
Vol.:(0123456789)1 3

Engineering with Computers
https://doi.org/10.1007/s00366-023-01839-2

ORIGINAL ARTICLE

Neural networks vs. splines: advances in numerical extruder design

Jaewook Lee1  · Sebastian Hube2  · Stefanie Elgeti1,2 

Received: 26 January 2023 / Accepted: 23 April 2023
© The Author(s) 2023

Abstract
In this paper, we present a novel approach to geometry parameterization that we apply to the design of mixing elements for
single-screw extruders. The approach uses neural networks of a specific architecture to automatically learn an appropriate
parameterization. This stands in contrast to the so far common user-defined parameterizations. Geometry parameterization
is crucial in enabling efficient shape optimization as it allows for optimizing complex shapes using only a few design vari-
ables. Recent approaches often utilize computer-aided design (CAD) data in conjunction with spline-based methods where
the spline’s control points serve as design variables. Consequently, these approaches rely on the design variables specified
by the human designer. This approach results in a significant amount of manual tuning to define a suitable parameterization.
In addition, despite this effort, many times the optimization space is often limited to shapes in close proximity to the initial
shape. In particular, topological changes are usually not feasible. In this work, we propose a method that circumvents this
dilemma by providing low-dimensional, yet flexible shape parametrization using a neural network, which is independent of
any computational mesh or analysis methods. Using the neural network for the geometry parameterization extends state-of-
the-art methods in that the resulting design space is not restricted to user-prescribed modifications of certain basis shapes.
Instead, within the same optimization space, we can interpolate between and explore seemingly unrelated designs. To show
the performance of this new approach, we integrate the developed shape parameterization into our numerical design frame-
work for dynamic mixing elements in plastics’ extrusion. Finally, we challenge the novel method in a competitive setting
against current free-form deformation-based approaches and demonstrate the method’s performance even at this early stage.

Keywords  Shape optimization · Single-screw extruder · Neural networks · Mixing · Filter · Geometry parameterization

1  Introduction

Modern numerical design is boosted by high-performance
computers and the advent of neural networks. While neural
networks are well-established in fields such as image recog-
nition, their power to further polymer processing is yet to be

fully discovered. This work attempts to contribute towards
this goal. We combine deep neural networks with established
shape-optimization methods to enhance mixing in single-
screw extruders via a novel numerical design.

In many polymer processing steps, screw-based machines
play a crucial role. Screws are, e.g., used as plasticators to
prepare polymer melts for injection molding or in extruders
in profile extrusion. For simplicity, we will, in the remainder,
summarize all such screw-based machines as extruders. Sin-
gle-screw extruders (SSEs) are especially widespread among
the many variants of extruders for their economic advan-
tages and simple operation. Economics also drives current
attempts to further increase the throughput. This increase
is achieved using fast-rotating extruders. However, the cur-
rent SSE’s poor mixing ability has limited the advances and,
therefore, improving the mixing ability is a topic of research
[1–6].

Special focus is put on improved mixing elements that
alleviate this limitation. Approaches to improve mixing

 *	 Jaewook Lee
	 jaewook.lee@tuwien.ac.at

	 Sebastian Hube
	 hube@cats.rwth-aachen.de

	 Stefanie Elgeti
	 stefanie.elgeti@tuwien.ac.at

1	 Institute of Lightweight Design and Structural Biomechanics
(E317), TU Wien, Gumpendorfer Str. 7, 1060 Vienna,
Austria

2	 Chair for Computational Analysis of Technical Systems
(CATS), RWTH Aachen University, Schinkelstr. 2,
52062 Aachen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-023-01839-2&domain=pdf
http://orcid.org/0000-0002-9321-4176
http://orcid.org/0000-0001-7795-9760
http://orcid.org/0000-0002-4474-1666

	 Engineering with Computers

1 3

elements have been proposed based on analytical deriva-
tions, experimental, and simulation-based works. In the fol-
lowing, we review recent developments in these three areas.
Subsequently, we outline relevant developments in the field
of neural networks and, finally, motivate the use of neural
nets in the numerical design of mixing elements.

Due to the high pressures and temperatures, analyzing
the flow inside extruders is a difficult task. Early studies
thus focus on analytical models and geometrically simpler
screw sections, e.g., the metering section [7]. Experiments
complement these theoretical derivations and allow extend-
ing the analysis to more complex screw sections. As reported
by Gale, typical configurations rely on photomicrographs of
the solidified melt [2] that allow either investigating cross
sections of the flow channel or the extrudate. One example
of such flow channel photomicrographs is Kim and Kwon’s
pioneering work on barrier screws via cold-screw extru-
sion [8]. Apart from investigating solidified melt streams,
attempts to analyze the melt flow during the actual opera-
tion of extruders are occasionally reported, e.g., by Wong
et al. [9]. Despite the great success of such experiments, a
standard limitation is their focus on a single operating con-
dition. In contrast, numerical analysis allows studying dif-
ferent designs and operating points at significantly reduced
costs and, therefore, proliferates. In the following, we give
an overview of such numerical analyses.

One early example is Kim and Kwon’s quasi-three-
dimensional finite-element (FE) simulation of the striation
formation, studying the influence of the barrier flight [10].
Another example is the work by Domingues et al., who
obtain global mixing indices for dispersive and distributive
mixing in both liquid–liquid and solid–liquid systems [11].
Utilizing a two-dimensional simplification, their simulation
domain extends from the hopper to the metering section, and
their framework even allows for design optimization.

While these early works typically neglect mixing
sections, studying the influence of mixers has recently
become a vital research topic. Celik et al. use three-dimen-
sional flow simulation coupled with a particle-tracking
approach to determine the degree of mixing based on a
deformation-based index [1]. Another example is Mars-
chik et al.’s study comparing different Block-Head mix-
ing screws in distributive and dispersive mixing [6]. A
comparable study—focused on the mixing capabilities of
different pineapple mixers—is reported by Roland et al.
[3]. Both works rely on three-dimensional non-Newtonian
flow simulations. Besides such works towards the numeri-
cal assessment of given screw designs, numerical design is
also reported, however, partially in other fields of polymer
processing. For example, Elgeti et al. aim for balanced
dies and reduced die swell by applying shape optimiza-
tion [12, 13]. Design by optimization is also reported by
Gaspar-Cunha and Covas, who alter the length of the feed

and compression zones, the internal screw diameters of
the feed and metering zone, the screw pitch, and the flight
clearance [14]. Potente and Többen report another recent
study devoted to mixing elements that develops empiri-
cal models for shearing sections’ pressure-throughput and
power consumption for numerical design [15]. Finally, a
first approach combining the shape-optimization methods
inspired by [12] with a mixing-quantifying objective func-
tion to design mixing sections is reported in [16].

However, the shape optimizations above share one com-
monality: they essentially only modify predefined geom-
etry features. This is accepted in many cases like die or
mold design, where the final product’s shape is close to
the initial one (i.e., the shape variation is small). How-
ever, topologically flexible shape parameterizations offer
far greater optimization gains for mixing element design,
because the optimal geometry might differ significantly
from the initial shape. The achievable improvements moti-
vate research on geometry parametrization.

Established shape-parameterization approaches include
radial basis functions (RBF) [17], surface parameteriza-
tions using Bezier surfaces [18], and surface splines [19].
All these methods may be understood as filters that param-
eterize a geometry by a few variables at the price of a
lack of local control. The use of surface splines in shape
optimizations can also be found in [12, 13]. A similar
concept to surface splines is free-form deformation (FFD)
[20] that encapsulates the body-to-deform in a volumetric
spline, which allows tailoring the spline further towards
an efficient optimization. An alternative approach that
does, however, not parameterize the geometry as a filter is
given using the computational grid’s mesh nodes as shape
parameters [21]. Fortunately, with the advent of neural
networks, novel means of shape parameterizations offering
outstanding flexibility emerged. Finalizing the introduc-
tion, we will summarize the most relevant works in this
field.

