
Master Thesis

Shape Optimization based on
Reinforcement Learning

carried out for the purpose of obtaining the degree of Master of Science (MSc. or
M.Sc.), submitted at TU Wien, Faculty of Mechanical and Industrial Engineering, by

Michael BINDER

Mat.Nr.: 01325632

under the supervision of

Stefanie Elgeti, Univ.Prof. Dr.-Ing.
Projektass. Daniel Wolff, M.Sc.

Institut of Lightweight Design and Structural Biomechanics

Vienna, November 2021

..................................
Stefanie Elgeti, Johannes Edelmann,
Univ.Prof. Dr.-Ing. Univ.Prof. Dipl.-Ing. Dr.techn.
ILSB, E317 MEC, E325
Gumpendorfer Straße 7 / Objekt 8 Getreidemarkt 9/E325
A- 1060 Vienna, Austria A- 1060 Vienna, Austria

I confirm, that going to press of this thesis needs the confirmation of the examination
committee.

Affidavit
I declare in lieu of oath, that I wrote this thesis and performed the associated research
myself, using only literature cited in this volume. If text passages from sources are
used literally, they are marked as such.
I confirm that this work is original and has not been submitted elsewhere for any ex-
amination, nor is it currently under consideration for a thesis elsewhere.
I acknowledge that the submittedworkwill be checked electronically-technically using
suitable and state-of-the-art means (plagiarism detection software). On the one hand,
this ensures that the submitted work was prepared according to the high-quality stan-
dards within the applicable rules to ensure good scientific practice "Code of Conduct"
at the TU Wien. On the other hand, a comparison with other student theses avoids
violations of my personal copyright.

Vienna, November, 2021

Signature

Master Thesis

Contents

Abstract I

Kurzfassung II

Glossary III

Acronyms IV

List of Figures V

List of Tables VII

1. Motivation 1

2. State of the Art 2
2.1. Classic shape optimization of profile extrusion dies 2
2.2. Machine Learning . 4

2.2.1. Supervised Learning . 6
2.2.2. Unsupervised Learning . 8

2.3. Reinforcement Learning . 11
2.3.1. Proximal Policy Optimization - PPO 17
2.3.2. Advantage Actor Critic - A2C/A3C 21
2.3.3. Related works . 25

3. Methodology 25
3.1. Shape optimization by means of FFD . 25
3.2. FEM for flow problems . 30
3.3. Interaction RL-FEM . 33
3.4. Action and Observation Space . 33
3.5. Rewards . 34

4. Results 36
4.1. Overview . 36
4.2. Matyas (Test I) . 39

4.2.1. Basic mode of operation . 39
4.2.2. Reward shaping . 40
4.2.3. Evaluation . 43
4.2.4. Hyperparameter study . 47

4.3. Shape optimization . 51
4.3.1. Reward shaping . 51
4.3.2. Evaluation of Test II and III . 52

Master Thesis

4.3.3. Evaluation of Test IV . 54
4.4. Runtime . 55
4.5. Comparison of the optimized shapes . 57

5. Conclusion and Outlook 59

A. Appendix 61
A.1. OpenAI Gym interface . 61

References 62

Master Thesis I

Abstract

The main focus of this thesis is to explore the feasibility of learning-based algorithms
such as Reinforcement Learning (RL) as a data-driven alternative to classical optimiza-
tion algorithms. For this, a simple geometry T-shaped geometry, which can be seen
as an abstraction of the flow channel inside a profile extruder, is optimized with two
different RL algorithms.
First, a test function for optimization is introduced to establish if the RL algorithm
works and if the training of the algorithm can be improved. Based on this test func-
tion, a reward function is shaped, and a hyperparameter study is performed. The
results show, that a dynamic reward function is most suitable for this task and show
that the standard hyperparameter are good enough and do not need to be changed.
For the shape optimization task, a specific mass flow ratio between the two outflows
of the geometry has to be configured. The flow channel geometry is parameterized by
two different methods— one changes the corner points of the geometry directly, while
the other one applies Free-Form Deformation (FFD). FFD deforms a box surrounding
the object to change its shape. The experiments are carried out in order of increasing
Degrees Of Freedom (DOF), as this turns out to be a measurement of the difficulty of
the tasks. The RL algorithms are trained for a specific number of episodes and are
evaluated if they can achieve the pre-defined goal of a specific mass flow ratio and if
the learning decreases the number of time steps needed per episode.
The RL algorithms tested, namely Advantage Actor Critic (A2C) and Proximal Policy
Optimization (PPO), can both achieve the pre-defined goals most of the time. In the
tasks with the direct change of coordinates, the algorithms can improve their policy
while their performance stays fairly constant for the task with the FFD, probably be-
cause it has too many DOF. In the test cases where the agents can improve their policy,
the A2C agents outperforms the PPO agent.
The methods for shape optimization introduced in this thesis look very promising and,
if further improved, could become a new standard for shape optimization tasks.

Master Thesis II

Kurzfassung

DasHauptaugenmerk dieser Arbeit liegt in einerMachbarkeitsanalyse von lernbasierten
Algorithmen wie RL als datengesteuerte Alternative zu klassischen Optimierungsal-
gorithmen. Dazu wird eine einfache T-förmige Geometrie, die als Abstraktion des
Fließkanals innerhalb eines Profilextruders angesehen werden kann, mit zwei ver-
schiedenen RL-Algorithmen optimiert.
Zunächst wird eine Testfunktion für die Optimierung eingeführt, um festzustellen, ob
der RL-Algorithmus funktioniert und ob das Training des Algorithmus verbessert wer-
den kann. Basierend auf dieser Testfunktion wird eine Belohnungsfunktion erstellt
und eine Hyperparameterstudie durchgeführt. Die Ergebnisse zeigen, dass eine dy-
namische Belohnungsfunktion am besten für diese Aufgabe geeignet ist und dass die
Standard-Hyperparameter gut genug sind und nicht geändert werden müssen.
Für die Formoptimierungsaufgabe muss ein bestimmtes Massenstromverhältnis zwis-
chen den beiden Abflüssen der Geometrie konfiguriert werden. Die Fließkanalgeome-
trie wird durch zwei verschiedene Methoden parametrisiert — eine ändert die Eck-
punkte der Geometrie direkt, während die andere FFD anwendet. FFD verformt eine
das Objekt umgebende Box, um seine Form zu verändern. Die Experimente werden in
der Reihenfolge der zunehmenden Freiheitsgrade durchgeführt, da sich dies als Maß
für die Schwierigkeit der Aufgaben herausgestellt hat. Die RL-Algorithmen werden
für eine bestimmte Anzahl von Episoden trainiert und daraufhin bewertet, ob sie das
vordefinierte Ziel eines bestimmten Massenstromverhältnisses erreichen können und
ob das Lernen die Anzahl der pro Episode benötigten Zeitschritte verringert.
Die getesteten RL-Algorithmen, nämlichA2C und PPO, können beide die vordefinierten
Ziele die meiste Zeit über erreichen. Bei den Aufgaben mit direkter Änderung der Ko-
ordinaten können die Algorithmen ihre Strategie verbessern, während ihre Leistung
bei der Aufgabe mit FFD ziemlich konstant bleibt, wahrscheinlich weil sie zu viele
Freiheitsgrade hat. In den Testfällen, in denen die Agenten ihre Strategie verbessern
können, übertrifft der A2C-Agent den PPO-Agenten.
Die in dieser Arbeit vorgestellten Methoden zur Formoptimierung sehen sehr vielver-
sprechend aus und könnten, wenn sie weiter verbessert werden, zu einem neuen Stan-
dard für Formoptimierungsaufgaben werden.

Master Thesis III

Glossary

a .An Action

at .Action at timestep t

Aπ(s, a) .Advantage function

Aπ(s, a) .Estimate of Aπ(s, a)

E .Expectation value over a batch of samples

γ .Discount factor

H1 .Space of onceweakly differentiable and square-
integrable functions

L2 .Space of square-integrable functions

πθ .Stochastic policy parameterized by θ

r .A reward

rt .Reward at timestep t

Gt .Return

s .A state

st .State at timestep t

θ .Parameters of the policy

Vπ(s) .Value function

Vπ(s) .Estimate of Vπ(s)

Qπ(s, a) .Action-value function

Qπ(s, a) .Estimate of Qπ(s, a)

χ .Coordinates inside a splines parameter space

ncp .Number of control points

Ω . Initial configuration

Ωparam .Parameter space of a spline

Master Thesis IV

ξ .Spatial coordinates inside the Fourier space

Acronyms

Notation Description
A2C Advantage Actor Critic
A3C Asynchronous Advantage Actor Critic
AI Artificial Intelligence
ASCII American Standard Code for Information Interchange
BFGS Broydon-Fletcher-Goldfarb-Shanno
CFD Computational Fluid Dynamics
CNN Convolutional Neural Network
DL Deep Learning
DOF Degrees Of Freedom
DRL Deep Reinforcement Learning
DV Design Variable
FE Finite Element
FEM Finite Element Method
FFD Free-Form Deformation
FR Fletcher-Reeves
ILSVRC ImageNet Large-Scale Visual Recognition Challenge
LBB Ladyzhenskaya-Babuška-Brezzi condition
LSTD Least-Squares Temporal Difference
MC Monte Carlo evaluation
MDP Markov Decision Process
ML Machine Learning
NN Neural Network
NURBS Non-Uniform Rational B-Spline
PDE Partial Differential Equation
PPO Proximal Policy Optimization
RL Reinforcement Learning
RSS Residual Sum of Squares
RWTH Rheinisch-Westfälische Technische Hochschule
SB3 Stable Baselines3

SGD Stochastic Gradient Descend
TD Temporal Difference learning
TRPO Trust Region Policy Optimization

Master Thesis V

List of Figures

1. Extrusion line for the production of thermoplastic profiles. 2
2. Schematic shape optimization cycle according to [1]. 4
3. Connections between the different fields of Artificial Intelligence (AI) [2]. 5
4. Example of a linear regression on artificial data [3]. 7
5. Lloyd k-means algorithm, different iteration stages until it converges [4].

The clusters’ mean values are shown as black crosses. 10
6. Agent environment interaction loop [5]. 12
7. Exemplary trajectory of a robotic arm [6] (edited). 13
8. Example of an interaction between an agent and its environment [7]. . . 14
9. Backup diagram for Vπ [8] (edited). 15
10. Actions performed by different epsilon greedy agents [9]. 16
11. Average rewards for three policies [9]. 17
12. Taxonomy and overview of popular RL algorithms [5]. 18
13. Advantage actor critic architecture (edited) [10]. 22
14. A3C architecture [11]. 24
15. Difference in architecture betweenAsynchronousAdvantageActor Critic

(A3C) and A2C [12]. 24
16. Linear transformation of the computational mesh to fit inside a 2D unit

cube. 27
17. B-Spline transformation of the computational mesh. 28
18. Linear back transformation of the computational mesh. 28
19. Control points and control polygon. 29
20. Visualisation of the boundaries Γ1 to Γ4. 31
21. Interaction loop between the agent and the model of the analysis. 34
22. Matyas function. 38
23. Geometry to be shape optimized. 38
24. Sample episode of the Matyas function, the black dots represent the z

valueswhich aremanipulated by the agent by altering the x and y values
of the function. The distance between the dots is defined by δ = 0.2. The
small green dots represent the goal value of z. 41

25. Comparison of an untrained and trained agent by the example of the
Matyas function. Both algorithms are trained with the constant reward
function Algorithm 1. 45

26. Comparison between the two algorithms applied to the example of the
Matyas function. 46

27. Comparison between a continuous reward function (Algorithm 1) and
a variable reward function (Algorithm 2) on the example of the Matyas
test function. 48

Master Thesis VI

28. Hyperparameter study: modified learning rate of the A2C agent applied
to the example of the Matyas function. 49

29. Hyperparameter study: modified learning and clipping range of the
PPO agent applied to the example of the Matyas function. 50

30. Test II: Comparison of the A2C and PPO agent with standard hyperpa-
rameters. 53

31. Test III: Comparison of the two algorithms. 54
32. Test IV: Comparison of the A2C and PPO agent with standard hyperpa-

rameters. 55
33. Comparison of the shapes produced by the three different experiments

(Test II-IV) for a mass flow ratio of ṁ23 = 1. 58

Master Thesis VII

List of Tables

2. Procedure of the Lloyd algorithm [3]. 9
3. Overview about the main objectives in PPO. 18
4. Simplified pseudo-algorithm for a single A2C worker [10]. 23
5. Parameter values of the Carreau-Yasuda model. 31
6. Overview of the examples for optimization. The key points of the ge-

ometry (A-H) can be seen in Figure 23. 37
7. Actions and their effect in the Matyas algorithm. 43
8. Comparison of some performance measures between the A2C and PPO

algorithm applied to the example of the Matyas test function and a con-
stant reward function. 47

9. Comparison of some key figures for a constant and variable reward
function on the example of the Matyas function. 48

10. Test II: Comparison of some performance measures of the A2C and PPO
algorithm. 53

11. Test III: Comparison of some performancemeasures of the A2C and PPO
algorithm. 54

12. Test IV: Comparison of some key figures between the A2C and PPO al-
gorithm. 56

13. Comparison of the runtimes for the four experiments with standard hy-
perparameters. 56

Master Thesis 1

1. Motivation

The engineering world is becoming more and more complex and often surpasses the
engineering intuition. Numericalmethods have become essential in handling this com-
plexity. This particular thesis is concerned with the topic of shape optimization in nu-
merical design.
Shape optimization is used and needed in numerous fields, to name a few: it can re-
duce the consumption of cars by making themmore aerodynamic or reduce the weight
of planes while maintaining the same structural integrity. In the field profile extrusion,
it is used to modify the die to produce a correct profile. Classical shape optimization
methods of profile extrusion dies can require a lot of manual work. RL algorithms are
mainly automatic and require not much user intake as soon as the task is set up. In this
thesis, it is evaluated if learning-based optimization algorithms such as RL can be used
as a data-based alternative to classical optimization algorithms. While not necessarily
superior to classic optimization algorithms (such as gradient-based) for one single op-
timization problem, we expect RL techniques to thrive when similar optimization tasks
are repeated. In the context of this work, no transfer learning tasks were investigated,
but rather the extent to which the shape optimization problem can be transferred into
a reinforcement learning framework and whether this type of problem can be solved
with a reinforcement learning algorithm is investigated.
The shape optimization problem, which is investigated in this thesis, is the mass flow
ratio of a simple T-geometry, which can be seen as an abstraction of the flow channel
inside a profile extruder. Finding the right parameterization technique is a big part of
classical shape optimization. We want to find such a technique, which is adequate for
the task posed, and explore if the number of DOF is important.
RL is based on trial and error interaction of an agent with an environment. For each
interaction, the agent is informed about a reward and the subsequent state of the envi-
ronment, but there is no information about long-term interests as classical optimization
algorithms would provide.
Chapter 2 gives an overview about classical shape optimization methods of profile ex-
trusion dies. Some Machine Learning (ML) methods are introduced, as well as a closer
look at RL and the algorithms used. Chapter 3 deals with the methods used in the con-
text of this work. Direct geometry parameterization and FFD is used to parameterize
the geometry to be optimized. The steady Stokes problem is introduced in Section 3.2.
Section 3.3 deals with the interaction between the RL agent and the Finite Element
Method (FEM) solver. In Chapter 4, the results of the tests are displayed, starting with
an overview of the tests performed. In Section 4.2 a test function for optimization is
analyzed in detail and a sample episode is discussed. Section 4.3 discusses the results
of the actual shape optimization tests. In the end of this chapter, the runtime between
the different tests is compared as well as the actual shapes, produced by the RL agent.

