
Seamlessly Interfacing
Automation Systems with
Simulation Environments

A Case Study for FMI and OPC UA

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Andrej Kurtović
Matrikelnummer 01428987

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Mitwirkung: Univ.Ass. Dipl.-Ing. Dipl.-Ing. Dr.techn. Gernot Steindl, BSc

Wien, 3. Dezember 2021
Andrej Kurtović Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Seamlessly Interfacing
Automation Systems with
Simulation Environments

A Case Study for FMI and OPC UA

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Andrej Kurtović
Registration Number 01428987

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Univ.Ass. Dipl.-Ing. Dipl.-Ing. Dr.techn. Gernot Steindl, BSc

Vienna, 3rd December, 2021
Andrej Kurtović Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Andrej Kurtović

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Dezember 2021
Andrej Kurtović

v

Acknowledgements

I would like to thank my advisor, Prof. Wolfgang Kastner, for the support and suggestions,
as well as for giving me the possibility to work on the topic of this master thesis. I would
like to thank my co-advisor Univ.Ass. Gernot Steindl for the suggestions, support, and
many constructive comments and ideas that have made this thesis possible.

I would also like to thank my mother, and the rest of my family for supporting me
throughout my studies.

vii

Kurzfassung

Die Digitalisierung der Industrie und die damit verbundene vierte industrielle Revolution
(Industrie 4.0) führen zu einem zunehmenden Grad an Automatisierung, sowie auto-
matischen Datenaustausch durch Maschine-zu-Maschine Kommunikation. Die daraus
resultierenden Cyber-Physische Systeme (CPS) bieten durch die Vernetzung der Maschi-
nen neue Funktionalität, und ermöglichen die Zusammenarbeit der digitalen Welt mit der
realen Welt. Ein wichtiger Bestandteil von CPS sind Simulationen, die sowohl während
des Betriebs (zum Beispiel als Teil des digitalen Zwillings) als auch während des System-
entwurfs (zum Beispiel als Hardware-in-the-Loop) verwendet werden können. Ein häufig
auftretendes Problem, das bei der Kopplung zwischen dem Automatisierungssystem und
der Simulationsumgebung eines CPS auftritt, ist, dass diese Systeme nicht mit Blick auf
die Interoperabilität (untereinander) konzipiert wurden.
Aus dieser Problematik ergibt sich die folgende Forschungsfrage: Wie sieht ein geeigneter
Arbeitsablauf aus, um ein Automatisierungssystem, welches durch ein Informationsmo-
dell beschrieben wird, (semi-)automatisch mit einem bestehenden Simulationsmodell zu
verbinden, so dass das Automatisierungssystem während der Laufzeit auf die Simulati-
onsdaten zugreifen kann? Ein solcher Arbeitsablauf muss eine Interoperabilitätsschicht
(eine sogenannte Mapping Einheit) enthalten, um die beiden Systeme zu verbinden und
die Kommunikation zwischen den beiden Systemen zu ermöglichen.
Um die Forschungsfrage zu beantworten, wurde folgender methodischer Ansatz gewählt:
Zuerst wurde eine Literaturrecherche durchgeführt, um einen Einblick in den Stand der
Technik sowie die Möglichkeiten zur Gestaltung einer solchen Interoperabilitätsschicht zu
erhalten. Dann wurden mögliche technische Arbeitsabläufe untersucht. Aus der Analyse
ergaben sich einige Anforderungen an das Design der Mapping Einheit. Anschließend
erfolgte eine Evaluierung mithilfe einer Proof-of-Concept-Implementierung, um die Mach-
barkeit des vorgeschlagenen Arbeitslaufes und des gewählten Ansatzes zu bewerten.
Unter Verwendung der offenen Industriestandards FMI und OPC UA wurde anhand der
Proof-of-Concept-Implementierung gezeigt, dass eine Mapping-Einheit entworfen werden
kann, die halbautomatisch die Schnittstellen von Automatisierungssystemen und Simu-
lationsumgebungen verbindet und den Datenaustausch zwischen ihnen ermöglicht. Die
Funktionalität der Proof-of-Concept-Implementierung wurde an zwei Anwendungsfällen
mit unterschiedlichen Schwerpunkten evaluiert. Dabei wurde sowohl die halbautomati-
schen Matching-Fähigkeiten als auch die Laufzeit-Datenanbindung zwischen den Systemen
gezeigt und deren aktuell bestehenden Einschränkungen diskutiert.

ix

Abstract

The digitalization of the industry and the associated fourth industrial revolution (Industry
4.0) leads to increased automation, as well as to automatic data exchange through machine-
to-machine communication. The consequent Cyber-physical systems (CPS) offer new
functionalities through machine interconnection, and enable cooperation of the digital
"cyber" world with the "physical" world (the real systems). An important part of CPS
are simulations which can be used during operation (for example as a part of the digital
twin), as well as during system design (for example as hardware-in-the-loop). A problem
that often arises when connecting automation systems and simulation environments of a
CPS, is that the systems were not designed with interoperability (with each other) in
mind.
This problem results in the following research question: What is an appropriate workflow
to (semi-)automatically connect an automation system described by an information model
to an existing simulation model - enabling the automation system to access the simulation
data during runtime? Such workflow needs to incorporate an interoperability layer
(a so-called mapping unit), in order to connect the two systems, and to enable the
communication between them.
In order to answer the research question and achieve the goals of this thesis, the following
methodological approach has been taken: first, a literature survey has been conducted,
in order to gain insight into the state of the art, as well as the possibilities for designing
such an interoperability layer. Next, possible engineering workflows were explored. The
analysis yielded some requirements on the design of the mapping unit. And lastly, a
proof-of-concept implementation was designed, which was used to evaluate the feasibility
of the proposed workflow and the chosen approach.
Utilizing the open industry standards FMI and OPC UA with the proof-of-concept
implementation, it was shown that a mapping unit, which semi-automatically connects the
interfaces of automation systems and simulation environments and enables data exchange
between them, can be designed. The functionality of the proof-of-concept implementation
was evaluated using two use cases with different focuses, thus demonstrating both the semi-
automatic matching capabilities, in addition to the runtime data flow capabilities between
the systems, as well as the current limitations of the proof-of-concept implementation.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 State of the Art 7
2.1 Related Work . 7
2.2 Functional Mock-up Interface (FMI) . 11
2.3 Open Platform Communications Unified Architecture (OPC UA) . . . 17

3 Proposed Interfacing Approach 23
3.1 The Engineering Workflow . 23
3.2 Information Matching . 26

4 Proof of Concept 37
4.1 Libraries and Assumptions . 37
4.2 Implementation . 40

5 Use Cases 53
5.1 Use Case I - Free Fall . 53
5.2 Use Case II - Fluid Heat Flow . 58

6 Discussion 65

7 Conclusion and Outlook 71

List of Figures 75

List of Tables 77

Bibliography 79

xiii

Appendix 83

CHAPTER 1
Introduction

Motivation

The ongoing fourth industrial revolution - Industry 4.0 - brings more automation, inte-
gration, and machine-to-machine communication. The goals of Industry 4.0 are higher
operation efficiency, and productivity, as well as higher levels of automation [TS16].
An important part of modern production systems are simulations, which are utilized
within the cyber-physical systems (CPS). CPS are industrial automation systems which
incorporate new functionalities through machine interconnection and communication, in
order to enable the cooperation of real physical systems, with the digital world [Lu17].
In particular, major features of Industry 4.0, such as digitalization, optimization, cus-
tomization of production, automation and adaptation, human-machine interaction, and
automatic data exchange and communication [RMK16], could benefit from the effective
utilization of simulations.

Simulations can be utilized during the operation of the cyber-physical system, for example
as a part of a digital twin, to monitor, diagnose, predict, control, and reconfigure parts
of the system [SSK+20]. In order for the simulations to produce reliable outputs, the
simulation models need to be adequate representations of reality. To this end, simulation
verification and simulation validation should be used, in order to ensure the accurate
and adequate representation of reality, by the simulation. [Led99]

On the other hand, it is also possible to utilize the simulations during system design,
to verify the system’s functionality. This is usually achieved by hardware-in-the-loop,
meaning that parts of the tested systems are simulated, while other parts are already
implemented in real hardware. Hardware-in-the-loop simulation requires that simulation
models for some parts of the system are developed, including all significant interactions
with its operational environment [Bac05]. The simulation then monitors the output
signals of the system under test, and generates input signals for it, at specific time
points. [Led99] The advantage of this approach is that the finished system components

1

1. Introduction

can already be tested, even while other system components are still in development. The
issue that arises with this approach is that the simulation models are often developed
completely independently from the existing automation systems, and thus there are
interoperability problems when the simulation has to interact with the real part of
the automation system. In addition, the process of converting the programs from the
simulation environment to the deployment environment often introduces errors, and
prolongs time-to-deployment of the system.

An attempt to alleviate this issue is proposed in this thesis, using a mapping unit which
should seamlessly connect the simulation environment and the rest of the automation sys-
tem. In a sense, an interoperability layer, called the mapping unit, is introduced between
the simulation system and the rest of the automation system. This interoperability layer
is tasked with bringing the two interfaces together, seamlessly. The interfaces of these
systems usually consist of different typed variables complete with additional information,
such as engineering units, minimal, and maximal values. The name mapping unit comes
from its task: mapping variables of one system to the variables of the other system, as
well as connecting the mapped variables together enabling data flow during execution. In
order to achieve this, it needs to take the additional provided information into account,
and create a correspondence map between pairs of variables of the two systems.

Problem Statement

Ideally, the simulated components could be added and removed from the automation
system at will, either during system development to check the system’s interaction with
unfinished components, or during deployment, in parallel with the working system, to
provide additional insight into the workings of the real system. In reality, the interfacing
usually presents an issue, and prevents such seamless interaction. The interfaces are
usually not directly compatible, and making the interaction between the systems function
properly is a time-costly task. Additionally, errors might be introduced, and these may
be difficult to find, especially during system design when not all components are verified
as correct. The proposed interoperability layer - the mapping unit would alleviate these
issues, by (semi-)automatically finding the mapping between the interface connection
points, as well as seamlessly connect the two interfaces, facilitating for communication
between them.

This problem statement yields the following research question: What is an appropriate
workflow to (semi-)automatically connect an automation system described by an informa-
tion model to an existing simulation model - enabling the automation system to access
the simulation data during runtime?

Methodology

The workflow needs to incorporate an interoperability layer, or a mapping unit, which
would connect the two systems. The requirements for such a mapping unit, which would
connect the automation system with the simulation system would be as follows:

2

• First, the mapping and the connection should happen automatically on one hand,
but also error free on the other. Complete automation and especially the property
of being error free might be very difficult to achieve.

• The interoperability layer should lean into safety, and thus only connect the points
which are determined to be compatible with a determined degree of certainty.

• Additionally, the interoperability layer should provide a way for human to intervene,
and define, re-define, and remove the connection points.

In order to create such an interoperability layer, the following workflow is expected:
first, the descriptions of the interfaces of the simulation model, and the automation
system model should be obtained, if available. Then, based on these descriptions (or
alternatively the proposed descriptions, if real descriptions do not exist yet), an internal
mapping of the connection points between the two interfaces should be created. Lastly,
the communication between the simulation and the automation system should be enabled,
that can either work during system operation, or be used during testing.

In order to achieve these goals, the following methodological approach will be taken:
first, a literature review will be conducted, which will provide insight into the current
state-of-the-art, as well as different approaches, possibilities, and methods which can
be used to design such an interoperability layer. The literature should also provide a
theoretical insight into the problem. Second, the possible different variations of the
problem, and the accompanying approaches should be explored, in order to obtain insight
into the possible issues and solutions that might arise from different specifications. Next,
the mapping techniques will be analyzed to find a way in which to map the connection
points (variables) of the two interfaces. Different possible criteria, as well as the mapping
certainty should be discussed and explored. Lastly, a proof-of-concept implementation
should be developed, utilizing modern frameworks, in order to evaluate the feasibility of
the proposed workflow, as well as the proposed mapping techniques.

Technology

For the proof-of-concept of this thesis, the following two frameworks were chosen: the
Functional Mockup Interface (FMI) for the simulation side, and the Open Platform
Communications Unified Architecture (OPC UA) for the automation side of the system.
These two frameworks were chosen as they are standardized, open, and widely used in
the industry, when dealing with simulations and automation systems.

FMI defines a standardized interface for simulations in development of cyber-physical
systems. Using FMI, an engineer can create a simulation module, containing all required
equations and data for the simulation, called a Functional Mockup Unit (FMU). Such
FMUs can be imported into other environments and be executed. The need for a
unifying simulation standard comes from the state of the industry. The simulations often
replace real testing to facilitate faster and cheaper development, however the simulation

3

1. Introduction

landscape in the field of system and component design is very heterogeneous [BAS14]
(as are the cyber-physical systems themselves [JOM16]). Different simulation tools are
preferred for different engineering domains, and these tools have incompatible model
representations. Some proprietary exchange formats exist, however they have limited
functionality and are only applicable to some tool combinations [BAS14]. An open, more
generalized approach, such as FMI would aim to alleviate these issues. First, the entire
system should be modeled within one modeling language, this would greatly simplify
the interaction between different simulated system components. This means that the
modeling language must be suitable for a wide array of engineering domains. Modelica
modeling language fulfills this [BAS14], and FMI provides the necessary features to
transform Modelica models to FMUs [Mod20]. And second, the interface for model
exchange should be standardized and tool-independent. This helps with the problem of
heterogeneous simulation landscape, by allowing specialized tools for different domains,
while maintaining interoperability. FMI is a good candidate for this kind of model
exchange and cross-company collaboration [BAS14].

On the other side, OPC UA is often mentioned in the context of Industry 4.0 applica-
tions [GHIU17],[LKYO17]. For example, OPC UA is mentioned in the German Industry
4.0 Implementation Strategy from 2015 [BVZ15]. It offers client-server machine-to-
machine communication, and Service Oriented Architecture (SOA). It also provides an
extensible way to define information models related to a physical process. The need for
such information models comes from the following: devices and subsystems of automation
systems need to implement communication related functionalities, such as search, connect,
send, and receive. While all of the subsystems could implement the same functionality,
it would be more beneficial if these capabilities were implemented in a distinct system,
which then provides interfaces to different subsystems [MGGU11]. Thus, the applications
only need to handle interfaces, instead of individual functionalities. Obvious benefits are
reuse, reduction of complexity, higher flexibility and maintainability [MGGU11]. OPC
UA incorporates several functionalities which give "meaning" or semantics to the data,
such as hierarchy, and inheritance. These capabilities help the information system fulfill
its role regarding the existing data. Such machine-friendly semantic definitions can
help software "reason" about the data at hand, to further help with the tasks of the
information system. In other words, it allows clients to perform sophisticated tasks by
interpreting the semantics of the data [MLD09]. OPC UA supports the following model-
ing concepts which are important for information modeling: hierarchy, variables, data
types, functions, methods, references, classes, inheritance, and aggregation [MGGU11];
these functionalities help it fulfill the information system requirements.

OPC UA information models will be used, along with the model descriptions of FMUs to
facilitate the mapping procedure, in the proof-of-concept implementation in this thesis.

Thesis Structure

The thesis is structured as follows: first, an overview of the current state-of-the-art is
given in Chapter 2. The chapter also presents an introduction to the two frameworks for

4

simulations and automation systems which were chosen for the proof-of-concept: FMI and
OPC UA, respectively. Chapter 3 gives additional insight into the problem, the possible
workflow approaches, as well as some mapping (matching) techniques. Next, Chapter 4
presents the proof of concept implementation which was developed for the purposes of
this thesis; the use cases which were used with the proof of concept are then described
in Chapter 5. The findings of the thesis, and the proof of concept implementation are
discussed in Chapter 6. And lastly, the thesis is summarized and concluded in Chapter 7,
where some possible approaches for future work are also given.

5

CHAPTER 2
State of the Art

This chapter contains the related scientific work, as well as papers which provide additional
information on topics that were mentioned in this thesis. Additionally, some basic
information about FMI and OPC UA is presented, in order to make understanding the
rest of the thesis easier.

2.1 Related Work
Industry 4.0

With the goals of higher operation efficiency, higher productivity, and higher levels of
automation, the fourth industrial revolution aims to integrate different systems and build
upon machine-to-machine communication. In his paper titled "Industry 4.0: A survey on
technologies, applications and open research issues" from 2017 [Lu17], the author Yang
Lu provides an overview of the scientific literature regarding the Industry 4.0. In total, 88
scientific papers were reviewed and summarized within this work. They are categorized
in five categories which give the reader a good introduction depending on the particular
direction they want to explore. The five categories are: Concept and perspectives of
Industry 4.0, CPS-based Industry 4.0, Interoperability of Industry 4.0, Key technologies
of Industry 4.0, and Applications of Industry 4.0. While the paper does not go into
detail for each of the reviewed papers, it presents a good overview of the general topic of
Industry 4.0, research directions, and a good introduction to Industry 4.0. Some of the
major Industry 4.0 features presented in the paper, such as digitalization, automation,
and automatic data exchange and communication, give a good motivation for this thesis.

Cyber-Physical Systems

Information about digital twins, their purpose and functionalities can be found in [SSK+20].

7

2. State of the Art

With regards to the cyber-physical systems, more information about the current and future
aspects of CPS, based on an automotive system example can be found in [WMO+16].
The authors argue that the cyber-physical production systems, which are integral to
the future factory environment (smart factories) should be scalable and modular. The
advantages of these approaches include greater ease of integrating, adapting, and replacing
individual production units, as required, based on the unpredictable market demands,
or in order to maintain operability in the case of disruptions and failures. The authors
pinpoint the concurrent combination of the physical world, and their digital counterparts
as crucial in achieving these goals. Thus, the importance of simulation tools increases, as
they support the engineering, re-engineering, and decision-making processes, as well as
enable evaluation of external and internal changes, and the impacts they cause on the
simulated system. Finally, in order to address the challenges of developing systems which
can model and simulate components of future factories, the authors present a framework
for modeling and simulation of CPS-based factories.
This paper provides a good motivation for co-simulation and digital twins, based on a
real industrial example. This has inspired the support for automatic time progression
clients, in the proof of concept implementation of this thesis (Chapter 4, in particular
Subsection 4.2.2).

Functional Mock-up Interface

More information about FMI can be found in [BOA+11], or directly in the stan-
dard [Mod20].