Many neural networks are essentially classifiers. These
neural networks are non-linear algorithms that are opti-
mized, (i.e., trained), to determine—possibly counterin-
tuitive—similarities and dissimilarities to discriminate
between objects. One typical use case is image recognition
using red–green–blue (RGB) pixel data. Neural networks
can, however, be trained to classify features far beyond
RGB-pixel values. One example is style transfer or texture
synthesis [22]: instead of aiming at reproducing pixel data,
output images are generated in combination with perceptual
data. This allows image transformations, where one image’s
style is transferred to the motive of another. An extension
of these ideas to three-dimensional shapes is first reported
by Friedrich et al. [23]. Comparing different shape repre-
sentations, the authors find that style transfer is applicable
to shapes as well.

Engineering with Computers	

1 3

Our work is especially inspired by Liu et al. [24], who uti-
lize a so-called Variational Shape Learner, that learns a voxel
representation of three-dimensional shapes. Learning here
refers to creating a so-called latent space, a low-dimensional,
feature-rich embedding space to represent and morph between
various shapes. Even beyond simple shape interpolation, it is
shown that—using the latent representation—geometry fea-
tures can be transferred from one to another shape. Successful
learning of voxel-based shapes can also be found in [25, 26]. In
terms of shape representations, pointcloud-based approaches
[27–29], which utilize coordinates of three-dimensional point
sets, as well as polygonal mesh-based approaches with either
template meshes [30, 31] or multiple mesh planes [32] are
widely adopted.

While previously mentioned representations show that
learning an embedding space of three-dimensional shapes is
possible, each work lacks at least one of the following prop-
erties: water-tight surfaces, flexible output resolution, and
smooth and continuous surface details. Recent works satisfy
the aforementioned properties by learning shapes represented
by continuous implicit functions, such as signed-distance func-
tions (SDFs) [33] and binary occupancies [34, 35], from which
the shapes are extracted as isosurfaces. This work investigates
the shape-parameterization capabilities of the DeepSDF auto-
decoder [33].

We exploit the feature richness of this latent space as an
aid to reduce the optimization space’s dimension for the given
mixing-element shape optimization. The important novelty
compared to recent spline-based filters is that the neural net-
work finds—possibly counterintuitive—ways to commonly
parameterize a set of significantly different shapes irrespec-
tive of user-defined design features. This abstraction from the
human designer yields low-dimensional yet far more flexible
shape parameterizations, which sets the motivation for the
work presented here.

This paper is structured as follows: We start in Sect. 2 by
summarizing numerical shape optimization and splines, which
leads to the concept of geometric filters. Based on that, we
explain in Sect. 3 how neural networks can be utilized to create
suitable geometry parameterizations for shape optimization. In
Sect. 4, we review the utilized software components, summa-
rize the proposed framework’s building blocks, and detail the
specific differences to spline-based shape optimization setups.
The results obtained from the new approach are presented in
Sect. 5, including comparisons to current spline-based designs.
Finally, we discuss the results and outline further develop-
ments in Sect. 6.

2 � Geometric filters as a component
of shape‑optimization frameworks

The following section discusses shape parameterizations
as one building block of numerical shape-optimization
frameworks. Therefore, we first introduce the general
shape optimization problem. After that, we recall spline-
based shape parameterizations. Based on this general
introduction of shape-optimization frameworks, we will
continue by discussing the specific changes needed to
adapt neural nets in Sect. 3.

2.1 � Building blocks of numerical
shape‑optimization frameworks

The general optimization problem is formulated as the
minimization of a cost function J that relates the design
variables � to some output—here, the degree of mixing
ability obtained with a specific mixing element, (i.e., a
particular design). In shape optimization, this minimiza-
tion problem is typically solved subject to two sets of con-
straints: (1) inequality and equality conditions, as well as
bound constraints on the design variables and (2) partial
differential equations (PDEs) that need to be fulfilled by
each design to qualify as a feasible solution. This results
in the following formulation:

 Here, (1d) and (1e) describe bound constraints on the
optimization variables � , whereas (1c) denotes the set of
governing PDEs. One approach to numerically solve such
a PDE-constraint design problem is to alternately compute
(1) shape updates and (2) the cost function value. For the
studied use case of mixing-element design, this results in
the computational steps depicted in Fig. 1.

First, we update the shape (i.e., the simulation domain
covering the mixing element). We use this modified com-
putational domain to compute the flow field from which we
afterwards infer the objective (i.e., the cost function). The
design loop is closed by feeding back the cost function value
to the optimization algorithm that now computes an updated
shape. This loop continues until any termination criterion,

(1a)J ∶ ℝ
n�

↦ ℝ,

(1b)argmin
�∈Σ⊂ℝn

J(�),

(1c)s.t.F(�) = 0 inΩ(�),

(1d)�i ≥ �min,i, i = 1, ...n� ,

(1e)�i ≤ �max,i, i = 1, ...n� .

	 Engineering with Computers

1 3

such as a minimal objective decrease, a maximum number
of iterations, or another condition, is met.

2.2 � Spline‑based shape parameterizations

In classical shape-optimization frameworks, the actual shape
parameterization, or geometry filtering, is often achieved
using splines. The following paragraph, therefore, first pro-
vides a summary of splines illustrating how one achieves the
filtering. For a detailed description of B-splines, we refer the
reader to the book of Piegl and Tiller [19]. After that, we
detail on boundary splines and FFD as two particular use
cases of spline parameterizations.

Splines belong to the group of parametric shape represen-
tations. Therefore, each coordinate in the parametric space
is connected to one point in physical space. This mapping
is best understood using a simple B-spline surface that is
written as

where � and � denote the parametric coordinates (two for
the surface), Ni,r denote the interpolation or basis functions
of order r in the first parametric direction, Nj,p denote the
basis functions of order p in the second parametric direc-
tion, and finally, B denotes the support or control points.
Figure 2 illustrates the concept and visualizes how single
control points affect the geometry.

The control grid (i.e., the polygon spanned by the control
point) aligns with the � and � directions, and any parametric
coordinate (within the spline’s parametric bounds) maps to
one point of the blue shape. Consequently, the spline map-
ping allows controlling an arbitrary number of parametric
points by a constant, typically low, number of control points.
Being able to control a high number of points with few con-
trol points will be the basic idea of filtering using splines.

(2)S(�, �) =

m
∑

j=1

n
∑

i=1

Ni,rNj,p(�, �)Bi,j,

One can obtain geometry parameterizations from splines
in multiple ways. As shown in Fig. 2, one way uses the
B-splines as a boundary representation. Such spline-based
boundary representations are common in CAD. Using these
CAD representations, their control points (i.e., the red points
in Fig. 2) can be directly used as design variables in shape
optimization. However, this use of the CAD’s geometry
parameterization limits the design process, because a given
spline may not be able to represent shapes substantially dif-
ferent from the initial design. Consequently, if modifications
of the spline’s parameterization, such as inserting additional
control point lines, are to be avoided, this limitation restricts
the use of the CAD spline to use cases that deal with small
shape updates such as die or mold design [12].

An alternative to using boundary B-splines is FFD [20].
In FFD, first, an—often volumetric—spline is constructed
around the body to be deformed. Second, this volumetric
spline is deformed, and finally, the resulting deformation
field is imposed on the enclosed body. Figure 3 visualizes
this process.

The advantage of FFD is that the spline is constructed
irrespective of the enclosed shape, which gives complete

Fig. 1   Building blocks of a shape-optimization framework. The shape
is updated by a geometry kernel, such as FFD. Subsequently, the flow
field is computed using this updated shape and given as input to the
objective calculator. Based on the current design variables and the

design’s objective value, the optimization algorithm computes opti-
mized shape parameters and restarts the design loop until at least one
termination criterion for the design loop is met

Fig. 2   B-spline representation (blue) obtained from control points
(red) for a bi-quadratic B-spline. The upper four control points are
rotated, illustrating a possible deformation (colour figure online)

Engineering with Computers	

1 3

freedom in choosing degree and resolution. This freedom
allows tailoring the spline to the designer’s needs (rather
than using a given parameterization optimized for CAD
usage). Therefore, FFD is widely applied, with just one
example being the recent works by Lassila and Rozza com-
bining FFD and reduced order modeling [36]. A combina-
tion of both methods, boundary B-splines and FFD, will be
compared against the novel shape parameterization based on
neural networks that use FFD as a generic interface to mod-
ify any given CAD spline, which in turn is used to update
the boundary of the simulation domain [16].