Master Thesis 2

2. State of the Art

This section introduces the terminology and principles required to understand the
concepts of the algorithms used in this thesis. First, an overview of classic shape-
optimization methods is given. The next section focuses on machine learning princi-
ples. In the last section the two algorithms used in this thesis are explained in detail.

2.1. Classic shape optimization of profile extrusion dies

In this section, some shape optimization techniques for profile extrusion die design
are introduced. Profile extrusion is a production technique for manufacturing contin-
uous products. Plastic melts are forced through an extrusion die to create a profile of
specific shape and thickness. A water bath or spray chamber then cools the extruded
shape and often provides pressure or vacuum controls to properly size the product as
it passes through. Belts or cleated pullers apply smooth tension on the product and
keep it moving in pace with the extruder. A cutter or saw creates the final product
length. Figure 1 depicts this process.

Extruder Die Calibration/Cooling Haul-off Saw

Figure 1: Extrusion line for the production of thermoplastic profiles.

The strongly nonlinear behavior of plastic melts, namely shear-thinning and the vis-
coelastic properties, make the extrusion die design a challenging task. Traditional
methods rely heavily on the designers’ experience and need time-consuming exper-
iments for each new die. A few different approaches to shorten this development time
will be introduced in the following.
First, we need to define what the goal of a correct profile is. According to [13], a profile
is appropriate when "[...] (i) the skeleton line of the cross-section matches the designed
one, and (ii) the thickness distribution is as required." Producing the correct profile is
the task of the die, the calibrator freezes this profile and makes some minor corrections
to the outer shape of the profile. Problems with these goals occur through unsatisfac-
tory flow distribution at the die exit and through elastic stresses induced by flow in the
melt at the die exit. This leads to some possible criteria for good design fromwhich ob-
jective function definitions can be derived. In the paper which will be discussed now,
the homogeneity of the velocity distribution at the die outlet is considered to be the

Master Thesis 3

primal quality criterion. This is usually used in the least squares term as an objective
function ([14], [15], [16]).
In [15] the three-dimensional die geometry is split up into a series of two-dimensional
’die-slices’. Each of these die slices is then divided into i partitions and a local objec-
tive function Fobj(i) is introduced. The idea behind this function is that the mass flow
fraction distribution of each die slice should be as close as possible to the area fraction
distribution of the product geometry.

Fobj(i) =
Qi

Ai

− 1 × 100% (1)

Through Finite Element (FE) analysis, the area fractionAi and themass flow fractionQi

are determined for each product partition i. The global objective Fobj(global) function is a
weighted, squared sum of the local objective functions of all partitions and parts. The
goal is to optimize the global objective function in an optimization loop using finite
element analysis. Four different strategies to achieve a correct profile are introduced.
The strategies, are evaluated in the paper according to the achieved quality, computa-
tional cost and user interaction. The two overall best performing methods, namely a
height approximation method and a global scheme which decouples the Design Vari-
ables (DVs) are discussed here.
A standard optimization cycle, depicted in Figure 2, is implemented for this task. In
the preprocessing step, the DVs are selected. The mesh is then generated and a flow
solver is used to determine the velocity field. The optimization algorithm determines
the objective function and returns the new DVs which alter the geometry in a step
called parameterization.
Optimization schemes
In the height approximation method, the cross-sections are approximated with rectan-
gular shapeswhich can be solved analytically. This works especiallywell for partitions,
where the shapes are similar to a rectangle. If they are different however a characteris-
tic height, which should be a function of the DVs has to be found manually. This can
require a lot of manual work. The parallel decoupled scheme uses an objective func-
tion for each partition of the die slices and optimizes all of them at the same iteration.
The coupling between different DVs is estimated using a reference position. For more
details see [15].
Comparison with a manual optimization
In a manual optimization, which is already in industrial use, no initial preprocessing
has to be done. However, the parameterization is not automatic and all required ge-
ometry changes have to be done manually, which takes much more time. The quality
of the design measured on the objective function is very similar.

Master Thesis 4

Start

Pre-Processing

Mesh Generator

FE Flow Solver

Objective Function
Evaluation

Optimization
Algorithm

Parameterization

Stop

conver-
gence?

no

yes

Figure 2: Schematic shape optimization cycle according to [1].

2.2. Machine Learning

In recent years, there has been an increasing interest in artificial intelligence, which is
mostly based on deep learning. The decisive event was an image classification com-
petition in 2012 called ImageNet Large-Scale Visual Recognition Challenge (ILSVRC).
The aim of the competition was to classify 1.2 million images into the 1000 different
classes. A deep neural Network called AlexNet won the competition by a great mar-
gin. The winning top-5 test error rate was 15.3%, compared to 26.2% achieved by the
second-best competitor, which is considerably better than the previous state-of-the-art
[17].
Differences between AI, ML, DL and RL:
It is hard to define AI exactly, but a general understanding is that the objective of AI
is to endow machines with human intelligence [2]. ML is a method for realizing this
goal using algorithms to learn from data, make decisions and predictions. Deep Learn-
ing (DL) is a machine learning technique inspired by the way the human brain filters
information [18]. RL is a technique of machine learning as well. DL and RL can be
combined to Deep Reinforcement Learning (DRL) [2]. Figure 3 shows the connection
between these fields of artificial intelligence.
Before going into the details about machine learning we must define what learning
is: "Learning is the process of acquiring new understanding, knowledge, behaviors,
skills, values, attitudes, and preferences." [19]
This means a machine or computer program should learn from experience and change

Master Thesis 5

Figure 3: Connections between the different fields of AI [2].

its behavior according to that. Instead of programming machines statically, we want to
use techniques which help computers to learn behavior from data. The data represents
the experiences the machine makes. It is possible to let algorithms that use neural net-
works learn either continuously, use transfer learning, or train a behavior once with the
help of data and then freeze it. To freeze a strategy simply means saving the weights
from the neural network layers. Transfer learning is an area of ML which uses the
knowledge from an old problem to solve a new problem. It is for example possible to
train a Convolutional Neural Network (CNN) algorithm on image recognition of cats
and dogs and reuse this already trained network to classify images of letters, using the
weights of the old task as a starting point for the new task [3]. Continual learning is a
bit more challenging. Reusing the example above, the Neural Networks (NNs) should
not only fulfill the new task (classifying the letters) but should still be able to perform
well on the previous task (classifying images). This proves to be challenging, but a few
strategies have been developed already [20].
A big advantage of ML is that the programmer doesn’t have to know the underlying
relation between the inputs and outputs, but can let the machine infer a model of this
relation from the data.
In ML, there are three different types of learning-paradigms: supervised learning, un-
supervised learning and reinforcement learning. All of them have in common that
they want to find a function mapping input variables to output variables. These learn-
ing paradigms differ in the definitions of the input and output sets, as well as in data
required to learn this function [3].

Master Thesis 6

2.2.1. Supervised Learning

In supervised learning, the inputs as well as the outputs of a component can be ob-
served [21]. This means every supervised learning paradigm needs a set of labeled
data. Using the example in the introduction ILSVRC: The inputsX = (x1, ...xn) are the
(centered) raw RGB values of pixels. The output variable is the class of the picture, for
example cat or dog. For the input variables there are different names: predictors, inde-
pendent variables, features, or just variables. The output variable is called response or
dependent variable and typically denoted by Y [22].
In the ILSVRC, the winning AlexNet CNN algorithm used a fixed resolution of 256 ×
256 × 3 pixels, and then cropped out the central patch consisting of 224 × 224 pix-
els from the resulting image. This means, that for each picture, the first layer had
n = 224 × 224 × 3 = 150528 independent variables but only one response, the classifi-
cation Y 1 [17].
A lot of the classical statistical learning methods like logistic- and linear regression op-
erate in the supervised learning category [22].
Linear regression is a simple supervised learning paradigm. It tries to find a linear re-
lationship between X and Y . There are a number of use cases, like evaluating trends,
making estimates and forecasts. A more specific example is: determining a correlation
between house prices and the crime rate per capita. Linear regression has been around
for a long time and can be used as a good starting point for newer approaches.
The goal of linear regression is predicting a quantitative response Y on the basis of a
feature variable X . The most basic form called simple linear regression uses a single
feature variable X . A linear relationship between X and Y is assumed. Mathemati-
cally, it can be written as Equation (2) [22]:

Y ≈ β0 + β1X (2)

The character≈means: "is approximatelymodeled as". In an imaginative example that
is based on the Boston housing data frame, the prices of the houses directly correlate
to the crime rate per capita. In this example, we can write Equation (2) as Equation (3):

houseprice ≈ β0 + β1 × crimerate (3)

The variable β0 is the house price if the crime rate is zero, called intercept, β1 is the
slope term in the linear equation. To distinguish the exact values from approximated

1In this special example, a softmax was used to calculate the probability for any chosen image
to be in any of the 1000 classes. The 5 most probably classes were then used in the output
to calculate the top-5 test error rate. Top-5 error rate is the fraction of test images for which
the correct label is not among the five labels considered most probably by the model [17].

Master Thesis 7

model the hat symbol "^" is used in the equations for the model (Equation (4)). The
variable ŷ is a prediction of Y on the basis of X = x.

ŷ = f(x) = β̂0 + β̂1x (4)

The goal is to find coefficient estimates β̂0 and β̂1 such that the resulting line is as close
as possible to the n = 506 data points. Before getting into details about how to estimate
the coefficients, let us recall that for supervised learning, a set of labeled data with the
inputs as well as the outputs is needed. In this example, the data can be written as:

(x1, y1), (x2, y2), ..., (xm, ym)

This means there are m observation pairs, each consists of a measurement of X and
a measurement of Y . In the Boston housing example, the values for X would be the
crime rate per capita and Y would be the house price.
Closeness can be defined in a number of different ways, a common approach is using
the squared Euclidean distance (method of the least squares), also used in Section 2.2.2
for the clustering algorithm. Figure 4 shows an example of a linear regression on ar-
tificial data. The features xi correlate approximately linear with the response yi. The
dotted line shows the residual, which is the difference between the ith observed re-
sponse value yi and its ith predicted response value ŷi (Equation (5)) [22].

ri = yi − ŷi = yi − f(xi) (5)

Using the square of the residuals has the effect that errors over 1 get enhanced and

Figure 4: Example of a linear regression on artificial data [3].

errors under 1 get weakened. The least squared approach minimizes the Residual Sum
of Squares (RSS) as Equation (6) [3]:

n

i=1

(yi − f(xi))
2 (6)

Master Thesis 8

Using some calculus, the estimated coefficients β̂0 and β̂1 can be calculated according
to Equation (7) [22]:

β̂1 =
n
i=1(xi − x̄)(yi − ȳ)

n
i=1(xi − x̄)

2

β̂0 = ȳ − β̂1x̄ (7)

The variables ȳ = 1
n

n
i=1 yi and x̄ = 1

n
n
i=1 xi are the sample means.

In practice, there is usually more than one feature for each dependent variable. For
example, in the Boston housing data frame, there are 13 features for each dependent
variable. The good thing is that the simple linear regression model can be easily ex-
tended to a multiple linear regression model. Each feature of the features vector gets a
separate slope coefficient in a single model. Having p distinct predictors Equation (4)
takes the form of Equation (8):

ŷ = β̂0 + β̂1x1 + β̂2x2 + ...+ β̂pxp (8)

This gives each feature of the predictor measurements xj a different coefficient βj . The
values of β̂0, β̂1,, β̂p can be calculated using multiple least squares regression coeffi-
cient estimates [22].

2.2.2. Unsupervised Learning

In the unsupervised learning category, there is no information given about the correct
outputs available [21]. Every observation Xj has a vector of p features xi for i = 1, ...n,
measured on m observations j = 1, ...m, but no associated response Yj . It is called
unsupervised because we lack a response variable to supervise our analysis, i.e. no
response variable can be predicted. One statistical learning tool that might be used in
this setting is cluster analysis, or clustering. In this approach, on the basis of the fea-
tures, we try to find out if the observation fall into distinct groups [22].
This can be used for a variety of tasks, like optimizing the marketing strategy by rec-
ommending similar products or products that are often bought together. Furthermore,
it can be used in medicine, grouping similar symptoms together and finding the root
cause.
The goals of cluster analysis are maximizing similarities within the groups and mini-
mizing the similarities to different groups [3]. There are a few different types of cluster-
ing analysis like connectivity-based clustering, centroid-based clustering or distribution-
based clustering. To keep it short, this section describes a rather simple centroid-based
clustering analysis called k-means clustering.
The goal of k-means clustering is to separate the observations Xj into K cluster. To
perform k-means clustering we must specify the desired number of clusters first, then
the k-means algorithm will assign each observation to exactly one of the K clusters
[22]. Each cluster Ck has a representative prototype µk, which doesn’t have to be in the

Master Thesis 9

original data but is a mean value of the data from the cluster [3]. The criteria for the
quality of the split is that the sum of the derivations from the cluster representatives
in the chosen metric is minimal. Mathematically speaking, a minimum of Equation (9)
has to be calculated.