Additional information on using FMI together with the concept of a digital twin can be
found in [NFCM19]. The paper presents a modular simulation approach with the FMI
for use in creating a digital twin, which is an integrated simulation of the system, or
some component(s), which mirrors the corresponding real life component/system (i.e.
the twin), using internal models of the real component/system, as well as available sensor
data. This paper uses a black box approach for the individual modules within the main
simulation models, which simulate different behaviors of the system. These individual
models are activated only when needed, and work in addition to the main simulation
model. This achieves additional flexibility of the simulation.
This paper presents a good motivation for the use of FMU modules. In the paper, they
are added as black-box models to the main simulation model, in order to simulate different
system behaviors (for example, energy consumption). These modules are then activated
only when needed, making the simulation flexible. FMI allows the FMUs to be used by
different simulation environments, granting them independence from a single simulation
tool, and enabling relatively easy re-use. This paper has provided good motivation for
the use of FMI and FMUs. The authors describe a laboratory example, where they use
MATLAB Simulink1 environment to construct the FMU modules (where this thesis, in
contrast uses OpenModelica). Their example uses OPC UA to connect with an OPC

1https://www.mathworks.com/products.html ; accessed October 2021

8

https://www.mathworks.com/products.html

2.1. Related Work

UA server hosted on a PLC. The OPC UA connection is achieved through a MATLAB
toolbox (in contrast to open62541 used in this thesis, Subsection 4.1.1).

OPC Unified Architecture

[LM06] presents a good overview of OPC UA, alternatively, one can find more information
in the standard [OPC20] or in a book by Mahnke, Leitner, and Damm [MLD09].

More on information modeling with OPC UA in particular can be found in [GHIU17].
The authors consider the advantages and disadvantages of OPC UA information models.
The paper presents an overview of different ways and projects where OPC UA information
models were used, and how they impacted the corresponding system. One of the key
advantages identified by the authors is the possibility for stronger decoupling of the
client and the server in applications, while simultaneously making applications more
flexible. In particular, the following use cases for OPC UA are considered by the authors:
modular automation, co-simulation, and integration of field level devices with high data
throughput. The authors also identify some of the disadvantages of OPC UA, such as
limitations with regards to object orientation, server aggregation, and information model
revisioning. Finally, the authors concluded that OPC UA, and its information models
are suitable for new applications in the area of digitalization in process industries, by
allowing the construction of flexible and smart applications.
This paper provides good motivation for the use of information models. Modularity
and extensibility of OPC UA models are some of the advantages of OPC UA identified
by the authors of the paper, and the proof of concept implementation of this thesis
benefits from those advantages. In particular, the simulation control and simulation
variables are kept in separate namespaces as they are parts of different information
models (Subsection 5.1.2 and Subsection 5.2.2). Additionally, the existing OPC UA
server in the proof of concept is relatively easily extended by the simulation variables,
using the nodeset compiler which generates the entire simulation variable tree for the
server automatically (Subsection 4.2.3).

Closer to the topic of this thesis, the possibility of integrating a dynamic simulator and
advanced process control using the OPC UA standard has been considered in [LSS19].
The large amount of data generated by the manufacturing industries is difficult to
exchange among the various manufacturing systems, applications, and components, due
to the variety of the underlying systems. A middleware such as OPC UA could be used to
exploit the existing data, and achieve higher efficiency by bridging the communication gap
between the systems. OPC UA presents a scalable, platform independent, user friendly,
and secure approach. The paper adopts a simplified version of the Tennessee Eastman
(a chemical process simulation problem) - which is a well-known industry problem, as a
use-case on which the simulation and control modeling is performed. The authors have
also identified some of the difficulties when using OPC UA, such as the set of services in
an OPC UA server which is used by the client is defined in the OPC UA standard and is
not changeable by the user, and the security tiers are difficult if not impossible to control,
after the application platform is chosen. The authors also point out that performance

9

2. State of the Art

measurement of the OPC UA connection is not present, and that the level of reliability
and the quality of connection are hard to understand.
The paper successfully implements OPC UA communication between the controller and a
simulator for the simplified Tennessee Eastman problem, however, it also identifies some
difficulties when dealing with OPC UA. While the security and performance concerns
about OPC UA do not influence the proof of concept implementation of this thesis,
it is an interesting point to consider, especially regarding the access level criterion
(Subsection 3.2.2), and larger use cases (mentioned in Chapter 6).

Interaction of OPC UA with another simulation environment than in this thesis, namely
with VEROSIM2, is handled in [RR20]. The paper concerns itself with the concept of
automatic integration of simulation systems with OPC UA. A data mapping between
the simulation meta data model, and the OPC UA information model is defined in both
directions, and the communication is ensured with message passing between the OPC UA
server and the simulation software. The simulation software chosen is VEROSIM - an
extensible simulation framework. The mapping is used to automatically generate OPC
UA address spaces from the simulation models, and the inverse mapping (simulation
model to OPC UA information model) is used to generate simulation model structure
from queries to existing OPC UA servers. A large number of concurrent simulated objects
is possible, with individual and independent OPC UA servers and clients. Thus the
approach of this paper is especially useful for the distributed simulation. Finally, the
approach is tested in an automotive production line simulation, where the results show
that the implementation can handle significant network load.
The most important difference of this paper to the approach of this master thesis is the
fact that this paper presents a distributed solution with individual OPC UA servers,
implemented for the VEROSIM simulation framework. Virtual reality and simulation
system VEROSIM (proprietary product of VEROSIM Solutions) is a software solution for
reality systems and geographic information systems. It was originally developed for the
simulation of robot work cells for industrial applications [YJR+10], but it can now handle
a wide variety of applications, such as simulations of agricultural machinery and the
simulations of the international space station. VEROSIM puts a focus on 3D simulations
and virtual reality. The core part of the VEROSIM is small and the functionality is
added by plugins, this ensures a flexible, modular, and extensible design. An example for
using VEROSIM for an extraterrestrial legged robot is given in [YJR+10].

More information about possible improvements to OPC UA communication can be found
in [SFT+19]. This paper presents OPC UA extension where the information necessary
for OPC UA server application to access the underlying system is specified in information
model (called CommunicationInterfaceSpecification). The authors achieve this by defining
communication interfaces for all nodes of the information model that represent readable
or writable data, with the goal to reduce the implementation effort of OPC UA servers.
The paper also presents different modeling approaches for communication interfaces
and compares them. Three approaches for modeling the communication interfaces

2https://www.verosim-solutions.com/ ; accessed October 2021

10

https://www.verosim-solutions.com/

2.2. Functional Mock-up Interface (FMI)

are presented: as objects, as variables, and as data types. The functionality of the
communication interfaces, as well as the hierarchy (CommunicationInterfaces folder
and the Server object) are examined. If communication interfaces are implemented
as objects, there is a useful feature - event notifiers, which allows OPC UA clients
to subscribe to object nodes specified as EventNotifiers. Triggering conditions can be
specified and they may then be triggered when a communication interface is added,
removed, or changed. When modeling the interfaces as a variable, the communication
interface information is defined by the variable properties, and the value of the variable
itself can be used for additional information, for example the state of the underlying
system. As an alternative to EventNotifier attribute, the events may be triggered by
CommunicationInterfaces folder (from the hierarchy), so on changes to the folder, OPC
UA clients will be informed about the changes to the communication interfaces. The
DataType approach can only be applied in combination with a data variable or property,
so it cannot be used as a standalone solution. The following criteria are defined: flexibility
in integration and extensibility (objects cannot be instantiated under variables, this
is a limitation of ObjectType approach), access control (here ObjectType approach
has an advantage as individual variables access can be specified), adding/removing
communication interfaces (variables and objects cannot be passed to OPC UA server
as input arguments, DataType approach is favored), updating communication interface
details (EventNotifiers vs subscribing to folder updates), support by OPC UA stacks and
clients (not every OPC UA client may support structured DataTypes), support by SDKs.
The recommended modeling approach is a combination of VariableType and DataType
approaches. The paper also presents a proof of concept.
This paper presents good insight into OPC UA communication extensions. Using the
presented Communication Interface Specification techniques to extend the OPC UA
information model with the information required to communicate with the underlying
system (in the case of this thesis, the simulation) would present some advantages for
the proof of concept implementation of this thesis (for example: better organization and
clearer communication requirements). However this would surpass the boundaries of this
thesis; instead it could be an improvement avenue for future work.

2.2 Functional Mock-up Interface (FMI)
The version of FMI used in this thesis is FMI 2.0.2 [Mod20]. Both the FMI 2.0.1 and
FMI 2.0.2 are maintenance/bugfix releases, and provide no new functional changes. The
FMI 2.0, however, was a major expansion of FMI 1.0, as it merges the two previous
standards, namely FMI 1.0 Model Exchange, and Co-Simulations, and it additionally
incorporates many improvements.

2.2.1 Overview

In FMI, the Functional Mockup Unit (FMU) contains data that is relevant for a particular
simulation (module). One of the included files is the model description XML file. This

11

2. State of the Art

file defines the variables, units, and other information that is relevant, and serves as the
interface definition for the simulation model. Apart from the model description file, the
FMU also contains the data required to simulate some instance/module of the system,
according to an interface defined by the FMI. A simulation environment can utilize
multiple FMUs or other models, and individual FMUs can be instantiated multiple times.

FMI for Model Exchange and FMI for Co-Simulation

There are two main use cases for FMI. First, FMI for Model Exchange which defines an
interface to a model of a dynamic system which is described by differential, algebraic,
and discrete-time equations. These models provide interfaces to evaluate these equations,
which is a task for the simulation environment to perform. Such interface allows descrip-
tions of large models. The FMU in this case contains the model, or communication to a
tool that provides the model, while the environment provides the simulation engine. On
the other hand, FMI for Co-Simulation is designed for both the coupling of simulation
tools, and coupling with subsystem models. These models are exported by the simulation
tools so that they include runnable code. In this case, the FMU includes the model
and the simulation engine, or a communication to a tool that provides the model and
the simulation engine; the environment provides the master algorithm to run coupled
FMU co-simulation slaves together. The proof of concept implementation of this thesis
(Chapter 4) utilizes FMI for Co-Simulation. In the case of simulation tool coupling,
the simulation is performed independently for all subsystems, which limits the data
exchange between the subsystems to discrete communication points. The visualization
and post-processing of simulation data is then the responsibility of the simulation tool
handling that subsystem.

Despite the different use cases, both the FMI for Model Exchange and FMI for Co-
Simulation utilize many of the same parts of the FMI standard. In particular, the
FMI Application Programming Interface is shared. All required equations, or other
computation tasks are evaluated using standardized C functions. The FMI Description
Schema (XML) is also shared. This schema defines how the XML file generated by a
modeling environment should look (both in its structure and its content). All variables
of the FMU are defined within this XML file in a standardized way, along with their
attributes, such as name, unit, default initial value, minimum and maximum values,
and so on. This is considered an advantage, as defining the variables and the relevant
information directly in the C code would present an overhead for the embedded systems,
and for large models. This also enables tools using different programming languages to
easily utilize the variable information.

Properties and Guiding Ideas of the FMI

The standard also defines some guiding ideas for FMI. First is expressivity, meaning
that the FMI provides necessary features for models from different vendors (including
Modelica itself) to be transformed to an FMU.
Stability is naturally important for a standard which should be used by many simulation

12

2.2. Functional Mock-up Interface (FMI)

tools worldwide, it is therefore a high priority, along with backwards compatibility.
Processor independence is also one of the desirable properties. This means that the
FMU can be distributed without previous knowledge of the target processor. Processor
independence increases the usability of an FMU, and is achieved partly by using C
language for FMU source, which is highly portable.
The FMU should also have simulator independence. In other words, it should be possible
to compile, link, and distribute the FMU, without knowing the target simulator. This
presents a big advantage, as the FMU is not restricted at compile time, and there is no
need for different versions of the same FMU targeted for different simulators.
The FMI has small runtime overhead, meaning that the communication between the FMU
and the target simulator (through FMI) does not incur significant runtime overhead.
The FMI also has small footprint, in a sense that the compiled FMUs are small. This
presents an advantage for embedded systems. Other relevant (required) information is
stored in the model description file, which is also a part of the FMU, but not a part of
the executable.
As was mentioned before, the FMI provides support for many FMUs, as well as for nested
FMUs. This includes many different FMUs, or multiple instances of a single FMU. The
inputs and outputs of the FMUs can be connected with direct feedthrough.
While an FMU normally computes a cache for later re-use, in order to simplify the usage
and reduce the possibility of an error in the simulator, the caching mechanism is hidden.
This aids the simplicity of FMI, and additionally it allows freedom of implementation of
the caching policies for FMUs.
In order to minimize execution times, FMI provides support for numerical solvers, mainly
through vectors of states, derivatives, and zero-crossing functions.
FMI consists of a few functions and avoids redundant functions which could be defined
in terms of other functions. This results in a compact and easy-to-use API.
There is a unified error handling, meaning that all FMI methods use a common set of
methods to communicate errors.
Memory management is handled with the Allocator Must Free policy. This means that
the memory and other resources allocated by the FMU are freed by the FMU, and
similarly, all resources allocated by the simulator are freed by the simulator. This helps
prevent memory leaks and runtime errors due to incompatible runtime environments.
Finally, FMI is encoded in C and not in C++. Apart from the above listed benefits, this
also avoids problems with compiler and linker dependent behavior.

2.2.2 Data Types
The FMI defines the five following types: Real, Integer, Boolean, String, and
Enumeration. When the variables are defined in the model description file, in the
FMU, along with the data type, other parameters can also be specified, such as the unit,
minimal and maximal value, the nominal value, and others. An example of a variable
definition in the model description file might look as follows:

13

2. State of the Art

<Sca la rVar i ab l e
name="mass .m"
va lueRe fe rence ="19"
d e s c r i p t i o n ="Mass o f the s l i d i n g mass "
v a r i a b i l i t y =" f i x e d "
c a u s a l i t y ="parameter "
>
<Real s t a r t ="2.0" min ="0.0" un i t ="kg"/>

</Sca la rVar iab l e >

Type definitions can also be given in the TypeDefinitions element, where one
or more SimpleType elements can be defined. The variables are then given type
via the declaredType attribute, which references one of the SimpleTypes. Each
SimpleType has a name which must be unique among all SimpleType elements in
the TypeDefinitions list. Additionally, SimpleType may contain a description
attribute.3 Additionally, a type must be specified, by defining one of the following ele-
ments: Real, Integer, Boolean, String, Enumeration. This type element (based
on which one it is) then has additional attributes.
For example, a Real element may have a quantity (non-standardized physical quantity
name, for example "Energy"), unit, displayUnit, relativeQuantity (these three
are described in the Subsection 2.2.5), min, max, nominal (starting value), unbounded
(in order to increase numerical stability of the simulation).
An Integer may only have quantity, min, and max attributes. While Enumeration
may have a quantity, but it also has (at least) one, or more Item elements, which con-
tain a name, a (unique within the enumeration) value, and (optionally) description
attributes. An Enumeration might also have min and max attributes.

2.2.3 Variables

The variables within the model description file are defined within the ModelVariables
element. This element defines one or more ScalarVariable elements. The scalar
variables are uniquely indexed starting from 1 (these indices are not related value
references which do not have to be unique, see Subsection 2.2.4). A scalar variable is
a variable of a primitive type (for example Real or Integer, for variable types see
Subsection 2.2.2). Only scalar variables are supported, which means that arrays or
records have to be mapped to scalars (for more information about the variable structure,
see Subsection 2.2.6).

3In order to preserve compatibility with other environments, such as Modelica, name of a SimpleType
must also be different from all name attributes of ScalarVariables. This restriction is in place in
order to prevent issues with FMU importing, as these environments often disallow instance names which
coincide with type names.

14

2.2. Functional Mock-up Interface (FMI)

Attributes

Apart from the data type definition, a scalar variable also has attributes. There are two
obligatory attributes: the name and the valueReference. The name is, similarly to the
index, a unique identifier of a variable. The value reference is used to identify the variable
value within the model interface, but is not necessarily unique (see Subsection 2.2.4).
Additional attributes of scalar variables are optional.

description is a freely chosen string describing the meaning of the variable.

causality defines several possible options: first parameter means that the variable
is constant during the simulation, provided by the environment, and cannot be used in
connections; calculatedParameter means that the variable is constant during the
simulation, and computed during initialization or when tunable parameters are changed;
input variables can be provided from another model or a slave; output variables can
be used by other models or slaves; local variables are either calculated from other
variables, or they represent a continuous-time state; and lastly independent variable is
usually "time", as all other variables are functions of this independent variable (only one
variable within an FMU can be defined as independent). The default causality is local.

variability attribute defines the time dependency of the variable (it defines the
time instants when a variable can change its value). It allows the following options:
constant means that the variable never changes; fixed means that the variable does
not change after initialization; tunable means that the variable is constant between
external events (in FMI for Model Exchange) and between communication points (in
FMI for Co-Simulation); discrete means that the variable is constant between external
and internal events (in FMI for Model Exchange), or the variable is from a real sampled
data system where its value is only changed at communication points (in FMI for Co-
Simulation); continuous (only possible for variables of type Real) means that the
variable either has no restrictions (in FMI for Model Exchange) or that the variable is
from a differential (in FMI for Co-Simulation).

The attribute initial defines how a variable is initialized, and allows the following
options: exact means that it is initialized with the start value of the data type;
approx means that the variable is an iteration variable of an algebraic loop, with the
start at the start value; and calculated means that the starting value is calculated
from other variables during initialization.

The attribute canHandleMultipleSetPerTimeInstant is only available for FMI
for Model Exchange, and it means that the input variable with this attribute is or is not
allowed to appear in a real algebraic loop requiring multiple set calls.

2.2.4 Value References
Each of the variables inside the model description file has to have a specified value reference,
which is defined as an attribute valueReference in the element ScalarVariable.
However, in contrast to one might expect, these value references are not necessarily

15

2. State of the Art

unique. The first possibility are the so called "alias" variables. These are the variables
of the same data type, which have the same value reference. Other parameters of the
variables, such as the minimal and maximal values may be different (but the [engineering]
unit must also be the same). The values of these aliased variables must be identical.
This means that the variables must adhere to the strictest value limitations that are
present. For example, if two variables are aliased, and one has a maximum value of 5,
and the other the maximum value of 10, then the simulation should trigger an error if
the value of either of the variables (the same value) surpasses the lower maximum: 5.
The second possibility for sharing value references is for the variables of different types.
These variables can freely share value reference without any issue, as the interaction with
the simulation (reading and writing variables) clearly specifies the type in the function
call, which then ensures that the correct variable is accessed.

2.2.5 Units
The model description file contains a UnitDefinition section where units can be
defined. Note that if no units are defined, the UnitDefinition element must not be
present. The support for units is important for technical systems for ease of use and in
order to reduce the chance of errors. As different systems use units differently, there is
no unified way to handle units which is satisfactory for all applications, and the unit
handling is thus a difficult topic. A single Unit is defined by its name attribute, which
must be unique among all units (i.e., a name of a Unit uniquely identifies it). If a
variable is defined to have some unit, the value of this variable when interacting with
the FMU (i.e., setting and getting the value) will always be with respect to the unit
associated with the variable.

