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Abstract 
The analysed innovative steel-concrete-steel composite (SCSC) plate has been researched at TU Wien, Institute of 

Structural Engineering, Research Unit Steel Structures. The aim of the investigations performed in the last years is to 

construct a load-bearing structure for single-track short-span railway bridges. The trough bridge system is developed for 

the Austrian Federal Rail Company (ÖBB) because numerous old railway bridges have to be replaced in Austria. The 

innovative SCSC plate is a special composite structure that is fabricated by connecting two 15 mm thick outer steel plates 

to a 170 mm thick concrete core. The steel and the concrete parts of the SCSC plate are connected by means of shear 

connectors. These composite dowels are welded alternately onto the bottom and top steel plates. Thus, the shear force 

resistant connection of the steel plates is reached through the concrete core, and the amount of welding work is 

minimalized. 

The presented doctoral thesis is divided into three blocks. In the first block the load-carrying mechanisms of the SCSC 

plate is presented comprehensively based on the results of finite element analyses. The load level used for fatigue limit 

state (FLS) is examined. The second block introduces an engineering model of the SCSC plate which is appropriate to 

substitute the time-consuming numerical methods. Here, the structure of the developed two-dimensional spring 

framework model is explained, and the validation of the model is performed in the case of static loads. In the third block 

the effects from the cyclic loading is examined. In the case of high dowel forces, permanent displacement appears 

between the surfaces of the steel circular hole of the shear connector and the concrete part inside the hole. This permanent 

displacement in the composite connection is called inelastic slip. It is presented through the spring framework model 

calculation how the increasing inelastic slip due to the cyclic loading leads to a redistribution of forces as well as to the 

increase of deflection. 

Summing up, it is shown in this doctoral thesis that the SCSC plate can be analysed with a two-dimensional spring 

framework model which is also appropriate to model the cyclic behaviour of concrete. Thus, the presented dissertation is 

a preliminary step to derive the design models for the SCSC plate in the fatigue limit state. 
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CDP Concrete Damage Plasticity (material model for concrete) 
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FLS Fatigue Limit State  
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1. Introduction 
1.1 Background 

Lit.: [7], [8]  

The Austrian Federal Rail Company, ÖBB, has to replace old single-track short-span (up to 25 m) railway bridges at the 

end of their technical service life. One design type is already in use, where a massive steel deck slab with a thickness of 

120 mm is the load bearing structure in the transverse direction and transfers the loads to the main steel girders of the 

cross section (see figure 1.1(a)). As this steel deck system has some disadvantages (complicated welded connections, high 

self-weight, limited availability of thick plates), an innovative steel-concrete-steel composite (SCSC) plate (see figure 

1.1(b)) is being researched at TU Wien to offer an alternative structure. The SCSC plate is a special composite element 

that is fabricated by connecting two 15 mm thick steel plates to a 170 mm thick concrete core. The steel and the concrete 

material are connected structurally by means of shear connectors which are welded alternately onto the bottom and top 

steel plates are used. The construction will be introduced comprehensively in chapter 2.1. 

 

Figure 1.1: Regular trough bridge section for a structure with a span of 16 m, comparison of two deck systems: a) massive steel 
deck slab; b) SCSC plate. Dimensions in [mm] 

At the Research Unit Steel Structures, numerical analyses using the ABAQUS finite element program [1] and laboratory 

studies have already been completed. 

Herrmann [2] has taken the first important steps to prove the applicability of the SCSC plate for bridge constructions. He 

described the production, the load-bearing mechanisms and the production costs of the innovative structure in the case of 

different types of shear connectors. Moreover, Herrmann investigated the static load-bearing capacity of the SCSC plate 

with ABAQUS as well as through experimental static strength tests. 

Steurer [3] tested the shear carrying capacity of only one composite connection of the SCSC plate. The laboratory tests 

with nine test specimens were performed in 2015. Based on the experimental test results, Steurer described the load-

deformation behaviour of the composite connection through diagrams. Additionally, Steurer carried out large-scale 

laboratory tests in 2016 to determine the static load-bearing capacity of the SCSC plate. The span of the specimens was 

4080 mm, which corresponds to the dimension of the examined trough bridge deck slab. The length of the specimens was 

set at 3,0 m. The test facility is illustrated in figure 1.2(a). The SCSC plate section was supported by bearing pedestals 

that were pre-stressed against the floor of the laboratory by threaded rods. The loading was created by water-filled 

pressure pads, which covered a load area of 3x3 m. Figure 1.2(b) demonstrates the deflected specimen at the maximum 

test load. In this case the vertical displacement in the middle of the span was 170 mm, which is very noticeable in the 

figure. 
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a) 

 

b) 

 

Figure 1.2: Large-scale laboratory test of the SCSC plate: a) cross section of the test facility for the static load-carrying 
investigations; b) deflection of the SCSC plate specimen due to the maximum test load [3] 

Takács [4] evaluated the fatigue behaviour of the SCSC plate, focusing on the shear connectors. Three-dimensional finite 

element models constructed with ABAQUS served the basis values of stresses for the lifetime calculations using the local 

strain-life method. Actually, Takács evaluated the number of load cycles at the point when the first crack in the steel 

occurs in the case of traffic Load Model 71 (see chapter 2.2). Moreover, parameter studies were carried out in his thesis to 

examine the influences of the steel grade, concrete grade and the ballast bed height. 

In the mentioned three investigations the behaviour of the SCSC plate was examined only in the transverse direction of 

the bridge. The reason of this fact is that the innovative plate is designed to transfer the loads to the main steel girders of 

the bridge cross-section (see figure 1.1). Actually, the SCSC plate is a load-bearing structure in transverse direction. 

However, it is neglected in the previous investigations that the plate is also stressed in the longitudinal direction. 

Logically, the whole SCSC plate is under tension in the case of bending from vertical loading. This means that it is 

necessary to examine if the concrete core of the plate was damaged due to the longitudinal tension. Obviously, the SCSC 

plate with a cracked concrete has a reduced load-carrying capacity compared to the plate with undamaged concrete. In 

order to clarify the effects from the longitudinal tension, numerical analyses and experimental tests are currently done at 

TU Wien, Research Unit Steel Structures. 

Lorenz [5] researched the application of the SCSC plate for slab railway bridges with short spans (up to 8 m). In this case 

the SCSC plate is the solo load-bearing element in the longitudinal direction. Logically, the shear connectors lie parallel 

to the length of the slab bridge. Thus, in contrast with the three investigations introduced above, in the case of this simple 

structure there is not significant additional tension perpendicular to the direction of the shear connectors. 
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1.2 Objectives 

The thesis includes three main objectives: 

The first aim is to present comprehensively the complex load-bearing behaviour of the SCSC plate based on the contact 

stresses at the composite connections calculated with ABAQUS. The load level used for fatigue limit state (FLS) is only 

examined in this thesis. To prove the introduced load-carrying mechanisms, simple models are also analysed which 

reproduce properly the results of ABAQUS. The substitution of the complex ABAQUS calculation is not expected from 

these simple models as the considered external loadings are based on the results of the Finite-Element-Analysis software. 

The second objective is to develop an engineering model of the SCSC plate which is appropriate for the engineering 

practice to analyse the innovative composite structure and substitute the time-consuming ABAQUS calculation. Thus, the 

structure of a two-dimensional spring framework model will be explained which reproduces properly the values of the 

displacements and internal forces calculated with ABAQUS. The complex ABAQUS model is not applicable for the 

calculation of the cyclic loading as the time taken for the calculation is huge. Therefore, the validation of the spring 

framework model is performed in the case of static loads. 

The third objective is to analyse the effects from the cyclic loading on the SCSC plate. Due to the external loading of the 

plate, permanent displacement appears between the surfaces of the steel circular hole and the concrete part inside this hole 

in the case of high dowel forces. This permanent displacement in the composite connection is called inelastic slip, too. 

The effects from the inelastic slip need to be considered through the evaluation of cyclic loading which is possible 

through the further developed version of the spring framework model. 

It is important to note that the verifications of the ultimate limit state (ULS) and serviceability limit state (SLS) do not 

belong to the tasks of the doctoral thesis. Moreover, the additional stresses in the longitudinal direction from the bending 

of the trough bridge are not considered through the following analyses. This means that only the main mechanisms of the 

SCSC plate in the transverse direction will be examined. Logically, in the case of the slab railway bridges investigated by 

Lorenz [5] the engineering models, which will be introduced in this thesis, are applicable to describe properly the load-

bearing behaviour of the composite construction without neglecting additional stresses perpendicular to the direction of 

the shear connectors. 

As the effects from tensile cracking and compressive crushing of the concrete material is negligible at the load level used 

for fatigue limit state according to the ABAQUS results, these failure mechanisms are not modelled with the spring 

framework model. 

1.3 Outline and content 

In chapter 2, the construction design is presented involving the demonstration of the ABAQUS model of the SCSC plate. 

Here, the load model for fatigue limit state is also described. Moreover, the chapter explains comprehensively the load-

carrying mechanisms of the SCSC plate based on the contact stresses in the composite connections detected with 

ABAQUS. Finally, this chapter includes four simple engineering models which describe approximately the behaviour of 

the examined construction part of the SCSC plate. 

In chapter 3, the structure of various framework models are presented. The chapter explains how the most complex two-

dimensional spring framework model reproduces the values of the displacements and internal forces calculated with 

ABAQUS. Here, the evaluation of the spring stiffness values for the spring framework model is also demonstrated. 
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Chapter 4 presents the results and consequences from cyclic loading which is calculated with the further developed two-

dimensional spring framework model. The chapter describes how the increasing inelastic slips in the composite 

connections, which means actually the cyclic creep of the concrete, are considered in the spring framework model. 

Chapter 5 includes conclusions and suggestions for further research. 
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2. The load-bearing behaviour of the SCSC plate based on finite element analysis 
2.1 Construction design 

Lit.: [7], [8] 

One aspect of the SCSC plate is a special sandwich-structured composite element that is fabricated by connecting two 15 

mm thick steel plates to a 170 mm thick concrete core. The composite plate is illustrated in figure 2.1, where, as 

approximation, the main steel girders of the trough bridge are modelled as the supports and the small vertical steel plates 

pointed out in green. Typically, the core of sandwich elements is rather light. In our case, however, the plate needs to 

carry significant loads. Therefore the role of the concrete core is complex: On the one hand it maintains the positioning of 

the outer steel plates, ensuring the load transfer between the components, on the other hand it has a distinct load-carrying 

function. 

Another feature of the SCSC plate is a special steel-concrete composite slab construction without reinforcement in the 

concrete. Generally, reinforced concrete is used in composite slabs, which is cast on a profiled steel decking, but in our 

case we use a 15 mm thick steel plate instead of a traditional decking sheet. Additionally, a top steel layer is installed, 

which is unusual in common composite slabs. The steel and the concrete material must be connected structurally by 

means of shear connectors to ensure the transmission of forces. In the SCSC plate, shear connectors welded alternately 

onto the bottom and top steel plates are used (see figure 2.1(c)). The shear connectors are 20 mm thin and 170 mm high 

steel stripes with circular holes (diameter 100 mm), embedded into the concrete core. The bottom and the top steel section 

are assembled with 480 mm clearance between the shear connectors. Both of the steel plates are welded to small portions 

of the main steel girder web plates, which is pointed out in green in figure 2.1(a). Finally, this steel construction is filled 

with concrete. 

 

Figure 2.1: The design of the SCSC plate: a) the load-bearing structure in cross direction; b) shear connectors at a 500 mm 
central distance; c) the top steel section and the bottom steel section before concreting. Dimensions in [mm] 
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All of the shear connectors are welded to one stiffener at each end. These stiffeners feature a width of 110 mm, a height 

of 170 mm and a thickness of 15 mm. Their function is to transfer the shear forces from the shear connectors to the main 

steel girders. In the model (see figure 2.1) the stiffeners lie parallel to the main steel girder webs and these elements are 

close to each other, so the shear forces are transmitted easily through the very short parts on the ends of the horizontal 

steel plates. Figure 2.2 shows the ABAQUS [1] model (see chapter 2.3) comprising portions of three shear connectors 

with one stiffener at each of the ends. 

 

Figure 2.2: The three shear connectors of the ABAQUS model with the end stiffeners. Dimensions in [mm] 

As illustrated in figure 2.3, only half of the plate is modelled in cross direction. Therefore, the shear connectors feature 12 

circular holes as shown in figure 2.2, too. 1 m length means that the two outside shear connectors of the figure have a 

thickness of 10 mm, furthermore their end stiffeners have a width of 55 mm. In the real SCSC plate all of the shear 

connectors are 20 mm thick and all of the end stiffeners are 110 mm wide. In the ABAQUS model (see chapter 2.3), the 

central shear connector (pointed out in red in figure 2.2) is welded to the upper steel plate, while the outside shear 

connectors (pointed out in blue in figure 2.2) are welded to the bottom steel plate. 

 
Figure 2.3: The modelled part of the construction is shown in the middle of the illustrated part of the trough bridge 
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2.2 Load model for fatigue limit state 

Through the finite element analysis only the fatigue limit state is examined in chapter 2. Takács analysed the fatigue life 

of shear connectors of the SCSC plate in his dissertation [4] based on the local strain-life method. For this approach the 

permanent actions shall be also considered beside the traffic effects. To analyse the same situation in this thesis, the load 

model and the ABAQUS model correspond to the output data in [4]. Thus, a load model for the ABAQUS calculation is 

presented in this chapter which consists of the dead load of the structure and the traffic Load Model 71. In this way, 

additional loads (for instance nosing force, actions due to traction and braking, wind actions and derailment actions) are 

not taken into account in this thesis. 

The dead load consists of the load of the SCSC plate (both the steel and the concrete parts without end stiffeners), the 

ballast bed with a height of 550 mm, the insulation, the reinforced concrete sleepers, the rails and the rail fastening 

system. Figure 2.4(a) shows a regular trough bridge section for a structure with a span length of 16 m. As an 

approximation, the dead load of the illustrated parts in figure 2.4(a) (except the main steel girders and the end stiffeners) 

means a line load of 19,87 kN/m for the ABAQUS model designed with 1 m length (see figure 2.4(b)). The detailed 

calculation of the loadings is demonstrated in appendix A. 

 

Figure 2.4: The dead load of the SCSC plate: a) trough bridge section for the load calculation (the rail fastening system is not 
illustrated); b) the model of the SCSC plate with the line load representing all the dead loads. Dimensions in [mm] 

The static effect due to normal traffic is also considered in ABAQUS. This vertical railway loading is represented with 

Load Model 71 according to ÖNORM EN 1991-2 [9]. The characteristic values for vertical loads are shown in figure 2.5. 

For the ABAQUS calculation the concentrated loads of the Load Model 71 are converted into a line load (qk) as an 

approximation. Logically, qk represents the traffic loading in longitudinal direction: 

௞ݍ = 4 ∙ 250 ݇ܰ6,4 ݉ = 156,25 ݇ܰ/݉ (2.1)
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Figure 2.5: Load Model 71. Dimensions in [mm] 

The distribution of the load qk in transverse direction results from the dimensions of the reinforced concrete sleeper, the 

high of the ballast bed and the load spread beneath sleepers (4:1). Figure 2.6 illustrates this distribution to the reference 

plane which is actually the upper edge of the SCSC plate. The dimensions of sleeper are chosen from ÖNORM B 1991-2 

[10]. 

 

Figure 2.6: Transverse distribution of loads by the sleepers and ballast. Dimensions in [mm] 

So, the line load (qk) can be considered as distributed load (qk,LM71) acting on the SCSC plate: 

௞.௅ெ଻ଵݍ = ௧௥௔௡௦௩௘௥௦௘ܮ௞ݍ = 156,25 ݇ܰ/݉2,77 ݉ = 56,41 ݇ܰ/݉ଶ (2.2)
As the length of the ABAQUS model is even 1 m, the distributed load (qk,LM71) can be represented with a line load of 

56,41 kN/m in transverse direction (see figure 2.7). Logically, in the three-dimensional ABAQUS model the surface of 

the top steel plate is loaded with the distributed load. 

 

Figure 2.7: The model of the plate with the line load representing the static effect due to normal traffic. Dimensions in [mm] 

To get the design value of the distributed load, the result above (qk,LM71) shall be multiplied by the partial safety factor ϒFf, 

the dynamic factor Φ, and the damage equivalent factor λ. Moreover, to consider rail traffic which is heavier or lighter 



9 

 
 

than normal rail traffic, a factor α shall be used due to Load Model 71 according to ÖNORM EN 1991-2, chapter 6.3.2 

[9]. However, in the case of the fatigue assessment the safety verification is carried out excluding factor α (see ÖNORM 

EN 1991-2, Annex D.2 [9]). 

According to ÖNORM EN 1993-2 [12] the partial factor for fatigue loads (ϒFf) shall be taken as 1,0. To consider the 

dynamic magnification of stresses, the dynamic factor Φ is defined in ÖNORM EN 1991-2 [9]. The factor depends on the 

quality of track maintenance and the determinant length LΦ. According to ÖNORM B 1991-2 [10] the case “carefully 

maintained track” can be applied in Austria (Φ = Φ2). For the calculation of the determinant length the Table 6.2 in 

ÖNORM EN 1991-2 [9] is used, where the case 4.3 (Deck slab for trough bridges: spanning perpendicular to the main 

girders) is chosen. In this case the determinant length is: 

஍ܮ = ܾ݈ܽݏ ݇ܿ݁݀ ݂݋ ݊ܽ݌ݏ ݁ܿ݅ݓܶ + 3 ݉ = 2 ∙ 4,08 + 3 = 11,16 ݉ (2.3)
Thus, the dynamic factor for carefully maintained track: 

ଶߔ = 1,44ඥܮ஍ − 0,2 + 0,82 = 1,44√11,16 − 0,2 + 0,82 = 1,279 (2.4)
Moreover, according to ÖNORM EN 1993-1-9 [11] the stress range caused by the fatigue loads should be multiplied by 

the damage equivalent factors λi. Due to the multiplication with these factors, the equivalent constant amplitude stress 

range for N = 2·106 cycles can be calculated. The equivalence factors are determined in ÖNORM EN 1993-2, chapter 

9.5.3 [12], and take into account the damage effect of traffic, the length of the influence line of the detail under analysis, 

the traffic volume, the design life of the bridge and the number of tracks. The determination is shown in equation (2.5): 

ߣ = ଵߣ ∙ ଶߣ ∙ ଷߣ ∙ ߣ ݐݑܾ          ସߣ ≤ ୫ୟ୶ (2.5)ߣ
According to ÖNORM B 1993-2 [13], in the area of the Austrian Federal Rail Company (ÖBB) the factor λ1 need to be 

used from the ÖNORM EN 1993-2, Table 9.4 (for rail traffic with 25 t axles) [12]. The length of the influence line of the 

SCSC plate is 4,0 m according to the approximation of Herrmann [2]. In this case, the factor λ1 has a value of 1,16. 

The damage equivalent factor for the traffic volume (λ2) is 1,0 according to ÖNORM EN 1993-2, Table 9.5 [12] in the 

case of an annual traffic tonnage of 25·106 tonnes passing over the bridge on each track. The traffic volume of 25·106 

t/track for fatigue is given in ÖNORM EN 1991-2 [9]. The damage equivalent factor for the design life (λ3) is also 1,0 as 

the indicative design working life is 100 years for bridges from ÖNORM EN 1990, Table 2.1 [14]. The trough bridge 

examined in this dissertation has only one track. In this case the factor λ4 is 1,0 according to ÖNORM EN 1993-2, Table 

9.7 [12]. 

Thus, the factor λ means a value of 1,16 (see equation 2.6), which is smaller than the maximal value (λmax = 1,4) defined 

in ÖNORM EN 1993-2 [12]. 

ߣ = 1,16 ∙ 1,0 ∙ 1,0 ∙ 1,0 = 1,16 (2.6)
Finally, the design value of the traffic effects is calculated according to ÖNORM EN 1991-2 [9]: 

ௗ.௅ெ଻ଵݍ = ϒ୊୤ ∙ ଶߔ ∙ ߣ ∙ ௞.௅ெ଻ଵݍ = 1,0 ∙ 1,279 ∙ 1,16 ∙ ௞.௅ெ଻ଵݍ = 1,484 ∙ 56,41 = 83,71 ݇ܰ/݉ଶ  (2.7)
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The combination of actions for fatigue verification is illustrated in figure 2.8, where both the dead load and the rail traffic 

load are shown. The partial safety factor for the dead load is 1,0 for the fatigue assessment, thus the characteristic value of 

the load from figure 2.4(b) is shown in figure 2.8, too. 

 

   Figure 2.8: The design values of the dead load and the traffic effects for a model with 1 m length. Dimensions in [mm] 

The complete load history of the simulation is divided into two STEPS in ABAQUS. In the first STEP the dead load of 

the SCSC plate is considered, and in the second STEP the traffic load is represented. However, the total dead load acts in 

the second STEP, too. Both of the loads in these two STEPS are stepwise applied. Actually, the analysis results have been 

saved in ABAQUS at the predetermined FRAMES. The dead load is separated into five FRAMES. At the fifth FRAME 

acts the total dead load of the structure. The load increase is consistent. The analysis results of the second STEP are 

available at 50 FRAMES. For instance at the first FRAME of the second STEP act the total dead load from the first STEP 

and 2 % of the predetermined traffic load. At the last FRAME of the second STEP acts the total traffic load beside the 

self-weight of structural elements. A total traffic load of 290 kN/m2 was used for the model by Takács in [4], which is 

approximately 5·qk,LM71. Due to this modelling in ABAQUS, it is possible to investigate the results in the case of higher 

loadings, too (for instance in chapter 3.7.2 of this thesis). Thus, the load level used for fatigue limit state (see figure 2.8) 

belongs to the FRAME 15 in ABAQUS as an approximation. However, the traffic loads at the FRAME 15 is: 

ௗ.௅ெ଻ଵ,஺஻஺ொ௎ௌݍ                   = (15 50⁄ ) ∙ 290 ݇ܰ/݉ଶ = 87,00 ݇ܰ/݉ଶ  (2.8)
The small difference compared to the calculated value (qd,LM71 = 83,71 kN/m2) can be neglected. Actually, in the figure 

2.9 illustrated external vertical loading of the ABAQUS model used for fatigue limit state is on the side of safety. 

 

Figure 2.9: The external vertical loading for the ABAQUS model with 1 m length. Dimensions in [mm] 



11 

 
 

2.3 Numerical simulation with ABAQUS 
2.3.1 Construction parts of the model 

As mentioned in chapter 2.1, only half of the plate is modelled in cross direction in ABAQUS (see figure 2.3). Moreover, 

the length of the model is 1 m, so the two outside shear connectors in figure 2.10 (shear connectors 1 and 3) have a 

thickness of 10 mm. Their end stiffeners (end stiffeners 1 and 3) have a width of 55 mm. The central shear connector 

(shear connector 2) is 20 mm thick, and their end stiffener (end stiffener 2) features a width of 110 mm. The main steel 

girder web (see figure 2.3) is modelled with the vertical end plate pointed out in green in figure 2.10. The thickness of 

this steel end plate is 20 mm. The end stiffeners cannot push the end plate as a gap of 2 mm is designed between them. 

 

Figure 2.10: The construction parts of the ABAQUS model. The structural elements are shifted from each other for ease of view. 

A three-dimensional modelling space is specified in the PART module for the three-dimensional solid elements. 

Moreover, all the three-dimensional parts of the model are defined as deformable part. This type of parts can deform 

under load. The material properties of the parts are specified in the PROPERTY module. The material definition for steel 

and concrete is presented in chapter 2.3.2. 

The model consists of four main parts: the bottom steel section, the top steel section, the end plate and the concrete. For 

the bottom steel section five construction parts (see figure 2.11) are created in the PART module of ABAQUS: the 

bottom steel plate, the shear connector 1, the end stiffener 1, the shear connector 3 and the end stiffener 3. However, the 

two shear connectors as well as the two end stiffeners are congruent. 

Figure 2.11(a) illustrates the surfaces with magenta colour, where the construction parts are fused together. In the 

INTERACTION module of ABAQUS tie constraints are defined to model the welded connections. This type of 

constraint ties two separate surfaces together so that relative motion is not allowed. As fillet weld is designed on both 

sides of the shear connectors in the case of the real SCSC plate, the whole contact surfaces of the shear connectors are 

chosen for the constraint in the ABAQUS model as an approximation. In this case, logically, the welding seam is not 

modelled as an individual part in ABAQUS. 
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Figure 2.11: The bottom steel section of the ABAQUS model: a) the construction parts are shifted from each other for ease of 
view. The elements are fused together at the magenta coloured surfaces. b) The bottom steel section after assembly. 

For the top steel section three construction parts (see figure 2.12) are created in the PART module: the top steel plate, the 

shear connector 2 and the end stiffener 2. The top steel plate and the bottom steel plate are congruent. They feature a 

width of 1000 mm, a length of 2040 mm and a thickness of 15 mm. Figure 2.12(a) illustrates the surfaces with magenta 

colour, where the three construction parts are fused together. As in the case of the bottom steel section, the whole contact 

surfaces of the shear connector is chosen for the constraint in the ABAQUS model. 