3 � Shape parametrization using neural
networks

As explained in Sect. 2, the prime objective of this work is
to investigate how neural networks can be used to encode
different shapes in a single set of a few continuous variables.
To train the network, thereby determining such a condensed
representation, it has to be provided with suitable data. Suit-
able here means that the input data (i.e., shapes) are pro-
vided in such a way that the network can learn from these
data. In addition—using the same data format—we need to
be able to produce high-quality computational meshes from
the neural network’s output.

In the following, we first introduce deep generative
models and then describe a shape representation meeting
these two requirements. Finally, we discuss the training
data generation and utilization of neural networks as shape
generators.

3.1 � Deep generative models

With the advent of generative models, an alternative
approach to shape parameterization emerged. In this sub-
section, we review two of the most common approaches of
generative models, explain their basic concepts and use, and
detail how they can be employed for geometric filtering.

Generative models are an application of neural net-
works and, thus, in essence, classification algorithms.

Classification here means the ability to determine whether
a certain object is in some measure close to a specified
input. Conversely to just classifying input, such models
can also be used to generate an output that resembles an
input. Resemble, however, needs to be explained. In most
applications, the user is not interested in reproducing a
given input exactly. Instead, the output should only be like
the input (i.e., the output should feature a slight varia-
tion). Generative models attempt to achieve this goal via
statistical modeling. An excellent guide to generative mod-
els is found in [37], with special focus on the Variational
Autoencoder (VAE).

The VAE, like the traditional autoencoder, consists of an
encoder and a decoder and aims to reproduce any given data
while passing the input through a bottleneck. However, its
probabilistic formulation using the so-called “reparametriza-
tion trick” provides an exceptional advantage over the tradi-
tional autoencoder in practice [38]. The roles of the encoder
and the decoder can be interpreted as two separate processes.
The encoder learns relations in the given data and encodes
them in the so-called latent variables, z . Given these latent
variables, the decoder, in turn, learns to produce data that
are likely to match the input. Once trained, the user can omit
the encoder and directly generate new data from sampling
the latent space. For details, we refer to [37, 38], and for
applications, we refer to [24] and [39].

The difference between the spline-based approach and
generative models is the choice of latent variables. When
the human designer creates a spline parameterization that
allows modifying geometry in the desired way, the optimi-
zation variables are the control points, which are intuitively
placed in ℝ3 by the designer. Generative models, in contrast,
learn a latent space and explicitly assume that the single
latent variables do not have an intuitive interpretation. As a
result, data are compressed from a high-dimensional intui-
tive design space, in our case, 𝜒 ⊂ ℝ

3×n , onto a hardly inter-
pretable, feature-dense, low-dimensional latent space Z. In
short, generative models use the computational power of
neural networks to find a dense classification space that one
can sample to produce new data. For the VAE, this process
is depicted in Fig. 4a.

Fig. 3   Free-form deforma-
tion using a volumetric spline
(light blue) applied to a mixing
element (pink). The control
points are omitted in this figure.
The embedded shape deforms
correspondingly to the embed-
ding, simple, volumetric spline
(colour figure online)

	 Engineering with Computers

1 3

A competing concept to VAEs are Generative Adversarial
Networks (GANs). Their basic structure is shown in Fig. 4b.
GANs, first introduced by Goodfellow et al. [40], follow a
different concept and train two adversarial nets, the genera-
tor and the discriminator. In GANs, the generator is trained
to create data that mimics real-world data, while the dis-
criminator tries to determine whether or not a dataset was
artificially created. In a minimax fashion, the generator’s
learning goal is to maximize the probability of the discrimi-
nator making a wrong decision.

GANs have proven to be an excellent tool for shape mod-
eling. Wu et al., for example, apply a GAN for 3D shape
generation and demonstrate their superior performance com-
pared to three-dimensional VAEs. They even use a GAN to
reconstruct three-dimensional models from two-dimensional
images based on the a VAE output that is used to infer a
latent representation for these images [41]. As in [24], Wu
et al. also demonstrate the ability to apply shape interpola-
tion and shape arithmetic to the learned latent representa-
tion. More recently, Ramasinghe et al. [28] utilize a GAN to
model high-resolution three-dimensional shapes using point
clouds.

3.2 � Implicit shape representation

The neural network learns a mapping between the low-
dimensional latent space and a three-dimensional body. To
construct such a mapping, we first need to define how to rep-
resent our shapes (i.e., define what data the neural network

actually has to learn). Before presenting the approach cho-
sen in this work, we review standard methods and their
limitation.

Three ways of shape representation are common in
machine learning: (1) voxels, (2) point clouds, and (3)
meshes [33]. The problem with meshes is that the mesh
topology also prescribes the possible shape topologies. Point
clouds, in contrast, can represent arbitrary topologies, but
prescribe a given resolution. Finally, voxels can represent
arbitrary topologies and vary in resolution, but, unfortu-
nately, the memory consumption scales cubically with the
resolution. Because of these drawbacks, the network utilized
in this work learns SDFs following a network configuration
originally proposed by Park et al. [33].

SDFs provide the distance to the closest point on the to-
be-encoded surface for every point in space. Furthermore,
encoded in the sign, information on whether the point lies
inside or outside the surface is available. Using such con-
tinuous SDF data, a shape is then extracted—at an arbi-
trary resolution suitable for meshing—as its zero-valued
isosurface.

3.3 � Training set generation

As mentioned in Sect. 3.1, training a neural network requires
a set of source shapes. However, to the authors’ knowledge,
no shape library exists for mixing elements in single screw
extruders. Thus, we explain an approach to building custom
training sets.

Fig. 4   a Autoencoder provid-
ing an input-to-output mapping
while passing data through a
bottleneck, i.e., the low-dimen-
sional latent representation. b
Generative adversarial model
learning latent space by infer-
ring representations that enable
generating output indistinguish-
able from the input. Two main
concepts of deep generative
networks: variational autoen-
coders and generative adver-
sarial networks

Engineering with Computers	

1 3

To generate a suitable training set, we first select cat-
egories of basis shapes that should be considered—pin and
pineapple mixers in our case. From this choice, we arbitrar-
ily infer a total of four basis shapes (i.e., triangle, square,
hexagon, and cylinder—cf. Figure 5). At the same time, we
define a set of deformations, which should be considered
within the design space. Examples of applied deformations
are given in Fig. 5.

We start by creating basis shapes represented as trian-
gular meshes. For each basis shape, we apply the afore-
mentioned deformations and their combinations in varying
magnitudes using FFD to gather a rich set of shapes. To
obtain SDF-training data from these shapes, we follow the
approach by Park et al. [33]: first normalize each shape to fit
into a unit sphere, and then sample 500,000 pairs of spatial
coordinates and their corresponding SDF values using the
trimesh library [42] from each shape. In total, 2659 training
shapes are generated, which constitute the accessible defor-
mations within the design space.

3.4 � Shape generator

As explained, the shape generator’s task is to provide a mix-
ing element given a set of optimization variables. The shape
generator—in this work—is thus built around the neural net-
work, which is presented in the following.

The utilized neural network is based on DeepSDF auto-
decoder [33]: a feed-forward network with ten fully con-
nected layers, with each of the eight hidden (i.e., internal)
layers having 256 neurons and ReLU activation functions.
In contrast to autoencoders, the autodecoder only trains the
decoder using a simultaneous optimization of the network
parameters and the latent code during training. We inves-
tigate 4, 8, and 16 as latent dimensions, l. The input layer
consists of these l neurons concatenated with a three-dimen-
sional query location. The output layer has only one neuron
with a tanh activation function. For details on the chosen
SDF network, we, again, refer to [33]. To train the network,
we use the ADAM optimization algorithm [43]. To utilize
improved learning rates, we follow a progressive approach

with the initial rates �0 = 5e − 4 for � , and �0 = 1e − 3 for
z , and a decay as

where e denotes the current training iteration (i.e., epochs)—
and % denotes integer division. The network’s training can
be seen as the parametrization of the shapes.