W =
K

k=1 Xj Ck

d(Xj, µk) (9)

The term d(Xj, µk) is the distance in themetric. Often, themethod of least squares(squared
Euclidean distance) is used for the metric Equation (10) [22]. This is also called clus-
tering through variance minimization, as the sum of the variances of the clusters gets
minimized.

d(Xj, µk) = Xj − µk
2 :

W =
K

k=1 Xj Ck

Xj − µk
2 (10)

The Lloyd algorithm is the standard algorithm for k-means [3, 22]. The procedure for
the Lloyd algorithm is shown in Table 2

1. Initialize k representatives µk for the cluster.

2. Assign each element Xj to the cluster for which the distance to the cluster cen-
troid µk is the smallest.

3. Calculate by averaging the new representatives µk for the clusters.

Table 2: Procedure of the Lloyd algorithm [3].

The steps 2 and 3 are repeated until the position of the cluster representatives does not
change anymore.
Figure 5 shows an example of the iteration process involved in the Lloyd k-means
clustering analysis. In the first step, Figure 5(a) the cluster centroids are initialized ran-
domly, and the closest elements are assigned to the 3 different groups. The averaging
new representatives are then calculated and used in Figure 5(b). The result after 5 it-
erations is shown in Figure 5(c). This process is repeated till the position of the cluster
representatives is stable Figure 5(d).

Master Thesis 10

(a) Iteration 0 (initialisation). (b) Iteration 1.

(c) Iteration 5. (d) Iteration 14 (final).

Figure 5: Lloyd k-means algorithm, different iteration stages until it converges [4].
The clusters’ mean values are shown as black crosses.

Master Thesis 11

2.3. Reinforcement Learning

The difference between reinforcement learning and supervised learning is, that in RL
the agent (autonomous entity that acts according to a rule) just receives an evaluation
of the action but not what the correct action should have been, i.e. there are no in-
put/output pairs given. Consider the following example: The agent drives a car with
a specific speed at a time t (state) and has to learn to brake (action) in order to stop in
10 m (desired outcome) but with the action chosen it stops in 15 m (actual outcome)
and rear-ends another car. After some time, the agent gets an evaluation of its underly-
ing actions (huge bill for rear-ending a car) but is not told the correct actions (braking
earlier) [21]. Through exploration, the agent has to find, the best actions to take for
each state. The idea behind it is that rewarding or punishing an agent for its behavior
increases the probability of the agent to repeat or stop said behavior [23].
RL methods have a wide variety of use cases. They can be used to teach computers
how to control robots in a simulation or play sophisticated strategy games. In October
2015 AlphaGo, a RL-Algorithm for playing Go, beat the reigning European Champion
with a score of 5-0 [5].
Another difference to supervised learning is that the online performance is important.
Online learning means processing the data as it is made available, whereas offline
learning collects all the data first, then learns from it. The evaluation of the system
is often done concurrently with learning [24].
In the example above, some terminology has already been introduced, but we will
define them more clearly here as they are substantial for the rest of the thesis. The
main terms that are needed are: action(at), state(st), reward(rt), agent and environ-
ment, where the subscript t refers to "at a time step t". The environment is the world
that the agent lives in and interacts with. The agent uses a policy, which is a rule de-
termining which actions to take in a certain state. The agent makes an action which
influences the environment. As feedback, it gets back the current state of the environ-
ment as well as a reward. The reward tells the agent how good the current state of the
environment is. The goal of the agent is to maximize the cumulative reward, called
return [5]. In Figure 6 this interaction loop is depicted.
Another important term in RL is the trajectory τ . It is defined as "a sequence of states
and actions in the world that happened from s0, a0 onwards" [5]:

τ = (s0, a0, s1, a1, ...) (11)

Figure 7 visualizes this definition using an example of a robotic arm. The agent starts
in a state s0 and takes an action a0. This leads the agent to the next state s1 where it
takes an action a1. In Figure 7 the red dashed line shows the trajectory. The variables
denoted with T are the terminal state variables, i.e. when the sequence of actions and
states is finished. According to [8] everything the agent cannot control is considered

Master Thesis 12

Figure 6: Agent environment interaction loop [5].

part of the environment. In the example of the robot arm, themotors of the robot can be
considered part of the agent while the exact functioning of them is beyond the agent’s
control and part of the environment [7].
In Figure 8 possible interactions between the agent and the environment are depicted.
The agent chooses an action in each state and receives a scalar reward for each action,
as well as some information about the current state of the environment. In this case, a
discrete model is used with distinct numbers for each state and action.
A key concept in RL called Markov Decision Process (MDP) can be explained with
Figure 7 as well. Transitions, i.e. going from state st to state st+1, only depend on
the most recent state and action and no prior history i.e. it doesn’t depend on the
trajectory. This means the system obeys the Markov property [25]. Many problems
have been successfully modelled in terms of MDP, in fact MDPs have become the de
facto standard for learning sequential decison making [7].
The goal of the agent is to maximize the cumulative reward over a trajectory. The

reward-function R depends on the current state of the world st, the action at just taken
and the next state of the world st+1 (Equation (12)):

rt = R(st, at, st+1) (12)

For the cumulative reward, the sum over all rewards attained over the course of the
trajectory is used. Most of the time the infinite-horizon discounted return is needed,
which is the sum of discounted future rewards. Returns at successive time steps are
related to each other according to Equation (13) [8].

Gt = rt+1 + γrt+2 + ... =
∞

k=0

γkrt+k+1 = rt+1 + γGt+1 (13)

A discount factor is needed because a reward obtained at the current time t is better
than a reward in the future. Moreover, it is also mathematically convenient as it con-
verges to a finite number [8].

Master Thesis 13

Figure 7: Exemplary trajectory of a robotic arm [6] (edited).

The agent needs rules that determine which actions to take in order to maximize the
return. These rules are called policy. It can either be deterministic (usually denoted by
µ) or stochastic (denoted by π). In DRL parameterized policies are used e.g. the param-
eters of the policy are the weights and biases of a neural network. These parameters
can be adjusted to change the behavior via some policy optimization. The parameters
are denoted by θ [5]:

at ∼ πθ(·|st) (14)

The agent needs to estimate how good it is to be in any given state. For this, the value-
function is needed. Precisely the (state)-value function determines the expected return
for any given state. The expected return depends on the actions it is going to take,
which are defined by the policy [8].
The state-value is the expected return if we are in a state s at a time t, st = s:

Vπ(s) = Eπ[Gt|st = s] (15)

Sometimes we need to know how much better it is to take a specific action a at a time
step t over selecting a random action. For this, we define the action-value function:

Qπ(s, a) = Eπ[Gt|st = s, at = a] (16)

Master Thesis 14

Figure 8: Example of an interaction between an agent and its environment [7].

In order to determine howmuch better said action is, the difference between the action-
value function and the value function has to be calculated. This is called the advantage
function Aπ(s, a) [26]:

Aπ(s, a) = Qπ(s, a)− Vπ(s) (17)

In Equation (13), a recursive relationship between successive time steps has been estab-
lished. Value functions satisfy similar recursive relationships. Equation (18) shows the
Bellman equation for Vπ, which is the basis for solving sequential decision problems
[8]:

Vπ(s) =
a

π(a|s)
s ,r

p(s , r|s, a)[r + γVπ(s)], for all s ∈ S (18)

For any policy π and any state s this consistency condition holds between the value of
s and the value of its possible successor states s . The function p(s , r|s, a) is the proba-
bility of transitioning to state s with reward r, from state s under taking action a. The
final expression can be read as the expected value: for each triple (a, s and r) the proba-
bility π(a|s)p(s , r|s, a) is calculated, then the quantity in brackets is weighted in by that
probability and finally the sum over all possibilities is made to get the expected value
[8]. For the action-value function Qπ a similar equation can be derived. The Bellman
equations help to establish a connection between the state-value and state-action-value
functions, as well as expressing a relationship between the value of a state and the val-
ues of its successor states. It decomposes the value function into the immediate reward
plus the discounted future values [8].
Figure 9 shows a graphical representation of this equation. Update rules are also
known as backup operations as they transfer information back from future states to
the current one [27]. The top node s is the starting state. Based on the policy π the
agent chooses an action a. Depending on the transition probability p in the environ-
ment, the next state s along with the reward r is reached. The value of the start state

Master Thesis 15

equals the (discounted) value of the expected next state, plus the reward expected on
the way.

Figure 9: Backup diagram for Vπ [8] (edited).

Exploration and Exploitation Trade-off:
In order to get the best possible reward, an agent has to exploit actions it has used in
the past and that turned out to be effective in producing a high reward, but also explore
new actions that might yield an even bigger reward. This can result in a worse perfor-
mance, as the actions might be less good than the current policy. Without trying them,
however, it might never find possible improvements. Furthermore, in a non-stationary
environment, the agent has to keep exploring to keep the policy up to date. In order
to learn, it has to explore, but in order to perform well it has to exploit what it already
knows. This dilemma is called the exploration-exploitation problem [7].
This trade off is fundamental to many RL algorithms, so we will discuss a few strate-
gies using an example: the k-armed bandit problem, named by the analogy to a slot
machine called "one-armed bandit", except that it has k levers instead of one. Each
action refers to playing on one of the slot-machine’s levers and the rewards are the
payoffs for hitting the jackpot. After enough action selections, the agent should learn
to concentrate on the lever with the highest win rate [8].
The simplest policy to solve this problem is the greedy policy, where the agent always
chooses the action with the highest estimated action value.

at = argmax
a

Qπ(st, a) (19)

Another basic exploration strategy is the epsilon-greedy policy. It tells the agent in
which percentage of the time it should act according to the current policy, and how of-
ten it should perform a random action instead. The parameter used is ε. For example,
an agent with ε = 0.1would perform a random action 10% of the time [8]. A third pol-
icy called decaying-epsilon-greedy method is introduced where epsilon slowly decays
overtime [9].
In Figure 10 the actions performed by agents with different epsilon greedy parame-
ters on a 10-armed bandit problem are shown. The greedy policy explored very lit-
tle and settled on choosing action 5 very quickly. Both the epsilon-greedy and the

Master Thesis 16

decaying-epsilon-greedy algorithms found the optimal action(action 7) but continued
to explore. The amount of exploring in the decaying-epsilon-greedy algorithm is re-
duced over time. Towards the end of the simulation, it is choosing the optimal action
almost all the time. In Figure 11 the average rewards for the three policies over time are
depicted. The greedy algorithm converges to a sub-optimal point, while the epsilon-
greedy and the decaying-epsilon-greedy paradigms converge to a higher average re-
ward. The epsilon-greedy algorithm will have a lower average reward as it always ex-
plores with a certain probability, while the decaying-epsilon-greedy paradigm reduces
these random actions over time, thus concentrating on taking the optimal action.

Figure 10: Actions performed by different epsilon greedy agents [9].

Classification of RL Algorithms
Figure 12 shows a non-exhaustive overview of some popular reinforcement learn-
ing algorithms. One way to distinguish RL algorithms is by dividing them into two
groups: model based and model-free algorithms. A model based algorithm knows a
function which predicts state transition and rewards. This allows the agent to plan
ahead and results in a substantial improvement of the sample efficiency. Usually such
a model is not available[5].

The program in this thesis uses model-free algorithms, namely A2C and PPO, which
are not as efficient as model-based paradigms but easier to implement. The next sec-
tions will explain the ideas behind these approaches.
Another distinction between the algorithms can be made in the way the agent is learn-
ing. It can be either on-policy or off-policy. To understand the difference more easily,
two terms are introduced: target policy and behavior policy. The target policy is the
policy that the agent is trying to learn, i.e., the agent is learning a value function for
this policy. The behavior policy is the policy the agent is using to select actions, it is

Master Thesis 17

Figure 11: Average rewards for three policies [9].

using this policy to interact with the environment.
On- policy learning algorithms use the same policy to select actions that is being im-
proved, i.e.: the target policy is the same as the behavior policy. On-policy methods
are generally simpler and considered first. The algorithms used in this thesis are on
policy. Off-policy algorithms evaluate and improve a policy that is different from the
one being used to select actions. Examples are Q-learning or deep Q-learning.
Advantages of off-policy algorithms are that they can learn from stored data, while
on-policy algorithms have no replay buffer and learn directly from whatever the agent
encounters in the environment. This makes on-policy algorithms less sample efficient,
as each batch of experience is just used once and is discarded once the policy update
has been completed [28].

2.3.1. Proximal Policy Optimization - PPO

This section summarizes the paper [29] which describes the paradigm of PPO used in
this thesis. PPO is a DRL algorithm proposed by OpenAi in 2017. It is a new family
of policy gradient methods for reinforcement learning which alternates between sam-
pling data through interaction with the environment, and optimizing a "surrogate" ob-
jective function using stochastic gradient ascent. Instead of performing one gradient
update per data sample like standard policy gradient methods, we alternate between
sampling data from the policy and performing multiple epochs of minibatch updates
in order to enhance sample efficiency. PPO has the same motivation as Trust Region
Policy Optimization (TRPO), taking the biggest possible improvement step on a policy,
on data we currently have, without stepping so far that we accidentally cause perfor-
mance collapse. To elaborate this a bit: if the policy gets an update that pushes it into a

Master Thesis 18

Figure 12: Taxonomy and overview of popular RL algorithms [5].

region of the parameter space where it is going to collect the next batch of data under a
very poor policy, it could happen that it can’t recover from this. The new methods are
simpler to implement, more general and have better sample complexity while keeping
some benefits of TRPO. Table 3 shows an overview of the main goals and the attributes
for the implementation used in stablebaselines3, used in this thesis.

Main goals Attributes

Easy implementation On-policy algorithm
Sample efficient Discrete and continuous action-spaces
Ease to tune Multi processing available

Table 3: Overview about the main objectives in PPO.

