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Abstract
In this paper, we present a novel approach to geometry parameterization that we apply to the design of mixing elements for 
single-screw extruders. The approach uses neural networks of a specific architecture to automatically learn an appropriate 
parameterization. This stands in contrast to the so far common user-defined parameterizations. Geometry parameterization 
is crucial in enabling efficient shape optimization as it allows for optimizing complex shapes using only a few design vari-
ables. Recent approaches often utilize computer-aided design (CAD) data in conjunction with spline-based methods where 
the spline’s control points serve as design variables. Consequently, these approaches rely on the design variables specified 
by the human designer. This approach results in a significant amount of manual tuning to define a suitable parameterization. 
In addition, despite this effort, many times the optimization space is often limited to shapes in close proximity to the initial 
shape. In particular, topological changes are usually not feasible. In this work, we propose a method that circumvents this 
dilemma by providing low-dimensional, yet flexible shape parametrization using a neural network, which is independent of 
any computational mesh or analysis methods. Using the neural network for the geometry parameterization extends state-of-
the-art methods in that the resulting design space is not restricted to user-prescribed modifications of certain basis shapes. 
Instead, within the same optimization space, we can interpolate between and explore seemingly unrelated designs. To show 
the performance of this new approach, we integrate the developed shape parameterization into our numerical design frame-
work for dynamic mixing elements in plastics’ extrusion. Finally, we challenge the novel method in a competitive setting 
against current free-form deformation-based approaches and demonstrate the method’s performance even at this early stage.

Keywords Shape optimization · Single-screw extruder · Neural networks · Mixing · Filter · Geometry parameterization

1 Introduction

Modern numerical design is boosted by high-performance 
computers and the advent of neural networks. While neural 
networks are well-established in fields such as image recog-
nition, their power to further polymer processing is yet to be 

fully discovered. This work attempts to contribute towards 
this goal. We combine deep neural networks with established 
shape-optimization methods to enhance mixing in single-
screw extruders via a novel numerical design.

In many polymer processing steps, screw-based machines 
play a crucial role. Screws are, e.g., used as plasticators to 
prepare polymer melts for injection molding or in extruders 
in profile extrusion. For simplicity, we will, in the remainder, 
summarize all such screw-based machines as extruders. Sin-
gle-screw extruders (SSEs) are especially widespread among 
the many variants of extruders for their economic advan-
tages and simple operation. Economics also drives current 
attempts to further increase the throughput. This increase 
is achieved using fast-rotating extruders. However, the cur-
rent SSE’s poor mixing ability has limited the advances and, 
therefore, improving the mixing ability is a topic of research 
[1–6].

Special focus is put on improved mixing elements that 
alleviate this limitation. Approaches to improve mixing 
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elements have been proposed based on analytical deriva-
tions, experimental, and simulation-based works. In the fol-
lowing, we review recent developments in these three areas. 
Subsequently, we outline relevant developments in the field 
of neural networks and, finally, motivate the use of neural 
nets in the numerical design of mixing elements.

Due to the high pressures and temperatures, analyzing 
the flow inside extruders is a difficult task. Early studies 
thus focus on analytical models and geometrically simpler 
screw sections, e.g., the metering section [7]. Experiments 
complement these theoretical derivations and allow extend-
ing the analysis to more complex screw sections. As reported 
by Gale, typical configurations rely on photomicrographs of 
the solidified melt [2] that allow either investigating cross 
sections of the flow channel or the extrudate. One example 
of such flow channel photomicrographs is Kim and Kwon’s 
pioneering work on barrier screws via cold-screw extru-
sion [8]. Apart from investigating solidified melt streams, 
attempts to analyze the melt flow during the actual opera-
tion of extruders are occasionally reported, e.g., by Wong 
et al. [9]. Despite the great success of such experiments, a 
standard limitation is their focus on a single operating con-
dition. In contrast, numerical analysis allows studying dif-
ferent designs and operating points at significantly reduced 
costs and, therefore, proliferates. In the following, we give 
an overview of such numerical analyses.

One early example is Kim and Kwon’s quasi-three-
dimensional finite-element (FE) simulation of the striation 
formation, studying the influence of the barrier flight [10]. 
Another example is the work by Domingues et al., who 
obtain global mixing indices for dispersive and distributive 
mixing in both liquid–liquid and solid–liquid systems [11]. 
Utilizing a two-dimensional simplification, their simulation 
domain extends from the hopper to the metering section, and 
their framework even allows for design optimization.

While these early works typically neglect mixing 
sections, studying the influence of mixers has recently 
become a vital research topic. Celik et al. use three-dimen-
sional flow simulation coupled with a particle-tracking 
approach to determine the degree of mixing based on a 
deformation-based index [1]. Another example is Mars-
chik et al.’s study comparing different Block-Head mix-
ing screws in distributive and dispersive mixing [6]. A 
comparable study—focused on the mixing capabilities of 
different pineapple mixers—is reported by Roland et al. 
[3]. Both works rely on three-dimensional non-Newtonian 
flow simulations. Besides such works towards the numeri-
cal assessment of given screw designs, numerical design is 
also reported, however, partially in other fields of polymer 
processing. For example, Elgeti et al. aim for balanced 
dies and reduced die swell by applying shape optimiza-
tion [12, 13]. Design by optimization is also reported by 
Gaspar-Cunha and Covas, who alter the length of the feed 

and compression zones, the internal screw diameters of 
the feed and metering zone, the screw pitch, and the flight 
clearance [14]. Potente and Többen report another recent 
study devoted to mixing elements that develops empiri-
cal models for shearing sections’ pressure-throughput and 
power consumption for numerical design [15]. Finally, a 
first approach combining the shape-optimization methods 
inspired by [12] with a mixing-quantifying objective func-
tion to design mixing sections is reported in [16].