Figure 2.13(a) represents the five construction parts for the concrete inside the SCSC plate. The three concrete dowels 

represent the concrete around the steel shear connectors. Obviously, the concrete parts inside the holes of the shear 

connectors belong to the concrete dowels, too. These parts of the concrete (see figure 2.13(a): concrete dowels 1, 2 and 3) 

play an important role in the load-bearing behaviour of the SCSC plate, because high local forces are transferred through 

them. Thus, compared to the concrete cores, a finer mesh is required at the concrete dowels to ensure that the results from 

ABAQUS are adequate. The hexahedral meshing of the solid parts of the model is created according to the conclusions of 

the parameter studies of Takács [4]. Actually, eight-node brick elements with reduced integration (element type of 

ABAQUS: C3D8R) are used for the model. The structured meshing technique is applied to simple three-dimensional 

regions as the concrete cores 1 and 2. In this case the mesh topology is simple. The swept meshing technique is used to 

mesh complex solid regions, such as the concrete dowels 1, 2 and 3. The mesh density is determined using the SEED 

menu in the MESH module of ABAQUS. The edge length of a finite element is approximately 5 mm for the steel 

construction parts and for the concrete dowels. A mesh density with 10 mm edge length is applied for the concrete cores. 
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Figure 2.12: The top steel section of the ABAQUS model: a) the construction parts are shifted from each other for ease of view. 
The elements are fused together at the magenta coloured surfaces. b) The top steel section after assembly. 

Figure 2.13(a) illustrates the surfaces with magenta colour, where the construction parts of concrete are fused together. 

Logically, the whole contact surfaces of the concrete cores and concrete dowels are chosen for the constraint in the 

ABAQUS model, because of the material continuity of concrete. 

 

Figure 2.13: The concrete parts of the ABAQUS model: a) the construction parts are shifted from each other for ease of view. 
The elements are fused together at the magenta coloured surfaces. b) The concrete after assembly. 
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The end plate (see figure 2.14) features a width of 1000 mm, a high of 290 mm and a thickness of 20 mm. Figure 2.14 

illustrates the surfaces with magenta colour, where the end plate and the steel sections are fused together. As fillet weld is 

designed on one side of the bottom and the top steel plates in the case of the real SCSC plate, only half of the contact 

surfaces of the steel plates are chosen for the constraint in the ABAQUS model as an approximation. Logically, there is 

not any tie constraint between the bottom and top steel sections. 

Figure 2.14 illustrates the four main parts. Beside the tie constraints for the end plate described above, additional contact 

conditions are defined between the four main parts in the INTERACTION module of ABAQUS. The HARD CONTACT 

relationship is used for the surfaces which are in contact. Contact pressure can be transmitted between them, and the 

transfer of tensile stress across the interface is not allowed. Friction is used only between the shear connectors and the 

concrete dowels. Namely, only at the inside surface of the holes of the shear connectors act friction through a friction 

coefficient of 0,3. The other contact surfaces are frictionless. Figure 2.15 illustrates the ABAQUS model after assembly. 

 

Figure 2.14: The four main parts of the ABAQUS model. The parts are shifted from each other for ease of view. The end plate is 
fused together with the top and the bottom steel section at the magenta coloured surfaces. 

 
Figure 2.15: The ABAQUS model of the SCSC plate after assembly of the four main parts 
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2.3.2 Boundary conditions 

In the analyses with ABAQUS, boundary conditions are applied to those surfaces of the construction parts where the 

displacements and rotations are known. These surfaces of the model are usually constrained to remain fixed during the 

calculation. For example the regions of a support have zero vertical displacements. 

For the simulation of the vertical support at the end plate, an analytical rigid part is defined which is a rigid planar surface 

in this case. Figure 2.16 illustrates with magenta colour that the end plate and the analytical rigid surface are fused 

together. In the INTERACTION module of ABAQUS tie constraints are defined to model this connection.  The analytical 

rigid surface is associated with a rigid body reference node in the middle of the surface (see figure 2.16). The motions of 

the rigid surface are controlled by the motions of the reference node. Actually, the boundary conditions are defined for the 

reference node of the rigid surface. The translational degrees of freedom in the y and z directions and the rotational 

degrees of freedom about the x and z directions are constrained. This means that only the displacements in the x direction 

and the rotations about the y direction are possible. 

 

Figure 2.16: Boundary conditions of the ABAQUS model. The analytical rigid surface is shifted for ease of view. Bottom view 

The orange-coloured surface illustrated in figure 2.16 is a boundary plane for the ABAQUS model. Actually, the total 

length of a trough bridge is much more than the 1 m length of the modelled part in ABAQUS (see figures 2.3 and 2.15). 

Thus, the boundary conditions at the boundary 1 represent the effects from the following construction parts. In this case, 

all the nodes on the plane are fixed in the y direction as an approximation. This means that the boundary plane 1 remains 

a vertical plane after loading, too. 

The ABAQUS model has two additional boundary surfaces shown in figure 2.17. However, the boundary plane 3 has the 

same meaning as the boundary plane 1. Thus, the nodes of this plane have also zero horizontal displacement in the y 

direction. 

The boundary plane 2 demonstrates that only half of the SCSC plate is modelled in cross direction (x direction). 

Logically, in the case of loading, this plane has to remain a vertical plan. Actually, the motions of the nodes on the 

surface are constrained to remain fixed in x direction. Therefore, the rotations of this surface about the y and z directions 

are also not possible. 
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Figure 2.17: Boundary conditions of the ABAQUS model. Top view (3D) 

2.3.3 Material models 
The CLASSIC METAL PLASTICITY model of ABAQUS is used with each steel elements of the model in conjunction 

with the LINEAR ELASTIC material model. Actually, isotropic elasto-plasticity is considered with an isotropic 

hardening model in ABAQUS. The elastic properties are completely given by the Young’s modulus (E = 210 000 

N/mm2) and the Poisson’s ratio (ν = 0,3). Moreover, the material’s mass density (structural steel S355: ρ = 7,85·10-9 

tonne/mm3) must be defined for the explicit dynamic analysis. However, in the case of quasi static loading of the model, 

the mass density does not influence the results. 

For the plasticity calculations, the yield stress is given as a tabular function of plastic strain. The stress at a given state is 

interpolated from this table of data (see table 2.1) which is based on the calculations of Takács [4]. Actually, Takács 

described the nonlinear relationship between stress and strain through the Ramberg-Osgood equation [15]. Moreover, 

material data for cyclic loading are used for this calculation. 

Plastic strain Stress 

[-] N/mm2 

0,000 000 139,35 

0,000 034 170,25 

0,000 131 208,02 

0,000 497 254,15 

0,001 889 310,35 

0,007 182 379,40 

0,027 306 463,55 

0,039 528 490,00 

Table 2.1: ABAQUS settings for structural steel S355 

In table 2.1 defined material data is illustrated in figure 2.18. When the stress in the steel material reaches 490 MPa, the 

material will deform continuously. However, this feature is not shown in the figure. 



17 

 
 

 

Figure 2.18: The stress-strain curve to define the plastic behaviour of steel used during the ABAQUS analysis 

The CONCRETE DAMAGED PLASTICITY model of ABAQUS is used with each concrete elements of the model. The 

inelastic behaviour of concrete is represented with this model based on the concepts of isotropic damaged elasticity in 

combination with isotropic tensile and compressive plasticity. The model is appropriate for plain concrete and can 

describe the tensile cracking and compressive crushing of the concrete material. The evolution of failure surface is 

controlled by the compressive and tensile plastic strains. 

Under uniaxial compression the stress-strain response follows a linear elastic relationship until the initial yield (19,20 

N/mm2, see table 2.2). Moreover, for concrete C40/50, stress hardening is defined until the ultimate stress of 48 N/mm2. 

The last phase in the plastic regime is the strain softening. Table 2.2 illustrates the stress-inelastic strain relationship and 

the damage variables used in ABAQUS. The values are calculated by Takács in [4] based on the advices in [16] and [17]. 

The damage parameter with zero represents the undamaged material, while a variable with the value of one means the 

total loss of strength. However, these variables are used for the unloading response through the degradation of the elastic 

stiffness. As in this thesis, the evaluations with ABAQUS does not consist any unloading phase, the given damage 

variables in the tables 2.2 and 2.3 do not influence the results. 

Figure 2.19 represents the inelastic material behaviour of concrete in the case of compression according to the data in 

table 2.2. The damage variables depending on the inelastic strain are illustrated in figure 2.20. 

Additionally, the following basis parameters for concrete C40/50 are defined in ABAQUS: ܧ = 35200 ܰ ݉݉ଶ⁄    (Young’s modulus of the concrete) 

ν = 0,2    (Poisson’s ratio) 

ρ = 2,4 ∙ 10ିଽ ݁݊݊݋ݐ  ݉݉ଷ⁄  (Mass density) 
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Moreover, according to the default values in ABAQUS: 

ϕ = 36°  (Dilation angle) ߳ = 0,1  (Eccentricity) 

௕݂଴/ ௖݂଴ = 1,16 (The ratio of initial equibiaxial compressive yield stress to initial uniaxial compressive yield stress) ܭ௖ = 0,67  (The ratio of the second stress invariant on the tensile meridian to that on the compressive meridian 

at initial yield) ߤ = 0 ܰ ∙ ݏ ݉݉ଶ⁄  (Viscosity parameter) 

Inelastic strain Stress Damage 
variable 

[-] N/mm2 [-] 

0,000 00 19,20 0,00 

0,000 07 29,09 0,00 

0,000 20 37,15 0,00 

0,000 39 43,08 0,00 

0,000 64 46,74 0,00 

0,000 96 48,00 0,00 

0,001 28 47,11 0,02 

0,001 65 44,36 0,08 

0,002 08 39,66 0,17 

0,002 57 32,90 0,31 

0,002 94 29,02 0,40 

0,003 86 24,70 0,49 

0,005 31 20,36 0,58 

0,007 28 16,18 0,66 

0,009 77 12,34 0,74 

0,012 79 8,95 0,81 

0,016 31 6,16 0,87 

0,020 34 4,08 0,91 

0,024 89 2,80 0,94 

0,029 93 2,40 0,95 

0,099 99 0,40 0,99 

Table 2.2: ABAQUS settings for compressive behaviour of concrete C40/50 
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Figure 2.19: The stress-strain curve to define the plastic behaviour of compressed concrete used during the ABAQUS analysis 

 

Figure 2.20: The damage-inelastic strain curve for the compressed concrete material used during the ABAQUS analysis 

Under uniaxial tension the stress-strain response is linear until the failure stress (3,509 N/mm2, see table 2.3) is reached. 

At this point micro-cracking occurs in the concrete. Beyond the failure stress a softening stress-inelastic strain response 

represents the behaviour of concrete (see table 2.3 and figure 2.21). Here, the strain is regarded as crack opening in 
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ABAQUS. The values are based on the calculations in [4]. As illustrated in the table, a crack of 0,209 mm means 

practically the total damage of the finite element. The data of table 2.3 are represented in the figures 2.21 and 2.22, too. 

Crack opening Stress Damage 
variable 

[mm] N/mm2 [-] 

0,000 3,509 0,00 

0,010 2,868 0,18 

0,020 2,344 0,33 

0,030 1,915 0,45 

0,042 1,511 0,57 

0,060 1,046 0,70 

0,080 0,698 0,80 

0,110 0,381 0,89 

0,140 0,208 0,94 

0,170 0,114 0,97 

0,200 0,062 0,98 

0,209 0,052 0,99 

Table 2.3: ABAQUS settings for tensile behaviour of concrete C40/50 

 

Figure 2.21: The stress-crack opening curve to define the behaviour of concrete under tension used in the ABAQUS analysis 
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Figure 2.22: The damage variable-crack opening curve for the concrete material under tension used in the ABAQUS analysis 
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2.4 Load-carrying mechanism of the SCSC plate 
2.4.1 Result analysis based on contact stresses calculated with ABAQUS 

Lit.: [7], [8] 

The complex load-bearing behaviour of the SCSC plate will be described in this chapter based on the contact stresses at 

the composite connections calculated with ABAQUS. Beside the presentation of the load-carrying mechanisms of the 

SCSC plate, the aim of chapter 2.4 is to define simple models which reproduce properly the results (maximal normal 

forces in the steel and concrete structure elements, the deflection of the composite plate, the dowel forces) of the complex 

ABAQUS calculation. The substitution of the complex ABAQUS calculation is not the expected from the simple models.   

In chapter 2.4.1 the complex ABAQUS model will be analysed. As mentioned above, the analysis of the load-carrying 

mechanism uses the contact pressure and the contact traction values at the surface of the circular holes of the shear 

connectors. As described in chapter 2.2, the total vertical loading of the model at the examined loading in fatigue limit 

state is 322,06 kN, which is logically equal to the reaction forces at the support of the model (see figure 2.9). Figure 2.23 

illustrates the shear forces transferred from the shear connectors to the end stiffeners according to the ABAQUS 

calculation. As the end stiffeners lie parallel to the main steel girder webs and the gap between them is only 2 mm, the 

forces are transmitted through the very short parts on the ends of the horizontal top and bottom steel plates. Thus, it is 

assumed that from the half of the total external loading (322,06/2 = 161,03 kN) the resultant of the three shear forces in 

figure 2.23 (16,00 + 32,00 + 16,00 = 64,00 kN) is transferred through the steel parts of the SCSC plate to the support. The 

rest part of the loading is transmitted through the concrete to the support: 

௩௘௥௜௖௔௟,௖௢௡௖௥௘௧௘ ି ௦௨௣௣௢௥௧ܨ                   = 161,03 − 64,00 = 97,03 ݇ܰ  (2.9)
Actually, as during modelling in ABAQUS friction was not taken into account between the steel web and the concrete 

core, the vertical components of forces from the concrete core press the bottom steel plate close to the support. However, 

this part of the external loading is considered as a loading which is transferred through the concrete. 

 

Figure 2.23: Static equilibriums of the three end stiffeners based on the ABAQUS calculation results 
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Without the concrete and the main steel girder webs, the bottom and the top steel sections would move relatively to each 

other due to bending from vertical loading. Figure 2.24 represents that compared to the bottom steel section, the top steel 

section would shift in the direction of the support, namely to the left in the figure. 

 

Figure 2.24: Slipping of the steel sections of the SCSC plate due to bending in case of missing concrete core. End stiffeners are 
not shown for the ease of view. 

With a concrete filling between the shear connectors, they could not move unrestrictedly relative to each other. In 

accordance with figures 2.25 and 2.26, the concrete core would press the top steel section to the right, just as the bottom 

steel section to the left. 

 

Figure 2.25: The effect of the concrete core on the top steel section 

So, the directions of contact pressures on the surface of the circular holes are easily understandable. Logically, contact 

pressures calculated with ABAQUS reveal matching results which are illustrated in figures 2.27, 2.28, 2.31 and 2.32. 

 

Figure 2.26: The effect of the concrete core on the bottom steel section 

As friction between steel and concrete on the surface of the circular holes is taken into account in ABAQUS modelling, 

frictional shear stresses (see figures 2.29, 2.30, 2.33 and 2.34) control the resultant forces in the composite connections. 

The figures 2.27, 2.28, 2.29 and 2.30 illustrate the contact stresses at the shear connector of the top steel section, as the 

figures 2.31, 2.32, 2.33 and 2.34 show these stresses at the shear connector of the bottom steel section. Moreover, each of 

these figures represents the horizontal and vertical components of the resultant forces calculated from the illustrated 

stresses of the finite elements along the edge of the circular holes in the steel shear connectors. 
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Figure 2.27: Contact pressures on the surface of the circular holes numbered 1 - 6 (top steel section) according to ABAQUS 

 

Figure 2.28: Contact pressures on the surface of the circular holes numbered 7 - 12 (top steel section) according to ABAQUS 

 

Figure 2.29: Frictional shear stresses on the surface of the circular holes num. 1 - 6 (top steel section) according to ABAQUS 

 

Figure 2.30: Frictional shear stresses on the surface of the circular holes num. 7 - 12 (top steel section) according to ABAQUS 
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Figure 2.31: Contact pressures on the surface of the circular holes numbered 1 - 6 (bottom steel section) according to ABAQUS 

 

Figure 2.32: Contact pressures on the surface of the circular holes numbered 7 - 12 (bottom steel section) according to ABAQUS 

 

Figure 2.33: Frictional shear stresses on the surface of the circular holes num. 1 - 6 (bottom steel section) according to ABAQUS 

 

Figure 2.34: Frictional shear stresses on the surface of the circular holes num. 7 - 12 (bottom steel section) according to ABAQUS 
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Through the frictional shear stresses a small resultant moment acts also at each of the circular holes. However, this effect 

is not symbolised in the previous figures. Moreover, it is noticeable in the above illustrated figures that the shear 

connector of the top steel section has more stress results (stripes in radial direction) compared to the shear connector of 

the bottom steel section. The reason of this fact is that in the case of the shear connector of the top steel section a finer 

mesh is used in ABAQUS modelling. Another important point to mention is that the shear connector of the top steel 

section (shear connector 2 in figure 2.12) is 20 mm thick, as the shear connectors of the bottom steel section (shear 

connectors 1 and 3 in figure 2.11) have a thickness of 10 mm. The resultant forces in figures 2.31 – 2.34 represent the 

forces at one outside shear connector. Thus, it is clear that, for example, at the sixth hole of the shear connector of the top 

steel section the horizontal resultant force is approximately double of the horizontal resultant force at the sixth hole of the 

shear connector of the bottom steel section. However, the contact stresses are approximately the same (see the contact 

pressures in figures 2.27 and 2.31). The resultant of the contact stresses (contact pressures and frictional shear stresses) is 

derived simply through addition. Table 2.4 shows these resultant force components at each hole. Positive horizontal force 

means a direction to the right in figures 2.27 – 2.34, as positive vertical force represents a direction downwards. The 

positive directions are also given in figure 2.16 through the coordinate system. 

Hole numb. 1 2 3 4 5 6 7 8 9 10 11 12 Σ 

Fhorizontal  
(shear con. 2) 

92,58 98,47 96,40 90,27 79,59 70,72 58,33 41,12 38,31 25,82 10,95 1,48 704,04 

Fvertical  
(shear con. 2) 

-12,14 -8,46 -2,65 -1,44 -0,08 0,62 1,34 6,98 6,58 1,31 3,51 5,22 0,79 

Fhorizontal  
(shear con. 1) 

-16,61 -27,97 -33,11 -35,59 -36,81 -35,99 -33,76 -27,50 -21,82 -16,56 -11,12 -4,70 -301,54 

Fvertical  
(shear con. 1) 

-1,07 -2,57 -2,21 -1,12 0,03 1,25 1,73 5,09 3,09 1,54 2,21 0,61 8,58 

Table 2.4: Horizontal and vertical components of resultant forces in the composite connections. Forces in [kN] 

In table 2.4 given horizontal and vertical components of resultant forces at the holes of the shear connectors can be 

calculated in ABAQUS directly with the so-called “Free Body Cuts” method, too. However, these values are not 

meaningful for the further analysis as different effects are included in one resultant. Actually, according to figure 2.27, 

2.28, 2.31 and 2.32, two effects produce contact pressures between the steel and the concrete at the surface of a circular 

hole. Figures 2.35 and 2.36 illustrate the different type of pressures with green and red in the case of one single hole. 

 

Figure 2.35: Contact pressures on the surface of the circular hole (hole number 8, shear connector 2) according to ABAQUS 
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Figure 2.36: Contact pressures on the surface of the circular hole (hole number 1, shear connector 1) according to ABAQUS 

Corresponding to the effect described above through the figures 2.24, 2.25 and 2.26, it is clear that the concrete core is 

compressed between the circular holes of the top and bottom steel sections to prevent the horizontal displacements 

between them. The green components of the contact pressures in figures 2.35 and 2.36 represent this effect (effect 1: 

shear load transfer). The red components of contact pressures symbolise the vertical load transfer between the steel 

structure and the concrete (effect 2). Considering effect 2, the top steel section gets vertical loads through the concrete 

from the external loading (see figures 2.35 and 2.37), and the bottom steel section transfers vertical forces to the support 

through it (see figures 2.36 and 2.38). In figures 2.37 and 2.38 illustrated truss frame models include concrete members 

which are loaded through the external loading (see figure 2.37) or through the shear connector of the bottom steel section 

(see figure 38). 

 

Figure 2.37: The planar truss frame model illustrates the load transfer to the central shear connector from the external loading 

 

Figure 2.38: The planar truss frame model symbolises the force transfer to the support from the first circular hole of the shear 
connector of the bottom steel section 
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Figures 2.35, 2.36 and 2.39 illustrate the resultant forces of the two different effects, too. The lengths of the arrows 

symbolise the magnitude of the forces. However, in the case of these three figures, the arrows of the resultants at the top 

steel section denote just the half of the total forces in the composite connections. Thus, the forces are symbolised which 

act into the direction of one shear connector of the bottom steel section (for instance shear connector 1). Logically, figure 

2.39(b) represents the forces at only one shear connector of the bottom steel section (shear connector 1). In this way, it is 

possible to compare the green arrows at the top and the bottom steel section (see figure 2.39). 

 

Figure 2.39: Contact pressures on the surface of the circular holes: a) top steel section; b) bottom steel section 

The dividing line between the two parts of the contact pressures (effect 1 and 2) is located visually (for example: see 

figures 2.35 and 2.36). As frictional shear stresses control the resultant forces, these contact stresses are also divided into 

two parts. Here, the dividing line positions defined at the contact pressures are also used. 

The values representing effect 2 (red arrows in figure 2.39) are given in tables 2.5 and 2.6. In the case of the shear 

connector 2, the horizontal and vertical resultant forces from the contact pressures and from the frictional shear stresses 

are represented separately in table 2.5. Moreover, the horizontal and vertical resultants of the two types of contact stresses 

are registered in the fifth and sixth row of the table. Table 2.6 presents the resultants for the shear connector 1 in kN. 

Number of hole 1 2 3 4 5 6 7 8 9 10 11 12 Σ 

Contact pressure  
Fhorizontal (shear con. 2) 

0,00 0,00 0,00 -1,41 -1,68 -1,68 -1,02 -0,87 0,08 0,96 0,26 0,00 -5,36 

Contact pressure  
Fvertical (shear con. 2) 

2,96 5,67 12,54 12,67 12,92 12,77 12,90 12,68 11,50 8,38 6,94 5,71 117,64 

Frictional shear str.  
Fhorizontal (shear con. 2) 

0,70 1,46 3,57 3,75 3,50 3,42 2,74 -0,61 3,02 1,76 0,28 0,75 24,34 

Frictional shear str.  
Fvertical (shear con. 2) 

0,03 0,06 0,08 0,42 0,44 0,47 0,48 0,00 0,14 0,03 0,31 0,19 2,65 

Resultant  
Fhorizontal (shear con. 2) 

0,70 1,46 3,57 2,34 1,82 1,74 1,72 -1,48 3,10 2,72 0,54 0,75 18,98 

Resultant    
Fvertical (shear con. 2) 

2,99 5,73 12,62 13,09 13,36 13,24 13,38 12,68 11,64 8,41 7,25 5,90 120,29 

Table 2.5: Effect 2: horizontal and vertical components of forces in the composite connections of the top steel section 
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Number of hole 1 2 3 4 5 6 7 8 9 10 11 12 Σ 

Contact pressure  
Fhorizontal (shear con.1) 

1,21 1,35 0,57 0,39 0,13 0,42 0,65 0,15 0,23 0,32 0,14 0,42 5,98 

Contact pressure  
Fvertical (shear con. 1) 

-4,82 -5,65 -7,15 -7,01 -6,36 -4,75 -3,44 -0,70 -0,45 -0,42 -0,14 -0,29 -41,18 

Frictional shear str.  
Fhorizontal (shear con. 1) 

-1,00 -1,46 -2,05 -2,00 -1,86 -1,34 -1,01 -0,19 -0,11 -0,06 0,02 0,05 -11,01 

Frictional shear str.  
Fvertical (shear con. 1) 

-0,30 -0,35 -0,17 -0,11 -0,04 -0,13 -0,19 -0,04 -0,06 -0,05 0,01 0,07 -1,36 

Resultant  
Fhorizontal (shear con. 1) 

0,21 -0,11 -1,48 -1,61 -1,73 -0,92 -0,36 -0,04 0,12 0,26 0,16 0,47 -5,03 

Resultant     
Fvertical (shear con. 1) 

-5,12 -6,00 -7,32 -7,12 -6,40 -4,88 -3,63 -0,74 -0,51 -0,47 -0,13 -0,22 -42,54 

Table 2.6: Effect 2: horizontal and vertical components of forces in the composite connections of the bottom steel section 

Logically, the differences between the resultant forces in figures 2.27 – 2.34 and the matching results in tables 2.5 and 2.6 

delivers the values representing effect 1 (green arrows in figure 2.39). Only the horizontal and vertical resultants of these 

forces are illustrated in table 2.7. 