To extract isosurfaces (i.e., to generate new mixing ele-
ments) from the trained network’s SDF output, we sample a
discrete SDF field and apply a marching cube algorithm [44]
in the implementation of [45]. Finally, we apply automated
meshing using TetGen [46] to obtain a simulation domain
as depicted in Fig. 6, including the new mixing element.

4 � The developed shape‑optimization
framework

In general, our framework consists of three building blocks:
(1) shape generator, (2) flow solver, and (3) optimizer, which
will be described in the following.

Starting with an initial set of optimization variables, �0 ,
the shape generator creates a new mixing element Ω

(

�0

)

 .
The flow solver then computes the flow field around this

(3)� = �0 ⋅
(

0.5e%500
)

,

Fig. 5   a Square base, b cylin-
der base, c shrink along x, d
translate top x, e translate top y,
f expand middle, g expand top,
and h rotate top. Examples of
basic shapes and applied defor-
mations. In total, a triangle, a
square, a cylinder, and a hexa-
gon are used as basis shapes

Fig. 6   Simulation domain with single mixing element resembling the
flow around a single mixing element in the unwound screw channel.
Flow conditions are shown in blue using a barrel rotation setup. For
a detailed description of the objective function and governing equa-
tions, we refer the reader to [16]

	 Engineering with Computers

1 3

mixing element, which the optimizer evaluates to deter-
mine the flow’s degree of mixing. Based on the obtained
mixing value and by comparison to previous iterations, an
optimization algorithm determines a new set of optimiza-
tion variables. This sequence is iteratively re-run until either
a maximum number of iterations is reached or any other
termination criterion—typically a good objective value or
insignificant objective decrease—is met.

4.1 � Flow solver and simulation model

The flow solver and simulation model is identical to the
one introduced in [16] and therefore only summarized in
the following. The flow field induced by the various mix-
ing elements is obtained from solving the steady, incom-
pressible non-isothermal Navier–Stokes equations using
a Carreau model and WLF temperature correction. The
governing equations are discretized with linear stabilized
finite elements and solved using a Newton linearization
and a GMRES iterative solver. Subsequently, we solve a set
of advection equations using the identical configuration to
mimic particle tracking, which we use as an input to our
objective function. All methods are implemented in an in-
house flow solver.

We make two simplifications to our simulation model
(i.e., the single-screw-extruder flow channel): first, we sim-
ulate the flow around only a single mixing element instead
of simulating the entire mixing section. Second, we assume
barrel rotation in an unwound flow channel section. Both
assumptions yield significantly reduced computational
costs while allowing a qualitative mixing improvement.
To assess mixing, we mimic particle tracking by solving
a series of advection equations yielding an inflow–outflow
mapping for particles advected by the melt flow. We process
this advection information by subdividing a portion of the
inflow domain into smaller rectangular subdomains. In each
of these rectangles, we select a set of particles, such that the
particle set’s bounding box coincides with the rectangular
subdomain. Then, we follow each particle as they are con-
veyed through the domain, store each particle’s position at
the outflow domain, and finally construct a convex hull at
the outflow around the same sets of points. Averaging the
convex hull’s length increments between inflow and out-
flow yields a simple yet robust objective function inspired by
interfacial area measurements. Using this objective function,
we found that such a simulation model provides a good bal-
ance between accuracy and computational efficiency [16].
Figure 6 depicts the chosen simulation domain.

4.2 � Optimizer

We utilize the open-source optimization library Dakota [47]
to drive the design process. Two different algorithms are

selected and described in the following. The first algorithm
is the Dividing RECTangle (DIRECT) algorithm, first intro-
duced in [48]. DIRECT belongs to the category of branch-
and-bound methods and uses n-dimensional trisection to
iteratively partition the design space. To find minima, it
follows the approach of Lipschitzian optimization, which
identifies the design space partition that should be further
sampled by evaluating a lower bound to the objective value
in each partition. The partition with the lowest lower bound
is chosen and further sampled. DIRECT modifies that con-
cept and computes multiple lower bounds that weight the
current sampling value (i.e., the objective value in the parti-
tion center). This promotes to further sample partitions with
good objective values against the partition size, which per-
mits to effectively sample large areas of unexplored design
space. Thereby, DIRECT identifies multiple partitions that
are possibly optimal and allows for global convergence.

The second algorithm utilized in this work is the single-
objective genetic algorithm (SOGA) introduced (as its multi-
objective variant) in the JEGA package [49]. As it belongs
to the class of genetic algorithms, it solves optimization
problems by recreating biological evolution. Therefore, each
optimization run consists of numerous samples referred to
as the population. Members of the population are paired and
recombined in such ways that the fitness (i.e., the objective
value) is successively improved. Regarding its application
in this work, it is especially noteworthy that the recreation
of evolution includes a mutation step, which modifies or re-
initializes design variables randomly. The added randomness
allows the algorithm to escape locally convex regions of the
design space. Such evolutionary optimization approaches
generally converge slower yielding higher computational
costs. However, they are often able to find better results than
non-evolutionary algorithms. For both DIRECT and SOGA,
we rely on the default convergence criterion and a maximum
of 1000 iterations as a termination criterion. Additionally,
for SOGA, we choose a population size of ten times the
number of design dimensions. The complete computational
framework is depicted in Fig. 7.

5 � Numerical results

This section presents the results obtained using shape
parameterizations from neural networks.

Thereby, Sect. 5.1 focuses on the results of the offline
phase, i.e., the training of the shape-representing neural net-
work. In particular, we will discuss the differences in the
constructed latent space based on its dimension using the
widely used data reduction technique t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) to visualize the learned,
n-dimensional shape parameterization. In Sect. 5.2, we then

Engineering with Computers	

1 3

present the mixing shapes that could be obtained using our
shape-optimization approach.

5.1 � Latent space dimension

One of the most important choices is the target dimension
of the embedding space l. In all established filtering mecha-
nisms like radial basis functions, free-form deformation,
CAD-based approaches, and even mesh-based methods, the
practitioner has to balance improved flexibility against the
computational demand. Despite a potentially more compact
and dense embedding with neural networks, this is still of
relevance and manifests itself in the dimension of the chosen
latent space. Previous works utilized only a very small num-
ber of optimization variables. Elgeti et al. vary between only
one and two parameters [12]. Other works by the authors,
however, showed that also for six design variables good
results are obtained [16]. To obtain a competitively small
number of optimization variables, we investigate embedding
spaces of dimension 4, 8, and 16, respectively, and com-
pare against a free-form-deformation approach using nine
variables.

Even though the latent space, as discussed in Sect. 3.1,
in general, obtained lacks an intuitive interpretation, we
are still interested in evaluating the quality of the learned
embedding space. We do so in three different ways which
we present in the following: (1) we show a data reduction
technique that allows us to visually investigate the latent
space; (2) we apply an interpolation between the latent

representation of two training shapes and compare with the
expected result; (3) we apply shape arithmetics, i.e., we iso-
late a specific modification of a basis shape and impose it
onto another basis shape to inspect whether or not features
are also recognized by the latent space.

(1) For the visualization of the high-dimensional latent
space, a dimension reduction technique is required. An intui-
tive choice might be principal component analysis (PCA),
but PCA tries to primarily preserve global structures and
thus data points which are far apart in the high-dimensional
data will also be drawn far apart in the 2D plot. Conversely,
the correlation between similar points is often lost. This loss
of correlation in similar data is problematic, since we aim to
investigate whether—from a human’s perspective—similar
shapes are represented by similar latent code. The problem
of loss in local correlation is, however, alleviated by t-SNE
[50]. Using t-SNE, we plot each training shape’s obtained
latent code and—due to the preservation of local similari-
ties—similar latent code will form clusters in the scatter
plot. These clusters can then be sampled to verify that the
latent code clusters resemble similar shapes. t-SNE plots
for all three latent dimensions—4, 8, and 16—are shown
in Fig. 8.