Additionally, it is possible to define how a Unit can be converted to a BaseUnit.
The BaseUnit definition has exponents of the 7 SI base units (kg, m, s, A, K, mol,
cd) as well as an exponent of the SI derived unit rad (this helps with quantities that
depend on angles, which often occur in technical systems). BaseUnit definition also
includes the factor and offset attributes, which together form a linear conversion
formula: BaseUnit_value = factor * Unit_value + offset, which can be
used to convert the given Unit to a base unit.4 For example, a Joule (J) is kg∗m2

s2

in SI units. This would mean that Unit.name would be J, and the exponents of
Unit.BaseUnit would be kg=1, m=2, s=-2, the factor would be 1.0 and the
offset would be 0.0. The BaseUnit element can be used for the signal connection
check. If two signals are connected together (for example, an output of one FMU is
connected to an input of another FMU), and both of them have BaseUnit elements
defined, then they must have identical exponents (thus, wrong connections can easily
be detected). If factor and offset attributes are also identical, the values must
be the same, otherwise, the system might trigger an error, or perform a conversion, if
supported. Caution must be exercised with variables that have the same BaseUnit but

4If offset should be used or not is determined by the relativeQuantity, which is an attribute
of the TypeDefinition of a variable

16

2.3. Open Platform Communications Unified Architecture (OPC UA)

belong to different quantities (for example energy and torque). In such cases, quantity
definitions need to be taken into account. Units might also be deduced based on signal
connections for variables that are missing unit definitions.

Optionally, it is also possible to define a set (one or more) of display units. A DisplayUnit
is defined by name, factor, and offset attributes. The name attribute must be unique
within other name attributes in DisplayUnit definitions of the same unit. The con-
version then works similarly to the BaseUnit conversion: DisplayUnit_value =
factor * Unit_value + offset.

2.2.6 Variable Structure
Being able to form arrays and other structures is often an important part of models, as it
can make the understanding of the model easier for humans, but also enable additional
matching techniques for programs, such as those handled in Subsection 3.2.2. In the model
description file in the FMU, there is a parameter called variableNamingConvention
which can be given as "flat" or "structured". Using flat variable naming convention,
the variables simply represent a list of strings. The names of the variables using flat
variable naming convention can be any Unicode characters apart from: carriage return,
line feed, and tab. On the other hand, if structured variable naming convention is used,
the variables follow a certain hierarchy. Namely, the hierarchy is established by using a
dot (".") as a hierarchy separator, using square brackets for array elements, as well as
designating derivatives of other variables with "der()" (higher derivatives are given as
"der(name, N)", for N-th derivative. Other than these hierarchical specifiers the names
can consist of underlines, letters and digits, or alternatively, any characters enclosed
by single apostrophes. When defining an array, all array elements should be given as a
consecutive sequence of scalar variables. In a case of a multi-dimensional array, they are
ordered row-major. The standard specifies the following example:

The vector "centerOfMass" in body "arm1" is mapped to the following ScalarVariables (it
is not defined if the arrays start with 0 or 1):

robot . arm1 . centerOfMass [1]
robot . arm1 . centerOfMass [2]
robot . arm1 . centerOfMass [3]

2.3 Open Platform Communications Unified Architecture
(OPC UA)

This thesis uses the 1.04 version of the OPC UA standard [OPC20]. The OPC UA
standard is split into several parts, each focusing on a certain aspect of the standard.
The parts from 1 to 7 (Overview and Concepts, Security model, Address Space Model,
Services, Information Model, Service Mappings, Profiles, in that order), including part 14
(PubSub) focus on the core capabilities of OPC UA, such as the structure of the Address

17

2. State of the Art

Space, and the available Services. Part 14 focuses specifically on the publish/subscribe
pattern (whereas Client/Server pattern is defined by Services in part 4). Parts from 8
to 11 (Data Access, Alarms and Conditions, Programs, Historical Access, in that order)
then apply these capabilities to specific access types (which were previously addressed
in separate OPC COM specifications). Parts 12 and 13 (Discovery and Aggregates,
respectively), are considered utility specification.

2.3.1 Overview
The intention of OPC UA is to be applicable to all industrial domains, from industrial
sensors and actuators to enterprise resource planning and manufacturing execution. In
particular the standard mentions Industrial Internet of Things, Machine To Machine
communication, Industry 4.0, and China 2025 (a comparison of Industry 4.0 and China
2025 can be found in [Li18]). The focus is on information exchange together with
command and control for industrial processes. This information exchange is facilitated
by defining a common infrastructure model which specifies the following: the information
model which represents the structure, behavior and semantics, the message model which
facilitates interaction between applications, the communication model in order to transfer
data between end points, and the conformance model to guarantee system interoperability.

The main representation of the OPC UA information model is the nodeset file, which
is an XML file containing the information about the nodes, variables, and parameters,
which constitute an information model. The nodeset files serves as an interface for the
automation system information model.

OPC UA aims to be platform independent standard, to enable communication between
different system and device types. On a technical level, OPC UA standard defines several
communication protocols: OPC UA TCP, HTTPS, and WebSockets. The communication
is facilitated by one of the following communication types: either by sending request and
response messages between clients and servers (defined in standard part 4), or through
NetworkMessages between publishers and subscribers (defined in standard part 14).
The Client/Server model defines a set of services that a server may provide, whereby
individual servers specify the service sets that they support, to clients. Servers define
object models that clients can dynamically discover. The data that the servers provide is
not limited to the current ("live") data, as the servers can also provide historical data, as
well as alarms and events. The portability and the flexibility of OPC UA is achieved
by mapping OPC UA to a variety of communication protocols. The data can also be
encoded in various ways, in order to ensure portability and efficiency. The advantage of
offering multiple possibilities is that end users can make decisions about performance and
compatibility trade-offs at deployment, as opposed to having the encodings and protocols
pre-determined by the vendor at product creation.

The service and address space model is consistent and is provided by the standard. A single
server can then integrate the data, history, alarms and events into its AddressSpace, in
order to provide access to them, using a set of Services. The services also include an

18

2.3. Open Platform Communications Unified Architecture (OPC UA)

integrated security model. The communication is robust and secure, assuring the identity
of OPC UA applications. The robustness is also guaranteed by mechanisms which ensure
that clients can quickly detect, and also quickly recover from communication failures
associated with data transfers (avoiding the long timeouts of underlying protocols). The
servers can also provide clients with type definitions for objects from the address space,
this means that the information models can be used to describe the contents of the
address space. The data itself can be presented in different formats, for example binary
structures (UA Binary), or XML or JSON documents. The format of the data itself can
be defined by OPC, as well as other standard organizations or vendors. This guarantees
the extensibility and flexibility of the standard. The data is accompanied with metadata,
which describes the data format. This metadata can also be accessed by clients, by
requesting it from the server. This facilitates flexibility, as a client with no previous
knowledge of data formats can determine the format of the needed data at runtime,
which enables successful utilization of the data.

Many relationships between nodes of an information model are supported within OPC
UA. This means that the server can present the data in a variety of hierarchies which can
be specifically tailored to sets of clients that view the data. The OPC UA is designed in
such a way to support a variety of servers, fitting many industrial niches (from the plant
floor to enterprise). Supporting such a wide variety of use cases means that the servers can
differ in size, performance, execution platforms and also functional capabilities. The OPC
UA standard aims to isolate the core design and ideas of OPC UA from the underlying
technology and networks. This ensures easy adoption and adaptation of OPC UA to new
technologies without changing the core design. In order to ensure interoperability, OPC
UA provides a set of capabilities, which the servers may implement, in addition, OPC
UA defines specific subsets, called Profiles (standard part 7), which the servers can
then support. This enables easy interaction with the clients, as the clients can detect
server profiles, and then adjust their interaction with the server, based on those profiles.

Communication types

The clients and the servers are defined as interacting partners within the OPC UA
systems architecture models. A system may consist of multiple clients and servers, where
each server can simultaneously interact with one or more clients, and each client can
simultaneously interact with one or more servers. A single application may have both
server and client components, in order to allow interaction with other clients and servers.
This is called server to server interaction (one server acts as a client of another server).
Server to server interaction enables the servers to exchange information with each other
on peer to peer basis, and it also enables server chaining in a layered architecture.
The server has an AddressSpace, which is modeled as a set of nodes which are
accessible by the clients, using services. The address space contains the nodes, as well
as the references between the nodes. The server is free to organize the nodes within
the address space freely, using the references, which enables building hierarchies, mesh
networks, or something in between. A View is a subset of the address space, which the

19

2. State of the Art

server can use to restrict the size of the address space for the clients. Views are often
used as hierarchies which make the address space easier for the client to navigate.
The client interacts with the server through send and receive service requests and
responses. The OPC UA communication stack converts client calls into messages, which
are sent through the underlying communication system to the server. The OPC UA
communication stack also receives response, as well as notification messages, from the
underlying communication system, and delivers them to the client application.

The publisher/subscriber model helps OPC UA with expanding into new fields. The
publisher/subscriber model is not restricted to a pre-defined message system (so both
conectionless protocols such as UDP can be used, as well as established message protocols,
such as ISO/IEC AMQP 1.0). This communication model can be useful to facilitate
configurable peer to peer communication between controllers, for example, as the data
exchange often needs to happen within a certain time frame. The publisher/subscriber
model may also be used for asynchronous workflows, where an application may place
its message in a message queue, from which it can be handled by one of several parallel
applications, running on the other end. Sensors and actuators can also follow the pub-
lisher/subscriber model.
Using the publisher/subscriber model, the OPC UA applications do not directly exchange
message requests and responses, instead the publishers send messages to a message
oriented middleware, without any awareness of the possible subscribers. The subscribers
express interest in specific types of data, and process such messages, without the knowl-
edge of the publishers. This message oriented middleware is a hardware or software
infrastructure which supports message exchange for distributed systems. The message
exchange implementation is not restricted by the standard.

2.3.2 Address Space
The goal of the address space is to provide a standardized way in which the servers
represent objects to clients, as defined by the OPC UA object model. In other words,
the set of objects and related information, that the server hosts is referred to as the
AddressSpace of the server. The objects are defined in terms of variables and methods,
and the address space allows defining the relationships between objects. The nodes are
assigned to node classes, which represent different elements of the object model. The
elements of the object model are represented as nodes, within an address space (within an
AddressSpace, Nodes are described by their Attributes, and are interconnected by
References). Attributes are data elements which describe nodes, they are accessible
by clients using read/write, query, or subscription/monitoring services. The references
are used to relate the nodes to each other, and they are defined as instances of reference
type nodes.

Variables are used to represent values. OPC UA defines two variable types: Properties
and DataVariables. Properties are characteristics of objects, data variables, or other
nodes. A property characterizes what a node represents. The properties can be defined
directly by the server, in contrast to attributes, which are common to all nodes of a

20

2.3. Open Platform Communications Unified Architecture (OPC UA)

node class. Properties are not allowed to have other properties defined for them. Data
variables on the other hand represent content of an object. An example would be an
object which contains a stream of bytes, while the creation time and owner of the file
would be properties, the data stream (stream of bytes) itself would be a data variable.
Data variables might contain other data variables.

Methods are specified by the standard as lightweight functions, whose scope is limited
by the corresponding object, or an object type. The execution of a method works as
follows: a method is invoked by a client (method call), the method is then executed by
the server, upon completion of the method, the server returns the result to the client.
The methods are stateless, however, they can influence the state of the corresponding
object. Each method may have multiple input arguments, as well as multiple output
results. The methods are discovered by the client by browsing the objects to which the
methods are attached.

Node IDs

The OPC UA nodes (and thus variables) are distinguished by the node ids (which contain
namespaces). According to the standard, a node id is: "An identifier for a node in the
address space of an OPC UA Server". A node id consists of the following information: an
unsigned 16 bit integer representing the namespace (whereby the index 0 is used for OPC
UA defined node ids); and a node identifier, along with its type. The node identifier can
have the following types: UInteger, String, Guid (a 16 byte value that can be used
as a globally unique identifier), or a ByteString (a sequence of bytes). A particular
combination of the namespace and the node identifier is unique among nodes.

2.3.3 Data Types
All OPC UA types stem from the BaseDataType type. The data types are defined
in OPC 10000-5. Some subtypes of BaseDataType are: Boolean, ByteString,
DateTime, Enumeration, NodeId, Number, String, and so on. Some of these
subtypes are abstract, and have further subtypes, for example Number has following
subtypes: Integer, UInteger, Double, Float, and Decimal. And some of those
have further subtypes, for example Integer which defines integers of certain bit sizes.
Worthy of note is that the types are defined in a fine-grained manner, allowing precise
type definitions for individual variables.

2.3.4 Structure
There are many reference types within OPC UA, allowing for relatively complex structures.
The main structure consists of a Root folder, containing Objects folder, where objects
instances are defined. The most common reference types here are HasComponent and
HasProperty. The objects themselves may have other objects as components, and
variables as components or properties, the difference being that properties cannot have
further children of their own. Arrays are distinguished from scalar variables by using

21

2. State of the Art

the value rank attribute, which can be used to define the number of dimensions that the
array has. Another attribute called array dimensions can then be used to define the exact
length in each array dimension. Another common type is a method type, representing an
executable method, which can have arguments and return values.

2.3.5 Security
The security in OPC UA (standard part 2) concerns itself with the integrity and confi-
dentiality of communications, as well as the authentication of clients and servers, and
authentication of users. Security profiles are defined in standard part 7. In order to
ensure flexibility, the OPC UA standard does not specify the circumstances under which
particular security mechanisms are required, instead, the security model of OPC UA
defines which security measures can be selected and configured. The decisions about
which security mechanisms to use are made by those who design and implement the
system (or by other standards that they are following).

Application layer security is granted by a secure communication channel which ensures
the integrity of messages. The user authentication occurs only once, when the session
is established, the secure communication channel then guarantees the integrity of all
messages exchanged within the session.

Sessions are logical connections between clients and servers, and are independent of the
underlying communication protocols. They give the need for a stateful communication
model (for server/client). The information related to the session are subscriptions, user
credentials, as well as points of continuation for operations that span multiple requests.
The servers can also limit the number of concurrent sessions, for example, based on the
resource availability. As the sessions are independent of the underlying communication
protocols, the termination or a failure within the underlying communication protocol does
not cause session termination. Sessions are terminated solely based on the requests of
either the client or the server, or based on the inactivity of the client (for a pre-determined
time period, negotiated at session establishment).

22

CHAPTER 3
Proposed Interfacing Approach

This chapter gives a more detailed look at various engineering workflows. The problem
can take several forms, depending on the design of the systems. The design and the
chosen approach influences the matching, which needs to take place in order to enable
seamless communication between the automation and simulation systems.

3.1 The Engineering Workflow
The key problem that is discussed throughout this thesis is as follows: there is a simulation
environment on one side and an automation system on the other. The two systems
do not have inherent interoperability, however they need to interact, as the simulation
represents or replaces a real part of the system. The overall system thus consists of
three components. First, the simulation environment models either a component or a
set of components. The simulation either has the purpose of replacing the component
temporarily in a real system (hardware in the loop), testing the behavior of the rest of
the system before a real component is available, or simply doing tests on the simulated
component itself, to see how it would behave. The second component is the automation
system, it contains the means to control and optimize the process, and it interacts with
the real hardware. The third component, and the focus of this thesis is the mapping unit.
It is the unit that connects the other two sub-systems together, and the one which serves
as a connector by enabling communication between them.

The problem itself can be tackled from multiple directions. This depends on the available
system parts, the order in which they are developed, as well as the influence of the
mapping unit designer over the design of the rest of the components.

The first possibility has the automation system designed first. This possibility can be
seen in Figure 3.1. The full lines represent communication, the dashed lines represent
design flow.

23

3. Proposed Interfacing Approach

Figure 3.1: Engineering Workflow: Automation System First

Based on the automation system, one would create a mapping unit, for the future
simulation. The mapping unit designer would thus create requirements for the simulation,
such as which variables need to be accessible, their types and so on. The problem with
this approach is that the requirements for the simulation system might be unfeasible to
fulfill for the simulation. Not all simulation systems allow users to manually determine all
variables and their types - the variables are usually generated by the simulation compiling
software automatically.

The second possibility is to have a simulation model first, and then create a mapping
unit, which would then set requirements for the automation system. This can be seen in
Figure 3.2.

Figure 3.2: Engineering Workflow: Simulation System First

While the automation system would be easier to design according to these instructions
(compared to the simulation system from the first possibility), the designers of the
mapping unit would need to have good knowledge of what the automation system will
look like in the future, and this is usually not directly possible. So, if the automation
system would later need some additional variable, as the simulation and the mapping
unit are already designed, providing it would present an issue. The advantage of both of
these possibilities is that the matching is much easier to perform, as the mapping unit
(designer) is the one who creates the requirements for one of the systems. This means

24

3.1. The Engineering Workflow

that the mapping unit knows exactly which variables will appear, and exactly how to
distinguish them, making matching significantly easier. For example, the requirements
may define exact variable names for each of the new system’s variables, which would
then make matching based on variable names trivial. On the other hand, both have the
disadvantage of a more difficult (or unfeasible) system design, for the system which has
to adhere to these requirements. But the real issue with both of these approaches is that
it is usually the case that the automation system and the simulation models are already
present (brownfield approach, see below in this section), thus we cannot design one of
them based on the other one, and we are left with the third possibility.

The third possibility would be to have the automation system and the simulation system
designed first and in parallel, and then design the mapping unit to connect the two. This
approach can be seen in Figure 3.3.

Figure 3.3: Engineering Workflow: Mapping Unit Last

This is the approach which is taken in this thesis, and assumed in the proof of concept
implementation (Chapter 4). It often happens that the automation system, and the
simulation are developed separately (also apart from each other in time). The systems
should then be used together, however they are not developed with interoperability in
mind. This means that this approach is the only viable option. The difficulty here comes
from the mapping unit design. This approach then needs good matching techniques
(some are handled in Section 3.2), in order to match the variables of which the mapping
unit has no previous knowledge of. The mapping unit also did not take part in designing
the requirements for either of the systems (or their interfaces). However, one advantage
that the mapping unit has here, is that the human intervention is relatively easy to
introduce, at least compared with the interfaces of the other two systems, which may not
allow modification after the design is done. This means, that if the matching unit does
not manage to match all variables automatically, the user might give the matches for the
remaining variables, based on their knowledge of both the automation and the simulation
system. This approach may be required (i.e., the only possibility), as it is often the case
that the automation system and the interface of the simulation system already exist (as
legacy systems), so the only factor missing is the mapping unit to connect them. An
issue that might arise while using the method is that as the interfaces of the systems are

25

3. Proposed Interfacing Approach

completely independent, it might be the case that the variables required by one of the
system are not available in the other. The matching unit would then have no possibility
of matching such variables.

It is also important to mention the greenfield/brownfield differentiation. Greenfield refers
to the approach when the design starts anew, from the beginning; brownfield refers to
the approach when some parts of the system are already present, and the main work is
on expanding the already existing system. Starting everything from the beginning would
provide many advantages, in particular, it would combine the advantages of both of the
partial approaches (simulation system first, then mapping unit; and automation system
first, then mapping unit). Namely, it would be possible to define exact requirements for
both of the systems, in order to make matching trivial. The issue here is that we may not
have much knowledge about the systems when just starting the design, and this might
lead to combining the disadvantages of the two approaches, i.e. we may present unfeasible
requirements for both of the systems. In order to avoid this issue, the entire design
must happen simultaneously, and cooperatively, in order to ensure that the requirements
can be fulfilled. Such design might be more complicated than "isolated" system design.
However, generally, the greenfield approach is still considered more favorable.

