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Abstract
We study the dimer model on subgraphs of the square lattice in which vertices on a
prescribed part of the boundary (the free boundary) are possibly unmatched. Each such
unmatched vertex is called a monomer and contributes a fixed multiplicative weight
z > 0 to the total weight of the configuration. A bijection described by Giuliani et al.
(J Stat Phys 163(2):211–238, 2016) relates this model to a standard dimer model but
on a non-bipartite graph. The Kasteleyn matrix of this dimer model describes a walk
with transition weights that are negative along the free boundary. Yet under certain
assumptions, which are in particular satisfied in the infinite volume limit in the upper
half-plane, we prove an effective, true random walk representation for the inverse
Kasteleyn matrix. In this case we further show that, independently of the value of
z > 0, the scaling limit of the centered height function is the Gaussian free field with
Neumann (or free) boundary conditions. It is the first example of a discrete model
where such boundary conditions arise in the continuum scaling limit.
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1 Introduction

1.1 Free boundary dimers

Let G = (V , E) be a finite, connected, planar bipartite graph (in our analysis we
will actually only consider subgraphs of the square lattice Z

2). Let ∂G be the set of
boundary vertices, i.e., vertices adjacent to the unique unbounded external face, and let
∂freeG ⊆ ∂G be a fixed set called the free boundary. A boundary monomer-dimer
cover of G is a set M ⊆ E such that

• each vertex in V \ ∂freeG belongs to exactly one edge in M ,
• each vertex in ∂freeG belongs to at most one edge in M .

We write mon(M) ⊆ ∂freeG for the set of vertices that do not belong to any edge in M ,
and call its elements monomers. Let MD(G) be the set of all boundary monomer-
dimer covers of G. We will often call such configurations simply monomer-dimer
covers, keeping in mind that monomers are only allowed on the free boundary. Finally
let D(G) be the set of all dimer covers, i.e. monomer-dimer covers M such that
mon(M) = ∅.

We assign to each edge e ∈ E a weight we ≥ 0, and to each vertex v ∈ ∂freeG a
weight zv ≥ 0. The dimer model with a free boundary (or free boundary dimer
model) is a random choice of a boundarymonomer-dimer cover fromMD(G) accord-
ing to the following probability measure:
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Free boundary dimers: randomwalk representation and scaling limit 737

P(M) = 1

Z
∏

e∈M
we

∏

v∈mon(M)

zv, (1.1)

where Z is the normalizing constant called the partition function. For convenience
we will always assume that the partition function Z > 0, i.e., that MD(G) �= ∅. In
this work we will only focus on the homogeneous case we = 1, for all e ∈ E , and
zv = z > 0 for all v ∈ ∂freeG, with the exception of the technical assumption on
the weight of corner monomers described in the next section. If we did not make the
exception for the corner monomers, i.e., if zv = z for all v ∈ ∂freeG, then

P(M) = 1

Z z|mon(M)|. (1.2)

The dimer model on G can be now defined as the free boundary dimer model condi-
tioned on D(G), i.e., the event that there are no monomers.

The main observable of interest for us will be the height function of a boundary
monomer-dimer cover which is an integer-valued function defined (up to a constant)
on the bounded faces of G. Its definition is identical to the one in the dimer model (see
[39]). We simply note that the presence of monomers on the boundary does not lead
to any topological complication (i.e., the height function is not multivalued): if u and
u′ are two faces of the graph, and γ and γ ′ are two distinct paths in the dual graph
connecting u and u′, the loop formed by connecting γ and γ ′ (in the reverse direction)
does not enclose anymonomer.More precisely, we view a configurationM ∈MD(G)

as an antisymmetric flow (in other words a 1-form) ωM on the directed edges of G in
the following manner: if e = {w, b} ∈ M , then ωM (w, b) = 1 and ωM (b, w) = −1
where b is the black vertex of e and w its white vertex (since G is bipartite, a choice
of black and white vertices can be made in advance). Otherwise, we set ωM (e) = 0.
Equivalently, we may view ωM as an antisymmetric flow on the directed dual edges,
where if e† is the dual edge of e (obtained by a counterclockwise π/2 rotation of e),
then ωM (e†) = ωM (e). To define the height function we still need to fix a reference
flow ω0 which we define to be ω0 = E[ωM ], i.e., the expected flow of M under the
free boundary dimer measure. Now, if u and u′ are two distinct (bounded) faces of G,
we simply define

h(u)− h(u′) =
∑

e†∈γ

(ωM (e†)− ω0(e
†))

where γ is any path (of dual edges) connecting u to u′. This definition does not
depend on the choice of the path since the flow ωM (e†)−ω0(e†) is closed (sums over
closed dual paths vanish), and hence yields a function h up to an additive constant, as
desired. Note that our choice of the reference flow automatically guarantees that the
height function is centered, i.e., E(h(u)− h(u′)) = 0 for all faces u and u′.

We finish this short introduction to the free boundary dimer model with a fewwords
on its history and the nomenclature. In the originalmodel studied in [18, 19]monomers
could occupy any vertex of the graph, and hence the name monomer-dimer model.
This generalization poses two major complications from our point of view. Firs of all,
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738 N. Berestycki et al.

the height function is not well defined, and secondly the model does not admit a Kaste-
leyn solution aswas shown in [20]. From this point of view, itwould therefore benatural
if the version of the model studied here was called the boundary-monomer-dimer
model. However we choose to use the less cumbersome name of free boundary dimers.

1.2 Boundary conditions

We now state conditions on the graph G = (V , E) which will be enforced throughout
this paper. First, we assume that G is a subgraph of the square lattice Z

2, and without
loss of generality that 0 ∈ V and is a black vertex. This fixes a unique black/white
bipartite partition of V . We also assume that

• V is contained in the upper half plane H = {z ∈ C : �(z) ≥ 0}.
• ∂freeG = V ∩R( �= ∅), so the monomers are allowed only on the real line. Further-
more, we assume ∂freeG is a connected set (interval) of an even number of vertices.
The leftmost and rightmost vertices of V ∩ R = ∂freeG will be referred to as the
monomer-corners of G.

• G has at least one black dimer-corner and one white dimer-corner (where a dimer-
corner is a vertex v ∈ V that is not a monomer-corner, and is adjacent to the outer
face of G, and has degree either 2 or 4 in G).

See Fig. 3 for an example of a domain satisfying these assumptions (ignore the bottom
row of triangles for now, which will be described later). We make a few comments
on the role of the last assumption that there are corners of both colours. For this it is
useful to make a parallel with Kenyon’s definition of Temperleyan domain [22, 23].
In that case, this condition ensured that the associated random walk on one of the four
possible sublattices of Z

2 (the two types of black and the two types of white vertices)
was killed somewhere on the boundary. As we will see, in our case the random walk
may change the lattice from black to white when it is near the real line, resulting
in only two different types of walks. Then the role of the third assumption (at least
one dimer-corner of each type) is to ensure that each of the two walks is killed on at
least some portion of the boundary (possibly a single vertex). This follows from an
observation that the boundary condition of a walk on a black (resp. white) sublattice
changes from Neumann to Dirichlet (and vice-versa) at a white (resp. black) corner.
See Fig. 5 for an example of a vertex with Neumann and Dirichlet bondary conditions.

1.3 Statement of main results

The free boundary dimer model as defined above was discussed in a paper of Giuliani
et al. [16]. It was shown there that the partition function Z can be computed as a
Pfaffian of a certain (signed) adjacency matrix. Furthermore, a bijection was provided
to a non-bipartite dimer model (the authors indicate that this bijection was suggested
by an anonymous referee). Hence using Kasteleyn theory the correlation functions can
be expressed as Pfaffians of the inverse Kasteleyn matrix K−1. The bijection, which
is a central tool of our analysis, will be defined in Sect. 2 where we will also recall the
precise definition of the Kasteleyn matrix K .

Wewill now state our firstmain result which gives a full randomwalk representation
for K−1. Suppose that G is a graph satisfying the assumptions from the previous
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Free boundary dimers: randomwalk representation and scaling limit 739

section. Fix z > 0 and assign weight z to every monomer on ∂freeG except at either
monomer-corner, where (for technical reasons which will become clear in the proof)
we choose the weight to be

z′ = z

2
+

√

1+ z2

4
. (1.3)

Thus formally the free boundary dimer model we consider is of type (1.1) rather than
of type (1.2). For k ∈ N = {0, 1, . . .}, let us call Vk = Vk(G) = {v ∈ V : �(v) = k},
so ∂freeG = V0, where �(v) denotes the imaginary part of the vertex v seen as a
complex number given by the embedding of the graph. Let us call Veven = Veven(G) =
V0 ∪ V2 ∪ . . . and Vodd = Vodd(G) = V1 ∪ V3 ∪ . . ..

Theorem 1.1 (Random walk representation of the inverse Kasteleyn matrix) There
exist two random walks Zeven and Zodd on the state spaces Veven(G) and Vodd(G)

respectively, whose transition probabilities will be described in Sect.2.6 (see (2.26)
and (2.30)), such that the following holds. Consider the monomer-dimer model on G
where the monomer weight is z > 0 on V0(G) except at its monomer-corners where the
monomer weight is z′, as defined in (1.3). Let K be the associated Kasteleyn matrix,
and D = K ∗K, so that K−1 = D−1K ∗. Then for all u, v ∈ V , we have

D−1(u, v) =

⎧
⎪⎨

⎪⎩

Godd(u, v) if u, v ∈ Vodd,

(−1)�(u−v)Geven(u, v) if u, v ∈ Veven,

0 otherwise.

(1.4)

whereGeven,Godd are theGreen’s functions of Zeven and Zodd respectively, normalised
by D(v, v).

Here, by normalised Green’s function of a randomwalk (with at least one absorbing
state), we mean

G(u, v) = 1

D(v, v)
Eu

( ∞∑

k=0
1{Zk=v}

)
,

where Z is the corresponding random walk. We now specify a few properties of the
random walks Zeven and Zodd which may be interesting to the reader already, even
though the exact definition is postponed until Sect. 2.6. Both Zeven and Zodd behave
like simple random walk away (at distance more than 2) from the boundary vertices,
but with jumps of size ±2, so the parity of the walk does not change. Both have
nontrivial boundary conditions, including some reflecting and absorbing boundary
arcs along the non-monomer part of the boundary ∂G\∂freeG. Furthermore, both walks
are allowed to make additional jumps (i.e., not necessarily equal to ±2) along their
bottommost rows of vertices (V0 for Zev and V1 for Zodd). These jumps are symmetric,
bounded in the even case but not in the odd case (although they do have exponentially
decaying tail). Hence in the scaling limit, these walks would converge to Brownian
motion in the upper half plane H with reflecting (or equivalently Neumann) boundary
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740 N. Berestycki et al.

conditions on the real axis, and with whatever boundary conditions are inherited from
the Neumann/Dirichlet parts of the other boundary arcs.

An important property of these random walks that highlights the difference with
the setup of [22], is that they can change colour of the vertex (in a bipartite coloring
of H ∩ Z

2). However, this can happen only when the walker visits the real line. This
in turn means that the entries of the inverse Kasteleyn matrix indexed by two vertices
of the same colour (which automatically vanish in Kenyon’s work) have a natural
interpretation in terms of walks that go through the real line (the free boundary). This
is a clear analogy with the construction of reflected random walks via the reflection
principle for a walk in a reflected domain. Remarkably, this exact correspondence
with reflected random walks is present already at the discrete level of the dimer model
with free boundary conditions, and is the reason why the reflected Brownian motion
appears in the correlation kernel of the scaling limit of the height function.

To illustrate this we explain here briefly a simple computation using Kasteleyn the-
ory (for more details see Sect. 5.2) where this phenomenon is apparent. Let e = {w, b}
and e′ = {w′, b′} be two edges of Z

2 ∩ H with w,w′ white and b, b′ black vertices
in a fixed chessboard coloring of the lattice. Then, writing M for a random bound-
ary monomer-dimer cover, and using Kasteleyn theory for the dimer representation
described in Sect. 2.1, we have

P(e, e′ ∈M) = aPf

⎛

⎜⎜⎝

0 K−1(w, b) K−1(w,w′) K−1(w, b′)
0 K−1(b, w′) K−1(b, b′)

0 K−1(w′, b′)
0

⎞

⎟⎟⎠

= a(K−1(w, b)K−1(w′, b′)+ K−1(b, w′)K−1(w, b′)
− K−1(w,w′)K−1(b, b′)),

where the matrix is antisymmetric and a = K (w, b)K (w′, b′). We also have P(e ∈
M) = K (w, b)K−1(w, b) and P(e′ ∈M) = K (w′, b′)K−1(w′, b′), which leads to

Cov(1e∈M, 1e′∈M) = a(K−1(b, w′)K−1(w, b′)− K−1(w,w′)K−1(b, b′)).

Here, the second term is new compared to Kenyon’s computation in [22] (in that
case one has K−1(w,w′) = K−1(b, b′) = 0). Furthermore, using our random walk
representation, K−1(w,w′) and K−1(b, b′) can be interpreted as a derivative of the
Green’s function of the appropriate walks Zeven and Zodd evaluated at pairs of vertices
of different colors. Then by construction the walks which contribute to these Green’s
functions must visit the boundary.

This intuition is what guides us to the next result, which however requires us to first
take an infinite volume (thermodynamic) limit where an increasing sequence of graphs
eventually covers H ∩ Z

2. We first show that the monomer-dimer model converges
in such a limit. For this we need to specify a topology: we view a monomer-dimer
configuration on H ∩ Z

2 as an element of {0, 1}E(H) where E(H) is the edge set of
Z
2 ∩H, and equip this space with the product topology (so convergence in this space

corresponds to convergence of local observables).
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Free boundary dimers: randomwalk representation and scaling limit 741

To state the result we will fix a sequence Gn of graphs such that Gn satisfies the
assumptions of Sect. 1.2, and moreover Gn ↑ Z

2 ∩H. For simplicity of the arguments
and ease of presentation, we have chosen Gn to be a concrete approximation of rect-
angles, although the result is in fact true much more generally; we have not tried to
find the most general setting in which this applies.

Theorem 1.2 (Infinite volume limit)LetGn be rectangles of diverging even sidelengths
(number of vertices on a side)whose ratio remains bounded away from zero and infinity
as n → ∞, and such that in the top row the right-hand side half of the vertices are
removed (if this number is even, otherwise we remove one less vertex to keep the
graph dimerable). Let μn denote the law of the free boundary dimer model on Gn with
monomer weight z > 0 except at the monomer-corners where the weight is z′, as in
(1.3). Then μn converges weakly as n →∞ to a law μ which describes a.s. a random
boundary monomer-dimer configuration on Z

2 ∩H.

We note that the particular type of domains chosen in this statement (see e.g. Fig. 3
for an illustration) guarantees that both the odd and even walks mentioned above are
killed on a macroscopic part of the upper rows of Gn (the odd walk is killed on the
right-hand side half and the even walk on the left-hand side half of its uppermost row);
importantly this killing can occur with positive probability without touching the real
line starting fromanyposition away from the real line. The other key requirement is that
the domain grows to infinity in a “homogeneous” way: for instance, Gn both contains
a ball of radius c1n and is contained in a ball of radius c2n for some suitable constants
c1, c2 > 0. Subject to these two requirements (both walks may be killed with positive
probabilitywithout touching the real line once they are far away from it, and the growth
is homogeneous in all directions), there should be no difficulty extending the result in
Theorem 1.2; see immediately above Proposition 3.7 for the kind of domains which
are explicitly allowed in the proof. For concreteness and simplicity we opted to choose
the sequence of domains as in the statement: removing (approximately) half vertices
in the top row makes it possible for walks of all types to be killed without touching
the real line.

We stress the fact that the limiting lawμ depends on the monomer weight z > 0. As
mentioned before, we can associate to the monomer-dimer configuration in the infinite
half-plane a height function which is defined on the faces of H ∩ Z

2, up to a global
additive constant. The last main result of this paper shows that in the scaling limit,
this (centered) height function converges to a Gaussian free field with Neumann
(or free) boundary conditions, denoted by �Neu. We will not define this in complete
generality here (see [8] for a comprehensive treatment). We will simply point out what
is concretely relevant for the theorem below to make sense. Given a simply connected
domain � with a smooth boundary, �Neu

� may be viewed as a stochastic process
indexed by the space D0(�) of smooth test functions f : � → R with compact
support and with zero average (meaning

∫
H

f (z)dz = 0). The latter requirement
corresponds to the fact that � is only defined modulo a global additive constant.
The law of this stochastic process is characterised by a requirement of linearity (i.e.
(�Neu

� , a f + bg) = a(�Neu
� , f ) + b(�Neu

� , g) a.s. for any f , g ∈ D0(�) and a, b ∈
R), and moreover (�Neu

� , f ), (�Neu
� , g) follow centered Gaussian distributions with
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742 N. Berestycki et al.

covariance

Cov((�Neu
� , f ), (�Neu

� , g)) =
∫∫

�2
f (x)g(y)GNeu

� (x, y)dxdy,

where GNeu
� (x, y) is a Green’s function in � with Neumann boundary conditions.

(Note that by contrast to the Dirichlet case, such Green’s functions are not unique and
are defined only up to a constant.) In the case of the upper-half plane � = H, the
Green’s function is given explicitly by

GNeu
H

(x, y) = − log |x − y| − log |x − ȳ|.

Informally, pointwise differences �Neu
H

(a) −�Neu
H

(b) for a, b ∈ H (which do not
depend on the choice of the global additive constant) are centered Gaussian random
variables with covariances

E[(�Neu
H

(ai )−�Neu
H

(bi ))(�
Neu
H

(a j )−�Neu
H

(b j ))]

=− log

∣∣∣∣∣
(ai − a j )(bi − b j )(āi − a j )(b̄i − b j )

(ai − b j )(bi − a j )(āi − b j )(b̄i − a j )

∣∣∣∣∣ . (1.5)

Note that our Green’s function is normalised so that it behaves like 1× log(1/|x − y|)
as y−x → 0. Naturally, (1.5)must be understood in an integratedway since pointwise
differences are not actually defined.

We may now state the announced result. For δ > 0 (the mesh size), let hδ denote
the height function (defined up to a constant, and by definition centered) of the free
boundary dimer model μ with weight z in the infinite half-plane H∩ δZ

2 (rescaled by
δ). We identify hδ with a function defined almost everywhere on H by taking the value
of hδ to be constant on each face, and view hδ as a random distribution (also called a
random generalized function) acting on smooth compactly supported functions f on
H with zero average, i.e., satisfying

∫
H

f (a)da = 0 (see Sect. 5.5 for details).

Theorem 1.3 (Scaling limit) Let f1, . . . , fk ∈ D0(H) be arbitrary test functions.
Then for all z > 0, as δ → 0,

(hδ, fi )
k
i=1 →

( 1√
2π

�Neu
H

, fi
)k
i=1

in distribution.

Note that, maybe surprisingly, the scaling limit does not depend on the value of z > 0
(we discuss this in more detail in Sect. 1.4). We also wish to call the attention of
the reader to the normalising factor 1/(

√
2π) in front of � on the right-hand side

of Theorem 1.3. It is equal to the one appearing in the usual dimer model in which
the centered height function has zero (Dirichlet) boundary conditions. We note that
comparisons with other works such as [6, 23] should be made carefully, since the
normalisation of the Green’s function and of the height function may not be the same:
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Free boundary dimers: randomwalk representation and scaling limit 743

for instance, Kenyon takes the Green’s function to be normalised so that G(x, y) ∼
1/(2π) log 1/|x−y| as y → x , so hisGFF is 1/

√
2π ours (ignoring different boundary

conditions). Also, in Kenyon’s work [22], the height function is such that the total flow
out of a vertex is 4 instead of 1 here (so his height function is 4 times ours), while it is 2π
in [6] (so their height function is 2π times ours). Adjusting for these differences, there
is no discrepancy between the constant 1/(

√
2π) on the right-hand side of Theorem

1.3 and the one in [22, 23].

1.4 Heuristics: reflection and even/odd decomposition

As noted before, Theorem 1.3 may be surprising at first sight, when we consider the
behaviour of the model in the two extreme cases z = 0 and z = ∞. Indeed, when
z = 0, the free boundary dimer model obviously reduces to the dimer model on H, in
which case the limit is a Dirichlet GFF.When z = ∞, all vertices of V0 are monomers,
so the model reduces to a dimer model on (V1∪V2∪ . . .) � H∩Z

2. Hence, the limit is
also a Dirichlet GFF in this case. However, the result above says that for any z strictly
in between these two extremes, the limit is a Neumann GFF.

The result (and the reason for this arguably surprising behaviour) may be heuristi-
cally understood through the following reflection argument. Let G be a large finite
graph approximating H and satisfying the assumptions of Sect. 1.2. Let G̃ be a copy of
G shifted by i/2, so with a small abuse of notation, G̃ = G+ i/2 (here i = √−1), and
let Ḡ be the same graph to which we add its conjugate (reflection through the real axis).
We also add vertical edges crossing the real axis of the form (k− i/2, k+ i/2) for each
k ∈ V0; note that the resulting graph is then clearly bipartite. Given a monomer-dimer
configuration on G, we can readily associate a monomer-dimer configuration on Ḡ by
reflecting it in the same manner. In this way, a monomer in k + i/2 necessarily sits
across another monomer in k − i/2 for any k ∈ V0. Such a pair of monomers can
be interpreted as a dimer on the edge (k − i/2, k + i/2) and once we have phrased
it this way the resulting configuration is just an ordinary dimer configuration on Ḡ
(which however has the property that it is reflection symmetric). It follows that its
height function (defined on the faces of Ḡ) is even, i.e., h( f ) = h( f̄ ) for every face
f (where f̄ is the symmetric image of f about the real axis). Moreover, a moment of
thought shows that monomer-dimer configurations on G are in bijection in this manner
with the set ED(Ḡ) of even (symmetric) dimer configurations on Ḡ, and that under this
bijection the image of the law (1.2) is given by

P(M) = 1

Z̄ z|mon(M)| (1.6)

(where for a dimer configuration M ∈ D(Ḡ), mon(M) is the set of vertical edges of
M crossing the real axis), conditioned on the event ED(Ḡ) of being even, where Z̄ is
the partition function of the dimer model on Ḡ.

Now, suppose e.g. that G is such that Ḡ is piecewise Temperleyan [36] (meaning
that Ḡ has twomore white convex corners than white concave corners, see [36] for pre-
cise definitions). This happens for instance if G is a large rectangle with appropriate
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dimensions. By a result of Russkikh [36], in this case and if z = 1, the uncondi-
tional (centered) height function associated with the dimer model (1.6) converges to
a Gaussian free field with Dirichlet boundary condition in the scaling limit.

It is reasonable to believe that this convergence holds true even when z �= 1. For
instance, when the monomer weights alternate between z and 1 every second vertex,
then whatever the value of z, the dimer model has a Temperleyan representation (see
[5, 27]): indeed, in that case the weighted graph is obtained as a superposition of a
planar garph and its dual for which the dual edges all have weight one.