Figure 8 shows how an increased latent dimension leads
to increased classification performance of the neural net.
Specifically, the four chosen basis shapes are clustered with
their respective modifications more and more densely as the
latent dimension increases. This improved classification per-
formance indicates that the neural net was able to learn the

Fig. 7   Pipeline with building blocks of the proposed computational
framework. The process is split into two parts: a one-time computa-
tionally intensive training part and the actual optimization, including
the quick filter evaluation. To create a training set, FFD is applied to
a set of basis shapes. Subsequently, we train the network using the
ADAM optimizer, which concludes the offline phase. During optimi-
zation (i.e., the online phase), first, a new shape is created from the

neural net. Then, a new computational mesh is created around this
shape, and based on FEM simulations, the new design’s mixing is
assessed. Depending on the objective value, the optimization loop
is re-initiated using altered latent variables. Building blocks that are
modified compared to the general, geometry-kernel-based approach
(cf. Figure 1) are highlighted in blue

	 Engineering with Computers

1 3

similarities between similar shapes properly for the case of
8 and 16 dimensions.

(2) In addition to comparing clusters of similar shapes
in physical and latent space, we also investigate how well
the latent space is suited to represent shapes that have not
been included in the training set. We do so by interpolation
between two shapes. Figure 9 shows the obtained results for
all three latent spaces.

Consistent to the observed lack in classification ability
of the four-dimensional latent space, Fig. 9a shows that
interpolation between shapes yields unsatisfactory results.
In particular, shape defects are observed. This might be a
result of the fact that the twisted cube is not at all well rep-
resented in the latent space as seen in the rightmost figure.
However, both the 8- and the 16-dimensional latent space
show a visually smooth transition between the regular and
the twisted cube shape.

(3) The above two analyses investigated the overall clas-
sification ability of the neural net and the suitability to rep-
resent intermediate shapes. A final test is given by applying
shape arithmetic. Using arithmetic operations applied to the
latent code, we extract an exemplary feature—here a stretch-
ing along the center plane—by taking the component-wise
difference of a stretched and a regular cube. This difference
represents center-plane expansion and can then be applied
to any other basis shape—here the undeformed hexahe-
dron. Figure 10 shows the resulting shapes. Again, the four-
dimensional latent space performs significantly worse, since
the basis shapes are not represented in detail. Contrary to
the interpolation case, the 16-dimensional latent space now
shows better results than the 8-dimensional case.

All three investigations, t-SNE plots, interpolation, and
arithmetic, indicate that the four-dimensional latent space
fails in producing a suitable latent representation. It should

Fig. 8   a Training set encoded in 4D latent code. b Training set
encoded in 8D latent code. c Training set encoded in 16D latent
code. t-SNE plots obtained using different latent space dimensions.
Increased latent dimension resembles in increased classification per-

formance of the neural net. Each color corresponds to one base train-
ing shape: green corresponds a triangular base, dark blue is the cube,
red is the hexahedron, and light blue is a tessellated version of the
cylinder (colour figure online)

Fig. 9   a 4D shape interpola-
tion revealing artifacts in the
reconstructed shapes, i.e., bad
quality of the latent representa-
tion. b 8D shape interpolation
with satisfactory results. c 16D
shape interpolation, which
brings only slight improve-
ment in shape representation
compared to eight-dimensional
latent representation. Shape
interpolation using different
latent dimensions. An interpo-
lated shape is obtained using
zinterp = za +

zb−za

N+1
n with za

and zb denoting the latent code
between shapes a—here the
undeformed cube—and b—here
the twisted cube. With N = 20 ,
the shown examples represent
n ∈ [1, 3, 7, 13, 17, 20]

Engineering with Computers	

1 3

be noted though that in view of the doubled number of
optimization variables, the attainable gains in using 16
latent variables compared to 8 appear unattractively small.

5.2 � Optimization results

To study the effects of the novel shape-parameterization
technique, we compare configurations that vary in latent
space dimensions and optimization algorithms, as shown
in Table 1. l furthermore, we require all generated shapes
to have the exact same volume as the undeformed rhombic
mixing element utilized in the spline-based optimization (cf.
Sect. 4.1). We choose such scaling to avoid convergence
towards merely enlarged shapes that yield good objective
values but do not deliver helpful insights. Table 1 lists the
obtained results, and Table 2 gives insights into the corre-
sponding computational effort.

The obtained best shapes are shown in Fig. 11.

Fig. 10   a 4D shape arithmetics
with significant representation
errors, especially for the hexa-
hedron and the final shape. b 8D
shape arithmetic with improved
representation compared to 4D
latent code but still yielding
slightly imprecise results. c 16D
shape arithmetic showing per-
fect resemblance of all training
shape and also a clean resulting
shape. Shape arithmetics for
different latent dimensions. A
linear thickening in the center
plane is imposed on a hexagonal
base body by evaluation of the
latent code as zE4thick − zE4 + zE6 ,
where zE4thick , zE4 , and zE6 denote
the latent codes of the thickened
cube, the regular cube, and the
regular hexahedron, respectively

Table 1   Different optimization algorithms and latent space dimen-
sions compared by best objective value and contrasted to a nine-
dimensional FFD 1b

Smaller values correspond to better results using the aforementioned
objective formulation

4 8 16 (FFD)

SOGA −0.0726 −0.0710 −0.0750 –
DIRECT −0.0645 −0.0738 −0.0769 −0.0422

Table 2   Different optimization algorithms and latent space dimensions compared by the final iteration count, the obtained objective value, and
the number of total iterations; contrasted to a nine-dimensional (FFD)

4 8 16 (FFD)

Iteration(s) Optimal Total Optimal Total Optimal Total Optimal Total

SOGA 768 1000 752 1000 534 1000 – –
DIRECT 96 113 129 143 138 149 16 67

	 Engineering with Computers

1 3

Comparing the optimized geometries shows interesting
results from a plastics processing point of view. On the one
hand, the triangular shape and a mixing element that wid-
ens towards the top appear advantageous. One should note,
however, that these deformations do not correspond to a
general optimum for plastics engineering but are merely the
best possible deformations within the range permitted by the
training set. Choosing an even more diverse training set is
expected to yield even further improved shapes.

More relevant for this study (with a focus on neural nets
as shape parameterizations) is the comparison of conver-
gence, the achieved mixing, and the difference and simi-
larities in the results. Table 1 shows that for the chosen
shape optimization problem, the DIRECT algorithm has no
disadvantages compared to SOGA and converges reliably.

Simultaneously, the shape parameterization’s dimensional-
ity appears to influence the optimization because the four-
and eight-dimensional neural networks lead to optimized
triangles. In contrast, the 16-dimensional case renders the
top-expanded quadrilateral optimal. Common to all results
is a skewed and slightly twisted geometry.

The objective value per generation of the SOGA algo-
rithm is shown in Fig. 12. For all dimensions, each gen-
eration tends to evolve towards better objective values. We
investigate if improvements in objective values can be related
to certain trends in terms of geometric features. Within the
latent space, features are expressed as multi-dimensional
vectors, as opposed to single-dimensional values; thus, latent
code arithmetics [24, 41], for example, are often used to
explore learned features (cf. Figure 10). Furthermore, the

Fig. 11   a FFD-Direct, b
4D-Direct, c 4D-Soga, d
8D-Direct, e 8D-Soga, f
16D-Direct, and g 16D-Soga.
Optimization results obtained
for all different latent codes
and optimization algorithms
compared to an existing (FFD)-
based shape optimization

Fig. 12   a 4D latent code with
40 populations per genera-
tion. b 8D latent code with 80
populations per generation.
c 16D latent code with 160
populations per generation.
Comparison of objective value
per population among different
latent dimensions from SOGA
algorithm

Engineering with Computers	

1 3

latent code alone does not provide information about the
associated geometric features. To determine the correspond-
ing features, we begin by searching for the nearest neighbor
in the training set based on Euclidean distance. From the
nearest neighbor, we can then quantify applied features, i.e.,
deformations. The mean values of the approximated features
are shown in Fig. 13. It shows that diverse features, even
with less significance, were visited at the beginning of the
iterations. Across all generations, relatively high magnitudes
of “rotate”, “rotate top”, and “shrink along y”, as well as a
low magnitude of “expand top”, consistently appear in all
the results The four-dimensional latent space also includes
consistent application of “shrink top”. Interestingly, all of
the consistently applied features are reflected in Fig. 11.

