sits the
core mode. There are two branches of five modes each. No artifacts of strong
intensity are visible.
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These branches are tagged in figure 5.29. Due to the clear delimitation of
the modes, all of them can be fitted easily. The steep branch has a slope of
−19.52 ± 0.37 kHz and an offset of 1.15 kHz. The slope of the flat branch is
−8.92 ± 0.27 kHz, while its offset is 8.00 kHz. Table 5.20 contains the mode
numbers and frequencies of the described modes.

Figure 5.29: Toroidal mode number histogram of #36650. The modes and
branches are identified with green crosses and green lines.
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mode n f (kHz)

branch 1

1 -1.92 38.7
2 -2.88 58.1
3 -3.93 77.2
4 -4.84 94.4
5 -5.88 117.1

branch 2

1 -2.86 32.9
2 -3.72 42.3
3 -4.65 49.1
4 -5.83 59.6
5 -6.65 67.5

Table 5.20: Modes in the n histogram of #36650 with mode numbers and
frequencies.
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Figure 5.30 holds the poloidal mode number histogram of #36650 with ρpol =
0.995. It shows the key features from figure 5.28, with a core mode mistakenly
appearing between m = 15 and 20. Four modes of the steep branch can be
distinguished, while the fifth, topmost, is missing from the line. However, at
the respective frequency, there is intensity around m = −40 and an artifact on
the right side of the figure. All the modes from the flat branch are rather well
discernible.

Figure 5.30: Poloidal mode number histogram of #36650 with ρpol = 0.995.
The core mode and four modes of the steep branch can be seen, the fifth is
somewhat displaced. All modes of the flat branch are in place.
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Shown in figure 5.31 are the marked branches of #36650. The steep branch,
consisting of four modes, has a slope of −2.62 ± 0.18 kHz and an offset of
−5.84 kHz. Five other modes contributing to the flat branch result in a slope of
−1.30 ± 0.04 kHz and an offset of 10.34 kHz. A summary of these modes is in
table 5.21.

Figure 5.31: Poloidal mode number histogram of #36650 with ρpol = 0.995.
The modes and branches are identified with green crosses and green lines.

mode n f (kHz)

branch 1

1 -17.68 38.3
2 -23.12 58.3
3 -32.26 77.7
4 -39.10 96.6

branch 2

1 -23.60 41.2
2 -30.00 48.4
3 -36.50 58.8
4 -43.60 68.0
5 -53.40 79.3

Table 5.21: Modes in the m histogram of #36650, ρpol = 0.995 with mode
numbers and frequencies.
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A q profile for the discharge #36650 is given in figure 5.32. The IDE data of
q are shown as green triangles, m/n of the steep branch as purple circles with
error bars and that of the flat branch as orange squares with error bars. The
mode determination is performed at ρpol = 0.94, 0.98 and 0.995. All values
can be seen in table 5.22. In this case once more, the results based on mode
numbers exceed the profile clearly for both branches. A localization close to
the separatrix and outside of ρpol = 0.995 seems likely. Unlike in the other
discharges, the uncertainties of each branch clearly overlap, so a localization on
the same flux surface is possible. This result is interesting because the branches
move with distinct velocities.
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Figure 5.32: Safety factor over flux coordinate for #36650. The green triangles
indicate the profile from IDE, the purple circles with error bars show m/n for
the steep branch and the orange squares with error bars are the m/n values for
the flat branch.

ρpol m/n steep m/n flat q

0.94 5.14± 0.37 4.72± 0.21 3.56
0.98 6.44± 0.47 5.92± 0.26 4.44
0.995 7.44± 0.54 6.84± 0.30 5.29

Table 5.22: Values of q from IDE, along with m/n at each position for both
branches in #36650.
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Figure 5.33 compares velocities in the pedestal of discharge #36650. Green
circles with error bars depict vExB from EER, the blue line with cyan uncertainty
shows the electron diamagnetic velocity, the purple line with violet uncertainty
is the mode velocity of the steep branch and the orange line with dark orange
uncertainty is that of the flat branch. Strong scattering appears in the EER
data, like in discharge #36327. The flat branch could move with the combination
of vExB and electron diamagnetic velocity, or even vExB alone. Three outlying
EER data points reach the velocity of the steep branch. It seems that the
combination of the drifts could potentially account for the mode velocity of the
steep branch in this case, depending on the real vExB value.
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Figure 5.33: Comparison of velocity profiles over flux coordinate for #36650.
Green circles with error bars depict vExB, the blue line with cyan uncertainty
shows the electron diamagnetic velocity, the purple line with violet uncertainty
is the mode velocity of the steep branch and the orange line with dark orange
uncertainty is that of the flat branch.
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Chapter 6