The way policy gradient algorithms work is by using a stochastic gradient ascend al-
gorithm on an estimator of the policy gradient. A commonly used gradient estimator
is given by Equation (20):

gπ = E[∇θ log πθ(at|st)Aπ(st, at)] (20)

The variable Aπ(st, at) is an estimator of the advantage function at time step t, the
expectation E is the empirical average over a batch of samples. The objective function
is a function whose gradient is the policy gradient estimator. Acoording to [29] the
estimator gπ is obtained differentiating the objective Equation (21):

LPG(θ) = E[log πθ(at|st)Aπ(st, at)] (21)

Master Thesis 19

While it is possible to perform multiple steps of optimization on this objective LPG

using the same trajectory, it often leads to large policy updates that can cause perfor-
mance collapse [29]. Even small changes in the parameters θ of the policy can lead to
big changes in the behavior of the policy, therefore it is not sufficient to just limit the
changes of the parameters.
The way PPO solves this issue is by using a different (surrogate) objective function. In
the paper two primary variants: PPO-Clipping and PPO-Penalty are introduced. The
PPO-Clipping versionwill be explained further as it is used in the stablebaselines3
implementation, which is used in this thesis.
First, a probability ratio rt(θ) is introduced:

rt(θ) =
πθ(at|st)
πθold(at|st)

(22)

If the probability of taking a specific action at in a state st with the new policy πθ is
higher than it would have been with the old policy πθold then rt(θ) > 1 holds.
In TRPO a "surrogate" objective gets maximized:

LCPI(θ) = E
πθ(at|st)
πθold(at|st)

Aπ(st, at) = E[rt(θ)Aπ(st, at)] (23)

CPI stands for conservative policy iteration [30]. Without a constraint, the policy up-
date could be too big. Therefore, LCLIP is introduced:

LCLIP (θ) = E[min rt(θ)Aπ(st, at), clip rt(θ), 1− , 1 + Aπ(st, at)] (24)

With this approach, the maximum policy update is limited to 1− , 1+ , where is the
clipping range that can be adjusted to the problem setting [29]. [5] found a considerably
simpler version Equation (25) which is also implemented in the code used:

L(s, a, θold, θ) = min
 πθ(a|s)

πθold(a|s)
Aπθold

(s, a), g(, Aπθold
)
 (25)

where

g(, A) =

(1 +)A A ≥ 0

(1−)A A < 0

If the advantage is positive, i.e. the selected action is better than selecting a random
action, Equation (25) reduces to Equation (26)

L(s, a, θold, θ) = min
 πθ(a|s)

πθold(a|s)
, (1 +)

Aπθold
(s, a) (26)

If the action becomes more likely, i.e. πθ(a|s) increases, the objective increases. The min
in this term puts a limit to how much the objective can increase. The maximum it can
increase is limited by the clipping parameter in (1 +). This means the policy does

Master Thesis 20

not benefit from going far away from the old policy.
Assuming the advantage is negative, i.e. the selected action is worse than selecting a
random action, Equation (25) reduces to Equation (27):

L(s, a, θold, θ) = max
 πθ(a|s)

πθold(a|s)
, (1−)

Aπθold
(s, a) (27)

The objective will increase if πθ(a|s) decreases, i.e. the action becomes less likely. The
max term puts a limit on how much the objective can increase. If πθ(a|s) gets lower
than (1 −)πθold(a|s) the max kicks in and the term gets reduced to (1 −)Aπθold

(s, a).
This limits again how far the new policy can step away from the old policy [5].
To sum it up: clipping limits how much the policy can change, and the hyperparam-
eter corresponds to this upper and lower bounds. The final version of the clipped
PPO function is given by Equation (28), which is approximately maximized in each
iteration, a loss and an entropy function are added to Equation (24):

LCLIP+V F+S
t (θ) = E[LCLIP

t (θ)− c1L
V F
t (θ) + c2S[πθ](st)] (28)

LV F
t (θ) is a squared-error loss Equation (29) and updates the baseline estimate deter-

mining how good it is to be in this state, i.e.: what is the average count of discounted
rewards that is expected to be obtained from this point onward.

LV F
t (θ) = (Vθ(st))− V targ

t)2 (29)

The last term S[π]θ(st) is called the entropy term, and it is added to encourage more ex-
ploration. The parameters c1 and c2 are further hyperparameters that can be adjusted
to the problem [29]. On this surrogate objective, multiple epochs of minibatch updates
can be applied. The optimization can be done either by Stochastic Gradient Descend
(SGD) or usually for better performance, Adam [31].
Adam is an optimization algorithm that can be used instead of the classical SGD pro-
cedure to update network weights iterative based on training data. The method is
computationally efficient and has little memory requirements [31]. Without going into
the exact detail about how Adam works, just the hyperparameter learning rate (αt in
[31]) or Adam stepsize (as called in [29]) is introduced. Basically, the learning rate de-
termines how much the weights of a neural network can change in each step. This
controls how quickly or slowly a neural network learns a problem. The optimal learn-
ing rate is usually close to the maximum learning rate that doesn’t cause divergence.
A heuristic for choosing the learning rate would be starting with a larger learning rate
and if the training criterion (LCLIP+V F+S in the PPO example) diverges αt can be re-
duced [32].
Thismethod computes individual adaptive learning rates for different parameters. The
name Adam is derived from adaptive moment estimation [31].

Master Thesis 21

2.3.2. Advantage Actor Critic - A2C/A3C

A2C/A3C is a conceptually simple and lightweight framework for DRL that uses
(asynchronous) gradient descent for optimization of deep neural network controllers.
The advantage actor critic has two main variants: the A3C and the A2C.
The core idea of an actor-critic algorithm is to use a separate memory structure for the
policy and for the action-value function. The policy structure selects actions and is
known as the actor πτ (s, a), the estimated action-value function Qπ(s, a) criticizes said
actions and is known as the critic. In the advantage actor-critic paradigm, the action-
value function is replaced by an estimator Aπ(s, a) of the advantage function Aϕ(s, a).
This reduces the variance of the policy gradient. To elaborate: the variance comes from
the fact that we learn stochastic policies in stochastic environments, i.e. two similar
trajectories can have completely different returns depending on the stochasticity of the
policy, the transition probabilities and the probabilistic rewards. Adding a baseline can
reduce this variance [10].
Aπ(s, a) is called the advantage estimate and can be computed with different methods
like Monte Carlo evaluation (MC) advantage estimate, Temporal Difference learning
(TD) advantage estimate or as in the case of A2C and A3C with the n-step advantage
estimate given in Equation (30).

Aπ(s, a) =
n−1

k=0

γkrt+k+1 + γnVπ(st+n+1)− Vπ(st) (30)

N-step advantage estimating relies on n-step updating, which is a trade-off between
MC and TD.

• MC waits until the end of an episode to update the value of an action using the
sum of obtained rewards R(s, a).

• TD updates immediately using the immediate reward r(s, a, s) and approximates
the rest with the value of the next state Vπ(s).

• n-step uses the n next immediate rewards and updates the rest with the value of
the state visited n steps later.

Inserting the n-step advantage estimate Equation (30) into the policy gradient estima-
tor Equation (21) gives us Equation (31):

gπ = E ∇θ log πθ(st, at)
n−1

k=0

γkrt+k+1 + γnVπ(st+n+1)− Vπ(st) (31)

TD can be seen as a 1-step algorithm, as just the immediate reward is used. MC learns
from complete episodes. In the n-step estimation there is no need for finite episodes
and a trade-off between bias (wrong updates based on estimated values as in TD) and
variance (variability of the returns as in MC) [10].
The architecture of A2C/A3C is shown in Figure 13. The actor outputs the policy πθ

Master Thesis 22

Figure 13: Advantage actor critic architecture (edited) [10].

for a state s, i.e. a vector of probabilities for each action. The critic outputs the value
Vπ(s) of a state s [10].
A simplified pseudo-algorithm for a single A2C worker could look like Table 4:

Multiple workers perform these updates in parallel. In the asynchronous version A3C
the workers aren’t synchronized as shown in Figure 14. Each worker receives at the be-
ginning of each episode a copy of the actor and critic weight from the global network.
As soon as the worker is finished sampling an episode and computing the gradients, it
send it back to the global network. In the synchronized version, a coordinator would
wait for all workers to finish and merge the gradients, while in the asynchronous ver-
sion this step is skipped. In Figure 15 this difference is depicted.
According to [33] the synchronous A2C version performs better than asynchronous
implementations. It is more cost-effective when using single-GPU machines, and is
faster than a CPU-only A3C implementation when using larger policies.

Master Thesis 23

1. Acquire a batch of transitions (s, a, r, s) using the current policy πθ.

2. For each state encountered, compute the discounted sum of the next n rewards
n
k=0 γ

krt+k+1 and use the critic to estimate the value of the state encountered n

steps later Vπ(st+n+1).

Rt =
n−1

k=0

γkrt+k+1 + γnVπ(st+n+1)

3. Update the actor using Equation (31).

4. Update the critic to minimize the TD error between the estimated value of a state
and its true value.

L(π) =
t

(Rt − Vπ(st))
2

5. Repeat.

Table 4: Simplified pseudo-algorithm for a single A2C worker [10].

Master Thesis 24

Figure 14: A3C architecture [11].

Figure 15: Difference in architecture between A3C and A2C [12].

Master Thesis 25

2.3.3. Related works

To the best knowledge of the author, at the time of writing, there are few contributions
proposed to exploit RL for problems related to shape optimization, which all focus
on airfoil design. Two contributions are concerned with the optimization of morph-
ing airfoils using Q-learning methods with two [34] and four [35] control parameters.
The contribution [36] used a PPO algorithm aiming to reduce the drag of airfoils. [37]
used RL techniques for a typical aerodynamic shape optimization of missile control
surfaces with Computational Fluid Dynamics (CFD). Transferring the learned policy,
remarkably reduced the requirements for CFD calls and time cost. [38] used a PPO
algorithm to learn the policy of supercritical airfoil drag reduction. The latest pub-
lication [39] focuses on multi-object aerodynamic design optimization using the PPO
algorithm as well. The PPO agent learns to maximize the lift-to-drag ratio in two states
while restricting the thickness. According to this paper the agent requires less compu-
tational time and achieves up to 10% improvements of the aerodynamic performance
compared with the results of baseline.

3. Methodology

This particular thesis is concerned with the topic of shape optimization in numerical
design by means of RL. This is evaluated by modifying a simple geometry, which can
be seen as an abstraction of the flow channel inside a profile extruder. The geometry
is parametrized with two different methods. For the first method the coordinates of
the corner points are directly altered, for the second parameterization the geometry is
modified by themeans of FFD. Themode of operation for the FFD is explained in detail
in the following. Next, the foundations of fluid dynamics, which equations describe
our problem and how they can be solved, are declared. In this case, the behavior of
fluids is analyzed using the FEM. Then, the interaction between the RL agent and the
CFD software used is explained. At the end of the section, some specifics for the RL
agent, namely the action-space and the reward function, are shown. These methods
are needed to understand the dynamics of the experiments, which will be explained in
detail in Chapter 4.

3.1. Shape optimization by means of FFD

Shape optimization by means of FFD means that instead of manipulating the coordi-
nates of the corner points of the geometry directly, the control point coordinates of
a deformation spline function are modified. This is afterwards used to transform the
whole two-dimensional mesh, yielding the modified geometry. This has the advantage

Master Thesis 26

that the mesh does not need to be created new each time [40].
FFD was developed in 1986 by T. Sederberg and S. Parry. It is a technique in computer
graphics for changing an object in 2D or 3D. The method deforms a box surround-
ing the object, making it a purely geometric method that can be applied to any finite
object. It can deform surface primitives as well as implicit defined surfaces and can
be applied either locally or globally. The continuity of derivatives can be preserved
as well as volume [41]. In the original paper [41] a Bernstein polynomial is used to
construct a mapping from R3 to R3 through a triviate tensor product. For this thesis,
B-Splines are used instead of a Bernstein polynomials. The equation and the notation
for the B-Spline are adopted from [40].
In the first step, the flow channel Ωphys which will be represented by a computational
mesh Ω#1 ⊂ Ωphys is scaled to fit inside a 2D unit cube. The spatial coordinates of
the mesh in the initial geometry are denoted by x#1. This is done by a simple linear
transformation, depicted in Figure 16. The equation for this transformation is:

T : Ω#1 → Ω#2,T(x#1) = A · x#1 + b (32)

x#2 := T(x#1) (33)

The transformation matrix is denoted by A, b is a constant vector, the spatial coordi-
nates of the mesh in the second domain Ω#2 ⊆ [0, 1]2 ⊆ Ω2 are denoted by x#2. This
step of fitting the mesh into a unit cube is taken, so the spline used in this thesis can be
used for any geometry that is scaled to these dimensions.
For the second step, a B-Spline is defined:

x3 : Ωpara → Ω3, (ξ, η) → x3(ξ, η) =
n

i=1

m

j=1

Ni,p(ξ)Mj,q(η)Bi,j (34)

x#3 := x3(ξ, η) (35)

The domain of the undeformed mesh is denoted by Ω#2 ⊆ Ωpara = [0, 1]2, the domain
of the deformed mesh is denoted by Ω#3 ⊂ Ω3. Ωpara is the parameter space of the
(deformed) spline, and Ω3 is the image domain of the spline. The variable x#3 denotes
the spatial coordinates of themesh insideΩ#3. The variables ξ and η are the coordinates
in the parameter space of the spline. The variables q and p are the polynomial orders
of the B-Spline basis functions which are two in our example. The number of basis
functions used to construct the B-Spline surface are denoted with n and m, they are
three each. Ni,p, i = 1, 2, ..n and Mj,q, j = 1, 2, ...m are the basis functions for the B-
Spline and Bi,j are the corresponding control points. The spline is used as a mapping
which transforms the grid, representing the geometry, inside the parameter space of
the spline into the image space of the spline Ω3. Formally speaking, we have:

x3(Ω#2) = Ω#3 (36)

This means the deformed, scaled mesh of the gridΩ#3 is the image of the meshΩ#2 un-
der the function x3(ξ, η). This transformation is depicted in Figure 17a and Figure 17b.

Master Thesis 27

Figure 17c shows the undeformed and Figure 17d the deformed B-Spline.
In the third step, the mesh is transformed back with a linear transformation. The trans-
formation matrix is the inverse of the matrix A:

T−1 : Ω#3 → Ω#4,T−1 = A−1 · (x#3 − b) (37)

x#4 := T−1(x#3) (38)

This linear back transformation is depicted in Figure 18. The coordinates of the final
mesh are denoted with x#4 and are in the domain Ω#4 ⊂ Ωphys.
In this approach, the algorithm changes the coordinates of the control pointsA−I (Fig-
ure 19) in order to change the whole geometry. The control polygon is depicted by the
black lines. The points can be moved vertically and horizontally, yielding 36 DOF. The
red boxes indicate the limits of each control point, preventing too large deformation
that might lead to errors. This approach can be used on a lot of different geometries
and is not limited to the T-geometry of the extruder shape in the example.