However, the shape optimizations above share one com-
monality: they essentially only modify predefined geom-
etry features. This is accepted in many cases like die or 
mold design, where the final product’s shape is close to 
the initial one (i.e., the shape variation is small). How-
ever, topologically flexible shape parameterizations offer 
far greater optimization gains for mixing element design, 
because the optimal geometry might differ significantly 
from the initial shape. The achievable improvements moti-
vate research on geometry parametrization.

Established shape-parameterization approaches include 
radial basis functions (RBF) [17], surface parameteriza-
tions using Bezier surfaces [18], and surface splines [19]. 
All these methods may be understood as filters that param-
eterize a geometry by a few variables at the price of a 
lack of local control. The use of surface splines in shape 
optimizations can also be found in [12, 13]. A similar 
concept to surface splines is free-form deformation (FFD) 
[20] that encapsulates the body-to-deform in a volumetric 
spline, which allows tailoring the spline further towards 
an efficient optimization. An alternative approach that 
does, however, not parameterize the geometry as a filter is 
given using the computational grid’s mesh nodes as shape 
parameters [21]. Fortunately, with the advent of neural 
networks, novel means of shape parameterizations offering 
outstanding flexibility emerged. Finalizing the introduc-
tion, we will summarize the most relevant works in this 
field.

Many neural networks are essentially classifiers. These 
neural networks are non-linear algorithms that are opti-
mized, (i.e., trained), to determine—possibly counterin-
tuitive—similarities and dissimilarities to discriminate 
between objects. One typical use case is image recognition 
using red–green–blue (RGB) pixel data. Neural networks 
can, however, be trained to classify features far beyond 
RGB-pixel values. One example is style transfer or texture 
synthesis [22]: instead of aiming at reproducing pixel data, 
output images are generated in combination with perceptual 
data. This allows image transformations, where one image’s 
style is transferred to the motive of another. An extension 
of these ideas to three-dimensional shapes is first reported 
by Friedrich et al. [23]. Comparing different shape repre-
sentations, the authors find that style transfer is applicable 
to shapes as well.
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Our work is especially inspired by Liu et al. [24], who uti-
lize a so-called Variational Shape Learner, that learns a voxel 
representation of three-dimensional shapes. Learning here 
refers to creating a so-called latent space, a low-dimensional, 
feature-rich embedding space to represent and morph between 
various shapes. Even beyond simple shape interpolation, it is 
shown that—using the latent representation—geometry fea-
tures can be transferred from one to another shape. Successful 
learning of voxel-based shapes can also be found in [25, 26]. In 
terms of shape representations, pointcloud-based approaches 
[27–29], which utilize coordinates of three-dimensional point 
sets, as well as polygonal mesh-based approaches with either 
template meshes [30, 31] or multiple mesh planes [32] are 
widely adopted.

While previously mentioned representations show that 
learning an embedding space of three-dimensional shapes is 
possible, each work lacks at least one of the following prop-
erties: water-tight surfaces, flexible output resolution, and 
smooth and continuous surface details. Recent works satisfy 
the aforementioned properties by learning shapes represented 
by continuous implicit functions, such as signed-distance func-
tions (SDFs) [33] and binary occupancies [34, 35], from which 
the shapes are extracted as isosurfaces. This work investigates 
the shape-parameterization capabilities of the DeepSDF auto-
decoder [33].

We exploit the feature richness of this latent space as an 
aid to reduce the optimization space’s dimension for the given 
mixing-element shape optimization. The important novelty 
compared to recent spline-based filters is that the neural net-
work finds—possibly counterintuitive—ways to commonly 
parameterize a set of significantly different shapes irrespec-
tive of user-defined design features. This abstraction from the 
human designer yields low-dimensional yet far more flexible 
shape parameterizations, which sets the motivation for the 
work presented here.

This paper is structured as follows: We start in Sect. 2 by 
summarizing numerical shape optimization and splines, which 
leads to the concept of geometric filters. Based on that, we 
explain in Sect. 3 how neural networks can be utilized to create 
suitable geometry parameterizations for shape optimization. In 
Sect. 4, we review the utilized software components, summa-
rize the proposed framework’s building blocks, and detail the 
specific differences to spline-based shape optimization setups. 
The results obtained from the new approach are presented in 
Sect. 5, including comparisons to current spline-based designs. 
Finally, we discuss the results and outline further develop-
ments in Sect. 6.

2  Geometric filters as a component 
of shape‑optimization frameworks

The following section discusses shape parameterizations 
as one building block of numerical shape-optimization 
frameworks. Therefore, we first introduce the general 
shape optimization problem. After that, we recall spline-
based shape parameterizations. Based on this general 
introduction of shape-optimization frameworks, we will 
continue by discussing the specific changes needed to 
adapt neural nets in Sect. 3.

2.1  Building blocks of numerical 
shape‑optimization frameworks

The general optimization problem is formulated as the 
minimization of a cost function J that relates the design 
variables � to some output—here, the degree of mixing 
ability obtained with a specific mixing element, (i.e., a 
particular design). In shape optimization, this minimiza-
tion problem is typically solved subject to two sets of con-
straints: (1) inequality and equality conditions, as well as 
bound constraints on the design variables and (2) partial 
differential equations (PDEs) that need to be fulfilled by 
each design to qualify as a feasible solution. This results 
in the following formulation: 

 Here, (1d) and (1e) describe bound constraints on the 
optimization variables � , whereas (1c) denotes the set of 
governing PDEs. One approach to numerically solve such 
a PDE-constraint design problem is to alternately compute 
(1) shape updates and (2) the cost function value. For the 
studied use case of mixing-element design, this results in 
the computational steps depicted in Fig. 1.