Hole numb. 1 2 3 4 5 6 7 8 9 10 11 12 Σ 

Fhorizontal  
(shear con. 2) 

91,88 97,01 92,83 87,93 77,77 68,98 56,61 42,60 35,21 23,10 10,41 0,73 685,06 

Fvertical  
(shear con. 2) 

-15,13 -14,19 -15,27 -14,53 -13,44 -12,62 -12,04 -5,70 -5,06 -7,01 -3,74 -0,68 -119,41 

Fhorizontal  
(shear con. 1) 

-16,82 -27,86 -31,63 -33,98 -35,08 -35,07 -33,40 -27,46 -21,94 -16,82 -11,28 -5,17 -296,51 

Fvertical  
(shear con. 1) 

4,05 3,43 5,11 6,00 6,43 6,13 5,36 5,83 3,60 2,01 2,34 0,83 51,12 

Table 2.7: Effect 1: horizontal and vertical components of forces in the composite connections. Forces in [kN] 

Next, the horizontal force transferred between the shear connectors 1 and 2 will be evaluated. According to table 2.7, the 

total horizontal force at the 12 holes of the shear connector 2 is 685,06 kN. Here, only effect 1 is considered. In the case 

of the shear connector 1, this resultant is 296,51 kN. It is assumed that shear connector 3 delivers the same force because 

of the symmetry of the structure and loading. From the shear connector 2 horizontal forces are transmitted to the end plate 

and to the end stiffeners 1 and 3, too. Thus, necessarily, the total horizontal force of 685,06 kN is not transferred only to 

the outside shear connectors (shear connector 1 and 3) from the shear connector 2. Figure 2.40 illustrates the horizontal 

forces delivered through the concrete core to the support. The end stiffener of the top steel section does not receive any 

compression from the concrete. The outside end stiffeners have contact surfaces to the outside concrete dowels and to the 

concrete core, too. Thus, two different forces are marked at these construction parts in figures 2.40(b) and 2.40(c). It is 

also remarkable that the ABAQUS calculation results are not perfectly the same at the end stiffeners 1 and 3. However, 

logically, the differences are not significant. The resultant of the five horizontal forces in figure 2.40 is 298,55 kN. 
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Figure 2.40: Horizontal compressions from the concrete parts at the support based on the ABAQUS calculation results 

The horizontal tensile forces in the bottom steel plate and in the two outside shear connectors compensate the 

compressions illustrated in figure 2.40. Moreover, a small tensile force acts at the end of the top steel plate, too. However, 

logically, this force is negligible compared to the tension in the bottom steel plate. These forces are illustrated in figure 

2.41. Through the figures 2.40 and 2.41 the static equilibriums of the end plate and the two outside end stiffeners 

regarding the horizontal forces are also shown. The marked forces in the bottom steel plate in figures 2.41(b) and 2.41(c) 

are transferred between the end stiffeners and the bottom steel plate as shear forces acting in the contact surface between 

them. However, these forces are illustrated in the steel plates close to the end stiffeners for ease of view. Obviously, the 

horizontal forces represented in figure 2.41(a) occur also close to the end plate. 

 

Figure 2.41: Horizontal tensile forces in the steel structures around the support as compensations of the compressive forces 
from the concrete parts. The values are based on the ABAQUS calculation results. Dimensions in [mm] 
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Additionally, it is assumed that the total horizontal compression force of 298,55 kN at the support arises due to the 

compressed concrete parts pressed from the shear connector of the top steel section (see effect 1 in figure 2.39(a)). This 

means that there is not any horizontal component of loads transferred only through the concrete core to the support. Thus, 

from the total horizontal force at the 12 holes of the shear connector 2 (685,06 kN) 298,55 kN is transmitted to the end 

steel plate and the end stiffeners 1 and 3. The residual force of 386,51 kN (685,06 kN – 298,55 kN) means the interaction 

between the central shear connector (shear connector 2) and the outside shear connectors (shear connector 1 and 3). 

Actually, half of the force of 386,51 kN acts between the shear connector 2 and shear connector 1. Logically, the other 

half of the force appears between the shear connectors 2 and 3. 

As a control, the force between the shear connectors can be also calculated through the evaluation of the forces at the 

plane of symmetry. Here, each of the five concrete parts is considered. As illustrated in figure 2.42, at the plane of 

symmetry compressions occur at the top part of the concrete sections, while the bottom parts have tension. The resultant 

forces calculated from the compressive and tensile stresses from ABAQUS are shown in the figure. The total 

compression in the five concrete parts is 442,47 kN, while the total tension means a value of 237,05 kN. The difference 

between these two values (205,42 kN) is considered as the compression between the outside shear connectors and the 

plane of symmetry (boundary plane 2 in figure 2.17). Thus, the assumption mentioned above is valid here, too: there is 

not any horizontal component of loads transferred only through the concrete core to the support. 

 
Figure 2.42: Horizontal compression and tension in the concrete parts at the plane of symmetry based on the ABAQUS results 

Therefore, from the total horizontal force at the holes of the two outside shear connectors (2 · 296,51 = 593,02 kN) 205,42 

kN is transmitted to the plane of symmetry (see figure 2.17: boundary plane 2) which is actually a support in the 

ABAQUS model. The residual force of 387,60 kN (593,02 kN – 205,42 kN) is the transmitted force between the central 
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and the two outside shear connectors. This result is practically equal to the value of 386,51 kN calculated above through 

the evaluation of horizontal forces at the support. For the further calculation the average of the two results (387,06 kN) is 

used. Thus, the transmitted forces are also modified a little bit. Namely, the transferred horizontal force between the shear 

connector 2 and the support (end plate and end stiffeners) is considered as: 

௛௢௥௜௭௢௡௧௔௟,௧௢௣ ௦௧௘௘௟ ௦௘௖௧௜௢௡ ି ௦௨௣௣௢௥௧ܨ                   = 685,06 − 387,06 = 298,00 ݇ܰ  (2.10)
Moreover, the transferred horizontal force between the two outside shear connectors and the plane of symmetry is: 

௛௢௥௜௭௢௡௧௔௟,௕௢௧௧௢௠ ௦௧௘௘௟ ௦௘௖௧௜௢௡ ି ௣௟௔௡௘ ௢௙ ௦௬௠௠௘௧௥௬ܨ                   = 593,02 − 387,06 = 205,96 ݇ܰ  (2.11)
Logically, these values are almost equal to the ABAQUS results presented above (298,55 kN, 205,42 kN). As a summary 

of the above described calculation, the static equilibrium of the concrete regarding the horizontal forces are illustrated in 

figure 2.43. The forces at the holes of the shear connectors are summarized into one resultant. To show the resultant 

horizontal force from the central shear connector, the concrete is divided in the middle of the model, and the two concrete 

sections are shifted from each other. It is notable to mention that the illustrated resultants of the horizontal forces in the 

composite connections (685,06 kN, 296,51 kN) represent only effect 1. These values are calculated in table 2.7. This 

means that the horizontal forces at the shear connectors due to effect 2 is neglected as an approximation. 

 

Figure 2.43: The static equilibrium of the concrete parts regarding the horizontal forces in x direction. The two concrete portions 
are shifted from each other to illustrate the resultant of the horizontal forces from the central shear connector (685,06 kN). 

Next, the horizontal components of the forces from effect 1 (see table 2.7) will be distributed between the single circular 

holes. The compressed concrete parts of the ABAQUS model will be symbolised by concrete struts as an approximation. 

Moreover, at the following force distribution a minimal number of concrete struts are used. The transferred force of 
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298,00 kN between the shear connector of the top steel section and the support means that the concrete core can be 

symbolised with four concrete struts around the support at both side of the central shear connector (see figure 2.44). 

According to the results in table 2.7, the top steel section delivers 281,72 kN (91,88 kN + 97,01 kN + 92,83 kN) to the 

support from the first three holes. This means that additionally 16,28 kN (298,00 kN – 281,72 kN) is transferred from the 

fourth circular hole to the support. As mentioned above, support means the end plate and the two outside end stiffeners. 

 
Figure 2.44: The violet-coloured struts symbolise the horizontal force transfer between the top steel section and the support 

The transferred force of 205,96 kN between the shear connectors of the bottom steel section and the plane of symmetry 

means that the concrete core can be symbolised with six concrete struts around the plane of symmetry at both of the two 

outside shear connectors (see figure 2.45). 

 
Figure 2.45: The brown struts show the horizontal force transfer between the bottom steel section and the plane of symmetry 
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According to the results in table 2.7, the bottom steel section delivers a horizontal force of 165,34 kN to the plane of 

symmetry from the last five holes (hole numbers 8, 9, 10, 11, 12). This means that additionally 40,62 kN (205,96 kN – 

165,34 kN) is transferred from the two seventh hole of the outside shear connectors to the plane of symmetry. 

Table 2.7 is modified, so that the above mentioned horizontal forces delivered to the support and to the plane of 

symmetry are deleted. In this way, in table 2.8 only the horizontal forces are summarized which are transmitted between 

the shear connectors. Logically, the total sum of the forces at the shear connector 2 is 387,06 kN in the table. Obviously, 

in the case of the shear connector 1, this resultant is half of the force of 387,06 kN, as both the shear connectors 1 and 3 

are considered in the load-carrying mechanisms. 

Number of hole 1 2 3 4 5 6 7 8 9 10 11 12 Σ 

Fhorizontal  
(shear con. 2) 

- - - 71,65 77,77 68,98 56,61 42,60 35,21 23,10 10,41 0,73 387,06 

Fhorizontal  
(shear con. 1) 

-16,82 -27,86 -31,63 -33,98 -35,08 -35,07 -13,09 - - - - - -193,53 

Table 2.8: Effect 1: horizontal components of forces in the composite connections acting between the shear connectors 

At the first circular holes of the two outside shear connectors act 16,82 kN separately (see table 2.8). It is assumed that 

these forces are transferred to the fourth circular hole of the top steel section. Additionally, this fourth hole receives load 

from the second holes of the outside shear connectors, too. Namely, 38,01 kN (71,65 kN – 2 · 16,82 kN) need to be 

delivered there from the two outside shear connectors together. In this way, the total horizontal force at the fourth hole of 

the central shear connector (71,65 kN, see table 2.8) is reached. However, in the second holes of the outside shear 

connectors remains 8,855 kN (27,86 kN – 0,5 · 38,01 kN) to be transmitted to the other holes of the shear connector of 

the top steel section. Thus, the remaining forces to distribute are shown in the first and the second table row of table 2.9. 

The further steps of the load distribution are similar to the above described method. Thus, the remaining forces are 

illustrated step by step in the additional table rows without any explanation. 

In this way, the horizontal forces due to the effect 1 are distributed between the top and the bottom steel sections. Thus, 

the interaction can be modelled with 15 concrete struts between the shear connectors 1 and 2 as well as between the shear 

connectors 2 and 3. Figure 2.46 illustrates these concrete struts with the green arrows. Moreover, the 15 force components 

are given in the table 2.10 where the transmitted forces between the shear connectors 1 and 2 are shown. Because of the 

symmetry of the structure and the loading, the same forces are transferred between the shear connectors 2 and 3. 

Obviously, the forces in the table mean only the components in the x direction (see the coordinate system in figure 2.44) 

of the force occurring in the concrete struts illustrated in figure 2.46. The numbering of struts is carried out from the end 

plate to the plane of symmetry (from left to right in figure 2.46). Logically, the total sum of the forces in table 2.10 is 

193,53 kN. It is remarkable in table 2.10 that in the case of four concrete struts (number 5, 7, 12, 15) the forces do not 

exceed 4,1 kN. These forces are not significant compared to the forces in the other struts. Thus, figure 2.47 represents 

only 11 concrete struts to illustrate the main effects between the central shear connector and one of the outside shear 

connectors. The 11 struts illustrated in figure 2.47 deliver 96,3 % of the total loading represented in figure 2.46 with 15 

concrete struts. Additionally, 7 concrete struts from 11 are pointed out in green in figure 2.47. These struts transmit forces 

in x direction higher than 10 kN. The grey arrows illustrate the concrete struts (number 3, 9, 13, 14) with a force 

component in x direction between 4,1 kN and 10 kN. The 7 green struts transfer 81,1 % of the total loading. Thus, the 

significant part of transmission can be symbolised through only these 7 struts between one outside shear connector and 

the central shear connector. 
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Number of hole 1 2 3 4 5 6 7 8 9 10 11 12 

Fhorizontal  
(shear connector 2) 

- - - - 77,77 68,98 56,61 42,60 35,21 23,10 10,41 0,73 

Fhorizontal  
(shear connector 1) 

- -8,855 -31,63 -33,98 -35,08 -35,07 -13,09 - - - - - 

Fhorizontal  
(shear connector 2) 

- - - - - 68,98 56,61 42,60 35,21 23,10 10,41 0,73 

Fhorizontal  
(shear connector 1) 

- - -1,60 -33,98 -35,08 -35,07 -12,62 - - - - - 

Fhorizontal  
(shear connector 2) 

- - - - - - 56,61 42,60 35,21 23,10 10,41 0,73 

Fhorizontal  
(shear connector 1) 

- - - -1,09 -35,08 -35,07 -13,09 - - - - - 

Fhorizontal  
(shear connector 2) 

- - - - - - - 42,60 35,21 23,10 10,41 0,73 

Fhorizontal  
(shear connector 1) 

- - - - -7,865 -35,07 -13,09 - - - - - 

Fhorizontal  
(shear connector 2) 

- - - - - - - - 35,21 23,10 10,41 0,73 

Fhorizontal  
(shear connector 1) 

- - - - - -21,635 -13,09 - - - - - 

Fhorizontal  
(shear connector 2) 

- - - - - - - - - 23,10 10,41 0,73 

Fhorizontal  
(shear connector 1) 

- - - - - -4,03 -13,09 - - - - - 

Fhorizontal  
(shear connector 2) 

- - - - - - - - - 15,04 10,41 0,73 

Fhorizontal  
(shear connector 1) 

- - - - - - -13,09 - - - - - 

Table 2.9: Effect 1: distribution of the horizontal forces in the composite connections between the shear connectors 

 

Figure 2.46: The green concrete struts symbolise the horizontal force transfer between the steel sections. For simplification, the 
top steel plate is not shown. 
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Number  
of the concrete strut 

Fx,horizontal 
[kN] 

Number of the  
Involved circular hole 

at the outside shear connector 

Number of the  
involved circular hole 

at the central shear connector 

1 16,82 1 4 

2 19,005 2 4 

3 8,855 2 5 

4 30,03 3 5 

5 1,60 3 6 

6 32,89 4 6 

7 1,09 4 7 

8 27,215 5 7 

9 7,865 5 8 

10 13,435 6 8 

11 17,605 6 9 

12 4,03 6 10 

13 7,52 7 10 

14 5,205 7 11 

15 0,365 7 12 

Σ 193,53 - - 

Table 2.10: Forces in the concrete struts. The components in the x direction (parallel with the shear connectors) are shown. 

 
Figure 2.47: The green and grey concrete struts symbolise the horizontal force transfer between the steel sections. For 
simplification, struts with horizontal forces under 4,1 kN are not shown. 

It is clear from the results in table 2.7, that the green concrete struts illustrated in figure 2.46 are not perfectly horizontal. 

The total sum of the forth table row (51,12 kN) represents all the vertical forces at the circular holes of the shear 

connector 1 occurring from the 15 green struts in figure 2.46 and the six brown struts in figure 2.45. Similarly, the total 
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sum of the second table row (-119,41 kN) illustrates the vertical forces at the circular holes of the shear connector 2 

occurring from the 15 green struts and the four violet-coloured struts in figure 2.44. 

In the following step, the vertical forces at the holes of the central shear connector occurring from the external loading 

through the concrete core are evaluated based on the contact stresses. Figure 2.48 illustrates a portion of figure 2.39, 

where the contact pressures are shown. As in the case of figure 2.39, the lengths of the arrows symbolise the magnitude of 

the forces, so that the arrows of the resultants at the top steel section denote just the half of the total forces in the 

composite connections. Moreover, the arrows of the resultants at the bottom section represent the forces at only one shear 

connector of the bottom shear section (for example at shear connector 1). 

 

Figure 2.48: Contact pressures on the surface of the circular holes num. 5, 6 and 7: a) top steel section; b) bottom steel section 

Next, the vertical components of the resultant forces pointed out in red in figure 2.48 are examined. As frictional shear 

stresses control the resultant forces in the composite connections, in the further calculation both the contact pressures and 

the contact tractions are considered. However, the frictional shear stresses modify the values from the contact pressures 

just a little bit (see tables 2.5 and 2.6). According to the last row in table 2.5, the vertical component of the resultant force 

from effect 2 at the fifth hole of the top steel section is 13,36 kN, which acts downwards. In the case of the fifth hole of 

the bottom steel section, this vertical force is 6,40 kN, which acts upwards (see table 2.6). The opposing forces (actually 

the forces from the steel shear connectors on the concrete) are illustrated in figure 2.49(a). It is assumed, that 6,40 kN 
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vertical force is transmitted between the fifth holes of shear connectors 1 and 2 (see figure 2.49(b)). As illustrated in 

figure 2.49(c), this effect is modelled through concrete struts, which are actually coupling members between the top and 

the bottom steel sections to prevent the differences between the deflections of the two steel sections (see figure 2.53). So, 

the top steel section at the fifth hole receives 12,80 kN vertical force from the two outside shear connectors together. The 

remaining part of the vertical component of the force at the fifth hole of the top steel section (13,36 kN – 12,80 kN = 0,56 

kN = 2 · 0,28 kN) is considered as a load delivered directly from the external loading through the concrete (see figure 

2.49(d)). 

 

Figure 2.49: Analysis of the force transmission in the concrete at the fifth circular holes of the shear connectors: a) the concrete 
section with the loads at the composite connections; b) the concrete section with the forces transferred between the shear 
connectors (exploded view); c) concrete model with the coupling members; d) planar truss frame model to represent the load 
transfer to the central shear connector from the external loading 



39 

 
 

Next, the forces at the tenth holes of the shear connectors are also analysed. The vertical component of the resultant force 

from effect 2 at the tenth hole of the top steel section is 8,41 kN (downwards). At the tenth hole of the bottom steel 

section, this vertical force is 0,47 kN (upwards). Therefore, according to the above described assumption, the top steel 

section at the tenth hole receives 0,94 kN (2 · 0,47 kN) vertical force from the two outside shear connectors (see figure 

2.50(b)). The remaining part of the vertical force component (8,41 kN – 0,94 kN = 7,47 kN = 2 · 3,735 kN) is considered 

as a load delivered directly from the external loading through the concrete according to the truss frame model in figure 

2.50(d). 

 

Figure 2.50: Analysis of the force transmission in the concrete at the tenth circular holes of the shear connectors: a) the 
concrete section with the loads at the composite connections; b) the concrete section with the forces transferred between the 
shear connectors (exploded view); c) concrete model with the coupling members; d) planar truss frame model to represent the 
load transfer to the central shear connector from the external loading 
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According to the calculation method described above, the forces can be evaluated at the holes numbered 5 - 12. To clarify 

the differences in force transmission at the first four circular holes, the forces in the concrete at the second holes of the 

shear connectors is analysed. The vertical component of the resultant force from effect 2 at the second hole of the top 

steel section is 5,73 kN (downwards). At the second hole of the bottom steel section, this vertical force is 6,00 kN 

(upwards). Therefore, the top steel section at the second hole receives 5,73 kN (2 · 2,865 kN) vertical force from the two 

outside shear connectors (see figure 2.51(b)). Thus, remaining vertical forces (6,00 kN – 2,865 kN = 3,135 kN) occur at 

the shear connectors of the bottom steel section. It is assumed that these forces are delivered from the holes of the outside 

shear connectors to the support through the concrete symbolised with the truss frame model in figure 2.51(d)). 

 

Figure 2.51: Analysis of the force transmission in the concrete at the second circular holes of the shear connectors: a) the 
concrete section with the loads at the composite connections; b) the concrete section with the forces transferred between the 
shear connectors (exploded view); c) concrete model with the coupling members; d) planar truss frame model to represent the 
load transfer to the support from the outside shear connector 
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The calculation results are shown in table 2.11. The above presented results are pointed out in red in the table. In the first 

table row the forces at the holes of the top steel section derived from the external loading through the concrete are given. 

In the second table row the vertical components of concrete struts acting between shear connectors 1 and 2 (coupling 

members) are represented. As was illustrated at the second circular hole, in the case of the first four circular holes the 

remaining part of the vertical force component occurs at the holes of the shear connectors of the bottom shear section. 

These forces are given in the third table row referring to one of the outside shear connectors (shear connector 1) and mean 

the force transmission from the outside shear connector to the support through the concrete. Thus, logically, the top steel 

section does not receive any vertical loads from the external loading at the first four circular holes of the shear connector. 

Therefore, the forces in the first table row are zero at these holes. The signs in table 2.11 mean the direction of the vertical 

contact forces on the steel circular holes. Thus, the positive values (force direction: downwards) in the second table row 

symbolise the forces at the central shear connector. 

Hole numb. 1 2 3 4 5 6 7 8 9 10 11 12 Σ 

Forces from the  
external loading  

Fvertical 
(shear con.2) 

0,00 0,00 0,00 0,00 0,56 3,48 6,12 11,12 10,62 7,47 6,99 5,46 51,82 

Forces in the 
coupling member  

Fvertical 
(shear con. 1, 2) 

1,495 2,865 6,31 6,545 6,40 4,88 3,63 0,74 0,51 0,47 0,13 0,22 34,195 

Force transfer  
to the support  

Fvertical 
(shear con. 1) 

-3,625 -3,135 -1,01 -0,575 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 -8,345 

Table 2.11: Effect 2: Partition of the vertical components of forces in the composite connections. Forces in [kN]  

The total sum of the forces in the first row of table 2.11 is 51,82 kN. This means that the shear connector of the top steel 

section receives 51,82 kN from the external loading of the ABAQUS model (161,03 kN). Here, the shear connector of the 

top steel section means only the construction part modelled in ABAQUS (see figure 2.12). Logically, the ABAQUS 

model is loaded with the half of the total external loading (322,06/2 = 161,03 kN). As illustrated in figures 2.49(d) and 

2.50(d), it is assumed that this loading (the sum of the forces in the first row of table 2.11) is transferred through the 

concrete to the circular holes of the shear connector. This load transmission is shown in figure 2.52, too. The concrete 

struts are illustrated with black and grey struts. The arrows pointed out in grey symbolise the members which transfer 

vertical forces less than 1,0 kN. Thus, the main effect from this load transmission can be illustrated with the black arrows. 

It is remarkable in the figure that horizontal concrete struts act between the outside shear connectors and the external load 

input positions to ensure the static balance of the truss model. It is assumed, that the external vertical loads act at the 

meeting points of the horizontal and the diagonal struts in figure 2.40. However, the external loads are not shown in the 

figure for ease of view. 

The total sum of the forces in the second row of table 2.11 is 34,195 kN. This means that the shear connector of the top 

steel section receives 68,39 kN (2 · 34,195 kN) from the two shear connectors of the bottom steel section through the 

concrete struts which are called as coupling members (see figures 2.49(c), 2.50(c) and 2.51(c)). These members are 

illustrated in figure 2.53 with black and grey struts. The grey arrows symbolise the coupling members which transfer 

vertical forces less than 1,0 kN. Therefore, the main effect from the coupling members can be illustrated with the black 

arrows. 
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Figure 2.52: Truss frame model of the concrete core: the black and grey concrete struts symbolise the load transfer to the 
central shear connector. The external loads are not shown for ease of view. 

 

Figure 2.53: Concrete model with coupling members: the black and grey concrete struts symbolise the force transfer between 
the shear connectors to prevent the differences between the deflections of the steel sections 

Moreover, it is clear from the third table row that one outside shear connector transfers 8,345 kN vertical load to the 

support through the concrete. The force transmission is illustrated with the truss frame model in figure 2.51(d) in the case 

of the loading at the second circular hole of shear connector 1. The two outside shear connectors together transmit 16,69 

kN (2 · 8,345 kN). This load transmission is symbolised with two truss frame models for the concrete in figure 2.54, too. 

As shown in the figure, at the top part of the concrete a horizontal compression member acts between the load input 

position (the top of the circular hole) and the plane of symmetry. Moreover, at the bottom part of the concrete a horizontal 

tension member symbolises the concrete which compensates the horizontal forces from the diagonal concrete struts. In 

this way, the vertical loads from the outside shear connectors induce only vertical forces in the bottom steel plate next to 

the end plate (actually at the support). Thus, horizontal forces do not press the steel end plate and the end stiffeners. This 
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model corresponds to the above used assumption that the total horizontal compression force at the support arises due to 

the compressed concrete parts pressed from the shear connector of the top steel section. 

 
Figure 2.54: Truss frame model to symbolise the load transfer to the support from the outside shear connectors 

Next, the static equilibrium of the shear connectors is examined only in the case of the vertical forces as a summary about 

the presented effects. According to the ABAQUS calculation results, the shear connector 1 receives directly from the 

external loading 7,42 kN through the top steel plate. Actually, as an approximation of the results of the FEA software, the 

outside shear connectors are loaded from the areas illustrated in figure 2.55(a). 

 

Figure 2.55: The external vertical loading on the outside shear connectors: a) top view of the top steel plate with the examined 
loading; b) side view with the loading acts on one outside shear connector 
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Thus, the external loading on the shear connector 1 is given in figure 2.55(b) and the total vertical load can be easily 

calculated: 

                  ∑ ௘௫௧௘௥௡௔௟ ௟௢௔ௗ௜௡௚,௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଵ  ܨ = 1,385 m ∙  5,354 kN/m = 7,42 ݇ܰ  (2.12)
16,00 kN is delivered from one outside shear connector to the end stiffener (see the shear forces in figure 2.23(a)). 

Moreover, shear connector 1 gets 51,12 kN vertical load due to the effects symbolised with brown and green arrows 

above (see figures 2.45 and 2.46). This value is calculated in the last row of table 2.7. Additionally, this construction part 

transfers 34,195 kN to the central shear connector through the coupling members, and 8,345 kN to the support from the 

first four circular holes of the shear connector (see table 2.11). Thus, the static balance is given as: 

                  ∑ ௩௘௥௧௜௖௔௟,௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଵ  ܨ = 7,42 − 16,00 + 51,12 − 34,195 − 8,345 = 0,00 ݇ܰ  (2.13)
This equilibrium is valid for the shear connector 3, too. 

Next, the static balance of the central shear connector is presented. The shear connector 2 receives directly from the 

external loading 31,20 kN through the top steel plate according to the ABAQUS calculation results. As an approximation 

of the results of the FEA software, shear connector 2 is directly loaded from the areas illustrated in figure 2.56(a). 