Then by considerations related to the imaginary geometry approach (see [6]), this
convergence to the Dirichlet GFF is universal provided that the underlying random
walk converges toBrownianmotion (thiswill be rigourously proved in the forthcoming
work [7]). In particular, given these results, we should get convergence to the Dirichlet
GFF for the height function evenwhen z �= 1: indeed,whenwemodify theweight of all
the edges crossing the real line, random walk will still converge to Brownian motion.
So far, this discussion concerned the (unconditioned) dimer model on Ḡ defined in
(1.6). Once we start conditioning on ED(Ḡ) it might be natural to expect that the
scaling limit should be a “Dirichlet GFF conditioned to be even", though this is a
highly degenerate conditioning. Nevertheless, this conditioning makes sense in the
continuum, and in fact its restriction to the upper half plane gives the Neumann GFF,
as we are about to argue. Indeed, for a full plane GFF �C restricted to H, it is easy to
check that one has the decomposition

�C = 1√
2
(�Neu

H
+�Dir

H
) (1.7)

where �Neu
H

,�Dir
H

are independent fields on H with Neumann and Dirichlet boundary
conditions on R respectively. This follows immediately from the fact that any test
function can bewritten as the sumof an even and odd functions, and this decomposition
is orthogonal for the Dirichlet inner product (·, ·)∇ onD0(C). Therefore, conditioning
�C to be even amounts to conditioning on �Dir

H
to vanish everywhere, meaning that

�C (restricted to the upper half plane) is exactly equal to �Neu
H

/
√
2. (See Exercise 1

of Chapter 5 in [8] for details.)
We note that while this argument correctly predicts the Neumann GFF as a scaling

limit of the height function, it is however also somewhat misleading as it suggests
that the limit of hδ is not (1/

√
2π)�Neu

H
as in Theorem 1.3, but is smaller by a factor

1/
√
2, i.e., 1/(2π)�Neu

H
.

To understand this discrepancy, we now explain why the additional factor turns
out to be an artifact of a Gaussian computation and does not arise in the discrete
setup. A convincing one-dimensional parallel can be that of Gaussian and simple
random walk bridges. Indeed, consider bridges of 2n steps starting and ending at 0,
with symmetric Bernoulli and Gaussian jump distributions with variance one. Now
condition the walks to be symmetric around time n, i.e. X(n± k) = X(n∓ k). Again,
the Gaussian conditioning is singular but can be easily made sense of using Gaussian
integrals. Restricted to the time interval [0, n], the conditioned simple random walk
bridge is just a simple random walk with the same step distribution as the original
bridge. However, the conditioned Gaussian walk has step distribution with variance
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Fig. 1 Left: A superposition of two monomer-dimer configurations, respectively blue and red. Double
edges are in purple. The boundary-touching level lines of the height-function is the collection of arcs
joining monomers to monomers marked in bald black. Right: A simulation of ALE by B. Werness (color
figure online)

1/2 as a result of the conditioning. In particular, in the diffusive scaling limit, the
former walk converges to standard Brownian motion whereas the latter to 1/

√
2 times

the standard Brownian motion. The framework of the current paper is more similar to
the simple random walk case as discrete height functions are its “two-dimensional-
time" analogs. This concludes the discussion giving the heuristics for Theorem 1.3.

1.5 A conjecture on the boundary-touching level lines

In the study of the dimer model, a well known conjecture of Kenyon concerns the
superposition of two independent dimer configurations. It is easy to check that such a
superposition results in a collection of loops (including double edges) covering every
vertex. This observation is attributed to Percus [33]. These loops are the level lines of
the difference of the two corresponding dimer height functions. Kenyon’s conjecture
(stated somewhat informally in [25] for instance) is that the loops converge in the
scaling limit to CLE4, the conformal loop ensemble with parameter κ = 4 (defined
in [37], see also [38]). This is strongly supported by the fact that in the continuum,
CLE4 can be viewed as the level lines of a (Dirichlet) GFF with a specified variance
(a consequence of a well known coupling between the GFF and CLE4 of Miller
and Sheffield, see [1] for a complete statement and proof). Major progress has been
made recently on this conjecture through the work of Kenyon [25], Dubédat [12]
and Basok and Chelkak [4], and the only remaining ingredient of the full proof is
to show precompactness of the family of loops in a suitable metric space. Updated
during the revision process: in combination with the work of Bai and Wan [2] the
above results now show that the so-called cylindrical probabilities of the double dimer
model converge to those of CLE4. This gives the proof of a weak form of Kenyon’s
conjecture.

It is natural to ask if any similar phenomenon occurs when we superpose two
independent monomer-dimer configurations sampled according to the free boundary
dimer model, say in the upper half-plane. For topological reasons, this gives rise
to a gas of loops as above but also a collection of curves connecting monomers to
monomers (and hence the real line to the real line). SeeFig. 1 for an example. In fact, the
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superposition of two free boundary dimer configurations is related to the superposition
of two dimer configurations with different boundary conditions considered in [26],
with the difference being that in that model the monomers occur in fixed locations.
We note that these authors already establish connections between their results and
multiple-strand SLE.

An obvious question is to describe the law of this collection of curves in the scaling
limit. By analogy with the above, and in view of our result (Theorem 1.3), it is natural
to expect that these curves converge in the scaling limit to the level lines of a GFF with
Neumann boundary conditions on the upper-half plane. The law of these curves was
determined by Qian andWerner [35] to be the ALE process (ALE stands for Arc Loop
Ensemble. It is a collection of arcs that can be connected into loops, but herewewill not
be interested in this aspect and will only see them as arcs.). ALE is one possible name
for this set, but more precisely it is equal to the branching SLE4(−1,−1) exploration
tree targeting all boundary points, and is also equal to the (gasket of) BCLE4(−1) in
[32] and A−λ,λ in [1].

This leads us to the following conjecture:

Conjecture 1.4 For any z > 0, in the scaling limit, the collection of boundary-touching
curves resulting from superimposing two independent free boundary dimer models
converges to the Arc Loop Ensemble ALE in the upper half-plane.

1.6 Folding the dimermodel onto itself

The discussion in Sects. 1.4 and 1.5 lead naturally to another conjecture which we
now spell out. In Sect. 1.5 we explained a conjecture pertaining to the superposition
of two independent monomer-dimer configurations sampled according to the free
boundary dimer model. But there is at least one other natural way to superpose two
such configurations that are not independent: namely, when they come from the same
full plane dimer model. In fact, there are two ways to do the folding, depending on
whether we shift by i/2 or not.

Let us explain this more precisely. Let us define the graph Ĝ which is obtained by
adding to G its reflection with respect to the real axis. The vertices of G on the real axis
(i.e., V0) are not reflected: we only keep one copy of them in Ĝ. (By contrast, in the
graph Ḡ, where G is shifted by i/2 prior to reflection, these vertices are duplicated).

Now, consider an (infinite volume) dimer cover M on Ĝ, viewed as a subset of
edges where every vertex has degree 1, and consider the superposition �̂ obtained by
superposing M with itself via a reflection through the real line: thus,

�̂ = M |H ∪ (−M)|−H.

Then �̂ is a subgraph of degree two (including double edges), except for vertices
on V0 ⊂ R which in M are connected to a vertical edge. Thus �̂ is exactly of the
same nature as the graph in Fig. 1. It is not hard to see that the “height function”
h

�̂
(really defined only up to a global additive constant) naturally associated with �̂

converges in the fine mesh size limit to (1/π)�Neu
H

: this is because at the discrete
level, the corresponding height function h

�̂
( f ) at a face f ⊂ H can be viewed as
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hM ( f ) + hM ( f̄ ) (where hM is the height function associated with M), and hM is
known to converge to (1/

√
2π)�C [10]. These considerations lead us to the following

conjecture:

Conjecture 1.5 In the scaling limit, the collection of boundary-touching curves in �̂

converges to the Arc Loop Ensemble ALE in the upper half-plane.

We remark that it is also meaningful to fold a dimer configuration on Ḡ (rather
than Ĝ above) onto itself via reflection through the real line. In that case, one must
erase the vertical edges straddling the real line and view the corresponding dimers
as pairs of monomers. The resulting superposition �̄ is a subgraph of degree two,
including multiple edges and double points (on V0 ⊂ R + i/2). In particular there
are no boundary arcs in �̄, except for degenerate lines connecting every monomer to
itself. For the same reason as above, the height function h�̄ associated to �̄ may be
viewed as hM ( f )− hM ( f̄ ) and so converges in the scaling limit towards (1/π)�Dir

H
.

Analogously to Conjecture 1.5, we conjecture that the loops of �̄ converge to CLE4.

1.7 Connection with isoradial randomwalk with critical weights

The following remark was suggested by an anonymous referee. There is a special
value of the fuagcity parameter z, namely

z2 = tan(π/8) (1.8)

such that the even walk Zeven coincides (after a small change in the embedding) with
the random walk on isoradial graphs with critical weights considered in the work of
Kenyon [24]. To see this, one can notice that the even walk Zeven is equivalent to a
randomwalk on two upper-half planes (or more precisely, square lattices on these half
planes) welded together via a row of triangles. See Fig. 2. Such a graph has an isoradial
embedding and the corresponding critical weights have weight 1 on the square lattice
edges, and weight z given by (1.8) on the remaining triangle edges, as follows from
elementary calculations. In that case, convergence of the derivative of the potential
kernel (i.e., part of the inverse Kasteleyn matrix) would follow from Theorem 4.3 in
[24].

1.8 Outline of the paper and structure of proof

This paper is organized as follows: In Sect. 2 we first describe the measure preserving
mapping from [16] between the free boundary dimer model on G and the standard
dimer model on an augmented (nonbipartite) graph G0 (as in Fig. 3), which is the
starting point of our paper. We then define a Kasteleyn orientation on G0, the associ-
ated Kasteleyn matrix K̃ , and finally we choose a convenient complex-valued gauge
changed Kasteleyn matrix K (this gauge is closely related to the one of Kenyon [22]
and allows one to interpret K as a discrete Dirac operator). Kasteleyn theory (which
we recall later on in the paper) says that the correlations of the dimer model on G0
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Fig. 2 After reflecting the white
sublattice of Veven (dashed
lines), a graph composed of two
square lattice half-planes glued
together by a row of interlacing
isosceles triangles is formed
(solid lines). If the angle
between the legs of the triangle
is equal to π/4, the graph is
isoradial and the walk Zeven for
z2 = tan(π/8) is the same as the
walk studied by Kenyon in [24]

Fig. 3 An augmented non-bipartite graph G0 and its Kasteleyn orientation. The graph is constructed from
a piece of the square lattice G with ∂mG = V0 by adding the bottom circuit of triangles. The two red edges
and vertices in the figure denote a single edge and vertex in G0. Diamonds represent vertices of G0 \ G.
We assume that |V0| even (here equal 6) so that the mapping of [16] can be directly applied. In this case
G has one black and one white monomer-corner, three black dimer-corners, and one white dimer-corner.
The additional circuit of triangles simulates the presence of monomers in the free boundary dimer model
by means of a standard dimer model. This is expressed as a measure-preserving two-to-one map between
D(G0) andMD(G)with a proper choice of weights [16]. One of the two dimer covers of G0 corresponding
to the fixed monomer-dimer cover of G is depicted in orange (color figure online)

(and hence also of the free boundary dimer model on G) can be computed from the
inverse Kasteleyn matrix K−1.

With an intention of developing its randomwalk representation, we therefore begin
analyzing the inverse Kasteleyn matrix when G is a subgraph of the square lattice
with appropriate boundary conditions described in Sect. 1.2. To this end we look at
the matrix D = K ∗K , whose off-diagonal entries we interpret as (signed) transition
weights. Theseweights away from ∂freeG (which is a subset of the real line) are positive
and hence define proper random walks as in [22]. However, the description of D as
a Laplacian matrix associated to a random walk breaks down completely for vertices
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Fig. 4 Three types of vertices x where the transition weights of D = K ∗K are signed. The arrows indicate
the corresponding value of D(x, y). Note the following crucial observations: First, in the rightmost case
(when x ∈ V0), the absolute values of the transition weights sum up to the diagonal term. Moreover, the
transition weight is negative if and only if the size of the step is odd (more precisely equal to one). A similar
observation holds in the central picture (when x ∈ V−1) if one ignores the transition weights that lead back
to V1. This is the basis for the construction of Sect. 2.3 and the definition of the auxiliary random walk
on Z from (2.7). Our approach is to “forget” what the walk does when it stays in V−1 and resum over all
trajectories contained in V−1 and with the same endpoints in V1

on the three bottommost rows of G0 (as in Fig. 4). We stress the fact that the level
of complication is considerably higher for transitions between odd rows (that will
lead to the definition of the walk Zodd). Indeed, as mentioned in Fig. 4, for even rows
the arising walk Zeven can be relatively easily understood as a proper random walk
reflected on the real line after taking into account a global sign factor appearing in D
(which leads to the formula in the second line of (1.4)).

Therefore the remainder of Sect. 2 is devoted to the random walk representation for
K−1, which is one of the main contributions of this paper. The main idea is to “forget”
the steps of the signed walk induced by D taken along the row V−1, or more precisely
to only specify the trajectory of a path away from V−1 and combine together all paths
that agree with this choice. The hope is that the resulting projected signed measure
on trajectories contained in Vodd = V1 ∪ V3 ∪ . . . with (unbounded) steps from V1 to
V1 is actually a true probability measure. Remarkably (in our opinion), we show that
this is indeed the case; this phenomenon is what really lies behind the random walk
representation of Theorem 1.1. To achieve this, an additional (intermediate) limiting
procedure is required. To be precise, we first pretend that the rows V0 and V−1 of G0
are infinite. This is done by defining graphs GN , where a circuit of additional triangles
is appended to G, and then taking the limit while the size of the circuit diverges. This
allows us to perform exact computations for the transition weights from V1 to V1 by
analysing the potential kernel of the auxiliary one-dimensional walk on Z defined
in Sect. 2.5. The required positivity of the combined weights and the identity stating
that these weights sum to one as we sum over all possible jump locations, stated
in Lemma 2.3, is the result of an exact (and rather long) computation involving the
potential kernel of this auxiliary walk.

This intermediary limit is also the technical reason for the introduction of the
modified monomer weight z′, which arises as the limiting weight of the peripheral
monomers on G. Finally, in Sect. 2.6 we use the notion of Schur complement of a

123



750 N. Berestycki et al.

matrix as a convenient tool to implement the idea of combining all the walks with
given excursions away from (the now infinite) row V−1. All in all, at the end of Sect. 2
a random walk representation of K−1 is developed and Theorem 1.1 is proved.

The goal of this section is to prove Theorem 1.2, i.e., to establish the infinite volume
limit of the model when a sequence of graphs exhausts H ∩ Z

2. By Kasteleyn theory,
it is enough that the inverse Kasteleyn matrix has a limit. This will be shown using
the random walk representation established in Sect. 2. Essentially, the main goal is to
show that in the infinite volume limit, the difference of the Green function associated
to the random walk Zeven or Zodd at two fixed vertices x, y converge to the difference
of the potential kernel of the corresponding infinite volume walk. In fact, the very
definition of this potential kernel is far from clear and occupies us for a sizeable part
of this section. For the usual simple random walk on the square lattice, the definition
of the potential kernel (see e.g. [30]) relies on precise estimates for the random walk
coming from the exact computation of the Fourier transform of the law of random
walk. Such an exact computation is clearly impossible here, since the effective walks
cannot be viewed as a sum of i.i.d. random variables. We overcome this obstacle
by developing a general method (which we think may be of independent interest) to
define the potential kernel of a recurrent randomwalk and prove convergence of Green
function differences towards it. The main idea is to proceed by coupling. We note that
a similar idea has also been recently advocated by Popov (see Section 3.2 of [34]); but
the approach in [34] also takes advantage of some properties and symmetries which
are not available here. Instead, our starting point is the robust estimate of Nash (see e.g.
[3]) characterising the heat kernel decay. With our approach, only a weak (polynomial
of any order) bound for the probability of non coupling suffices to show the existence
of the potential kernel. An immediate byproduct of our quantitative approach (which
is crucial for us) is the proof of the desired convergence of Green function differences
towards the differences of the potential kernel, obtained in Proposition 3.7.

In Sect. 4 we move on to describe the scaling limit (now in the limit of fine mesh
size) for the potential kernel of the effective walks Zeven and Zodd. A key idea is to
say that when such a walk hits the real line, it will hit it many times and therefore
has a probability roughly 1/2 to end up at a vertex with even (resp. odd) horizontal
coordinate once it is reasonably far away from the real line. This idea eventually leads
us to asymptotic formulae for the potential kernel which depends on the parity of the
horizontal coordinate of a point (see Theorem 4.1). To achieve this, we introduce an
intermediary process which we call coloured random walk, which is a random walk
on (twice) the usual square lattice, but which can also carry a colour (representing,
roughly speaking, the actual parity of the effective walk). This colour may change only
when the walk hits the real line, and then does so with a fixed probability p. The proof
of Theorem 4.1 relies on first comparing our effective walk to the coloured random
walk (Proposition 4.3) and then from the coloured walk to half of the potential kernel
of the usual simple random walk (Proposition 4.4).
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Weare nowfinally in a position to start the proof of Theorem1.3. FromTheorem4.1
we obtain a scaling limit for the inverse Kasteleyn matrix of the (infinite volume) free
boundary dimermodel. After recalling Kasteleyn theory in the nonbipartite setting, we
then compute the scaling limit of the pointwisemoments of height function differences
on H in Sect. 5.4. The argument is based on Kenyon’s original computation [22] but
with substantial modifications coming from the fact that we use Pfaffian formulas
instead of the determinantal formulas for bipartite graphs. This leads to different
expressions which fortunately simplify asymptotically (for reasons that are related but
distinct from those in [22]). This leads to the formula in Proposition 5.6, which is an
asymptotic expression for the limiting joint moments of pointwise height differences,
with an explicit quantification of the validity of the limiting formula (needed in the
following). To finish the proof of the result, we transfer this result in Sect. 5.5 into
one about the scaling limit of the height function as a random distribution. This is
essentially obtained by integrating the result of Proposition 5.6, but extra arguments
are needed for the case when some of the variables of integration are close to one
another.

Remark 1.6 An alternative strategy for establishing the scaling limit of the inverse
Kasteleyn matrix, suggested by an anonymous referee, would be the following. It
would suffice to concentrate on one of the two types of walks (say Zeven, which is
simpler to define than its counterpart Zodd) and analyse its potential kernel in the man-
ner indicated above in order to derive the scaling limit of K−1(u, ·) where u ∈ Veven
is a given even vertex. Once this is done, discrete holomorphicity and antisymmetry
can be invoked to obtain asymptotics of K−1 on the remaining vertices, and with the
same error bounds (using a discrete version of the Poisson formula for the derivative
of harmonic functions).

We have chosen not to implement this strategy for the following reasons. On the
one hand, the asymptotic analysis of Zeven (and in particular its potential kernel) is as
difficult as it is for Zodd. As this is probably the most challenging part of the analysis,
there would be no real simplification in considering Zeven only. On the other hand, the
exact randomwalk representation of K−1 seems interesting in its own right, especially
since it shows a connection with reflected random walks even at the discrete level.

We end the introduction bymentioning the following problem. The dimer model on
special families of bipartite planar graphs is famously related, through variousmeasure
preserving maps, to other classical models of statistical mechanics like spanning trees
(see e.g. [28]), the double Ising model [9, 11] or the closely related double random
current model [13]. This indicates the following direction of study.

Problem 1.7 Analyse the boundary conditions in these classical latticemodels induced
by the presence of monomers in their dimer model representations.
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2 (Inverse) Kasteleynmatrix

2.1 Dimer representation

In [16] a representation of the free boundary dimermodel was given in terms of a dimer
model on an augmented (nonbipartite) graph where a circuit of triangles is appended
to ∂freeG. By circuit we mean here that the additional triangles form a cycle. See Fig. 3
for a picture.

Here we state a lemma that conveniently fits into our framework but the result holds
in much bigger generality.

Lemma 2.1 ([16]) Let G be a finite subgraph of the upper-half plane square lattice
such that ∂mG is contained in the real line and forms an interval of an even number of
vertices. Let G0 be G with an appended bottom circuit of triangles as in Fig.3. Assign
weight zv to each edge of the triangle that is incident to a vertex v ∈ ∂mG. Then, for
each monomer-dimer cover inMD(G), there exist exactly two dimer covers inD(G0).
Moreover, this is a weight-preserving mapping.

In other words, there is a measure preserving two-to-one map between D(G0) and
MD(G).

2.2 Kasteleyn orientation, Kasteleynmatrix and gauge change

A Kasteleyn orientation of a planar graph is an assignment of orientations to its edges
such that for each face of the graph, as we traverse the edges surrounding this face one
by one in a counterclockwise direction, we encounter an odd number of edges in the
opposite direction (see e.g. [40]). For graphs as defined in Sect. 1.2 (but with an extra
row of triangles, as explained in the previous section) we make the following choice
(see Fig. 3): every vertical line is oriented downwards (including the non-horizontal
sides of triangular faces at the bottom). The orientation of horizontal edges alternates:
in odd rows (starting at row−1): edges are oriented from left to right, whereas in even
rows (starting at row 0) they are oriented from right to left.

Given a Kasteleyn orientation, the standard Kasteleyn matrix K̃ (x, y) is taken to
be the signed, weighted adjacency matrix: that is, K̃ (x, y) = ±1x∼yw(x,y) where the
sign is + if and only if the edge is oriented from x to y, and the weight w(x,y) is 1 for
horizontal and vertical edges (including on V−1), and z for the nonhorizontal sides of
triangular faces. However, it will be useful to perform a change of gauge, as follows.
For every k ≥ 0 even, and for every x ∈ Vk , we multiply by i the weight of every edge
adjacent to x . In particular, every horizontal edge in Vk with k even receives a factor
of i twice coming from both of its endpoints, whereas each vertical edge receives a
factor of i exactly once. We define the gauge-changed Kasteleyn matrix K (x, y) to be
the resulting matrix. Formally,

K (x, y):=K̃ (x, y)i1x∈Veven+1y∈Veven . (2.1)
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For instance, if x ∈ V0 is not on the boundary, then x has five neighbours. Starting
from the vertical edge and moving counterclockwise, the weights K (x, y) are given
by −i,−1, i z, i z, 1.

2.3 Towards the inverse Kasteleynmatrix

Let D = K ∗K . In this section we explain the key idea involved in computing D−1,
and thus ultimately K−1. The matrix D already played a crucial role in [22], where
Kenyon observed that it reduced to the Laplacian on the four types of sublattices of
the square grid.

We will follow a similar approach but, as we will see, the immediate interpretation
of D as a Laplacian breaks down in the rows V−1, V0 and V1. Nevertheless, admitting
the formal sum-over-all-paths identity (2.2), we will be able to make a guess on the
structure of D−1. This will ultimately lead us to the identification of D−1 as the
Green’s function of a certain effective random walk (or, in fact, a pair of effective
random walks) which appear in the statement of Theorem 1.1.

Therefore, the purpose of this section is mostly to explain the heuristic principles
guiding the proof, and to introduce the relevant objects and the notation. Once this
framework is defined we will start with the actual proof in Sect. 2.4. We will complete
the rigorous computation of D−1 (and therefore the proof of Theorem 1.1) in Sect. 2.6.

We nowfix a finite arbitrary graphG that satisfies the conditions of Sect. 1.2.We first
compute D explicitly. Note that if x ∈ Vk with k ≥ 2, the entries of D are computed
in a way identical to Kenyon [22]. Namely, the diagonal term is

D(x, x) = K ∗K (x, x) =
∑

y∼x
K ∗(x, y)K (y, x) =

∑

y∼x
|K (y, x)|2 = deg(x).

Moreover, the off-diagonal terms are nonzero if and only if y is at distance two from
x , but not diagonally (the diagonal cancellation is a consequence of the Kasteleyn
orientation), i.e., if y is a neighbour of x on one of the sublattices 2Z × 2Z, (2Z +
1)× (2Z+ 1), 2Z× (2Z+ 1) or (2Z+ 1)× 2Z in which case one can check as above
that D(x, y) = −1. Therefore away from the boundary ∂freeG, in the same way as in
[22], D is the Laplace operator associated to a simple random walk on each of the
sublattices, up to a multiplicative constant.