First, we update the shape (i.e., the simulation domain 
covering the mixing element). We use this modified com-
putational domain to compute the flow field from which we 
afterwards infer the objective (i.e., the cost function). The 
design loop is closed by feeding back the cost function value 
to the optimization algorithm that now computes an updated 
shape. This loop continues until any termination criterion, 

(1a)J ∶ ℝ
n�

↦ ℝ,

(1b)argmin
�∈Σ⊂ℝn

J(�),

(1c)s.t.F(�) = 0 inΩ(�),

(1d)�i ≥ �min,i, i = 1, ...n� ,

(1e)�i ≤ �max,i, i = 1, ...n� .
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such as a minimal objective decrease, a maximum number 
of iterations, or another condition, is met.

2.2  Spline‑based shape parameterizations

In classical shape-optimization frameworks, the actual shape 
parameterization, or geometry filtering, is often achieved 
using splines. The following paragraph, therefore, first pro-
vides a summary of splines illustrating how one achieves the 
filtering. For a detailed description of B-splines, we refer the 
reader to the book of Piegl and Tiller [19]. After that, we 
detail on boundary splines and FFD as two particular use 
cases of spline parameterizations.

Splines belong to the group of parametric shape represen-
tations. Therefore, each coordinate in the parametric space 
is connected to one point in physical space. This mapping 
is best understood using a simple B-spline surface that is 
written as

where � and � denote the parametric coordinates (two for 
the surface), Ni,r denote the interpolation or basis functions 
of order r in the first parametric direction, Nj,p denote the 
basis functions of order p in the second parametric direc-
tion, and finally, B denotes the support or control points. 
Figure 2 illustrates the concept and visualizes how single 
control points affect the geometry.

The control grid (i.e., the polygon spanned by the control 
point) aligns with the � and � directions, and any parametric 
coordinate (within the spline’s parametric bounds) maps to 
one point of the blue shape. Consequently, the spline map-
ping allows controlling an arbitrary number of parametric 
points by a constant, typically low, number of control points. 
Being able to control a high number of points with few con-
trol points will be the basic idea of filtering using splines.

(2)S(�, �) =

m
∑

j=1

n
∑

i=1

Ni,rNj,p(�, �)Bi,j,

One can obtain geometry parameterizations from splines 
in multiple ways. As shown in Fig. 2, one way uses the 
B-splines as a boundary representation. Such spline-based 
boundary representations are common in CAD. Using these 
CAD representations, their control points (i.e., the red points 
in Fig. 2) can be directly used as design variables in shape 
optimization. However, this use of the CAD’s geometry 
parameterization limits the design process, because a given 
spline may not be able to represent shapes substantially dif-
ferent from the initial design. Consequently, if modifications 
of the spline’s parameterization, such as inserting additional 
control point lines, are to be avoided, this limitation restricts 
the use of the CAD spline to use cases that deal with small 
shape updates such as die or mold design [12].

An alternative to using boundary B-splines is FFD [20]. 
In FFD, first, an—often volumetric—spline is constructed 
around the body to be deformed. Second, this volumetric 
spline is deformed, and finally, the resulting deformation 
field is imposed on the enclosed body. Figure 3 visualizes 
this process.

The advantage of FFD is that the spline is constructed 
irrespective of the enclosed shape, which gives complete 

Fig. 1  Building blocks of a shape-optimization framework. The shape 
is updated by a geometry kernel, such as FFD. Subsequently, the flow 
field is computed using this updated shape and given as input to the 
objective calculator. Based on the current design variables and the 

design’s objective value, the optimization algorithm computes opti-
mized shape parameters and restarts the design loop until at least one 
termination criterion for the design loop is met

Fig. 2  B-spline representation (blue) obtained from control points 
(red) for a bi-quadratic B-spline. The upper four control points are 
rotated, illustrating a possible deformation (colour figure online)
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freedom in choosing degree and resolution. This freedom 
allows tailoring the spline to the designer’s needs (rather 
than using a given parameterization optimized for CAD 
usage). Therefore, FFD is widely applied, with just one 
example being the recent works by Lassila and Rozza com-
bining FFD and reduced order modeling [36]. A combina-
tion of both methods, boundary B-splines and FFD, will be 
compared against the novel shape parameterization based on 
neural networks that use FFD as a generic interface to mod-
ify any given CAD spline, which in turn is used to update 
the boundary of the simulation domain [16].

3  Shape parametrization using neural 
networks

As explained in Sect. 2, the prime objective of this work is 
to investigate how neural networks can be used to encode 
different shapes in a single set of a few continuous variables. 
To train the network, thereby determining such a condensed 
representation, it has to be provided with suitable data. Suit-
able here means that the input data (i.e., shapes) are pro-
vided in such a way that the network can learn from these 
data. In addition—using the same data format—we need to 
be able to produce high-quality computational meshes from 
the neural network’s output.

In the following, we first introduce deep generative 
models and then describe a shape representation meeting 
these two requirements. Finally, we discuss the training 
data generation and utilization of neural networks as shape 
generators.

3.1  Deep generative models

With the advent of generative models, an alternative 
approach to shape parameterization emerged. In this sub-
section, we review two of the most common approaches of 
generative models, explain their basic concepts and use, and 
detail how they can be employed for geometric filtering.

Generative models are an application of neural net-
works and, thus, in essence, classification algorithms. 

Classification here means the ability to determine whether 
a certain object is in some measure close to a specified 
input. Conversely to just classifying input, such models 
can also be used to generate an output that resembles an 
input. Resemble, however, needs to be explained. In most 
applications, the user is not interested in reproducing a 
given input exactly. Instead, the output should only be like 
the input (i.e., the output should feature a slight varia-
tion). Generative models attempt to achieve this goal via 
statistical modeling. An excellent guide to generative mod-
els is found in [37], with special focus on the Variational 
Autoencoder (VAE).