(a) Intitial geometry. (b) Scaled geometry

T : Ω#1 → Ω#2

Step 1: Linear transformation

Figure 16: Linear transformation of the computational mesh to fit inside a 2D unit cube.

Master Thesis 28

(a) Scaled geometry. (b) Scaled and deformed geome-
try.

(c) Undeformed Spline. (d) Deformed Spline.

x3 : Ω#2 → Ω#3

Step 2: B-Spline transformation

Figure 17: B-Spline transformation of the computational mesh.

(a) Scaled and deformed geome-
try.

(b) Final geometry

T−1 : Ω#3 → Ω#4

Step 3: Linear back transformation

Figure 18: Linear back transformation of the computational mesh.

Master Thesis 29

Figure 19: Control points and control polygon.

Master Thesis 30

3.2. FEM for flow problems

In our environment, the use of FEM is indispensable, as it is not possible to solve the
problem analytically. The fluid in the extruder is a non-Newtonian fluid, which means
the viscosity of the material is non-linearly dependent on the strain rate [42]. FEM is a
widely usedmethod for numerically solving differential equations. The basic approach
is splitting a larger system into smaller subsystems/elements that can be solved.
The fundamental basis of fluid dynamics are the Navier-Stokes equations. These equa-
tions provide a highly accurate physical theory that can predict nearly all phenomena
in flows of liquid [43]. The following equations are adopted from [44] for a stationary,
incompressible fluid, where the convective term can be neglected. The body force b
and the traction force t are zero. This example solves the following Partial Differential
Equation (PDE) problem:

∇ · v = 0 on Ω̄ (39)

−∇ · σ = 0 on Ω̄ (40)

Equation (39) is the formula for mass conservation. The variable v the velocity vector.
The flow region is denoted by Ω̄ which is the domain occupied by the fluid. Equa-
tion (40) is the formula for the conservation of momentum. The variable σ is the
Cauchy stress tensor. As boundary conditions, we get:

vy = −0.45 on Γ1 (41)

vx = 0 on Γ1 (42)

−σ · n = 0 on Γ2 ∪ Γ3 (43)

v = 0 on Γ4 (44)

The boundary Γ = ∂Ω̄ of the fluid domain is assumed to be a closed and sufficiently
regular surface. In Figure 20 the boundareis are visualized. Γ1 is illustrated in red, Γ2

in green, Γ3 in yellow and Γ4 in blue. Γ4 is the wall of the geometry where the velocity
is zero. The variable vy is the speed of the mass input flow in y direction. The unit
outward normal vector to Γ is denoted by n.

The constitutive laws for the Cauchy stress tensor σ are:

σ = 2µ − pI (45)

=
1

2
(∇v +∇vT) (46)

The pressure field is denoted by p, I is the unit matrix, is the rate-of-strain tensor,
the viscosity is denoted by µ. The material parameters have been chosen, such that
the material resembles the properties of polymers commonly used in profile extrusion.
The density has been chosen as ρ = 850 kg

m3 .

Master Thesis 31

ṁ1

A B

CD

E F

GH

ṁ2

ṁ3

Γ1

Γ2Γ3

Γ4
x

y

Figure 20: Visualisation of the boundaries Γ1 to Γ4.

Symbol Description Value Unit

A Zero-shear viscosity 18900 kg
ms

B Reciprocal transition rate 0.355 1
s

C Slope of viscosity curve in pseudoplastic region 0.700 -

Table 5: Parameter values of the Carreau-Yasuda model.

In order to model the behavior of molten polymer correctly, we consider a varying
viscosity according to the Carreau-Yasuda shear-thinning model:

µ =
A

(1 +Bγ̇)C
(47)

γ̇ =
√
2 : (48)

The parameter values of the Carreau-Yasuda model are chosen according to Table 5.
To solve these equations using a FEM approach, we first need to derive a weak formu-
lation. The required function spaces are taken from [44] as:

S := {v ∈ H1(Ω̄) | v = vD on ΓD} (49)

V := {ω ∈ H1(Ω̄) | ω = 0 on ΓD} (50)

Q := L2(Ω̄) (51)

ΓD = Γ1 ∪ Γ4 (52)

Master Thesis 32

Using these function spaces, we can now multiply Equation (39) and (40) with the test
functions q ∈ Q and ω ∈ V and integrate them over the computational domain Ω̄. This
leads to the following weak formulation:

Find (p, v) ∈ Q× S :

Ω̄

q (∇ · v) dΩ̄ = 0 (53)

Ω̄

−ω · (∇ · σ) dΩ̄ = 0 (54)

For all (q,ω) ∈ Q× V

The velocity field v ∈ S and the pressure field p ∈ Q are the unknowns in this equation.
By integrating by parts the term involving σ, using the divergence theorem and using
the fact that ω = 0 on ΓD we can rewrite the equations as:

Find (p, v) ∈ Q× S :

Ω̄

q (∇ · v) dΩ̄ = 0 (55)

Ω̄

∇ω : σ dΩ̄ = 0 (56)

For all (q,ω) ∈ Q× V

Now we can add up both equations, to obtain the weak form:

0 =
Ω̄

q (∇ · v) dΩ̄ +
Ω̄

∇ω : σ dΩ̄ (57)

The weighting functionsω and q are arbitrary, thus the solution of the variational prob-
lem Equation (57) verifies the strong form (Equation 39, 40, 43, 44) of the steady Stokes
problem.
For the discretization of the Stokes equation linear finite elements are used. Since these
in itself would violate the Ladyzhenskaya-Babuška-Brezzi condition (LBB) compatibil-
ity condition [44], additional stabilization is required in order to obatin a well-posed
problem that can actually be solved. The stabilized finite element formulation reads as
follows:

0 =
Ω̄

q (∇ · v) dΩ̄ +
Ω̄

∇ω : σ dΩ̄ +

nel

e=1 Ω̄e

τ emom

1

ρ
∇q ·∇p dΩ̄e+ (58)

nel

e=1 Ω̄e

τ econt(∇ · ω)ρ(∇ · v) dΩ̄e (59)

Here, τ emom and τ econt are stabilization parameters, which depend on a geometric met-
ric of the current element under consideration. This formulation of the weak form is
impemented in the flow solver XNS. For more details, we refer to [45, Chapter 4].

Master Thesis 33

3.3. Interaction RL-FEM

In terms of RL, the model of our analysis is programmed in the finite element flow
simulation program XNS and the RL agent has to interact with it. The FEM-program
solves the specific Navier-Stokes equations numerically. The interaction takes place by
reading the output of the XNS-solver, in this case the mass flows, and feeding these
values to our agent. After the algorithm changes some values in the input files of the
solver, XNS is used again with the altered values. The algorithms used in Stable

Baselines3 (SB3) are implemented in PyTorch [46].
Figure 21 depicts this interaction loop. First, the model is created with all boundary
conditions etc. in a step called Pre-Processing. The cycle starts by a mesh generation.
Next, our CFD program XNS performs a flow simulation, resulting in the mass flows
as an output. From this, the RL agent calculates a quantity of interest, which is in our
case a mass flow ratio, and evaluates if it is within a specified tolerance and if it got
closer or further away from the desired mass flow ratio. This is then used to calculate
the reward rt. If the quantity of interest is not within a specific limit, then either the
coordinates of the corner points of the geometry are directly changed, and the mesh is
newly created, which starts the cycle again. Or, the coordinates of the control points
are changed, with a FFD, the mesh is altered and calculated again. If the quantity of
interest is within a threshold, and it was the last episode, the algorithm stops. If it was
not the last episode, the cycle starts again with the mesh generator.
The general idea for this optimization cycle is very similar to the shape optimization cy-
cle introduced in Figure 2. The difference lies in the optimization algorithm. [15] uses
a gradient-based optimization algorithm as well as a function approximation, while in
this thesis a RL algorithm is used.
To use SB3 for this task, the interface needs to follow the OpenAI gym interface (in-
herit from Open AI gym class) (Listing 2) [46]. OpenAI gym is a toolkit for reinforce-
ment learning. It was built to give a benchmark for the various different algorithms,
including custom ones from individuals. The environments are tasks with a common
interface [47] i.e. in this thesis the task is to get a specific mass flow ratio, it could also
be used to train an agent to play Pong. SB3 was chosen because of the ease of imple-
mentation and the various different algorithms provided.

3.4. Action and Observation Space

Algorithms can use continuous or discrete action and observation spaces. These ac-
tion and observation spaces are represented by the Box and Discrete data structures
provided by Gym. They describe the legitimate values for observations and actions for
the environments. In a continuous action space, the agent gets upper and lower bound
values for all j dimensions and can choose an action in between, i.e.: The action-space

Master Thesis 34

Start

Pre-Processing

Mesh Generator

FE Flow Solver

Output
(mass flow)

RL
-calculate objective
-objective ok?

Episode finished
-more episodes?

yes

FFD

Stop

no

yes

Change Geometry
Parameterization

Figure 21: Interaction loop between the agent and the model of the analysis.

is an j-dimensional box that contains every point in the action space. A discrete action
space defines the k actions that are possible and in each time step one of these discrete
actions is selected [46].
The action space defines the characteristics of the possible actions of the agent. In this
thesis, discrete actions were chosen. This gives the agent a finite number of actions
to choose from and was empirically found by the author of this thesis that the used
algorithms converge faster for discrete actions, in the experiments performed. The ob-
servation space for the tasks in this thesis is continuous, so all possible outcomes of
the calculations are covered. For all tests, an increment δ is defined, and the agent can
choose to alter a value by ±δ. Changing that value either changes directly the coordi-
nates or changes the values of the control points for the FFD.

3.5. Rewards

For each of the experiments, a specific reward function had to be shaped which will
be explained in detail in the corresponding subsections of Section 4. However, they
all have similar characteristics. The rewards are designed in a way that the agent gets

Master Thesis 35

either a positive or negative reward after each step. Although it is possible to just give
a reward after an episode of experiments is finished, muchmore training is needed as a
lot of steps have to be performed (in the correct order). In the literature, this is referred
to as the sparse rewards problematic [48, 49].

Master Thesis 36

4. Results

In this chapter the results of the thesis are shown. First, an overview of the experiments
performed is shown. On the example of the Matyas function, which is a test function
for optimization, the basic mode of operation is discussed, we take a look at the reward
shaping of this function and compare two different kinds of reward functions. The two
different algorithms A2C and PPO are then evaluated for their performance, namely
average time steps and cumulative reward per episode. In a hyperparameter study it is
then analyzed how the algorithms can be optimized, apart from changing the reward
function.
The emphasis of this thesis is shape optimization, which is performed on the course
of three different experiments with varying DOF. First, a reward function is defined
for this part of the thesis, then the three different experiments are evaluated for their
performance. The focus on this part is to examine if the agents learn and which of
them can achieve the goals of these experiments faster and more consistently. At the
end of this chapter, the tests are evaluated for their runtime and some example shapes
produced by these experiments are depicted and compared.

4.1. Overview

The aim of this thesis is to evaluate if shape optimization can be achieved by means of
RL. The performance, namely time steps per episode and cumulative reward, of two
different RL algorithms (A2C and PPO) were analyzed and compared in four experi-
ments. In Table 6 an overview of the four experiments is shown. In the first experiment
(Test I) the agent tries to find the minimum of a mathematical function, in this case the
Matyas function, with as few steps as possible. The following three experiments, mod-
ify a simple geometry, which can be seen as an abstraction of the flow channel inside a
profile extruder. The experiments Test II and Test III directly change the geometry by
changing the coordinates of the corner points defining the geometry. Test IV changes
the shape with a technique called FFD. The DOF for the tests increase. For each DOF
one discrete action is needed. This implies that the test cases get more difficult for the
agent as it has to evaluate more actions.

Matyas (Test I):
The Matyas function is used as a test function. Test functions are important to validate
new optimization algorithms and to compare their performance. This experiment has
nothing to do with shape optimization, but because of its short runtime and simplicity
it helped to examine if the algorithms are working and if they can be improved by
changing hyperparameters.
The advantage of this test function is that the minimum can be calculated analytically.
The gradient of this test function gets relatively small close to the minimum, which

Master Thesis 37

Type Name DV/DOF Parameterization

Test function
for optimization

Test I 2 DV/4 DOF
Coordinates of x and y

can be altered by ±δ

Shape optimization
Test II 8 DV/16 DOF

Coordinates of the key points
of the geometry can be moved
vertically

Test III 8 DV/32 DOF
Coordinates of the key points
of the geometry can be moved
vertically and horizontally

Test IV 9 DV/36 DOF
Coordinates of the control points
can be moved vertically and
horizontally

Table 6: Overview of the examples for optimization. The key points of the geometry
(A-H) can be seen in Figure 23.

increases the difficulty of finding said minimum. In Figure 22 this function is depicted.
The dark blue color indicates parts of the function with small z values. The function is
shown for x and y values of ± 3 for a better overview. For the function itself, it is not
necessary to limit the values, however to speed up training the values of x and y were
limited with ± 5 in the test.

Shape optimization (Test II - IV):
For the Tests II - IV the geometry depicted in Figure 23 had to be optimized.

The mass flow ṁ1 is the input, the mass flows ṁ2 and ṁ3 are the outputs. The goal is
to get a specific ratio between ṁ2 and ṁ3.

ṁ23 =
ṁ2

ṁ3

(60)

In the Tests II and III, the coordinates of the corner points of the geometry A−H could
be modified by the agent. After changing the coordinates, the geometry is meshed and
XNS runs the FEM simulation. In order to find out whether it makes a difference for
the agent how many DOF are given, the experiment is split up into two separate ex-
periments. In the first one (Test II) the coordinates of the points A−H can be modified
only vertically, i.e. along the y-axis. This gives us two DOF for each point, resulting in
a total of 16 DOF for the whole experiment. In order to prevent the mesh from getting
tangled, the amount the coordinates can change is limited, indicated by the red bars in
Figure 23. The bars do not show the exact limits and are purely descriptive.
In Test III the coordinates of the points A − H can be changed horizontally and verti-
cally, as indicated by the green boxes. This leads to four DOF per point, resulting in

Master Thesis 38

Figure 22: Matyas function.