 

Figure 2.56: The external vertical loading on the outside shear connectors: a) top view of the top steel plate with the examined 
loading; b) side view with the loading acts on the central shear connector 

Thus, the external loading on the shear connector 2 is given in figure 2.55(b). Therefore, the total vertical load is: 

                  ∑ ௘௫௧௘௥௡௔௟ ௟௢௔ௗ௜௡௚,௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଶ  ܨ = 0,56 ∙ 41,070 + 0,165 ∙ 20,594 + 0,660 ∙ 7,267 = 31,2 ݇ܰ  (2.14)
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32,00 kN is delivered from the shear connector to the end stiffener (see figure 2.23(b)). Moreover, the shear connector 2 

transfers 119,41 kN vertical load due to the effects symbolised with violet-coloured and green arrows (see figures 2.44 

and 2.46). This value is calculated in the second row of table 2.7. Additionally, this construction part gets 68,39 kN from 

the two outside shear connectors through the coupling members, and 51,82 kN from the external loading transferred 

through the concrete to the circular holes of the shear connector (see table 2.11). Thus, the static balance is given as: 

                  ∑ ௩௘௥௧௜௖௔௟,௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଶ  ܨ = 31,20 − 32,00 − 119,41 + 68,39 + 51,82 = 0,00  (2.15)
It was shown in equation 2.9 that 97,03 kN from the total external loading of the ABAQUS model (161,03 kN) is 

transmitted through the concrete to the support. It is clear that vertical forces are transmitted from the central shear 

connector to the support through the concrete core which is symbolised with the violet-coloured concrete struts in figure 

2.44. However, the struts in the figure are horizontal as an approximation. To evaluate the value of the transmitted 

vertical forces, the vertical component of the force in the fourth circular hole (14,53 kN, see the second row of table 2.7) 

need to be divided. It is assumed that a vertical force of 2,85 kN is transferred from this circular hole to the support 

roughly corresponding to the partition of the horizontal components. From the first three holes 44,59 kN (15,13 kN + 

14,19 kN + 15,27 kN) is transmitted to the support according to the results in table 2.7. Thus, a vertical force of 47,44 kN 

(2,85 kN + 44,59 kN) is transferred from the central shear connector to the support through the concrete core.  Moreover, 

as it was presented above in table 2.11, 16,69 kN (2 · 8,345 kN) is delivered from the outside shear connectors to the 

support through the concrete part around the shear connectors. Therefore, from the three shear connectors of the 

ABAQUS model 64,13 kN (47,44 kN + 16,69 kN) is transferred to the support through the concrete. The remaining part 

of the external vertical load transmitted directly through the concrete to the support is 32,90 kN (97,03 kN – 64,13 kN). It 

is assumed, logically, that the external loads close to the support are transferred through the concrete to the support. Thus, 

as symbolised in figure 2.57, a truss frame model for both of the concrete cores at the two sides of the central shear 

connector is applicable to carry 32,90 kN from the external loads. At the top part of the concrete a compression member 

acts between the load input position and the plane of symmetry. Moreover, at the bottom part of the concrete a tension 

member symbolises the concrete which compensates the horizontal forces from the diagonal concrete struts in the figure.   

 

Figure 2.57: The truss frame model symbolise the force transfer from the external loads to the support through the concrete  
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Actually, this model is similar to the system in figure 2.54. Namely, horizontal forces do not press the steel end plate and 

the end stiffeners from the loads transmitted through the concrete. One frame truss in figure 2.57 symbolises the whole 

concrete between two shear connectors. The external vertical loads are illustrated in the figure, too. However, the exact 

loaded areas and the values of the external loads will be presented in chapter 2.4.2. 

Finally, the static equilibrium of the concrete is examined only in the case of the vertical forces as a control of results. 

From the total external loading the shear connectors and the concrete parts of the model receive forces through the top 

steel plate which is directly loaded. Equation 2.16 demonstrates the load part which acts on the top of the concrete: 

                  ∑ ௩௘௥௧௜௖௔௟,௘௫௧௘௥௡௔௟ ௟௢௔ௗ௜௡௚ି௖௢௡௖௥௘௧௘  ܨ = 161,03 − 31,20 − 7,42 − 7,42 = 114,99 ݇ܰ  (2.16)
Here, 161,03 kN is the total external loading of the ABAQUS model, 31,20 kN means the external loading which acts on 

the shear connector 2 (see equation 2.14), while 7,42 kN is the external loading delivered to one outside shear connector 

(see equation 2.12). In accordance with the ABAQUS results, it is considered in equation 2.16 that the top steel plate does 

not deliver external load directly to the steel end plate. Actually, only the vertical force from end stiffener 2 (8,73 kN, see 

figure 2.23(b)) is transferred through the top steel plate to the end plate. The loaded area is illustrated in figure 2.58. 

Actually, from the total loaded area, which is the surface of the top steel plate, the loaded areas in figures 2.55(a) and 

2.56(a) are extracted. 

 

Figure 2.58: The external vertical loading on the concrete. Top view 

The vertical load of 114,99 kN can be partitioned into two parts. According to the above presented calculations based on 

the ABAQUS results, 32,90 kN is transmitted through the concrete directly to the support (see figure 2.57). This means 

that the remaining part of the load needs to be delivered to the steel structures of the model. Equation 2.17 shows the 

simple calculation of this part of the vertical loading: 

                  ∑ ௩௘௥௧௜௖௔௟,௖௢௡௖௥௘௧௘ି ௦௧௘௘௟ ௦௧௥௨௖௧௨௥௘௦  ܨ = 114,99 − 32,90 = 82,09 ݇ܰ  (2.17)
The forces occurring between the concrete and the steel parts (shear connectors) were evaluated in this chapter. It was 

detected that the shear connector of the top steel section receives 51,82 kN from the external vertical loading from the 
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concrete core (see the first row of table 2.11). Moreover, the shear connectors of the bottom steel section get vertical 

loads due to the effect symbolised with brown arrows in figure 2.45. However, these arrows are horizontal in the figure as 

an approximation. As a modification of this model, figure 2.59 illustrates a simple truss model which symbolises the 

vertical load transfer, too. Here, the diagonal concrete struts transfer the vertical external loads to the circle holes of the 

outside shear connectors. Moreover, horizontal concrete struts act between the load input positions of the external loads 

and the plane of symmetry to compensate the horizontal components of the diagonal struts. 

 
Figure 2.59: The brown concrete struts represent the force transfer from the external loading to the outside shear connector 
through the concrete 

The total sum of the vertical components of the diagonal concrete struts in figure 2.59 need to be calculated. It was 

presented above that the total sum of the vertical forces at the circular holes of the shear connector 1 occurring from the 

15 green struts (see figure 2.46) and the six brown struts (see figure 2.45) is 51,12 kN (see the last row in table 2.7). 

Moreover, it was assumed that a vertical force of 2,85 kN is transferred from the fourth circular hole of the central shear 

connector to the support. Thus, the vertical component of the 15 green struts in figure 2.46 can be easily calculated from 

the second row in table 2.7: ∑ ௩௘௥௧௜௖௔௟,௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଶ ି ௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଵ  ܨ = 0,5 ∙ ሾ(14,53 − 2,85) + 13,44 + 12,62 + 12,04 + 5,70 +                                                                                       5,06 + 7,01 + 3,74 + 0,68ሿ = 0,5 ∙ 71,97 = 35,985 ݇ܰ                 
(2.18)

Thus, the vertical component of the six brown struts in figure 2.36 is: ∑ ௩௘௥௧௜௖௔௟,௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଵ ି௘௫௧௘௥௡௔௟ ௟௢௔ௗ௜௡௚  ܨ = 51,12 − 35,985 = 15,135 ݇ܰ  (2.19)
According to this result, the reaction forces (effects on the concrete from the outside shear connectors) are illustrated in 

figure 2.60 with the vertical brown arrows. Next, the vertical load from the concrete acting on the three shear connector of 

the model can be easily calculated: 

                  ∑ ௩௘௥௧௜௖௔௟,௖௢௡௖௥௘௧௘ି ௦௧௘௘௟ ௦௧௥௨௖௧௨௥௘௦  ܨ = 51,82 + 2 ∙ 15,135 = 82,09 ݇ܰ  (2.20)
As the results in equations 2.17 and 2.20 are equal, the concrete core is in static equilibrium considering the vertical 

forces. As a summary of the results, figure 2.60 represents the concrete parts of the ABAQUS model with the vertical 

forces. The external loading is illustrated schematically with two concentrated loads (114,99 / 2 kN). The total sum of the 

reaction forces in the figure is 114,99 kN. Logically, this value is equal to the external loading part on the concrete 

structures calculated in equation 2.16. 
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Figure 2.60: The vertical forces acting on the concrete model. The two concrete portions are shifted from each other to illustrate 
the vertical dowel forces at the central shear connector. 

2.4.2 The model of the load-bearing structure 

Based on the results of the ABAQUS calculation presented in chapter 2.4.1, simple engineering models will be defined in 

this chapter to describe approximately the behaviour of the examined construction part of the SCSC plate. Firstly, the 

external loading of the ABAQUS model (see figures 2.61(a) and (b)) is divided into 12 parts. Namely, the loaded area 

(the top steel plate) is partitioned according to figure 2.61(c). It will be presented at each of the 12 parts that the external 

loading can be transferred through the steel structures and the concrete struts specified in chapter 2.4.1. 

Table 2.12 summarizes the above mentioned load distribution. The first table row illustrates the external vertical loading 

for fatigue limit state distributed according to the geometry of the 12 loaded areas. To avoid rounding errors, the loads of 

17,633 kN and 17,634 kN are used in the table for the same magnitude of force. Thus, the total value of external loading 

given in the table is equivalent to the loading illustrated in figure 2.61(b). 

The second table row shows the loading which acts directly on the central shear connector (see figure 2.56). Actually, this 

part of the external loading is transferred through the top steel plate to the shear connector of the top steel section. The 

total sum of this loading (31,20 kN) was calculated in equation 2.14. It is remarkable that the load distribution is not 

uniform. The unstressed surface between the concrete and the top steel plate detected with ABAQUS around the central 

shear connector is considered as the area from which the external loads are delivered to the central shear connector. The 

approximate shape of this area (load area 1) is illustrated in the middle of figure 2.62(a). Thus, the values in the second 

table row can be easily calculated according to the demonstrated load area. The third table row shows the loading which 

acts directly on the two outside shear connectors together (see figure 2.55). Logically, this part of the external loading is 

also transferred through the top steel plate. Corresponding to the results of ABAQUS, the load distribution is considered 
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uniform as an approximation. The two loaded areas (loaded area 2) are illustrated in figure 2.62(a) with the two rectangles 

at the edges of the model. In the fourth row of table 2.12 the loads of the central shear connector derived from the external 

loading through the concrete (see figures 2.49(d), 2.50(d) and 2.52) are given. Thus, these values are equal to the results 

shown in the first row of table 2.11. The shaded area in figure 2.62(b) (load area 3) represents the loaded area which 

belongs to this force transmission. The fifth table row shows the load part (load area 4) transmitted to the outside shear 

connectors through the concrete (see the brown arrows in figure 2.59). Figure 2.62(c) illustrates the location of the 

external loads which are delivered here. 

 

Figure 2.61: The external vertical loading for fatigue limit state: a) side view; b) top view; c) the partition of the loaded area 
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Number of the loaded 
area 

1 2 3 4 5 6 7 8 9 10 11 12 Σ 

External loading  4,471 3,279 3,279 8,933 17,633 17,633 17,633 17,634 17,634 17,634 17,634 17,634 161,03 

Loading of the central 
shear connector 

through the top steel 
plate 

0,000 0,000 0,000 2,670 6,777 6,777 6,777 3,398 1,200 1,200 1,200 1,200 31,20 

Loading of the 
outside shear 

connectors through 
the top steel plate 

0,000 0,000 0,000 0,696 1,768 1,768 1,768 1,768 1,768 1,768 1,768 1,768 14,84 

Loading of the central 
shear connector 

through the concrete 
0,00 0,00 0,00 0,00 0,56 3,48 6,12 11,12 10,62 7,47 6,99 5,46 51,82 

Loading of the 
outside shear 

connectors through 
the concrete 

0,00 0,00 0,00 0,00 0,00 0,00 0,800 1,348 4,046 7,196 7,676 9,206 30,27 

Loading of the 
concrete 

4,471 3,279 3,279 5,567 8,528 5,608 2,168 0,000 0,000 0,000 0,000 0,000 32,90 

Table 2.12: Division of the external vertical loading between the construction parts. Forces in [kN] 

Finally, in the last row of table 2.12 the loads transmitted through the concrete to the support (see the model in figure 

2.57) are shown. These external loads act on the shaded areas (load area 5 and 6) in figure 2.62(d). It is remarkable in the 

figure that the total loading of 19,87 kN/m2 close to the support (loaded area 5: see figure 2.62(d)) is delivered through 

the concrete. The loaded areas 5 and 6 are shaded differently to demonstrate the different load intensities. Obviously, the 

sum of the five force components in table 2.12 (see table rows 2 – 6) is equal to the external loading (table row 1) at each 

of the 12 areas specified in figure 2.61(c). 

Necessarily, the partition of the loaded area in figure 2.62 is only an approximation of the ABAQUS results. For instance, 

the load parts in the figures 2.62(b) and 2.62(c) cannot be separated by a clear border. However, figure 2.62 represents 

properly the magnitude of forces at each of the 12 load areas. 

Next, based on the presented load distribution between the construction parts, two simple models can be introduced and 

analysed. One model examines only the concrete part of the SCSC plate. The other one includes all of the steel structures 

of the composite plate. Thus, because of the high complexity of the SCSC plate, the interaction between the concrete and 

steel structures is not modelled with the presented engineering models. However, to take into account the positive effects 

of this interaction, it is assumed that the top and the bottom steel sections are connected. This means that in contrast with 

figure 2.24, they cannot move relative to each other. The simple models fit only to the given plate geometry and loading. 

Figure 2.63 illustrates the bending moments in the middle of the span. It is shown in the figure that the modelling with 

concentrated loads in the case of the engineering model does not influence appreciably the bending moment. To verify the 

ABAQUS results in the middle of the span (see figure 2.64) the bending moment is calculated from the compressive and 

tensile forces of the construction components, too. According to the results in figure 2.64, the total sum of the nine 

compressive forces is 1267,44 kN and the total sum of the nine tensile forces is 1269,53 kN. The calculation of these two 

resultants is demonstrated in appendix B. 
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Figure 2.62: Partition of the loaded area to show the load transmission to the different construction parts 
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Figure 2.63: The loaded model of the SCSC plate and the bending moment diagram: a) ABAQUS model with line loads; 
b) engineering model with concentrated loads. Dimensions in [mm] 

 

Figure 2.64: Horizontal compression and tension in the concrete and steel structure parts at the plane of symmetry based on the 
ABAQUS calculation results. Dimensions in [mm] 
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Obviously, the resultant compressive and tensile forces should be the same because of the pure bending of the structure. 

However, the difference between the results (2,09 kN) is negligible compared to the acting forces (1267,44 kN, 1269,53 

kN). Additionally, the results in figure 2.64 indicate a bending moment of 203,07 kNm in the middle of the span The 

detailed calculation of this value is presented in  appendix B. The difference from the desired value (205,32 kNm, see 

figure 2.63(a)) is not significant. The reason for this difference is partly that the positions of the high forces in the steel 

plates are assumed in the middle of the plates (see figure 2.64(f)) as an approximation. Through the addition of 

compressive and tensile forces in figure 2.64, the forces in the concrete and steel structure parts can be detected 

separately. Thus, in the concrete parts of the construction the total sum of the compressive forces is 442,47 kN. 

Furthermore, a resultant tensile force of 237,05 kN act in the concrete. 

In the top steel plate and in the three shear connectors together acts a compressive force of 824,97 kN. The bottom steel 

plate and the shear connectors carry a tensile force of 1032,48 kN according to the ABAQUS results (see figure 2.64). 

Logically, the compression in the concrete is higher than the tension because the compressive strength of the concrete (48 

N/mm2) is greater than the tensile strength (3,509 N/mm2). Actually, in the case of the loading used for fatigue limit state, 

the tensile stress reaches the ultimate tensile strength of the concrete in the lower parts of the concrete core. Obviously, 

the resultant tensile force in the steel structure is higher than the resultant compressive force to compensate the above 

mentioned force difference in the concrete. 

It is important to note that the following models cannot detect the tensile cracking and compressive crushing of the 

concrete material. Actually, it is assumed that failure mechanisms of concrete do not occur in the case of the examined 

load level used for fatigue limit state. This assumption bases on the ABAQUS calculation. In the case of higher loads, an 

expansion of the presented models is necessary to evaluate the effects from failure of concrete. 

Next, a simple two-dimensional truss frame model will be defined which illustrates the concrete core. Logically, the 

loading of the concrete model is specified according to figure 2.62(d). The loaded area is also shown in figure 2.65(a) 

where the involved areas from the above described partition are also numbered. Thus, the line loads can be approximated 

with seven concentrated loads acting on the examined structure (see figures 2.65(b) and (c)). The bending moment 

diagram calculated from the concentrated loads is shown in figure 2.65(d). The positions of the horizontal resultant forces 

in the middle of the span are detected with ABAQUS (see figure 2.64). Based on the force positions at the two concrete 

cores (see figures 2.64(a) and (b)), the thickness of the two horizontal truss members (27,4 + 28,2 = 55,6 mm and 38,7 + 

38,0 = 76,7 mm, see figure 2.66(a)) of the truss frame model are calculated. The model illustrated in figure 2.66(b) 

consists of seven simple truss models, one for each of the external vertical concentrated loads. The horizontal forces in 

the truss members (205,49 kN, see figure 2.66(b)) can be easily calculated from the bending moment in the middle of the 

span (21,34 kNm, see figure 2.65(d)) and the moment arm (z = 170 – 55,6/2 – 76,7/2 = 103,85 mm, see figure 2.66(b)): 

                  ܰ = ܯ ⁄ݖ = 21,34 ݇ܰ݉  0,10385 ݉⁄ = 205,49 ݇ܰ  (2.21)
Corresponding to chapter 2.4.1, the two outside shear connectors transmit loads to the support through the concrete with a 

truss frame model (see figure 2.54). Thus, additional horizontal forces occur in the concrete in the middle of span. To 

calculate these forces, the bending moments are calculated from the matching loads (see figure 2.67) in the case of one 

outside shear connector. The length of the examined concrete beam (2023 mm) is a little bit shorter than the length of the 

model in figure 2.66 (2040 mm) because of the thickness of the end stiffener (15 mm) and the gap between the end plate 

and the end stiffener (2 mm). Additionally, is it remarkable in figure 2.67(b) that the load input positions are at the top of 

the circular holes of the outside steel shear connector. However, this fact does not influence the bending moments 

illustrated in figure 2.67(c). 
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Figure 2.65: Model design for concrete: a) loaded area, top view; b) side view; c) the loaded concrete beam; d) bending moments 
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Figure 2.66: Model design for concrete: a) the horizontal truss members with the external loading; b) the truss frame model  

The positions of the horizontal resultant forces in the middle of the span are detected also with ABAQUS (see figure 

2.64). However, the force positions from the two outside concrete dowels (see figures 2.64(c) and (e)) are used here to 

calculate the thickness of the horizontal truss members. Thus, the thickness of the compression member is 59,10 mm 

(29,4 + 29,7), while the tension member is 70,00 mm (35,6 + 34,4) thick. Therefore, the distance between the midlines of 

the horizontal truss members of the model is 105,45 mm (170 – 59,10/2 – 70,00/2) as illustrated in figure 2.68. This 

model consists of four simple truss models, one for each of the loads from the shear connector. These four truss models 

are represented in the same figure to show the forces in the horizontal truss members from the total loading illustrated in 

figure 2.67(b). The horizontal forces in the truss members (20,67 kN) in figure 2.68 are calculated from the bending 

moment in the middle of the span (2,18 kNm, see figure 2.67(c)) and the moment arm (z = 105,45 mm, see figure 2.68): 

                  ܰ = ܯ ⁄ݖ = 2,18 ݇ܰ݉  0,10545 ݉⁄ = 20,67 ݇ܰ  (2.22)
At this point, the forces through the truss frame models can be compared with the ABAQUS results in the middle of the 

span. The five concrete parts of the ABAQUS model (see figures 2.64(a), (b), (c), (d) and (e)) detect a total compressive 

force of 442,47 kN and a resultant tensile force of 237,05 kN. These resultants are illustrated in figure 2.69(a). As 

explained above, there is not force equilibrium at the concrete part of the ABAQUS model because of the steel - concrete 

interaction in the composite structure. Namely, it is assumed that the resultants arise from two effects. Firstly, the separate 

load-bearing behaviour of the concrete induces a pure bending moment in the middle of the span. Thus, a tensile force of 

237,05 kN and a compressive force of 237,05 kN occur in the concrete. Secondly, the additional compressive force of 

205,42 kN (442,47 – 237,05) arises at the top part of the cross section from the composite effect illustrated in figure 2.59. 
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Figure 2.67: Model design for concrete next to the outside shear connector: a) concentrated vertical loads at the holes of the 
shear connector of the bottom steel section; b) the loaded concrete beam; c) bending moment diagram. Dimensions in [mm] 

 

Figure 2.68: Truss frame model for the concrete next to the outside shear connector. Dimensions in [mm] 

The results from the truss frame models illustrated in figures 2.66(b) and 2.68 give a resultant tensile and compressive 

force of 246,83 kN (205,49 + 2 · 20,67) in the concrete (see figure 2.69 (b)). Logically, these forces occur from the 

separate load-carrying capacity of the concrete. Thus, the tensile forces from the two calculations (ABAQUS and truss 
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model) are comparable. Namely, the simple truss models through the described load distribution reproduce properly the 

result of the ABAQUS calculation. Actually, the simple engineering model delivers 246,83 kN which is 104,1 % of the 

ABAQUS result. Obviously, the compressions in the concrete cannot be analysed through the introduced truss model. 

 
Figure 2.69: Horizontal compression and tension in the concrete at the plane of symmetry: a) ABAQUS calculation results; 
b) results from the simple truss model. Dimensions in [mm] 

Next, the steel structures of the SCSC plate are examined through a simple model. The model consists of the bottom and 

top steel sections. However, they are structurally connected here to symbolise the shear transfer through the concrete. As 

in the case of the concrete model, the partition of the loaded area (see figure 2.62) is the basis of the following 

calculations. Figure 2.70(a) shows the concentrated loads which represent the external loading from the loaded areas 

illustrated in figures 2.62(a), (b) and (c). However, two additional effects modify the bending moments in the steel 

structure. Figure 2.70 (b) illustrates that a small bending occur from the fact that the forces transferred through the 

concrete (see figure 2.66) act at the end of the bottom steel plate. Moreover, as shown in figure 2.70(c), the distinct load-

carrying function of the concrete represented in figure 2.68 reduces the bending of the steel structure. The bending 

moment diagram from the marked forces is given in figure 2.70(d). However, the forces in figure 2.70(c) are doubled for 

the bending moment calculation as there are two outside shear connectors in the presented model. Thus, the maximal 

bending moment in the middle of the span is 179,34 kNm. Obviously, this result is equal to the difference between the 

bending moment of the whole structure (205,04 kNm, see figure 2.63(b)) and the bending moment acts on the concrete 

model (21,34 kNm + 2 · 2,18 kNm = 25,70 kNm, see figures 2.65(d) and 2.67(c)). 

The cross section of the model is illustrated in figure 2.71. The profile of the shear connector is considered with a 

continuous cutting in the middle with 100 mm as an approximation. In this way, the used steel profile consists of two 

parts according to figure 2.71. However, these two parts together mean the cross section of the steel structure model.   

The area moment of inertia of the cross section around the axis “y”: 

௬ܫ = 1000 ∙ 200ଷ12 − 2 ∙ 480 ∙ 170ଷ12 − 40 ∙ 100ଷ12 = 270 293 333 ݉݉ସ (2.23)
The three shear connectors of the ABAQUS model (see figures 2.64(g), (h) and (i)) detect together a total compressive 

force of 73,77 kN and a resultant tensile force of 98,88 kN as illustrated in figure 2.72(a). The resultant forces in the steel 

plates are also shown in the figure. The bending stress in the beam element used for the engineering model can be easily 

calculated in the middle of the span with the Euler-Bernoulli’s Beam Equation. The bending moment illustrated in figure 

2.70(d) and the area moment of inertia of the cross section according to the equation 2.23 are used for this calculation. 

The stress diagram is given in figure 2.72(b). Based on these bending stresses, the resultant compressive and tensile 

forces are evaluated in the steel plates and the shear connectors. However, the three shear connectors are considered 

together. The results are also shown in figure 2.72(c). 
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Figure 2.70: Model design for the steel structures of the SCSC plate: a) the external loading on the model; b) loading from the 
concrete pressures next to the end plate; c) effects from the load transfer between one outside shear connector and the support 
on the steel structure; d) bending moment diagram due to the loads illustrated in figures (a), (b) and (c). The forces in figure (c) 
are doubled for the bending moment calculation as two outside shear connectors are designed in the model. 
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Figure 2.71: The cross section for the model of the steel construction parts. Dimensions in [mm] 

Only the tensile forces from the two calculations (ABAQUS and simple beam model) are comparable because the 

compressive forces in the steel elements are influenced through the concrete of the SCSC plate in the case of the 

ABAQUS model. Thus, referring to the tensions in the bottom steel plate, the simple beam model of the steel structures 

reproduces properly the result calculated with ABAQUS (933,6 kN). Namely, the engineering model delivers 920,6 kN 

which is 98,6 % of the ABAQUS result. 