The VAE, like the traditional autoencoder, consists of an 
encoder and a decoder and aims to reproduce any given data 
while passing the input through a bottleneck. However, its 
probabilistic formulation using the so-called “reparametriza-
tion trick” provides an exceptional advantage over the tradi-
tional autoencoder in practice [38]. The roles of the encoder 
and the decoder can be interpreted as two separate processes. 
The encoder learns relations in the given data and encodes 
them in the so-called latent variables, z . Given these latent 
variables, the decoder, in turn, learns to produce data that 
are likely to match the input. Once trained, the user can omit 
the encoder and directly generate new data from sampling 
the latent space. For details, we refer to [37, 38], and for 
applications, we refer to [24] and [39].

The difference between the spline-based approach and 
generative models is the choice of latent variables. When 
the human designer creates a spline parameterization that 
allows modifying geometry in the desired way, the optimi-
zation variables are the control points, which are intuitively 
placed in ℝ3 by the designer. Generative models, in contrast, 
learn a latent space and explicitly assume that the single 
latent variables do not have an intuitive interpretation. As a 
result, data are compressed from a high-dimensional intui-
tive design space, in our case, 𝜒 ⊂ ℝ

3×n , onto a hardly inter-
pretable, feature-dense, low-dimensional latent space Z. In 
short, generative models use the computational power of 
neural networks to find a dense classification space that one 
can sample to produce new data. For the VAE, this process 
is depicted in Fig. 4a.

Fig. 3  Free-form deforma-
tion using a volumetric spline 
(light blue) applied to a mixing 
element (pink). The control 
points are omitted in this figure. 
The embedded shape deforms 
correspondingly to the embed-
ding, simple, volumetric spline 
(colour figure online)
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A competing concept to VAEs are Generative Adversarial 
Networks (GANs). Their basic structure is shown in Fig. 4b. 
GANs, first introduced by Goodfellow et al. [40], follow a 
different concept and train two adversarial nets, the genera-
tor and the discriminator. In GANs, the generator is trained 
to create data that mimics real-world data, while the dis-
criminator tries to determine whether or not a dataset was 
artificially created. In a minimax fashion, the generator’s 
learning goal is to maximize the probability of the discrimi-
nator making a wrong decision.

GANs have proven to be an excellent tool for shape mod-
eling. Wu et al., for example, apply a GAN for 3D shape 
generation and demonstrate their superior performance com-
pared to three-dimensional VAEs. They even use a GAN to 
reconstruct three-dimensional models from two-dimensional 
images based on the a VAE output that is used to infer a 
latent representation for these images [41]. As in [24], Wu 
et al. also demonstrate the ability to apply shape interpola-
tion and shape arithmetic to the learned latent representa-
tion. More recently, Ramasinghe et al. [28] utilize a GAN to 
model high-resolution three-dimensional shapes using point 
clouds.

3.2  Implicit shape representation

The neural network learns a mapping between the low-
dimensional latent space and a three-dimensional body. To 
construct such a mapping, we first need to define how to rep-
resent our shapes (i.e., define what data the neural network 

actually has to learn). Before presenting the approach cho-
sen in this work, we review standard methods and their 
limitation.

Three ways of shape representation are common in 
machine learning: (1) voxels, (2) point clouds, and (3) 
meshes [33]. The problem with meshes is that the mesh 
topology also prescribes the possible shape topologies. Point 
clouds, in contrast, can represent arbitrary topologies, but 
prescribe a given resolution. Finally, voxels can represent 
arbitrary topologies and vary in resolution, but, unfortu-
nately, the memory consumption scales cubically with the 
resolution. Because of these drawbacks, the network utilized 
in this work learns SDFs following a network configuration 
originally proposed by Park et al. [33].

SDFs provide the distance to the closest point on the to-
be-encoded surface for every point in space. Furthermore, 
encoded in the sign, information on whether the point lies 
inside or outside the surface is available. Using such con-
tinuous SDF data, a shape is then extracted—at an arbi-
trary resolution suitable for meshing—as its zero-valued 
isosurface.

3.3  Training set generation

As mentioned in Sect. 3.1, training a neural network requires 
a set of source shapes. However, to the authors’ knowledge, 
no shape library exists for mixing elements in single screw 
extruders. Thus, we explain an approach to building custom 
training sets.

Fig. 4  a Autoencoder provid-
ing an input-to-output mapping 
while passing data through a 
bottleneck, i.e., the low-dimen-
sional latent representation. b 
Generative adversarial model 
learning latent space by infer-
ring representations that enable 
generating output indistinguish-
able from the input. Two main 
concepts of deep generative 
networks: variational autoen-
coders and generative adver-
sarial networks
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To generate a suitable training set, we first select cat-
egories of basis shapes that should be considered—pin and 
pineapple mixers in our case. From this choice, we arbitrar-
ily infer a total of four basis shapes (i.e., triangle, square, 
hexagon, and cylinder—cf. Figure 5). At the same time, we 
define a set of deformations, which should be considered 
within the design space. Examples of applied deformations 
are given in Fig. 5.

We start by creating basis shapes represented as trian-
gular meshes. For each basis shape, we apply the afore-
mentioned deformations and their combinations in varying 
magnitudes using FFD to gather a rich set of shapes. To 
obtain SDF-training data from these shapes, we follow the 
approach by Park et al. [33]: first normalize each shape to fit 
into a unit sphere, and then sample 500,000 pairs of spatial 
coordinates and their corresponding SDF values using the 
trimesh library [42] from each shape. In total, 2659 training 
shapes are generated, which constitute the accessible defor-
mations within the design space.

3.4  Shape generator

As explained, the shape generator’s task is to provide a mix-
ing element given a set of optimization variables. The shape 
generator—in this work—is thus built around the neural net-
work, which is presented in the following.