ṁ1

A B

CD

E F

GH

ṁ2
ṁ3

x

y

Figure 23: Geometry to be shape optimized.

a total of 32 DOF. In Section 4 it is analyzed if this affects the average time steps per
episode and the cumulative reward per episode.
For the last experiment (Test IV) the geometry is altered by a FFD which is explained
in detail in Section 3.1.

Master Thesis 39

4.2. Matyas (Test I)

In this section the first experiment is explained in detail. First, we take a look on the ba-
sic mode of operation in terms of the code used. In the next subsection, two different
reward functions are introduced, namely one with dynamic rewards and a function
with constants. In Subsection 4.2.3 a sample episode is depicted to show the differ-
ence between a trained and untrained agent. Then the two different reward functions
are compared to each other as well as the two agents among themselves. In Subsec-
tion 4.2.4, the learning rate and the clipping range is adjusted to evaluate if the perfor-
mance can be improved by altering these values.

4.2.1. Basic mode of operation

Listing 1 shows the basic mode of operation for the Matyas function (Test I). The other
examples are based on it and differ slightly. This is an overview of the code used, and
stripped down to make it easier to comprehend.

1 LEFT_x=0

2 RIGHT_x=1

3 LEFT_y=2

4 RIGHT_y=3

5

6 def __init__(self, delta=0.1,max=5,min=-5,step_max=200):

7 self.delta=delta

8 self.max=max

9 self.min=min

10 n_actions=4

11 self.action_space = spaces.Discrete(n_actions)

12 self.observation_space = spaces.Box(low=self.min, high=self.max,

13 shape=(2,), dtype=np.float32)

14 self.step_max=step_max

15 def step(self, action):

16 old_value_z=f(x,y) #Can be any function, in this example the Matyas

function is used

17 if action == self.LEFT_x:

18 self.x_value -= self.delta

19 elif action == self.RIGHT_x:

20 self.x_value += self.delta

21 elif action == self.LEFT_y:

22 self.y_value -= self.delta

23 elif action == self.RIGHT_y:

24 self.y_value += self.delta

25 self.x_value= np.clip(self.x_value, self.min, self.max)

26 self.y_value= np.clip(self.y_value, self.min, self.max)

Master Thesis 40

27 self.z_value=f(x,y) #Can be any function, in this example the

Matyas function is used

28 done=False

29 self.step_count+=1

30 reward=* #the reward function is explained in the following section

31 logfile(self.x_value, self.y_value, self.z_value, reward, action)

32 return np.array([self.x_value,self.y_value]).astype(np.float32),

reward, done, info

33 def reset(self):

34 self.step_count=0

35 self.y_value=randint(self.min*10,self.max*10)/10

36 self.x_value=randint(self.min*10,self.max*10)/10

37 self.z_value=f(x,y)

38 return np.array([self.x_value,self.y_value]).astype(np.float32)

Listing 1: Basic mode of operation, Matyas example.

Lines 1 to 4 define variables for the discrete actions that can be performed by the agent.
The observation space is continuous and limitedwith the min and max values (line 12).
The maximum amount of steps self.step_max = stepsmax per episode are limited
to reduce the calculation time in case a poor policy does not find a solution (line 14).
In the function step first the value of self.old_value_z = zold is calculated (line
16). For the Matyas function, f(x, y) is defined in Equation (61) but can be adapted to
different functions as well. Then the agent can perform one of the following actions:
Lower or increase the self.x_value = x values or respectively the self.y_value
= y values (lines 17-24). The function np.clip() limits the values of x and y (lines
25,26). The value of self.z_value = z (line 27) is calculated to compare it to the
value of zold and choose the reward (line 30) according to Algorithm 1. The value of
done is set to False and is changed by the reward-function to True as soon as the
epsiode is complete (line 28). The shape of the return array is defined in line 13 with
the operator of shape=(2,) and is 2 in this case as the two values x and y are re-
turned.
The function reset is called after each episode. First the step counter is reset, then
the values of x and y are reset to a random number within the boundaries to obtain a
random starting position for z.

4.2.2. Reward shaping

One of the most challenging tasks in RL is finding a reward function for a specific task
that makes the agent perform in the intended way of the programmer. Often the agent
finds a way to exploit the reward function in order to obtain a high reward without

Master Thesis 41

finishing the task. To understand how to shape said reward function, a simple test
function, in this case the Matyas function, is used. The Matyas function is defined as:

z = f(x, y) = 0.26 · (x2 + y2)− 0.48 · x · y (61)

The variables x and y can be modified by the agent. The goal is to find the minimum
of this function.
In Figure 24 a sample episode is shown to illustrate how the agent works. The agent

Figure 24: Sample episode of the Matyas function, the black dots represent the z values
which are manipulated by the agent by altering the x and y values of the
function. The distance between the dots is defined by δ = 0.2. The small
green dots represent the goal value of z.

can modify each step either the x or y values by ±δ. The black dots are the z values
calculated, the distance between the points is defined by δ. If the algorithm achieved a
z value below a specified threshold (the green points in the picture) the episode ends.
Two reward functions were shaped and evaluated for their performance. The first
reward function is depicted in Algorithm 1 and used as a baseline, as it is relatively
simple, and the rewards are constants. With this definition, the agent gets a positive
reward rt if the z value gets lower than zold, a negative reward if it gets higher and a

Master Thesis 42

Algorithm 1 Reward for the Matyas function (constant reward).

1: if z − zold < 0 then
2: rt ← 0.01

3: else if z − zold > 0 then
4: rt ← −0.5

5: if |z| < 0.01 then
6: rt ← 5

7: done ← True

8: if steps ≥ stepsmax then
9: done ← True

big positive reward if it reaches the goal. Variables with the superscript old refer to the
value of the previous step. An termination condition is defined in case the agents gets
stuck, limiting the time wasted to the maximum number of steps per episode stepsmax.
The positive and negative reward are asymmetric, making it impossible for the agent
to switch between higher and lower values of z to collect more reward.
The second reward function Algorithm 2 is a bit more sophisticated and uses variable
rewards instead of constants.

Algorithm 2 Reward for the Matyas function (variable reward).

1: deltaoldmatyas = |zold − zgoal|
2: deltamatyas = |z − zgoal|
3: if z − zold < 0 then
4: rt ← |z−zold|

deltaoldmatyas
+ 0.2

5: else if z − zold > 0 then
6: rt ← − |z−zold|

deltamatyas
− 0.5

7: if |z| < 0.01 then
8: rt ← 20

9: done ← True

10: if steps ≥ stepsmax then
11: rt ← −20

12: done ← True

In this algorithm a deltamatyas and deltaoldmatyas are defined as the difference between the
current value of z, zold and the goal value of zgoal = 0. These variables are introduced
to highlight the resemblance between this reward function and the one used in Algo-
rithm 3 for the shape optimization. This is not related to the δ used as an increment in
Listing 1.

Master Thesis 43

As with the reward function above, the superscript old refers to variables of the previ-
ous step. If the agent makes progress, it gets a positive reward:

rt =
|z − zold|
deltaoldmatyas

+ 0.2 (62)

The absolute value is used, so the reward cannot become negative. In the nominator
the term z − zold increases, the greater the progress step is, rewarding the agent if it
makes big steps towards the goal. The expression in the denominator deltaoldmatyas gets
bigger, the closer the agent is to the goal. deltaoldmatyas was found empirically to work
better than deltamatyas.
If the agent does not make progress, it gets a negative reward:

rt = − |z − zold|
deltamatyas

− 0.5 (63)

(64)

This reward is also dynamic and gets a higher negative value, if the agent makes a
bigger mistake or makes a mistake close to the goal. The constants +0.2 and −0.5 are
added, so the reward does not get too small if the value of z is far from the goal value
of zgoal = 0. If the agent reaches a value of z within a threshold of 0.01 it is rewarded
with rt = 20, and the episode is finished. If too many steps are needed, the episode is
finished as well, but a negative reward of rt = −20 is given.

4.2.3. Evaluation

In Section 4.1 Test I was introduced and a plot of the Matyas function in 3D (Figure 22)
as well as in 2D (Figure 24) shown. The basic mode of operation regarding the code
used was introduced in Subsection 4.2.1, now we take a look at how a trained and
untrained agent act in general and what influence the choice of the reward function
has. In Subsection 4.2.4, hyperparameters are altered and their influence on the perfor-
mance is evaluated. The effects of the actions 0 − 3 are shown in Table 7. Depending
on the action, either the value of x or y is altered by ±δ. In order to show how the

Action Effect

0 x− δ

1 x+ δ

2 y − δ

3 y + δ

Table 7: Actions and their effect in the Matyas algorithm.

Master Thesis 44

agent works, Figure 25 shows the actions, coordinates and rewards of an untrained
and trained agent (on the basis of the PPO algorithm) with the baseline reward func-
tion Algorithm 1.

Figure 25a shows the actions of an untrained agent. On the y-axis the actions 0 − 3

are depicted and on the x-axis the time steps. The untrained agent tries out all four
possible actions in order to find the actions with the highest reward. In the beginning
the actions are sampled relatively random as the agent has no prior experience on the
amount of reward rt each of the actions gives (depending on the state t). Figure 25b
shows the actions of an agent that has been trained for 500 episodes. The most reward-
ing actions depend on the starting values of x and y, as well as the goal value of z. In
this test case, the minimum is searched which lies at z = f(x, y) = f(0, 0) = 0. For
the starting values of this episode the actions 3 and 0 are the most rewarding, different
actions are not taken. Note that in this example the untrained agent never reaches the
goal of z < 0.01 and ends the episode after the maximum amount of allowed steps
stepsmax = 200 is reached.
Figure 25c shows the effect of these random actions of the untrained agent on the vari-
ables x, y and z. On the y-axis the value of the coordinates are shown and on the x-axis
the time steps. The goal is to find the minimum of z. The untrained agent is not suc-
cessful in doing so, while the trained agent Figure 25d reaches this goal relatively fast
after 42 time steps.
Figure 25e and 25f show the rewards for the untrained and trained agent. Getting
closer to the goal of z = 0 gives a reward of rt = 0.01, while getting further away
gives a reward of rt = −0.5. If the goal is reached within a limit, a reward of rt = 5 is
given. The untrained agent jumps between a positive and negative reward randomly,
as it does not consistently get closer to the goal. The trained agent gets a reward of
rt = 0.01 at each step till it reaches the goal at step 42 and gets the reward of rt = 5 at
the end of the episode. The logarithmic scale shows the big difference in the reward for
achieving the goal compared to the small rewards for making a step closer to the goal.
This big difference is used, so the algorithm tries to achieve the goal as fast as possible,
instead of making just a little progress each step and collectingmore reward in the long
run. This difference in reward shows also in the accumulated (undiscounted) return
Gt for this episode. The total return for the untrained agent is Guntrained

t = −46.5 while
the trained agent has a return of Gtrained

t = 5.43.

To evaluate which of the two algorithms (PPO,A2C) performs better, they are com-
pared in Figure 26. For the first evaluation, both algorithms are used with the standard
hyperparameters provided by SB3 and the constant reward function Algorithm 1.

In blue the A2C algorithm is shown and in orange the PPO agent. The acronym lr

stands for the learning rate and cr for the clipping range. The comparison is done by
comparing the average length per episode and the cumulative reward per episode. The
goal is to have few steps per episode and a high cumulative reward. If the reward func-

Master Thesis 45

(a) Actions of an untrained agent. The discrete
actions correspond to Table 7.

(b) Actions of a trained agent. The discrete ac-
tions correspond to Table 7.

(c) Coordinates x, y, z of an untrained agent. (d) Coordinates x, y, z of a trained agent.

(e) Reward of an untrained agent. (f) Reward of a trained agent (logarithmic
scale).

Figure 25: Comparison of an untrained and trained agent by the example of theMatyas
function. Both algorithms are trained with the constant reward function
Algorithm 1.

Master Thesis 46

(a) Episode length averaged over 10 episodes. (b) Cumulative reward per episode averaged
over 10 episodes.

Figure 26: Comparison between the two algorithms applied to the example of the
Matyas function.

tion is chosen appropriately and the agent learns, the cumulative reward per episode
gets higher the lower the average time steps per episode are. This is true for this ex-
ample. Both algorithms improve their behaviour during these first 500 episodes. The
learning curve of the A2C algorithm is steeper, which means it learns a good policy
faster, or in other words: the A2C agent is more sample efficient. An explanation could
be that the learning rate is higher for the A2C algorithm, which allows the weights
of the neural network to change more per step than with the PPO algorithm. Fur-
thermore, the PPO agent uses a clipping range which limits how much the policy can
change each step.
Another comparison between these two algorithms is depicted in Table 8:

At first a comparison is done by comparing how often the goal of z < 0.01 is reached.
The table is split up into the episodes 0− 100, 100− 200, ..., 400− 500 to show the learn-
ing progress. The A2C agent stays fairly consistent with reaching the goal between
58-64% of the time, while the PPO agent can improve from 39% to around 70%. It is
worth noting that this seems not to be very consistent, comparing the second to last
and last time range. As a second key stat, the average cumulative reward per episode
is looked at. The average reward increases for both algorithms, it seems that the A2C
agent gets higher average cumulative rewards from episode 300 on. This is a bit sur-
prising because the average time steps per episode are a bit higher than for the PPO
agent. An explanation might be that because the A2C agent needs more time steps per
episode, it can accumulate a higher average reward per episode. The reward per time
step is higher for the PPO agent and increasing each time period. The absolute values
of the reward depend on the reward function and can be compared only to algorithms
with exactly the same reward function.

Master Thesis 47

Episodes

Key stat Algorithm 0-100 100-200 200-300 300-400 400-500

Goal reached
A2C 64 64 60 58 63

PPO 39 66 71 60 70

Avg. cumulative reward
-per episode

A2C -3.9 3.8 4.8 4.8 4.8

PPO -25.5 -0.28 2.9 4.1 4.6

Avg. reward
-per time step (·10−3)

A2C -49.2 69.6 104.3 100 92.8

PPO -171.1 -4.6 58.2 86.9 103.6

Average time steps
A2C 79.3 54.6 46.0 48.0 51.7

PPO 149.0 61.0 49.8 47.2 44.4

Table 8: Comparison of some performance measures between the A2C and PPO algo-
rithm applied to the example of theMatyas test function and a constant reward
function.