 

Figure 2.72: Horizontal compressive and tensile forces in the steel construction parts at the plane of symmetry: a) ABAQUS 
calculation results; b) results from the simple beam model. Dimensions in [mm] 

Next, the maximal deflections are compared. The maximal vertical displacement is 7,01 mm according to the ABAQUS 

calculation. As an engineering model for the calculation of the displacements, the steel elements of the SCSC plate are 

modelled with the structural analysis program RFEM [18] to take into account the shear deformations of the steel sections 

due to the circular holes in the shear connectors. The mesh refinements are defined here as 1 cm. The top and the bottom 

steel sections are structurally connected. Obviously, the loading is identical with the loading of the simple steel beam (see 

figure 2.70). So, the maximal vertical deflection in the middle of the span is 6,88 mm from RFEM, which is practically 

equal to the ABAQUS result. 

Finally, the fourth model is created to detect the horizontal dowel forces in the shear connector of the top steel section. 

The dowel forces of the bottom steel section are not examined because these forces are smaller as the dowel forces in the 

central shear connector. Both of the two simple models (model 4(a) and model 4(b)) presented below are based on the 

longitudinal shear flow (T [N/mm]) at the top horizontal plane of the central shear connector. The ABAQUS calculation 

result of the shear flow distribution is illustrated in figure 2.73. However, the shear stresses in the examined horizontal 

plane were evaluated with ABAQUS. Thus, in figure 2.73(b) represented shear flow is found as the shear stress 

multiplied by the thickness of the shear connector. It is important to mention that the figure illustrates the whole shear 

connector to show the symmetric distribution of the shear stresses. However, the ABAQUS model consists of just the half 

of the element as it was presented in chapter 2.3.1. 
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Figure 2.73: Shear flow at the top horizontal plane of the central shear connector according to the ABAQUS calculation results: 
a) side view of the shear connector; b) shear flow along the steel member. Dimensions in [mm] 

As a good estimate, the horizontal dowel forces can be calculated from the presented horizontal shear flow. It is assumed 

that the horizontal dowel force compensates the horizontal shear force which acts above the examined hole. Actually, the 

shear flow distribution is divided according to figure 2.74(b). The area of a marked sector in the figure gives the resultant 

horizontal shear force belonging to the matching hole of the shear connector. Logically, the direction of the horizontal 

dowel force at a hole of the shear connector is opposite the direction of the marked shear forces in figure 2.73(a) (see the 

red arrows). Logically, the dowel force means the effect from the concrete core of the SCSC plate on the steel shear 

connector. The calculated forces are represented in figure 2.74(c). The black line illustrates the results in a graph format 

for ease of view. Moreover, the exact ABAQUS results (according to the first row in table 2.4) are also demonstrated in 

figure 2.74(c) with the green line. Thus, it is clear to see that the approximate calculation is applicable. 

The simple model 4(a) consists of the steel parts of the SCSC plate. Actually, the cross section in figure 2.71 is used. The 

area moment of inertia of this cross section around the axis “y” is given in equation 2.23. As illustrated in figure 2.75(a), 

the total external loading of the SCSC plate acts on this model. Figure 2.75(b) shows the shear force diagram, while 

figure 2.75(c) represents the longitudinal shear flow distribution at the top horizontal plane of the central shear connector. 

The shear flow values are calculated according to equation 2.24 based on the shear formula in solid mechanics. In the 

development of this formula the Euler-Bernoulli assumptions are used. 

ܶ = − ܸ ∙ ܵ௬ܫ௬   (2.24)
where: ܶ ሾܰ/݉݉ሿ  Shear flow ܸ ሾܰሿ   Shear force carried by the section (see the shear force diagram in figure 2.75(b)) ܵ௬  ሾ݉݉ଷሿ  First moment of area about the neutral axis “y” for the top steel plate of the cross section ܫ௬  ሾ݉݉ସሿ   Area moment of inertia of the whole cross section around the axis “y” 

The first moment of area (Sy) considers the area above the point where the shear stresses are calculated. 
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Figure 2.74: The evaluation of the horizontal dowel forces in the shear connector of the top steel section based on the ABAQUS 
results: a) side view of the shear connector; b) the partition of the shear flow diagram; c) horizontal forces at the holes of the 
shear connector 2. Dimensions in [mm] 

 
Figure 2.75: Simple model 4(a): a) external loading on the model; b) shear force diagram; c) shear flow distribution 
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As the shear stresses need to be evaluated at the top horizontal surface of the shear connector, the first moment of area 

considers only the top steel plate of the cross section (see equation 2.25). ܵ௬ = ܣ ∙ ݖ = 15000 ∙ 92,5 = 1 387 500 ݉݉ଷ (2.25)
   where: ܣ ሾ݉݉ଷሿ  Area of the top steel plate ݖ ሾ݉݉ሿ  Distance from neutral axis to centroid of the top steel plate 

It is assumed that the total shear flow calculated above acts on the central shear connector. The shear flow diagram in 

figure 2.75(c) is partitioned according to figure 2.76(b). As shown in figures 2.75(a) and 2.75(b), the width of the sector 1 

is 165 mm as an approximation. The marked areas of the shear flow diagram (see figure 2.76(b)) denotes the resultant 

longitudinal shear forces which effect on the 165 mm wide parts of the shear connector. The absolute values of these 

forces give the horizontal dowel forces illustrated in figure 2.76(c). 

 

Figure 2.76: The evaluation of the horizontal dowel forces in the shear connector of the top steel section based on model 4(a): 
a) side view of the shear connector; b) the partition of the shear flow diagram; c) horizontal forces at the holes of the shear 
connector 2. Dimensions in [mm] 
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It is clear through the figure that the calculation with model 4(a) overestimates significantly the ABAQUS results. Thus, 

an additional simple model (model 4(b)) is examined, too. Only the cross section of the top steel plate is considered here. 

However, the cross section has a cutting in the middle of the shear connector to represent approximately the holes (see 

figure 2.77). The area moment of inertia of the cross section around the axis “y” is given in equation 2.26 without a 

detailed calculation: ܫ௬ = 17 616 174 ݉݉ସ (2.26)

 

Figure 2.77: The cross section for the model 4(b). Dimensions in [mm] 

The external loading on the load areas 1 and 3 (see figures 2.62(a) and 2.62(b)) are used as the loading of model 4(b). So, 

the values in figure 2.78(a) are calculated through the addition of the values in the second and fourth rows of table 2.12. 

 

Figure 2.78: Simple model 4(b): a) external loading on the model; b) shear force diagram; c) shear flow distribution 
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Logically, the loadings of the central shear connector detected with ABAQUS are used in the case of model 4(b). Figure 

2.78(b) shows the shear force diagram, while figure 2.78(c) represents the longitudinal shear flow distribution at the top 

horizontal surface of the shear connector. As in the case of model 4(a), the shear flow values are calculated according to 

equation 2.24. Obviously, the shear stresses are evaluated at the top plane of the shear connector, thus the first moment of 

area (Q) considers the top steel plate of the cross section which is calculated in equation 2.27: ܵ௬ = ܣ ∙ ݖ = 15000 ∙ 7,9 =  118 500 ݉݉ଷ (2.27)
   where: ܣ ሾ݉݉ଷሿ  Area of the top steel plate ݖ ሾ݉݉ሿ  Distance from neutral axis to centroid of the top steel plate  

The shear flow diagram in figure 2.78(c) is partitioned according to figure 2.79(b). By analogy with the approximation at 

the model 4(a), the width of the sector 1 is 165 mm (see figures 2.79(a) and 2.79(b)). 

 

Figure 2.79: The evaluation of the horizontal dowel forces in the shear connector of the top steel section based on model 4(b): 
a) side view of the shear connector; b) the partition of the shear flow diagram; c) horizontal forces at the holes of the shear 
connector 2. Dimensions in [mm] 
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The marked areas of the shear flow diagram in figure 2.79(b) denotes the resultant longitudinal shear forces which effect 

on the 165 mm wide parts of the shear connector. The absolute values of these forces give the horizontal dowel forces 

illustrated in figure 2.79(c). This figure also illustrates that through the calculation with model 4(b) the horizontal dowel 

forces are almost the same as the ABAQUS results. 

As shown in chapter 2.4.2, the ABAQUS calculation results can be approximately reproduced with four different 

engineering models. Two truss frame models describe the concrete and the steel structures of the SCSC plate separately. 

As the composite connection is not modelled with these simple models, the forces in the shear connectors detected with 

ABAQUS are not calculated with these two models. The third engineering model is constructed in RFEM to show the 

maximal deflection of the complex SCSC plate. Finally, the fourth model delivers the horizontal dowel forces in the 

central shear connector. It is important to mention that the presented models use the divided external loading detected 

with ABAQUS. Obviously, the aim of the simple models was not the substitution of the complex ABAQUS calculation. 

In the following chapters (see chapter 3.6.1 and 3.6.2) two-dimensional spring framework models will be introduced 

which operates without any results from ABAQUS. These more complex framework models are only appropriate for the 

engineering practice to analyse the composite structure and substitute the time-consuming ABAQUS calculation. 
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3. The spring framework model 
3.1 Introduction of the chapter 

The aim of chapter 3 is to explain the structure of the spring framework model and its parameters, to present the 

principles of the calculation method (Direct Stiffness Method) and to demonstrate how the framework model calculation 

reproduces the values of the displacements and internal forces calculated in ABAQUS. 

Firstly, in chapter 3.2, the experimental tests performed in February 2020 at the laboratory of TU Wien, Institute of 

Structural Engineering will be described. Due to the test results, it is possible to evaluate the spring stiffness values for 

the spring framework model. Secondly, in chapter 3.3, a short overview will be given about the Direct Stiffness Method. 

Following that, in chapter 3.4, the validation of the framework model calculation takes place through modelling the steel 

structure elements of the SCSC plate. Various types of models will be introduced in chapters 3.5, 3.6 and 3.7 to show the 

parity of results to the ABAQUS calculation results. These complex two-dimensional framework models include the 

concrete members too, and the ABAQUS analysis designed model (1 m long and 2,06 m wide) is represented. 

3.2 Experimental test results to evaluate the spring stiffness values 

Six experimental tests were performed in February 2020 at the laboratory of TU Wien, Institute of Structural Engineering 

in order to evaluate the spring stiffness values referring to the composite connection. Actually, the flexible composite 

joints between the concrete and steel members at the shear connectors are modelled through the springs. As the stiffness 

of these springs depend on the elasticity of the materials, on the geometrical feature of the joint and on the forces 

occurring in the shear connectors: The real shape of a shear connector was built to execute the laboratory tests. Therefore, 

a piece of the steel shear connector was constructed with a thickness of 20 mm. As illustrated in figure 3.1, the circular 

hole of the product was logically designed with a 100 mm diameter. 

 

Figure 3.1: The steel part of the specimen to execute the laboratory tests 

This steel part is partly embedded into a concrete block which has a size of 38x38x25 cm, where the 25 cm dimension is 

the height. The formwork of the concrete is a steel hollow section, which also belongs to the specimen. Directly under the 

steel shear connector part in the specimen, polystyrene is installed instead of concrete. Due to this, the load transfer is 

possible between the steel and concrete parts only at the hole of the shear connector, which is actually the composite 

connection of the SCSC plate. The complex specimen is illustrated in figure 3.2. 
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Figure 3.2: The complex specimen to execute the laboratory tests. Dimensions in [mm] 

Moreover, the steel part of the specimen, the steel hollow section and the used polystyrene are shown in figure 3.3 before 

concreting. The wooden beams are installed temporarily because of the positioning of the steel part during concreting. 

C40/50 concrete and S355 structural steel is used according to the ABAQUS model. 

 

Figure 3.3: The steel part of the specimen, the steel hollow section as the formwork and the polystyrene 

During the laboratory tests, the loading of the specimen occurs on the upper part of the steel piece which is outside the 

concrete. Figure 3.4 illustrates the experimental setup. Simultaneously two specimens were loaded with a dynamic and 

fatigue testing system developed by Schenck. With this servohydraulic system high force tests up to 1600 kN can be 

performed at the laboratory of TU Wien, Institute of Structural Engineering. 
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Figure 3.4: The experimental setup at the laboratory of TU Wien 

The load transfer takes place through the shear connector in the concrete block. Thereafter, the concrete transfers the 

forces into the massive steel plate of the test instrument. To get the force-slip diagrams describing the composite 

connection, the first loading takes place relatively slowly, growing by 20 kN/s. Three different load levels (maximal 

forces: 91 kN, 78 kN, 67 kN) were used to achieve the results. With one load level always two specimens were tested. So, 

a total number of six experimental tests were fulfilled. After the first loading, the specimens were unloaded down to a 

minimum force of 18 kN. This minimum force represents the force in the shear connector due to the static loading (dead 

load) of the SCSC plate. The difference between the maximal and minimal forces expresses the force in the shear 

connector through the traffic loading of the bridge. After the first unloading phase, the following load cycles (until the 2 

millionth loading cycle) were completed with a loading-velocity of 5 Hz frequency. Thus, 5 loading-unloading cycles 

were completed per second. From the average of the results of the six tests, a slip-force diagram (see figure 3.5) was 

constructed, with which the spring stiffness values for the spring framework model can be received. For the curve of the 

static loading in figure 3.5, the average slips at 10 force values (10 kN, 20 kN, 30 kN, 40 kN, 50 kN, 54,5 kN, 60 kN, 70 

kN, 80 kN, 91 kN) were calculated. Logically, up to the load level of 60 kN each of the six tests delivers slips to calculate 

an average. For example at the load level of 91 kN only two experimental tests are available. 

In the chapter 3.5 the horizontal and vertical spring stiffness used for the framework model are constant as an 

approximation. This means, that the same spring stiffness value (Cfirst,1 = 325,0 kN/mm in figure 3.5) is used at each hole 

of the shear connectors and at each load level of the SCSC plate. This spring stiffness belongs to the maximal force in the 

shear connectors (91 kN). However, the maximal force is 98,5 kN in ABAQUS. Moreover, as a second model, a 

horizontal spring stiffness (527,4 kN/mm) belonging to the average force in the shear connectors (54,5 kN) is used. As at 

this point there are not results from the framework model available, the average force is chosen from the ABAQUS 

results as an approximation. The aim of these two calculations in chapter 3.5 is to keep on the safe side while analysing. 
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Figure 3.5: The force-slip diagram of the shear connector through the laboratory tests 

In the chapter 3.6 the spring model is more complex as the spring stiffness value depends on the force in the shear 

connector. Here, the exact force-slip curve for the first loading (see figure 3.5: red curve for the first loading) is 

considered. In order to this precise calculation method, 100 calculation steps are used to represent the static loading (first 

loading). Namely, the external vertical load of the spring framework model is divided into 100 parts. At each calculation 

step, the used spring stiffness values are different as they are chosen according to the actual forces in the shear connector 

and the force-slip diagram illustrated in figure 3.5. This complex calculation is performed with a self-developed program 

in MATLAB [6]. However, structural frame analysis programs (e.g. RSTAB [19]) can also implement load increments 

and nonlinear spring properties. 

It is also shown that permanent displacements (inelastic slips) in the composite connection already occur due to the first 

loading. Another effect is that the stiffness of the concrete increases after the first loading, as the concrete at the 

composite connection (in the holes of the shear connectors) becomes more compressed. Therefore, the spring stiffness 

will be greater at the second loading. Figure 3.5 illustrates that from the second loading this spring stiffness (Chys = 2738 

kN/mm), which is calculated on the basis of the hysteresis loops, is constant. Further increase of the inelastic slip occurs 

due to the additional loading cycles (see figure 3.5: increasing slip). The average of the increasing slip values of the six 

specimens is 0,14 mm. 

The results of the six experimental tests and the calculations of the average values used for figure 3.5 are presented in 

appendix C. 
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3.3 Direct Stiffness Method 

The Direct Stiffness Method is a common implementation of the Finite Element Method, where the structure is idealised 

through members connected at joints. With the well-known Hooke’s-law and the elementary concepts of equilibrium, the 

member stiffness equations can be derived and written in matrix form. In the case of a beam member shown in figure 3.6, 

the force-displacement relationships are illustrated below (see equation 3.1). The member properties of the beam are the 

length L, the elastic modulus E, the cross-section area A, and the area moment of inertia Iv. The coordinate system {u,w} 

is called the local coordinate system, which is identical in figure 3.6 with the global coordinate system {x,z}. Moreover, 

the two end joints (i and j) are illustrated in the figure. Significant is that the external forces and the reactions can act only 

at the joints. 

 

Figure 3.6: Beam member referred to the local coordinate system {u,w} 
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 (3.1) 

 

The relationship shown above, actually the equilibrium matrix equation of a member is often demonstrated in a short 

form (see equation 3.2). 

ሾPሿ = ሾK୫ሿ ∙ ሾdሿ  (3.2) 
The member force vector [P], the member stiffness matrix [Km], and the member displacement vector [d] have to be 

considered in the member’s local coordinate system. 
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As a complex plane structure consists of several members, the member stiffness equations have to be assembled into the 

global stiffness equations. Actually, a global stiffness matrix (structure stiffness matrix) is edited on the basis of the local 

stiffness matrices. Here, two simple statements regard to the complex structure need to be used. Firstly, it is considered, 

that the displacements of the end joints of the members are the same in the case of meeting members. Obviously, 

connected joints move together. Secondly, there is force equilibrium at every joint of the structure. This means practically 

that the sum of the member forces at a joint is balanced with the external force which acts at the examined joint. With the 

consideration of these conditions, the global stiffness matrix can be assembled through simple matrix additions. For this 

assembly process, the member equations must be considered in a common coordinate system, for instance in the global 

coordinate system {x,z} illustrated in figure 3.6. Therefore, displacement and force transformations have to be done, 

which is generally necessary, as in a complex structure not all the members lie parallel with the global x-axis. The global 

stiffness equations are shown in matrix notation in equation 3.3. 

ሾFሿ = ሾKሿ ∙ ሾDሿ  (3.3) 
The joint force vector [F] of the complete structure, the global stiffness matrix [K], and the joint displacement vector [D] 

of the complete structure have to be considered in the global coordinate system. The support conditions as displacement 

boundary conditions need to be applied in the global stiffness equations. Moreover, the known external forces must be 

considered in the joint force vector [F]. 

The last step of the Direct Stiffness Method is the solution for joint displacements, reaction forces and internal member 

forces. The equation 3.3 is solved by numerical methods such as Gauss elimination. Hand computations are possible only 

in the case of simple systems with a few members. From the complete displacement solution [D] the displacements of the 

members can be extracted. Next, the member displacement vector [d] in the member’s local coordinate system can be 

calculated in the case of each member. Finally, the internal forces can be evaluated via the equilibrium matrix equations 

demonstrated above (see equation 3.1). However, these equations deliver the forces at the end joints, which mean the 

loading of the beam members. 

The computer implementation of the Direct Stiffness Method is easily performable in MATLAB. However, the global 

stiffness equations need to be prepared for the MATLAB calculation. Actually, the known and unknown components of 

the joint force vector and of the joint displacement vector need to be separated. 

3.4 Validation of the calculation method through simple models 
3.4.1 Modelling with the top steel section of the SCSC plate 
3.4.1.1 Introduction 

The aim of this chapter is to demonstrate how the framework model calculation reproduces the real values of the 

displacements and internal forces. Essentially, the validation of the framework model calculation takes place through 

using a simple steel beam which is the top steel section of the SCSC plate. However, the simple framework model does 

not include end stiffeners and main steel girder webs. Moreover, the shear connector does not have any circular holes, 

which is not the case for the shear connector of the SCSC plate. The real values will be presented in chapter 3.4.1.2. 

These values are calculated using formulas based on the Euler-Bernoulli Beam Theory, which are in appendix D.1 of the 

dissertation. In chapter 3.4.1.3, the simple framework model will be illustrated and the calculation results will be shown 

using the Direct Stiffness Method. A span length of 4.1m is used, as with the SCSC plate model. The load is also applied 
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according to the load model for the SCSC plate model. However, the loaded area is 1cm longer at both supports so that a 

line load can be applied over the entire length. Due to this, it is easier to perform the calculations for the real values. This 

small difference between the loadings causes a small increase of the total vertical load at the support. In this case, the 

vertical load is 161.23 kN (see figure 3.7(a)) and in the case of the SCSC plate model it is 161.03 kN (see chapter 2.2). 

The line load for the SCSC plate is illustrated in figure 3.7(a). The framework model with the external vertical loads is 

shown in figure 3.7(b). With the Direct Stiffness Method just the nodes can be loaded. Therefore, figure 3.7(b) illustrates 

a loading scheme with nodal loads. These two patterns (see figures 3.7(a) and 3.7(b)) are equivalent and mean a total 

vertical load of 161.23 kN at each support. To avoid rounding errors during the calculation, the exact values of forces are 

used. However, rounded values are shown in figure 3.7 for ease of view. In chapter 3.4.1.3, it will also be demonstrated 

that the framework model reproduces the real values of the displacements and internal forces with a good approximation. 

 

Figure 3.7: The top steel section of the SCSC plate as a structure with a span length of 4.1m: a) beam with distributed loads for 
the calculation of the real displacement and internal forces; b) framework model with nodal loads for the Direct Stiffness 
Method. Dimensions in [mm] 

3.4.1.2 The displacement and internal forces according to the analytical solution 

Several formulas are available to calculate the precise values of displacement and internal forces of a single beam. These 

precise values are also called as real values in this dissertation. However, these results are just approximations of the 

reality. This is due to the fact that the formulas are based on the Euler-Bernoulli Beam Theory, which itself consists of 

approximations. For instance, the shear stiffness of the beam is not used in the deformation analysis. Even so, the results 

demonstrated below will be used as basis values for the validation of the framework model in the chapter 3.4.1.3. The 

calculations through the formulas will also be named as analytical calculations. Formulas from Rubin [20] are used and 

the calculations are presented in appendix D.1. The cross section of the beam is illustrated in figure 3.8. The steel plate 

and the steel shear connector are welded together. However, the welding is not shown in the figure. The position of the 

centre of mass calculated from the upper edge is also illustrated. 
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Figure 3.8: The cross section of the top steel section of the SCSC plate. Dimensions in [mm] 

The area moment of inertia of the cross section around the axis “y” is given in equation 3.4 without a detailed calculation.  

௬ܫ = 32 185 276 ݉݉ସ (3.4)
The modulus of elasticity (Young’s modulus) of the steel (S355) is:  

ܧ = 210 000 ܰ ݉݉ଶ⁄  (3.5)
The bending stiffness with Young’s modulus and the area moment of inertia is given in equation 3.6. 

ܧ ∙ ௬ܫ = 210 000 ∙ 32 185 276 ∙ 10ିଽ = 6 758,908 ݇ܰ݉ଶ     (3.6)
When using Rubin’s formulas [20], the baseline data consist of the bending stiffness of the beam (see equation 3.6), the 

span, and the loading scheme (illustrated in figure 3.7(a)). Without the detailed calculation, the vertical displacements of 

the beam are illustrated in figure 3.9. 

 

Figure 3.9: The loaded top steel section of the SCSC plate and its vertical displacement. Dimensions in [mm] 

Next, the internal forces in the middle of the span are considered. The shear force in the middle of the span that arises 

from the formulas is zero. This is expected because the loading of the beam is symmetrical. For this reason, the moment 

in the middle of the span is the maximal moment of the beam. The calculated values are presented in equations 3.7 and 

3.8. 
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௠ܸ = ௠ܯ(3.7) ܰ݇ 0 = 205,32 ݇ܰ݉  (3.8)
By means of the internal forces in the middle of the span (given in equations 3.7 and 3.8), the internal forces of the steel 

plate and the shear connector are demonstrated separately in figure 3.10. In this way, it is possible to validate the 

framework model in chapter 3.4.1.3. 

 

Figure 3.10: The internal forces and the stresses in the steel plate and in the shear connector derived from the resultant internal 
forces of the beam. Dimensions in [mm] 

Finally, the bending moment is illustrated along the entire length of the beam in figure 3.11. 

 

Figure 3.11: The loaded top steel section of the SCSC plate and the bending moment diagram. Dimensions in [mm] 

3.4.1.3 Framework model calculation 

The framework model calculation is based on the Direct Stiffness Method, which was introduced in chapter 3.3. Even 

though the model used is relatively simple (see figure 3.12), due to the large number of nodes in the model, the solution is 

performed using the program MATLAB. According to figure 3.7(b), the framework model is supported at the level of the 

shear connector’s centroid and the loading of the SCSC plate is represented with nodal loads. Figure 3.12(a) demonstrates 
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the cross section of the beam, which is modelled through the framework model. Figure 3.12(b) illustrates the design of 

the framework model. The model consists of two separate horizontal beam elements (red lines in figure 3.12(b)) which 

represent both the steel plate and the shear connector. Also in the model, the vertical rigid members between the nodes of 

the steel plate and the shear connector are shown (orange-coloured lines in figure 3.12(b)). The vertical rigid members are 

designed to have a 165 mm distance between them. 

 
Figure 3.12: a) The top steel section of the SCSC plate; b) framework model with vertical rigid members at a 165 mm distance. 
Dimensions in [mm] 

The member properties (E, A, I) belong to the given part of the structure which is symbolised. These are presented as: 

௦ܧ = 210 ݇ܰ ݉݉ଶ⁄    (Young’s modulus of the steel) ܣ௦௣ = 15000 ݉݉ଶ   (Area of the steel plate) ܣ௦௖ = 3400 ݉݉ଶ   (Area of the shear connector) ܫ௬ି௦௣ = 281250 ݉݉ସ  (Area moment of inertia of the steel plate around the axis y) ܫ௬ି௦௖ = 8188333 ݉݉ସ  (Area moment of inertia of the shear connector around the axis y) 

In the case of the vertical rigid members, the longitudinal stiffness and the bending stiffness are marked as infinity. 