The utilized neural network is based on DeepSDF auto-
decoder [33]: a feed-forward network with ten fully con-
nected layers, with each of the eight hidden (i.e., internal) 
layers having 256 neurons and ReLU activation functions. 
In contrast to autoencoders, the autodecoder only trains the 
decoder using a simultaneous optimization of the network 
parameters and the latent code during training. We inves-
tigate 4, 8, and 16 as latent dimensions, l. The input layer 
consists of these l neurons concatenated with a three-dimen-
sional query location. The output layer has only one neuron 
with a tanh activation function. For details on the chosen 
SDF network, we, again, refer to [33]. To train the network, 
we use the ADAM optimization algorithm [43]. To utilize 
improved learning rates, we follow a progressive approach 

with the initial rates �0 = 5e − 4 for � , and �0 = 1e − 3 for 
z , and a decay as

where e denotes the current training iteration (i.e., epochs)—
and % denotes integer division. The network’s training can 
be seen as the parametrization of the shapes.

To extract isosurfaces (i.e., to generate new mixing ele-
ments) from the trained network’s SDF output, we sample a 
discrete SDF field and apply a marching cube algorithm [44] 
in the implementation of [45]. Finally, we apply automated 
meshing using TetGen [46] to obtain a simulation domain 
as depicted in Fig. 6, including the new mixing element.

4  The developed shape‑optimization 
framework

In general, our framework consists of three building blocks: 
(1) shape generator, (2) flow solver, and (3) optimizer, which 
will be described in the following.

Starting with an initial set of optimization variables, �0 , 
the shape generator creates a new mixing element Ω

(

�0

)

 . 
The flow solver then computes the flow field around this 

(3)� = �0 ⋅
(

0.5e%500
)

,

Fig. 5  a Square base, b cylin-
der base, c shrink along x, d 
translate top x, e translate top y, 
f expand middle, g expand top, 
and h rotate top. Examples of 
basic shapes and applied defor-
mations. In total, a triangle, a 
square, a cylinder, and a hexa-
gon are used as basis shapes

Fig. 6  Simulation domain with single mixing element resembling the 
flow around a single mixing element in the unwound screw channel. 
Flow conditions are shown in blue using a barrel rotation setup. For 
a detailed description of the objective function and governing equa-
tions, we refer the reader to [16]
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mixing element, which the optimizer evaluates to deter-
mine the flow’s degree of mixing. Based on the obtained 
mixing value and by comparison to previous iterations, an 
optimization algorithm determines a new set of optimiza-
tion variables. This sequence is iteratively re-run until either 
a maximum number of iterations is reached or any other 
termination criterion—typically a good objective value or 
insignificant objective decrease—is met.

4.1  Flow solver and simulation model

The flow solver and simulation model is identical to the 
one introduced in [16] and therefore only summarized in 
the following. The flow field induced by the various mix-
ing elements is obtained from solving the steady, incom-
pressible non-isothermal Navier–Stokes equations using 
a Carreau model and WLF temperature correction. The 
governing equations are discretized with linear stabilized 
finite elements and solved using a Newton linearization 
and a GMRES iterative solver. Subsequently, we solve a set 
of advection equations using the identical configuration to 
mimic particle tracking, which we use as an input to our 
objective function. All methods are implemented in an in-
house flow solver.

We make two simplifications to our simulation model 
(i.e., the single-screw-extruder flow channel): first, we sim-
ulate the flow around only a single mixing element instead 
of simulating the entire mixing section. Second, we assume 
barrel rotation in an unwound flow channel section. Both 
assumptions yield significantly reduced computational 
costs while allowing a qualitative mixing improvement. 
To assess mixing, we mimic particle tracking by solving 
a series of advection equations yielding an inflow–outflow 
mapping for particles advected by the melt flow. We process 
this advection information by subdividing a portion of the 
inflow domain into smaller rectangular subdomains. In each 
of these rectangles, we select a set of particles, such that the 
particle set’s bounding box coincides with the rectangular 
subdomain. Then, we follow each particle as they are con-
veyed through the domain, store each particle’s position at 
the outflow domain, and finally construct a convex hull at 
the outflow around the same sets of points. Averaging the 
convex hull’s length increments between inflow and out-
flow yields a simple yet robust objective function inspired by 
interfacial area measurements. Using this objective function, 
we found that such a simulation model provides a good bal-
ance between accuracy and computational efficiency [16]. 
Figure 6 depicts the chosen simulation domain.

4.2  Optimizer

We utilize the open-source optimization library Dakota [47] 
to drive the design process. Two different algorithms are 

selected and described in the following. The first algorithm 
is the Dividing RECTangle (DIRECT) algorithm, first intro-
duced in [48]. DIRECT belongs to the category of branch-
and-bound methods and uses n-dimensional trisection to 
iteratively partition the design space. To find minima, it 
follows the approach of Lipschitzian optimization, which 
identifies the design space partition that should be further 
sampled by evaluating a lower bound to the objective value 
in each partition. The partition with the lowest lower bound 
is chosen and further sampled. DIRECT modifies that con-
cept and computes multiple lower bounds that weight the 
current sampling value (i.e., the objective value in the parti-
tion center). This promotes to further sample partitions with 
good objective values against the partition size, which per-
mits to effectively sample large areas of unexplored design 
space. Thereby, DIRECT identifies multiple partitions that 
are possibly optimal and allows for global convergence.

The second algorithm utilized in this work is the single-
objective genetic algorithm (SOGA) introduced (as its multi-
objective variant) in the JEGA package [49]. As it belongs 
to the class of genetic algorithms, it solves optimization 
problems by recreating biological evolution. Therefore, each 
optimization run consists of numerous samples referred to 
as the population. Members of the population are paired and 
recombined in such ways that the fitness (i.e., the objective 
value) is successively improved. Regarding its application 
in this work, it is especially noteworthy that the recreation 
of evolution includes a mutation step, which modifies or re-
initializes design variables randomly. The added randomness 
allows the algorithm to escape locally convex regions of the 
design space. Such evolutionary optimization approaches 
generally converge slower yielding higher computational 
costs. However, they are often able to find better results than 
non-evolutionary algorithms. For both DIRECT and SOGA, 
we rely on the default convergence criterion and a maximum 
of 1000 iterations as a termination criterion. Additionally, 
for SOGA, we choose a population size of ten times the 
number of design dimensions. The complete computational 
framework is depicted in Fig. 7.