Complications for such an interpretation arise when x ∈ V−1 ∪ V0 ∪ V1. See Fig. 4
for the nonzero entries of D in these cases. Notice that now it is not necessarily true
that the diagonal term D(x, x) is (up to a sign) the same as the sum of the off-diagonal
entries on the row corresponding to x , or in other words, the transition weights dx,y
in (2.3) do not sum up to 1. Moreover, some of them are negative. While this seems
like a very serious obstacle for describing the behaviour of the operator D−1 in the
scaling limit, we nevertheless show in the next section howwe can recover an effective
random walk for which D really is the Laplacian.

More precisely, D−1 can be formally viewed as a sum of weights of paths of all
possible lengths,where theweight of a path is the product of (signed) transitionweights
of individual jumps. That is, formally,
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D−1(u, v) = 1

D(v, v)

∑

π :u→v

w(π), (2.2)

where for a path π : u → v,

w(π) =
∏

(x,y)∈π

dx,y with dx,y = −D(x, y)

D(x, x)
. (2.3)

For x in the bulk, dx,y = 1/4 for each y which is neighbour of x on the sublattice
of twice larger mesh size containing x , and is 0 otherwise, which is the same as the
transition probability of a simple random walk on that sublattice.

Let us now point out that the transition weights between an even row and an odd
row are always 0. Compared to the odd rows, the construction for even rows is much
simpler. As seen in Fig. 4, for x ∈ V0, D(x, x) is in fact equal to the sum of |D(x, y)|
for all y �= x . We can therefore view |dx,y | for x ∈ V0 as the transition weights of
a random walk that is reflected on row V0 (and can make jumps of size one and two
on that row). When we take into account the signs of d(x, y) in (2.3), this gives rise
to a global sign factor which depends only on u and v can be seen in the second line
of (1.4).

The rest of this section is devoted to the more complicated task of giving a random
walk representation to D−1 restricted to the vertices in odd rows Vodd.We nowdescribe
the main idea. We will manage to give a meaning to the right hand side of (2.2) by
fixing a specific order of summation. We will later on prove that this definition really
does give us the inverse of D, and we will also find a random walk interpretation to
this definition. We emphasise this because the signs are not constant, and hence the
order of summation is a priori relevant to the value of the sum. Essentially we will
compute the sum in (2.2) by ignoring the details of what the path does when it visits
V−1. That is, we will identify two paths if they enter V−1 at the same place in V1 and
leave V−1 at the same places in V1 for each visit to V−1, and we will be able to estimate
contributions to (2.2) coming from each such equivalence class.

An important observation (see Fig. 4) here is that for each x ∈ V−1, the diagonal
term D(x, x) is equal to the sum of |D(x, y)| for all y ∈ V−1 not equal to x . Note that
D(x, y) is non zero for y = x ± 1 or y = x ± 2 (understood cyclically). This allows
us to express the weight of the paths which stay in V−1 as the weight of a randomwalk
with steps ±1 and ±2 on V−1. One can therefore associate a Green’s function g(·, ·)
(or more formally a potential kernel since the walk is recurrent on the cycle V−1) with
the random walk on V−1 with transition probabilities

px,y = |dx,y |. (2.4)

For x ∈ V1 = V1(G0) = V1(G), let x− and x+ be the left and right vertex in V−1 =
V−1(G0) two steps away from x (see Fig. 4). We fix u, v ∈ V1 and let u• ∈ {u−, u+}
and v• ∈ {v−, v+}. We define P1

u•,v• to be the set of paths from u• to v• which are
contained in V−1. Observe that if π ∈ P1

u•,v• , then π makes jumps of size ±1 or ±2,
and that each odd jump contributes a negative weight to (2.2) whereas each even jump
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contributes a positive weight. Since π goes from u• to v• the parity of the number of
odd jumps is fixed and depends only on the distance between u• and v• in V−1. Hence

w(π) = (−1)�(v•−u•) ∏

(x,y)∈π

|dx,y |,

where dx,y is defined in (2.3).
Going further: if P1

u•,v is the set of paths going from u• to v and staying in V−1
(except for the last step, which must be from v± to v), then

∑

π∈P1
u•,v

w(π) = (−1)�(v+−u•)(g(u•, v+)− g(u•, v−))
z

2+ 2z2
(2.5)

where the last term accounts for the weight −D(v±, v)/D(v±, v±) of the last step
from V−1 to V1. Finally, let P1

u,v be the set of paths from u to v which stay in V−1
except for the first and last step (which necessarily are from V1 to V−1 and vice versa).
Using (2.5) we have

∑

π∈P1
u,v

w(π) = z2

8+ 8z2
(−1)�(v−u)(g(u+, v+)− g(u+, v−)

− g(u−, v+)+ g(u−, v−)) =: 1
4qu,v, (2.6)

where the additional term z
4 compared to (2.5) accounts for the weight −D(u, u±)/

D(u, u) of the first step from V1 to V−1. The factor 1
4 in the definition of qu,v is

included for later convenience. As mentioned, the Green’s function for the walk on
V−1 is not directly defined, but its gradient (as in the expression above) will be defined
with the use of the potential kernel.

Recall that our intention is to interpret the quantities qu,v as transition probabilities
between vertices in V1. In particular we would wish qu,v to be positive and sum up
to (something less than) one (since the other three transition weights induced by D
from a vertex in the bulk of V1 to V1 and V3 are equal to 3/4). Unfortunately, in the
setting described so far, we were unable to do so. However, a nice solution to this
problem is the following construction. We note that this construction is the reason
for the appearance of the special monomer weight z′ at the monomer-corners in the
statement of our results.

2.4 An intermediate limit

To overcome the issue raised above, we introduce an intermediate limiting procedure
in our model. To this end, let 2m denote the number of triangles in G0, and let GN be
the graph where we add a circuit of 2N ∧ 2m triangles (instead of 2m triangles as in
G0), see Fig. 5 for an example. We assign weights 1 to every edge except if it belongs
to a triangle and is not horizontal, in which case we assign weight z. Since we assumed
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Fig. 5 A graph G (drawn with round vertices), and its extension G8 (there is a circuit of 16 additional
triangles appended to the bottom of G). The two red edges and vertices in the figure denote a single edge
and vertex in G8. The weights of transitions denoted by arrows are D(·, ·) = DN (·, ·) = −1. The diagonal
terms are D(z1, z1) = 3, D(z2, z2) = 4. The black vertex z1 has Neumann boundary conditions for the
associated walk, since the total weight of outgoing transitions is also 3. The white vertex z2 has Dirichlet
boundary conditions since the total outgoing weight is 2 < 4 (color figure online)

that G has a dimer cover, it is easy to see that GN also has at least one dimer cover. We
can hence talk about the dimer model on GN with the specified weights.

Let us call G̃N
the graph GN where the bottom row V−1(GN ) is removed. In other

words, G̃N
isGwith ∂freeG replaced by the N -cycle. Using Lemma 2.1, we can rephrase

the dimer model on GN as a free boundary dimer model on G̃N
. We claim that the

monomer-dimer configuration on G̃N
restricted to G, in the limit N →∞ has the law

of the free boundary dimer model with weight z′ from (1.3) at the monomer-corners.
To see this, let Zk be the partition function of the free boundary dimer model on a
segment of Z of length k with monomer weight z and edge weight 1 (monomers are
allowed anywhere on the segment). Moreover, let L be the number of vertices in the
row V0(GN ) that are not in G (so L = (N − m)+). Then, it is not difficult to see that
the effective weight for the presence of two (resp. one and zero) corner-monomers in
G isZL+2 (resp.ZL+1 andZL ). The claim is therefore a consequence of the following
elementary lemma.

Lemma 2.2 As k →∞,

Zk+1
Zk

→ z′, where z′ = z

2
+

√

1+ z2

4
.

Proof It is enough to solve the recursion Zk+1 = zZk + Zk−1 to get that

Zk =
(1
2
− z

4β

)( z
2
− β

)k +
(1
2
+ z

4β

)( z
2
+ β

)k
,
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where β =
√
1+ z2

4 . ��
Let KN be the Kasteleyn matrix of GN with Kaseteleyn weights as discussed above,

see e.g. Fig. 5, and let DN = (KN )∗KN . The statement above and Kasteleyn theory
imply that the inverse Kasteleyn matrix K−1N restricted to G0 converges as N → ∞
to the inverse Kasteleyn matrix (K ′)−1 for the free boundary dimer model on G0 with
monomer weights z′ at the monomer-corners.

2.5 An auxiliary walk onZ

It will be convenient to consider a random walk on V−1(Z2) � Z with transition
probabilities given by

p∞x,x±1 =
z2

2+ 2z2
=: 1/2− p, p∞x,x±2 =

1

2+ 2z2
=: p. (2.7)

In other words, this is the infinite volume version of the walk from (2.4). Now, while
the Green’s function of this walk is infinite since the walk is recurrent, its differences
makes sense in the form of the potential kernel (see [30], Section 4.4.3) given by

αk =
∞∑

n=0
(pn(0)− pn(k)) = lim

N→∞

( N∑

n=0
pn(0)−

N∑

n=0
pn(k)

)
, (2.8)

where pn(k) =∑n
i=0 P0(Xi = k) with X being the random walk with jump distribu-

tion (2.7). Using the potential kernel, for u, v ∈ V1(Z2) � Z, we can now define the
infinite volume version of the transition weight qu,v from (2.6) by

q∞u,v =
z2

2+ 2z2
(−1)k+1(2αk − αk+1 − αk−1), (2.9)

where k = �(v − u). Note that the sign is opposite to that in (2.6). To is due to the
−pn(k) term in the definition of the potential kernel.

The next result is one of the crucial observations in this work.

Lemma 2.3 (Effective transition probabilities) For all z > 0, and any pair of vertices
u, v ∈ V1(Z2), we have

q∞u,v ≥ 0 and
∑

v∈V1(Z2)

q∞u,v = 1.

Moreover, q∞u,v → 0 exponentially fast as |u − v| → ∞.

Before we give the proof note that neither of these two facts is at all clear from the
definitions of q∞u,v . Together they imply that we can think of q∞u,v as the step distribution
of some effective random walk on V1. Later in Lemma 2.6, we will prove that q∞u,v

is the limit of qu,v from (2.6) on GN when N →∞.
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Proof of Lemma 2.3 The proof is based on an exact formula for the potential kernel α
of the walk on Z defined by (2.7). To start with, by Theorem 4.4.8 from [30] we know
that

αk = |k|
σ 2 + A + O(e−β|k|)

for some constants β > 0 and A ∈ R, and where σ 2 = 1+ 6p is the variance of the
walk with p as in (2.7). Moreover, α is harmonic (except at k = 0) with respect to
the Laplacian of the walk (2.7). The recursion for the sequence αk has the following
characteristic equation

1 = (1/2− p)(γ + γ−1)+ p(γ 2 + γ−2).

This equation has one double root at 1, and two other roots

γ1,2 = ±
√(1

2
+ 1

4p

)2 − 1− 1

2
− 1

4p
.

Note that since z > 0, we have p < 1/2, so the two roots above are distinct. This
implies that the O(e−β|k|) term is of the form B1γ

|k|
1 + B2γ

|k|
2 for some constants B1

and B2. However, we have |γ1| < 1 and |γ2| > 1, so we must have B2 = 0. This
implies that

αk = |k|
σ 2 + A + Bγ |k|

for some constants A and B, and

γ =
√(1

2
+ 1

4p

)2 − 1− 1

2
− 1

4p
. (2.10)

Using that α0 = 0 by definition, we get A = −B and hence

αk = |k|
1+ 6p

− B + Bγ |k|. (2.11)

We still need to compute B which is equivalent to computing α1. Let X be the walk
with transition probabilities (2.7). Let τ = inf{n > 0 : Xn > 0}, and

q = P0(Xτ = 1) and 1− q = P0(Xτ = 2).

Then, by considering the possible four different first steps (+1,−1,+2,−2) of X and
using translation invariance and the strong Markov property, we get that

q = ( 12 − p)+ ( 12 − p)((1− q)+ q2)+ p(q(1− q)+ q3 + (1− q)q),
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which simplifies to

pq2 + (1
2
− p

)
(q − 1) = 0. (2.12)

One can check that q = γ + 1. Moreover, using the symmetry of jumps of X and the
Markov property for the walk, we get the equation (again considering the first four
steps in the same order)

α1 = 1+ ( 12 − p)(−α1)+ ( 12 − p)[qα1 + (1− q)(−α1)]
+ p[(1− q)α1 + q(−α1)] + p[(q2 + (1− q))α1 + q(1− q)(−α1)]. (2.13)

To justify (2.13), one starts from the definition of α1 in (2.8) as the limit as N →∞
of the expected difference of number of visits by time N to the sites 0 and 1. We first
apply the simple Markov property at the first step, and depending on the outcome
of the first step, apply the strong Markov property at the next time τ (after time 1)
that the walk returns to 0 or 1, taking care of the contribution coming from the event
{τ > N }. We then let N → ∞. There is no problem in doing so, first because the
sequence {αn}n≥0 is bounded, which lets us use the dominated convergence theorem,
and second because the contribution coming from the event {τ > N } to the difference
between the number of visits at 0 and 1 by time N is bounded by 1. Details are left to
the reader.

Together with (2.12), (2.13) gives

α1 = 1

(1+ 2p(−1+ q))(2− q)
= 1

(1+ 2pγ )(1− γ )
. (2.14)

and hence from (2.11) we obtain

B = 4p

(γ − 1)(6p + 1)(2pγ + 1)
≤ 0. (2.15)

We can now define

qk = (−1)k+1 z2

2+ 2z2
�αk = (−1)k+1( 12 − p)�αk,

where �αk = 2αk − αk+1 − αk−1 is the Laplacian of simple random walk. Then
qk = q∞u,v whenever |u − v| = k. Using (2.11), we have

(−1)k+1�αk =
{
−B|γ ||k|(2− γ − γ−1) ≥ 0 for k �= 0,

2
1+6p − 2B(1− γ ) ≥ 0 for k = 0.

(2.16)

and hence the total transition weight is

∑

k∈Z

q|k| = ( 12 − p)
(
− 2B(2− γ − γ−1) −γ

1+ γ
− 2B(1− γ )+ 2

1+ 6p

)
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= ( 12 − p)
(
− 4B

1− γ

1+ γ
+ 2

1+ 6p

)
. (2.17)

Using (2.10) and (2.15), it can be checked that the last expression is equal to one for
all 0 < p < 1/2 (equivalently all z > 0). Exponential decay of qk is clear from (2.16).

2.6 Randomwalk representation of D−1

Here we finally establish a rigorous version of (2.2) using the ingredients from the
previous sections. Recall that KN is the Kasteleyn matrix of the graph GN and DN =
(KN )∗KN . We will be mostly interested in the restriction of D−1N to the vertices
of G. Observe that DN can be written as a block-diagonal matrix if we consider
vertices respectively in the odd or even rows (this is one advantage of taking periodic
boundary conditions in the bottom rows). Hence to invert DN it will suffice to invert
each of these blocks separately. We call Dodd

N (resp. Deven
N ) the matrix DN restricted

to Vodd(GN ) ∪ V−1(GN ) (resp. Veven(GN )).
We first focus on the odd case (the even case ismuch easier as explained before), and

for nowwewill write DN for Dodd
N . The key idea will be to use the Schur complement

formula. To be more precise, we observe that DN has the block structure

DN =
( A B
BT C

)
,

whereA is indexed by the special row V−1, and C is indexed by all the other rows Vodd.
Hence B and BT can be thought of as a “transition matrices” between V−1 and Vodd.
Note that these matrices depend on N but we don’t write this explicitly to lighten the
notation. We define the Schur complement of A to be the matrix

DN/A := C− BTA−1B. (2.18)

With this definition, the restriction of D−1N to Vodd is simply given by

D−1N |Vodd = (DN/A)−1. (2.19)

One issue for us is that we will see A is not directly invertible, making the use of
the Schur complement formula not immediately possible. Instead, we will consider a
limiting procedure:wewill introduce amodification DN ,ε of DN .While DN ,ε does not
have any direct dimer interpretation, we will be able to compute its inverse D−1N ,ε using
the Schur complement formula, and taking a limit as ε → 0, deduce an expression for
D−1N . (The key observation is that, while A−1 is not well-defined, BTA−1B is.)

We now outline how we proceed.

• We introduce the matrix DN ,ε, which is a version of DN but with an additional
small killing probability at each vertex of V−1.

• We then write the inverse A−1ε appearing in the block decomposition of DN ,ε in
terms of the potential kernel (i.e., difference of Green’s functions) for the random
walk on V−1(GN ) with transition probabilities as in (2.4) and with killing.
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• As ε → 0, and N is fixed, we show that the potential kernel of the periodic, killed
walk converges to the potential kernel of the periodic eternal (unkilled) walk, and
give a formula for the latter. From this formula it also follows that as the period
size N diverges to∞, the potential kernel of the periodic eternal walk converges
to the potential kernel of the infinite walk.

• This gives us a formula for the Schur complement DN/A via (2.18). We then
use that for N sufficiently large, this Schur complement can be viewed as a (gen-
uine) Laplacian for a random walk. The proof of this statement is postponed until
Sect. 2.7.

• As a consequence of (2.19), this gives a formula for the inverse of DN as a Green’s
function of a genuine random walk.

• Finally, as the number N of triangles appended to G0 tends to infinity, on the one
hand, the above analysis shows that the inverse Kasteleyn matrix (restricted to
Vodd) can be written in terms of the potential kernel of a random walk with jumps
along the boundary. On the other hand as mentioned before, the free boundary
dimer model becomes equivalent to the samemodel on G0 with modifiedmonomer
weights z′ as in (1.3) at the monomer-corners.

• The results of this section are summarised below as Corollary 2.8.

Let

DN ,ε(u, v) = DN (u, v)+ ε1{u=v∈V−1(GN )}.

In words, we have added ε to the diagonal values on V−1, which correspond to killing
the walk with probability pε = ε/DN ,ε(z, z) = O(ε) at each step in V−1. DN ,ε can
still be written in block form as

DN ,ε =
(Aε B
BT C

)
,

We now start with the computation of A−1ε . To this end let

gN ,ε(u, v) =
∑

γ :u→v

γ⊆V−1(GN )

∏

e=(x,y)∈γ

pN ,ε
x,y (2.20)

be the Green’s function of the random walk on V−1(GN ) with transition probabilities
pN ,ε
x,y defined for GN as in (2.4) with killing probability pε; that is,

pN ,ε
x,y = (1− pε)p

N
x,y

with pNx,y as in (2.7) (except here x, y are points on the N -cycle Z/(NZ), identified

with V−1(GN ): that is, pNx,y is translation invariant on the cycle, p
N
x,x±1 = z2/(2+2z2),

pNx,x±2 = 1/(2+2z2), and the addition is mod N ). Note that gN ,ε(u, v) is well defined
because of the killing.
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Lemma 2.4 Let u, v ∈ V−1 = V−1(GN ). Then

A−1ε (u, v) = 1

A(v, v)
(−1)�(u−v)gN ,ε(u, v).

Proof This follows from the fact that |Aε| is the Laplacian for the random walk
described above, andmoreover (asmentioned before) the sign of the transitionweights
induced by Aε is negative if the step is of size ±1 and positive otherwise (step size
±2). This follows from the definition of DN and the Kasteleyn matrix.

We now explain how this yields an interpretation for the Schur complement
DN ,ε/Aε as a (genuine) Laplacian for a random walk in the bulk Vodd(G) with jumps
along the boundary V1(G). For u, v ∈ V1 = V1(GN ) = V1(G), we define

qN ,ε
u,v = (BTA−1ε B)(u, v). (2.21)

Recalling that DN (v, v) = A(v, v) = 2 + 2z2 for v ∈ V−1(G0) and N ≥ 1, a
straightforward computation using Lemma 2.4 shows that

qN ,ε
u,v =

z2

2+ 2z2
(−1)�(v−u)

(
(gN ,ε(u+, v+)− gN ,ε(u+, v−))− (gN ,ε(u−, v+)− gN ,ε(u−, v−))

)
, (2.22)

where again u±, v± are the left and right vertices in V−1 at distance two from u and
v respectively.

We now show that as ε → 0, the differences of Green’s functions on the right-hand
side converge to a quantity, which could be viewed as the potential kernel of the walk
on the N -cycle with transition probabilities pNx,y from (2.4) (i.e., without killing). We
note that the existence of this potential kernel is not obvious, as the walk is recurrent
on a finite graph (so we cannot directly apply the results of Lawler and Limic [30]).
Nevertheless, since the transition probabilities converge exponentially fast to their
equilibrium distribution on this finite graph, it is also not hard to see that the series
defining this potential kernel converges. However, we will not make any use of this
definition, and will not verify the equality of this series with our limit, although this
would not be very hard to establish.

Lemma 2.5 Fix u±, v± ∈ V−1(GN ). Then, as ε → 0,

(gN ,ε(u+, v+)− gN ,ε(u+, v−))− (gN ,ε(u−, v+)− gN ,ε(u−, v−)) → FN (u±, v±)

where, by definition:

FN (u±, v±) =
∑

k∈Z

α(u+, v+ + kN )− α(u+, v− + kN )− [α(u−, v+ + kN )− α(u−, v− + kN )],

(2.23)
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α(x, o) = αx−o is the potential kernel defined in (2.8), and we identify each vertex
u±, v± with a position in Z (i.e., with its real part).

The proof of this lemma (including the finiteness of FN ) will be given in Sect. 2.7.
From the above lemma and (2.22) it follows directly that qN ,ε

u,v has a limit as ε → 0,
which we call qN

u,v . The next lemma allows us to take a second limit, now as N →∞:
in fact, the results imply that for N sufficiently large, qN

u,v can really be viewed as
transition probabilities, in the sense that they are positive and sum up to a quantity
which is less than one. Recall the definition of q∞u,v from (2.9).

Lemma 2.6 Let u, v ∈ V1 = V1(GN ) = V1(G0). Then qN
u,v → q∞u,v as N → ∞

pointwise. In particular, for N sufficiently large,

qN
u,v > 0 and

∑

v∈V1
qN
u,v < 1. (2.24)

Proof By the definition of qN
u,v and of q∞u,v , it suffices to show that only the term cor-

responding to k = 0 survives in the limit. This follows at once from the exponential
decay of differences of gradients of α established in (2.11), which shows every sum-
mand (except k �= 0) tends to zero, and gives a uniform exponential bound on the
summands, allowing the use of the dominated convergence theorem.

For the same reason, we can fix N large enough that (2.24) holds, and then ε small
enough that

qN ,ε
u,v > 0 and

∑

v∈V1
qN ,ε
u,v < 1. (2.25)

Note that the second inequality is strict since the sum is taken over V1(G) � V1(Z2∩
H). Now let N be sufficiently large that (2.24) holds true and ε sufficiently small that
(2.25) also holds true, and consider a transition matrix between vertices in u, v ∈ Vodd
given by

RN ,ε(u, v) = I (u, v)− 1

C(u, u)

(
C(u, v)− qN ,ε

u,v 1{u,v∈V1}
)

, (2.26)

where I is the identity. Note that

RN ,ε(u, v) ≥ 0 and
∑

v

RN ,ε(u, v) ≤ 1

so that RN ,ε is a substochastic matrix. Indeed, this follows from the definition of
C = DN |Vodd and (2.25). In other words, we may add a cemetery absorbing point
∂ to the state space and declare RN ,ε(x, ∂) = 1 −∑

y RN ,ε(x, y) ≥ 0. This turns
RN ,ε into the transition matrix of a proper random walk on the augmented state space
Vodd ∪ {∂}, which is absorbed at ∂ . We let ZN ,ε be the random walk on Vodd ∪ {∂}
whose transition probabilities are given by RN ,ε(x, y). We call this random walk the
effective (odd) bulk random walk.
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The interest of introducing the transition matrix RN ,ε of this effective bulk random
walk is that its associated Laplacian gives us the Schur complement DN/Aε: that is,
for u, v ∈ Vodd, we have

(DN/Aε)(u, v) = C(u, u)(I (u, v)− RN ,ε(u, v)), (2.27)

which follows from the definition of the Schur complement (2.18), (2.21) and the
definition of RN .