On the other hand, if we have the brownfield approach (meaning that the system is
already in place), we would first need to consider what is already developed. In a sense,
the three cases which were described above are all brownfield cases, and they differ in
what is already in place. What is common for the brownfield approaches is that the new
(to-be-designed) part of the system needs to adapt to the existing part of the system. So,
despite having the advantage of already having some sub-systems designed and finished,
there is an additional challenge to adapt to the existing systems, which were possibly
designed without the particular extension in mind. The brownfield approach is often
what one has in practice, and especially the third engineering workflow from above where
both the automation system and the simulation are already developed. The proof of
concept will thus focus on this workflow.

3.2 Information Matching
This section concerns itself with the topic of matching. Matching in this sense refers to
finding corresponding (correct) pairs of variables; in other words, one simulation variable,
and one automation system variable which both represent the same data. Finding these
matches automatically is not trivial, and this section will explore some of the possibilities
to do so.

3.2.1 Approach
The decision to approach the problem from one of the sides (search for automation
matches for simulation variables, or vice versa), can be taken, however it can partly limit
the efficiency of the match search. The best possibility is to use the information from both

26

3.2. Information Matching

of the sides to find possible matches. However, it is probably beneficial to start searching
for matches from the automation system side, and to consider the matching done, once
all relevant automation system variables have their match. The reason for this is that
in real simulation systems, there can thousands of simulation variables which are not
directly relevant for the outside automation system (and thus the user), and are only used
within the simulation internally. This issue was encountered while using OpenModelica1,
and is discussed in more detail in the Chapter 6. Many of these simulation variables do
not have a match. The information which variables are to be ignored is important for
the matching program, as it reduces the number of variables that need to be matched,
making matching the rest of the variables easier. While it is beneficial to start looking
for matches from the automation system side, the problem should sometimes also be
looked at from the simulation system perspective, enabling different observations. For
example, there might be a simulation variable which only has one possible automation
system match, it is then highly likely that this is the match for this variable.

Another issue to consider when writing the matching program is the probability (not in
a statistical sense) of a match. This issue is explored in more detail in its own subsection
(Subsection 3.2.3).

Lastly, an option for human intervention should be given within the matching program.
At the end, the program could make mistakes (for example with aggressive assumptions)
or may not be able to match some variables. The program should then allow the user
to manually specify which variables match to each other, as the user ultimately has
more general knowledge of the systems, and what the modeling objective is. In order
to make this easier, the program should provide a list of high probability matches to
the user for the variables that were not matched by the program. This makes manual
specification much easier, if the user only has a few variables to go through to determine
the match, instead of hundreds, for example. A possibility for how this would work is
given in the proof of concept implementation, and can be seen in the corresponding
chapter (Chapter 5), Subsection 5.1.3. The user can then lean on their global knowledge
of the models, presented information, and possibly variable descriptions, to determine
the matches.

3.2.2 Possible Matching Criteria

This subsection will explore some of the possible criteria when determining variable
matches. Using as many criteria in the matching program as the system design will
allow is beneficial, as it increases the certainty of the match. As already mentioned in
the previous subsection, the priority of the criteria and how much weight is given to
each category when determining the probability level of a match can be an important
aspect of the design. Ultimately, choosing the criteria and their number well will yield a
program which is able to make many and correct matches; choosing the criteria poorly,

1https://www.openmodelica.org/ ; accessed April 2021

27

https://www.openmodelica.org/

3. Proposed Interfacing Approach

and have them sparsely used in the system design will yield a program which struggles
to make matches.

Data Types

Arguably the most important criterion is the data type. While the rest of the criteria may
or may not be defined, most of the variables will have some form of data type associated
with them. While having the matching data type might not indicate a certain match
(there is probably a high number of variables with the same data type), having a data
type mismatch indicates that the match has a very low likelihood. Note that a matching
data type does not refer only to the exact same data types. For example, a 64bit floating
point (double) variable in one of the systems might be the only possibility to which a
32bit floating point (float) variable in another system could match, as the first system
maybe does not provide 32bit floating point type. In order to determine appropriate
correspondence of the data types, a good knowledge of both of the systems is required.
As stated before, adhering to some rule set during system design is also important. For
example, one might use a 32bit signed integer for the number of processing steps in an
industrial process, despite the fact that the number of steps is, for example between
2 and 7. Ignoring the fact that the system also provides smaller integers when 32bits
are not required (as is the case in this example), and also unsigned integers, when the
negative value is impossible, one might be tempted to use 32bit signed integer for all
integer requirements. However, such decisions, would result in a bad design, making the
matching process more difficult, as, in the example, such variables are first checked against
32bit signed integers in the other system, instead of 8bit unsigned integers. Choosing
the correct data type at system design is thus crucial, however not all systems provide
fine-grained and detailed data types.

Another criterion closely connected with data types is the variable range. This refers
to the minimum and maximum values that a variable might take. This information,
of course, makes matching easier, however it might also benefit systems where one of
the system’s data types are more coarse than the other system’s. For example one
system might provide 8bit, 16bit, and 32bit signed and unsigned integers, while the other
system only provides signed 32bit integers. In order to find a match for the first system’s
unsigned 8bit variable, one might search through 32bit signed integers in the second
system which have a minimum value of 0 and the maximum value of 255. The range
information thus not only helps matching the variables with same range restrictions, it
can also help match variables with different data types in systems which do not offer
the same data type choices. Additionally ranges might help the user when manually
determining variable matches. An example for this would be two temperature variables,
one in Kelvin and one in Celsius, where the engineering units are not specified. The
user knows that one of the variables is in Kelvin and another in Celsius from the more
detailed description in the other system. If one of the variables has a minimum value
of 0, and the other has a minimum value of -273.15, then it is easy to determine that
the first variable is in Kelvin, and the second one in Celsius. This example shows how

28

3.2. Information Matching

one criterion might help cover for the shortcomings of another - in this case the user has
used the range information to overcome the lack of engineering unit information in one
of the systems.

Engineering units

Another important matching criteria are the engineering units. In simplest terms, having
the same engineering unit makes the match more likely. Engineering units are a quick
way to determine what a variable represents (or what it does not represent). If one of the
variables has the engineering unit of kilogram, and another one has meters, it is certain
that they are not a match, as one represents mass, and the second one length. While
relatively straightforward, there are a couple of difficulties that might be encountered
when using this criterion. The first issue is the possibility of different engineering units
for the matching variables in two systems. For example the automation system might
have the temperature in Celsius, while the simulation system internally uses Kelvin. It is
however debatable if this would be a design failure, as the variables are not a direct match
(their values would not match). In order to fix this, one would either need to fix the
design, or to provide some kind of conversion functionality between the units. Additional
difficulties might present themselves in this case, if for example, we are presenting mass
of some object with a granularity of one gram, one variable might be an integer in grams,
and another one might be real number in kilograms. This would further complicate the
matching process, and should be avoided, if possible, at design. As these variables do
not present a direct match, it is easier to design the systems correctly (possibly following
some rule set), than to make complex correspondence and conversion rules; however, it
might be the case that the systems are already given, and that the matching program
designer has no influence over them, in which case correspondence and conversion rules
might be necessary.

A second issue that occurs when using engineering units criteria is the engineering unit
representation. Namely, two variables might have the same engineering unit, but with
a different representation. For example, one system might represent degrees Celsius as
"degC", and another as "◦C"; or "m/s2" and "m.s-2", both representations for m

s2 . One
of the possibilities is to make sure that the engineering units match exactly at system
design, this would also make the designs easier to read by humans. The second possibility
(if for example the system design is already done), is to make a conversion table between
the two units, tailored specifically to the problem at hand, for example in the form of a
conversion table. Finally, a more general solution would be to convert all engineering
units to a standardized representation of that unit, and use that for matching. The
conversion tables for this case would need to be system specific, but they could then
be reused for that system units regardless of the other system and its representations.
This solution is favored for more complex systems, as the conversion tables can be easily
reused. An example for such standardized conversion table is UNECE to OPC UA2.

2http://www.opcfoundation.org/UA/EngineeringUnits/UNECE/UNECE_to_OPCUA.csv ;
accessed April 2021

29

http://www.opcfoundation.org/UA/EngineeringUnits/UNECE/UNECE_to_OPCUA.csv

3. Proposed Interfacing Approach

Access Levels

This criterion can be used to alleviate one of the problems mentioned before, namely
the large number of simulation variables. In general, the simulation variables can be
partitioned into three groups: the input variables, the output variables, and internal
parameters. Depending on system design, it might be the case (and is desirable) that the
variables that are relevant for the automation system (and thus the matching) are only
in input and output variable groups, while all other variables - the internal parameters
are not relevant to the automation system and do not need to be matched. Having such
system design would simplify the search for matches by greatly reducing the number of
variables that need to be matched. In order to additionally simplify the matching, the
automation system might provide some of its variables at "read-only" access level. These
variables then almost certainly correspond to the simulation’s output variables, and do
not correspond to the input variables. Thus, using access levels can greatly simplify
the matching process, however, the steps need to be taken during system design, and
changing the system design might not be possible at the point of matching. Additional
category that might appear are read-write variables, which do not simplify the matching,
due to their general nature, however they might indirectly simplify the matching in a
sense that they probably do not correspond to the output variables, for example, as
writing to simulation output variables would make no sense. It is also important to
distinguish between different access levels within the automation system. What was
referred to so far are automation system client access levels. The part of the automation
system which interacts with the simulation (most likely the server), needs the opposite
access rights of the client. For simulation’s input variables, the server needs to be able to
read the automation system variable, and write it to the simulation; and equivalently, the
server would need to write to the automation system "read-only" variable, after reading
the value from the simulation.

Structure

The variables within different systems are often structured and do not just present a
flat list. This structural information could be used to facilitate the matching process.
Instead of matching individual variables, the whole structures are matched, this means
there are multiple variables which are matched at the same time, thus greatly increasing
the confidence in a match, if one is found. The first, and the obvious issue here, is that
the structures within different systems might not coincide. The simulation system and
the automation system might have different ideas of how the modeled system should
be structured, and as a result they may have different structures. This of course makes
structural matching much more complicated and reduces the confidence one might had
in matches. The second issue that appears here are repeating structures. Namely, one
might have, for example a fan model, which has several variables under it, such as speed,
voltage, and so on. This fan model could appear numerous times within the system
model. Determining which simulation system fan corresponds to which automation
system fan is a difficult task, that without additional information most likely requires

30

3.2. Information Matching

human intervention. However, presenting data structured in this way might make the
job easier for the user who has to manually match the structures, as entire structures
can be considered at a time, possibly matching a large number of variables at once.

Variable Names and Descriptions

Another criterion that highly depends on system design are the variable names. In a
trivial example, if one has control over both of the designs, the matching variables are
given the same names, and the matching program could be written in such a way to
give the highest priority, or only consider name matching. However, apart from this
trivial case, the name matching should be used sparingly. If the designs are not directly
controlled, there are no guarantees that the variables will have the same, or even similar
names. Where the names might help, is when a match for some variable is not found, and
when human intervention is required. In this case, the user is provided with a list of high
probability matches, the search for the correct match might be simplified by sorting the
possible matches by name similarity. Additional attribute that is often present, and could
be used in a similar way (being more helpful for the human) are variable descriptions.
They might help the user with general understanding of the variables and make the
manual matching easier, however unless strict design rules are used for them, they are
not of much help for automatic matching.

3.2.3 Matching Probability
It is first important to state that the matching probability does not refer to a probability
in a statistical sense. Instead, it represents different confidence levels to how likely a
certain possible match is. For example, if one of the possible matches fulfills all of the
matching criteria, and a second possible match fulfills only half, then we can say with
reasonable confidence that the first match is more likely. However, there might be possible
matches with different fulfilled matches where one is not a true subset of the other. In
this case, determining which of the matches is more likely is not trivial, and solving
the problem might require human intervention. Despite this, some criteria carry higher
probability weights than others; for example, a real number variable on one side is very
likely to match with a real number variable on the other side, and not with an integer
variable, or some other type. In order to achieve easier matching, and to be more certain
in the taken choices, both of the systems need to provide as much information as possible,
and adhere to some design restrictions. For example, it might be clear for the user from
the name of the variable "car_mass" that the value should be a real number, expressed
in kilograms (this assumption depends on locality - another user might assume that the
variable should be expressed in pounds), and that the value cannot be negative; however,
if this information is not provided to the program, the matching process will probably be
much more difficult. To this end, it is important that the variables and their properties
are correctly and accurately labeled, on both the simulation and the automation system
side. In addition, adhering to some standard or rule set when creating the systems would
greatly improve the feasibility of matching.

31

3. Proposed Interfacing Approach

In order to formalize the matching probability, one might develop a numerical value W
which gives weights to all variable combinations: i and j, where i is the variable index
from the simulation system, and j is the variable index from the automation system. For
each of the combinations, one would need to go through all criteria which were chosen,
and determine the value of that criterion for the particular pair (cq(i, j) for the criterion
q). Each of these criteria would then be weighted according to their importance (with
wq). Such formula might look like this:

Wi,j =
�

q

wq ∗ cq(i, j)

It would be possible to incorporate the criterion weight within the criterion value, however
using them separately makes adjusting these weights clearer (and if desired for a more
compact formula, they can be brought into one). Another reason why it is beneficial
to keep the values separate, is that the criterion value cq could be a simple boolean
check for if the variables fulfill the criterion or not. For example, criterion t could test if
the variables have the same type, in which case ct would be 0 if variables i and j have
different types, and 1 if the types match. This allows to separately set the weight and
importance for criterion t, which in the case of the type should probably be high.

On the other hand, it is possible to also have the criterion on different levels, depending
on the relation between the variables. For example, if we have two variables that are
a match: a 16bit unsigned integer on the simulation side and a 32bit signed integer on
the automation system side; the difference in types might come from different knowledge
levels about the variables, but also the particular range might be incorporated in range
information for the 32bit signed integer, where it could limit its values to be in the range
of 0 to 16bit unsigned integer max. In any case, it is a higher probability that these two
variables (32bit signed integer and 16bit unsigned integer, without other information)
match, than that one of them matches to a boolean, or a string. Note that strictly taken,
matching an integer to a string or a boolean is possible too, as one might represent
integer as a string, or the value might just be a true or false, but the programmers used
integer type for some reason. Obviously, such possibilities highly complicate the matching
process. Depending on the engineering workflow (Section 3.1), the mapping unit designer
might have the knowledge about variables, and if such different type matches can appear;
or in cases of other engineering workflows, where the mapping unit is not designed last,
set the requirements so that other system designers have to adhere to a certain typing
convention.

With the expanded knowledge, the mapping unit designer can thus know which criteria
can never be broken, in a certain match. For example, if all engineering units in both
systems are always defined using SI3 units, as a convention, then if two variables have an
engineering unit mismatch, then this match is not possible. Such criteria (cd) could form
a set C of disqualifying criteria. The weighting formula could then look as follows:

3International System of Units, from French: Système international (d’unités)

32

3.2. Information Matching

Wi,j =
�

Match not possible, if any cd(i, j) from C failed�
q wq ∗ cq(i, j), if all cd(i, j) from C passed

"Match not possible" from the formula can be a special value (for example 0) which is
assigned to the weight Wi,j to indicate that the match is not possible. The larger the
set of disqualifying criteria C, the easier the matching, as presumably more variable
combinations can be disqualified. On the other hand, it is important that we are certain
that such matches are really not possible, because otherwise we would disqualify variable
combinations which might be matches. This is why a good knowledge of the system is
important, as well as good standardization. Designing the entire system from scratch
(greenfield, Section 3.1), also has the benefit of being able to define a large disqualifying
criteria set.

One issue to consider is when one variable has a certain criterion defined, and another not.
For example, one variable might have its range set, and another not. In such cases, it is
important to first look at other information, so for example, this range information might
be in the type of the variable, as was given in the example above with a 16bit unsigned
integer, and a 32bit signed integer where the ranges were defined to match the 16bit
unsigned integer. In this particular example, the variables could be treated as a match,
both in type, and in range, despite actually not matching either, as their combination
provides a match for both. So, unless a strict standardization is applied when defining
variables on both sides, having one side of the criterion defined, and another not, should
not be treated as a criterion mismatch. On the other hand, it is not a match either, so
the value of the criterion cq(i, j) needs to be defined somewhere in between. And, as
was seen from the example, there also needs to be a possibility to consider other criteria,
because the information needed for the criterion might be defined somewhere else.

There is also the question of setting the weights wq for the individual criteria. The
question how to set the weights for the criteria is not easily answered, and depends
on the perceived importance of a particular criterion by the mapping unit designer, as
well as possibility of the particular criterion mismatch despite variables matching, in
a particular design. For example, the mapping unit designer knows that the variable
types almost always match ("almost always" is not enough to be a disqualifying criterion),
so variable type gets a high weight. On the other hand, the mapping unit designer
knows that the range information is often mismatched (for example, as there was no
coordination between the teams when determining the ranges), so this criterion gets
a low weighting. The actual weighting values need to be manually determined by the
mapping unit designer.

Finally, after the weights Wi,j are set for all variable i and j combinations, the program
needs to determine what is a match or not. One possibility would be to first consider high
probability matches where the weights are within a certain range. These would then be
checked, to see if there is only a single possible match within this (good) weight range. If
there is, the variable combination can be declared a match. The reason for using a weight

33

3. Proposed Interfacing Approach

range, is that, depending on the criteria, small fluctuations within the weight value might
not mean that the variables are a less likely match. For example, one simulation variable
has an almost perfect weight match with two automation system variables. The difference
is that one matches the range, and the other matches engineering unit (take a look at
Subsection 3.2.2 to see why engineering unit might not be a disqualifying criterion).
Depending on the weights of the range and the engineering unit criteria, one might have
slightly better weight than the other, but it is not directly clear which one is the match.
Just making a guess is a bad strategy for the system, as it can introduce errors, and make
the user’s job more difficult, as one would then need to check the matches for possible
errors. After the matches within that weight range are found, one can move to the next
(worse) weight range and so on, until a certain threshold is reached. For all weights that
are worse than the threshold, the program does not have enough information to declare
them a match. For example, the variables might only have the type in common, and
both might not have been matched in the weight range considerations below. It would
probably be wrong to declare them a match, as only having the type in common is not
enough to declare a match. At the end, after all possible variables are matched, the
program should declare all matches found, as well as variables for which no match is
found, to enable human intervention.

3.2.4 Requirements for Matching
Based on the information from this section, we can define a set of requirements for the
matching procedure (RQ1-7).

RQ1: The matching should be based on the variable information available on the
interfaces of the simulation and automation systems.

RQ2: The matching should happen automatically, matching as many variables as
possible.

RQ3: The matching should be based on certain matching criteria, possibly including
disqualifying criteria, as well as the criteria weights, and ultimately the variable
combination weights, as described in Subsection 3.2.3.