Next, wewant to evaluate if changing the reward function to dynamic rewards, instead
of constant, makes a difference. This is shown in Figure 27. As the rewards are altered,
the time steps needed to complete the 500 episodes are compared. It is shown that both
reward functions work and perform similarly. To examine if a difference is noticeable,
some key measures are calculated and compared in Table 9. The total number of time
steps needed for the variable reward function for the A2C agent is approximately 4.7%

less and for the PPO 7.1% less respectively. When performing the experiment, the
same seed for the pseudo random generator in the algorithm was used, which makes
the experiments comparable. In the final performance, namely the average time steps
needed per episode between the episodes 400−500 both reward function perform sim-
ilarly with a 1.7% performance loss for the A2C agent and a 6.7% improvement for the
PPO agent. In all the related works that use a PPO agent [36, 38, 39] a dynamic reward
function is used aswell. This led to the decision to use a dynamic reward function for
the actual shape optimization in Section 4.3.

4.2.4. Hyperparameter study

In this subsection the learning rate is adjusted for the A2C agent, for the PPO agent
both the learning rate and the clipping range are altered and the influence on the
performance is studied. We start by adjusting the learning rate for the A2C agent.
Figure 28a shows the average episode length and Figure 28b the average cumulative
reward per episode, for a total of 500 episodes. The learning rate is incremented by the

Master Thesis 48

(a) Episode length averaged over 10 episodes,
A2C agent.

(b) Episode length averaged over 10 episodes,
PPO agent.

Figure 27: Comparison between a continuous reward function (Algorithm 1) and a
variable reward function (Algorithm 2) on the example of the Matyas test
function.

Agent Reward Total time steps Average time steps needed for episodes 400-500

A2C
Constant 26315 46.26
Variable 25064 47.05

PPO
Constant 36446 46.89
Variable 33854 43.74

Table 9: Comparison of some key figures for a constant and variable reward function
on the example of the Matyas function.

power of 10. We can see that increasing the learning rate from 0.0007 to 0.007 is enough
to make the training unstable. The mean episode length as well as the average cumu-
lative reward per episode fluctuate still after 400 episodes. Increasing the learning rate
further, increases the episode length and decreases the average cumulative reward.
The same experiment was performed on the PPO agent, additionally we adjusted the
clipping range. Figure 29a and 29b show that increasing the learning rate by a power
of 10 still leads to a stable training, while further increasing it causes divergence. The
progress in the first few episodes is a bit faster with the learning rate of lr = 0.003

instead of lr = 0.0003, but after 100 episodes there are still some peaks in the graph
which indicate that a few episodes need a lot more time steps than others. With the
learning rate of lr = 0.03 the agent learns an inappropriate policy which causes the
agent to need the maximum amount of steps for a lot of episodes. This is shown in
the average length as well as in the mean cumulative reward. Increasing the clipping
range (Figure 29c, 29d) leads to a faster convergence towards the optimal policy. The

Master Thesis 49

clipping range limits how much the policy can change each step, and in this simple
example it is good for the algorithm to change the policy quickly. In a more complex
environment like the following examples, this might not be true anymore, and the clip-
ping range should not be increased. Based on the findings of this simple test case, the
standard hyperparameters of SB3 are used. The PPO algorithm has a learning rate of
lr = 0.0003 and a clipping range of cr = 0.2, the A2C algorithm has a learning rate of
lr = 0.0007.

(a) Episode length averaged over 10 episodes. (b) Cumulative reward per episode averaged
over 10 episodes.

Figure 28: Hyperparameter study: modified learning rate of the A2C agent applied to
the example of the Matyas function.

Master Thesis 50

(a) Episode length averaged over 10 episodes. (b) Cumulative reward per episode averaged
over 10 episodes.

(c) Episode length averaged over 10 episodes. (d) Cumulative reward per episode averaged
over 10 episodes.

Figure 29: Hyperparameter study: modified learning and clipping range of the PPO
agent applied to the example of the Matyas function.

Master Thesis 51

4.3. Shape optimization

The aim of this section is to answer the core question of this thesis, namely if shape
optimization can be achieved with a RL agent. First, a reward needs to be shaped
for the three experiments. As it turned out, it was possible to use the same reward
function for all three experiments. Then the experiments are evaluated for their time
steps and cumulative reward per episode. Subsection 4.3.2 focuses on changing the
geometry by directly changing the coordinates of the corner point of the geometry,
while Subsection 4.3.3 changes the geometry by means of a FFD. In Subsection 4.5
some example shapes for the three different experiments are depicted and compared.

4.3.1. Reward shaping

The reward for the shape optimization (Tests II-IV) can be defined the same for all three
environments. For the reasons mentioned above, a dynamic reward function is used,
which is defined in Algorithm 3.

Algorithm 3 Dynamic reward function for shape optimization.

1: deltaflow = |ṁ23 − ṁgoal
23 |

2: deltaoldflow = |ṁold
23 − ṁgoal

23 |
3: if error == 1 then
4: rt ← −5

5: restart episode

6: if deltaflow < deltaoldflow then

7: rt ← |ṁ23−ṁold
23 |

deltaoldflow

+ 0.2

8: else if deltaflow > deltaoldflow then

9: rt ← − |ṁ23−ṁold
23 |

deltaflow
− 0.5

10: else
11: rt ← −0.4

12: if |ṁ23 − ṁgoal
23 | < 0.02 then

13: rt ← 20

14: done ← True

15: if steps ≥ stepsmax then
16: rt ← −20

17: done ← True

This reward function is similar to the variable reward function Algorithm 2 for the
Matyas function, except an abort condition is added. In some cases the calculation
with XNS did not work, the reason was a tangled mesh which always lead to an error
and an empty mass flow file. To resolve this issue, the variable error is introduced. If
the mass flow file is empty, the variable error is set to 1 and the coordinates are reset

Master Thesis 52

to a random point in the log file and a negative reward is given. With this method
it is quite unlikely that the same error will occur within the next steps again and the
calculation can continue. In this algorithm deltaflow and deltaoldflow are defined as the
difference between the current mass flow ratio ṁ23, ṁold

23 and the mass flow ratio it
should achieve ṁgoal

23 . This is not related to the δ used as an increment in Listing 1.
As with the reward function mentioned earlier, the superscript old refers to variables
from the previous time step. If the agent makes progress, it gets rewarded according
to Equation (65).

rt =
|ṁ23 − ṁold

23 |
deltaoldflow

(65)

deltaoldflow = |ṁold
23 − ṁgoal

23 | (66)

deltaflow = |ṁ23 − ṁgoal
23 | (67)

The absolute value is used, so the reward cannot become negative. In the nominator
the term ṁ23 − ṁold

23 increases, the greater the progress step is, rewarding the agent if
it makes big steps towards the goal. The expression in the denominator deltaoldflow gets
smaller the closer the agent is to the goal, increasing the reward rt. deltaoldflow was found
empirically to work better than deltaflow.
In case the mass flow ration does not change, the reward is set to rt = −0.4. This hap-
pens if the coordinates of the points run into the limits of the clipping range. A clipping
range is introduced to reduce the amount of times a tangled mesh is generated. In that
case, the negative reward gets triggered as the reinforcement learning agent did not
make progress.
If the agent reaches the specified mass flow ratio within a threshold of 0.02 it is re-
warded with rt = 20, and the episode is finished. If too many steps are needed, the
episode is finished as well, but with a negative reward of rt = −20.

4.3.2. Evaluation of Test II and III

For the direct change of the coordinates, two configurations are analyzed. First the
coordinates can be adjusted only vertically which leads to 16 DOF (8 nodes that can
be either increased or decreased). In the second example all nodes can be adjusted
vertically and horizontally which leads to 32 DOFs. It is then analyzed if the DOF have
an impact on the learning curve. The corner points of the geometry (A-H), which can
be adjusted, are depicted in Figure 23.
Vertical coordinates only (Test II)
The results for Test II are depicted in Figure 30. Both algorithms could improve their
performance over the course of 500 episodes. In this test the A2C algorithm showed
a faster convergence towards a short episode length as well as a higher cumulative
reward per episode.

Master Thesis 53

In Table 10 some key stats for both algorithms are shown. The A2C agent reaches
the goal between 98% and 100% for the periods evaluated. The PPO agent is slightly
worse, but still reaches the goal between 95% and 97% of the time. For both algorithms
the average cumulative reward per episode increases and the average time steps per
episode decreases, which means the agents learn. On the example of the average time
steps in the last period (episodes 400-500) we can see that the A2C agent needs about
one third of the time steps per episode compared to the PPO algorithm. This has also
influence on the total time needed for the 500 episodes, which will be discussed in
Section 4.4.

(a) Mean episode length. (b) Mean cumulative reward per episode.

Figure 30: Test II: Comparison of the A2C and PPO agent with standard hyperparam-
eters.

Episodes

Key stat Algorithm 0-100 100-200 200-300 300-400 400-500

Goal reached
A2C 99 98 99 100 100

PPO 97 97 95 97 97

Avg. cumulative reward
-per episode

A2C 5.6 13.0 13.4 11.8 16.3

PPO -26.5 -11.3 -14.8 -10.3 -10.4

Average time steps
A2C 90.7 51.5 51.1 54.7 45.5

PPO 213.2 157.4 181.7 171.2 171.4

Table 10: Test II: Comparison of some performance measures of the A2C and PPO al-
gorithm.

Vertical and horizontal coordinates (Test III)
As with Test II both algorithms could lower the average time steps needed for one

Master Thesis 54

episode and increase the cumulative reward per episode. The A2C agent outperforms
the PPO agent in terms of time steps per episode and cumulative reward per episode,
again by a great margin. This is even more apparent when comparing the key perfor-
mance measures in Table 11. In the last 100 episodes, the A2C agent needs about 60%
less time steps per episode. It should be noted that the average time steps as well as
the cumulative reward fluctuates highly for the PPO agent, with some better episodes
surpassing the A2C agent.

(a) Mean episode length. (b) Mean cumulative reward per episode.

Figure 31: Test III: Comparison of the two algorithms.

Episodes

Key stat Algorithm 0-100 100-200 200-300 300-400 400-500

Goal reached
A2C 98 100 100 100 100

PPO 87 89 97 93 98

Avg. cumulative reward
-per episode

A2C 7.7 14.7 11.5 11.1 12.5

PPO -44.5 -34.2 -24.4 -18.5 -10.4

Average time steps
A2C 90.2 52.0 61.5 62.2 64

PPO 298.0 250.7 230.0 198.2 158.5

Table 11: Test III: Comparison of some performance measures of the A2C and PPO
algorithm.

4.3.3. Evaluation of Test IV

In this experiment the shape of the flow channel inside the profile extruder is altered
through FFD. This method was used as an alternative to directly changing the coor-

Master Thesis 55

dinates, as the mesh got tangled a few times when directly changing the coordinates
of the corner points of the geometry. This was then minimized by adjusting the clip-
ping range. In order to evaluate if the algorithms can learn, the agent is trained for 500
episodes and the mean length and cumulative reward per episode are plotted. Like
in the other experiments, this is done for the A2C algorithm and the PPO algorithm.
Figure 32a and 32b show a comparison of these two values for the agents. This time
both agents could improve their policy as well, but the average time steps still fluctu-
ated strongly even after 400 episodes. Both agents have problems to find a good policy.
The experiment was done again with the standard hyperparameters, as each run of 500
episodes need roughly two days on the Rheinisch-Westfälische Technische Hochschule
(RWTH) Compute Cluster. Adjusting the learning rate to a lower level and/or having
a lot more episodes might improve the policy. The maximum episode length was set
to 1000 time steps to accelerate the training.

(a) Mean episode length. (b) Mean cumulative reward per episode.

Figure 32: Test IV: Comparison of the A2C and PPO agent with standard hyperparam-
eters.

To make the two algorithms better compareable some statistical values are calculated
in Table 12. The A2C algorithm shows no significant improvement over the first 500
steps in all performancemeasures. This time, both algorithms perform similarly, which
can also be seen in the total time needed for the completion of the 500 episodes.

4.4. Runtime

The RL-algorithm in general is really fast, so a lot of steps and episodes can be calcu-
lated in a short period of time. This means that the agent can learn a policy for the
best actions in a short period of time. As the test scenarios get more complicated and
the FEM-solver has to be used the time per step increases which makes it harder for
the agent to learn the best actions as the total time for learning a policy is limited. In

Master Thesis 56

Episodes

Key figure Algorithm 0-100 100-200 200-300 300-400 400-500

Goal reached
A2C 95 94 89 95 93

PPO 88 90 88 89 88

Avg. cumulative reward
-per episode

A2C 10.2 -10.7 -35.1 -7.5 -11.7

PPO -5.9 3.6 0.3 -3.7 2.5

Average time steps
A2C 186.5 236.9.5 264.9 230.6 195.1

PPO 283.7 211.8 201.1 265.4 231.6

Table 12: Test IV: Comparison of some key figures between the A2C and PPO algo-
rithm.

Table 13 there is a comparison of the computation times of the different models.
All models except for the Matyas function (Test I) use 8 threads for the parallelization
of the simulation and a relatively coarse mesh with 1600 elements. An interesting ob-
servation is that the A2C needs less total time for all four performed experiments. An
explanation could be that the learning rate has a higher standard value than for than
the PPO agent, which makes it more sample efficient if it can find a good policy. The
PPO agent additionally uses a clipping range, which limits how much the policy can
change per time step. A more thorough look on the performance will be given in the
respective chapters for the experiments.

Average time per time step

Algorithm Test I Test II Test III Test IV
A2C 0.0018 s

step
1.38 s

step
1.31 s

step
1.43 s

step

PPO 0.00165 s
step

0.97 s
step

1.52 s
step

1.51 s
step

Total time needed for 500 episodes (d-hh:mm:ss)

Algorithm Test I Test II Test III Test IV
A2C 0− 00 : 00 : 50 0− 11 : 17 : 17 0− 12 : 18 : 25 1− 22 : 17 : 50

PPO 0− 00 : 00 : 58 1− 07 : 27 : 47 1− 23 : 46 : 28 2− 01 : 56 : 56

Table 13: Comparison of the runtimes for the four experiments with standard hyper-
parameters.