Conclusion and outlook

In this final chapter, an attempt is made to construct a physical picture for
the nature of the observed modes. This is a conjecture in the scope of the
experimental results presented in the previous chapter. The results are being
reviewed and an outlook to possible future research is given.
First of all, the instability that drives the modes shall be identified based on
the MHD stability consideration in chapter 2.2. The destabilizing contributions
in equation 2.21 are the ballooning instability, which depends on the field line
curvature and therefore only appears on the low field side, and the peeling
instability. Ballooning modes are pressure driven and dependent on the pressure
gradient, peeling modes are current driven.
It is natural to expect the mode locality where the strongest magnitude of its
driving cause is. As part of the calculation of diamagnetic velocities presented
in chapter 4.3, ion- and electron pressure profiles are obtained. They show
a peak gradient normally near the pedestal top, at ρpol = 0.98, except for
#36327, where the electron pressure is maximized around ρpol = 0.99. This
would indicate the expected locality for ballooning modes. However, the mode
localization for the discharges presented in this thesis consistently yields ρpol >
0.995, except maybe for the flat branch in # 36069. So close to the separatrix,
the pressure has fallen off considerably. To add to this, frequencies associated
with the modes are mostly also picked up by coils at the high field side. As the
ballooning instability is not prevalent at the high field side, their appearance
would be unexpected. Hence, an identification as current driven, peeling modes
seems more likely.
The mode localization itself is unsatisfactory since agreement according to 1.9
could mostly not be established or at least not be linked to a specific position.
However, the following paragraph elaborates on why a range from ρpol = 0.995
to the separatrix is most likely for the localization in cases where q < m/n is
found.
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Deep inside the plasma, the cross section of flux surfaces is near circular,
with no expressed x-point. In this condition, the straight field line angle θ∗ of
poloidal coil positions scales nearly linearly with the safety factor. This directly
affects the determined poloidal mode numbers, which makes precise localiza-
tion difficult, as the calculated m/n changes almost parallelly to the q profile.
Towards the separatrix, the safety factor diverges caused by the x-point, which
lies away from the positions of the used coils. Very near the plasma edge, the
safety factor q is therefore expected to rise steeper than the determined m/n
and create an intersecting point between both values. In addition, the relative
difference m/nq often slightly decreases towards the separatrix in the presented
discharges. This implies a localization between ρpol = 0.995 and the separatrix
for the considered cases. Unfortunately, IDE does not resolve this inferred po-
sition on the q profile.
As a raw approximation, the flux coordinate ρpol can be converted linearly to
the minor radius. Since the minor radius of ASDEX Upgrade extends to about
0.6m, the gap from ρpol = 0.995 to the separatrix amounts to 3mm. That is a
measure for the precision of the localization.
An offset is apparent in poloidal mode numbers in a lot of branches. Typically,
it is negative, meaning that the branch lies to the left of the origin crossing in
the histogram. This leaves the localization with an ambiguity on whether to
consider the slopes f/m and f/n, or individual mode numbers. All m/n values
in this thesis follow from the quotient of slopes. By instead using mode numbers
of individual modes to calculate m/n, the values would differ within a branch.
That would contradict the existence of a single, localized structure, while the
constant f/n values with little offset in most branches affirms it. Furthermore,
due to the more negative m values, m/n would lie even further from agreement
with the safety factor, than in the shown examples. The application of slopes
in the localization seems more suitable.
Ideal, non-resistive plasma conditions can offset the appearance of mode locali-
ties, as detailed in chapter 2.3. The magnetic signal of the mode then appears
where the plasma is resistive. While ideal conditions might be present at the
actual locality of the modes, it is unlikely that they account for a large deviation
in the localization.
Plasma resistivity scales with electron temperature according to equation 2.22.
This indicates a steep incline of resistivity at the plasma edge. Assuming a
mode localization in the pedestal, the gap to a resistive position and thus the
shift in m can only be small. Ideal modes might change the apparent poloidal
mode number, but provide no specific reasoning for a constant offset in m.
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The most pressing discrepancy is between the mode velocity in steep branches
and the respective plasma drifts, whereas the velocity of flat mode branches seen
in #36969, #36327 and #36650 can easily be explained by the combination of
1vExB and the electron diamagnetic velocity. An exception is maybe formed by
#36650, where 1vExB reaches close to the steep branch. However, the EER data
of #36650 scatter greatly and their error bars are partly large, with the bulk of
values being much lower. Furthermore, EER results for #36069 must be treated
with extra caution as they lack error estimates. Their reliability is discussed in