RQ4: The matches should be determined in such a way that no wrong matches are
produced, in other words, the program should stay on the "safe" side, as the
program’s mistakes might be difficult to find for the user.

RQ5: The program should have a possibility for manually defining which variables
should not be matched, as both of the systems might have variables which have no
equivalent in the other system (and are not relevant for matching).

RQ6: The program should provide the list of variables which were not automatically
matched, as well as high probability matches for them, to facilitate the manual
matching by the user. Ideally, the program should provide all relevant information

34

3.2. Information Matching

for the variables (for example the criteria), in order to make the manual matching
by the user easier.

RQ7: The program must provide a possibility for the manual matches to override any
decisions by the program, as well as to match the variables which the program
was not able to match. If the program detects a low weight for one of the manual
matches, the program might give a warning to the user.

These requirements for the matching aim to make the matching process clear and
structured, as well as to enable a simple way for user to manually intervene, when needed.

35

CHAPTER 4
Proof of Concept

This chapter will describe a proof of concept implementation which was developed for
the purposes of this thesis, and uses the techniques mentioned in Chapter 3. The two
use cases are described afterwards, in Chapter 5.

4.1 Libraries and Assumptions

This section will describe the libraries which were used for the implementation of the
proof of concept for this thesis, as well as the specific assumptions that the use cases
must fulfill in order to interoperate correctly with the proof of concept implementation.

4.1.1 Used Libraries

The C programming language was chosen for the implementation of the proof of concept.
Other language possibilities exist for both (open source) FMI and OPC UA libraries, such
as: FMI4cpp1 (C++), FMI4j2 (Java), and PyFMI3 (Python) for FMI4; and freeopcua5

(C++), Eclipse IoT6 (Java), and python-opcua7 (Python) for OPC UA. This is certainly
not a full list, and more libraries exist. In the end, the C language was chosen because of
its universal applicability, portability, efficiency, and performance.

1https://github.com/NTNU-IHB/FMI4cpp ; accessed September 2021
2https://github.com/NTNU-IHB/FMI4j ; accessed September 2021
3https://pypi.org/project/PyFMI/ ; accessed September 2021
4A good list of FMI libraries can be found at: https://github.com/traversaro/awesome-fmi

; accessed September 2021
5https://github.com/FreeOpcUa/freeopcua ; accessed September 2021
6https://projects.eclipse.org/projects/iot ; accessed September 2021
7https://github.com/FreeOpcUa/python-opcua ; accessed September 2021

37

https://github.com/NTNU-IHB/FMI4cpp
https://github.com/NTNU-IHB/FMI4j
https://pypi.org/project/PyFMI/
https://github.com/traversaro/awesome-fmi
https://github.com/FreeOpcUa/freeopcua
https://projects.eclipse.org/projects/iot
https://github.com/FreeOpcUa/python-opcua

4. Proof of Concept

FMI Library

For the FMI side, the FMI Library version 2.0.2 was chosen 8, which is an independent,
and open-source implementation of the FMI open standard [Mod20]. The library was
compiled and installed to a folder, which then needs to be given to the compiler with -I
(which adds a directory to the list of directories searched for header files) and -L (which
adds the path to the list of paths searched by the linker for archive libraries) flags, as
can be seen in the proof of concept’s makefile. No special options were used during the
compilation. After these steps are taken, the library can then be included in the files,
and used.

The FMU file needs to be provided to the program (and the library), in this case as a pro-
gram argument. Additionally, a temporary folder must also be provided, where the FMU
will be extracted. This additionally serves the purpose of extracting the FMU’s XML file,
which is needed for the matching. After initializing the library and the FMU, the simula-
tion can be advanced step-wise with the following function: fmi2_import_do_step().
The function takes the FMU (as returned by the initialization), the last simulation
time (the time at which the last simulation step ended, in the simulation), the current
simulation step (length of the current simulation time), and a boolean variable which
indicates if the last simulation step was performed or not. The values of the simulation
variables can be obtained with the fmi2_import_get_real() function for real type
variables, and similarly for others. The function requires the value reference, which along
with the type uniquely identifies the corresponding variable. It is also possible to provide
arrays as arguments, and read multiple variables at once. It is also possible to write to
the simulation variables using fmi2_import_set_real() (and the correspondingly
named functions for other types), in a similar way as the values are read. These three
functions (and the corresponding type counterparts) are enough to run the simulation,
after the initialization. The inherent step-wise simulation advancement means that step-
wise interaction with the simulation is easy to implement. However, if the continuous
time progression is required, despite the simulation advancement being step-wise, it is
possible to give the impression of a continuously running simulation, as described in the
Subsection 4.2.2.

OPC UA Library

For OPC UA, the open62541 library version 1.2 was chosen 9, which is an open source
C99 implementation of OPC UA based solely on IEC 62541 10. The library allows
compilation of the entire library into a single .c and .h file combination, which contains
the whole library. This makes inclusions and portability easier. The library also offers the
standard way of installing the libraries, however, the single file combination approach was
chosen due to its simplicity, as well as to demonstrate its working. When compiling, the
following two options need to be selected in cmake : first "UA_ENABLE_AMALGAMATION"

8https://github.com/modelon-community/fmi-library ; accessed April 2021
9https://github.com/open62541/open62541/ ; accessed April 2021

10https://open62541.org/ ; accessed April 2021

38

https://github.com/modelon-community/fmi-library
https://github.com/open62541/open62541/
https://open62541.org/

4.1. Libraries and Assumptions

needs to be enabled - this compiles the library into a single .c and .h file combination,
as discussed above; and second "UA_NAMESPACE_ZERO" needs to be chosen as "FULL" -
this compiles all required nodes (instead of a reduced set) into the file, and is required
for the proof of concept of this thesis.

After including the library in the program, the server needs to be initialized. There are
functions then to include individual nodes to the server, as well as to set callbacks upon
read/write of the values, which were then used in the proof of concept to "connect" the
simulation and the OPC UA side. There are generally three ways to handle variable
updating. The first and the simplest approach is to manually update variables, with no
callbacks. The second approach (and the one which is chosen for the proof of concept),
is to have "before-read" and "after-write" callbacks, which are called before the value is
read, and after the value is written, respectively. The third way is using the so-called
data sources. Using this, the values are not automatically updated, but instead upon
reading, the callback provides a copy of the value, and the data source needs to provide
its own memory management. 11

A Python-based nodeset compiler is also provided with the library. It is used to generate
a .c file (and the corresponding .h file) from the OPC UA nodeset file, with a function
which generates all of the nodes for the OPC UA server. These .h file can then be included
in the main program, and the function can be used. This is useful in order to prevent
manual generation of all nodes. After all nodes are generated, they can afterwards be
manually modified at will, as is done in the proof of concept. 12

XML Library

For the XML parsing, the expat library was chosen 13. The library enables easy parsing
of the XML tags, which is what is primarily needed, using on-tag-start and on-tag-end
callbacks. These callbacks have sufficed for most of the parsing in the program, apart
from several special cases (for example reading units in the nodeset files, as they are
outside of the tags). To this end, an additional function was used - the character handler.
It loads entire XML segments (regardless of tagging), and enables reading the information
between the tags. As the character handler is only needed in special situations, these
are first detected by the tag callbacks, and the character handler then parses the value
between the tags. The information within one file-parsing is transmitted using custom
defined structs, which can then be used and shared between the tag callbacks, as well as
the character handler.

11An overview of these approaches with some examples can be found at https://open62541.org/
doc/current/tutorial_server_datasource.html (accessed April 2021).

12An introduction to the nodeset compiler can be found at https://open62541.org/doc/
current/nodeset_compiler.html (accessed April 2021).

13https://libexpat.github.io/ ; accessed June 2021

39

https://open62541.org/doc/current/tutorial_server_datasource.html
https://open62541.org/doc/current/tutorial_server_datasource.html
https://open62541.org/doc/current/nodeset_compiler.html
https://open62541.org/doc/current/nodeset_compiler.html
https://libexpat.github.io/

4. Proof of Concept

4.1.2 Use Case Assumptions

Several assumptions had to be made in order to keep the implementation of the proof of
concept within reasonable limits. First, all of the simulation-relevant OPC UA nodes
should be in one namespace, the same one as defined in the server’s .c file, and should not
interfere with the namespace of the simulation relevant variables (variables for simulation
in progress and manual mode, for example).

In order to perform the matching more easily, the units in the FMI and OPC UA variables
(for those variables that have them) should match, i.e. be in the same physical unit
representation. This would probably be difficult to achieve in a real example, as even
FMI internally has different representation for the same unit (for example "m/s2" and
"m.s-2", both representations for m

s2). The proof of concept implementation cannot
handle different representations, and simply treats them as different units. This could be
solved by converting all variables to a standardized representation, such as the UNECE
codes14.

For enumerations, it is assumed that the enumeration entries are listed only once in the
FMI XML file. They are matched to UINT32 in OPC UA, in the program, however, the
use cases do not need to match any enumerations.

For the units in the OPC UA nodeset files, it is assumed that there is only one unit
definition with a single unit tag declaration. For the units as well as ranges in the nodeset
file, it is additionally assumed that they follow the same tag structure as in the problem
example nodeset file.

Structurally, it is assumed that all OPC UA value variables are directly below their
parent object, in other words, variables that should share a parent, share the exact
same parent, instead of being under an object that shares the parent with the object
above the other variable. This does not mean that the entire structure must have
the maximum of two layers, there can be as many layers as required, the assump-
tion only states that there are no unnecessary layers. This is important for structural
matching. Additionally, the parent node id must be specified within the UAVariable
tag, for example like this: <UAVariable SymbolicName="Inlet_Temperature"
DataType="Double" ParentNodeId="ns=1;i=5003" NodeId="ns=1;i=6002"
BrowseName="1:Inlet Temperature" AccessLevel="3">. This ensures that
the parent relations are read correctly within the proof of concept program.

4.2 Implementation
This section will describe the proof of concept implementation, developed for the purposes
of this thesis. With regards to Chapter 3, the implementation is tailored to the problem
variant where the simulation and the automation system are already defined, and a

14https://unece.org/trade/cefact/UNLOCODE-Download ; accessed August 2021

40

https://unece.org/trade/cefact/UNLOCODE-Download

4.2. Implementation

mapping unit design is needed to connect them. More details about the advantages as
well as possible issues faced when using this problem variant can be found in Section 3.1.

4.2.1 Program Structure
There are three separate units in the proof of concept implementation. There is the
emulation server - the main part of proof of concept, and the unit that performs the
matching. It is called the emulation server because it hosts the OPC UA server, and
provides the simulation data to OPC UA clients. In further text, the term OPC UA
server will refer to the OPC UA server in particular, while the term emulation server will
refer to the program, which facilitates the OPC UA server, the matching algorithm, and
the interaction with the simulation (see the left-hand side of Figure 4.1). The second unit
is the client, using automatic time progression, and the third unit is the client using the
manual time progression. Time progression modes are described in their own subsection
below (Subsection 4.2.2).

The client implementations are not extensive, and their purpose is only to show the
working of the emulation server, in both of the modes. One could also use a separate,
universal OPC UA client to interact with the emulation server, however this method was
chosen as the library is already available, and it is an easier way to automate the tests.
The emulation server consists of the server part, as well as of the matching segment,
which is in its own .c file. The matching segment parses both of the FMI and OPC UA
XML files (the paths to which are provided by the server part), as well as possibly the
override file, and returns a viable matching, in the form of a matching table between
OPC UA node ids and the FMI value references. The server part provides the OPC UA
server functionality, as well as the interaction with the simulation. One additional part
of the server is the function (and files) generated by the nodeset compiler. They enable
easy creation of the entire OPC UA node tree, and are called by the server part, upon
the creation of OPC UA server.

In terms of the system design and structure as described in Section 3.1, the mapping
unit corresponds to the OPC UA server, as well as the matching sub-program where
the matching is done. The client program represents the rest of the automation system,
while the simulation environment is managed by the emulation server program. The
correspondence can be graphically seen in Figure 4.1.

41

4. Proof of Concept

Figure 4.1: Program Structure Diagram
(Client M refers to the client with manual time progression)

4.2.2 Time Progression and Clients

As was already described in Subsection 4.1.1 (FMI), the time progression (the simulation
advancement) with the FMI Library is step-wise. A function is called by the simulation
master, in our case the emulation server application, which advances the simulation
for a specified amount of time. This makes the manual mode client a natural fit for
time progression. Using the manual mode, the emulation server does not advance
the time automatically. Instead, the emulation server implements a method called
do_step(), which takes a single float input, specifying how much the simulation should
advance. In order to enable this time progression the manual_mode variable, which
is also available to the clients over OPC UA, must be set to true. The client is free
to modify and read the variables at will, and as many times as desired, the time only
advances when the do_step() method is called. Contrary to this, one may wish for
time to advance naturally, to at least partially simulate the interaction with a real
world system. In this case, the client needs to turn off the manual mode, and set the
simulation_in_progress variable to true (which was false during the manual mode),
for as long as the simulation should run. The simulation can be paused by setting the
variable to false again. The client can read and write the variables, however, time advances
simultaneously with the wall time. There is nothing preventing the emulation server
being modified in such way that the time is advancing faster or slower than the wall time.
However, this was not implemented, as the manual mode gives enough control over the
time, thus fulfilling the requirements for detailed analysis or fast time advancement. The
simulation time can be checked in any mode by reading the variable simulation_time.
It is also possible to mix the modes. So for example, if one wanted to see the wall time
progression of the simulation after a week of running, one could use the manual mode

42

4.2. Implementation

to advance the simulation with specified inputs at certain time points, for one week
(which would be done by the program in hopefully much less time), and then switch the
manual mode off, and start the automatic time progression. A short discussion about
time progression can be found in Chapter 6.

Two examples are given below for how a client could read some value, two seconds into
the simulation, using UML Sequence Diagrams. The first example, with automatic time
progression, is given as Figure 4.2. The second example with manual time progression
can be seen in Figure 4.3. In both diagrams, the sizes of the execution blocks (activation
boxes) are not representative of the execution time, and should thus not be used to derive
expected execution times for boxes where the execution time is not stated explicitly.
Note that if the client is interested in the value after exactly two seconds have passed,
the manual time progression is better, as it gives the value at the exact time point, while
the automatic time progression is only approximately accurate in time.

Figure 4.2: Automatic Time Progression: Value Read - UML Sequence Diagram

Implementation of the manual mode time progression is pretty straightforward. The
OPC UA method do_step() calls the simulation function for time advancement, with
the specified time as an argument, and the simulation then advances for the specified
time. Alternative possibility would be to specify the time for which the simulation
should advance as a separate variable, and then call the method to advance time without
arguments. For the automatic time progression, the implementation is a bit more

43

4. Proof of Concept

Figure 4.3: Manual Time Progression: Value Read - UML Sequence Diagram

complicated. As the natural time progression is not inherent to the underlying simulation,
the emulation server had to use manual time progression, to give the impression of
continuous time progression to the client. This is achieved using the before-read and
after-write callbacks (as described in Subsection 4.1.1 - OPC UA), with the emulation
server measuring time between OPC UA read and write calls. So for example, the
simulation has started, after a minute, the client asks for a value of some variable. The
emulation server then sees that the last call (interaction with the outside) was a minute
ago (starting the simulation), and first advances the simulation for one minute. Then
the emulation server reads the value from the simulation, and writes this value to the
OPC UA node. The after-write call works in the similar fashion. Not to be confused
by the naming, "after" refers to after writing the value in the OPC UA node, and it has
nothing to do with the simulation. So after the value is written to the OPC UA node,
the simulation is first advanced to the current time point, and then the new value is
written to the simulation (nothing to do on the OPC UA side, as the client already wrote
the value). This behavior gives the impression of natural time progression, despite the
actual progression happening step-wise.

A problem that might arise from this implementation is the fact that if the simulation
needs to advance for a long time (big time step), this might be quite time consuming. For

44

4.2. Implementation

example if the clients have made no calls in the past hour, and then want two accesses
within a second of each other; the first call might cause the emulation server to be busy
with simulating the last hour, meaning that the answer will not come within reasonable
response time. What is worse, the emulation server will probably still be busy with the
simulation when the second call comes, thus also being unable to answer that query.
This problem could be solved by advancing the simulation in regular intervals, by the
emulation server, if no client calls are made. For example, the emulation server could
advance the simulation every five minutes, if no client has made a call, in order to prevent
long waiting time when a client call does come.

One problem that arose when dealing with the clients with natural time progression
and the before-read callback, is that the emulation server has to write to the OPC UA
variable at this time, thus also triggering the after-write callback. This happens when
the client wants to read the value of a node, so the emulation server needs to first read
the value from the simulation, and then write the newly read value to the OPC UA node
(triggering the after-write callback). It is important that we distinguish between the
server-side triggered after-write callbacks, and the actual writes from the clients. When
a client makes a write, the simulation is first advanced to the current time, and then the
desired value is written to the simulation. In the case of a read, the value is provided to
the client by the emulation server, and then the after-write is triggered, which advances
the simulation for a short time (the time between the calls), however it would then write
this value to the simulation. This can lead to problems. For example if the value was
changed by the simulation in the meantime, it would lead to incorrect results. To this
end, the emulation server recognizes its own calls using session ids (with the assumption
that the emulation server session id does not change during the program execution). If
there is a server-triggered after-write callback, after the server is started (open for clients),
the emulation server will simply skip the writing to simulation step, as such call can
only come from the write in the before-read callback (the emulation server performs no
self-initiated writes), and writing to the simulation value in this case would be incorrect,
as described above.

4.2.3 The Emulation Server

Much of the emulation server’s interaction with the clients was described in the previous
subsection. However, before the OPC UA nodes are ready for the clients, several steps
need to be taken. First of all, the emulation server initializes the FMU, path to which was
provided as a command line argument. The library extracts the FMU to a given temporary
folder, readying it for use. Then the emulation server calls on the matching segment of the
program to provide the matching, as well as the information on OPC UA variables that
will be hosted. The matching itself is described in the Subsection 4.2.4. The emulation
server then calls on the automatically generated (by the nodeset compiler) function which
creates all of the nodes for the OPC UA. The emulation server then sets callbacks for the
particular nodes of interest (those [non-abstract variables] that have a matching, i.e. a
counterpart in the simulation), in order to enable correct interaction with the simulation.

45

4. Proof of Concept

After that, the variables which are provided to OPC UA clients to interact with the
simulation are declared. These are: simulation_in_progress, manual_mode, and
do_step() - the functionality of which was described in the previous subsection, and
the simulation_time which provides the clients with easy access to read the current
simulation time. The last step is then to start the OPC UA server. After the emulation
server is terminated, it performs some clean-ups of the FMU, OPC UA, as well as internal
variables, and exits the program.