From this formula and the Schur complement formula (2.19), it is immediate to
deduce the following proposition. This implies that the inverse of Dodd

N = DN (i.e., the
inverse of (KN )∗KN restricted to bulk odd vertices) is given by the Green’s function
of the effective bulk random walk. Recall that C(v, v) = DN (v, v).

Proposition 2.7 Let u, v ∈ Vodd(G). Then for all N sufficiently large and ε sufficiently
small, we have

(Dodd
N ,ε)

−1(u, v) = GN ,ε
odd (u, v), (2.28)

where GN ,ε
odd is the (normalised) Green’s function associated to RN , i.e.,

GN ,ε
odd (u, v) = 1

DN ,ε(v, v)
Eu

( ∞∑

t=0
1{ZN ,ε

t =v}
)
. (2.29)

Taking a limit as ε → 0, both (2.28) and (2.29) hold without ε.

When we take the limit as ε → 0 (with N fixed sufficiently large so that (2.24)
holds) in the above proposition, no convergence issue arises: indeed DN is invertible
(since KN is invertible, as the partition function is assumed to be nonzero) so the
inverse function is continuous at DN . Likewise the convergence of the Green function
of ZN ,ε is a straightforward application of the dominated convergence theorem (since
the walk can be absorbed somewhere on the boundary of G).

We now address the even case, and write DN = Deven
N . We introduce a “sign”

diagonal matrix S(x, x) = (−1)�(x). Then, the matrix

D̃N := S−1DN S

is positive on the diagonal and negative off-diagonal. Moreover, we have

D̃−1N (u, v) = GN
even(u, v)

where

GN
even(u, v) = 1

DN (v, v)
Eu

( ∞∑

t=0
1{Z̃t=v}

)
,
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where Z̃ is a random walk on Veven(GN ) with the transition probabilities:

R̃N (x, y) = |DN (x, y)|
DN (x, x)

1x �=y . (2.30)

The fact that the even case is much simpler than the odd one can be seen here since
R̃N (x, y) is actually a transition matrix of a true random walk on Veven(GN ). Indeed,
(see Fig. 5 for an illustration):

• in the bulk of Veven(GN )\V0(GN ), the walk jumps by ±2 in each direction with
probability 1/4 each,

• On the boundary ∂G ∩ Veven(GN ), the walk makes jumps according to the local
boundary conditions which are either Dirichlet or Neumann,

• On V0(GN )∩V0(G) it may jump horizontally by±1 with probability z2/(3+2z2)
or by±2 with probability 1/(3+ 2z2), and vertically by+2 also with probability
1/(3+2z2). This is consistent with the fact that D(x, x) = 3+2z2 for x ∈ V0(G),

• On V0(GN ) \ V0(G), it may jump horizontally by ±1 (interpreted cyclically) with
probability z2/(2+ 2z2) or by±2 with probability 1/(2+ 2z2). This is consistent
with the fact that D(x, x) = 2+ 2z2 for x ∈ V0(GN )\V0(G),

As R̃N is directly a transition matrix, we do not need to introduce an ε-regularisation
or use the Schur complement formula to compute its inverse.

All in all we obtain that

D−1N (u, v) = (−1)�(v−u)GN
even(v, u). (2.31)

Now a moment of thought shows that there is no problem in letting N → ∞ in this
expression. This is because the random walk associated with RN is absorbed on some
portion of the boundary ∂G \ ∂freeG, as described in Sect. 1.2.

Hence we deduce that

lim
N→∞ D−1N (u, v) = (−1)�(u−v)Geven(u, v). (2.32)

where Geven(u, v) is the Green’s function on G∞ (that is, the graph G0 to which
infinitely many triangles have been added on either side of V0) associated with the
random walk on G∞ whose transition probabilities are given by (2.30).

At the same time, when N →∞, the free boundary dimer model on GN , restricted
to G0, becomes equivalent to a free boundary dimer model on G0 where the monomer
weights on the extreme vertices (corners) of V0 have been given the weight z′ > 0 as
in (1.3).

We now summarise the results obtained in this section.

Corollary 2.8 Consider the free boundary dimermodel onGwhere themonomerweight
z > 0 on V0(G) except at its monomer-corners where the monomer weight is z′ as
in (1.3). Let K be the associated Kasteleyn matrix, and D = K ∗K. Then for all
u, v ∈ V (G), we have

123



766 N. Berestycki et al.

D−1(u, v) =

⎧
⎪⎨

⎪⎩

Godd(u, v) if u, v ∈ Vodd(G),

(−1)�(v−u)Geven(u, v) if u, v ∈ Veven(G),

0 otherwise.

where Godd,Geven are the normalised Green’s functions associated with the effec-
tive (odd and even) bulk random walks described in (2.26) and (2.30) respectively,
normalised by D(v, v).

In particular, the inverse Kasteleyn matrix is given by K−1 = D−1K ∗.

This result implies Theorem 1.1 with the walks Zeven and Zodd explicitly defined
as above.

2.7 Convergence to potential kernel of the auxiliary walk

In this section we prove the convergence statement from Lemma 2.5. Let us fix
y1, y2, z ∈ Z and their corresponding residue classes ȳ1, ȳ2, z̄ mod N . We introduce
the function f defined on the N -cycle, identified with V−1(GN ),

f (x̄) =
∑

k∈Z

α(x, y1 + kN )− α(x, y2 + kN )− [α(z, y1 + kN )− α(z, y2 + kN )],

where x ∈ Z is chosen so that x has x̄ as its residue mod N , and α is the potential
kernel defined in (2.11) associated with the random walk (2.7) on Z. First observe
that this function is indeed well defined, in the sense that the series actually converges
(this follows from the asymptotics of α, whose gradient is near infinity a constant plus
an exponentially decaying function), and in the sense that it does not depend on the
choice of the representative x of x̄ , by translation invariance of that potential kernel.
The last two terms have only been added in order to make the series converge, and
they will play no role (and disappear from the statement) once we consider differences
of f , i.e. quantities of the form f (x̄)− f (x̄ ′) as required for Lemma 2.5.

Recall the transition probabilities pN on the N -cycle already described above
Lemma 2.4.

Lemma 2.9 The function f defined above is discrete pN -harmonic on the N-cycle,
except at x̄ = ȳ1 and x̄ = ȳ2: that is,

pN f (x̄)− f (x̄) = ϕ(x̄) = −1{x̄=ȳ1} + 1{x̄=ȳ2}. (2.33)

It is in the sense of Lemma 2.9 that f is a (difference of) potential kernels.

Proof The proof comes from the fact that α is a potential kernel on Z for p∞, and so
satisfies the same equation as (2.33) but on Z: that is, if g(x) = α(x, y1)−α(x, y2)−
[α(z, y1)− α(z, y2)], x ∈ Z, then

p∞g(x)− g(x) = −1{x=y1} + 1{x=y2}.
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To actually deduce (2.33) from this, we truncate the infinite series defining f and use
the exponential decay of the difference of gradients of α to show that the boundary
contributions tend to zero. Details are left to the reader. ��
Proof of Lemma 2.5 As a consequence, if Xn is a random walk on the N -cycle with
transition probabilities pN , and if An =∑n

i=1 ϕ(Xn), then

Mn = f (Xn)− An (2.34)

is a Px̄−martingale. Let Tε denote an independent geometric random variable with
success probability pε (which corresponds to the time at which the walk would be
killed, if it has probability pε to be killed at each step). Then (Mn∧Tε )n≥0 is also a
Px̄−martingale, and hence, applying the optional stopping theorem (which is allowed
by combining dominated and monotone convergence theorems, since the state space
is finite)

f (x̄) = Ex̄ (M0) = Ex̄ (MTε )

= Ex̄ [ f (XTε )] +
(
Ex̄ [LTε (ȳ1)] − Ex̄ [LTε (ȳ2)]

)

where Ln(ȳ) = ∑n
i=1 1{Xn=ȳ} denotes the local time at ȳ ∈ Z/NZ of the random

walk X . Hence in particular, Ex̄ [LTε (ȳ)] = gN ,ε(x̄, ȳ) is the Green’s function defined
in (2.20) and appearing in the statement of Lemma 2.5.

Now take another starting point, x̄ ′, and consider the difference f (x̄)− f (x̄ ′). Then

f (x̄)− f (x̄ ′) = Ex̄ [ f (XTε )] − Ex̄ ′ [ f (XTε )]
+
(
gN ,ε(x̄, ȳ1)− gN ,ε(x̄, ȳ2)− [gN ,ε(x̄ ′, ȳ1)− gN ,ε(x̄ ′, ȳ2)]

)

The third term (in brackets) on the right-hand side is precisely the quantity we wish
to take the limit of as ε → 0. The left hand side is precisely the conclusion of Lemma
2.5 (note that the terms involving z cancel). Hence in order to conclude, it remains to
show that for arbitrary x̄, x̄ ′,

Ex̄ [ f (XTε )] − Ex̄ ′ [ f (XTε )] → 0 (2.35)

as ε → 0. However, this is immediate: the walks started from x̄ and x̄ ′ can be coupled
in finite time almost surely. Since Tε →∞ in probability as ε → 0, and the state space
of these walks (i.e., the N -cycle) is finite, we see that (2.35) holds. This concludes the
proof of Lemma 2.5. ��

3 Infinite volume limit

In the previous section we showed that D−1N (and hence K−1N ) has a limit as N →
∞ which is given in terms of two Green’s functions Godd and Geven associated to
random walks on Vodd(G) and Veven(G) which may jump along V1(G) and V0(G),
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and with various boundary conditions (Dirichlet or mixed Neumann–Dirichlet) on
∂G\(V0(G)∪ V1(G)). Let us also denote these Green’s functions by GG

odd and G
G
even to

emphasize their dependence on G.
The purpose of this section is to take an infinite volume limit as G tends to the upper

half-plane. In this limit the Green’s functions GG
odd and GG

even diverge (corresponding
to the fact that the limiting bulk effective random walk is recurrent). However, we can
still make sense of its potential kernel. Hence the inverse Kasteleyn matrix, which is
obtained as a derivative of these Green’s functions, has a well defined pointwise limit.

The argument for this convergence as G increases to the upper half plane are essen-
tially the same for both the odd and even walks. As will be clear from the proof below,
the arguments rely only on the fact that (a) the twowalks coincidewith the usual simple
random walk (with jumps of size 2) away from the real line, (b) they are reflected on
the real line with some jump probabilities that decay exponentially fast with the jump
size (in fact, in the even case the jumps are bounded), and (c) they can ‘switch colour’
with positive probability along the real line. This terminology will be explained below.
For these reasons, and in order to avoid unnecessarily cumbersome notation, we focus
in this section solely on the odd walk (the argument works literally in the same way
for the even case, and can in fact be made a little easier since the jumps on the real
line have bounded size).

3.1 Construction of the potential kernel in the infinite volume setting

We write � for the weighted graph corresponding to the odd effective random walk.
Thus, the vertex set V of � can be identified (after translation so that V1 ⊂ R) with
(Z× 2Z)∩H and its edges E are those of (2Z)2, plus those of (2Z+ 1)× (2Z), plus
additional edges connecting these two lattices along the real lines. In reality, it will
be easier to consider a symmetrised version of � obtained by taking the vertex set to
be V ∪ V̄ and the edges to be E ∪ Ē , where V̄ and Ē are the complex conjugates of
V and E . We will still denote this graph by �. Throughout this and the next section
the random walks we will consider will take values in this symmetrised graph. Note
that � is not locally finite: any vertex on the real line has infinite degree, but the total
weight out of every vertex is finite (and is equal to 1). We recall that when away from
the real line, the random walk on � looks like simple random walk on the square
lattice up to factor 2: the transitions from a point x ∈ Z

2 away from R are to the four
points x ± 2e1 or x ± 2e2, where (e1, e2) is the standard basis of Z

2. On the real line,
the effective random walk can make jumps of any size, but the jumps are symmetric
and the transition probabilities have an exponential tail. Note that the odd effective
random walk only jumps between vertices of the same colour in the bulk, and can
possibly change colour only on the real line. In the current section, we will also use
the word class to denote the notion of colour. Finally, we say that two vertices in �

have the same parity (or periodicity) if the differences of their vertical and horizontal
coordinates are multiples of 4.

Our first goal will be to show that differences of Green’s functions evaluated at
two different vertices of the same class for the walk killed when leaving a large box,
converge (when the box tends to infinity) to differences of the potential kernel of the

123



Free boundary dimers: randomwalk representation and scaling limit 769

walk on the infinite graph �. Our first task will be to define this potential kernel. For
the usual simple randomwalk onZ

2 this is an easy task because the asymptotics of the
transition probabilities are known with great precision. In turn this is because simple
random walk can be written as a sum of i.i.d. random variables making it possible to
use tools from Fourier analysis: see Chapter 4 of [30] for a thorough introduction. The
walk on� obviously does not have this structure, and in fact it seems that there are few
general tools for the construction of the potential kernel for walks on a planar graph
beyond the i.i.d. case. The coupling arguments we introduce below may therefore be
of independent interest.

Let P denote the transition matrix of simple random walk on �, and let P̃ =
(I + P)/2 be that of the associated lazy chain (from now on ∼ will be used to
denote objects related to the lazy chain). The rationale for considering this version
is that, on the one hand, it gets rid of periodicity issues, while on the other hand, it
only modifies the Green’s function by a constant factor: e.g., on a transient graph,
G̃(x, y) = 2G(x, y) for any x, y, if G and G̃ are the corresponding Green’s functions
(this is because the jump chains are the same, and the lazy chain stays on average
twice as long at any vertex as the non-lazy chain).

The basic idea for the definition of the potential kernel will be the following. Let
X and X ′ denote (lazy) random walks started respectively from two vertices x and x ′
of the same class, and suppose that they are coupled in a certain way so that after a
random time T (which may be infinite), X and X ′ remain equal forever on the event
that T <∞: that is,

XT+s = X ′T+s, s ≥ 0. (3.1)

We will define a coupling (its precise definition will be given below) that depends on
a time-parameter t such that for this particular value of t ,

P(T > t) � (log t)wt−1/2 (3.2)

for some w > 0 whose value will not be relevant. (Note that this inequality should not
be understood as saying something about the tail of T , since T depends on t ; indeed T
might be infinite with positive probability). In fact, a much weaker control of the form
P(T > t) � t−ε, for some ε > 0, would be sufficient for the definition of the potential
kernel alone, as will be apparent from the argument below. We however insist on (3.2)
in order to get good a priori bound on the potential kernel (see Proposition 3.4). As
we will see, the goal of this coupling will be to compare p̃t (x, o) to p̃t (x ′, o) which
is why T is allowed to depend on t , and why we only require T to be less than t with
high probability (but we do not care what happens on the event {T > t}). Here and
later on, p̃t (·, ·) is the transition probability of the lazy chain whose transition matrix
is P̃ defined above, and o denotes an arbitrary fixed vertex.

We first argue that we can get a good a priori control on the transition probabilities
p̃t (x, o). Let A ⊂ Z× 2Z be a finite set. By ignoring the long range edges which may
leave A through the real line, and using the standard discrete isoperimetric inequality
on Z

2 (Loomis-Whitney inequality, Theorem 6.22 in [31]) it is clear that
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∑

x∈A,y∈Ac

wx,y � |A|1/2

where wx,y is the weight of the edge (x, y) in �. This means that � satisfies the
two-dimensional isoperimetric inequality (I2) (we here use the notation of [3]). Con-
sequently, by Theorem 3.7, Lemma 3.9 and Theorem 3.14 of [3], � satisfies the
two-dimensionalNash inequality, (N2) (see [3] for a precise statement of that inequal-
ity). Therefore, if qxs (·) denote the transition probabilities of the continuous time walk
on �, normalised by its invariant measure, we have by Theorem 4.3 in [3] that

qxs (x) � 1/s,

and since qxs is maximised on the diagonal, we deduce that

p̃s(x, o) � 1/s, (3.3)

where the implied constant is uniform in x, o and s ≥ 1.
Now suppose we have a coupling satisfying (3.1) and (3.2). We will explain why

this implies that
∞∑

t=0
( p̃t (x, o)− p̃t (x

′, o)) (3.4)

converges. We couple the walks starting from x, x ′ according to (3.1). Obviously, on
the event {T ≤ t/2}, Xt = o if and only if X ′t = o, and thus

| p̃t (x, o)− p̃t (x
′, o)| ≤ 2P(T ≥ t/2)max

y
p̃t/2(y, o)

� t−3/2(log t)w (3.5)

which is summable, whence the series (3.4) converges.

Definition 3.1 We set

ã(x, o)− ã(x ′, o) = −
∞∑

t=0
( p̃t (x, o)− p̃t (x

′, o)),

where p̃t (·, ·) is the transition probability of the lazy chain. By convention we define
ã(o, o) = 0 and so this recipe may be used to define ã(x, o) provided that x and o
are of the same class (by summing increments along a given path from x to o). (As
the choice of a path from x to o does not matter before the limit in the series is taken,
this is well defined.) Since x and o are arbitrary vertices of the same class, this defines
ã(·, ·) everywhere on this class.1

If also (3.2) holds for one pair x, x ′ not of the same class, then this defines ã(·, ·)
over the entire graph.

1 The arguments in this section rely on thinking of ã(·, ·) as a function of the first variable while the second
is frozen, which is why we prefer to use x for the first variable and o for the second. In the next section,
both variables will start playing a more symmetric role and we will switch to x and y.
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Note also that due to the fact that π(x) = 1 is a constant reversible measure on �

(hence p̃k(x, y) = p̃k(y, x)), the potential kernel is symmetric: ã(x, y) = ã(y, x) for
any x, y. We will not however need this property in the following.

In the next subsection we describe a concrete coupling which will be used for the
construction of the potential kernel.We call this the coordinatewisemirror coupling,
which is a variation on a classical coupling for Brownian motion in R

d . We will then
use this coupling again to obtain a priori estimates on the potential kernel.

Before describing this coupling and justifying (3.2), we first state and prove a lemma
whichwill be useful inmany places in the the following andwhich gives a subdiffusive
estimate on the walk. Let dist denote the usual �1 distance (graph distance) on Z

2.

Lemma 3.2 Let x be a vertex of � and let TR = inf{n ≥ 0 : dist(Xn, x) ≥ R}.
Then for every c1 > 0 there exists c2 > 0 such that for any n ≥ 1, and for any
R ≥ c1

√
n log n,

P(TR ≤ n) � exp(−c2(log n)2).

Proof One possibility would be to use a result of Folz [14] (based on work of
Grigor’yan [17] in the continuum) which shows that an on-diagonal bound on the
heat kernel pt (x, x) and pt (y, y) implies a Gaussian upper bound on the off-diagonal
term pt (x, y). However, it is more elementary to use the following martingale argu-
ment. We may write Xn = (un, vn) in coordinate form. Since (vn) is a lazy simple
random walk on the integers, the proof is elementary in this case (and of course also
follows from the more complicated estimate below). We therefore concentrate on
bounding

∑n
i=1 P(|ui | ≥ R). We bound P(|ui | ≥ R) for 1 ≤ i ≤ n as follows: either

there is one jump larger than say K = (log n)2 by time n (this has probability at most
n exp(−c(log n)2) by a union bound and exponential tail of the jumps) or if all the
jumps are less than K , then u coincides with a martingale ū such that all its jumps are
bounded by K in absolute value: indeed, we simply replace every jump of u greater
than K in absolute value by a jump of the same sign and of length K . Since the jump
distribution (2.6) is symmetric, the resulting sum ūn is again a martingale. Further-
more, ūn is a martingale with bounded jumps. We may apply Freedman’s inequality
[15, Proposition (2.1)] to it which implies (since the quadratic variation of ū at time
1 ≤ i ≤ n is bounded by b � n),

P(|ūi | � √n log n) � exp

(
−c n(log n)2

(log n)2
√
n log n + n

)
� exp(−c(log n)2). (3.6)

The result follows by summing over 1 ≤ i ≤ n. ��

3.2 Coordinatewise mirror coupling

Let x, x ′ be two vertices of the graph � of the same class, and let X̃ , X̃ ′ be two (lazy)
effective random walks started from x and x ′ respectively. In the coupling we will
describe below, it will be important to first fix the vertical coordinate (stage 1). The
coupling ends when we also fix the horizontal coordinate (stage 4). In between, we
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have two short stages (possibly instantaneous), where wemake sure the class is correct
(stage 2) followed by a so-called “burn-in” phase where the walks get far away from
the real line in parallel (stage 3). This depends on a parameter r , which is a free choice.
(When we prove (3.2) we will choose r to be slightly smaller by logarithmic factors
than

√
t).

We need to do so while respecting the natural parity (i.e., periodicity) of the coor-
dinates we are trying to match. We will use the laziness to our advantage in order to
deal with the potential issues arising from the walks not being of the same parity.

Note the following important property of P̃ . At each step, the walk moves with
probability 1/2. Conditionally on moving, the horizontal coordinate moves with prob-
ability 1/2, and otherwise the vertical coordinate moves (and in that case it is equally
likely to go up or down by two); since we symmetrised � note also that p̃(x, x + y)
and p̃(x, x − y) are always equal, for all x, y ∈ Z

2 (i.e., the jump distribution is
symmetric). We will need a fair coin C to decide which of the two Coordinates moves
(if moving), and another fair coin L to decide whether the walk is Lazy or moves in
this step.

Stage 1: vertical coordinate. Suppose that X̃t = (ut , vt ), X̃ ′t = (u′t , v′t ) are given.
We now describe one step of the coupling. If vt = v′t move to stage 2. If vt �= v′t then
we consider the following two cases. In any case, we start by tossing C. If heads, then
we plan for both X̃ and X̃ ′ to move their horizontal coordinates, and if tails, for both
their vertical coordinates.

1. Case 1: vt − v′t = 2 mod 4. Suppose C is tails so the parity of vertical coordinate
has a chance to be improved. Then we toss L. Depending on the result, one stays
put and the other moves, or vice versa (either way the vertical coordinates are of
the same parity after, and will stay so forever after). If instead C was heads, so
horizontal coordinate moves for both walks, then they move simultaneously or
stay put simultaneously, and move independently of one another if at all.

2. Case 2: vt − v′t = 0 mod 4. Suppose C is tails, so the vertical coordinates have
a chance to be improved or even matched. Then we toss L and according to the
result they both move simultaneously or stay put simultaneously. If moving at all,
we declare the change in vt and the change in v′t to be opposite one another: thus,
vt+1 = vt ±2 with equal probability, whence v′t+1 = v′t ∓2. If however C is heads
(so the horizontal coordinates move), then the walks move simultaneously or stay
put simultaneously, and move independently of one another if at all.

We leave it to the reader to check that this is a valid coupling (all moves are balanced
and according to the transition probabilities P if moving, and altogether each walk
moves or stays put with probability 1/2 as desired). As mentioned, once the parity of
the vertical coordinates of the walks is matched (meaning the difference in vertical
coordinates is even), it will remain matched forever.