5  Numerical results

This section presents the results obtained using shape 
parameterizations from neural networks.

Thereby, Sect. 5.1 focuses on the results of the offline 
phase, i.e., the training of the shape-representing neural net-
work. In particular, we will discuss the differences in the 
constructed latent space based on its dimension using the 
widely used data reduction technique t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) to visualize the learned, 
n-dimensional shape parameterization. In Sect. 5.2, we then 
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present the mixing shapes that could be obtained using our 
shape-optimization approach.

5.1  Latent space dimension

One of the most important choices is the target dimension 
of the embedding space l. In all established filtering mecha-
nisms like radial basis functions, free-form deformation, 
CAD-based approaches, and even mesh-based methods, the 
practitioner has to balance improved flexibility against the 
computational demand. Despite a potentially more compact 
and dense embedding with neural networks, this is still of 
relevance and manifests itself in the dimension of the chosen 
latent space. Previous works utilized only a very small num-
ber of optimization variables. Elgeti et al. vary between only 
one and two parameters [12]. Other works by the authors, 
however, showed that also for six design variables good 
results are obtained [16]. To obtain a competitively small 
number of optimization variables, we investigate embedding 
spaces of dimension 4, 8, and 16, respectively, and com-
pare against a free-form-deformation approach using nine 
variables.

Even though the latent space, as discussed in Sect. 3.1, 
in general, obtained lacks an intuitive interpretation, we 
are still interested in evaluating the quality of the learned 
embedding space. We do so in three different ways which 
we present in the following: (1) we show a data reduction 
technique that allows us to visually investigate the latent 
space; (2) we apply an interpolation between the latent 

representation of two training shapes and compare with the 
expected result; (3) we apply shape arithmetics, i.e., we iso-
late a specific modification of a basis shape and impose it 
onto another basis shape to inspect whether or not features 
are also recognized by the latent space.

(1) For the visualization of the high-dimensional latent 
space, a dimension reduction technique is required. An intui-
tive choice might be principal component analysis (PCA), 
but PCA tries to primarily preserve global structures and 
thus data points which are far apart in the high-dimensional 
data will also be drawn far apart in the 2D plot. Conversely, 
the correlation between similar points is often lost. This loss 
of correlation in similar data is problematic, since we aim to 
investigate whether—from a human’s perspective—similar 
shapes are represented by similar latent code. The problem 
of loss in local correlation is, however, alleviated by t-SNE 
[50]. Using t-SNE, we plot each training shape’s obtained 
latent code and—due to the preservation of local similari-
ties—similar latent code will form clusters in the scatter 
plot. These clusters can then be sampled to verify that the 
latent code clusters resemble similar shapes. t-SNE plots 
for all three latent dimensions—4, 8, and 16—are shown 
in Fig. 8.

Figure 8 shows how an increased latent dimension leads 
to increased classification performance of the neural net. 
Specifically, the four chosen basis shapes are clustered with 
their respective modifications more and more densely as the 
latent dimension increases. This improved classification per-
formance indicates that the neural net was able to learn the 

Fig. 7  Pipeline with building blocks of the proposed computational 
framework. The process is split into two parts: a one-time computa-
tionally intensive training part and the actual optimization, including 
the quick filter evaluation. To create a training set, FFD is applied to 
a set of basis shapes. Subsequently, we train the network using the 
ADAM optimizer, which concludes the offline phase. During optimi-
zation (i.e., the online phase), first, a new shape is created from the 

neural net. Then, a new computational mesh is created around this 
shape, and based on FEM simulations, the new design’s mixing is 
assessed. Depending on the objective value, the optimization loop 
is re-initiated using altered latent variables. Building blocks that are 
modified compared to the general, geometry-kernel-based approach 
(cf. Figure 1) are highlighted in blue



 Engineering with Computers

1 3

similarities between similar shapes properly for the case of 
8 and 16 dimensions.

(2) In addition to comparing clusters of similar shapes 
in physical and latent space, we also investigate how well 
the latent space is suited to represent shapes that have not 
been included in the training set. We do so by interpolation 
between two shapes. Figure 9 shows the obtained results for 
all three latent spaces.

Consistent to the observed lack in classification ability 
of the four-dimensional latent space, Fig. 9a shows that 
interpolation between shapes yields unsatisfactory results. 
In particular, shape defects are observed. This might be a 
result of the fact that the twisted cube is not at all well rep-
resented in the latent space as seen in the rightmost figure. 
However, both the 8- and the 16-dimensional latent space 
show a visually smooth transition between the regular and 
the twisted cube shape.

(3) The above two analyses investigated the overall clas-
sification ability of the neural net and the suitability to rep-
resent intermediate shapes. A final test is given by applying 
shape arithmetic. Using arithmetic operations applied to the 
latent code, we extract an exemplary feature—here a stretch-
ing along the center plane—by taking the component-wise 
difference of a stretched and a regular cube. This difference 
represents center-plane expansion and can then be applied 
to any other basis shape—here the undeformed hexahe-
dron. Figure 10 shows the resulting shapes. Again, the four-
dimensional latent space performs significantly worse, since 
the basis shapes are not represented in detail. Contrary to 
the interpolation case, the 16-dimensional latent space now 
shows better results than the 8-dimensional case.