relation to HES data in figure 5.21.
Any arguments concerning the poloidal mode number are irrelevant here, as
it is not included in the velocity calculation. Ideal modes do not provide
an explanation for the additional phase velocity. The measured quantity on
which the velocity calculation is based is the mode frequency. While a velocity
purely perpendicular to the magnetic field is assumed in equation 4.5, any addi-
tional parallel velocity component would contribute to the measured frequency
as well. Parallel velocity is associated with Alfvén waves, their velocity is given
by equation 2.24. For instance, at a density of around n = 1019 m−3, this yields
10 000 km s−1. The Alfvén frequency can be calculated based on equation 2.25.
In the presented discharges, it lies between 20 and 40 kHz in the pedestal.
The resulting frequency follows from a superposition with the plasma drifts.
When viewing the mode motion in a frequency picture, the aforementioned dis-
crepancy is between the drift-induced frequencies and f/n of the steep branches.
The Alfvén frequency is in the right range to bridge the discrepancy which of-
fers a possibility to explain the observed frequencies. Perpendicular and parallel
velocity components may amplify or counteract each other in the measured fre-
quency, based on their signs. For the amplifying effect expected for the presented
cases, Alfvén waves must move along field lines against the 1B vector, superim-
posing the counter-current direction of the drifts.
According to [26], Alfvén waves can deviate from equation 1.9, resulting in a
constant offset in mode numbers. This is perhaps the best explanation for the
offset in poloidal mode numbers of branches.
As for the flat branches, an explanation as purely drifting modes without par-
allel velocity suffices. One interpretation is that these flat branches are indeed
current driven MHD modes, which excite Alfvén waves at resonant mode num-
bers and higher frequencies. While this is a tempting conclusion, there is the
problem that flat branches are absent in #33211 and #36068. To add to this,
the flat branches in #36069 and #36327 end at lower mode numbers than their
respective steep branches.
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Interestingly, there is a conspicuous jump in poloidal mode number branches,
always appearing between 140 and 150 kHz. Above that frequency, the branch
might fade or continue with a parallel shift. The phenomenon is limited to
steep branches because none of the flat branches reaches this frequency. The
reproducibility of this discontinuity in various discharges might hint at a mea-
surement artifact, possibly originating in the electronics. However, in [26], a
gap in the continuous spectrum of so-called TAEs (toroidicity induced Alfvén
eigenmodes) is mentioned, which seems to appear between 140 and 150 kHz
at ASDEX Upgrade. This coincidence might explain the jump. However, the
mathematical treatment of TAEs is beyond the scope of this thesis.
It is for these reasons that the image of modes being carried with drifts alone
must be revised. To gain a deeper understanding of the discussed phenomena,
they must be observed under changed parameters. Different heating mechanisms
help to pinpoint the influences on the mode formation and their frequency. Sim-
ilar projects on other machines would be of interest to compare the localization
and velocity calculation results.
In a recent 2021 paper, modes in the pedestal of the DIII-D TOKAMAK are
investigated. These modes show deviating structure, with one toroidal mode
number, for instance n = 3, associated with several poloidal mode numbers
like m = 15, 16, 17, 18. The paper concludes that they are microtearing modes,
their frequency is found to be consistent with the electron diamagnetic drift at
DIII-D. [37]
Since the mode determination.py program allows to deselect individual coils, the
effect of different coil arrays can be tested. Their effect on detected artifacts
is discussed in chapter 4.1.3. Generally, no novel mode structures are observed
upon deselection of coils. A higher mode number resolution can be obtained
through more closely sitting pick-up coils.
For comparison with drift velocities, discharges with good CXRS data are
needed. This is often the limiting factor, since the calculation of electric fields
from CXRS is intricate. The selection of discharges in this thesis was ruled by
this.

92



Bibliography

[1] Hannah Ritchie and Max Roser. “Energy”. In: Our World in Data (2020).
https://ourworldindata.org/energy.

[2] D. Feldman, W. Collins, and P. Gero. “Observational determination of sur-
face radiative forcing by CO2 from 2000 to 2010”. In: Nature 519 (2015),
pp. 339–343. doi: 10.1038/nature14240.

[3] D. Qing et al. The River Dragon Has Come!: Three Gorges Dam and
the Fate of China’s Yangtze River and Its People. Taylor & Francis, 2016.
isbn: 9781315502762. url: https://books.google.at/books?id=nX6TDAAAQBAJ.

[4] Allan Drewitt and R. Langston. “Collision Effects of Wind-power Genera-
tors and Other Obstacles on Birds”. In: Annals of the New York Academy
of Sciences 1134 (June 2008), pp. 233–266. doi: 10.1196/annals.1439.
015.

[5] Frank Dimroth. New world record for solar cell efficiency at 46 - French-
German cooperation confirms competitive advantage of European photo-
voltaic industry. 2014. url: https://www.ise.fraunhofer.de/en/press-
media/press- releases/2014/new- world- record- for- solar- cell-
efficiency-at-46-percent.html (visited on 06/10/2021).
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