Note also that once the vertical parity is matched (vt − v′t = 0 mod 4), condi-
tionally on the vertical coordinate moving (which is then the case for both walks
simultaneously), the direction of movements is opposite: in other words, the positions
of the vertical coordinates vt and v′t throughout time and until they match are mirrors
of one another, with a reflection axis which is a horizontal line L1. This line can be
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described as having a vertical coordinate equal to the average of vt and v′t at the first
time t that the parity of vt and v′t matches (note that L1 goes via (2Z)2). In particular,
the two coordinates vt and v′t will match after the first hitting time T1 of the line L1.
By the end of the first stage, the two walks sit on the same horizontal line. This will
remain so forever.

Stage 2: setting class and/or periodicity. We now aim to match the horizontal coor-
dinate. If also ut = u′t the coupling is over and we let X̃ ′t+1 = X̃t+1 chosen according
to P̃(X̃t , ·). However the two walks might not be in the same class at that point, even
if they started in the same class at the beginning of stage 1 (their class might change
if one hits the real line but not the other during that stage). During stage 2, we will
make sure the walks become of the same class if they were not at the beginning of
that stage (amounting to ut − u′t even), and we will also make sure that they become
of the same “parity” or “periodicity”, meaning ut − u′t = 0 mod 4. If that is the case
already at the beginning of this stage, we can immediately move on to the next stage.

Otherwise, as before, suppose that X̃t = (ut , vt ), X̃ ′t = (u′t , v′t ) are given, and
suppose that vt = v′t . (In particular, vt = 0 if and only if v′t = 0.) We proceed as
follows. As before, in any case we start by tossing C. If heads, then we plan for both
X̃ and X̃ ′ to move their horizontal coordinates, and if tails, for both their vertical
coordinates. In the latter case, we will use the same moves for both X̃ and X̃ ′, so we
only describe what happens if the move is horizontal.

1. If ut − u′t is odd, and vt = v′t �= 0, then the walks move simultaneously and in
parallel.

2. In all other situations, one walk will stay put while the other moves, or vice-versa,
depending on the outcome of L.

We make a few comments. First, note that with every visit to the real line there is a
fixed positive chance to have ut − u′t = 0 mod 4 and hence to end this stage. Also,
if ut − u′t is even to begin with, then there is also a fixed positive chance to end the
stage right away.

Stage 3: burn-in. In stage 3 of the coupling, we let the walks evolve in parallel (i.e.,
with the same jumps) until they are at distance r from the real line. We will later
choose r as a function of t (see (3.7)), which explains our comment under (3.2) that
T depends on t . This is a valid choice of coupling since they will hit the real line
simultaneously. At the end of stage 2, the walks are on the same horizontal line and of
the same “periodicity” meaning that they are 0 mod 4 apart. This will remain so until
the end of stage 3.

Stage 4: horizontal coordinate. As before, suppose that X̃t = (ut , vt ), X̃ ′t = (u′t , v′t )
are given, and suppose that vt = v′t . (In particular, vt = 0 if and only if v′t = 0.) If also
ut = u′t we let X̃ ′t+1 = X̃t+1 chosen according to P̃(X̃t , ·). Otherwise we proceed
as follows; we only describe a way of coupling the walks until hitting the real line; if
coupling has not occurred before then we say that T = ∞. As before, in any case we
start by tossing C. If tails, we let both walk evolve vertically in parallel. Otherwise, the
walks will move their horizontal coordinates or stay put simultaneously depending on
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the result of L. If both walks move horizontally, then let ut and u′t move in opposite
manners, i.e., ut+1 − ut = −(u′t+1 − u′t ). This is possible by symmetry of the jump
distribution P (even on the real line).

Again, we leave it to the reader to check that what we have described in stages 2,3
and 4 forms a valid coupling. We note that any movement in the vertical coordinate is
replicated across both walks, whatever the cases, and so the match created in stage 1
is never destroyed. Note also that once the walks are 0 mod 4 apart, this remains the
case until hitting the real line. Therefore the movement of the horizontal coordinates
of both walks in stage 2 of this coupling will also be mirror off one another, with the
mirror being a vertical line L2 whose horizontal coordinate is the average of ut and u′t
at the end of stage 3. We call T1, . . . , T4 the end of each four stage respectively (with
T4 being infinity if the walks hit the real line first).

3.3 Suitability of coupling (proof of (3.2))

In order to use the above coupling to construct the potential kernel of the walk on
�, we need to verify two points. We will consider two cases: the main one is that x
and x ′ are of the same class and dist(x, x ′) = 2. The other case is if x, x ′ are on the
real line and dist(x, x ′) = 1. By Definition 3.1, these two cases allow us to define
the potential kernel over the entire graph. We will focus on the first case since it is a
bit more involved than the second (which can be checked in a similar manner). We
will first need to verify (3.2), which requires that the two walks coincide with high
probability at time t .

We will check that each stage lasts less than t/4 with overwhelming probability
(meaning with error probability satisfying (3.2)).

Stage 1.We may assume without loss of generality that v0 − v′0 = 0 mod 4 since
otherwise it takes a geometric number of attempts until that is the case. Note then that
P(T1 > t/4) is bounded by the probability that the randomwalk avoids the (horizontal)
reflection line L1 of stage 1 for time t/4. As the vertical coordinate performs a lazy
simple random walk on the integers (with laziness parameter 3/4) this is bounded by
the probability that a random walk on the integers starting from 1 (or more generally
a random value with geometric tails, as discussed above) avoids 0 for at least � t ,
which is bounded by � 1/

√
t by gambler’s ruin arguments (see e.g. Proposition 5.1.5

in [30]).
Stage 2. Let k = dist(x, R)(= |v0|). If the walks remained of the same class during

the first stage, then stage 2 is over in a time which has a geometric tail so (3.2) holds
trivially. On the other hand, if they did change class during the first stage, it is necessary
to hit the real line again (and then wait for an extra time with geometric tail).

At the end of stage 1, the walk is on the reflection line L1 which has vertical
coordinate v + O(1) and so is again at distance k + O(1) from the real line. Let TR

denote the hitting time of R. Then by Proposition 5.1.5 in [30] again,

P(TR > t/4) � k√
t
.
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On the other hand, the probability that X̃T1 and X̃ ′T1 changed class during the first
phase is bounded by� 1/k again by gambler’s ruin (since it requires touching the real
line before the reflection line L1), and so

P(T2 − T1 > t/4; X̃T1 � X̃ ′T1) � 1
k × k√

t
= 1√

t
,

where � denotes being of different class. This implies (3.2) for T2 − T1.
Stage 3. Here we will need to choose the parameter r appropriately. We will take

it to be

r =
√
t

(log t)b
, (3.7)

where b > 0 can be chosen as desired. Note that every r2 units of time, if the walk
starts in the strip S of width r around the real line, it has a positive probability, say
p, of leaving S (where p does not depend on the starting point of the walk). Thus for
j ≥ 1,

P(T3 − T2 > jr2) ≤ (1− p) j .

Hence

P(T3 − T2 > t/4) ≤ exp(−ct/r2)
so that if b > 1 is any number, the right hand side above is � 1/

√
t , as desired.

Stage 4. To prove the corresponding bound in stage 4, we need the following
lemmawhich shows (up to unimportant logarithmic terms) the horizontal displacement
accumulated in the first stage has a Cauchy tail. This corresponds of course to the well
known fact that the density of Brownian motion when it hits a fixed line has exactly a
Cauchy distribution.

Lemma 3.3 We have

P(sup
t≤T1

|ut − u0| ≥ k) � (log k)2

k
. (3.8)

(The factor of (log k)2 is not optimal in the right hand side of (3.8) but is sufficient
for our purposes.) We now use this to derive a bound for P(T4 − T3 > t/4). From the
construction of the coupling and Lemma 3.3, we see that at the beginning of stage 4,
the walk is at a distance from the (vertical) reflection line L4 which has the same tail as
in Lemma 3.3 (this is because the additional discrepancy accumulated during stage 2
is easily shown to have geometric tail). Let us condition on everything before time T3,
and call k the distance of the walk X at time T3 to the reflection line. Let TR denote the
hitting time of the real line and let TL denote the hitting time of the reflection line L4.
Set s = t/4 for convenience. Then we can bound the tail of TL in terms of the usual
simple random walk on the lattice (without extra jumps on the real line). Indeed, until
time TR, the walk coincides with the usual lazy simple random walk on the square
lattice. Writing Q for the law of the latter random walk, we have

P(T4 − T3 > s | FT3) ≤ P(TL > s, TR > s | FT3)+ P(TL > TR, TR ≤ s | FT3)
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≤ Q(TL > s, TR > s)+Q(TR < TL)

� Q(TL > s)+ k
r

� k( 1√
t
+ 1

r ).

To go from the second line to the third line, we used that the walk starts at distance r
from the real line and Proposition 5.1.5 in [30], and to go the last line we also used
that same result. Taking expectations (we only use the above bound if k ≤ r so that
the right hand side is less than one, and we use the trivial bound 1 for the probability
on the left-hand side otherwise), we see that

P(T4 − T3 > t/4) ≤ E(X1{X ≤ r})( 1√
t
+ 1

r )+ P(X > r),

where X has a tail bounded by Lemma 3.3. By Fubini’s theorem,

P(T4 − T3 > t/4) � (log t)3+b√
t

(3.9)

so we get (3.2) with w = 3+ b. Since b > 1 is arbitrary, w > 4 is arbitrary.
It therefore remains to give the proof of Lemma 3.3.

Proof of Lemma 3.3 Let L = L1 be the (horizontal) reflection line. We wish to show
that P(supt≤TL |ut − u0| ≥ k) � (log k)2/k. Without loss of generality we assume

that v0 < v′0 so X̃ starts below L , and u0 = 0. Let L ′ be a line parallel to L below
L , at distance A from it, where A = �k/(log k)2�. Let S denote the infinite strip in
between these two lines. Let T = TL denote the hitting time of L and let T ′ denote
the hitting time of L ′, and let τ = T ∧ T ′ denote the time at which the walk leaves
the inside of the strip S. Let Tk denote the first time at which |ut | ≥ k. Then

P(sup
t≤T

|ut | ≥ k) ≤ P(T ′ < T , sup
t≤T

|ut | ≥ k)+ P(T ′ > T , sup
t≤T

|ut | ≥ k)

≤ P(T ′ < T )+ P(Tk ≤ τ).

Now, the event T ′ < T concerns only the vertical coordinate which (ignoring the
times at which it doesn’t move which are irrelevant here) is simple random walk on
Z. Hence P(T ′ < T ) = 1/A � (log k)2/k by the gambler’s ruin estimate in one
dimension for simple random walk.

It remains to show that P(Tk ≤ τ) = o((log k)2/k). We split the event into two
events, and show both are overwhelmingly unlikely. We observe that for Tk ≤ τ to
occur, one of the following two events must occur: either (i) Tk ≤ n := k2/(log k)2,
or (ii) τ > n. Let E1 be the first event and let E2 be the second one. Then by Lemma
3.2,

P(E1) � exp(−c(log k)2) (3.10)

for some constant c > 0. As for the second event E2, we note that every A2 units of
time there is a positive chance to leave S (this is a trivial consequence of the fact that
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the vertical coordinate is lazy random walk on Z, with the laziness parameter equal to
1/2+ 1/4 = 3/4), hence

P(E2) ≤ exp(−c n
A2 ) = exp(−c(log k)2)

since A = k/(log k)2 and n = k2/(log k)2. Thus

P(Tk ≤ τ) ≤ P(E1)+ P(E2) � exp(−c(log k)2) = o(k−1),

and (3.8) follows. ��

3.4 A priori estimate on the gradient of the potential kernel

The purpose of this section is to show the following estimate. This will be useful both
for proving that Green’s functions differences converge to differences of the potential
kernel in the limit of large box Gn , n → ∞, but also as an input to the proof of the
scaling limit result for the height function, where such an a priori estimate is needed
for the inverse Kasteleyn matrix.

Proposition 3.4 Let o, x, x ′ be any vertices of � such that dist(o, x) = R and such
that x, x ′ are of the same class with dist(x, x ′) = 2. Then for R ≥ 2,

|ã(x, o)− ã(x ′, o)| � (log R)c

R

where c = w + 2 > 2, and w > 0 is as in (3.2).

Proof Let t = R2/(log R)2. We note that for s ≤ t ,

p̃s(x, o) ≤ Po(d(Xs, o) ≥ R)

≤ Px (|us − u| ≥ R/2)+ P(|vs − v| ≥ R/2).

Both terms are easily estimated. The first term is estimated by Lemma 3.2which shows
it is bounded exp(−(log t)2). The same estimate holds (and is of course easier) for
the vertical coordinate, since this is simply lazy simple random walk (with laziness
parameter 3/4). Naturally this argument also holds with x ′ in place of x . Thus

∣∣∣
t∑

s=0
p̃s(x, o)− p̃s(x

′, o)
∣∣∣ � exp(−(log R)2). (3.11)

On the other hand, for s ≥ t , we recall that

| p̃s(x, o)− p̃s(x
′, o)| ≤ s−3/2(log s)w, a
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by (3.2). Summing over s ≥ t ,

∣∣∣
∞∑

s=t
p̃s(x, o)− p̃s(x

′, o)
∣∣∣ � t−1/2(log t)w � R−1(log R)w+2. (3.12)

Combining with (3.11) this finishes the proof with c = w + 2 as desired. ��

3.5 Convergence of Green’s function differences to gradient of potential kernel

Let BR = B(0, R), and x, o be vertices of � as before. Define the unnormalised
Green’s function

G̃ R(x, o) = Ex

( ∞∑

n=0
1{X̃n = o, τR > n}

)
,

where τR is the first time that the (lazy) walk X̃ leaves BR . We will prove the following
proposition:

Proposition 3.5 As R →∞, for any fixed x, x ′ of the same class, and any fixed o,

G̃ R(x, o)− G̃ R(x ′, o) →−(ã(x, o)− ã(x ′, o)).

As a consequence, the same convergence is true also for the nonlazy walk X instead
of X̃ .

The proof is based on ideas similar to Proposition 4.6.3 in [30]. We first recall the
following lemmawhich (in the case of finite range irreducible symmetric randomwalk
would be Proposition 4.6.2 in [30]):

Lemma 3.6 For any x, o vertices of �, we have

G̃R(x, o) = Ex (ã(X̃τR , o))− ã(x, o).

Proof The proof is simply an application of the optional stopping theorem for the
martingale Mn = ã(X̃n, o)− L X̃

n (o), where

L X̃
n (o) =

n∑

m=0
1{X̃m=o} (3.13)

denote the local time of X̃ at o by time n. The application of the optional stopping
is first done at time τR ∧ n which is bounded. The limit when n → ∞ can be
taken by dominated convergence for the first term and monotone convergence for the
second. In fact, for the application of the dominated convergence theorem, one must
be a little more careful than with simple random walk, since when leaving BR , there
is an unbounded set of possibilities for X̃τR . However the jump probabilities decay
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exponentially and ã(x, o) grows at most like (log |x − o|)c as x →∞ by Proposition
3.4 (note here that x, x ′ and o is fixed while R →∞). This makes the application of
the dominated convergence justified. We give full details of this argument for the sake
of completeness.

To this end, note that |X̃n∧τR | ≤ 2|X̃τR | almost surely. Let B ′R ⊆ BR be the set of
vertices connected by an edge to the outside of BR , and let τ ′R be the first hitting time
of B ′R . By the strong Markov property we get

Ex (|X̃τR |) =
∑

z∈B′R
Px (X̃τ ′R = z)Ez(|X̃τR |)

and

Ez(|X̃τR |) ≤ Pz(τR = 1)Ez(|X̃τR | | τR = 1)+ Pz(τR > 1) max
w∈BR

Ew(|X̃τR |).

Plugging the latter into the former and taking the maximum over z ∈ B ′R , we obtain
for all x ∈ BR ,

Ex (|X̃τR |) ≤ max
z∈B′R

Ez(|X̃τR | | τR = 1)+ max
z∈B′R

Pz(τR > 1) max
w∈BR

Ew(|X̃τR |).

Finally, taking maximum over x ∈ BR , we arrive at

Ex (|X̃τR |) ≤
1

1−maxz∈B′R Pz(τR > 1)
max
z∈B′R

Ez(|X̃τR | | τR = 1).

The quantities on the right hand side are clearly finite due to exponentially decaying
probabilities for the jumps of X̃ and the fact that z ∈ B ′R . Moreover the maximums
are taken over a finite set. This together with the fact that ã(x, o) � (log |x − o|)c �
|x | + |o| as x →∞ completes the proof. ��
Proof of Proposition 3.5 By Lemma 3.6, we have

G̃ R(x, o)− G̃ R(x ′, o) = −(ã(x, o)− ã(x ′, o))+ Ex (ã(X̃τR , o))− Ex ′(ã(X̃τR , o)),

so it suffices to prove

Ex (ã(X̃τR , o))− Ex ′(ã(X̃τR , o)) → 0 (3.14)

as R → ∞. This will follow rather simply from our coupling arguments, where we
will choose the parameter r in the stage 3 of the coupling to be R/(log R)2.

Reasoning as in (3.9), we see that

Px (τR < T ) � (log R)d

R
(3.15)
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for some d > 0 as R → ∞ while x, x ′ are fixed of the same class. Since we
already know from Proposition 3.4 that ã(x, o) grows at most like log(|x − o|)c,
(3.15) implies that the difference of expectations in the left hand side of (3.14) is at
most O((log R)c+d/R) and so tends to zero as R →∞. ��

We will now consider random walks which are killed on a portion of the boundary
of a large box�R butmay have different (e.g., reflecting) boundary conditions on other
portions of the boundary. We will show that the same result as Proposition 3.5 holds
provided that the Dirichlet boundary conditions are, roughly speaking, macroscopic.
More precisely, let �R ⊂ Z

2 be such that B(0, R) ⊂ �R . Let ∂�R denote its (inner)
vertex boundary, and let ∂D�R denote a subset of ∂�R . Suppose that X̃�R is a (lazy)
randomwalk with transitions given by p̃(x, y) if x, y ∈ �R and suppose that the walk
is absorbed on ∂D�R . We suppose that ∂D�R is such that from every vertex in �R ,
∂D�R contains a straight line segment of length αR, and at distance at most α−1R
from x , where α > 0 is a (small) positive constant. Note that these assumptions are
satisfied for the domains Gn we consider in Theorem 1.2 (after gluing together with
the reflected copy as in the definition of �). Indeed, the (approximate rectangles) Gn
are constructed in such a way that both the odd and even effective bulk random walks
are killed on half of the upper side of Gn .

We do not specify the transition probabilities for X̃� when it is on ∂�R\∂D�R . Let
G̃�R (x, o) = Ex (

∑∞
n=0 1{X̃�R

n =o}) denote the corresponding unnormalised Green’s
function.

Proposition 3.7 As R →∞, for any fixed x, x ′ of the same class and any fixed o,

G̃�R (x, o)− G̃�R (x ′, o) →−(ã(x, o)− ã(x ′, o)).

As a consequence, the same convergence is true also for the nonlazy walk X instead
of X̃ .

Proof For this proof wewill need the following lemma, which says that from any point
there is a good chance to hit the boundary without returning to the point, whence the
expected number of visits to that point before hitting the boundary is small.

Lemma 3.8 There exists a constant such that the following holds for all k ≥ 2 and
vertex o of �. Let L be a lattice line at distance k from o and of same class as o. Then

Po(TL < T+o ) � (log k)−1, (3.16)

where TL is the hitting time of L, T+o is the return time to o.

Proof of Lemma 3.8 We start by noticing that, up to a factor equal to the total conduc-
tance at o, the probability on the left-hand side is equal to the effective conductance
(or inverse of the effective resistance Reff(o; L)) between o and L . Since the total
conductance at o is bounded away from 0 and∞, it suffices to show that

Reff(o; L) � log k.
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This can either be proved directly or by comparison with the analogous estimate
on Z

2 through Rayleigh’s monotonicity principle (see Chapter II of [31]). A direct
proof is to construct a unit flow θ from o to L and estimating its Dirichlet energy
E(θ) = ∑

e θ(e)2res(e), where res(e) denotes the resistance of e. Such a unit flow
can be constructed by the method of random paths, as discussed in (2.17) of [31]: we
consider a cone of fixed aperture whose apex is at o and intersects L , then choose a line
at random in that cone starting at o and whose angle is uniformly selected among the
set of possibilities. We get a directed lattice path π from o to L by selecting a lattice
path staying as close as possible to this random line (with ties broken in some arbitrary
way), staying on the same sublattice as o and L . Note that this path never uses long
range edge along the real line, and in fact jumps only by ±2ei , i = 1, 2, at any given
steps. A unit flow θ from o to L is obtained by setting θ(e) = P(e ∈ π)−P(−e ∈ π)

(where −e denotes the reverse of the edge e). Then if e is at distance j from o,

|θ(e)| ≤ P(e ∈ π)+ P(−e ∈ π) � 1

j

since there are O( j) edges at distance j . Hence

E(θ) ≤
k∑

j=1
O( j)

1

j2
� log k.

Since the effective resistance is smaller than the energy of any flow from o to L , we
get the desired bound. ��

Now let us return to the proof of Proposition 3.7. We apply the full plane coordi-
natewise mirror coupling of Proposition 3.5 (that is, with the parameter r chosen to
be R/(log R)2), until the time SR either of the walks leaves the ball BR = BR(0). If
they have not coupled before SR , we consider this a failure and will not try to couple
them after: we let them evolve independently.

Then note that (we write X̃ for X̃�R for simplicity)

G̃�R (x, o)− G̃�R (x ′, o) = Ex (L
X̃
SR (o))− Ex ′(L

X̃ ′
SR (o)) (3.17)

+ E
(
L X̃

(SR ,∞)(o)− L X̃ ′
(SR ,∞)(o)

)
, (3.18)

where L X̃
SR

(o) is as in (3.13). Note that the term in (3.17) converges to −(ã(x, o) −
ã(x ′, o)) by Proposition 3.5. So it suffices to show that the term in (3.18) converges
to zero. However, this is an easy consequence of the following facts:

• If the coupling was successful before SR , then the random variable in the expec-
tation of (3.18) is zero.

• The probability that the coupling has failed (i.e., that the walks did not meet before
leaving BR) is � (log R)4/R, by (3.15).

• Conditionally on not having coupled by time SR , the expected number of visits
to y after that time is � log R by Lemma 3.8 and by assumption on the Dirichlet
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part ∂D�R . (In fact, the lemma is stated for hitting an infinite line, but it is easy
checked that the argument shows it is a segment of macroscopic size that is being
hit with the stated probability).

This completes the proof. ��
We apply this to the bulk effective randomwalk of Sect. 2.6. This yields the follow-

ing corollary which also concludes the proof of Theorem 1.2. Recall Definition 3.1 of
ã, and let a = ã/2 be its nonlazy version.

Corollary 3.9 Let Gn be an increasing sequence of domains such that ∪nGn = Z
2 ∩H

as in Theorem 1.2. Consider the free boundary dimer model on Gn with weights as
described in Corollary 2.8. Then, the inverse Kasteleyn matrix converges pointwise as
n →∞ to a matrix indexed by the vertices of Z

2 ∩H, called the coupling function,
and given in matrix notation by

C = −AK ∗,

where

A(u, v) = 1

2D(v, v)
ã(u, v) = 1

D(v, v)
a(u, v)

is the normalised potential kernel associated with the effective (odd and even) bulk
(nonlazy) random walks.

In particular, μn converges weakly as n → ∞ to a law μ which describes a.s. a
random monomer dimer configuration on Z

2 ∩H.

Proof The first part of the statement follows from the random walk representation
of K−1 in finite volume from Corollary 2.8, the interpretation of K ∗ as a difference
operator, and the convergence of differences of Green’s functions of the bulk effective
walk from Proposition 3.7.