The behavior of objective values for DIRECT is not sepa-
rately investigated, as the objective values and geometric
features can highly fluctuate during partitioned sampling of
the latent space. Consequently, DIRECT’s iteration history
does not yield significant insight regarding the deformation
trend.

A noticeable difference between the spline-based and neu-
ral-net-based shape optimization is that the neural-net-based

shape parameterization encodes several shapes, of which
multiple may mix the melt equally well. Because of this,
from the practitioner’s point of view, it does make sense to
not only look at the best result but rather compare numerous
equally optimal designs and derive design rules from that
comparison. Figure 14 shows such a comparison and reveals
one advantage of evolutionary algorithms.

While the DIRECT algorithm converges locally and,
therefore, the ten best designs are geometrically similar, the
generative nature of SOGA allows the practitioner to iden-
tify possibly equally well-working designs (cf. Figures 14f
and g) amongst which the most economical option may be
chosen. Such a choice allows one to account for further
restrictions regarding screw cleaning, manufacturability,
and others.

6 � Discussion and outlook

In this work, we studied the applicability of generative
models as shape parameterizations. We chose numerical
shape optimization of dynamic mixing elements as a use

Fig. 13   a 4D latent code with
40 populations per genera-
tion. b 8D latent code with 80
populations per generation.
c 16D latent code with 160
populations per generation.
Comparison of mean value of
approximated applied defor-
mation per population among
different latent dimensions from
SOGA algorithm

	 Engineering with Computers

1 3

case. The developed shape parameterization’s fundamen-
tal principle is to exploit neural nets’ ability to construct
a dimension reduction onto a feature-dense, low-dimen-
sional latent space. It should be noted that other interpola-
tion methods may be able to construct similar interpolation
spaces. However, this work demonstrates neural networks’
exceptional generalization power yields excellent shape
parametrization, which particularly allows interpolation
between shapes of varying topologies.

First, the nature of this low-dimensional space is stud-
ied by t-SNE-plots. These plots give visual evidence that
the generative models create smooth shape parameteriza-
tions that enable one to use classical, heuristic optimi-
zation algorithms. Comparing genetic to such heuristic
algorithms, Table 2 reveals that the SOGA algorithm
required significantly more iterations (i.e., simulations).
Additionally, Table 1 shows that in the studied examples,
this additional computational effort is not reflected pro-
portionally by improved mixing. One may expect that the
SOGA algorithm’s random nature may be better suited to
explore the hardly interpretable latent space. However, the
results suggest a smoothness of the learned parameteri-
zation that renders deterministic methods like DIRECT
equally well suited for optimization in the latent space.

In addition, to the general applicability of generative
models, we study the influence of different latent dimen-
sions. While the actual optimization results appear pleas-
ing, Figs. 9 and 10 suggest that very compressed (i.e.,
four-dimensional) latent spaces may not be used for opti-
mization purposes. Analogously, no direct preference
between the 8- and 16-dimensional results can be drawn
from the optimization results. Similarly, Fig. 10 indicates
that higher dimensional latent spaces yield more precise
shape encoding, which seems generally preferable. Since
the overall number of iterations until convergence of the
optimization problem is comparable, the 16-dimensional
parameterization might be chosen over the 8-dimensional
variant.

As intended, a fundamental improvement over estab-
lished low-dimensional shape parameterizations is that the
new approach covers a much broader design area in a single
optimization. Since its fundamental concept is to encode
diverse shapes, optimizations lead to numerous, nearly
equally optimal shapes. Consequently, this novel approach
extends on the existing methods in that it allows the prac-
titioner to derive design features that enhance mixing most
and for a wide range of basis shapes. Therefore, rather than
creating complex shape parameterizations, the crucial step
towards optimal design reduces to the creative definition of
a training set.

A significant challenge in using neural-net-based shape
parameterization is proper control of the output shapes’
size. This work implements a volume constraint to avoid
simple size maximization of the mixing elements. However,
a reformulated objective, such as penalizing pressure loss,
may circumvent such adverse designs. Alternatively, a scale
factor may be added as an additional optimization variable.
Both size control and efficient training set generation may
be topics of further studies.

Given the presented results, utilizing the feature-rich
latent representations and their immense generalization
power has a significant potential to improve established
industrial designs.

Finally, the presented framework can be extended by
adopting neural-network-based simulators, as recent works
[51–55] have shown promising results. Using neural-net-
work-based simulators, the evaluations of objective func-
tions during the online phase become mere forward pass(es)
of neural nets that replace costly numerical simulations.
Combining the presented parametrization and aforemen-
tioned simulators, one could also benefit from the differen-
tiability of neural networks to acquire gradients, which natu-
rally opens the door to other gradient-based optimization
algorithms. It is worth noting that if the objective function
is formulated as part of the network, automatic differentia-
tion can be leveraged to its full potential, allowing for the

Fig. 14   a J = −0.0750 ; b
J = −0.0712 ; c J = −0.0656 ; d
J = −0.0633 ; e J = −0.0602 ; f
J = −0.0601 ; g J = −0.0595 ; h
J = −0.0592 ; i J = −0.0562 ; j
J = −0.0535 . Ten best shapes
obtained from 16D SOGA
optimization. Except for the
sixth-best shape (h), all shapes
feature an expanded top, similar
orientation, and appear widened
in y direction (i.e., perpendicu-
lar to the main flow direction)

Engineering with Computers	

1 3

efficient computation of derivative values with respect to
design parameters. Both neural-network-based simulators
and development of suitable objective functions will be
investigated in the future work.

Acknowledgements  The German Research Foundation (DFG) fund-
ings under the DFG grant “Automated design and optimization of
dynamic mixing and shear elements for single-screw extruders” and
priority program 2231 “Efficient cooling, lubrication and transporta-
tion—coupled mechanical and fluid-dynamical simulation methods for
efficient production processes (FLUSIMPRO)”—under Project No.
439919057 are gratefully acknowledged. Implementation was done on
the HPC cluster provided by IT Center at RWTH Aachen. Simulations
were performed with computing resources granted by RWTH Aachen
University under Project Nos. jara0185 and thes0735.

Funding  Open access funding provided by TU Wien (TUW).

Data availability  Not applicable.