Master Thesis 57

4.5. Comparison of the optimized shapes

Figure 33 shows how the flow channel for the extruder can look like when optimized
with the three different methods. This is just an example and varies a lot, as the only
constraint is the mass flow ratio ṁ23. All three geometries have been optimized to
achieve the same mass flow ratio ṁ23. In Test II, Figure 33a the corner points of the
geometry could be adjusted only vertically so the lines limiting the entry of the flow
channel are parallel. In Test III, Figure 33b the corner points could also be moved
horizontally, so the lines do not have to be parallel anymore, although it is possible
depending on the actions the agent chooses. The shape for the FFD, depicted in Fig-
ure 33c is constructed with B-Splines of the order two, because of that the lines are not
straight. This makes the deformations smooth, and the shape looks more natural.
It is difficult to draw an exact conclusion regarding which shape parameterization is
target-oriented for a real application. In the tests, it has been shown that fewer DOF
can help the agent learn a good strategy quickly. The FFD test case had problems learn-
ing a good strategy because too many DOF were used. However, the shapes created
look more natural and the big advantage with this parameterization is that arbitrary
shapes can be optimized without much adjustment in the code. One approach to solve
this problem would be to limit the DOF, either with another free-form or by limiting
the DOF of the DV.

Master Thesis 58

(a) Test II: Sample shape with a mass flow ratio
of ṁ23 = 1.

(b) Test III: Sample shape with amass flow ratio
of ṁ23 = 1.

(c) Test IV: Sample shape with a mass flow ratio
of ṁ23 = 1.

Figure 33: Comparison of the shapes produced by the three different experiments (Test
II-IV) for a mass flow ratio of ṁ23 = 1.

Master Thesis 59

5. Conclusion and Outlook

The aim of this thesis is to evaluate if shape optimization through reinforcement learn-
ing is possible and if the number of time steps needed for the optimization can be
improved by training an agent for a fixed number of episodes. The mass flow ratio
of a geometry, which can be seen as an abstraction of the flow channel inside a profile
extruder, had to be changed to a pre-defined value. Two different methods for param-
eterizing the geometry are introduced — one directly changes the coordinates of the
corner points of the geometry, while the other one changes the geometry through FFD.
In the first simple test function, the hyperparameters of the RL algorithms are altered,
and their performance is evaluated. This is also used to establish an appropriate re-
ward function. This test function showed that a dynamic reward function performs
better than a constant reward function. The hyperparameters should not be altered, as
the small improvement that can be achieved by adjusting them does not justify the risk
of an unstable training.
Three tests for the shape optimization problem were performed, two of them directly
change the geometry, while the last one changed the geometry with FFD. The tests
were performed in order of increasing DOF. It can be shown that the difficulty for the
RL agent increases with the number of DOF. The reason is that the RL agent has to
evaluate each action for its expected reward, and each action corresponds to one de-
gree of freedom in our experiments.
In the two tests that directly change the geometry, the agents could improve their pol-
icy over the training episodes. The A2C agent performed better on average than the
PPO agent. In the test with the FFD, the performance of both agents stayed fairly con-
stant over the training episodes and no difference between the agents in terms of time
steps per episode or cumulative reward per episode was observed.
Directly changing the geometry has the advantage that fewer DOF are needed. A dis-
advantage is that the so generated mesh can get tangled easily, and the shapes pro-
duced look very angular. The experiment with the FFD had the most DOF, and would
have needed more training episodes to improve its policy. Nevertheless, the shapes
produced by the FFD look the most natural and the big advantage with this param-
eterization is that arbitrary shapes can be optimized without much adjustment in the
code.
To further speed up the time steps needed per episode, the hyperparameters can be op-
timized, as well as the reward function. A better trained agent can be created by train-
ing the agent longer. A different approach would be using an algorithm, which is more
sample efficient, as most of the calculation time is spent in the FEM simulation. The
parameterization can be adjusted, as the DOFmake a huge difference in the calculation
time. A second criterion for a good shape is needed apart from the mass flow ratio to
introduce some constraints for a shape, that is close to a real-world application. Finally,

Master Thesis 60

if enough progress is made in the two-dimensional test cases, a three-dimensional test
case can be created, evaluated, and tested as a real-world model.

Master Thesis 61

A. Appendix

A.1. OpenAI Gym interface

1 import gym

2 from gym import spaces

3

4 class CustomEnv(gym.Env):

5 """Custom Environment that follows gym interface"""

6 metadata = {’render.modes’: [’human’]}

7

8 def __init__(self, arg1, arg2, ...):

9 super(CustomEnv, self).__init__()

10 # Define action and observation space

11 # They must be gym.spaces objects

12 # Example when using discrete actions:

13 self.action_space = spaces.Discrete(N_DISCRETE_ACTIONS)

14 # Example for using image as input (channel-first; channel-last

also works):

15 self.observation_space = spaces.Box(low=0, high=255,

16 shape=(N_CHANNELS, HEIGHT,

WIDTH), dtype=np.uint8)

17

18 def step(self, action):

19 ...

20 return observation, reward, done, info

21 def reset(self):

22 ...

23 return observation # reward, done, info can’t be included

24 def render(self, mode=’human’):

25 ...

26 def close (self):

27 ...

Listing 2: OpenAi gym interface

Master Thesis 62

References

[1] H Ettinger, J. Sienz, John Pittman, and I Szarvasy. Parameterization techniques
for two-and three-dimensional automated optimization of pvc extrusion dies. In
Polymer Processing Society (ed.) PPS 18, page 62, 06 2002.

[2] Hongjing Ji, Osama Alfarraj, and Amr Tolba. Artificial intelligence-empowered
edge of vehicles: Architecture, enabling technologies, and applications. IEEE Ac-
cess, December 2017.

[3] Jörg Frochte. Maschinelles Lernen. Hanser, München, second edition, 2019.

[4] Chire. : Website https://commons.wikimedia.org/wiki/file:k-
means convergence.gif [online], May 2017.

[5] Josh Achiam. : Website https://spinningup.openai.com [online], June 2021.

[6] Jiexin Xie, Zhenzhou Shao, Yue Li, Yong Guan, and Jindong Tan. Deep reinforce-
ment learning with optimized reward functions for robotic trajectory planning.
IEEE Access, 7:105669–105679, 2019.

[7] Martijn van Otterlo and Marco Wiering. Reinforcement Learning and Markov Deci-
sion Processes, pages 3–42. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[8] Richard S. Sutton and Andrew G.Barto. Reinforcement learning: An Introduction.
MIT Press Cambridge, Massachusetts, second edition, 2018.

[9] Rajendra Koppula. : Website https://www.manifold.ai/exploration-vs-
exploitation-in-reinforcement-learning [online]. Manifold, 2020.

[10] Julien Vitay. : Website https://julien-vitay.net/deeprl/ [online], 2021.

[11] Arthur Juliani. : Website https://medium.com/emergent-future/simple-
reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-
a3c-c88f72a5e9f2 [online], December 2017.

[12] Lila Weng. : Website https://lilianweng.github.io/lil-log/2018/02/19/a-long-
peek-into-reinforcement-learning.html [online], February 2019.

[13] I. Szarvasy, J. Sienz, John Pittman, and E. Hinton. Computer aided optimisation
of profile extrusion dies. International Polymer Processing, 15:28–39, 03 2000.

[14] Stefanie Elgeti, Markus Probst, Christian Windeck, Marek Behr, W. Michaeli, and
Christian Hopmann. Numerical shape optimization as an approach to extrusion
die design. Finite Elements in Analysis and Design, 61:35–43, 11 2012.

Master Thesis 63

[15] H.J. Ettinger, J. Sienz, John Pittman, and Andrey Polynkin. Parameterization and
optimization strategies for the automated design of upvc profile extrusion dies.
Structural and Multidisciplinary Optimization, 28:180–194, 01 2004.

[16] Roland Siegbert, Johannes Kitschke, Hatim Djelassi, Marek Behr, and Stefanie
Elgeti. Comparing optimization algorithms for shape optimization of extrusion
dies. PAMM, 14, 12 2014.

[17] Geoffrey E. Hinton Alex Krizhevsky, Ilya Sutskever. Imagenet classification with
deep convolutional neural networks. Communication of the ACM, 60:84–90, 2017.

[18] Rupali Roy. : Website https://towardsdatascience.com/understanding-the-
difference-between-ai-ml-and-dl-cceb63252a6c [online], April 2020.

[19] R. Gross. Psychology: The Science of Mind and Behaviour 6th Edition. Hodder Edu-
cation, 2012.

[20] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
Wermter. Continual lifelong learning with neural networks: A review. Neural
Networks, 113:54–71, 2019.

[21] Stuart J. Russell and Peter Norvig. Artificial Intelligence A Modern Approach. Alan
Apt, 1995.

[22] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduc-
tion to Statistical Learning - with Applications in R. Springer, New York, NY, 2013.

[23] Demis Hassabis, Shane Legg, Lila Ibrahim, Koray Kavukcuoglu, and Colin
Murdoch. : Website https://deepmind.com/research/case-studies/alphago-the-
story-so-far [online], June 2021.

[24] Leslie Pack Kaelbling, Michael L Littman, and Andrew WMoore. Reinforcement
learning: A survey. The Journal of artificial intelligence research, 4:237–285, 1996.

[25] Andrej Andreevic Markov. Theory of algorithms. Works of the Steklov Mathemat-
ical Institute. Israel Program for Scientific Translations, Jerusalem, 2. impression.
edition, 1962.

[26] Yuxi Li. Deep reinforcement learning. CoRR, abs/1810.06339, 2018.

[27] Kristopher De Asis, J. Fernando Hernandez-Garcia, G. Zacharias Holland, and
Richard S. Sutton. Multi-step reinforcement learning: A unifying algorithm, 2018.

[28] Abhishek Suran. : Website https://towardsdatascience.com/on-policy-v-s-off-
policy-learning-75089916bc2f [online], July 2020.

Master Thesis 64

[29] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[30] J. Langford S. Kakade. Approximately optimal approximate reinforcement learn-
ing. ICML, 2:267–274, 2002.

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

[32] Yoshua Bengio. Practical recommendations for gradient-based training of deepar-
chitectures. arXiv:1206.553v2, 2012.

[33] Yuhuai Wu, Elman Mansimov, Shun Liao, Alec Radford, and John Schulman. :
Website https://openai.com/blog/baselines-acktr-a2c/ [online], August 2018.

[34] Amanda Lampton, Adam Niksch, and John Valasek. Reinforcement learning of a
morphing airfoil-policy and discrete learning analysis. Journal of Aerospace Com-
puting, Information, and Communication, 7(8):241–260, 2010.

[35] Amanda Lampton, Adam Niksch, and John Valasek. Morphing airfoils with four
morphing parameters. pages 2008–7282, August 2008.

[36] Jonathan Viquerat, Jean Rabault, Alexander Kuhnle, Hassan Gharaieb, Aurelin
Larcher, and Elie Hachem. Direct shape optimization through deep reinforcement
learning. arXiv, 2020.

[37] Xinghui Yan, Jihong Zhu, Minchi Kuang, and Xiangyang Wang. Aerodynamic
shape optimization using a novel optimizer based on machine learning tech-
niques. Aerospace Science and Technology, 86:826–835, 2019.

[38] Runze Li, Yufei Zhang, and Haixin Chen. Learning the aerodynamic design of
supercritical airfoils through deep reinforcement learning. CoRR, abs/2010.03651,
2020.

[39] Xinyu Hui, Hui Wang, Wenqiang Li, Junqiang Bai, Fei Qin, and Guoqiang He.
Multi-object aerodynamic design optimization using deep reinforcement learn-
ing. AIP Advances, 11(8):085311, 2021.

[40] J. Austin Cottrell, Thomas J. R Hughes, and Yuri Bazilevs. Isogeometric analysis
: toward integration of CAD and FEA. J. Wiley, Chichester, West Sussex, U.K. ;
Hoboken, NJ, 2009.

[41] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geomet-
ric models. ACM Computer Graphics, Siggraph, 20(4):151–160, 1986.

[42] Olgierd C Zienkiewicz, Robert L Taylor, and Perumal Nithiarasu. The finite element
method for fluid dynamics. Butterworth-Heinemann, Oxford [u.a.], 7. edition, 2014.

Master Thesis 65

[43] Doug McLean. Continuum fluid mechanics and the navierstokes equations. In
Understanding Aerodynamics, pages 13–77. JohnWiley & Sons, Ltd, Chichester, UK,
2012.

[44] Jean Donea and Antonio Huerta. Finite Element Methods for Flow Problems. John
Wiley & Sons Incorporated, [Place of publication not identified], 2003.

[45] Lutz Pauli. Stabilized Finite Element Methods for Computational Design of Blood-
Handling Devices. PhD thesis, RWTH Aachen, 2016.

[46] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kan-
ervisto, and Noah Dormann. Stable baselines3. https://github.com/

DLR-RM/stable-baselines3, 2019.

[47] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[48] Brandon Brown and Alexander Zai. Deep Reinforcement Learning in Action. Man-
ning Publications Co. LLC, New York, 2020.

[49] Joshua Hare. Dealing with sparse rewards in reinforcement learning. CoRR,
abs/1910.09281, 2019.

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

	Abstract
	Kurzfassung
	Glossary
	Acronyms
	List of Figures
	List of Tables
	Motivation
	State of the Art
	Classic shape optimization of profile extrusion dies
	Machine Learning
	Supervised Learning
	Unsupervised Learning

	Reinforcement Learning
	Proximal Policy Optimization - PPO
	Advantage Actor Critic - A2C/A3C
	Related works

	Methodology
	Shape optimization by means of FFD
	FEM for flow problems
	Interaction RL-FEM
	Action and Observation Space
	Rewards

	Results
	Overview
	Matyas (Test i)
	Basic mode of operation
	Reward shaping
	Evaluation
	Hyperparameter study

	Shape optimization
	Reward shaping
	Evaluation of Test ii and iii
	Evaluation of Test iv

	Runtime
	Comparison of the optimized shapes

	Conclusion and Outlook
	Appendix
	OpenAI Gym interface

	References