The convergence in law is a standard application of Kasteleyn theory. Indeed, this
follows from the fact the local statistics of μn are described by local functions of the
inverse Kasteleyn matrix (which we will for instance recall in Theorem 5.3). It is also
clear that μ is supported on monomer-dimer configurations on Z

2 ∩H. ��

4 Scaling limit of discrete derivative of potential kernel

Let x, y ∈ Ḡδ := (δZ)2. The purpose of this section will be to prove a scaling limit for
the discrete derivatives of the potential kernel ã(x, y)− ã(x ′, y) associated to the lazy
(odd) effective random walk. (Contrary to the previous section, the second variable
will more typically be called y than o in this section). As mentioned at the beginning
of Sect. 3, the same result holds for both the even and odd walk, but for convenience
(and also because this is a slightly more complicated case) we write our proofs in the
odd case.
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Theorem 4.1 Let x, y ∈ Ḡδ and let x ′ = x±2δei ∈ Ḡδ , i = 1, 2. Suppose�(x)�(y) ≥
0 and min(|�(x)|, |�(y)|) ≥ ρ for some fixed arbitrary ρ > 0. Then there exists ε > 0
depending only on ρ such that as the mesh size δ → 0, uniformly over such points
x, y,

ã(x ′, y)− ã(x, y)

=

⎧
⎪⎪⎨

⎪⎪⎩

2

π
�
( x ′ − x

x − ȳ

)
+ o(δ1+ε) if x, y are of different class

4

π
�
( x ′ − x

x − y

)
− 2

π
�
( x ′ − x

x − ȳ

)
+ o(δ1+ε)+ O( δ

|x−y| )
2 if x, y are of the same class

(4.1)

To prove this theorem, we will first show that the potential kernel can be compared
to that of a coloured random walk on the lattice. The coloured random walk is a lazy
simple random walk on the lattice (2δZ)2 which carries a black or white colour (in
addition to its position). Its position moves like simple random walk on the lattice.
It changes colour with some fixed probability p ∈ (0, 1) each time it touches the
real line independently of the rest, and otherwise remains constant. If X is a coloured
random walk, we will use σ(Xs) to denote the colour of the coloured walk X at time
s (and again, this is different from the colour of the vertex Xs): thus, we will write
σ(Xs) = • if X is black at time s, and σ(Xs) = ◦ if X is white at time s. Although
Xs consists both of a position x ∈ (2δZ)2 and a colour, we will sometimes with an
abuse of notation refer to Xs as only a position.

Remark 4.2 We warn the reader that this should not be confused with the black/white
colouring (which we call class precisely to avoid confusion) of the vertices of our
graph Ḡδ: indeed, the position of the coloured walk is in (2δZ)2 and so its “class” in
Ḡδ remains constant.

Note that x and x ′ are necessarily of the same class (hence the same colour).
However, y may be of a different colour. We will choose p to correspond to the
probability that the odd effective walk makes a jump of odd length when it touches
the real line: thus,

p = 1
4

∑

k∈Z

q∞0,(2k+1)e1 (4.2)

where q∞ is as in (2.9).
We will prove the following two results. Let y, x ∈ (2δZ)2 and choose a colour

among {◦, •}, say •. Let ã•(x, y) denote the potential kernel of the coloured random
walk, constructed as in Definition 2.8 but only counting visits to y with the predeter-
mined colour •: that is,

ã•(x, y) =
∞∑

s=1
P(Xs = y; σ(Xs) = •)

where X is a coloured walk starting from x with initial colour •. The fact that the series
defining ã• converges is an immediate consequence of the arguments in Sect. 3.3,
which apply much more directly here.
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The first result below shows that the potential kernel of the lazy effective walk and
of the coloured walk are quite close to one another, in the sense that the difference in
their discrete derivatives are of lower order than δ, our target for Theorem 4.1. In the
next statement we write y � x to denote that x and y are of different class.

Proposition 4.3 Fix ρ > 0. Let x, y ∈ Gδ , and let z = x + δ1y�x (resp z′ = x ′ +
δ1y�x ), so that z and z′ are of the same class as y. Let uswrite∇x f (x) for f (x ′)− f (x)
(resp. ∇z f (z) = f (z′)− f (z)). Then there exists ε > 0 such that as δ → 0,

|∇x ã(x, ȳ)− ∇z ã
•(z, ȳ)| � δ1+ε,

uniformly over x, y, with min(�(x),�(y)) ≥ ρ.

The next proposition says that the potential kernel of the coloured walk is close to
1/2 that of the regular lazy simple randomwalk: this is because when the walk touches
the real line, it does so many times in a row typically, and so is roughly equally likely
to end up with the colour • or ◦. Moreover in the above setting the walk is forced
to touch the real line in order to go from x to ȳ. Let b̃(x, y) = b̃(x − y) denote the
potential kernel of lazy simple random walk on (2δZ)2.

Proposition 4.4 In the same setting as Proposition 4.3,

|∇x ã
•(z, ȳ)− 1

2
∇z b̃(z, ȳ)| � δ1+ε,

for some ε > 0.

Proof of Theorem 4.1 given Proposition 4.3 and Proposition 4.4 It is enough to combine
Propositions 4.3 and 4.4 as well as known estimates on the two-dimensional simple
random walk potential kernel.

Let us give a few details. Suppose we are in the first case where x, y are of different
class. This means only walks going through the boundary have the possibility to
contribute to the potential kernel. By the reflection symmetry, the walks from x to y
going through the boundary have the same weight as the walks from x to ȳ. In the full
plane for simple random walk, (see e.g. Theorem 4.4.4. in [30]), the potential kernel
has the form

b(z, 0) = 2

π
log |z| + C + o(|z|−1)

for some constant C > 0, as z →∞. Let us rescale the lattice so that it becomes δZ
2,

and let us adopt complex notation, so log |x | = �(log x), and let h = x ′ − x = ±2δei .
Then

b(x, ȳ)− b(x ′, ȳ) = 2

π
�(log(x − ȳ + h)− log(x − ȳ))+ o(δ)

= 2

π
�
(

h

x − ȳ

)
+ o(δ). (4.3)
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Now, multiplying by 2 to account for laziness, and by 1/2 to account for the loss at
the boundary (the real line) (Proposition 4.4) and we get the first line in (4.1).

To get the second line, we observe that if x and y are of the same class, there are
two types of effective random walks to consider: the effective random walks going
from x to y in the full plane without touching the boundary (type I), and those which
do touch the boundary (type II). The effective random walks of type I can be written
as all simple random walks going from x to y in the plane (type III) minus simple
random walks going from x to y through the boundary (type IV). By Propositions 4.3
and 4.4, the walks of type IV contribute roughly twice as much as those of type II. So
we have to count walks of type III minus those of type II. Those of type III contribute
4
π
�( x

′−x
x−y ) + O( δ

|x−y| )
2 to the gradient of the potential kernel (the factor in front is

twice that of (4.3) due to laziness, the error term comes from Corollary 4.4.5 in [30]).
The contribution of type II on the other hand is exactly counted by the first line of
(4.1). This proves Theorem 4.1. ��

Now we derive the version which is useful for later, which includes folding the
plane onto itself so that the walk is reflected on the real line, and is not lazy. The
corresponding potential kernel satisfies a = ã/2.

Corollary 4.5 Let us assume that x ′ = x±2δei ∈ δZ
2∩H, i = 1, 2. Let y ∈ δZ

2∩H.
Then there exists ε > 0 such that as the mesh size δ → 0, uniformly over points x, y
such that min(�(x),�(y)) ≥ ρ > 0,

a(x ′, y)− a(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

2

π
�
( x ′ − x

x − ȳ

)
+ o(δ1+ε) if x, y are of different class,

2

π
�
( x ′ − x

x − y

)
+ o(δ1+ε)+ O( δ

|x−y| )
2 if x, y are of the same class.

(4.4)

Proof of Corollary 4.5 given Theorem 4.1 As before the first case (when x, y are of dif-
ferent classes) is easiest to compute. Since thewalk is nownonlazy,we need tomultiply
the values of the potential kernel by 1/2, but also add the walks from x to ȳ; both are
counted by the same formula in the first line of (4.1), and so the factor remains 2/π
overall.

In the second case when x, y are of the same class, we note that the number of
lazy walks from x to y that don’t touch the boundary are, as observed above, given by
4
π
�( x

′−x
x−y ) (type I). On the other hand, when we do the folding, we must add the walks

that touch boundary and go from x to y, to those going from x to ȳ. This gives us one
extra group of walks of type II and so these cancel. Multiplying by 1/2 to account for
non-laziness gives us the second line of (4.4).

Thus it remains to prove the two propositions 4.3 and 4.4.We do so in the following
two subsections.

4.1 Proof of Proposition 4.3

We will prove this by coupling. We will need to compare ∇x p̃t (x, o) and ∇z p̃•t (z, o),
where p̃•t (z, o) = Pz(Xt = o, σ (Xt ) = •) for the coloured walk, where we take
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o = ȳ, and z is a vertex chosen as in Proposition 4.3. We will see that by coupling
our effective walks with coloured walks we will gain an order of magnitude compared
with (3.2): that is, we will show that

∣∣∇x p̃t (x, o)−∇z p̃
•
t (z, o)

∣∣ ≤ t−3/2−ε; t ≤ δ−2−ε, (4.5)

for some ε > 0. Given (4.5), reasoning as in the proof of Proposition 3.4 (with
R = δ−1, and using the improved (4.5) instead of (3.12) in the range up to t = δ−2−ε),
we immediately deduce Proposition 4.3.

We will couple the effective walk X and a coloured walk Z as follows; as in the
previous section we work with lazy versions. The coupling will be similar to the one
in Sect. 3.3, but it is simpler since we are allowed to choose the starting point of Z . We
have chosen z in the statement of Proposition 4.3 so that X and Z start immediately
from the same horizontal line. This simplifies the coupling analysis; as in the previous
coupling this property will be preserved forever under the coupling, (so essentially
only the last stage, stage 4, needs to be described). More precisely, recall that we set
z = x if x and ȳ are of the same class, and z = x + δ otherwise. In any case Z
will always be of the same class as o. Until hitting the real line, we take X and Z to
evolve in parallel, with equal jumps. After hitting the real line, we may arrange the
coupling so that they are always on the same horizontal line by always first tossing the
Coordinate coin, so that any movement in the vertical coordinate is replicated for both
walks no matter what. Beyond the Coordinate and Laziness coins, we will need a third
coin which we use to indicate changes in the sublattice (for X ) and in colour (for Z ).
This coin is only used when the walks are on the real line and a horizontal movement
is to take place. We call this coin Parity. Unlike the other two coins, Parity comes up
heads with the fixed probability p ∈ (0, 1) from (4.2) which in general is not 1/2.

It remains to specify what to do if the Coordinate coin indicates a horizontal
movement. To describe this, we need to introduce the following stopping times. Let
σ0 = inf{t ≥ 0 : Xt ∈ R} denote the hitting of R by X (or equivalently by Z ), and let
τ0 = inf{t ≥ σ0 : �(Xt ) ≤ �(ȳ)/3} be the hitting time of the line

� = {z ∈ C : �(z) = ��(ȳ)/3�}

by X (or equivalently Z , since X and Z are always on the same horizontal line). Then
define σn, τn inductively as follows:

σn = inf{t ≥ τn−1 : Xt ∈ R}; τn = inf{t ≥ σn : Xt ∈ �}.

Write Xt = (ut , vt ) and Zt = (u′t , v′t ) with vt = v′t as explained above.

• If Xt , Zt ∈ R. Toss the Parity coin: if it comes heads, let Xt take a jump from its
conditional distribution given that it is odd, and let Zt change colour and make an
independent jump. If it is tails, let Xt take a jump from its conditional distribution
given that it is even, and let Zt keep its current colour and make an independent
jump.
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• Now suppose Xt , Zt /∈ R. If Xt , ȳ are of a different class, then let Xt and Zt

evolve in parallel (with equal jumps). This will remain so until hitting again the
real line, where there will be a chance to change class again.

• Xt , ȳ are of the same class, and thus also of the same class as Zt . In that case,
the evolution depends on whether t ∈ [σn, τn] for some n ≥ 0 or t ∈ (τn, σn+1)
for some n: If t ∈ [σn, τn] then the walks evolve in parallel. Otherwise, we use
Laziness to first ensure that ut − u′t = 0 mod 4δ after a number of steps which
has geometric tail. Once that is the case, we let ut and u′t evolve in mirror from
one another, so (ut+1 − ut ) = −(u′t+1 − u′t ).

In general the walks get further from each other during a phase of the form [σn, τn]
but get closer together again during the phase [τn, σn+1]. Note that a visit to o necessar-
ily occurs during such a phase. In fact we will see that typically the walks agree (if they
are on the same sublattice) by the time they reach 2� or return toR. Furthermore, only
a small number of phases need to be considered if t ≤ δ−2−ε (of order atmost δ−ε). Let
us say that a non coupled visit to o occurs at time t if {Xt = o}�{Zt = o, σ (Zt ) = •}
occurs (where � denotes symmetric difference).

The coordinatewise mirror coupling between X and X ′ on the one hand, and the
above described coupling between X and Z on the other hand, induce a coupling
between four processes: X , X ′ (effectivewalks starting from x, x ′) and Z , Z ′ (coloured
walks started from z, z′). Here we take z′ − z = x ′ − x = δ, as in the statement of
Proposition 4.3. Note that if X and X ′ merge before hitting the real line, then so do Z
and Z ′. The difference between the gradient of the transition probabilities can now
be written as an expectation

∇x p̃t (x, o)−∇z p̃
•
t (z, o) = E(1{Xt=o} − 1{X ′t=o} − 1{Zt=o;σ(Zt )=•} + 1{Z ′t=o;σ(Z ′t )=•})

(4.6)
To get a nonzero contribution it is necessary that X did not couple with X ′ by time
(TR∧ t/2) or that Z did not couple with Z ′ by time t/2. Both have a probability which
is given by (log t)a/t1/2 by a slight modification of (3.2) (in fact, since the walks start
far from the real line, the proof is much simpler than what is given in Sect. 3.3, and
follows directly from gambler’s ruin). Furthermore, given this, it is also necessary that
a non coupled visit to o occurs at time t by (X , Z) or by (X ′, Z ′).

To estimate the latter conditional probability,wemay condition on everythingwhich
happened until time TR ∧ t/2, and we will call s the remaining amount of time until
time t , i.e., s = t− (TR∧ t/2) ∈ [t/2, t] so s  t . Since until that time the walks have
not yet touched the real line, the discrepancy between X and Z is therefore equal to
the initial discrepancy z − x ∈ {0, δe1}.
Lemma 4.6 Suppose s ≤ δ−2−ε. Let Ns = max{k : τk ≤ s}. Then there exists some
c1, c2 > 0 such that P(Ns ≥ c1δ−ε) ≤ exp(−c2δ−ε).

Proof Each journey between R and � and back may take more than δ−2 with fixed
positive probability p, independently of one another. Hence the probability in the
lemma is bounded by the probability that a Binomial random variable with parameters
c1δ−ε and p, is less than δ−ε. Choosing c1 such that c1 p > 1, the result follows from
straightforward large deviations of binomial random variables.

123



788 N. Berestycki et al.

We will need to control the discrepancy between X and Z at the beginning of a
coupling stage, of the form τk (for 0 ≤ k ≤ δ−ε), assuming that σ(Zτk ) = • or
equivalently that Xτk ∼ ȳ. Let us say that this coupling phase succeeds if by the time
the walks next hit R or 2�, the discrepancy has been reduced to zero.

We note that the discrepancy between X and Z is typically accumulated when the
two walks hit the real line; on the other hand they tend to be reduced to zero during a
coupling phase, meaning a coupling phase is likely to be successful. However, we will
not aim to control the discrepancy if at any point the coupling phase does not succeed.

The key argument will be to say that so long as there has been no unsuccessful
coupling phase, the discrepancy at the beginning of any coupling phase is small. To
this end, we introduce ρn the first time that the real line has been visited more than n
times by either (both) walks. We let �n the (horizontal) discrepancy accumulated by
the walks at this nth visit: that is,

�n = 〈(Xρn+1 − Xρn )− (Zρn+1 − Zρn ); e1〉

Note that by construction of the coupling, �n are i.i.d. and centered random variables
with exponential moments (each of them of order the mesh size δ). We then introduce
the martingale

Mn =
n∑

i=0
�i

which counts the accumulated discrepancy at the nth visit to the real line. If 0 ≤ u ≤ s
is a time, let us call n(u) the number of visits toR by time u. At the end of a successful
coupling phase σk , the discrepancy is reduced to zero, so in fact in the future (until the
beginning of the next coupling phase at time τk), the discrepancy will be of the form
Mn(u) − Mn(σk).

Lemma 4.7 With probability at least 1− s−2ε, we have

max
0≤k≤Ns

|Xτk − Zτk |1Gk ≤ δs1/4+ε,

where Gk is the good event that there was no unsuccessful coupling by time σk .

Proof Fix 0 ≤ k ≤ Ns . Let j = j(k) = max{ j ≤ k : the coupling starting at τ j
was successful}. Suppose that the event Gk holds otherwise there is nothing to prove.
Then as observed above, the discrepancy at time τk is given by

|Xτk − Zτk | = |Mn(τk) − Mn(τ j )| ≤ 2 max
n≤n(τk)

|Mn|.

By Chebyshev’s inequality and Doob’s maximal inequality,

P

(
max

0≤k≤δ−ε
|Xτk − Zτk |1Gk ≥ δs1/4+ε

)
� 1

δ2s1/2+2ε
E

(
max

n≤n(τNs )
|Mn|2

)
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� 1

δ2s1/2+2ε
E

(
M2

n(τNs )

)
.

Now, M2
n − cδ2n is a martingale for some constant c > 0 corresponding to the

(rescaled) variance of the increments of the martingale M , so (since n(τNs ) is trivially
bounded by s),

E

(
M2

n(τNs )

)
= cδ2E(n(τNs )) = cδ2E(LR(s)),

where LR(s) denote the number of visits to R by both (either) walks by time s. Since
the vertical coordinate performs a delayed simple random walk on the integers, this
is less than the expected number of visits to 0 by time s of a one-dimensional walk
starting from zero, which is at most � √s. Hence

P

(
max

0≤k≤δ−ε
|Xτk − Zτk |1Gk ≤ δs1/4+ε

)
� 1

s2ε

as desired. ��
We now deduce that all coupling phases are successful with high probability.

Lemma 4.8 We have that for ε small enough (fixed),

P

(
∪Ns
k=0Gck

)
� s−2ε.

Proof We may work on the event N = {Ns � δ−ε} and the event D of Lemma 4.7.
On N ∩ D the probability of an unsuccessful coupling starting from time τk may be
bounded as follows. Supposing that σ(Zτk ) = • (or equivalently Xτk ∼ ȳ), the walks
X and Z start a mirror coupling at time τk and they are initially spaced by no more
than δs1/4+ε, if Gk−1 holds. By the gambler’s ruin estimate, the probability for X to
avoid the reflection line until hitting either R or 2� is then at most δs1/4+ε. Hence

P(Gck;Gk−1 ∩N ∩D) ≤ δs1/4+ε � δ1/2−3ε.

Summing over k ≤ δ−ε, we get

P

(
∪Ns
k=0Gck;N ∩D

)
� δ1/2−4ε.

We conclude by Lemma 4.7 and Lemma 4.6. ��
Proof of Proposition 4.3 We estimate the right hand side of (4.6). For the random vari-
able in the right hand side to be nonzero, it is necessary that:

• X and X ′ did not couple prior to time TR ∧ t/2;
• one of the Gck occurs for some k ≤ Ns ;
• and still one of the four walks must visit ȳ at exactly time t .

123



790 N. Berestycki et al.

The first event has probability bounded by� 1/
√
t by straightforward gambler’s ruin.

The second has probability at most 1/t2ε by Lemma 4.8 (since s  t). To bound the
probability of the third event, we observe the following: if w ∈ 2�, the maximum
over all times u of the probability to visit ȳ at the specific time u is small:

Lemma 4.9 We have

sup
w∈2�

sup
u≥0

p̃u(w, ȳ) ≤ δ2(log 1/δ)c,

for some c > 0.

Proof This follows from the facts (already used before, so we will be brief) that if
u ≤ δ−2/(log 1/δ)c then the probability to be at ȳ at time u is atmost exp(−(log 1/δ)2)
by subdiffusivity, while for u ≥ δ−2/(log 1/δ)c we have a bound of the form 1/u
thanks to (3.3). ��
All in all, putting these three events together we find

∣∣∇x p̃t (x, o)− ∇z p̃
•
t (z, o)

∣∣ � t−1/2 × t−2ε × δ2(log 1/δ)c

Summingover t ∈ [δ−2/ log(1/δ)c, δ−2−ε]wesee that this is atmost (log 1/δ)cδ1+7ε/2,
which is sufficient. ��

4.2 Proof of Proposition 4.4

At this point we may work exclusively with the simple random walk on (2Z)× (2Z)

or the coloured simple random walk on the same lattice. Let us write Px→ȳ;t for the
law of a random walk bridge, i.e., the law of a (lazy) simple random walk on (2Z)2

conditioned to go from x to ȳ in time t .
Let q̃t (x, y) denote the transition probability for (lazy) simple random walk on

(2Z)2. Then note that

p̃•t (x, y) = q̃t (x, y)Px→ȳ;t (σ (Xt ) = •),

where σ(Xt ) is the colour of the process which changes with probability p every time
this process touches the real line. Now, let N denote the number of visits to R and
observe that by conditioning on N ,

Px→ȳ;t (σ (Xt ) = •|N = n) = 1

2
± 1

2
λn

where λ = 1− 2p is the eigenvalue of the 2-state Markov chain which switches state
with probability p at each step, and the ± sign depends on the initial colour σ(X0).
Therefore,

∇x p̃
•
t (x, ȳ) =

1

2
∇x q̃t (x, ȳ)± 1

2
∇x

(
q̃t (x, ȳ)Ex→ȳ;t (λN )

)
.

123



Free boundary dimers: randomwalk representation and scaling limit 791

Since
∑∞

t=0 1
2∇x q̃t (x, ȳ) is by definition the potential kernel of the (lazy) simple

random walk 1
2∇x b̃(x, ȳ), to prove Proposition 4.4, as we already observed before, it

suffices to show that there exists ε′ > 0 such that

∣∣∣q̃t (x, ȳ)Ex→ȳ;t [λN ] − q̃t (x
′, ȳ)Ex ′→ȳ;t [λN ]

∣∣∣ � 1

t3/2+ε′ , (4.7)

for t ∈ [δ−2/(log δ)2, δ−2−ε]. We recall first that if 0 ≤ u ≤ t and E ∈ Fu =
σ(X0, . . . , Xu), then by the Markov property:

Px→ȳ;t (E) = Ex

(
1E

q̃t−u(Xu, ȳ)

q̃t (x, ȳ)

)
. (4.8)

Let TL denote the hitting time of the reflection line bisecting x and x ′; and let TR

denote the hitting time of R. We introduce the following bad events:

• B1 = {TR > t − s}, where s = [t/(log t)2] ∧ [δ−2/(log δ)2].
• B2 = {TR ≤ t − s} ∩ {TL > TR} ∩ {Nt−s/2 ≤ (log t)2}, where Nu is the number
of visits to R by time u.

Wewill first show that both events are highly unlikely. In words, B1 is unlikely because
it requires going to ȳ in the remaining s units of time starting from above R, which
means ȳ is too far away compared to the time remaining. B2 is unlikely because it
requires avoiding the reflection line for a long time (until touching R) and thereafter
making very few visits to R.

Lemma 4.10 For t ∈ [δ−2/(log δ)2, δ−2−ε], we have

Px→ȳ;t (B1) � exp(−(log t)2)q̃t (x, ȳ)
−1.