4.2.4 Matching
The matching part of the program receives the paths to the FMI and OPC UA XML files,
as well as possibly to the override file, from the main part of the program, which received
the paths as a command line argument. For both FMI and OPC UA, the parsing works
as follows: first there is a pre-parsing which counts the number of variables, units, and
other useful information, which is used to properly initialize the memory needed for the
rest of the parsing operation. Second, the files are parsed, now filling the memory with
the information from the files (i.e. reading the XML and converting the information
to an internal representation). Alternatively, if one desires to avoid double parsing, a
good solution would be to use a dynamic data structure, such as a linked list to store the
parsed information, and with that, parse the file only once. Lastly, some special steps are
required to finalize the parsing. After these steps are taken for both FMI and OPC UA
files, the actual matching is performed using the prepared information about both FMI
and OPC UA variables. The matching results in a table of matched pairs of OPC UA
node ids, and FMI value references. Lastly the used memory which is no longer needed
is freed.

FMI Parsing

The FMI pre-parser determines the number of variables and the number of types. This
information is used to declare the memory required for the rest of the program. The
parser then fills in the information in internal representation. For the variables, this
consists of the name of the variable, the value reference, and the causality (input, output,
or parameter/other). Note that all variables that are neither input nor output variables
in causality will be marked by the program as parameter, for simplicity. The causality is
currently not used for matching. The type should also be defined here, and is written
to the variable information. The unit and the min/max values may be defined directly
here at the variable, or they may carry a reference by the unit key. In case of the
direct definition, they are written to the variable information, and this concludes the
modification needed for this variable. In the case that only a reference is provided, the
unit key is written to the variable, which will then be used later to find the unit. Along
with the variables, the XML file can also declare units which will be used indirectly
(through references). All the information for these units is filled, along with the unit key,
which will then be used to find the variables which have this unit. The enumerations
are declared as types. At this point the program also counts the number of items in the

46

4.2. Implementation

enumeration, however this is currently not used for matching. After the file is parsed,
the units can be filled. This means that the program iterates through the variables and
units, finds the matching keys, and copies the unit and the min/max values (if present)
over. The variables are thus complete with units. The final step needs to be taken is
to reduce the unnecessary number of variables. Some variables are defined as aliases
of others, under a different name, but with the same value reference and type. FMI
standard declares that such variables must have the same value, thus they are duplicates.
The program detects such duplicates, and prunes them from the list of variables for the
matching. If they have different limits, then the strictest limits are taken, in accordance
with the FMI standard.

OPC UA Parsing

The OPC UA XML file parsing is somewhat more complex than the FMI parsing. It starts
with the preparsing, where the program records the number of variables, engineering unit
definitions, variable range definitions, as well as the total number of nodes. During the
parsing the following information is also recorded, for each node: its id, parent id, and if
it is abstract or not. For variables additionally the following information is stored: type
information, the browse name, and the access level. For the engineering units and the
value range definitions, there is a chain of several XML tags that need to be followed, in
order to get to the value. The value is then read by the character parser (as it is not a
tag), as described in Subsection 4.1.1 (XML), and stored in separate arrays. After this
parsing is done, the program then fills the units and ranges to corresponding variables. To
this end, as the parent node ids are already recorded for each unit and range, the program
iterates through the variable array, and finds the corresponding parent, to which a value
can then be attached. Then, the abstract variables need to be removed (the non-abstract
are extracted). The abstract property is propagated through the tree, top-down, and
then prune the entire abstract branch. The abstract nodes have no counterpart in the
simulation. In the program, extracting the non-abstract variables is done before the unit
and range fill, in order not to waste time on units and ranges of abstract nodes.

Applied Matching Techniques

After the parsing is done, the matching can be started. With respect to Subsection 3.2.3,
the following decisions were made: there is one disqualifying criterion, the data type.
The other three criteria: the range, the engineering unit, and the structure all have the
weight of 1. The ranges are considered when checking the data type, whereby for example
for FMI REAL, if no range is defined, a match with an OPC UA DOUBLE is more likely
than a match with an OPC UA FLOAT (weight penalty of 1). Otherwise, having ranges
defined on one side, and not on the other is penalized. On the other hand, having the
engineering unit defined on one side and not on the other is penalized with the weight
of 1 (i.e. it is treated as a mismatch). For the structural matching, if the variables do
not belong to the same structure, they are penalized with 1 weight. The weighting is
inverse, meaning that the smaller weights mean the match is more likely, with the value

47

4. Proof of Concept

of 1 being the best, and with mismatches adding additional weight (penalization). The
exact penalties for each variable combination can be seen in the Appendix.

The internal table for the matching is declared as follows: all FMI variables on one axis,
and all OPC UA variables on the other. This matrix stores integer values, and it will be
modified throughout the matching process. The integer values have the following meaning:
0 - match impossible, 1 - match likely, 2 - match less likely; and so on, each higher number
indicating a lower likelihood of a match (and 0 as a special value designating that the
match is not possible).

The matching algorithm can be seen in a UML Activity Diagram in Figure 4.4, and it is
explained in detail in the text below.

First step is to perform the type assignment. The possibility of each of the OPC UA
types for each of the FMI variables is considered here. For this, the FMI type, as well as
the range (if present) are taken into consideration. For example, an FMI Real variable
gets the value of "1" (according to the scale above) to the following OPC UA types: Float,
Double, Duration. Additionally, if the max value is defined, and it is less or equal to Float
Max, the matrix entry for Double and Duration goes to "2" (as these are both in the long
float format). The rest of the FMI variables are handled in a similar fashion, and thus
have possible types assigned. The results are then copied over to the original matching
table, assigning the values in accordance with the type of the OPC UA variable. After
this is done, the program needs to check the min and max values. If min/max is defined
in both the FMI and the OPC UA variable, and the value is different, the probability
value of 2 is assigned (if it was 1). The reason for not increasing the probability level
(decrease presumed probability) for the variables where one side has the min/max defined,
and other one does not, is that this information might already be contained within the
type (as is the case in the Float example above).

The next step is to check the units. If the units are defined for both variables (matchable
FMI and OPC UA), and they differ, the match is less probable (increase the value in
the matrix). The reason that it is not impossible, is that some units have different
representations, for example on the FMI side with might see "degC" as the unit, and on
the OPC UA side "◦C". This is assumed not to be the case in the chosen problem, as it
additionally complicates the matching.

Next the override file needs to be checked. If the override file is present, the program
goes through the OPC UA variables and their overrides. If a variable is overridden with
"−1", it should not be matched (i.e. a variable that has no simulation counterpart, and
is designated as such by the user), and all of its values in the matching matrix are set
to zero. If the match is overridden with a valid FMI value reference, the rest of the
entries in the matrix for that OPC UA variable need to be replaced with zeros. A special
care is taken here in order to only let the correct FMI variable have the non-zero value,
as one FMI value reference might appear multiple times, if the FMI variables are of
different types. At this point, the structural matching takes place. If there is a match
(through override), we record the structure of the matched FMI variable (the highest

48

4.2. Implementation

Figure 4.4: Matching Algorithm UML Activity Diagram
49

4. Proof of Concept

group level, so for "robot.arm1.centerOfMass", the structure would be "robot.arm1"),
and the structure of the matched OPC UA variable (parent node id). All combinations
of FMI variables (on one side) and OPC UA variables (on the other) are checked. If
both have the same structures as the ones in the match that was overridden, they are
considered structurally matching, and are not penalized. If one of the variables coincides
in structure with the matched variables, but the other one does not, they are considered
structurally mismatching, and are thus penalized with the weight of 1. If neither of the
structures coincide with the matched variables no action is taken.
After override is done, the possible matches need to be checked. To do this, the program
first iterates though the entire array, for each OPC UA variable, and observes if the
variable only has one possible match, of certain level(s) (weight(s)). First a check is
performed to see if there are variables with only one level 1 match, these are counted
as matches, and they are added to the matching array which will be returned to the
main program. The possibility of a match for that FMI variable for all other OPC UA
variables is then removed. If a match is found, structural matching is performed again
(same as for the overridden variable matches) for the matched pair. The list of the OPC
UA variables is then iterated again, this is done as long as there are changes to the
matching table. The reason for multiple iterations, is that there might be an OPC UA
variable with one possible FMI match, and one with two possible FMI matches, one of
which was shared with the first OPC UA variable. In this case, in the first iteration, only
the one which has a single possible match will be matched, however, after this particular
FMI variable is assigned to an OPC UA variable, the first OPC UA variable is left only
with a single possible match, so it can also be assigned a match.
After this matching is performed for all level 1 matches, the program then checks level
2 matches (structural matching is performed again in case of matches). If there is an
OPC UA variable with a single level 2 match (and no level 1 matches), it is assigned as
matched, and do the same steps as described above. This check is also repeated until
there are no more changes. Lastly, level 3 matches are also checked in a similar way.
Level 3 is considered a cut-off in this configuration, and any variables with higher levels
(lower probability) are considered not matchable.
With this, the matching process is done. The matching array which is returned is a
single-dimension array which consists of the OPC UA node id for the match in the 2k
position, and the corresponding FMI value reference in the 2k + 1 position. The OPC
UA variables for which there was no match found, as well as those explicitly defined as
without a match in the override file, have a value of −1 as their match. This special
value is then checked by the server part of the program, and if such value is detected, no
interaction with the simulation variables is performed for that OPC UA variable.
Assuming that the number of variables for both FMI and OPC UA is n, the total asymp-
totic complexity of the matching algorithm is O(n3). The preparations, initializations,
and weight adjustments before the matching itself have the complexity of O(n2). In
the worst possible case, the matching algorithm will make one match within each loop
iteration (loop being designed by the "Check for matches" condition in Figure 4.4), thus

50

4.2. Implementation

necessitating O(n) iterations. Having one match per loop is the worst possible case, as
having more matches would reduce the number of total iterations, while having zero
matches would stop the loop. In each of those iterations, the program iterates over the
matching table and counts the possible matches (O(n2)). This gives the complexity
of O(n3). Additionally, once for each match (so O(n) times), structural matching is
performed, which costs O(n2), as the program has to go through the entire matching
table to adjust the weights; this also gives O(n3). So the total asymptotic complexity of
the matching algorithm is O(n3).
The chosen number of (weight) levels that are acceptable for the matching to be possible
does not change the complexity of the algorithm. The number of possible total loop
iterations cannot increase - the variables that are matched previously are skipped in
further levels, while the variables that were not matched before couldn’t contribute to
the number of loop iterations previously.

4.2.5 Compilation and Program Execution
The requirements for the libraries and their versions are described in Subsection 4.1.1.
A diagram for the entire compilation process and the required files can be seen in the
Figure 4.5. Before the compilation, first the nodeset compiler has to be called in order
to generate the required .c and .h files, containing the function that will generate the
node tree in the OPC UA server. The files and the function have to have the following
names respectively: myNS.c, myNS.h, and myNS(). The nodeset file has to be in the
same folder as the program, as well as the FMU, and the temporary folder for extracting
the FMU. The program itself will extract the FMU to the temporary folder and read
the model description file from there. The program can then be compiled (gcc version
9.3.0 was used). One can run the emulation server with the arguments corresponding to
the FMU file path, the temporary directory where the FMU will be extracted, then the
OPC UA nodeset file, and finally the optional override text file. All paths have to be
full absolute paths. The override file has to have the format readable by the program,
meaning that each line contains two entries, first the OPC UA node id, and then the
corresponding FMI value reference (or "−1" to indicate that this OPC UA variable should
not be matched). The emulation server runs a single simulation, meaning that two clients
cannot use different modes (manual and automatic time progression) at the same time.
In addition, two C libraries that are also used but not on the diagram (Figure 4.5) are
dynamic linking library and the realtime extensions library.

51

4. Proof of Concept

Figure 4.5: Compilation and required files diagram

52

CHAPTER 5
Use Cases

This chapter describes the two use cases, which were used along with the proof of concept
implementation of this thesis to demonstrate its functionality. The first use case is a
simple physical free fall experiment, and it mainly serves as a demonstration of matching
capabilities. The second use case is a fluid heat flow experiment, which demonstrates the
data flow capabilities after the matching.

5.1 Use Case I - Free Fall
The first use case chosen for the proof of concept is relatively simple, a body performing
a free fall in a friction-less environment. The physics diagram for this use case can be
seen in the Figure 5.1.

Figure 5.1: Use case I: free fall physics diagram

53

5. Use Cases

5.1.1 Simulation Model

The chosen use case is a free fall of a 2kg body in a friction-less environment. The FMU was
generated using the OpenModelica program (version 1.16.5), and the diagram of the use
case within the program can be seen in Figure 5.2. Despite the simplicity of the problem,
there are still 27 variables before the duplicate pruning, and 23 afterwards. The variables
after duplicate pruning can be seen in (the left part of) Table 5.1, in Subsection 5.1.3.
There are multiple variables describing similar physical entities, however they are not
aliases in the FMU.

Figure 5.2: Use Case I as designed within the OpenModelica program

5.1.2 Automation System Information Model

An OPC UA nodeset file was created using the UAModeler program1. The information
model contains the following variables: Acceleration, Velocity, Position, and
Mass of the falling mass object. As this information model was manually designed, there
are no duplicates, in contrast to the simulation model. However, there are abstract
variables, which do not partake in matching. Similarly to the duplicate FMI variables,
these abstract OPC UA variables are pruned before matching. There are also additional
variables that do not correspond to simulation variables, these were not matched either.
These variables can be seen in (the right part of) Table 5.1, in Subsection 5.1.3. In
addition to these information model variables, which are defined in the nodeset file, there
are three additional variables and a function under the sim_control object, which
correspond to the variables used for simulation control. The functionality of simulation
control variables and the function is described in Subsection 4.2.2. Figure 5.3 shows
both the information model (nodeset) variables (left hand side), as well as the simulation
control variables (right hand side).

1https://www.unified-automation.com/products/development-tools/uamodeler.
html ; accessed April 2021

54

https://www.unified-automation.com/products/development-tools/uamodeler.html
https://www.unified-automation.com/products/development-tools/uamodeler.html

5.1. Use Case I - Free Fall

Figure 5.3: Use Case I: OPC UA Information Model Instances

5.1.3 Matching Procedure for Use Case I
For the chosen use case, the proof of concept implementation recognizes 27 FMI variables,
out of which 23 are originals, and 4 are duplicated; as well as 15 OPC UA variables out of
which 4 are abstract, and 7 are not relevant for the simulation, leaving four variables to
be matched. Matching was performed based on variable types, ranges, engineering units,
and structure, as described in the Subsections 3.2.2 and 4.2.4. The table of matches is
given as Table 5.1. The table columns represent the variable name, variable type, and
variable unit ("/" for no unit) for both FMI and OPC UA, as well how the variables were
matched (abbreviated). The table rows are the variables, with always the FMI variable
and its OPC UA match in the same row.

55

5. Use Cases

Table 5.1: Table of Matches for the Use Case I;
Match Column: Imm=Immediate, Man=Manual Override, NM=Not Matched

FMI Variable Name FMI FMI Match OPC OPC UA OPC UA
Type Unit UA Unit Type Variable Name

accelerate.a Real m/s2 NM
accelerate.a_ref Real m/s2 NM
accelerate.s_support Real m NM
accelerate.flange.f Real N NM
accelerate.s Real m NM
accelerate.v Real m/s NM
der(accelerate.s) Real m.s-1 NM
der(accelerate.v) Real m.s-2 NM
accelerate.useSupport Boolean / NM
const_g.k Real / NM
const_g.y Real / NM
positionSensor.flange.f Real N NM
positionSensor.s Real m NM
mass.a Real m/s2 Imm m/s2 Double Acceleration
mass.flange_b.f Real N NM
mass.s Real m Man m Double Position
mass.v Real m/s Imm m/s Double Velocity
mass.L Real m NM
mass.m Real kg Imm kg Double Mass

(min 0) (min 0)
mass.flange_a.f Real N NM
der(mass.s) Real / NM
der(mass.v) Real / NM
mass.stateSelect Enum / NM

NM / Boolean IsNamespaceSubset
NM / DateTime Namespace

PublicationDate
NM / String NamespaceUri
NM / String NamespaceVersion
NM / BaseData StaticNodeIdTypes

Type
NM / BaseData StaticNumeric

Type NodeId Range
NM / String StaticStringNodeId

Pattern

56

5.1. Use Case I - Free Fall

The FMI variables are structured into the following four groups: accelerate, const_g,
positionSensor, and mass. There are four relevant OPC UA variables, but there
is also an additional set of variables which are not specific to the use case, and are not
matched (last 7 variables). These 7 OPC UA variables have access level zero, and are
ignored by the program based on that. For the matchable variables, the FMI variable is
given on the left, and the OPC UA variable on the right. How a match is made is given
in the column "Match", whereby "Immediate" means that the program found this match
without any help from the override file, and "Manual Override" means that this variable
was overridden in the override file (matched manually).

The matching procedure then works as follows: after running the program without an
override file specified, the matches which are marked with "Immediate" match in the
table are found. The program provides likely matches for other variables. In the example,
from the four OPC UA variables that should be matched, only the Position variable
is not immediately matched. Program’s suggestions can be seen in Figure 5.4.

Figure 5.4: Program’s suggestions for matching the Position variable

The program does not know which FMI variable the OPC UA Position variable
corresponds to, and lists all (two) high probability (level 1) matches that it found. The
provided possible matches help the user define the override file, in the example above,
the user could have deduced which match was correct based on the variable names.

In particular, the matching for the use case works as follows: after type, range, and
engineering unit matching is done, there are several level 1 matches. For example,
the OPC UA Acceleration variable has a level one match with the following FMI
variables: accelerate.a, accelerate.a_ref, and mass.a. The program cannot
deduce which of these variables Acceleration corresponds to, so it does not make
further progress here. Velocity and Position variables have similar results. The
Mass variable can however immediately be matched, as it has only one level 1 match,
namely mass.m. This is the only level 1 match as it is the only variable with the
engineering unit kg, as well as being the only one with a minimum limitation of 0. After
this is matched, the structural matching takes place. The FMI structure of the match
is mass, and the OPC UA structure is the simulation variables object. So in the case
of Acceleration, the FMI variables accelerate.a and accelerate.a_ref get
a weight penalty of 1, as they are in the accelerate structure. This happens for other
variables as well. After these penalties are applied, both Acceleration and Velocity
are matched, as there is only one level 1 matching left for each of them. The only variable
that is left is the Position, and the program cannot deduce if it should be matched
to mass.L or mass.s, as they are both Real variables in meters (m), belonging to the
mass FMI structure. To progress further, human intervention is required. The human

57

5. Use Cases

must provide the matching variables in the override file, in this case OPC UA Position,
and FMI mass.s (by node id and value reference, respectively). After running the
program with the override file, all matches can be made (Mass, Acceleration, and
Velocity automatically, and Position manually), and the matching is thus complete
(Table 5.1). The data flow is established (variables can be read by OPC UA clients; in
particular the Position variable is read by the client examples).