Declarations 

Conflict of interest  The authors have no conflict of interest related to
this manuscript.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Celik O, Erb T, Bonten C (2017) Mischgüte in Einschneckenex-
trudern vorhersagen. Kunststoffe 71:175–177

	 2.	 Gale M (2009) Mixing in single screw extrusion. Handbook
series. Smithers Rapra Publishing, Shrewsbury

	 3.	 Roland W, Marschik C, Miethlinger J, Chung C (2019) Mixing
study on different pineapple mixer designs—simulation results 1.
In: SPE-ANTEC Technical Papers

	 4.	 Sun X, Spalding MA, Womer TW, Uzelac N (2017) Design opti-
mization of maddock mixers for single-screw extrusion using
numerical simulation. In: Proceedings of the 75th Annual Tech-
nical Conference of the Society of Plastic Engineers (ANTEC)

	 5.	 Campbell GA, Spalding MA (2021) Analyzing and troubleshoot-
ing single-screw extruders. In: Analyzing and troubleshooting
single-screw extruders (second edition), Second edition edn., pp
1–19. Hanser, Munich. https://​doi.​org/​10.​3139/​97815​69907​856.​
fm

	 6.	 Marschik C, Osswald T, Roland W, Albrecht H, Skrabala O,
Miethlinger J (2018) Numerical analysis of mixing in block-head
mixing screws. Polym Eng Sci. https://​doi.​org/​10.​1002/​pen.​24968

	 7.	 Böhme G (1981) Strömungsmechanik Nicht-newtonscher Fluide,
1st ed. 1981 edn. Leitfäden der angewandten Mathematik und

Mechanik - Teubner Studienbücher. Vieweg+Teubner Verlag,
Wiesbaden

	 8.	 Kim SJ, Kwon TH (1996) Enhancement of mixing performance
of single-screw extrusion processes via chaotic flows: Part i. basic
concepts and experimental study. Adv Polym Technol 15(1):41–
54. https://​doi.​org/​10.​1002/​(SICI)​1098-​2329(199621)​15:​1<​41::​
AID-​ADV4>3.​0.​CO;2-K

	 9.	 Wong AC-Y, Lam Y, Wong ACM (2009) Quantification of
dynamic mixing performance of single screws of different con-
figurations by visualization and image analysis. Adv Polym Tech-
nol 28(1):1–15. https://​doi.​org/​10.​1002/​adv.​20142

	10.	 Kim SJ, Kwon TH (1996) Enhancement of mixing performance
of single-screw extrusion processes via chaotic flows: part ii.
numerical study. Adv Polym Technol 15(1):55–69. https://​doi.​
org/​10.​1002/​(SICI)​1098-​2329(199621)​15:​1<​55::​AID-​ADV5>3.​
0.​CO;2-J

	11.	 Domingues N, Gaspar-Cunha A, Covas J (2012) A quantitative
approach to assess the mixing ability of single-screw extruders
for polymer extrusion. J Polym Eng. https://​doi.​org/​10.​1515/​
polye​ng-​2012-​0501

	12.	 Elgeti S, Probst M, Windeck C, Behr M, Michaeli W, Hopmann
C (2012) Numerical shape optimization as an approach to extru-
sion die design. Finite Elem Anal Des 61:35–43. https://​doi.​org/​
10.​1016/j.​finel.​2012.​06.​008

	13.	 Siegbert R, Behr M, Elgeti S (2016) Die swell as an objec-
tive in the design of polymer extrusion dies. AIP Conf Proc
1769(1):140003. https://​doi.​org/​10.​1063/1.​49635​40

	14.	 Gaspar-Cunha A, Covas J (2001) The design of extrusion
screws: an optimization approach. Int Polym Process. https://​
doi.​org/​10.​3139/​217.​1652

	15.	 Potente H, Többen WH (2002) Improved design of shearing
sections with new calculation models based on 3d finite-element
simulations. Macromol Mater Eng 287(11):808–814. https://​doi.​
org/​10.​1002/​mame.​20029​0010

	16.	 Hube S, Behr M, Elgeti S, Schön M, Sasse J, Hopmann C (2022)
Numerical design of distributive mixing elements. Finite Elem
Anal Des 204:103733. https://​doi.​org/​10.​1016/j.​finel.​2022.​
103733

	17.	 Botsch M, Kobbelt L (2004) An intuitive framework for real-time
freeform modeling. ACM Trans Graph 23(3):630–634. https://​doi.​
org/​10.​1145/​10157​06.​10157​72

	18.	 Farin G (2002) 5 - the bernstein form of a bézier curve. In: Farin
G (ed) Curves and Surfaces for CAGD (Fifth Edition), Fifth edi-
tion edn. The Morgan Kaufmann Series in Computer Graphics,
pp 57–79. Morgan Kaufmann, San Francisco. https://​doi.​org/​10.​
1016/​B978-​15586​0737-8/​50005-3

	19.	 Piegl L, Tiller W (1996) The NURBS book. Monographs in visual
communication. Springer, Berlin

	20.	 Sederberg TW, Parry SR (1986) Free-form deformation of solid
geometric models. SIGGRAPH Comput Graph 20(4):151–160.
https://​doi.​org/​10.​1145/​15886.​15903

	21.	 Hojjat M, Stavropoulou E, Bletzinger K-U (2014) The vertex
morphing method for node-based shape optimization. Comput
Methods Appl Mech Eng 268:494–513. https://​doi.​org/​10.​1016/j.​
cma.​2013.​10.​015

	22.	 Johnson J, Alahi A, Li F (2016) Perceptual losses for real-time
style transfer and super-resolution. CoRR arXiv:​1603.​08155

	23.	 Friedrich T, Aulig N, Menzel S (2018) On the potential and chal-
lenges of neural style transfer for three-dimensional shape data.
In: EngOpt 2018. Springer

	24.	 Liu S, Giles CL, Ororbia A (2018) Learning a hierarchical latent-
variable model of 3d shapes. In: 2018 International Conference
on 3D Vision, 3DV 2018, Verona, Italy, September 5–8, 2018, pp
542–551. IEEE Computer Society, your homne. https://​doi.​org/​
10.​1109/​3DV.​2018.​00068

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3139/9781569907856.fm
https://doi.org/10.3139/9781569907856.fm
https://doi.org/10.1002/pen.24968
https://doi.org/10.1002/(SICI)1098-2329(199621)15:1<41::AID-ADV4>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1098-2329(199621)15:1<41::AID-ADV4>3.0.CO;2-K
https://doi.org/10.1002/adv.20142
https://doi.org/10.1002/(SICI)1098-2329(199621)15:1<55::AID-ADV5>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1098-2329(199621)15:1<55::AID-ADV5>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1098-2329(199621)15:1<55::AID-ADV5>3.0.CO;2-J
https://doi.org/10.1515/polyeng-2012-0501
https://doi.org/10.1515/polyeng-2012-0501
https://doi.org/10.1016/j.finel.2012.06.008
https://doi.org/10.1016/j.finel.2012.06.008
https://doi.org/10.1063/1.4963540
https://doi.org/10.3139/217.1652
https://doi.org/10.3139/217.1652
https://doi.org/10.1002/mame.200290010
https://doi.org/10.1002/mame.200290010
https://doi.org/10.1016/j.finel.2022.103733
https://doi.org/10.1016/j.finel.2022.103733
https://doi.org/10.1145/1015706.1015772
https://doi.org/10.1145/1015706.1015772
https://doi.org/10.1016/B978-155860737-8/50005-3
https://doi.org/10.1016/B978-155860737-8/50005-3
https://doi.org/10.1145/15886.15903
https://doi.org/10.1016/j.cma.2013.10.015
https://doi.org/10.1016/j.cma.2013.10.015
http://arxiv.org/abs/1603.08155
https://doi.org/10.1109/3DV.2018.00068
https://doi.org/10.1109/3DV.2018.00068

	 Engineering with Computers

1 3

	25.	 Wu J, Zhang C, Xue T, Freeman WT, Tenenbaum JB (2016)
Learning a probabilistic latent space of object shapes via 3d gen-
erative-adversarial modeling. In: Proceedings of the 30th Inter-
national Conference on Neural Information Processing Systems.
NIPS’16, pp 82–90. Curran Associates Inc., Red Hook, NY, USA

	26.	 Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015)
3d shapenets: a deep representation for volumetric shapes. In:
2015 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp 1912–1920. https://​doi.​org/​10.​1109/​CVPR.​2015.​
72988​01

	27.	 Charles RQ, Su H, Kaichun M, Guibas LJ (2017) Pointnet: deep
learning on point sets for 3d classification and segmentation. In:
2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp 77–85. https://​doi.​org/​10.​1109/​CVPR.​2017.​16

	28.	 Ramasinghe S, Khan S, Barnes N, Gould S (2020) Spectral-gans
for high-resolution 3d point-cloud generation. In: 2020 IEEE/
RSJ International Conference on Intelligent Robots and Systems
(IROS), pp 8169–8176. https://​doi.​org/​10.​1109/​IROS4​5743.​2020.​
93412​65

	29.	 Yang Y, Feng C, Shen Y, Tian D (2018) Foldingnet: point cloud
auto-encoder via deep grid deformation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)