Proof Note that by (4.8),

Px→ȳ;t (B1) ≤ Ex→ȳ;t
(
1TR>t−s

q̃s(Xt−s, ȳ)
q̃t (x, ȳ)

)
.

Now, q̃t (x, ȳ) satisfies the Gaussian behaviour q̃t (x, ȳ)  (1/t) exp(−|x−ȳ|2
2t ) in the

range t ≥ δ−2/(log δ)2 (see Theorem 2.3.11 in [30]). Since |Xt−s − ȳ| � δ−1 when
TR > t − s, and since |x − ȳ| � δ−1, we deduce that for some constant c > 0,

q̃s(Xt−s, ȳ) ≤ exp(−cδ−2/s) ≤ exp(−c(log 1/δ)2)

on the event TR > t − s, where we used that s ≤ δ−2/(log δ)2. The desired inequality
follows since t ≤ δ−2−ε.

Lemma 4.11 For t ∈ [δ−2/(log δ)2, δ−2−ε], we have
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Px→ȳ;t (B2) � 1

t3/2+ε′ (log t)
6q̃t (x, ȳ)

−1,

where ε′ = 1−ε
2+ε

.

Proof Using (4.8),

Px→ȳ;t (B2) ≤ Ex

(
1{TR<t−s,TR<TL }1{Nt−s/2≤(log t)2}

q̃s/2(Xt−s/2, ȳ)
q̃t (x, ȳ)

)
.

We estimate the off-diagonal heat kernel term q̃s/2(Xt−s/2, ȳ) by its diagonal

behaviour which is at most � 1/s = [(log t)2/t] ∨ [(log δ)2δ2] � (log t)2t−
2

2+ε ,

where in the last bound we used that t ≤ δ−2−ε and hence δ ≤ t−
1

2+ε . Therefore

Px→ȳ;t (B2) � t−
2

2+ε
(log t)2

q̃t (x, ȳ)
Px (TR < t − s, TR < TL , Nt−s/2 ≤ (log t)2). (4.9)

We already know by gambler’s ruin estimates that, since x is at distance O(δ) from L
and at distance � 1 from R that Px (TR < TL) ≤ O(δ). Conditioning on everything
up to time TR, and applying the strong Markov property at this time,

Px (TR < t − s, TR < TL , Nt−s/2 ≤ (log t)2) � δ sup
z∈R

Pz(Ns/2 ≤ (log t)2).

Let Ti denote the length of the intervals between successive visits to the real line. Thus
Ti are i.i.d. and P(Ti ≥ r)  1/

√
r when r → ∞ by elementary one-dimensional

random walk arguments. Fix z ∈ R. Then by a union bound,

Pz(Ns/2 ≤ (log t)2) = Pz

( (log t)2∑

i=1
Ti ≥ s/2

)

≤ P(Ti ≥ s/(2(log t)2) for some 1 ≤ i ≤ (log t)2)

� (log t)3/
√
s = (log t)4/

√
t .

Therefore, plugging this into (4.9), we find

Px→ȳ;t (B2) � t−1/2−
2

2+ε
δ(log t)6

q̃t (x, ȳ)
≤ t−1/2−

3
2+ε

δ(log t)6

q̃t (x, ȳ)
= t−3/2−ε′ (log t)

6

q̃t (x, ȳ)
,

where we again used that δ ≤ t−
1

2+ε . ��
Finally, we turn to the remaining contribution. Together with Lemma 4.10 and

Lemma 4.11, this shows that (4.7) holds with any 0 < ε < 1/2.
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Lemma 4.12

∣∣∇x
(
q̃t (x, ȳ)Ex→ȳ;t (λN ; (B1 ∪ B2)

c)
)∣∣ ≤ |λ|(log t)2 . (4.10)

where λ = (1− 2p) < 1.

Proof On (B1∪B2)
c, we see that TR < t−s, and either TL < TR or Nt−s/2 ≥ (log t)2.

In the latter case, |λN | = |λ|Nt ≤ |λ|(log t)2 , so this event contributes at most the right
hand side of (4.10) to the expectation. To conclude, it therefore suffices to show

q̃t (x, ȳ)Ex→ȳ;t (λN ; TL < TR) = q̃t (x
′, ȳ)Ex ′→ȳ;t (λN ; TL < TR) (4.11)

so that the contribution of this event to the left hand side of (4.10) vanishes exactly. To
see this, let us rewrite the left hand side of (4.11) as an expectation involving random
walk rather than bridge, and observe that when TL < TR the walks from x and x ′ are
coupled before hitting the real line, so that the overall number of visits to the real line
is the same for both walks. Hence

q̃t (x, ȳ)Ex→ȳ;t (λN ; TL < TR) = Ex (λ
N1{TL<TR}1{Xt=ȳ})

= Ex ′(λ
N1{TL<TR}1{Xt=ȳ})

= q̃t (x
′, ȳ)Ex ′→ȳ;t (λN ; TL < TR),

as desired. ��
As explained above, this concludes the proof of Proposition 4.4, and thus also of

Theorem 4.1.

5 Convergence to the Neumann Gaussian Free field

From now on we work in the upper-half plane H with the local (infinite volume) limit
μ (depending on z) of the free boundary dimer model from Theorem 1.2. We will
write μ to denote both the probability and expectation with respect to μ.

5.1 Infinite volume coupling function and its scaling limit

Let C be the coupling function, as defined in Corollary 3.9, i.e., the pointwise limit,
as n →∞, of the inverse Kasteleyn matrix on Gn given in matrix notation by

C = −AK ∗, (5.1)

where A(x, y) = 1
D(y,y)a(x, y) is the normalised potential kernel of the infinite vol-

ume bulk effective (nonlazy) walk. We write Aeven and Aodd for the restriction of A to
the even and odd rows respectively. When we unpack (5.1) we find that its meaning is
different depending on the respective type of the pair of vertices. We denote the black
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Fig. 6 Different types of
vertices. The black vertices are
drawn in red, and the white
vertices are drawn in black
(color figure online)

even

odd

even

odd

and white vertices in the even and odd rows by the symbols ◦, ◦,×,× respectively as
illustrated in Fig. 6. In the following, δ

δx2
(resp. δ

δy2
) will denote the discrete derivative

in the x (resp. y) direction of the second coordinate of the Green’s function. Fix v1, v2
two vertices in H ∩ Z

2. Suppose for instance that v1 ∈ ◦ and v2 ∈ ◦. Then (5.1) says

C(v1, v2) = a(v1, v2 + 1)− a(v1, v2 − 1)

:= δ

δx2
Aeven(v1, v2).

Here we only see a horizontal derivative since A assigns a nonzero transition weight
only between vertices in rows of the same parity, and since v1 and v2 belong to rows
of the same parity in this example. Note that

δ

δx2
∼ 2δ

∂

∂x2
as δ → 0,

where δ is the mesh size. Likewise, if instead we have v1 ∈ ◦ and v2 ∈ ×, then

C(v1, v2) = i
δ

δy2
Aeven(v1, v2).

Here the derivative is vertical since v1 and v2 belong to rows of different parity. We
summarise these computations in a table:

v1\v2 v2 ∈ × v2 ∈ ◦ v2 ∈ ◦ v2 ∈ ×
v1 ∈ × δ

δx2
Aodd i δ

δy2
Aodd i δ

δy2
Aodd

δ
δx2

Aodd

v1 ∈ ◦ i δ
δy2

Aeven
δ

δx2
Aeven

δ
δx2

Aeven i δ
δy2

Aeven

Furthermore, when v1 is in the black lattice (v1 ∈ ◦ or v1 ∈ ×) we obtain the
corresponding table simply by translation invariance:

v1\v2 v2 ∈ × v2 ∈ ◦ v2 ∈ ◦ v2 ∈ ×
v1 ∈ × δ

δx2
Aodd i δ

δy2
Aodd i δ

δy2
Aodd

δ
δx2

Aodd

v1 ∈ ◦ i δ
δy2

Aeven
δ

δx2
Aeven

δ
δx2

Aeven i δ
δy2

Aeven
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Remark 5.1 It is useful to point out that the terms involving mixed colours and those
involvingmatching colours behave very differently: indeed, if both v1 and v2 are of the
same colour, then the arguments of the corresponding potential kernel are of different
colours. This corresponds to only considering walks that go through the boundary in
the definition of the potential kernel (see Corollary 4.5).

There is a convenient algebraic rewriting of these different values. Suppose v1 and
v2 are two arbitrary vertices (of any colour), and let

s(v) = (−1)row # of v

be the signed parity of the row of v. Then we have

C(v1, v2) = 1

4

[
(1+ s(v1)s(v2))

δ

δx2
+ (1− s(v1)s(v2)) i

δ

δy2

]

× [(1− s(v1)) Aodd(v1, v2)+ (1+ s(v1)) Aeven(v1, v2)] . (5.2)

We will now combine (5.2) with Corollary 4.5 to obtain the scaling limit of the
inverse Kasteleyn matrix in the upper half-plane.

Theorem 5.2 Let z and w be two vertices on δZ
2∩H, and fix ρ > 0. Then there exists

ε > 0 such that uniformly over z �= w with min(�(z),�(w)) ≥ ρ, as the mesh size
δ → 0,

C(z, w) =

⎧
⎪⎪⎨

⎪⎪⎩

− δ

2π

(
s(z)s(w)

1

z − w
+ 1

z̄ − w̄

)
+ o(δ1+ε)+ O( δ

|z−w| )
2 if z, w are of different class

δ

2π

(
s(z)

1

z − w̄
+ s(w)

1

z̄ − w

)
+ o(δ1+ε) if z, w are of the same class .

Proof We could use the master formula (5.2) but in order to avoid making mistakes
it is perhaps easier to consider all the possible cases for the types of vertices z and w

using the tables above. We start with the case when z andw are of different colour. We
will use the symmetry of the potential kernel a(w′, z) = a(z, w′) and Corollary 4.5
(applied to the case when the arguments z, w′ are of the same colour since by (5.1),
multiplying A by K ∗ changes the colour of the second argument).

• For z, w with s(z) = s(w) = −1, we have

C(z, w) = δ

δx2
Aodd(z, w)

= 1

4
(a(w + δ, z)− a(w − δ, z))

= 1

4
× 2

π
�
(

2δ

w − z

)
+ o(δ1+ε)+ O

(
δ

|z − w|
)2

= − δ

π
�
(

1

z − w

)
+ o(δ1+ε)+ O

(
δ

|z − w|
)2

.
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The factor 1/4 comes from the fact that Aodd is normalised by the degree of w

which is equal to 4 (see (2.29)).
• For z, w with s(z) = −1 and s(w) = 1, we have

C(z, w) = i
δ

δy2
Aodd(z, w)

= −i δ

π
�
(

i

z − w

)
+ o(δ1+ε)+ O

(
δ

|z − w|
)2

= i
δ

π
�
(

1

z − w

)
+ o(δ1+ε)+ O

(
δ

|z − w|
)2

.

• For z, w with s(z) = s(w) = 1, since z, w are of different colors, z and w± δ are
of the same colour. Note that Geven is a signed function such that Geven(z, w) < 0
for z, w of different colors, and Geven(z, w) > 0 for z, w of the same colour.
Therefore we have

C(z, w) = δ

δx2
Aeven(z, w) = − δ

π
�
(

1

z − w

)
+ o(δ1+ε)+ O

(
δ

|z − w|
)2

.

• For z, w with s(z) = 1 and s(w) = −1, z and w± δi are again of the same colour.
We have

C(z, w) = i
δ

δy2
Aeven(z, w)

= −i δ

π
�
(

i

z − w

)
+ o(δ1+ε)+ O

(
δ

|z − w|
)2

= i
δ

π
�
(

1

z − w

)
+ o(δ1+ε)+ O

(
δ

|z − w|
)2

.

Let us now consider the case where z and w are of different colors, by applying
Corollary 4.5 (when the arguments are of different colors).

• For z, w with s(z) = s(w) = −1, we have

C(z, w) = δ

δx2
Aodd(z, w) = − δ

π
�
(

1

z̄ − w

)
+ o(δ1+ε),

• For z, w with s(z) = −1 and s(w) = 1, we have

C(z, w) = δ

δy2
Aodd(z, w) = δ

π
�
(

1

z̄ − w

)
+ o(δ1+ε).
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• For z, w with s(z) = s(w) = 1, since z, w are of the same colour, z and w± δ are
of different colors. We have

C(z, w) = δ

δx2
Aeven(z, w) = δ

π
�
(

1

z̄ − w

)
+ o(δ1+ε).

• For z, w with s(z) = 1 and s(w) = −1, z and w± δi are again of different colors.
We have

C(z, w) = i
δ

δy2
Aodd(z, w) = −i δ

π
�
(

1

z̄ − w

)
+ o(δ1+ε).

Combined, we have proved the theorem. ��

5.2 Pfaffians and Kasteleyn theory

In this section we recall basics of Kastelyn theory. In particular we will express local
statistics of μ in terms of the coupling function C .

Let A be 2k × 2k skew-symmetric matrix indexed by vertices w1, b1, . . . , wk, bk
of k edges (w1, b1), . . . , (wk, bk). Then a Pfaffian can be expressed as a sum over
matchings of these 2k vertices (identified with numbers from 1 to 2k), in a similar
way as the determinant can be expressed as a sum over permutations. Let M be such
a perfect matching. We can write it as (i1, j1), . . . , (ik, jk) where in each pair (i, j)
we have i < j , and moreover i1 < . . . < ik . This defines a permutation

πM =
[
1 2 3 4 . . . 2k − 1 2k
i1 j1 i2 j2 . . . ik jk

]
.

Then we have

Pf(A) =
∑

M matching

sgn(πM )ai1, j1 . . . aik , jk . (5.3)

Based on Kasteleyn’s theorem Kenyon derived the following description of local
statistics for the dimer model [21]. Recall that μ denotes the probability measure of
the infinite volume free boundary dimer model on H ∩ Z

2.

Theorem 5.3 Let E be a set of pairwise distinct edges e1 = (w1, b1), . . . , ek =
(wk, bk) with the convention that the white vertex comes first. Then

μ(e1, . . . , ek ∈M) = aE Pf(C),

where M is the random monomer-dimer configuration under μ, and where C =
C(v1, v2) is the coupling function restricted to the vertices v1, v2 ∈ {w1, . . . , wk} ∪
{b1, . . . , bk} (implicit here is the fact that the vertices are ordered from black to white,
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Fig. 7 Graphical representation of the directed matchings M = {(b1, w2), (b2, w4), (b3, w1), (b4, w3)}
(top) and M ′ = {(b1, b2), (w2, w4), (w3, w1), (b4, b3)} (bottom) corresponding a single cyclic permuta-
tion σ = 1→ 2→ 4→ 3→ 1 with signs ν = (1, 1, 1, 1) and ν′ = (1,−1,−1, 1) respectively. We have
sgn(πM ) = sgn(π ′M ) = −1 since the number of arc crossings is odd in both cases

and from 1 to k), and where

aE =
k∏

i=1
K (wi , bi )

is the product of the Kasteleyn weight of each edge, oriented from white to black.

To compute the scaling limit of the height function, we will need to study the
centered dimer-dimer correlations. When expanding the Pfaffian into matchings, this
leads to a simplification which is the analogue of Lemma 21 in [22]:

Lemma 5.4 In the setting as above, we have

μ[(1{e1∈M} − μ(e1 ∈M)) . . . (1{ek∈M} − μ(ek ∈M))]
= aE

∑

Mrestricted matching

sgn(πM )
∏

{u,v}∈M
u<v

C(u, v)

where a restricted matching is a matching M such that wi cannot be matched to bi
for any 1 ≤ i ≤ k, and where u < v means that u comes before v in the fixed order
on vertices.

Proof Let M be a matching of the vertices of e1, . . . , ek . We will call a pair of matched
vertices an M-edge to distinguish it from the edges of the underlying graph. We mark
the vertices w1, b1, . . . , wk, bk (see Fig. 7) in the order from left to right on the real
line. For each M-edge, draw an arc (a simple continuous curve) in the upper half-plane
connecting the vertices matched by this M-edge (see Fig. 7). Moreover, draw the arcs
in such a way that any two arcs cross at most once.

A standard result that can be checked by induction says that

sgn(πM ) = (−1)# arc crossings. (5.4)
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Note that an arc connecting bi to wi does not cross any other arc. Using this and
Theorem 5.3, we can write

μ[(1{e1∈M} − μ(e1 ∈M)) . . . (1{ek∈M} − μ(ek ∈M))]
=

∑

E ′⊆E

(−1)|E\E ′|μ(e ∈M for all e ∈ E ′)
∏

e∈E\E ′
μ(e ∈M)

= aE
∑

E ′⊆E

(−1)|E\E ′|
∑

M∈�(E ′)
sgn(πM )

∏

{u,v}∈M
u<v

C(u, v)
∏

{u,v}∈E\E ′
u<v

C(u, v)

= aE
∑

E ′⊆E

(−1)|E\E ′|
∑

M∈�(E)

E\E ′⊂M

sgn(πM )
∏

{u,v}∈M
u<v

C(u, v)

= aE
∑

M∈�(E)

sgn(πM )
∏

{u,v}∈M
u<v

C(u, v)
( ∑

E ′⊆E∩M
(−1)|E ′|

)
,

where�(E ′) is the set ofmatchings of the vertices of E ′. To finish the proof it is enough
to notice that the sum of signs in the last expression is equal to one if M ∩ E = ∅ and
it vanishes otherwise. ��

5.3 Matchings and permutations

In this section we discuss the combinatorics of matchings and permutations which
will be used in the computation of moments of the height function in Sect. 1.2.

Let M be a restricted matching of the vertices of e1, . . . , ek (recall that restricted
means that the endpoints of an edge cannot be matched with each other). We stress
the fact that the objects paired by the matching are the vertices of the edges and not
the edges themselves. This will be important in the following combinatorial consid-
erations. We will call a pair of matched vertices an M-edge to distinguish it from the
edges of the underlying graph.

We can turn a matching M into a directed matching m by assigning to each M-
edge a direction in such a way that each edge ei has exactly one outgoing and one
incoming M-edge. Let S∗k be the set of permutations on k elements with no fixed
points. Observe that a directed restricted matching m defines a permutation σ ∈ S∗k
of the k edges: indeed, simply define σ(ei ) = e j where e j is the edge pointed to by the
unique outgoing M-edge emanating from ei . We will say that the directed matching is
compatible with the permutation σ . Note that since the matching is restricted, σ does
not have fixed points. LetDMσ be the class of restricted directedmatchings compatible
with σ ∈ S∗k . Note that if σ has n = n(σ ) cycles and m ∈ DMσ , then there are 2n

oriented matchings that correspond to the same unoriented matching as m (one can
choose the orientation of each cycle independently of the choice for other cycles).

Conversely, fix σ ∈ S∗k . We now describe how to encode any directed matchingm
compatible with σ by a sequence of signs ν ∈ {−1, 1}k . The sign νi denotes the choice
of the vertex of ei from which the outgoing edge of m will emanate, i.e., if νi = +1
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(resp. −1) then the outgoing edge of ei emanates from the black (resp. white) vertex
of ei . This choice implies that the directed M-edge corresponding to the pair (i, j)
such that σ(i) = j points to the white (resp. black) vertex of e j if ν j = +1 (resp.
ν j = −1). The resulting map

{−1, 1}k → DMσ (5.5)

is clearly a bijection.
We can now rewrite the truncated correlation function from Lemma 5.4 as follows:

μ
[
(1{e1∈M} − μ(e1 ∈M)) . . . (1{ek∈M} − μ(ek ∈M))

]

= aE
∑

σ∈S∗
k

∑

M∈DMσ

sgn(πM )
1

2n
∏

(u,v)∈M
C(u, v)(−1)1u>v (5.6)

where n = n(σ ) is, as above, the number of cycles of σ . To explain (5.6), we simply
recall that each undirected matching that can be oriented as to be compatible with
σ corresponds to 2n directed matchings by choosing the orientation of each cycle
arbitrarily. The factor (−1)1u>v comes from the fact that C(u, v) is antisymmetric
and that we always have il < jl in the expansion of the Pfaffian as a sum over
matchings (5.3). Here u > v means that u comes later than v in the order defined by
w1, b1, . . . , wk, bk .

We will later need the following lemma. What is specifically interesting to us in
the expression below is that the right hand side depends very little on the permutation
σ , given the signs ν.

Lemma 5.5 Let m be the restricted directed matching compatible with σ ∈ S∗k and
encoded by ν ∈ {−1, 1}k by the map (5.5). We have

∏

(u,v)∈m
(−1)1u>v sgn(πM ) = (−1)n

k∏

i=1
νi , (5.7)

where n = n(σ ) is the (total) number of cycles in σ .

Proof Mark the vertices w1, b1, . . . , wk, bk in the order from left to right on the real
line as in Lemma 5.4 and recall formula (5.4). Note that if we flip exactly one sign
νi , then both sides of (5.7) change sign since the parity of the number of crossings
between arcs changes (we either cross or uncross the arcs ending at ei and we do
not change the number of crossings for other pairs of arcs), and since the number of
decreasing edges (u, v) of m, i.e., satisfying u > v, does not change. We can hence
assume that νi = +1 for all i .

Equipped with the graphical representation as in Lemma 5.4 we proceed by induc-
tion on k. One can check that the statement is true for k = 2. We therefore assume that
k > 2. Let m be a directed restricted matching on e1, . . . , ek , and let σ ∈ S∗k be the
permutation associated withM . Let i, j be such that σ(i) = k and σ(k) = j . Consider
a graphical representation ofm. Imagine infinitesimally deforming the path composed
of the arcs connecting ei to ek and ek to e j together with the line segment representing
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Fig. 8 The induction step from the proof of Lemma 5.5

ek in such a way that the path is fully contained in H. This path hence becomes an
arc (modulo a possible self-crossing) representing an m′-edge (bi , w j ), where m′ is
a directed matching on e1, . . . , ek−1. Note that m′ is not necessarily restricted (this
happens when i = j). Let σ ′ ∈ Sk−1 be the permutation associated to m′. Note that
σ ′ has the same number of cycles as σ .

In this transformationwe replaced an increasing edge (bi , wk) and a decreasing edge
(bk, w j ) by the edge (bi , w j ). For topological reasons, the deformed path representing
the m′-edge (bi , w j ) has a self-crossing if and only if (bi , w j ) is an increasing edge
(see Fig. 8). To finish the proof we use (5.4) to evaluate and compare (5.7) for m and
m′ (orm′ with the decreasing edge (bi , wi ) (and hence one cycle) removed in the case
that m′ is not restricted), and we use the induction assumption. ��

5.4 Moments of the height function

In this section we compute the scaling limit of the pointwise moments of the height
function on δZ

2 ∩H, which is the penultimate step in establishing its convergence as
a random distribution.