5.2 Use Case II - Fluid Heat Flow
The aim of this use case is to demonstrate the workings of the data flow capabilities
of the matching unit, and not the semi-automatic matching capabilities. The physical
experiment works as follows: there is a coolant flowing through a pipe, the source
temperature of the coolant is 20 degrees Celsius. A heat source is heating the coolant
through a thermal conductor. There is a pump which determines the volume of the flow
through the pipe (in m3

s). This volume flow can be controlled, as in an input to the
system. The inlet coolant temperature as well as the outlet coolant temperature can be
read, and are considered information of interest for this use case. The physics diagram
for this use case can be seen in the Figure 5.5.

Figure 5.5: Use case II: fluid heat flow physics diagram

5.2.1 Simulation Model
The FMU was generated using the OpenModelica program (version 1.16.5), and the
diagram of the use case within the program can be seen in Figure 5.6. The simulation

58

5.2. Use Case II - Fluid Heat Flow

model is an adapted version of the SimpleCooling example from the Modelica library
(under Thermal: FluidHeatFlow). The simulation model for this use case is very similar
to the mentioned example, the only difference being, that the desired volume flow of the
pump is an input, and can be changed. There are a total of 175 variables, 154 of which
are left after duplicate pruning. Due to the sheer number of variables, they will not be
listed here, but they will be discussed in Subsection 5.2.3.

Figure 5.6: Use Case II as designed within the OpenModelica program

5.2.2 Automation System Information Model

An OPC UA nodeset file was created using the UAModeler program. The information
model contains two objects: Pump and Pipe. The Pump object has a sole variable
Volume Flow, which serves as an input to the simulation. The Pipe object has
two variables: Inlet Temperature and Outlet Temperature, which can be used
to check the inlet and outlet temperatures, respectively. Same as with Use Case I,
Subsection 5.1.2, in addition to the information model variables from the nodeset file,
there are three additional variables and a function under the sim_control object, which
correspond to the variables used for simulation control. The functionality of simulation
control variables and the function is described in Subsection 4.2.2. Figure 5.7 shows
both the information model (nodeset) variables (left hand side), as well as the simulation
control variables (right hand side).

59

5. Use Cases

Figure 5.7: Use Case II: OPC UA Information Model Instances

5.2.3 Matching Procedure for Use Case II

This use case presents a much more difficult matching than the first use case. The
reason for this, is that there are many more FMI variables (154 after duplicate pruning),
and many of them have the same or similar attributes (for example, there are many
temperature variables). The structural matching is not helpful either, as all three variables
that need to be matched, from the OPC UA information model, are from different objects
within the FMU (namely: none, ambient1, and ambient2; see FMI variable names in
Table 5.2).

The best possibility for making a match is for the Volume Flow variable. Despite the
volume flow being expressed in m3

s , the input variable itself in the FMU has no unit
(as it is simply a real value input). OPC UA information model was designed to reflect
this. Looking for other variables with no units, and that adhere to the type criteria, the
program gives the following suggestions for the Volume Flow variable (Figure 5.8):

Figure 5.8: Program’s suggestions for matching the Volume Flow variable

60

5.2. Use Case II - Fluid Heat Flow

As there are only five variables suggested by the program, the list is quite manageable.
Just based on the variable names, a human operator could easily deduce the match
(volumeFlowInput).

For the other two variables, the Inlet Temperature and Outlet Temperature,
the program lists many possible variables as good (level 1) matches. In particular, the
same 27 variables are listed as good matches for each of the variables. Determining which
variables are the matches in this case is not so simple, and requires a good knowledge of
the FMI model.

As the program is not capable of matching any of the variables on its own, they must
all be specified in an override file. Even after matching some of variables manually, the
structural matching cannot help in this case, as there are many FMI variables in total,
and all variables that should be matched belong to different structures. The table of
matches is given as Table 5.2, and only contains OPC UA variables and their matches
(the rest of the FMI variables are excluded, for readability).

Table 5.2: Table of Matches for the Use Case II;
Match Column: Man=Manual Override

FMI Variable Name FMI FMI Match OPC OPC UA OPC UA
Type Unit UA Unit Type Variable Name

volumeFlowInput Real / Man / Double Volume Flow
ambient1.T_port Real K Man K Double Inlet

(min 0) (min 0) Temperature
ambient2.T_port Real K Man K Double Outlet

(min 0) (min 0) Temperature

5.2.4 Data Flow
This use case has two clients: manual and automatic time progression, similarly to the
Use Case 1. However, in this Use Case, they perform different tasks, in order to show
the functionality of the data flow. The client with manual time progression functions on
a simple time-triggered principle, while the automatic time progression client functions
on the basis of temperature control.

Time-Triggered Client

The manual time progression client works as follows: volume flow starts at 0.1m3

s , after a
certain time period (at 2.2s simulation time), the client starts increasing the volume flow
of the pump by 0.05m3

s , every 0.05s, until it reaches 1m3

s . This results in the following
behavior: at the start, the temperature increase is slightly delayed, due to the processes
which need to transpire (heat flow, convection, etc.). The temperature then rises, until
enough coolant passes through that the temperature starts falling again. The temperature
then stabilizes at 30 degrees Celsius. This behavior can be seen in Figure 5.9.

61

5. Use Cases

Figure 5.9: Time-Triggered Client Temperature and Volume Flow

Note that due to the small time increments, marks at individual values are not shown,
for the readability of the graph. The value of the temperature is shown as continuous
(straight connections), as it is assumed to be continuous between the simulation intervals.
The volume flow, on the other hand, is shown as a stepped function, and the graph
represents the exact values of volume flow at those times. This is because the value of the
volume flow was only modified at the simulation intervals, and held constant in between.

Temperature Control Client

The client with automatic time progression represents a temperature control. The control
works on approximately 0.05 s time increments. At the start of the increment, the control
checks the outlet temperature, if it is higher than a pre-determined trigger value (in this
case 40 degrees Celsius), the control starts increasing the volume flow of the pump by
0.01 m3

s per increment. As long as the temperature is higher than the trigger value, the
volume flow of the pump keeps increasing in each increment, up to a cap of 2 m3

s . If the
temperature is under the trigger value, the flow of the pump is decreased, by 0.01 m3

s per
increment, minimally down to 0.1 m3

s (which is also the starting value). The result can

62

5.2. Use Case II - Fluid Heat Flow

be seen in Figure 5.10.

Figure 5.10: Temperature Control Client Temperature and Volume Flow

From the figure it can be seen that the temperature control starts increasing the coolant
volume flow as soon as the temperature value rises above 40 degrees Celsius. The volume
flow keeps increasing, until the temperature is brought under the trigger value, at which
point it starts decreasing again. The slow change speed of the volume flow control is
beneficial in this case, and the temperature quickly stabilizes at the trigger value (40
degrees Celsius), with the volume flow around 0.5 m3

s .

63

CHAPTER 6
Discussion

This chapter presents a discussion of the topics of the thesis, going through the limitations,
as well as the possible improvements of the proof of concept implementation, while also
discussing difficulties observed while developing the implementation.

Chosen Use Cases

The use cases that were used for the proof of concept implementation were described in
Chapter 5.

The first use case presents a relatively simple free fall physics experiment (Section 5.1),
which serves to demonstrate the matching capabilities of the proof of concept imple-
mentation. The reason for the simplicity is that the number of variables grows rapidly
with increasing simulation complexity (using the Modelica simulation environment),
thus greatly complicating the matching, as can be seen by the (still relatively simple)
second use case (Section 5.2). Even though the physics experiment of the first use case
itself is almost trivial (friction-less free fall), there are still 23 variables that are possible
matches, on the FMI side. One of the methods in which the matching was made easier
for the program, was the development of the information model. Namely, the information
model was developed to be a good match for the simulation model. All of the variables
have compatible types, matching ranges and engineering units. This greatly simplified
the matching for the program, but as can be seen in Subsection 5.1.3, in particular in
Table 5.1, the program still needed help from the user via the override file, for one of the
variables.

One of the reasons that difficulties can appear is that some variable profiles appear
multiple times, for example acceleration appears two times in the accelerate module, and
once in the mass module, in the first use case. The matching difficulties can be clearly
seen by the second use case, where the program should match three OPC UA variables
to three FMI variables, from a pool of 154 (Subsection 5.2.3). In particular the inlet

65

6. Discussion

and outlet temperature variables proved difficult to match, as there are 27 good (level
1) possible matches for them. As the system presents a fluid heat exchange experiment,
it is (correctly) expected that there are many temperature variables. This problem is
expected only to increase with the increased system size. Knowing which variable out of
the 27 good matches is actually the correct match is not a simple task, and requires a
good knowledge of the FMI model. On the other hand, the program’s suggestions were
quite useful for the volume flow variable, and a human operator could easily deduce the
match by the variable names, even if they had low knowledge of the models.

Another reason for matching difficulties is the lack of information/criteria. For example,
in order to match variables which have neither range nor engineering unit information,
one might have to resort to other matching techniques, such as the structural matching,
or some additional criteria (as discussed in Subsection 3.2.2). The simulation models for
the use cases were generated with OpenModelica, without further (manual) modification.
The variables do have some inconsistencies, for example, in the first use case, acceleration
has the unit m/s2, while the derivative of velocity has the unit m.s-2. Despite being
identical units in theory, as the proof of concept implementation only treats fully identical
units as the same, these two units are treated as different units. Some of the possibilities
to handle this issue were given in Subsection 3.2.2.

Matching Criteria

The proof of concept implementation utilizes the following four criteria: the data type,
the data range, the engineering units, and the structural matching. And, as was discussed
previously, this might not be enough in order to automate the matching process. Some
additional matching criteria are presented in Subsection 3.2.2.

In particular, more extensive use of the structural matching could provide many benefits.
The current structural matching is only a single level, meaning that only structures
with direct children can be matched, and any overarching structures are not taken into
account. If multi-leveled matching was introduced, the benefits could be substantial for
more complex models. More complex models might contain multiple instances of the
same components, which the program could not differentiate alone. However, the human
effort would not need to be great, the human simply needs to match structures to each
other. The proof of concept can already handle this partly, where if the user matches
one of the variables manually in the override file, the program can then recognize which
of the identical modules should be matched. In order to facilitate this process and make
it easier, the proof of concept implementation would thus need to be expanded so that
the structures would be presented separately to the user, and the option would be given
given to match structures to each other. A possible use for the naming criterion, which
is otherwise difficult to utilize, could be to match these identical structures to each other,
if they follow a similar naming convention. For example, if the names were Fan 1 and
Fan 2 on one side, and HeatingF_1 and HeatingF_2 on the other, if the program
detects that the structures are the same, it could also detect that there is a part of the
name that is the same, and part of the name that is different in each of the naming

66

conventions (in the example "Fan " is the same for both fans, and the number afterwards
differs). If the differing parts match in the two systems they can then be matched to
each other. Of course, this relies on the fact that a part of the name is identical, as well
as the numbering order of fans (i.e., it might be the case that the fans are in different
order in the other system). Utilizing these techniques requires extensive knowledge about
the systems, in order to use such speculations with confidence. Even if it would help in
this case, the naming criterion is still difficult to use, and might be too speculative for
most other use cases.

Experience with the second use case (Section 5.2) has shown that bigger physical systems
often contain variables which have similar profiles (for example, temperature variables),
and using just the type, range, and unit matching in this case was not enough. The
structural matching was also of no use in the particular use case, as the OPC UA data
hierarchy did not match the FMI structure (which can also be expected with bigger
systems).

A criterion which would greatly help with identifying relevant variables and only matching
those is the access level criterion. This would greatly help when the simulations are
used to test other parts of the system, as the relevant information for the other parts
is only in the input and output variables. The technique would be of no use for the
digital-twin simulations, as the internal variables and data are very much relevant in
that use case. So, in the case of simulations for tests, if the only required variables are
input and output variables, this would greatly reduce the number of variables which need
to be matched, as simulations often contain many more internal variables. From the
automation system perspective, the access levels would provide the necessary information
to determine the input and output variables. For example, the variables that are "read-
only" or an equivalent thereof for the automation system client would be the output
variables of the simulation. In the simulation system the input and output variables
are usually explicitly distinguished by additional information attached to the variable.
In the implemented proof of concept for this thesis, this information is extracted from
FMI variables, however, as the access levels distinction for the automation system is not
implemented, this information is not used for matching. Note that one could still partly
utilize this information from the simulation system, even if there is no information on
the access levels of the automation system. The simulation variables could be separated
into input/output variables, and internal variables. Thus, even if the information which
variables are input and which output on the automation side is lacking, we can still extract
the relevant variables from the internal parameters, in the simulation system. So, even
though access levels would greatly reduce the number of variables on the simulation side
that are considered for matching, this criterion can only be used with certain simulation
types, namely when we are testing the functionality of the automation system, and cannot
be used in simulation types where internal information is desired (digital twin).

In particular, with the second use case of this thesis, the volume flow input variable was
designated as input. The inlet and outlet temperature variables were however internal
(local) variables. If the FMI model was redesigned in such a way, that these two variables

67

6. Discussion

were output variables, then a matching priority could be given to them. Using this in
combination with access levels on the automation system side would probably yield good
results. In particular, the volume flow variable would be immediately matched, as there
is only one FMI variable designated as input in the five level 1 matches that the program
finds for the volume flow. For the temperature there are three variables within the 27 that
are already designated as outputs, this means that after this matching criterion would be
applied, there would be five level 1 matches for both inlet and outlet temperature variables.
Having a list of five possibilities is much more manageable than 27. Even if the user could
eliminate the three output variables that are not matches, they would be left with two
FMI variables and two OPC UA variables (ambient1.T_port, ambient2.T_port,
Inlet Temperature, and Outlet Temperature, respectively), without knowing
which one matches to which. This would again require the knowledge of the FMI model,
in order to make a correct match. In total, the access levels matching criterion could
greatly improve the matching for the second use case, automatically matching one of the
variables, and offering a smaller possibility set for the other two.

Time Management

The proof of concept implementation offers two modes of time progression: the manual
and the automatic time progression. In the manual mode, the time is advanced step-wise
by the user, and in the automatic mode, the time progresses naturally. The time modes
are described in detail in Subsection 4.2.2. In the program itself, the simulation is
advanced step-wise in both of the modes, as the FMI Library provides such interface. The
automatic time progression is emulated by executing the time step for the passed time
between client calls. There are several possible problems that might occur. First of all, it
is not possible for two clients to use different time progression methods simultaneously,
as the program only has one simulation running. The first issue with automatic time
progression is that there are no latency guarantees. If the client and the server are not
on the same machine, the network latency can influence the time of arrival of the data.
When testing the system functionality, this might actually be desired. Another issue are
simultaneous requests from different clients, which might cause additional latency, from
the server this time.

Additionally, there is the issue of long wait times. If the simulation is not advanced
in a long time, the time required to calculate the time step might be larger than what
the client is willing to wait. For example, there were no calls in the last several hours,
and the client now makes two calls, several seconds apart. On the first call, the server
needs to calculate the entire simulation progression for the previous several hours, in
order to provide the information to the client. This calculation might take considerably
more than several seconds after which the second call comes. If the second call is only
handled once the calculations are finished, the information provided in the two response
to the client might not be only several seconds apart anymore. One possibility is for
the client to attach a time-stamp with each of the requests, so the server would know
at which time point the information is desired. The problem here is that if there are

68

multiple clients, they might not be fully time-synchronized, so such approach could lead
to problems (for example, a client might request the current information in its own time,
but for the server, that time point is already in the past). Alternatively, the server could
keep track of the time that the client calls were made using its own clock. This relies on
one thread or process handling the client calls, while the simulation is running in another
thread or process. Of course, one would then need to handle thread synchronization and
communication. A different approach would be to have regular intervals at the server,
at which the simulation is advanced, even if no client calls are made. For example, the
server advances the simulation every 10 minutes, even if no client requested any data. If
these time increments are chosen properly, this method would ensure that the wait times
do not get too large. The automatic advancement intervals would need to be chosen
strategically or conservatively, as the simulation might not always take the same amount
of time to advance. For example, if in a certain interval the physics simulation is fully
stationary, the interval might be calculated very quickly, but if there is a force applied to
the system, and many physics components start interacting, the simulation time for this
interval might be much larger.

Real-time

The issue of real-time should also be mentioned. In this case, real-time refers to pro-
cesses with guaranteed response time, and not the natural time progression. The time
progression in the implemented program, is at no point exact. The simulation results and
values do correspond to the time that they are given at on the server-side, however the
communication and the response time cannot be guaranteed. The time for the request
to arrive to the server is also unknown and not measured in the implementation. This
means that the implementation is not real-time capable. The OPC UA was expanded
with the publish-subscribe model and with Time-Sensitive Networking (TSN) Ethernet
standard. With these improvements, the OPC UA is capable of real-time communication.
The FMI for Co-Simulation also supports real-time-capable C code for the FMUs. This
means that one could implement a real-time capable version of this proof of concept
application; however this is outside of the scope of this thesis.

Requirements

In Subsection 3.2.4, seven requirements were made for the matching process. The
adherence of the proof of concept implementation to these requirements will now be
discussed. Firstly, the proof of concept matching is based mainly on the given simulation
model (FMU) and the information model (OPC UA nodeset file) (RQ1). The matching
happens almost fully automatically for some use cases (Use Case I needed only one
variable to be matched manually), however there are issues with larger and more realistic
use cases (Use Case II), where additional matching criteria might be required (RQ2).
The proof of concept program uses engineering units, ranges, and structural information
as matching criteria, and the variable type as a disqualifying criteria. The weights are
calculated (as described in Subsection 4.2.4) and the matches are given based on those

69

6. Discussion

weights (RQ3). While there are no wrong matches in the given use cases (RQ4), this
is not a guarantee with any use case. A simple example which would cause a wrong
match would be, in Use Case I, if we wanted the velocity variable of the acceleration
module, instead the velocity of the mass module (as was the case in the use case). Based
on the structural matching, the program would match the mass module’s velocity, as it
would have a better value because of the mass variable from the mass module, which
is already matched at the time. Although such variable requirements would not make
much sense in the particular use case, a similar situation could be created with some
other use case, where the matching would make a mistake. Ensuring that there are no
wrong matches is not a simple task, and it presents a trade-off, in a sense that: the safer
the matching, the less matches there will be, as the program will be less confident in
giving out matches. Ultimately, it is up to the human to decide if the matches are correct
or not. The program gives the ability to define which OPC UA variables should not
be matched (RQ5), as the matching starts from the OPC UA side. When a match for
a variable is not found, the program will provide a list of possible matches, with some
relevant information (such as data type or engineering unit) (RQ6). The program gives
the possibility to manually override or set matches (RQ7). So in total, the requirements
RQ2 and RQ5 are partially fulfilled; the only problematic requirement turned out to be
RQ4, which did not manifest itself in the use cases, but which could be a problem for
other use cases. Solving this requirement is not trivial.