However, in the calculation with the Direct Stiffness Method these values are also defined: 

ܣܧ = 10ଵସ ݇ܰ   (Longitudinal stiffness of the vertical rigid members) ܫܧ = 10ଵସ ݇ܰ݉݉ଶ   (Bending stiffness of the vertical rigid members) 

The vertical displacements of the beam calculated with the Direct Stiffness Method are illustrated in figure 3.13. 

Logically, the highest vertical displacement occurs in the middle of the span. According to the framework model 

calculation this displacement is 52,41 mm (see figure 3.13). The displacement calculated through the analytical solution 

is 52,30 mm (see figure 3.9). Therefore, the difference is only 0,2 percent and the displacement curves demonstrated in 

figures 3.9 and 3.13 practically overlap each other. The used framework model reproduces the real values with a good 

approximation. However, a second variation of the framework model is also analysed. In this case, many more sections 

are used, so that the distance between the vertical rigid members is only 10 mm. Also, more nodal loads are used, so that 

the loading scheme better approximates the distributed loads. Therefore, the maximal vertical displacement is 52,30 mm, 

which is equivalent to the real value of the displacement in the middle of the span. 
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Figure 3.13: The loaded framework model of the steel section and its vertical displacement calculated with the Direct Stiffness 
Method. Dimensions in [mm] 

Next, the internal forces in the middle of the span will be examined. Due to the fact that the framework model represents 

separate members of the steel plate and the shear connector; the moments and the forces are directly available for these 

single construction parts. Figure 3.14 demonstrates the moments and forces for both framework models. In comparison 

with the basis values (see figure 3.10), the framework model with vertical rigid members at a 165 mm distance 

reproduces the results with only 0,2 percent difference. In the case of the framework model with vertical members at a 10 

mm distance, the difference is less than 0,01 percent. 

 

Figure 3.14: a) The framework model with vertical rigid members at a 165 mm distance. The internal forces are illustrated in the 
middle of the span. b) The framework model with vertical rigid members at a 10 mm distance. The internal forces are illustrated 
in the middle of the span. Dimensions in [mm] 

Finally, the resultant bending moment diagrams will be compared. In the case of the framework model, the resultant 

bending moment needs to be calculated using the internal forces of the construction parts. For instance, the resultant 

bending moment in the middle of the span is calculated using the internal forces illustrated in figure 3.14(a). The two 

bending moments Msp and Msc, and the bending moment from the normal forces are added together. This calculation 

needs to be done at the position of every single vertical rigid member in order to create the bending moment diagram in 

figure 3.15. The bending moment diagrams demonstrated in figures 3.11 and 3.15 practically overlap each other. Due to 



77 

 
 

this, the framework model with vertical rigid members at a 165 mm distance reproduces the real values of moments with 

a good approximation. 

 

Figure 3.15: The loaded framework model and the bending moment diagram. Dimensions in [mm] 

The conclusion of this chapter is that the framework model with vertical rigid members at a 165 mm distance is a good 

substitution for calculating the displacement and internal forces of a single beam. It is also illustrated, that the accuracy is 

higher through using a more partitioned model. Moreover, this validation method also legitimates the used MATLAB 

program, which will be developed further in the chapters 3.5, 3.6 and 4 to examine the complex SCSC plate of the bridge. 

3.4.2 Modelling with the top and the bottom steel sections of the SCSC plate 
3.4.2.1 Introduction  

The objective of this chapter is to validate a framework model which is more complex than the simple steel beam model 

from the previous chapter. The model of the previous chapter consisted of only the top steel section of the SCSC plate. 

Here, the framework model and the calculation method will be described through using the whole steel construction of 

the SCSC plate. However, this simple model does not include end stiffeners and main steel girder webs. So, the slipping 

of the two steel sections is not prevented. The used cross section of the model is illustrated in figure 3.16. 

 

Figure 3.16: The cross section of the steel construction of the SCSC plate. The top steel section is in red and the bottom steel 
section is in blue. Dimensions in [mm] 
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As was the case for the shear connector of the model in chapter 3.4.1., here the shear connectors of the top steel section 

and the bottom steel section do not have any circular holes. The applied span length and loading are also the same as in 

the previous chapter. It will be demonstrated, that the calculated displacements and internal forces from the framework 

model reproduce the values according to the analytical solution. Moreover, the relative horizontal displacements between 

the two shear connectors will also be discussed.  

3.4.2.2 The displacement, internal forces and slipping according to the analytical solution 

The calculation method is based on the chapter 3.4.1.2. So the real values of displacement and internal forces are reached 

due to the formulas discussed above. The calculation method to reach the relative horizontal displacements between the 

two shear connectors is presented hereinafter. The area moment of inertia of the top steel section and the bottom steel 

section are equal. So the bending stiffness of the two sections is given in equation 3.6. Here, it is presumed that the curves 

of the vertical displacements are identical in the case of the two beams. This means also that both sections carry 50 

percent of the total loading. The results of the analytical solution are available simply through halving the results from 

chapter 3.4.1.2. 

The vertical displacements of the beam with the cross section in the figure 3.16 are illustrated in figure 3.17. 

 

Figure 3.17: The loaded steel construction of the SCSC plate and its vertical displacement. Dimensions in [mm] 

The normal forces and the bending moments in the middle of the span are illustrated at both steel sections in figure 3.18. 

 

Figure 3.18: The normal forces and the bending moments in the steel plates and in the shear connectors. The illustrated internal 
forces are calculated in the middle of the span in the case of both steel sections. The two sections are demonstrated separately 
for ease of view: a) the top steel section of the SCSC plate; b) the bottom steel section of the SCSC plate. Dimensions in [mm] 
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Finally, the relative horizontal displacements between the two shear connectors will be evaluated. The functions to 

calculate the deflection at any point are available through Rubin’s formulas [20]. The first derivative ݓᇱ(ݔ) of deflection 

gives the slope of the deflected beam at any point, which means an angle measured in radians as an approximation in the 

case for small deflections. Through the assumption of the Euler-Bernoulli Beam Theory it is known, that the plain 

sections remain plane after the beam deformations. Therefore, the slopes of the plain sections are also given at any point 

of the beam. At last, the horizontal displacement between the centroid of one of the steel sections and the centroid of the 

shear connector is calculated by multiplying the first derivative ݓᇱ(ݔ) of deflection by the vertical distance of these two 

points. As both of the steel sections have the same bending, the double value of this horizontal displacement provides the 

relative horizontal displacement between the two shear connectors. The highest slipping occurs at the highest slope, 

namely at the supports of the beam, which is illustrated in figure 3.19. The detailed calculation is presented in appendix 

D.2. 

 

Figure 3.19: Slipping of the steel sections of the SCSC plate (red: the top steel section, blue: the bottom steel section) due to 
bending in case of a missing concrete core. Just the area at the support is illustrated. The displacements are stretched by a 
factor of 10 for ease of view. Dimensions in [mm] 

3.4.2.3 Framework model calculation 
The idea of this chapter is identical to the chapter 3.4.1.3. However, the design of the framework model (see figure 

3.20(b)) is more complex. As the framework model is two-dimensional, the two shear connectors at the bottom steel 

section with the thickness of 10 mm (see figure 3.20(a)) are considered together. Necessarily, the loading of the 

framework model is represented with nodal loads and the model is supported at the level of the centroid of the bottom 

steel section’s steel plate. 

 

Figure 3.20: a) The steel construction of the SCSC plate; b) framework model with vertical rigid members at a 165 mm distance. 
Dimensions in [mm] 
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The model consists of four separate horizontal beam elements (red, blue and black lines in figure 3.20(b)) which represent 

both the two steel plates and the two shear connectors. As the vertical position of the centroid of the two shear connectors 

are the same, only one horizontal black line is demonstrated in figure 3.20(b). However, in the framework model 

necessarily two separate horizontal members are designed here. One is connected to the horizontal members represented 

the top steel plate, and the other one is connected to the horizontal members represented the bottom steel plate. The 

connections illustrated with the orange-coloured lines in figure 3.20(b) are vertical rigid members. As the framework 

model is two-dimensional, the nodes of the shear connectors at the top and the bottom steel section have the same initial 

position. However, relative displacements of the involved nodes can occur in case of loading. As the unwelded 

connection between the two steel sections is not able to absorb tensile forces, compression members are used between the 

nodes of the top steel plate and the bottom steel plate to transfer only compression forces. These compression members 

are shown just in figure 3.21(c). 

To clarify the framework model illustrated in figure 3.20(b), the members are demonstrated more separately in figure 

3.21. Through the figure 3.21, it is showed easier that the top steel section (see figure 3.21(a)) and the bottom steel 

section (see figure 3.21(b)) are connected only by the compression members illustrated in figure 3.21(c). 

 

Figure 3.21: a) Framework model of the top steel section; b) framework model of the bottom steel section; c) compression 
members for the load transfer between the steel sections. Dimensions in [mm] 

The member properties (E, A, I) belong to the given part of the structure which is symbolised. The values are given in 

chapter 3.4.1.3. As the compression member is a special truss element, an iterative calculation becomes necessary. If 

tension occurred in one of the compression members, this member would be erased in the following iteration step. 

However, there is not any tension in the compression members due to the calculation results. This means that the iterative 

calculation is not necessary in the case of this simple model. The longitudinal stiffness of the vertical compression 

members is marked as infinity. However, in the calculation with the Direct Stiffness Method this value is also defined: 

ܣܧ = 10ଵସ ݇ܰ   (Longitudinal stiffness of the vertical compression members) 

The enormous value of the longitudinal stiffness of the vertical compression members ensures that the curves of the 

vertical displacements are identical in the case of the two beams which are connected. The same assumption is used for 

the analytical calculation above in chapter 3.4.2.2. 

The vertical displacements of the beam calculated with the Direct Stiffness Method are illustrated in figure 3.22. The 

highest vertical displacement in the middle of the span is 26,20 mm according to the framework model calculation (see 

figure 3.22) and 26,15 mm by the analytical solution (see figure 3.17). The difference is only 0,2 percent and the 

displacement curves demonstrated in figures 3.17 and 3.22 practically overlap each other. 
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Figure 3.22: The loaded framework model of steel construction of the SCSC plate and its vertical displacement calculated with 
the Direct Stiffness Method. Dimensions in [mm] 

Furthermore, the internal forces in the middle of the span will be examined. Figure 3.23 demonstrates the moments and 

forces for both steel sections of the framework model. In comparison with the real values (see figure 3.18) the framework 

model reproduces the results with only 0,2 percent difference. 

 

Figure 3.23: The framework model with vertical rigid members at a 165 mm distance. The internal forces are illustrated in the 
middle of the span: a) the internal forces of the top steel section; b) the internal forces of the bottom steel section. 

Finally, the relative horizontal displacements between the two shear connectors will be presented. The displacements of 

each node can be evaluated with the Direct Stiffness Method. The nodes of the shear connectors at the top and the bottom 

steel section have the same initial position. Relative displacements of the involved nodes can occur in the case of loading. 

These relative displacements are calculated easily by the addition of the two displacements of the nodes. The horizontal 

component is only examined hereinafter. The results of calculation at the area of the beam’s support are illustrated in 

figure 3.24. The relative horizontal displacement at the support is 3,027 mm according to the framework model 

calculation (see figure 3.24) and 3,032 mm by the analytical solutions (see figure 3.19). The difference is negligible. In 

comparison with the real values, the framework model reproduces the results of the relative horizontal displacements at 

each node with less than 0,2 percent difference. 

The conclusion of this chapter is that the more complex framework model with vertical rigid members at a 165 mm 

distance is a good substitution for calculating the displacement and internal forces of the steel construction of the SCSC 
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plate. It is also illustrated, that the slipping of the steel sections can be calculated properly with the framework model. 

Moreover, this validation method legitimates the more complex MATLAB program code. 

 

Figure 3.24: Framework model calculation results: horizontal displacements between the nodes of the shear connectors in the 
case of loading. Just the area at the support is illustrated. The displacements are stretched by a factor of 10 for ease of view. 
Dimensions in [mm] 

3.4.3 The effects due to the circular holes in the shear connector 
3.4.3.1 Introduction 

Lit.: [7] 

Up to this point the shear connectors have not had any circular holes, which is not the case for the shear connector of the 

SCSC plate. In this chapter, the effects due to the circular holes will be described through the top steel section of the 

SCSC plate. The model does not include end stiffeners and main steel girder webs. Furthermore, the applied span length 

and loading are also the same as in the chapter 3.4.1.2. However, the same modified member properties could be 

calculated with any load level. Instead of an analytical calculation, the structural analysis program RFEM [18] will be 

used to evaluate the basis values of deformations and internal forces. The area of the shear connector and the area 

moment of inertia of the shear connector will be modified in the framework model calculation so that the calculated 

displacements and internal forces reproduce the results of the Finite-Element-Analysis (FEA) software. In this way it will 

be possible to model the steel construction of the SCSC plate properly through a simple framework model. 

3.4.3.2 Results of the Finite-Element-Analysis (FEA) program RFEM 
Lit.: [7] 

As illustrated in figure 3.25, only half of the top steel section is modelled in cross direction with RFEM. Therefore, the 

shear connector features 12 circular holes. The left side of the beam is supported with a sliding support and the right side 

of the beam is fixed with line supports. Through the line supports all of the rotations are prevented and only the vertical 

displacement is allowed. The mesh refinements are defined as 1 cm in RFEM. 

 

Figure 3.25: The design of the top steel section for the RFEM calculation with the external loading 
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The maximal vertical deflection in the middle of the span is 86,52 mm. Figure 3.26 demonstrates the internal forces at 

both parts of the top steel section. These internal forces are calculated indirectly from the normal forces and moments at 

the line supports. 

 
Figure 3.26: The internal forces in the steel plate and in the shear connector through the RFEM calculation. The demonstrated 
moment and normal forces are calculated in the middle of the span, actually at the right side of the beam illustrated in figure 
3.25. Dimensions in [mm] 

Due to the holes in the shear connector, the maximal vertical deflection in the middle of the span enlarged with 65.4% 

compared to the displacement of the top steel section (52,30 mm) introduced in the chapter 3.4.1.2. Through the 

comparison with the results on figures 3.10 and 3.26, it is showed that the circular holes generate a rearrangement of the 

internal forces, too. Notable difference is that the RFEM calculation does not deliver moment in the steel plate as an 

approximation due to the used surface with 2D elements modelling the steel plate. 

3.4.3.3 Framework model calculation 
Lit.: [7] 

The objective of this chapter is to define the modified member properties (A, I) for the shear connector of the framework 

model so that the calculated displacements and internal forces reproduce the results of the FEA software. In this way, the 

shear deformation will be also considered in the framework model. However, the beam element stiffness matrix (see 

chapter 3.3) for the framework model calculation was derived by using the principles of Euler-Bernoulli Beam Theory. 

The substitutive cross section for the shear connector with circular holes is received through an iterative calculation with 

the simple framework model. The loading pattern is given in figure 3.15. Firstly, the complete section of the shear 

connector is used for Asc and Iy-sc. In this case the shear connector does not have any circular holes, and the displacement 

in the middle of the span is logically less than the expected value from RFEM (86,52 mm). Next, the cross section for the 

calculation of the member properties (Asc, Iy-sc) is the shear connector with a small cutting (cut height: 1 mm) in the 

middle of the section. The size of this opening enlarged in the following iteration steps always with 1 mm until the 

expected displacement is achieved. Therefore, the substitutive cross section fits the profile of the shear connector with a 

cutting in the middle with 91 mm. So, the substitutive cross section for the top steel section of the SCSC plate is 

illustrated in figure 3.27. 

 
Figure 3.27: a) The substitutive cross section for top steel section of the SCSC plate; b) framework model with vertical rigid 
members at a 165 mm distance. Dimensions in [mm] 
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The member properties (E, A, I) belong to the given part of the structure which is symbolised (see figure 3.27). These are 

presented as: 

௦ܧ = 210 ݇ܰ ݉݉ଶ⁄   (Young’s modulus of the steel) ܣ௦௣ = 15000 ݉݉ଶ  (Area of the steel plate) ܣ௦௖ = 1580 ݉݉ଶ  (Area of the substitutive cross section for the shear connector) ܫ௬ି௦௣ = 281250 ݉݉ସ (Area moment of inertia of the steel plate around the axis y) ܫ௬ି௦௖ = 6932382 ݉݉ସ (Area moment of inertia of the substitutive cross section for the shear connector around y) 

The longitudinal stiffness and the bending stiffness of the vertical rigid members are marked as infinity. In the calculation 

these values are also defined: 

ܣܧ = 10ଵଷ ݇ܰ  (Longitudinal stiffness of the vertical rigid members) ܫܧ = 10ଵଷ ݇ܰ݉݉ଶ  (Bending stiffness of the vertical rigid members) 

For the framework models in the chapters 3.4.1.3 and 3.4.2.3 these stiffness values are higher by one order of magnitude. 

This difference is important because of the mathematical procedure in the MATLAB, to reach a solution without 

numerical fail (singularity). 

The highest vertical displacement of the beam calculated with the framework model is 86,66 mm. Necessarily this 

deflection is practically equal with the result of the RFEM calculation in the chapter above, because the substitutive cross 

section was chosen according to the parity of the vertical displacements. 

Next, the internal forces in the middle of the span will be compared as the validation of the framework model with the 

substitutive member properties. Figure 3.28 demonstrates the moments and forces for the framework model. In 

comparison with the RFEM calculation results (see figure 3.26) the framework model reproduces the results with less 

than 1,5 percent difference. Furthermore, the framework model calculation delivers moment in the steel plate, too. 

However, this moment is logically negligible. 

 

Figure 3.28: The framework model with vertical rigid members at a 165 mm distance. The internal forces are illustrated in the 
middle of the span. Dimensions in [mm] 

As shear deformations of the steel section are also considered with RFEM, the framework model takes into account this 

effect through the modified member properties of the shear connector. 
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3.5 The spring framework model with constant spring stiffness values 
3.5.1 Model with one horizontal concrete beam 
3.5.1.1 Introduction 

Lit.: [7], [8]  

The 1 m long and 2,06 m wide model for ABAQUS analysis was constructed as a two-dimensional framework model. 

However, the two shear connectors at the bottom steel section with the thickness of 10 mm are considered together. The 

displacements, moments and forces were calculated with the Direct Stiffness Method. Because of the complexity of the 

framework model (large number of nodes), a system of linear equations with 342 unknowns arises. The solution is 

performed using program MATLAB. 

Despite the two-dimensional framework modelling (all nodes are coplanar) a good approximation of reality is achieved, 

since the results are similar to the ABAQUS calculation results. Figure 3.29 explains the structure of the framework. 

Basic member types are beam elements transferring all internal forces. Furthermore, the model includes pure compression 

members. Figures 3.29(a) and 3.29(b) show the beam elements for the top and the bottom steel sections. The vertical 

connection members between the horizontal members of the steel plate and the horizontal members of the steel shear 

connector (orange-coloured members in figures 3.29(a) and 3.29(b)) are rigid members in the model with a very high 

longitudinal and bending stiffness. Figure 3.29(c) illustrates the vertical load transfer between the top and the bottom steel 

section through the shear connectors. As the unwelded connection is not able to absorb tensile forces, the shear connector 

members of the steel sections (vertical green lines in figure 3.29(c)) are modelled to transfer only compressive forces 

between the top and the bottom steel plates. The differences between beam and truss members are considered in the 

element stiffness matrix. As the compression member is a special truss element, an iterative calculation becomes 

necessary. If tension occurred in one of the compression members, this member would be erased in the following iteration 

step. Moreover, to represent the static loading, 100 calculation steps are used, namely the external vertical load of the 

spring framework model is divided into 100 parts. At each step, the framework model bears 1 % of the total external 

vertical load. The geometry memorised after one load-step is the start position for the next load-step. Thus, it is 

important, that in every step just 1 % of the external load acts. Logically, the iterative calculation used for the 

compression members occurs at each of the 100 calculation steps, if it is necessary. This calculation process requires a 

computer-based support. 

Figure 3.29(d) illustrates the used concrete members. The concrete core is represented here only with one horizontal layer 

as an approximation. As the vertical compression between the steel plates and the concrete core is possible, the 

framework model includes vertical compression members too, which are pointed out in green in figure 3.29(d). 

Considering that the framework model is two-dimensional, the spring framework model has nodes with different node-

numbers in one position. For example, the nodes of the shear connectors at the top and the bottom steel section have the 

same initial position (see figures 3.29(a) and 3.29(b): it and ib). However, relative displacements of the involved nodes 

can occur in the case of loading. 

The particularity of the framework model is that it includes some springs. In figures 3.29(a), 3.29(b) and 3.29(d) the 

marked nodes (it, ib, ic) are start or end nodes of springs. Two springs always join to any node of the concrete beam. The 

one spring is effective between the shear connector of the top steel section and the concrete, the other one between the 

shear connector of the bottom steel section and the concrete (see figure 3.29(e)). Obviously, there are no springs between 

the two steel sections. Thus, a total number of 72 springs is used in the spring framework model. 
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Figure 3.29: The design of the spring framework model: a) members for the top steel section; b) members for the bottom steel 
section; c) members for the vertical load transfer between the steel sections; d) members for the concrete; e) spring model for 
horizontal, vertical and rotational stiffness; f) the complex framework model. Dimensions in [mm] 
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The nodes connected with a spring are defined by the same coordinates x, z at the unloaded phase in the framework 

model. Anyway, the springs do not need any length because their stiffness matrix consists only of the spring constants. 

With the same stiffness matrix it is possible to take into account the horizontal, vertical and rotational stiffness. As the 

holes in the shear connectors are circular, the concrete cannot transfer significant moments to the steel sections there, thus 

the rotational stiffness (CM) was set to zero. 

Figure 3.29(f) shows the interaction between the steel sections due to the concrete core. For ease of view just the 

horizontal springs are illustrated in the figure. 

3.5.1.2 The loading of the structure 
Lit.: [7], [8]  

Figure 3.30(a) shows the external vertical load in ABAQUS analysis used for fatigue limit state (see chapter 2.2), 

calculated with dead load and traffic Load Model 71 which is multiplied with a load factor of 1,48. This factor includes 

the partial safety factor ϒFf, the impact factor Φ2, and the damage equivalent factor λ. As in the Direct Stiffness Method 

just the nodes can be loaded: figure 3.30(b) illustrates the framework model used loading scheme. This pattern is 

equivalent with the loading in ABAQUS, and means a total vertical load of 161 kN at the support. Moreover, figure 3.30 

demonstrates that both ABAQUS and framework model have supports in the middle of the span as only half of the plate 

is modelled in cross direction. The left side of both models is supported with a sliding support and the right side of both 

models is fixed with line supports. Through the line supports all of the rotations are prevented and only the vertical 

displacement is allowed. However, in the case of the framework model it would be also possible to model the entire 

construction as in chapter 3.4 (see figures 3.7(b) and 3.22). 

 

Figure 3.30: The external vertical loading for fatigue limit state: a) ABAQUS model; b) spring framework model. 
Dimensions in [mm] 
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3.5.1.3 The member properties of the spring framework model 
Lit.: [7], [8] 

The member properties (E, A, I, L) belong to the given part of the structure which is symbolised. However, as it was 

shown in chapter 3.4.3, the area of the shear connectors and the area moment of inertia of the shear connectors (Asc, Iy-sc) 

are modified so that the effects due to the circular holes are considered. The member properties (E, A, I), which belong to 

the spring framework model (see figure 3.29), are shown in table 3.1. The calculations (A, I) are presented in appendix 

D.3. 

Es = 210 000 N/mm2 

Asp = 15 000 mm2 

Iy-sp = 281 250 mm4 

Asc = 1580 mm2 

Iy-sc = 6 932 382 mm4 

Ec = 35 200 N/mm2 

Ac = 163 200 mm2 

Iy-c = 393 040 000 mm4 

Table 3.1: The member properties (E, A, I) used for the spring framework model 

The longitudinal stiffness and the bending stiffness of the vertical rigid members (marked as infinity) are given in chapter 

3.4.3.3. The vertical connection members between the horizontal concrete members (in the case of three horizontal 

concrete layers, see figure 3.33) are rigid members, too. Thus, the shear deformations of the concrete beam are neglected 

as a good approximation in the case of this thin plate construction. In the model all of the compression members also have 

a very high longitudinal stiffness (EA = 1013 kN) as an approximation. 

3.5.1.4 The spring stiffness values 
Lit.: [7], [8]  

As it was demonstrated in chapter 3.2, to evaluate the spring stiffness values depending on the force, experimental tests 

were performed in February 2020 at the laboratory of TU Wien, Institute of Structural Engineering. The stiffness of a 

spring depends on the elasticity of the materials (steel and concrete), on the geometrical feature of the joint and on the 

forces occurring in the shear connectors. In the case of external vertical loading, all the horizontal and vertical forces in 

the shear connectors are different. This means that the 24 springs used have individual stiffness both in a horizontal and 

in a vertical direction. However, in this chapter the horizontal and vertical spring stiffness used for the framework model 

are constant. Therefore, two different calculations are carried out to get the results from figure 3.5. Firstly, a horizontal 

spring stiffness (Cx,a = 325,0 kN/mm) calculated from the maximal force in the shear connectors is used (see figure 3.5). 