We fix k ≥ 1, and 2k faces a1, b1, . . . , ak, bk of δZ
2 ∩ H. We consider disjoint

paths γi in the dual lattice (δZ
2∩H)∗ connecting ai to bi for 1 ≤ i ≤ k. The following

is the analogue of Proposition 20 in [22]. Let D denote the minimal distance in the
complex plane between any pair of points within {ai , bi }1≤i≤k .
Proposition 5.6 Let k ≥ 1. Let ρ > 0 be fixed and let β > 0 be sufficiently small
(possibly depending on k). As δ → 0,

∣∣∣μ
[
(hδ(a1)− hδ(b1)) · · · (hδ(ak)− hδ(bk))

]− (5.8)

∑

m∈M(1,...,k)

∏

(i, j)∈m
− 1

2π2� log
(ai − a j )(bi − b j )(āi − a j )(b̄i − b j )

(ai − b j )(bi − a j )(āi − b j )(b̄i − a j )

∣∣∣→ 0, (5.9)

uniformly over the choice of a1, b1, . . . , ak, bk such that D ≥ δβ and min1≤i≤k(�(ai ),
�(bi )) ≥ ρ.
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Proof As in Kenyon [22] we can assumewithout loss of generality that the paths γi are
piecewise parallel to the axes and that each straight portion is of even length. In this
way, we can pair the edges of a straight portion of the path in groups of two consecutive
edges. In order to distinguish between the two edges in a given pair it will be useful
to have a notation which emphasises this difference, and following the notations of
Kenyon we will call a generic pair of edges α and β respectively; an α-edge will have
a black vertex on the right while a β-edge will have a black vertex on its left. The
point is that considering their contributions together will lead to cancellations that are
crucial in the computation. Also, in this way the contribution from a pair of edges does
not depend anymore on the microscopic types of its vertices and has a scaling limit
which depends only the macroscopic position.

Let αi
t (resp. β

i
t ) be the indicator that the t-th α-edge (resp. β-edge) in the path γi

is present in the dimer cover, minus its expectation. In this way due to the definition
of the height function and the choice of reference flow,

h(ai )− h(bi ) =
∑

t

αi
t − β i

t .

(Note we do not have a factor 4 as in Kenyon because our choice of reference is slightly
different in order to deal directly with a centered height function: more precisely, the
total flow out of a vertex is one instead of four in Kenyon’s work [22]).We are ignoring
here possibly one term on the boundary if the faces ai and bi do not have the correct
parity; but in any case it is clear that the contribution of a single term in such a sum is
of order O(δ) and so can be ignored in what follows.

We therefore have

μ[(hδ(a1)− hδ(b1)) · · · (hδ(ak)− hδ(bk))] =
∑

t1,...,tk

μ[(α1
t1 − β1

t1) · · · (αk
tk − βk

tk )].
(5.10)

We fix a choice of ti s and analyse this product. We first expand this product into a
sum of 2k terms containing for each i a term which is either αi

ti or −β i
ti . Consider for

simplicity the termcontaining all of theαi
ti .Writewi , bi for thewhite andblack vertices

of the edge corresponding to αi
ti . Let E be the set of edges (w1, b2), . . . , (wk, bk) and

let aE =∏
e∈E K (e). Then by (5.6) we have

μ(α1
t1 . . . αk

tk ) = aE
∑

σ∈S∗
k

∑

m∈DMσ

sgn(m)
1

2n
∏

(u,v)∈m
C(u, v)(−1)1u>v .

We rewrite the sum over directed matchings m ∈ DMσ as a sum over (νi )1≤i≤k
using (5.5), and get (writingm for the unique directed matching determined by σ and
ν = (νi )1≤i≤k ∈ {−1, 1}k),

aE
∑

ν

∑

σ∈S∗
k

sgn(m)
1

2n
∏

(u,v)∈m
C(u, v)(−1)1u>v
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= aE
∑

ν

(

k∏

i=1
νi )

∑

σ∈S∗
k

(−1)n 1

2n
∏

(u,v)∈m
C(u, v)

using Lemma 5.5.
Fix ν and σ (i.e., we fix a directedmatchingm) and use Theorem 5.2 to approximate

C(u, v). Let (u, v) ∈ m and let ν and ν′ be the respective values of the variables νi
associated with the two edges containing the vertices u and v. Note that if νν′ = 1
then u and v must be of different colours and so we fall in case 2 of the approximation
given by Theorem 5.2, while if νν′ = −1 then u and v are of the same colour and so
we fall in the first case of this approximation. Hence we get

C(u, v) =
⎧
⎨

⎩
− δ

2π

[
s(u)s(v) 1

u−v
+ 1

ū−v̄

]
+ o(δ1+ε)+ O( δ

|u−v| )
2 if νν′ = 1

δ
2π

[
s(u) 1

u−v̄
+ s(v) 1

ū−v

]
+ o(δ1+ε) if νν′ = −1.

The terms o(δ1+ε) here are uniform on u, v (subject only to the imaginary parts being
≥ ρ). Since |u − v| ≥ D ≥ δβ , we see that O( δ

|u−v| )
2 ≤ O(δ2−2β) = o(δ1+ε) if β is

sufficiently small. We can thus absorb the term O( δ
|u−v| )

2 into the term o(δ1+ε) under
our assumptions on D.

We expand
∏

(u,v)∈m C(u, v) using the above formula. This gives us another sum
of 2k terms, which we view as a polynomial in the variables s(wi ), s(bi ). We group the
terms by their monomials; and since s(z)2 = 1 for any z, these monomials can only
be of degree at most one in each variable. We now claim that any monomial such that
s(bi ) appears but not s(wi ) for some 1 ≤ i ≤ k, or vice-versa, will contribute o(δ1+ε)

whenwe take into account the equivalent term coming from the same expansion where
αi
ti has been replaced by −β i

ti . Indeed, since σ and ν have been fixed, consider what
happens when αi

ti is replaced by −β i
ti :

• There is a − sign coming from the change αi
ti →−β i

ti .• The sign of aE changes by−1 always (consider separately the cases of a horizontal
or vertical edge to see this).

• Crucially both s(bi ) and s(wi ) change.
• Yet the coefficients accompanying s(bi ) and s(wi ) (both of which are terms of the
form 1

z−w
+ o(δ1+ε), . . . or 1

z̄−w̄
+ o(δ1+ε)) do not change in the scaling limit,

since this term is determined only by the choice of ν, which is fixed.

As a consequence, as we sum over all choices of α and β in the 2k terms of (5.10),
and we expand in terms of monomials as described above, we only keep terms that
contain for each 1 ≤ i ≤ k either, simultaneously s(bi ) and s(wi ), or neither of them.

As it turns out, given σ and ν, only very few terms do not cancel out. In fact, for
each cycle of σ there will be only two terms. For example, consider the case k = 4,
σ = (1234) a four-cycle, and ν = +−++. This means we are expanding

C(b1, b2)C(w2, w3)C(b3, w4)C(b4, w1).
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Letting zi be the point in the middle of the edge (bi , wi ), the expansion looks like

δ

2π

[
s(b1)

1

z1 − z̄2
+ s(b2)

1

z̄1 − z2

]
× δ

2π

[
s(w2)

1

z2 − z̄3
+ s(w3)

1

z̄2 − z3

]

× (− δ

2π
)

[
s(b3)s(w4)

1

z3 − z4
+ 1

z̄3 − z̄4

]

× (− δ

2π
)

[
s(b4)s(w1)

1

z4 − z1
+ 1

z̄4 − z̄1

]
+ o(δ4+ε/D4).

The only terms that survive this expansion with the above requirements are the mono-
mials corresponding to s(b1)s(w1)s(b3)s(w3)s(b4)s(w4) and s(b2)s(w2): indeed,
choosing or not the term containing s(b1) in the first line imposes a choice on every
other line, which is why just two terms survive this expansion.

Furthermore, crucially, in the corresponding coefficients of the surviving monomi-
als, the variables zi or z̄i occurs exactly twice, either twice in the type zi or twice in the
type z̄i (but never in a mixed fashion). For instance, in the above example, the coeffi-
cient will involve either z1, z̄2, z3, z4 or the other way around: z̄1, z2, z̄3, z̄4. Note that
the dependence on zi or z̄i is consistent with the choice of signs coming from ν: more
precisely, for z ∈ C and ε = ±1, define zε to be z if ε = +1 and z̄ if ε = −1. Then
for a cyclic permutation σ , the two monomials which survive the expansion have a
coefficient proportional to

k∏

i=1

1

zνii − z
νσ(i)
σ (i)

and
k∏

i=1

1

zνii − z
νσ(i)
σ (i)

and a similar property holds for a general permutation σ by considering each of its
cycles separately.

Note furthermore that each such coefficient comes with a factor ±(δ/2π)k × 2k :
indeed, when a monomial survives it arises exactly once in each of the 2k terms from
the α − β expansion (5.10). The sign itself is determined purely by the parity of the
cycle of the permutation: indeed, for an even length cycle the number of times the
colour changes as we follow the directed matching must be even; while it must be odd
for an odd length cycle.

Suppose C = {c1, . . . , cn} is the cycle structure of σ . We will use variables
(εc)c∈C ∈ {−1, 1}n to denote which type of monomials we consider. Thus the right
hand side of (5.10) (still for a fixed choice of ti ’s) becomes

= aδk
∑

ν

⎛

⎝
k∏

i=1
νi

⎞

⎠

∑

σ∈S∗
k

(−1)n 1

2n
∑

ε

k∏

i=1

1

π

1

z
νi εc(i)
i − z

νσ(i)εc(σ (i))
σ (i)

[s(bi )s(wi )](1+εc(i)νi )/2 + o(δk+ε/Dk)

(5.11)
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where c(i) is the cycle containing i .
We now claim that if σ ∈ S∗k has any cycle c of length |c| > 2 then it contributes

zero to the sum. We start by considering odd cycles. Indeed consider the case where
k is odd and σ is a cyclic permutation of length k. Then apply the bijection ν → −ν

and ε →−ε to find that all the terms are unchanged except for a negative sign coming
from

∏k
i=1 νi . Hence this contribution must be equal to zero, and a similar argument

can easily be made when σ contains a cycle of odd length.
In particular, k itself must be even for the contribution to be nonzero. To get rid

of permutations containing cycles of even length > 2, we will rely on the following
lemma.

Lemma 5.7 Let k > 2 be even and let (xi )1≤i≤k be pairwise distinct complex numbers.
Let Ck be the set of cyclic permutation of length k. Then

∑

σ∈Ck

k∏

i=1

1

xi − xσ(i)
= 0.

Note in particular that it follows from Lemma 5.7 that if A is the matrix Ai j =
1i �= j1/(xi − x j ) then det(A) can be written as a sum over matchings (which can be
thought of as permutations with no fixed points and where each cycle has length 2):

det(A) =
∑

m

∏

(u,v)∈m

1

(xu − xv)2
(5.12)

which is Lemma 3.1 of Kenyon [23].

Proof of Lemma 5.7. First of all, the case k = 4 must be true because of (5.12) (note
that the odd cycles clearly give a zero contribution to the determinant by an argument
similar to the above).

Using again (5.12) but for k = 6 gives the desired identity for k = 6, since the terms
corresponding to C4 in the expansion of the determinant into permutations contribute
zero by the case k = 4. Proceeding by induction, we deduce the result for every even
k ≥ 4. ��

By Lemma 5.7, the number of cycles n is necessarily k/2. Note also that in a
two-cycle we get a term of the form C(z, w) and another one of the form C(w, z) =
−C(z, w), which results in a term of the form −C(z, w)2. Hence the moment (5.11)
becomes

aδk
∑

ν

(
∏

νi )
∑

m∈M(1,...,k)

(− 1
2 )

k/2×

×
∏

(i, j)∈m
−

[
(s(bi )s(wi ))

(1+νi )/2(s(b j )s(w j ))
(1+ν j )/2

π2(zνii − z
ν j
j )2

+ (s(bi )s(wi ))
(1−νi )/2(s(b j )s(w j ))

(1−ν j )/2

π2(z̄νii − z̄
ν j
j )2

]
+ o(δk+ε/Dk) (5.13)
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where M(1, . . . , k) are the matchings of 1, . . . , k.
Recall that in the above expression s(bi ) and s(b j ) refer to the sign (parity) of the

white and black vertex respectively of the α-edge in position ti of the path γi (we
have already accounted for the corresponding β-edge). We will now sum over i and
interpret the corresponding sums as discrete Riemann sums converging to integrals.
For a horizontal edge (wi , bi ), we have s(bi )s(wi ) = 1 whereas it is−1 for a vertical
edge: this is simply because s measures the parity of the row. We claim that (as in
Kenyon’s proof of Proposition 20 in [22], see the equation between (20) and (21)),

2δ(s(bi )s(wi ))
(1+νi )/2νi K (wi , bi ) = −iδzνii . (5.14)

Indeed, suppose for instance that γi moves horizontally from left to right in step ti .
Then the corresponding α-edge is vertical, and has a black vertex at the bottom so
K (wi , bi ) = +i . Furthermore, δzi = δz̄i = 2δ (since one step of the path corresponds
to two faces of length δ each). The vertical cases can be checked similarly (keeping
in mind the corresponding values of δzi and δz̄i ).

From (5.14), we can multiply by νi both sides of the equation and take the product
over i . Then, recalling that a =∏

i K (wi , bi ), and observing also that the second term
in each bracket of the right hand side of (5.13) is the same as the first term but with νi
replaced by −νi and ν j replaced by −ν j , (5.13) becomes

∑

ν

∑

m∈M(1,...,k)

(−1)k 1

23k/2

×
∏

(i, j)∈m
−

⎡

⎣ δzνii δz
ν j
j

π2(zνii − z
ν j
j )2

+ δz−νi
i δz

−ν j
j

π2(z−νi
i − z

−ν j
j )2

⎤

⎦+ o(δk+ε/Dk) (5.15)

(We have kept a term (−1)k even though k is even to indicate that this comes from
(−1)k/2 at the top of (5.13) and a factor −1 in each of the k/2 terms of the product
in the bottom of the same equation. On the other hand, the coefficient −1 in each of
the k/2 of the product in (5.15) above comes from the coefficient −i (squared) in the
right hand side of (5.14).) Fixing the matching and summing over ν (so exchanging
order of summation) we get

(−1)3k/2 1

23k/2
∑

m∈M(1,...,k)

∏

(i, j)∈m

×2
[

δzi δz j
π2(zi − z j )2

+ δz̄i δz̄ j
π2(z̄i − z̄ j )2

+ δz̄i δz j
π2(z̄i − z j )2

+ δziδz̄ j
π2(zi − z̄ j )2

]
+ o(δk+ε/Dk)

(5.16)

(The term (−1)3k/2 in front comes from the previous (−1)k in (5.15) and another
factor (−1) in each of the k/2 terms of the product of the same equation.) Summing
over the choice of ti in (5.10), and since k is even (so (−1)3k/2 = (−1)k/2), we obtain
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μ[(hδ(a1)− hδ(b1)) · · · (hδ(ak)− hδ(bk))] =
(−1)k/2

2k
∑

m∈M(1,...,k)

∏

(i, j)∈m

∫

γi

∫

γ j

[ dzidz j
π2(zi − z j )2

+ dz̄idz̄ j
π2(z̄i − z̄ j )2

+ dz̄idz j
π2(z̄i − z j )2

+ dzidz̄ j
π2(zi − z̄ j )2

+ O
( δ

D6

)]+ o
( δε

Dk

)
.

(5.17)

To understand the bound on the error above, the term outside of the brackets corre-
sponds to summing the error in (5.15) over k paths (each of length at most O(δ−1));
the term inside corresponds to approximating a Riemann sum by an integral. When
we do so, for each sum/integral, we make an error of size at most O(δ/D)| sup f ′|,
since each path is at least of length D/δ, and f is the function being integrated, so
that here sup | f ′| = O(D−3). Furthermore, as these are double integrals, we need to
multiply this error for a single integral by the overall value the other integral which
we bound crudely by O(1/D2).

Now observe that

∫

γi

∫

γ j

dzidz j
(zi − z j )2

= log
(ai − a j )(bi − b j )

(ai − b j )(bi − a j )

Noting that the four integrals give two pairs of conjugate complex numbers, and
recalling that x + x̄ = 2�(x), we obtain

μ[(hδ(a1)− hδ(b1)) · · · (hδ(ak)− hδ(bk))]

=
∑

m∈M(1,...,k)

∏

(i, j)∈m
− 1

2π2� log
(ai − a j )(bi − b j )(āi − a j )(b̄i − b j )

(ai − b j )(bi − a j )(āi − b j )(b̄i − a j )
+ err.

(5.18)

where

err. = o

(
δε

Dk

)
+ O

(
δ

D6

)
O (log D)k/2−1 = o(δε−kβ)

for β sufficiently small, since D ≥ δβ . In particular, if β is sufficiently small (depend-
ing on k but not on anything else) then this error goes to zero as δ → 0. This concludes
the proof of Proposition 5.6. ��

5.5 Convergence of the height function

In this section we finish the proof of the scaling limit result from Theorem 1.3.
One can think of the height function on δZ

2∩H (which is defined up to a constant)
as a random distribution (generalised function) acting on bounded test functions f
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with compact support and mean zero. We follow [6] and write the action as

(hδ, f ) =
∫

H

∫

H

(hδ(a)− hδ(b))
f +(a) f −(b)

Z f
dadb, (5.19)

where f ± = max{± f , 0} and Z f =
∫

H
f +(a)da = ∫

H
f −(a)da. Here we think of

hδ as extended in a piecewise constant way to the interiors of faces. Note that this is
well defined as the additive indeterminate constant in hδ cancels out in this expression.
One can also check that this gives the same result as just integrating the height function
against f . Note that by Fubini’s theorem (hδ, f ) is centered as μ(hδ(a)− hδ(b)) = 0
for all a, b ∈ H by our choice of the reference flow from Sect. 1.1.

The result in Proposition 5.6 is the key step to prove the main result of the paper,
which we rephrase below for convenience. In fact, in [22], no further justification
beyond the analogue of Proposition 5.6 is provided (this is also the case in [36]). The
fact that an argument is missing was already pointed out by de Tilière in [10] (see
Lemma 20 in that paper). Here, we follow an approach similar to the one used in [29]
and in Toninelli’s lecture notes [40] (see in particular Theorem 5.4 and the following
discussion), but tailored to our setup since our a priori error estimates are somewhat
different.

Theorem 5.8 Let �Neu
H

be the Neumann Gaussian free field in H, and let f1, . . . fk ∈
D0(H) (smooth test functions of compact support andmean zero). Then for l1, . . . , lk ∈
N,

μ
[ k∏

i=1
(hδ, fi )

li
]
→ E

[ k∏

i=1
( 1√

2π
�Neu

H
, fi )

li
]
, as δ → 0,

where E is the expectation associated with �Neu
H

.

Proof For a function g, we write g(a; b) = g(a)− g(b). To simplify the exposition,
we only treat the case of the second moment; the other cases are similar but with
heavier notation. To start with, note that

μ[(hδ, f1)(h
δ, f2)] =

∫

H4
μ[hδ(a1; b1)hδ(a2; b2)] f

+
1 (a1) f

−
1 (b1)

Z f1

f +2 (a2) f
−
2 (b2)

Z f2
da1db1da2db2. (5.20)

Let ρ > 0 be such that �(z) ≥ ρ whenever z ∈ Supp( f1) ∪ Supp( f2), and let

H(a1, b1, a2, b2) = − 1

2π2� log
(a1 − a2)(b1 − b2)(ā1 − a2)(b̄1 − b2)

(a1 − b2)(b1 − a2)(ā1 − b2)(b̄1 − a2)
.
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By Proposition 5.6, since all relevant points have imaginary parts greater than ρ, we
have

μ[hδ(a1; b1)hδ(a2; b2)] = H(a1, b1, a2, b2)+ o(1), (5.21)

where the error o(1) is uniform over

Dδ := {(a1, b1, a2, b2) ∈ H
4 : D ≥ δβ},

where, as before, D = D(a1, b1, a2, b2) denotes the minimal distance in the complex
plane between any pair of points within {a1, b1, a2, b2}. We now split the integral in
(5.20) into the integral over Dδ and over Dc

δ . Now the important observation is that
since the the error is uniform, the limit of the integral over Dδ is given by

∫

H4
H(a1, . . . , b2)

f +1 (a1) f
−
1 (b1)

Z f1

f +2 (a2) f
−
2 (b2)

Z f2
da1db1da2db2

= 1

2π2E[(�, f1)(�, f2)].

Therefore, we are left with proving that the contribution to the integral (5.20)
coming from Dc

δ is negligible. To do that, we proceed somewhat crudely, noting that
by Cauchy–Schwarz,

μ[hδ(a1; b1)hδ(a2; b2)] ≤
(
Varμ(hδ(a1; b1))Varμ(hδ(a2; b2))

)1/2
. (5.22)

Since the volume of Dc
δ is polynomially small in δ, it will therefore suffice to show

that
Varμ(hδ(a; b)) = O(log δ)C (5.23)

for some C > 0 and arbitrary points a, b within some fixed compact of H. To prove
this, we will go back to the definition of the height function as a sum of increments
over a path, and we will use our a priori bound on K−1 coming from Proposition 3.4,
which gives

K−1(u, v) = O
(
(log dist(u, v))C

1

dist(u, v)

)
.

Fix two paths γ1, γ2 from a to b. It will be advantageous to take these paths at positive
macroscopic distance from one another except near the endpoints, where they must
necessarily come together. We will explain more precisely below how we construct
them. By the triangle inequality and Theorem 5.3, we have

Varμ(hδ(a; b)) ≤
∑

e1∈γ1,e2∈γ2

|Covμ(1{e1∈M}, 1{e2∈M})|

�
∑

e1∈γ1,e2∈γ2

(
(log dist(e1, e2))

C 1

dist(e1, e2)

)2
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� (log δ)2C
∑

e1∈γ1,e2∈γ2

( 1

dist(e1, e2)

)2
.

We may assume that near a and b, the paths γ1 and γ2 form straight segments with
different directions (say opposite directions), until they reach a fixed positive distance
α, taken to be small enough that these paths remain at positive distance from the real
line. The segments near a and b are then joined by portions of paths staying at distance
(in the plane) at least α/2 from one another to form γ1 and γ2. Then

∑

e1∈γ1,e2∈γ2

( 1

dist(e1, e2)

)2 ≤
O(1/δ)∑

r=1

1

r2
#{(e1, e2) : dist(e1, e2) = r}

�
α/(2δ)∑

r=R

1

r2
r + O(1) ≤ log(δ−1). (5.24)

We provide a brief explanation for the crucial point above, which is the bound on
#{e1, e2 : dist(e1, e2) = r}, and which comes from the choice of paths γ1 and γ2.
Indeed, if 1 ≤ r ≤ α/2 fixed, then elementary geometric considerations imply that
any choice of e1 in the segment of γ1 at distance at most r from a, will give at most
one corresponding point e2 on γ2 such that dist(e1, e2) = r . On the other hand, for
r ≥ α/2, there are at most O(δ−2) pairs of edges on the whole path, so #{(e1, e2) :
dist(e1, e2) ≥ α/(2δ)} = O(δ−2), so the contribution of such edges to the sum is
indeed O(1) as claimed above.

This proves (5.23) and therefore completes the proof of Theorem 5.8 in the case
of second moments. In the general case of a moment of order k ≥ 2, the same proof
works, where we replace the use of Cauchy–Schwarz in (5.22) by a Hölder inequality,
so that it suffices to show thatμ[(hδ(a; b))2k] � (log 1/δ)Ck (we wrote here a moment
of order 2k rather than k to account for the possibility that k is odd). We therefore need
to choose 2k paths leading from a to b. As above, these paths may be chosen as being
straight line segments up to a small distance α (in the plane) away from a or b, and
with distinct directions; we simply choose the angles between these segments to be
π/k, and otherwise require that these paths stay at positive distance from one another.
It is easy to check that the analogue of (5.24) holds also in this case.

A standard argument says that since all moments of hδ converge to the correspond-
ing moments of 1√

2π
�Neu

H
, and since �Neu

H
is a Gaussian process, we can conclude

that hδ → 1√
2π

�Neu
H

in distribution as δ → 0 (in the sense of finite dimensional dis-
tributions, where� is viewed as a stochastic process indexed by smooth test functions
with compact support and mean zero). This is straightforward to see: the convergence
of the second moments, say, implies tightness. On the other hand, since the limiting
moments are Gaussian, they identify the limiting distribution uniquely. As a result we
have proved Theorem 1.3.
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