All three investigations, t-SNE plots, interpolation, and 
arithmetic, indicate that the four-dimensional latent space 
fails in producing a suitable latent representation. It should 

Fig. 8  a Training set encoded in 4D latent code. b Training set 
encoded in 8D latent code. c Training set encoded in 16D latent 
code. t-SNE plots obtained using different latent space dimensions. 
Increased latent dimension resembles in increased classification per-

formance of the neural net. Each color corresponds to one base train-
ing shape: green corresponds a triangular base, dark blue is the cube, 
red is the hexahedron, and light blue is a tessellated version of the 
cylinder (colour figure online)

Fig. 9  a 4D shape interpola-
tion revealing artifacts in the 
reconstructed shapes, i.e., bad 
quality of the latent representa-
tion. b 8D shape interpolation 
with satisfactory results. c 16D 
shape interpolation, which 
brings only slight improve-
ment in shape representation 
compared to eight-dimensional 
latent representation. Shape 
interpolation using different 
latent dimensions. An interpo-
lated shape is obtained using 
zinterp = za +

zb−za

N+1
n with za 

and zb denoting the latent code 
between shapes a—here the 
undeformed cube—and b—here 
the twisted cube. With N = 20 , 
the shown examples represent 
n ∈ [1, 3, 7, 13, 17, 20]
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be noted though that in view of the doubled number of 
optimization variables, the attainable gains in using 16 
latent variables compared to 8 appear unattractively small.

5.2  Optimization results

To study the effects of the novel shape-parameterization 
technique, we compare configurations that vary in latent 
space dimensions and optimization algorithms, as shown 
in Table 1. l furthermore, we require all generated shapes 
to have the exact same volume as the undeformed rhombic 
mixing element utilized in the spline-based optimization (cf. 
Sect. 4.1). We choose such scaling to avoid convergence 
towards merely enlarged shapes that yield good objective 
values but do not deliver helpful insights. Table 1 lists the 
obtained results, and Table 2 gives insights into the corre-
sponding computational effort.

The obtained best shapes are shown in Fig. 11.

Fig. 10  a 4D shape arithmetics 
with significant representation 
errors, especially for the hexa-
hedron and the final shape. b 8D 
shape arithmetic with improved 
representation compared to 4D 
latent code but still yielding 
slightly imprecise results. c 16D 
shape arithmetic showing per-
fect resemblance of all training 
shape and also a clean resulting 
shape. Shape arithmetics for 
different latent dimensions. A 
linear thickening in the center 
plane is imposed on a hexagonal 
base body by evaluation of the 
latent code as zE4thick − zE4 + zE6 , 
where zE4thick , zE4 , and zE6 denote 
the latent codes of the thickened 
cube, the regular cube, and the 
regular hexahedron, respectively

Table 1  Different optimization algorithms and latent space dimen-
sions compared by best objective value and contrasted to a nine-
dimensional FFD 1b

Smaller values correspond to better results using the aforementioned 
objective formulation

4 8 16 (FFD)

SOGA −0.0726 −0.0710 −0.0750 –
DIRECT −0.0645 −0.0738 −0.0769 −0.0422

Table 2  Different optimization algorithms and latent space dimensions compared by the final iteration count, the obtained objective value, and 
the number of total iterations; contrasted to a nine-dimensional (FFD)

4 8 16 (FFD)

# Iteration(s) Optimal Total Optimal Total Optimal Total Optimal Total

SOGA 768 1000 752 1000 534 1000 – –
DIRECT 96 113 129 143 138 149 16 67
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Comparing the optimized geometries shows interesting 
results from a plastics processing point of view. On the one 
hand, the triangular shape and a mixing element that wid-
ens towards the top appear advantageous. One should note, 
however, that these deformations do not correspond to a 
general optimum for plastics engineering but are merely the 
best possible deformations within the range permitted by the 
training set. Choosing an even more diverse training set is 
expected to yield even further improved shapes.

More relevant for this study (with a focus on neural nets 
as shape parameterizations) is the comparison of conver-
gence, the achieved mixing, and the difference and simi-
larities in the results. Table 1 shows that for the chosen 
shape optimization problem, the DIRECT algorithm has no 
disadvantages compared to SOGA and converges reliably. 

Simultaneously, the shape parameterization’s dimensional-
ity appears to influence the optimization because the four- 
and eight-dimensional neural networks lead to optimized 
triangles. In contrast, the 16-dimensional case renders the 
top-expanded quadrilateral optimal. Common to all results 
is a skewed and slightly twisted geometry.

The objective value per generation of the SOGA algo-
rithm is shown in Fig. 12. For all dimensions, each gen-
eration tends to evolve towards better objective values. We 
investigate if improvements in objective values can be related 
to certain trends in terms of geometric features. Within the 
latent space, features are expressed as multi-dimensional 
vectors, as opposed to single-dimensional values; thus, latent 
code arithmetics [24, 41], for example, are often used to 
explore learned features (cf. Figure 10). Furthermore, the 

Fig. 11  a FFD-Direct, b 
4D-Direct, c 4D-Soga, d 
8D-Direct, e 8D-Soga, f 
16D-Direct, and g 16D-Soga. 
Optimization results obtained 
for all different latent codes 
and optimization algorithms 
compared to an existing (FFD)-
based shape optimization

Fig. 12  a 4D latent code with 
40 populations per genera-
tion. b 8D latent code with 80 
populations per generation. 
c 16D latent code with 160 
populations per generation. 
Comparison of objective value 
per population among different 
latent dimensions from SOGA 
algorithm
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latent code alone does not provide information about the 
associated geometric features. To determine the correspond-
ing features, we begin by searching for the nearest neighbor 
in the training set based on Euclidean distance. From the 
nearest neighbor, we can then quantify applied features, i.e., 
deformations. The mean values of the approximated features 
are shown in Fig. 13. It shows that diverse features, even 
with less significance, were visited at the beginning of the 
iterations. Across all generations, relatively high magnitudes 
of “rotate”, “rotate top”, and “shrink along y”, as well as a 
low magnitude of “expand top”, consistently appear in all 
the results The four-dimensional latent space also includes 
consistent application of “shrink top”. Interestingly, all of 
the consistently applied features are reflected in Fig. 11.