70

CHAPTER 7
Conclusion and Outlook

Simulations are an important tool when dealing with cyber-physical systems, and as such,
they are also part of the ongoing fourth industrial revolution - Industry 4.0. Used either
during development, or during deployment, the simulations are versatile and effective,
and they help the designers during the whole design process. During development, the
simulations are used to test the functionality of a component, by for example, comparing
the behavior of the simulation with the behavior of the real physical component. On the
other hand, one could test the functionality of other components by letting them interact
with the simulation. The simulations can also be used during the deployment phase. The
best example for this is the use as a digital twin, where one can monitor the behavior of
the component more accurately on the digital twin. The digital twin can also be used for
optimization, control, or to diagnose issues.
While the simulations can be used as stand-alone, many benefits can be gained by using
them alongside other components, as described above. Interaction with other components
requires communication, and this is where issues can occur. The simulations are usually
not interoperable by default with the other parts of the automation system. The purpose
of this thesis is to explore the possibilities for bringing the simulation and the automation
systems together, which is a necessary step for interoperability. In particular, the thesis
focuses on the brownfield approach, where the simulation model, and the information
model of the automation system are already given, as this is often the case in real life
applications, and redesigning these systems is not a possibility. While the greenfield
approach (where all system components are designed from the beginning) would allow
greater flexibility, and very simplified mapping, it is often not possible to design everything
from the start, as the existing systems should be used.
The key component which enables the interoperability is the mapping unit, which stands
between the simulation and the automation system, and facilitates communication. In
order to do its task, the mapping unit must first match the interface points (variables)
of the simulation model, and the information model. This is not an easy task, and

71

7. Conclusion and Outlook

several possible criteria for this matching are explored in the thesis. There are several
requirements that such matching should fulfill, and balancing them is not trivial. A
trade-off which often occurs in computer science also presented itself here: having a
stricter matching means that more found matches will be correct, but it will reduce the
number of variables that are matched, as the mapping unit leans on the side of safety.
On the other hand, having a more lenient mapping unit might result in more matches,
but there might also be more incorrect matches. The two key concepts here are precision
and recall. Precision is the number of correct matches within all matches made, and
recall is the number of correct matches made, from all correct matches. Ideally we would
want that all matches made are correct, and also that we matched all variables that could
be matched. In order to lower the probability of incorrect matches, several matching
criteria should be and are used, and the possible matches are then ranked according to
the weighted criteria which they do or do not fulfill. There is a possibility of human
intervention in the matching process, whereby the human can declare that some variables
should not be matched (this is useful for automation system variables which have no
equivalent nor relevance for the simulation), or match some variables manually, which
might be required if the mapping unit cannot deduce all matches on its own. The ease
of manual matching is improved by the mapping unit, which provides high probability
matches for the human to pick from, with all the required variable meta-data - making
the manual matching a straightforward process.

The proof of concept implementation of this thesis utilizes these presented techniques to
facilitate interoperability of the simulation and the automation system, demonstrated
with two use cases. The frameworks which were chosen for the simulation and for the
automation system are FMI and OPC UA, respectively. They were chosen as they are
open, standardized, and in widespread use. While the proof of concept can work on other
use cases, additional matching criteria might be required for larger use cases, in order to
reduce the level of human intervention required.

The mapping unit is presented with the model description file of FMI and the nodeset
file of OPC UA. The first use case presents a friction-less free fall. There are four OPC
UA variables which need to get matched with their corresponding pairs within 23 FMI
variables. This particular use case was chosen as it nicely demonstrates the functionality
of the automatic matching as well as the cases where human intervention is required.
The proof of concept implementation manages to find the correct matches for three of the
four OPC UA variables, utilizing all matching criteria at its disposal. The program is left
with a dilemma for the last variable, as there are two good FMI candidates for a match
for this variable. Instead of making an incorrect assumption, the program reports its
lack of success to the user, and gives them the two good match candidates that it found.
Based on the knowledge of the systems and the use case, the user can then provide the
last match manually, thus completing the matching, and enabling the data flow between
the simulation and the automation system, for all four variables, which was the task.

The second use case demonstrates that larger and more realistic use cases require
additional user intervention. This use case presents a fluid heating problem, where a

72

pump determines the coolant flow to a pipe, which is heated by an external source. The
three OPC UA variables should be matched to three FMI variables from a pool of 154.
This task is difficult for the proof of concept implementation, and the program does not
manage to match any of the three variables. It does, however, provide good suggestions,
making the matching procedure for the human easier for two of the variables, and very
easy for one. This demonstrates the importance of program’s suggestions, despite the lack
of success in matching, for the particular use case. The use case also nicely demonstrates
the data flow connection, where, in particular one of the clients uses volume flow input
and the outlet temperature to dynamically stabilize the temperature at the desired value,
by adjusting the volume flow.

The proof of concept implementation also implements two timing modes, intended
to facilitate the two use cases: manual and automatic time progression, facilitating
development phase and deployment phase simulation uses, respectively. The proof of
concept implementation has shown that implementing a mapping unit to connect the
simulation and automation systems is possible, and that these systems can be brought to
interoperate. It has also shown the importance of choosing good matching criteria, and
their weights, which come to a greater effect when applying these techniques to bigger
use cases.

A possible improvement for the theoretical part of the thesis would be a closer look at the
matching criteria, and in particular the matching weights. While the exact weight values
cannot be determined, as they are use-case dependent, it would be possible to consider
multiple use cases, and the importance of individual matching criteria, which would then
help obtain a general picture on importance of the individual criteria. Another possibility
would be to focus on RQ4 which is only partly fulfilled in the current proof of concept.
In other words, one should make sure that the program makes no incorrect matches.
While complete certainty might be impossible, different weighting techniques and general
matching techniques could be used in order to improve the confidence of the matches.

There are two important directions in which expanding the proof of concept implementa-
tion of go in. First, one could expand the timing behavior. Some possible issues, and
improvement possibilities were already listed, but in particular, one could ensure that
the automatic time progression mode is more reactive by automatically advancing the
simulation as required. More about this problem can be found earlier in this chapter
(under Time Management). The other possible direction would be adding more matching
criteria and improving the existing. This would help make more matches, leading to
improvements in RQ2. While the present matching criteria were enough for the first use
case, larger and more realistic use cases, like the second use case might require additional
use of the override mechanic (which is not desirable). Some of the possible criteria were
mentioned in Subsection 3.2.2. In particular, the structural matching criterion could
be improved to detect multi-layered structures, which would enable even larger sets of
variables to be matched at a time. Access level criterion could also help greatly in design
phase simulations.

73

List of Figures

3.1 Engineering Workflow: Automation System First 24
3.2 Engineering Workflow: Simulation System First 24
3.3 Engineering Workflow: Mapping Unit Last 25

4.1 Program Structure Diagram (Client M refers to the client with manual time
progression) . 42

4.2 Automatic Time Progression: Value Read - UML Sequence Diagram . . . 43
4.3 Manual Time Progression: Value Read - UML Sequence Diagram 44
4.4 Matching Algorithm UML Activity Diagram 49
4.5 Compilation and required files diagram 52

5.1 Use case I: free fall physics diagram . 53
5.2 Use Case I as designed within the OpenModelica program 54
5.3 Use Case I: OPC UA Information Model Instances 55
5.4 Program’s suggestions for matching the Position variable 57
5.5 Use case II: fluid heat flow physics diagram 58
5.6 Use Case II as designed within the OpenModelica program 59
5.7 Use Case II: OPC UA Information Model Instances 60
5.8 Program’s suggestions for matching the Volume Flow variable 60
5.9 Time-Triggered Client Temperature and Volume Flow 62
5.10 Temperature Control Client Temperature and Volume Flow 63

75

List of Tables

5.1 Table of Matches for the Use Case I; Match Column: Imm=Immediate,
Man=Manual Override, NM=Not Matched 56

5.2 Table of Matches for the Use Case II; Match Column: Man=Manual Override 61

A Table of starting weights, based on data types 84
B Table of penalties based on value ranges 85

77

Bibliography

[Bac05] Marko Bacic. On hardware-in-the-loop simulation. In Proceedings of the
44th IEEE Conference on Decision and Control, pages 3194–3198. IEEE,
2005.

[BAS14] Christian Bertsch, Elmar Ahle, and Ulrich Schulmeister. The functional
mockup interface-seen from an industrial perspective. In Proceedings of the
10 th International Modelica Conference; March 10-12; 2014; Lund; Sweden,
number 096, pages 27–33. Linköping University Electronic Press, 2014.

[BOA+11] Torsten Blochwitz, Martin Otter, Martin Arnold, Constanze Bausch,
Christoph Clauß, Hilding Elmqvist, Andreas Junghanns, Jakob Mauss,
Manuel Monteiro, Thomas Neidhold, et al. The functional mockup interface
for tool independent exchange of simulation models. In Proceedings of the
8th International Modelica Conference, pages 105–114. Linköping University
Press, 2011.

[BVZ15] EV BITKOM, EV VDMA, and EV ZVEI. Umsetzungsstrategie Industrie 4.0:
Ergebnisbericht der Plattform Industrie 4.0. Plattform Industrie 4.0, April
2015. Link: https://www.plattform-i40.de/IP/Redaktion/DE/
Downloads/Publikation/umsetzungsstrategie-2015.html , ac-
cessed October 2021.

[GHIU17] Markus Graube, Stephan Hensel, Chris Iatrou, and Leon Urbas. Information
models in opc ua and their advantages and disadvantages. In 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–8. IEEE, 2017.

[JOM16] Václav Jirkovskỳ, Marek Obitko, and Vladimír Mařík. Understanding data
heterogeneity in the context of cyber-physical systems integration. IEEE
Transactions on Industrial Informatics, 13(2):660–667, 2016.

[Led99] Jim A Ledin. Hardware-in-the-loop simulation. Embedded Systems Program-
ming, 12:42–62, 1999.

79

https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/umsetzungsstrategie-2015.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/umsetzungsstrategie-2015.html

[Li18] Ling Li. China’s manufacturing locus in 2025: With a comparison of “made-
in-china 2025” and “industry 4.0”. Technological Forecasting and Social
Change, 135:66–74, 2018.

[LKYO17] Byunghun Lee, Dae-Kyoo Kim, Hyosik Yang, and Sungsoo Oh. Model
transformation between opc ua and uml. Computer Standards & Interfaces,
50:236–250, 2017.

[LM06] Stefan-Helmut Leitner and Wolfgang Mahnke. Opc ua–service-oriented
architecture for industrial applications. ABB Corporate Research Center,
48(61-66):22, 2006.

[LSS19] Hasan Latif, Guodong Shao, and Binil Starly. Integrating a dynamic sim-
ulator and advanced process control using the opc-ua standard. Procedia
Manufacturing, 34:813–819, 2019.

[Lu17] Yang Lu. Industry 4.0: A survey on technologies, applications and open
research issues. Journal of industrial information integration, 6:1–10, 2017.

[MGGU11] Wolfgang Mahnke, Andreas Gössling, Markus Graube, and Leon Urbas.
Information modeling for middleware in automation. In ETFA2011, pages
1–7. IEEE, 2011.

[MLD09] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC
unified architecture. Springer Science & Business Media, 2009.

[Mod20] Modelica Association. Functional Mock-up Interface for Model Exchange
and Co-Simulation, Version 2.0.2, December 2020. Link: https://
fmi-standard.org/downloads/ , accessed April 2021.

[NFCM19] Elisa Negri, Luca Fumagalli, Chiara Cimino, and Marco Macchi. Fmu-
supported simulation for cps digital twin. Procedia manufacturing, 28:201–
206, 2019.

[OPC20] OPC Foundation. OPC Unified Architecture, Release 1.04, 2017-
2020. OPC 10000-1/14 ; Link: https://opcfoundation.org/about/
opc-technologies/opc-ua/ , accessed October 2021.

[RMK16] Vasja Roblek, Maja Meško, and Alojz Krapež. A complex view of industry
4.0. Sage Open, 6(2):2158244016653987, 2016.

[RR20] Jan Reitz and Jürgen Roßmann. Automatic integration of simulated systems
into opc ua networks. In 2020 IEEE 16th International Conference on
Automation Science and Engineering (CASE), pages 697–702. IEEE, 2020.

[SFT+19] Diana Strutzenberger, Thomas Frühwirth, Thomas Trautner, Ronald Hinter-
bichler, and Florian Pauker. Communication interface specification in opc
ua. In 2019 24th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1329–1332. IEEE, 2019.

80

https://fmi-standard.org/downloads/
https://fmi-standard.org/downloads/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/

[SSK+20] Gernot Steindl, Martin Stagl, Lukas Kasper, Wolfgang Kastner, and Rene
Hofmann. Generic digital twin architecture for industrial energy systems.
Applied Sciences, 10(24):8903, 2020.

[TS16] Lane Thames and Dirk Schaefer. Software-defined cloud manufacturing for
industry 4.0. Procedia cirp, 52:12–17, 2016.

[WMO+16] Stephan Weyer, Torben Meyer, Moritz Ohmer, Dominic Gorecky, and Detlef
Zühlke. Future modeling and simulation of cps-based factories: an example
from the automotive industry. Ifac-Papersonline, 49(31):97–102, 2016.

[YJR+10] Yong-Ho Yoo, Thomas Jung, Malte Roemmermann, Malte Rast, Frank
Kirchner, Jürgen Roßmann, and Robotics Innovation Center. Developing
a virtual environment for extraterrestrial legged robot with focus on lu-
nar crater exploration. In Proceeding of 10th International Symposium on
Artificial Intelligent, Robotics and Automation in Space, volume 29, 2010.

81

Appendix

The Appendix can be understood as an extension of Subsection 4.2.4 (in particular the
"Applied Matching Techniques" segment). Here, the exact matching weights are presented
for the matching algorithm, based on the matching criteria (see Subsection 3.2.2 for the
list of possible criteria). These values were used in the proof of concept implementation
(Chapter 4).

Keep in mind that the values for the weight in the proof of concept implementation are as
follows: 0 means that the match is not possible, 1 means that the match is highly likely,
2 means that the match is slightly less likely, and so on, each higher value indicating that
the match is less likely; apart from 0 which is a special value meaning that the match
is not possible. In the proof of concept implementation, weights up to 3 are taken into
account for matching, all values higher than that are treated as too unlikely for a match,
and are not considered. Overrides are handled separately, they exclude the variables from
the matching procedure, and the override pair is taken as a certain match (if possible).
A variable pair needs to pass the Data Type criterion (disqualifying criterion), in order
to be able to be matched.

Data Type Criterion
The first table (Table A) determines the starting values, based on the data type. Data
type is a disqualifying criterion, meaning that a mismatch will result in "Match not
possible". "Not possible" in the table refers to weight 0. The table shows only a subset of
OPC UA variables; these variables are recognized by the proof of concept program.

83

Table A: Table of starting weights, based on data types

FMI Type OPC UA Type Starting weight

Real

Float
weight = 1Double

Duration
Otherwise Not possible

Integer

SByte

weight = 1

Int16
Int32
Byte
UInt16
UInt32
Otherwise Not possible

Boolean Boolean weight = 1
Otherwise Not possible

String

String

weight = 1

LocaleId
QualifiedName
GUID
LocalizedText
ByteString
DiagnosticInfo
XMLElement
ImageBMP
ImageJPG
ImageGIF
ImagePNG
Otherwise Not possible

Enumeration UInt32 weight = 1
Otherwise Not possible

In order to be processed further, a variable pair needs to be possible to match. This means
that penalty application is not applied if the match was not possible (as determined by
the data types, from Table A).

Data Range Criterion
The second table (Table B) presents the matching penalties based on value ranges. "FMI
DR Max" value is the maximum data range limitation of the FMI variable ("FMI DR
Min" is the minimum), if present. If the value is not present, the condition is treated as
not fulfilled (and the penalty is not applied). So, for example in the expression "FMI DR
Max ≤ FLOAT_MAX", the condition is fulfilled if FMI DR Max exists, and is smaller or

84

equal to the maximal float value. Penalty is applied only once per table. So if a variable
fulfills multiple entries in a table, it is penalized only once.

Table B: Table of penalties based on value ranges

FMI Type OPC UA Type Condition Penalty

Real Double FMI DR Max ≤ FLOAT_MAX

weight = 2

Duration

Integer

SByte FMI DR Min ≥ 0

Int16 FMI DR Min ≥ 0
FMI DR Max ≤ SCHAR_MAX

Int32 FMI DR Min ≥ 0
FMI DR Max ≤ SHRT_MAX

UInt16 FMI DR Max ≤ UCHAR_MAX
UInt32 FMI DR Max ≤ USHRT_MAX

Additionally, apart from the possible penalties in the table, a penalty is applied if both
FMI and OPC UA variables in a pair have their minimum values defined, but the
minimum values do not match. Same is true for the maximum values. The penalty is
again equal to 1, but the total weight for this step cannot exceed 2. This means that no
matter how many data range tests a certain variable pair fails (including those in the
Table B), the maximum penalty for data range criterion is still 1. No penalty is applied
if a minimum or a maximum value is defined on one side, but not on the other. This
is because such definitions might be necessary, as the data types are not equal on both
sides. For example, an FMI Integer might have a minimum value of 0, and match to an
UInt16 on the OPC UA side. In this case, the data range limit (of minimum value being
0) is not required on the OPC UA side, as it is implied by the data type. Penalizing the
variable pair in this case would be incorrect.

Engineering Unit Criterion

For engineering units, a penalty of 1 is applied if either of the following is true:

• If both FMI and OPC UA variable have their engineering units defined, but the
engineering units are not the same (string comparison).

• If one variable has the engineering unit defined, but the other one does not.

As can be seen from the second item, the penalty is also applied when only one of the
engineering units is defined. This is done because not having an engineering unit can be
a designation on its own. No penalty is applied if both variables have a single engineering
unit (same strings by both variables), or if both variables lack an engineering unit.

85

Structure Criterion
For the structural criterion, after a match is made (either by the matching algorithm or
through overrides), variable structures are inspected. In FMI this refers to the lowest
structure (which is designated by the name of the entire structure chain) containing the
variable. For example: in robot.arm1.centerOfMass, the structure of the variable
centerOfMass is robot.arm1. In OPC UA structure refers to the (node id of the)
direct parent of the node.

Let’s say that FMI variable F and OPC UA variable O are a match. Their structures
are: F.s and O.s. To perform the structural matching, the program then iterates through
all combinations of FMI and OPC UA variables (f, o), and applies the penalty of 1 in
the following cases:

• If F.s = f.s ∧ O.s �= o.s

• If F.s �= f.s ∧ O.s = o.s

Meaning that the penalty of 1 is applied one of the structures in the iterating variable
pair is the same as in the matched pair, but the other one isn’t. If both of the structures
are the same in the iterating pair as in the matched pair, or if neither of the structures
are the same in the iterating pair as in the matched pair, no penalty is applied.

86

	Kurzfassung
	Abstract
	Contents
	Introduction
	State of the Art
	Related Work
	Functional Mock-up Interface (FMI)
	Open Platform Communications Unified Architecture (OPC UA)

	Proposed Interfacing Approach
	The Engineering Workflow
	Information Matching

	Proof of Concept
	Libraries and Assumptions
	Implementation

	Use Cases
	Use Case I - Free Fall
	Use Case II - Fluid Heat Flow

	Discussion
	Conclusion and Outlook
	List of Figures
	List of Tables
	Bibliography
	Appendix