As at this point results from the framework model were not available, the maximal force for the spring stiffness 

evaluation (91,0 kN) was chosen from the ABAQUS results as an approximation. With this approach, conservative 

results will appear for the vertical displacement. Secondly, a horizontal spring stiffness (Cx,b = 527,4 kN/mm) belonging 

to the average force in the shear connectors (54,5 kN) is used. In this case, conservative results will emerge for the 

horizontal forces in the shear connectors and for the internal forces of the structure elements. The aim of these two 

calculations is to keep on the safe side while analysing. This means that the higher displacement and the higher internal 

forces are chosen from the results of the two cases. According to the fact that the vertical forces in the shear connectors 

are smaller by about one order of magnitude as the highest horizontal force in the shear connector, a uniform vertical 

spring stiffness Cz = 10 000 kN/mm was assumed of both methods as an approximation. 
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3.5.1.5 The evaluation of results 
Lit.: [7], [8]  

The vertical displacement and the internal forces of the structure elements will be compared in this chapter with the 

ABAQUS calculation results. 

In the first step, the results in the middle of the span are compared. In this part of the structure the highest vertical 

displacement and the highest normal forces in the SCSC plate occur. The maximal vertical displacement is 7,01 mm 

according to the ABAQUS calculation, and 7,14 mm by the spring framework model with the horizontal spring stiffness 

Cx,a = 325 kN/mm. So, the framework model delivers a higher result, with an increase of 1,9 %. 

The normal forces in the steel plates are compared in figure 3.31. The green line shows the ABAQUS results, and the 

black line represents the results calculated with the spring framework model. ABAQUS gives the maximum bottom steel 

plate tensile force as 933,6 kN. The spring framework model with the horizontal spring stiffness Cx,b = 527,4 kN/mm 

delivers 767,0 kN which is 82,2 % of the ABAQUS result. The top steel plate has a compressive force of 751,2 kN in 

ABAQUS, and of 739,1 kN (98,4 %) in the framework model calculation. In the upper horizontal compressed concrete 

zone we get a compressive force of 442,5 kN in ABAQUS. Moreover, as in the used ABAQUS concrete damaged 

plasticity-model (CDP), tensile material behaviour for concrete is allowed for, a resultant tensile force (237,1 kN) occurs 

in the bottom concrete zone. In the framework model, the horizontal concrete beam has a resulting compressive force of 

30,1 kN in the middle of span. Notable is that it is not possible to represent the compression in the upper concrete zone 

and the tension in the lower concrete zone through a single horizontal beam in the framework. In this case, it could not be 

considered with the framework model, if in the horizontal concrete beam the tensile stress reached the ultimate tensile 

strength of the concrete. Therefore, the results through the calculation of the spring framework model differ from the 

ABAQUS results. 

 

Figure 3.31: Normal forces in the steel plates of the SCSC-plate: a) compressive forces in the top steel plate; b) tensile forces in 
the bottom steel plate. Dimensions in [mm] 

In the second step, the horizontal forces in the shear connectors are compared. The values of the forces in the shear 

connectors 1 - 12 are shown in figure 3.32 in a graph format for ease of view. The green line shows the ABAQUS results, 

and the black line represents the horizontal forces in the shear connectors calculated with the spring framework model. 
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According to the ABAQUS results, the maximum force in the shear connector at the top steel section occurs in the second 

circular hole from the support. This horizontal force component amounts to 98,5 kN. The framework model with the 

horizontal spring stiffness Cx,b = 527,4 kN/mm shows a maximum force of 88,62 kN (90,0 %) at the first hole. The 

ABAQUS calculation method indicates that the maximum force (73,6 kN) in the shear connector at the bottom steel 

section will be at the fifth hole. The framework model delivers a maximum force of 55,60 kN (75,5 %) at the fourth hole. 

 

Figure 3.32: Horizontal forces in the shear connectors of the SCSC-plate: a) forces in the top steel section; b) forces in the 
bottom steel section. Dimensions in [mm] 

The reason for the difference in results is partly due to the approximation that the spring stiffness is constant in the 

framework model. Moreover, the concept to represent the inelastic behaviour of concrete is different in ABAQUS 

compared to the framework model working with the laboratory test results. The used concrete damaged plasticity model 

in ABAQUS (see chapter 2.3.3) describes the tensile cracking and the compressive crushing of the concrete material, too. 

The response of concrete to uniaxial loading in tension and compression was defined in the PROPERY module of 

ABAQUS. For instance in the case of compression, the response is linear until the given value of initial yield. After this 

point it is characterized by stress hardening and strain softening. The framework model does not represent the tensile 

cracking and the softening stress-strain response in the concrete structure. This approach is right at the used load level 

(see chapter 2.2) because the ABAQUS results do not detect significant irreversible damage that occurs during the failure 

mechanisms. The inelastic deformations through the stress hardening of the concrete are considered in the framework 

model by the spring stiffness values of the composite connections. These values, based on the laboratory tests, differ from 

the spring stiffness values calculated indirectly from the ABAQUS results (see chapter 3.7.1). Consequently, the results in 

the ABAQUS calculation and the framework model are different because of the various parameters of compressive 

plasticity of concrete. 

Furthermore, the framework model with one horizontal concrete beam cannot perfectly replace the complex ABAQUS 

model. Therefore, a more detailed spring framework model with three horizontal concrete layers will be presented in the 

following chapter. As this framework model reproduces better the real construction, the results should converge to the 

ABAQUS calculation results. 
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3.5.2 Model with three horizontal concrete layers 
3.5.2.1 Introduction 

The model is similar to the structure introduced in chapter 3.5.1.1. The only difference is that the concrete core is divided 

into three horizontal layers for calculation (see figure 3.33). The vertical connection members between the horizontal 

members of the concrete beams (orange-coloured members in figure 3.33) are rigid members. As the vertical compression 

between the steel plates and the concrete core is possible, the framework model includes vertical compression members 

too, which are pointed out in green in figure 3.33. 

   

Figure 3.33: The members for the concrete of the spring framework model. Dimensions in [mm] 

The loading of the structure, the member properties of the spring framework model and the spring stiffness values have 

already been represented also in chapter 3.5.1. However, the area of a horizontal concrete beam is here 54 400 mm2 and 

the area moment of inertia of a concrete beam is 14 557 037 mm4. The calculations of these two values are presented in 

appendix D.4. 

3.5.2.2. The evaluation of results 
Lit.: [7], [8] 

Correspondingly to the chapter 3.5.1.5, the vertical displacement and the internal forces of the structure elements will be 

compared with the ABAQUS calculation results. 

In the first step, the results in the middle of the span are compared. In this part of the structure the highest vertical 

displacement and the highest normal forces in the SCSC plate occur. The maximal vertical displacement is 7,01 mm 

according to the ABAQUS calculation, and 7,82 mm by the spring framework model with the horizontal spring stiffness 

Cx,a = 325 kN/mm. So, the framework model delivers a greater deflection, with an increase of 11,5 %. ABAQUS gives 

the maximum bottom steel plate tensile force as 933,6 kN. The spring framework model with the horizontal spring 

stiffness Cx,b = 527,4 kN/mm delivers 896,9 kN which is 96,1 % of the ABAQUS result. The top steel plate has a 

compressive force of 751,2 kN in ABAQUS, and of 751,3 kN (100,0 %) in the framework model calculation. In the upper 

horizontal compressed concrete zone we get a compressive force of 442,5 kN in ABAQUS and of 412,0 kN (93,1 %) 

from the framework model. As in the used ABAQUS concrete damaged plasticity-model (CDP), tensile material 

behaviour for concrete is allowed for, a resultant tensile force (237,1 kN) occurs in the bottom concrete zone. In the 

framework model, the lower and middle horizontal concrete beams have a resulting tensile force of 253,7 kN (107,0 %). 

Notable is that in the lower horizontal concrete beam the tensile stress reaches the ultimate tensile strength of the 

concrete. Therefore, in the calculation of the spring framework model it is considered, that the bearable loads of the 

concrete beams are limited. 
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The normal forces in the steel plates are compared in figure 3.34. The green line shows the ABAQUS results, and the 

black line represents the results calculated with the spring framework model. 

 
Figure 3.34: Normal forces in the steel plates of the SCSC-plate: a) compressive forces in the top steel plate; b) tensile forces in 
the bottom steel plate. Dimensions in [mm] 

In the second step, the horizontal forces in the shear connectors are compared. According to the ABAQUS results, the 

maximum force in the shear connector at the top steel section occurs in the second circular hole from the support. This 

horizontal force component amounts to 98,5 kN. The framework model with the horizontal spring stiffness Cx,b = 527,4 

kN/mm shows a maximum force of 90,0 kN (91,4 %) at the first hole. Both calculation methods indicate that the 

maximum force in the shear connector at the bottom steel section will be at the fifth hole. ABAQUS gives 73,6 kN while 

the framework model delivers 64,4 kN (87,5 %). The values of the forces in the shear connectors 1 - 12 are similar in 

both calculation methods. These values are shown in figure 3.35 in a graph format for ease of view. 

 
Figure 3.35: Horizontal forces in the shear connectors of the SCSC-plate: a) forces in the top steel section; b) forces in the 
bottom steel section. Dimensions in [mm] 
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The green line shows the ABAQUS results, and the black line represents the horizontal forces in the shear connectors 

calculated with the spring framework model. The reason for the difference in results was explained in chapter 3.5.1.5. 

Actually, through the comparisons with the ABAQUS results in chapter 3.5, the framework model calculation cannot be 

validated. However, it is clear through the comparison of the results of chapter 3.5.1.5 and 3.5.2.2, that the more detailed 

spring framework model with three horizontal concrete layers reproduces better the results of ABAQUS model. 

3.6 The spring framework model with different spring stiffness values 
3.6.1 Model with one horizontal concrete beam 
3.6.1.1 Introduction  

In this chapter, the force-slip curve for the first loading is considered for the calculation of the spring stiffness values. The 

force-slip diagram was introduced in chapter 3.2. Figure 3.36 illustrates the framework model calculation used 

approximation of the force-slip diagram by line segments. With the calculation method of this chapter can be considered 

that the spring stiffness value depends on the force in the shear connector. Moreover, it is not necessary to use any results 

from the ABAQUS calculation as in the case of the model in chapter 3.5. Actually, the forces in the shear connectors 

were chosen from the ABAQUS results for the spring stiffness evaluation in chapter 3.5.1. Now, the spring stiffness 

values are calculated according to the force-slip curve (see figure 3.36) at each loading step. Thus, the forces in the shear 

connectors increase and the spring stiffness values (C1 – C7 in figure 36) decrease through the external load increments. 

 

Figure 3.36: The approximation of the force-slip diagram of the shear connector in the case of the first loading 

For the framework model calculation, straight line segments were sketched through the 8 points (red points in figure 3.36) 

from the laboratory tests described in chapter 3.2. It is illustrated with the dashed line in the figure 3.36 that the function 

created for the calculation in MATLAB continues above the load level of 91 kN. This is needful because the maximal slip 
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from the framework model calculation is not known at this point. Namely it is not warranted that the slip does not exceed 

the slip value of 0.28mm illustrated in figure 3.36. 

Here, the external vertical load of the spring framework model is divided into 500 parts in the framework model. Thus, 

500 calculation steps are used to represent the static loading (first loading). At each calculation step, the used horizontal 

spring stiffness value (C; the slope of a line segment in figure 3.36) is chosen according to the actual slip in the shear 

connector through the force-slip function in figure 3.36. The large number (500) of calculation steps ensures that the 

force-slip characteristic curve is considered precisely in the spring framework model calculation. Moreover, according to 

the chapter 3.5, a uniform vertical spring stiffness Cz = 10 000 kN/mm is assumed as an approximation. 

3.6.1.2 The evaluation of results 

Correspondently to the chapter 3.5.1.5., the vertical displacement and the internal forces of the structure elements will be 

compared in this chapter with the ABAQUS calculation results. 

The maximal vertical displacement is 7,01 mm according to the ABAQUS calculation, and 6,64 mm by the spring 

framework model with the different horizontal spring stiffness values. So, the framework model delivers a smaller result, 

with a decrease of 5,3 %. ABAQUS gives the maximum bottom steel plate tensile force as 933,6 kN. The spring 

framework model delivers 802,0 kN which is 85,9 % of the ABAQUS result. The top steel plate has a compressive force 

of 751,2 kN in ABAQUS, and of 745,6 kN (99,3 %) in the framework model calculation. 

The normal forces in the steel plates are compared in figure 3.37. The green line shows the ABAQUS results, and the 

black line represents the results calculated with the spring framework model. 

 

Figure 3.37: Normal forces in the steel plates of the SCSC-plate: a) compressive forces in the top steel plate; b) tensile forces in 
the bottom steel plate. Dimensions in [mm] 

In the second step, the horizontal forces in the shear connectors are compared. According to the ABAQUS results, the 

maximum force in the shear connector at the top steel section occurs in the second circular hole from the support. This 

horizontal force component amounts to 98,5 kN. The framework model shows a maximum force of 77,3 kN (78,5 %) at 

the first hole. The ABAQUS calculation method indicates that the maximum force (73,6 kN) in the shear connector at the 
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bottom steel section will be at the fifth hole. The framework model delivers a maximum force of 54,2 kN (73,6 %) at the 

fourth hole. The values of the forces in the shear connectors 1 - 12 are shown in figure 3.38 in a graph format for ease of 

view. The green line shows the ABAQUS results, and the black line represents the horizontal forces in the shear 

connectors calculated with the spring framework model. 

 

Figure 3.38: Horizontal forces in the shear connectors of the SCSC-plate: a) forces in the top steel section; b) forces in the 
bottom steel section. Dimensions in [mm] 

It is clear through the comparison of the results of figures 3.32 and 3.38 that the spring framework model with constant 

spring stiffness values reproduces better the results of ABAQUS. This conclusion was not expected, because a more 

advanced model should describe better the reality. The reason for the higher difference in results is due to the fact that the 

ABAQUS calculation takes into consideration differently the inelastic behaviour of concrete. In the case of the ABAQUS 

calculation, the spring stiffness values at the shear connectors can only be calculated from the results (see chapter 3.7.2). 

Actually, the horizontal forces in the shear connectors and the slips of the shear connectors can be evaluated from the 

results of ABAQUS. The quotients of forces and slips provide the spring stiffness for the composite connections. This 

evaluation of results shows that the spring stiffness is approximately constant in the case of the ABAQUS calculation. 

Namely, similar spring stiffness values arise at the different shear connectors. Thus, according to the ABAQUS 

calculation, the spring stiffness does not depend on the load level. This is the reason that the framework model with 

constant spring stiffness values reproduces better the horizontal forces in the shear connectors calculated in ABAQUS. 

Actually, the validation of the complex spring framework model through the ABAQUS calculation results is shown in 

chapter 3.7. There, a spring framework model with three horizontal concrete layers will be examined which considers the 

same spring stiffness values as ABAQUS. So, the comparison of ABAQUS and framework model calculation results is 

more meaningful compared to the comparisons in chapters 3.6.1 and 3.6.2. 
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3.6.2 Model with three horizontal concrete layers 
3.6.2.1 Introduction 

The model is identical with the structure introduced in chapter 3.5.2.1. Logically, the spring stiffness values are calculated 

here according to the explanations in chapter 3.6.1.1. Therefore, the different spring stiffness values are used in this 

chapter through the diagram in figure 3.36. Logically, this more advanced framework model with three concrete layers 

and different spring stiffness values describes better the real behaviour of a SCSC plate compared to the models examined 

in the previous chapters. 

3.6.2.2 The evaluation of results 

The vertical displacement and the internal forces of the structure elements will be compared in this chapter with the 

ABAQUS calculation results. 

The maximal vertical displacement is 7,01 mm according to the ABAQUS calculation, and 7,22 mm by the spring 

framework model with the different horizontal spring stiffness values. So, the framework model delivers a higher result, 

with an increase of 3,0 %. ABAQUS gives the maximum bottom steel plate tensile force as 933,6 kN. The spring 

framework model delivers 914,5 kN which is 98,0 % of the ABAQUS result. The top steel plate has a compressive force 

of 751,2 kN in ABAQUS, and of 754,2 kN (100,4 %) in the framework model calculation. 

The normal forces in the steel plates are compared in figure 3.39. The green line shows the ABAQUS results, and the 

black line represents the results calculated with the spring framework model. 

 

Figure 3.39: Normal forces in the steel plates of the SCSC-plate: a) compressive forces in the top steel plate; b) tensile forces in 
the bottom steel plate. Dimensions in [mm] 

In the upper horizontal compressed concrete zone we get a compressive force of 442,5 kN in ABAQUS and of 404,0 kN 

(91,3 %) from the framework model. As in the used ABAQUS concrete damaged plasticity-model (CDP), tensile material 

behaviour for concrete is allowed for, a resultant tensile force (237,1 kN) occurs in the bottom concrete zone. In the 

framework model, the lower and middle horizontal concrete beams have a resulting tensile force of 228,3 kN (96,3 %). 
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Next, the horizontal forces in the shear connectors are compared (see figure 3.40). According to the ABAQUS results, the 

maximum force in the shear connector at the top steel section occurs in the second circular hole from the support. This 

horizontal force component amounts to 98,5 kN. The framework model shows a maximum force of 78,6 kN (79,8 %) at 

the first hole. The ABAQUS calculation method indicates that the maximum force (73,6 kN) in the shear connector at the 

bottom steel section will be at the fifth hole. The framework model delivers a maximum force of 60,5 kN (82,2 %) also at 

the fifth hole. The values of the forces in the shear connectors 1 - 12 are shown in figure 3.40 in a graph format for ease 

of view. The green line shows the ABAQUS results, and the black line represents the horizontal forces in the shear 

connectors calculated with the spring framework model. 

As mentioned in the previous section 3.6.1.2., the reason for the difference in results in figure 3.40 is that the ABAQUS 

calculation takes into consideration differently the inelastic behaviour of concrete. Therefore, the framework model with 

constant spring stiffness values (see chapter 3.5.2.) reproduces better the values of the forces in the shear connectors 

calculated in ABAQUS. However, the maximal vertical displacement and the normal forces in the steel plates 

approximate properly the ABAQUS calculation results. The more developed model with different spring stiffness values 

will be used to simulate the cyclic loading in chapter 4, because this model does not use ABAQUS results for calculation. 

 

Figure 3.40: Horizontal forces in the shear connectors of the SCSC-plate: a) forces in the top steel section; b) forces in the 
bottom steel section. Dimensions in [mm] 

3.7 On the validation of the complex spring framework model 
3.7.1 Introduction 

To validate the complex spring framework model through the ABAQUS calculation results, it is necessary to create a 

spring framework model which considers the spring stiffness values calculated in ABAQUS. In this way, the comparison 

of results is reasonable as both the ABAQUS and the spring framework model operate with the same basis parameters. 

Logically, the more complex model with three horizontal concrete layers is used for the framework model. In chapter 

3.7.2 the ABAQUS calculation results will be analysed to evaluate the spring stiffness values for the framework model 

calculation. In chapter 3.7.3 the calculation results will be compared with the ABAQUS results as a validation of the 

spring framework model. 
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3.7.2 The stiffness of the composite connection in ABAQUS  

The horizontal forces in the shear connectors can be easily evaluated with cylindrical cuts created in the View Cut 

Manager of ABAQUS. The total horizontal slips (elastic and inelastic slips together) at the shear connectors are derived 

from the horizontal displacements between the nodes of the shear connectors in case of loading (see figure 3.41). The 

vertical components of the slips are negligible. The ABAQUS model consists of a 1 m long and 2,06 m wide section of 

the SCSC plate (see chapter 2.3). Therefore, the two outside shear connectors have a thickness of 10 mm. The central 

shear connector (thickness of 20 mm) is welded to the upper steel plate, while the outside shear connectors are welded to 

the bottom steel plate. Figure 3.41 shows the slipping of the central (red coloured part) and one of the outside (blue 

coloured part) shear connectors due to loading. The horizontal displacements between the marked nodes means the 

horizontal slips at two shear connectors together. One horizontal displacement marked in figure 3.41 occurs due to the 

horizontal forces in the two shear connectors. As in the SCSC plate all of the shear connectors are 20 mm thick, the 

horizontal force in the outside shear connector calculated in ABAQUS need to be doubled. So, the forces in the shear 

connectors welded to the bottom steel plate are twice as much as the results detected in ABAQUS. However, the slipping 

needs to be unvarying. The quotients of horizontal forces and horizontal slips provide the spring stiffness value for the 

composite connections. Notable is that this calculation method delivers an average value of the horizontal spring stiffness 

referring to two shear connectors. For example the first shear connector welded to the upper steel plate and the first shear 

connector welded to the bottom steel plate have the same spring stiffness through this evaluation. 

 

Figure 3.41: ABAQUS calculation results [mm]: horizontal displacements between the nodes of the shear connectors in case of 
loading. Just the area at the support (shear connectors 1 and 2) is illustrated. The displacements are stretched for ease of view.  

This calculation method provides 12 spring stiffness values as 12 circular holes are designed between the support and the 

plane of symmetry. Figure 3.42 illustrates that the spring stiffness is approximately constant in the case of the ABAQUS 

calculation with exception of the stiffness values at the first, the eighth and the last (twelfth) shear connectors. Namely, 

the spring stiffness values are influenced by local damages of the concrete in the case of the first and the eighth shear 

connectors. To detect these effects, figure 3.43 illustrates the horizontal forces in the shear connectors in the case of 

different load levels. The load level used for fatigue limit state belongs to the FRAME 15, which is marked with green 

colour in figure 3.43. Necessarily, at this load level were also compared the results of ABAQUS and framework model in 

chapters 3.5 and 3.6. The characters of the curves are the same until the FRAME 15 in the case of the bottom steel section 

(see figure 3.43(b)). Actually, there are not significant inelastic deformations around the shear connectors of the bottom 

steel section according to the ABAQUS results. However, an increased load induces local damages of the concrete, which 

lead to the relative reductions of horizontal forces in the composite connection (see figure 3.43(b): frame 20 and 25). 
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Figure 3.42: Spring stiffness values according to the ABAQUS calculation results 

In the case of the top steel section, inelastic deformations occur already due to the loading for fatigue limit state according 

to the ABAQUS calculation results (see figure 3.43(a): FRAME 15). The FEA software detects local compressive 

crushing of the concrete material at the first shear connector and tensile cracking of concrete under the eighth shear 

connector. Through these damages, the stiffness of the given composite connections decreases partly, which shows up 

also in the graph of the horizontal forces in the shear connectors. Logically, the two destructions are more expressive in 

the case of higher loads (see figure 3.43(a): FRAME 20 and 25). 

 

Figure 3.43: Horizontal forces in the shear connectors of the SCSC-plate in the case of different load levels: a) forces in the top 
steel section; b) forces in the bottom steel section. FRAME 0 means the dead load, while FRAME 15 represents the load used for 
fatigue limit state. Dimensions in [mm] 

It is illustrated in figure 3.42 with red colour that the spring stiffness values at the first, the eighth and the twelfth shear 

connectors differ markedly from the stiffness values at the remaining shear connectors calculated from the ABAQUS 

results. Notable is that the horizontal slip between the nodes of the twelfth shear connectors is extremely small, which 
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gives an excessive spring stiffness value (see figure 3.42). Obviously, the method of the spring stiffness evaluation does 

not fit at this special location. This means that the spring stiffness in ABAQUS is calculated from the average of nine 

quotients of horizontal forces and horizontal slips as the results at the first, the eighth and the twelfth shear connectors 

vary from the other values. This average means a spring stiffness of 1162 kN/mm. Moreover, this value is considered as 

the constant spring stiffness from ABAQUS, because the nine quotients deflect from 1162 kN/mm with only 4,3 % on 

average. 

The above mentioned ABAQUS results denote that inelastic deformations do not influence significantly the force transfer 

in the composite connection by the loading used for fatigue limit state. Actually, at ten shear connectors from twelve the 

spring stiffness can be adopted as 1162 kN/mm. If this stiffness arose merely from the elastic deformations in the shear 

connectors, the same spring stiffness would be developed from the spring stiffness evaluation by dead load. To control 

this assumption, the above described method of spring stiffness evaluation from ABAQUS is performed in the case of the 

dead load of the construction. By reason of the negligible horizontal slip between the nodes of the twelfth shear 

connectors, the spring stiffness from the eleventh shear connectors is applied at the twelfth shear connectors, too. So, the 

average of the twelve spring stiffness values is 1163 kN/mm in the case of dead load, which is practically equal the 

expected stiffness (1162 kN/mm). 

3.7.3 Comparison of results  

In the first instance, the framework model calculation in MATLAB is performed in the case of dead load with the 

constant spring stiffness value of 1163 kN/mm. In this case, the comparison between the ABAQUS calculation results 

and the framework model calculation results is meaningful as both calculation methods include the same spring stiffness 

representing the composite connection. So, the maximal vertical displacement in the middle of span is 1,24 mm according 

to the ABAQUS calculation, and 1,17 mm by the spring framework model. Thus, the framework model delivers a smaller 

result, with a decrease of 5,6 %. However, the difference (0,07 mm) is negligible. The values of the forces in the shear 

connectors 1 - 12 are shown in figure 3.44 in a graph format. The green line shows the ABAQUS results, and the black 

line represents the horizontal forces in the shear connectors calculated with the spring framework model. 