The behavior of objective values for DIRECT is not sepa-
rately investigated, as the objective values and geometric 
features can highly fluctuate during partitioned sampling of 
the latent space. Consequently, DIRECT’s iteration history 
does not yield significant insight regarding the deformation 
trend.

A noticeable difference between the spline-based and neu-
ral-net-based shape optimization is that the neural-net-based 

shape parameterization encodes several shapes, of which 
multiple may mix the melt equally well. Because of this, 
from the practitioner’s point of view, it does make sense to 
not only look at the best result but rather compare numerous 
equally optimal designs and derive design rules from that 
comparison. Figure 14 shows such a comparison and reveals 
one advantage of evolutionary algorithms.

While the DIRECT algorithm converges locally and, 
therefore, the ten best designs are geometrically similar, the 
generative nature of SOGA allows the practitioner to iden-
tify possibly equally well-working designs (cf. Figures 14f 
and g) amongst which the most economical option may be 
chosen. Such a choice allows one to account for further 
restrictions regarding screw cleaning, manufacturability, 
and others.

6  Discussion and outlook

In this work, we studied the applicability of generative 
models as shape parameterizations. We chose numerical 
shape optimization of dynamic mixing elements as a use 

Fig. 13  a 4D latent code with 
40 populations per genera-
tion. b 8D latent code with 80 
populations per generation. 
c 16D latent code with 160 
populations per generation. 
Comparison of mean value of 
approximated applied defor-
mation per population among 
different latent dimensions from 
SOGA algorithm
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case. The developed shape parameterization’s fundamen-
tal principle is to exploit neural nets’ ability to construct 
a dimension reduction onto a feature-dense, low-dimen-
sional latent space. It should be noted that other interpola-
tion methods may be able to construct similar interpolation 
spaces. However, this work demonstrates neural networks’ 
exceptional generalization power yields excellent shape 
parametrization, which particularly allows interpolation 
between shapes of varying topologies.

First, the nature of this low-dimensional space is stud-
ied by t-SNE-plots. These plots give visual evidence that 
the generative models create smooth shape parameteriza-
tions that enable one to use classical, heuristic optimi-
zation algorithms. Comparing genetic to such heuristic 
algorithms, Table  2 reveals that the SOGA algorithm 
required significantly more iterations (i.e., simulations). 
Additionally, Table 1 shows that in the studied examples, 
this additional computational effort is not reflected pro-
portionally by improved mixing. One may expect that the 
SOGA algorithm’s random nature may be better suited to 
explore the hardly interpretable latent space. However, the 
results suggest a smoothness of the learned parameteri-
zation that renders deterministic methods like DIRECT 
equally well suited for optimization in the latent space.

In addition, to the general applicability of generative 
models, we study the influence of different latent dimen-
sions. While the actual optimization results appear pleas-
ing, Figs. 9 and 10 suggest that very compressed (i.e., 
four-dimensional) latent spaces may not be used for opti-
mization purposes. Analogously, no direct preference 
between the 8- and 16-dimensional results can be drawn 
from the optimization results. Similarly, Fig. 10 indicates 
that higher dimensional latent spaces yield more precise 
shape encoding, which seems generally preferable. Since 
the overall number of iterations until convergence of the 
optimization problem is comparable, the 16-dimensional 
parameterization might be chosen over the 8-dimensional 
variant.

As intended, a fundamental improvement over estab-
lished low-dimensional shape parameterizations is that the 
new approach covers a much broader design area in a single 
optimization. Since its fundamental concept is to encode 
diverse shapes, optimizations lead to numerous, nearly 
equally optimal shapes. Consequently, this novel approach 
extends on the existing methods in that it allows the prac-
titioner to derive design features that enhance mixing most 
and for a wide range of basis shapes. Therefore, rather than 
creating complex shape parameterizations, the crucial step 
towards optimal design reduces to the creative definition of 
a training set.

A significant challenge in using neural-net-based shape 
parameterization is proper control of the output shapes’ 
size. This work implements a volume constraint to avoid 
simple size maximization of the mixing elements. However, 
a reformulated objective, such as penalizing pressure loss, 
may circumvent such adverse designs. Alternatively, a scale 
factor may be added as an additional optimization variable. 
Both size control and efficient training set generation may 
be topics of further studies.

Given the presented results, utilizing the feature-rich 
latent representations and their immense generalization 
power has a significant potential to improve established 
industrial designs.

Finally, the presented framework can be extended by 
adopting neural-network-based simulators, as recent works 
[51–55] have shown promising results. Using neural-net-
work-based simulators, the evaluations of objective func-
tions during the online phase become mere forward pass(es) 
of neural nets that replace costly numerical simulations. 
Combining the presented parametrization and aforemen-
tioned simulators, one could also benefit from the differen-
tiability of neural networks to acquire gradients, which natu-
rally opens the door to other gradient-based optimization 
algorithms. It is worth noting that if the objective function 
is formulated as part of the network, automatic differentia-
tion can be leveraged to its full potential, allowing for the 

Fig. 14  a J = −0.0750 ; b 
J = −0.0712 ; c J = −0.0656 ; d 
J = −0.0633 ; e J = −0.0602 ; f 
J = −0.0601 ; g J = −0.0595 ; h 
J = −0.0592 ; i J = −0.0562 ; j 
J = −0.0535 . Ten best shapes 
obtained from 16D SOGA 
optimization. Except for the 
sixth-best shape (h), all shapes 
feature an expanded top, similar 
orientation, and appear widened 
in y direction (i.e., perpendicu-
lar to the main flow direction)
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efficient computation of derivative values with respect to 
design parameters. Both neural-network-based simulators 
and development of suitable objective functions will be 
investigated in the future work.
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