	30.	 Bagautdinov T, Wu C, Saragih J, Fua P, Sheikh Y (2018) Mod-
eling facial geometry using compositional vaes. In: 2018 IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
pp 3877–3886

	31.	 Tan Q, Gao L, Lai Y-K, Xia S (2018) Variational autoencoders
for deforming 3d mesh models, pp 5841–5850. https://​doi.​org/​10.​
1109/​CVPR.​2018.​00612

	32.	 Groueix T, Fisher M, Kim VG, Russell BC, Aubry M (2018) A
papier-mache approach to learning 3d surface generation. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp 216–224. https://​doi.​org/​10.​1109/​CVPR.​2018.​00030

	33.	 Park JJ, Florence P, Straub J, Newcombe R, Lovegrove S (2019)
Deepsdf: learning continuous signed distance functions for shape
representation. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)

	34.	 Chen Z, Zhang H (2019) Learning implicit fields for generative
shape modeling. In: Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR)

	35.	 Mescheder L, Oechsle M, Niemeyer M, Nowozin S, Geiger A
(2019) Occupancy networks: learning 3d reconstruction in func-
tion space. In: Proceedings IEEE Conference on Computer Vision
and Pattern Recognition (CVPR)

	36.	 Lassila T, Rozza G (2010) Parametric free-form shape design with
pde models and reduced basis method. Comput Methods Appl
Mech Eng 199(23):1583–1592. https://​doi.​org/​10.​1016/j.​cma.​
2010.​01.​007

	37.	 Doersch C (2016) Tutorial on Variational Autoencoders. arXiv
preprint. arXiv:​1606.​05908

	38.	 Kingma DP, Welling M (2013) Auto-Encoding Variational Bayes.
arXiv preprint. arXiv:​1312.​6114

	39.	 Tan Q, Gao L, Lai Y, Xia S (2018) Variational autoencoders for
deforming 3d mesh models. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp 5841–5850. https://​
doi.​org/​10.​1109/​CVPR.​2018.​00612

	40.	 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial
nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence N, Wein-
berger KQ (eds) Advances in neural information processing sys-
tems, vol 27. Curran Associates Inc, New York, pp 2672–2680

	41.	 Wu J, Zhang C, Xue T, Freeman B, Tenenbaum J (2016) Learning
a probabilistic latent space of object shapes via 3d generative-
adversarial modeling. In: Lee D, Sugiyama M, Luxburg U, Guyon
I, Garnett R (eds) Advances in neural information processing sys-
tems, vol 29. Curran Associates Inc, New York, pp 82–90

	42.	 Dawson-Haggerty et al.: trimesh. https://​trimsh.​org/
	43.	 Kingma DP, Ba J (2014) Adam: a method for stochastic optimiza-

tion. arXiv preprint. arXiv:​1412.​6980
	44.	 Lorensen WE, Cline HE (1987) Marching cubes: a high resolution

3d surface construction algorithm. SIGGRAPH Comput Graph
21(4):163–169. https://​doi.​org/​10.​1145/​37402.​37422

	45.	 Lewiner T, Lopes H, Vieira AW, Tavares G (2003) Efficient imple-
mentation of marching cubes’ cases with topological guarantees.
J Graph Tools 8:2003

	46.	 Si H (2015) Tetgen, a delaunay-based quality tetrahedral mesh
generator. ACM Trans Math Softw. https://​doi.​org/​10.​1145/​26296​
97

	47.	 Adams BM, Eldred MS, Geraci G, Hooper RW, JD, J, Maupin
KA, Monschke JA, Rushdi AA, Stephens JA, Swiler LP, Wildey
TM (July 2014; updated May 2019) Dakota, A multilevel paral-
lel object-oriented framework for design optimization, parameter
estimation, uncertainty quantification, and sensitivity analysis:
version 6.10 user’s manual

	48.	 Jones D, Perttunen C, Stuckman B (1993) Lipschitzian optimisa-
tion without the lipschitz constant. J Optim Theory Appl 79:157–
181. https://​doi.​org/​10.​1007/​BF009​41892

	49.	 Eddy J, Lewis K (2001) Effective generation of pareto sets using
genetic programming. International Design Engineering Technical
Conferences and Computers and Information in Engineering Con-
ference, vol. Volume 2B: 27th Design Automation Conference, pp
783–791. https://​doi.​org/​10.​1115/​DETC2​001/​DAC-​21094

	50.	 Maaten LJP, Hinton GE (2008) Visualizing high-dimensional data
using t-sne. J Mach Learn Res 9(11):2579–2605

	51.	 Li A, Zhang YJ (2023) Isogeometric analysis-based physics-
informed graph neural network for studying traffic jam in neurons.
Comput Methods Appl Mech Eng 403:115757. https://​doi.​org/​10.​
1016/j.​cma.​2022.​115757

	52.	 Mallik W, Farvolden N, Jelovica J, Jaiman RK (2022) Deep con-
volutional neural network for shape optimization using level-set
approach. arXiv preprint. arXiv:​2201.​06210

	53.	 Remelli E, Lukoianov A, Richter S, Guillard B, Bagautdinov T,
Baque P, Fua P (2020) Meshsdf: differentiable iso-surface extrac-
tion. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H
(eds) Advances in Neural Information Processing Systems, vol 33.
Curran Associates Inc, New York, pp 22468–22478 https://​proce​
edings.​neuri​ps.​cc/​paper_​files/​paper/​2020/​file/​fe40f​b944e​e7003​
92ed5​1bfe8​4dd4e​3d-​Paper.​pdf

	54.	 Shukla K, Oommen V, Peyvan A, Penwarden M, Bravo L, Ghoshal
A, Kirby RM, Karniadakis GE (2023) Deep neural operators can
serve as accurate surrogates for shape optimization: a case study
for airfoils. arXiv preprint. arXiv:​2302.​00807

	55.	 Woldseth RV, Aage N, Bærentzen JA, Sigmund O (2022) On
the use of artificial neural networks in topology optimisation.
Struct Multidiscip Optim 65(10):294. https://​doi.​org/​10.​1007/​
s00158-​022-​03347-1

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/IROS45743.2020.9341265
https://doi.org/10.1109/IROS45743.2020.9341265
https://doi.org/10.1109/CVPR.2018.00612
https://doi.org/10.1109/CVPR.2018.00612
https://doi.org/10.1109/CVPR.2018.00030
https://doi.org/10.1016/j.cma.2010.01.007
https://doi.org/10.1016/j.cma.2010.01.007
http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1312.6114
https://doi.org/10.1109/CVPR.2018.00612
https://doi.org/10.1109/CVPR.2018.00612
https://trimsh.org/
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1007/BF00941892
https://doi.org/10.1115/DETC2001/DAC-21094
https://doi.org/10.1016/j.cma.2022.115757
https://doi.org/10.1016/j.cma.2022.115757
http://arxiv.org/abs/2201.06210
https://proceedings.neurips.cc/paper_files/paper/2020/file/fe40fb944ee700392ed51bfe84dd4e3d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fe40fb944ee700392ed51bfe84dd4e3d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fe40fb944ee700392ed51bfe84dd4e3d-Paper.pdf
http://arxiv.org/abs/2302.00807
https://doi.org/10.1007/s00158-022-03347-1
https://doi.org/10.1007/s00158-022-03347-1

	Neural networks vs. splines: advances in numerical extruder design
	Abstract
	1 Introduction
	2 Geometric filters as a component of shape-optimization frameworks
	2.1 Building blocks of numerical shape-optimization frameworks
	2.2 Spline-based shape parameterizations

	3 Shape parametrization using neural networks
	3.1 Deep generative models
	3.2 Implicit shape representation
	3.3 Training set generation
	3.4 Shape generator

	4 The developed shape-optimization framework
	4.1 Flow solver and simulation model
	4.2 Optimizer

	5 Numerical results
	5.1 Latent space dimension
	5.2 Optimization results

	6 Discussion and outlook
	Acknowledgements
	References