 

Figure 3.44: Horizontal forces in the shear connectors of the SCSC-plate in the case of dead load of the construction: a) forces 
in the top steel section; b) forces in the bottom steel section. Dimensions in [mm] 

The characters of the curves of the results are the same. However, major differences arise at the first three shear 

connectors of the bottom steel section (see figure 3.44(b)). The reason is that the concrete is divided into only three 
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horizontal layers in the framework model. Therefore, the horizontal forces cannot be delivered to the support at the 

bottom part of the concrete core without bending of the end stiffeners and the main steel girder. However, the ABAQUS 

calculation detects a high pressure here. In this way, the concrete loads more the shear connectors of the bottom steel 

section around the support in the framework model calculation. So, the horizontal forces can be transferred to the bottom 

steel plate close to the support. 

Next, the results at the load level used for fatigue limit state are compared. Firstly, the results of the framework model 

calculation with the constant spring stiffness value from ABAQUS (1162 kN/mm) are presented. Actually, the horizontal 

forces in the shear connectors are only considered in this case. These values are shown in figure 3.45 in a graph format 

for ease of view. Through the framework model with constant spring stiffness values, the SCSC-plate is modelled without 

any damages. In our case, this model is probably an approximation of reality as the ABAQUS calculation signs local 

damages at the first and the eighth shear connectors of the top steel section. 

 

Figure 3.45: Horizontal forces in the shear connectors of the SCSC-plate: a) forces in the top steel section; b) forces in the 
bottom steel section. The framework model operates with the constant spring stiffness value of 1162 kN/mm. 

Logically, the results of the horizontal forces in the shear connectors differ noticeably at these two positions (see figure 

3.45(a)). Actually, the characters of the graphs in figure 3.45(a) are different because of the two turning points of the 

green graph. 

Secondly, the results of the framework model with modified spring stiffness values at first and eighth shear connectors of 

the top steel section are presented at the load level used for fatigue limit state. As ABAQUS detects local compressive 

crushing of the concrete material at the first shear connector of the top steel section and tensile cracking of concrete under 

the eighth shear connector of the top steel section, the stiffness of these two composite connections are smaller than the 

average value (1162 kN/mm) calculated in chapter 3.7.2. To get the spring stiffness value for a single shear connector 

from ABAQUS, the method of slip evaluation needs to be changed. According to the ABAQUS results, a gap occurs at 

the circular hole of the shear connector between the edge of the concrete inside the hole and the edge of the steel shear 

connector in the case of loading. The horizontal component of this gap means now the horizontal slip at the shear 
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connector as an approximation. The quotient of the horizontal force in the shear connector and the horizontal slip 

provides the spring stiffness value for the examined composite connection. Due to this method of calculation, the spring 

stiffness value of the first shear connector of the top steel section is 987,4 kN/mm. Moreover, at the eighth shear 

connector of the top steel section this stiffness is 1051,2 kN/mm. The detailed calculation is presented in appendix E. 

Logically, at the remaining 10 shear connectors of the top steel section and at all the 12 shear connectors of the bottom 

steel sections the spring stiffness are considered with 1162 kN/mm according to the chapter 3.7.2. 

In this case, the maximal vertical displacement in the middle of span is 7,01 mm according to the ABAQUS calculation, 

and 6,27 mm by the spring framework model. Thus, the framework model delivers a smaller result, with a decrease of 

10,6 %. The values of the forces in the shear connectors 1 - 12 are shown in figure 3.46 in a graph format. Notable is that 

the characters of the curves are the same due to the two calculations. However, the framework model delivers higher 

results than the complex ABAQUS calculation. As it was expected, the framework model calculation reproduces better 

the results of ABAQUS also at the first and the eighth shear connectors of the top steel section compared with the 

framework model calculation with constant spring stiffness value (see figures 3.46 and 3.45). 

 

Figure 3.46: Horizontal forces in the shear connectors of the SCSC-plate: a) forces in the top steel section; b) forces in the 
bottom steel section. The framework model operates with the spring stiffness values from ABAQUS. Dimensions in [mm] 

The slip distributions through the two models are shown in figure 3.47. Here, the slips refer to the horizontal 

displacements between the shear connectors of the top and the bottom steel sections according to figure 3.41. Logically, 

the results from the framework model converge to the values from the ABAQUS calculation because the spring stiffness 

values were chosen according to the ABAQUS results. The main reason for the small differences is that the framework 

model delivers higher horizontal forces in the shear connectors than the ABAQUS calculation (see figure 3.46). 

The normal forces in the steel plates are compared in figure 3.48. The green line shows the ABAQUS results, and the 

black line represents the results calculated with the spring framework model. In the case of the top steel plate, the 

framework model calculation produces an upper approximation of the ABAQUS results. However, a lower 

approximation is arisen in the case of the bottom steel plate. 
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Figure 3.47: Comparison of slip distributions in ABAQUS and in the framework model 

ABAQUS gives the maximum bottom steel plate tensile force as 933,6 kN (see figure 3.48(b)). The spring framework 

model delivers 910,5 kN which is 97,5 % of the ABAQUS result. The top steel plate has a compressive force of 751,2 kN 

in ABAQUS, and of 799,2 kN (106,4 %) in the framework model calculation (see figure 3.48(a)). Notable is that the 

framework model with the different spring stiffness values based on the laboratory tests (see chapter 3.6) delivers a better 

approximation of the ABAQUS results referring to the normal forces in the steel plates (see figure 3.39). However, only 

the current model is suited to compare with the ABAQUS calculation results for the validation of the spring framework 

model. 

 

Figure 3.48: Normal forces in the steel plates of the SCSC-plate: a) compressive forces in the top steel plate; b) tensile forces in 
the bottom steel plate. The framework model operates with the spring stiffness values from ABAQUS. Dimensions in [mm] 

Finally, the normal forces in the three concrete layers are compared in figure 3.49. At the concrete zone in the middle, the 

resultant forces from compressions and tensions are represented in the case of the ABAQUS results for ease of 

comparison. Moreover, notable is that the tensile cracking of concrete causes a significant reduction in the tensile force at 

the lower concrete zone (see figure 3.49(c): 130,1 kN) in the case of the ABAQUS calculation. However, the tension in 

the middle zone is enlarged (see figure 3.49(b): 76,9 kN) as a compensation for the missing tension due to cracking. 
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The two models show significant differences around the support. The main reason is that the ABAQUS model enables a 

higher horizontal load transfer (see figure 3.49(c): -284,0 kN) between the concrete core and the main steel girder web at 

the bottom part of the lower concrete zone. In the framework model the lower concrete zone is represented with beam 

elements which transfer the forces in a vertical distance of 35,8 mm from the middle of the bottom steel plate (see figure 

3.33). Logically, the simple framework model cannot perfectly reproduce the results of the complex ABAQUS model at 

the support. 

 
Figure 3.49: Normal forces in the concrete layers of the SCSC-plate: a) upper concrete zone; b) concrete zone in the 
middle; c) lower concrete zone. Dimensions in [mm] 
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As shown in this chapter, the ABAQUS results can be reproduced appropriately with a two-dimensional spring 

framework model. Considering the static deflection, the forces in the composite connection and the maximal internal 

forces, the differences between the results are fairly small. So, the framework model with three horizontal concrete layers 

can be validated as a substitute engineering model for the complex three-dimensional model used by the Finite-Element-

Analysis software. The structure diagram of the spring framework model calculation is illustrated in the chapter 4.4 (see 

figure 4.77). 

3.8 Conclusion 

As shown in chapter 3, the load-bearing behaviour of the SCSC-plate can be illustrated with a two-dimensional spring 

framework model in the case of static loading. The calculation of the displacements and internal forces of the framework 

model is performed using the Direct Stiffness Method and the program MATLAB. It was represented that the engineering 

model is suitable to substitute the complex ABAQUS calculation. Moreover, the spring framework model introduced in 

chapter 3.6 operates without any results from the ABAQUS calculation because the used spring stiffness values based on 

laboratory tests (see chapter 3.2). Through this separate model illustrated in chapter 3.6.2, the vertical displacements and 

the internal forces reflect appropriately the ABAQUS results. For instance, the maximal vertical displacement in the 

middle of the span is 7,22 mm by the spring framework, and 7,01 mm according to the ABAQUS calculation. The 

comparisons of the normal forces in the steel plates are shown in figure 3.39. Moreover, the comparisons of the normal 

forces in the concrete layers are demonstrated below in figure 3.50. However, the horizontal forces in the shear 

connectors differ through the two calculation methods (see figure 3.40) because the ABAQUS and the framework model 

calculation take into consideration differently the inelastic behaviour of concrete. Fortunately, this characteristic does not 

influence significantly the static deflection and the normal forces in the construction parts. Thus, the spring framework 

model with different spring stiffness values as well as with three concrete layers is adequate to replace the time-

consuming calculation of ABAQUS. Namely, calculations with several geometrical shapes or various load levels can be 

easily done due to the framework model. The parameter study or the geometrical optimization would take a lot of time in 

ABAQUS because the development of the model is complicated. Furthermore, the computational time is also high in the 

case of a complex ABAQUS model. 

It is important to point out that the framework model does not figure the fracturing process of the materials in the 

structure. For instance, the tensile cracking of the concrete material is not considered in the simple framework model. 

Moreover, the softening stress-strain response is not modelled in the developed engineering model. However, it is 

considered in the framework model that the tensile strength and the compressive strength cannot be exceeded. As shown 

in figure 3.49(c) and figure 3.50(c), the horizontal forces in the concrete have a constant value of 190,4 kN around the 

middle of the span. Actually, 190,4 kN is the maximal tensile force of the examined concrete beams calculated from the 

tensile strength and the area of the members. Thus, logically, the framework model is applicable until the beginning of the 

fracturing processes. In the case of the load level used for fatigue limit state, ABAQUS detects some tensile cracking and 

compressive crushing of the concrete material. Fortunately, these failure mechanisms do not influence significantly the 

main load-bearing behaviour of the steel-concrete-steel composite plate. Thus, the framework model can be applied also 

at the examined fatigue limit state as an approximation. In the case of higher loads, an expansion of the presented 

framework model is necessary to evaluate the effects from cracking of concrete. 
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Figure 3.50: Normal forces in the concrete layers of the SCSC-plate: a) upper concrete zone; b) concrete zone in the 
middle; c) lower concrete zone. The framework model operates with different spring stiffness values according to 
chapter 3.6. Dimensions in [mm] 
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4. Simulation of cyclic loading and inelastic slip 
4.1 Introduction of the framework model for the cyclic loading 

Lit.: [7], [8] 

The spring framework model was used for static loads in the previous chapter. However, the SCSC plate will be loaded 

with a great number of load changes over the lifespan of the bridge. So, the effects of cyclic loading will be analysed with 

the spring framework model in this chapter. A complex ABAQUS model is not applicable for the calculation of the cyclic 

loading as the time taken for the calculation is huge. So, the spring framework model presented in this chapter has a 

relevant advantage over the ABAQUS calculation. Namely, in the case of the framework model calculation, the 

calculation results can be reached in minutes. So, all the effects of the cyclic loading can be easily evaluated. 

Due to the loading of the SCSC plate, permanent displacement appears as a gap between the surfaces of the steel circular 

hole and the concrete part inside this hole in the case of high forces in the composite connection. This permanent 

displacement in the composite connection is called inelastic slip, too. Fatigue investigations on composite beams [21] 

have also shown the fact that this inelastic slip already occurs due to the first loading of the structure (see figure 4.1(a): 

δinel,first). First loading means the first traffic load of the bridge. Logically, at the second loading the permanent 

displacements influence the behaviour of the structure. Namely, before the gap between the surfaces of the steel circular 

hole and the concrete part inside this hole has closed, there is no load transfer between the steel and concrete elements at 

the composite connection. This is illustrated in figure 4.1(b). Moreover, according to the laboratory tests (see chapter 

3.2), the stiffness of the concrete increases after the first loading, as the concrete at the composite connection becomes 

more compressed. Therefore, the spring stiffness will be greater at the second loading (Chys, see figure 4.1(a): n=2). From 

the second loading, this spring stiffness (Chys), which is calculated on the basis of the hysteresis loops, can be assumed 

constant. 

 
Figure 4.1: Force-slip diagrams for the shear connectors: a) increasing slip due to a high number of cycles; b) spring 
model to consider inelastic slip in the case of the second loading 
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The inelastic slips in the case of different load levels (maximal forces: 91 kN, 78 kN, 67 kN) were evaluated by the 

laboratory tests presented in chapter 3.2. According to these test results, the unloading after the first loading occurs along 

a curve with a gradient of 2738 kN/mm (Chys, see figure 4.1(a): n=2) on average. The results of the six experimental tests 

indicate that this gradient is unrelated to the load level. Logically, some dispersion of results can be detected. Moreover, 

at the framework model inelastic slips are not calculated until a horizontal force of 25 kN in the shear connector. This 

assumption is based on the force-slip diagram for the first loading in figure 3.5. It is shown there that in the case of small 

forces (< 25 kN) the stiffness of the composite connection is high and the slips are small. So, in this force range, after an 

unloading along a curve with a gradient of 2738 kN/mm (Chys) permanent displacements would not remain. In the case of 

any higher horizontal force (> 25 kN) in the shear connectors, the inelastic slips due to the first loading are calculated in 

the spring framework model. As mentioned above, at the beginning of the second loading, these inelastic slips are 

considered as gaps at the composite connections (see figure 4.1(b)). Moreover, the used spring stiffness at the second 

loading cycle is Chys = 2738 kN/mm (see figure 4.1) in the spring framework model.  

Additional loading cycles induce further increase of the inelastic slip (see figure 4.1(a): increasing slip). This slip 

increment, which represents the effects of the loadings over the lifespan of the bridge, is considered in the third loading 

cycle of the framework model. Actually, the increasing slip (see figure 4.1(a): 0,14 mm) after the last load cycle (the 2 

millionth cycle) of the laboratory tests (see chapter 3.2) is added to the value of inelastic slip used as the gap for the 

second loading. According to the laboratory tests, there are not significant relationship between the force in the shear 

connector and the value of increasing slip. So, the increment of 0,14 mm represents the average increasing slip of the six 

experimental tests. Logically, if the horizontal force in the shear connector did not exceed 25 kN, increasing slip would 

not consider in the composite connection. So, it is important to divide up the third loading cycle to be able to consider the 

effects of the changes of horizontal forces on the value of the inelastic slip increment. Thus, in the spring framework 

model 100 loading cycles represent all of the loading cycles after the second loading. At each cycle only 1% of the 

increment of 0,14 mm is used at the shear connectors where the horizontal force exceeds 25 kN. Actually, the horizontal 

forces in the shear connectors typically decrease due to the increase of the inelastic slip. As small forces (< 25 kN) do not 

induce further increase of the inelastic slip, at some shear connectors the inelastic slip increment is less than 0,14mm after 

the last (102th) loading cycle of the framework model. To calculate all the 102 loading cycles, the computational time is 

approximately 10 minutes in MATLAB in the case of the spring framework model with three horizontal concrete layers. 

The reason of the high time is that the system of linear equations with 342 unknowns needs to be solved 51 000 times (at 

each of the 102 loading cycles 500 times). To represent an additional loading cycle, 500 calculation steps (loading steps) 

were used, as in the case of the static loading. The step-by-step loading is here especially important. Namely, at each of 

the 500 calculation steps it needs to be examined whether the actual slip at the holes in the shear connectors have reached 

the value of the inelastic slip. Before the inelastic slip is reached, the calculation of the framework model performed in 

MATLAB runs without the horizontal spring element. After that point, the spring is taken into consideration with the 

increased stiffness (Chys). 

In chapter 4 two models will be examined. As in the chapters 3.5 and 3.6, at the first model the concrete core is 

represented with one horizontal beam, and at the second model it is divided into three horizontal layers for calculation. 

Referring to the evaluation of the spring stiffness values, two models were examined in the previous chapters. Firstly, the 

spring stiffness values were constant as an approximation. Secondly, different spring stiffness values were used according 

to the force-slip diagram from the laboratory test results (see chapter 3.2). Here, the more precise method with the 

different spring stiffness values will be used. So, both of the models in chapter 4 operates with spring stiffness values 

depending on the actual horizontal force in the shear connectors. 
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4.2 The spring framework model with different spring stiffness values 
4.2.1 Model with one horizontal concrete beam 
4.2.1.1 Introduction  

The model is identical with the structure introduced in chapter 3.5.1.1. Moreover, the spring stiffness values for the first 

loading are calculated here according to the interpretations in chapter 3.6.1.1. So, different spring stiffness values are used 

through the diagram in figure 3.36. Figure 4.2 illustrates the total slips and the inelastic slips due to the first loading at 

each shear connectors. These inelastic slip values will be considered as gaps in the composite connections in the case of 

the second loading. 

 

Figure 4.2: Total slips and inelastic slips due to the first loading cycle: a) slips between the concrete and the shear connectors 
of the top steel section; b) slips between the concrete and the shear connectors of the bottom steel section. Dimensions in [mm] 

The inelastic slip values are calculated from the total slip at a composite connection in MATLAB. Actually, at each 

composite connection the total slip is decreased with the quotient of the horizontal force in the shear connector (see figure 

3.38) and the spring stiffness value used for the unloading phase after the first loading (Chys = 2738 kN/mm). However, in 

the case of the two composite connections, where the horizontal forces are smaller than 25 kN (see figure 3.38), the 

inelastic slips are defined zero without any calculation. So, gap elements are modelled at only 22 composite connections 

of the structure. 
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4.2.1.2 Effects due to the second load cycle 

In this chapter, the spring framework model calculation results of the second loading are examined. According to the 

framework model calculation results, the structure has a vertical displacement of 1,19 mm in the middle of the span when 

the first gap of 22 gaps at the holes of the shear connectors closes. At this point, the 55th calculation step of the 500 

calculation steps is activated, which means that actually 11 % of the external vertical load is acting. Up to this point, the 

horizontal load transfer is only possible at the two holes of the shear connectors where the inelastic slips were defined 

zero (see figure 4.2). In the case of the first loading, at the 55th calculation step the deflection in the middle of the span 

was only 0,59 mm. Logically, the transfer of forces between the steel and the concrete material was better at the first 

loading. Actually, the gaps at the second loading induce the increment of the vertical displacement of the structure. 

All the gaps at the holes of the top steel section close when 29,8 % of the external vertical load is effective (149th 

calculation step). The vertical deflection is 2,78 mm at this loading step (149/500). Figure 4.4 illustrates that only 5 shear 

connectors of the bottom steel section are activated at this point. Moreover, the horizontal forces in the shear connectors 

are compared with the forces in the case of the first loading in figure 4.4. 

After this, the gaps at the shear connector of the bottom steel section close by the time that 39,8 % of the load has been 

reached (199th calculation step). In this case the vertical displacement in the middle of the span is 3,35 mm. The 

horizontal forces in the shear connectors are also illustrated in figure 4.4 in comparison with the forces at the first loading. 

At the total loading (500th calculation step) the total vertical displacement is 6,64 mm which is practically equal to the 

result from the first loading. The increment is only 0,002 mm. The comparison of the deflections at each loading step is 

illustrated in figure 4.3. The black line shows the results at the first loading, the green line represents the results 

calculated at the second loading. The 500th loading step in the figure means the total vertical load of the structure. 

 

Figure 4.3: Comparison of the vertical displacements at midspan at different loading steps 
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Figure 4.4: Horizontal forces in the shear connectors of the SCSC-plate in the case of different loading steps at the first and the 
second load cycles: a) forces in the top steel section; b) forces in the bottom steel section. Dimensions in [mm] 
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Although vertical displacements occur until the gaps close, after that the greater spring stiffness value (Chys) is used. 

Therefore, there are no great differences between the total vertical displacements of the first and second loadings. Due to 

the total second loading, the horizontal forces in the shear connectors do not change significantly compared with the 

forces in the case of the total first loading (see figure 4.4: loading step 500/500). 

The normal forces in the steel plates at the second loading are illustrated in figure 4.5. Correspondingly to the horizontal 

forces in the shear connectors, the normal forces in the steel plates (see figure 4.5) are also similar to the results at the first 

loading (see figure 3.37). 

 

Figure 4.5: Normal forces in the steel plates of the SCSC-plate: a) compressive forces in the top steel plate; b) tensile forces in 
the bottom steel plate. Dimensions in [mm] 

4.2.1.3 Effects from the growth of the inelastic slip after the second load cycle 

As mentioned in the chapter 4.1, after the second loading, 100 loading cycles will be modelled additionally with the 

spring framework model to represent all the 2 million loading cycles. According to the laboratory tests (see chapter 3.2), 

the total increment of the inelastic slip is 0,139 mm. However, the rounded value (0,14 mm) was illustrated in the 

previous chapter (see figure 4.1). Logically, at each of the 100 loading cycles in the framework model only 1% of the 

total increment is used at the shear connectors. However, in the case of small forces in the composite connection (< 25 

kN) the inelastic slip is not enlarged with additional increasing slip. 

Figure 4.6 illustrates the inelastic slips due to the second and 2 millionth (102th loading in the framework model) loading 

at each shear connectors. It is noticeable that the inelastic slip values rise significantly through the great number of load 

changes. However, this effect arises from the results of the laboratory tests which are considered in the framework model 

calculation. As shown in figure 4.7, the increasing slip is actually the difference between the inelastic slip values 

illustrated in figure 4.6 at each shear connector. Logically, the maximal value of the increasing slip is 0,139 mm. 

According to the framework model calculation results, the increasing slip value reaches the maximal value at only six 

composite connections (see figure 4.7). These maximal values are marked with 100 % in figure 4.7. This indicates that at 

each of the 100 loading cycles the increment of the increasing slip (0,00139 mm) was added to the current inelastic slip 

value. Actually, the addition of these increments occurs automatically in MATLAB as the horizontal forces in these six 

shear connectors exceed 25 kN at each of the 102 loading cycle. As an example, the horizontal forces in the first shear 

connector of the top steel section are illustrated in figure 4.8(a). 
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Figure 4.6: Inelastic slips due to the second and 2 millionth loading cycle: a) inelastic slips between the concrete and the shear 
connectors of the top steel section; b) inelastic slips between the concrete and the shear connectors of the bottom steel section 

As an additional example, the ninth shear connector of the top steel section has an increasing slip of 0,093 mm (see figure 

4.7(a)). Namely, at 67 loading cycles of the 100 loading cycles the increment of the increasing slip (0,00139 mm) was 

added to the current inelastic slip value. So, 67 % of the maximal value of the increasing slip is activated after the 2 

millionth loading cycle. At each loading cycle it is examined whether the force in the shear connector at the previous 

loading cycle reached the value of 25 kN. Figure 4.8(b) shows that at the second loading and approximately at the first 29 

loading cycles of the 100 loading cycles after the second loading the horizontal force in the composite connection exceeds 

25 kN. After the 29th loading cycle, the force fluctuate around 25 kN. This fluctuation is reasonable. If the force failed to 

reach 25 kN, the inelastic slip would not increase at the next loading cycle. So, this composite connection will be 

effective earlier which generates a higher force in this shear connector. Earlier means here that the gap at the composite 

connection closes at a smaller loading step compared to the loading step at the previous loading cycle. If this force 

exceeded 25 kN again, the inelastic slip would increase at the following loading cycle with the increment of 0,00139 mm. 

So, at this load cycle the composite connection will be effective later which induces a smaller force in the shear 

connector. In this way the force will be less than 25 kN again. 
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Figure 4.7: Increasing slips due to 2 million load cycle: a) increasing slips between the concrete and the shear connectors of the 
top steel section; b) increasing slips between the concrete and the shear connectors of the bottom steel section 

It is also notable in figures 4.6 and 4.7 that increasing slips occur at each shear connectors. However, in the case of the 

twelfth shear connectors of the top and bottom steel sections permanent displacements haven’t remained after the second 

loading. Moreover, the forces in these two shear connectors are smaller than 25 kN at the second loading (see figure 4.4). 

So, at the third loading cycle in the framework model calculation (first loading cycle of the 100 cycles after the second 

loading) these two composite connections do not include any inelastic slip. However, the horizontal forces in this two 

shear connectors change due to the additional loading cycles. According to the results, in the case of the top steel section, 

at the twelfth shear connector the horizontal force is higher than 25 kN at 9 loading cycles. In the case of the bottom steel 

section, this limit is exceeded at only 3 loading cycles. In this way, small increasing slip values can be emerged at these 

composite connections, too. So, at the 2 millionth loading cycle the spring framework model consists gaps at each of the 

24 shear connectors. 

Next, the spring framework model calculation results after the 2 millionth loading are examined. The comparison of the 

deflections with the results from the first and second loadings is illustrated in figure 4.9 at each loading step. According to 

the framework model calculation results, the structure has a vertical displacement of 1,70 mm in the middle of the span 

when the first gap of 24 gaps at the holes of the shear connectors closes. At this point, the 78th calculation step of the 500 

calculation steps is activated, which means that actually 15,6 % of the external vertical load is acting. Up to this point, the 
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horizontal load transfer is not possible at the holes of the shear connectors. In the case of the first loading, at the 78th 

calculation step the deflection in the middle of the span was only 0,84 mm. Logically, the increased gaps due to 2 million 

loading cycles induce the increment of the vertical displacement of the structure. 

 

Figure 4.8: Horizontal forces in the shear connectors depending on the loading cycles: a) horizontal forces in the first shear 
connector of the top steel section; b) horizontal forces in the ninth shear connector of the top steel section 

 
Figure 4.9: Comparison of the vertical displacements at midspan at different loading steps 
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All the gaps at the holes of the top steel section close when 59,6 % of the external vertical load is effective (298th 

calculation step). The vertical deflection is 5,69 mm at this loading step (298/500). Figure 4.10 illustrates that only 3 

shear connectors of the bottom steel section are activated at this point. Moreover, the horizontal forces in the shear 

connectors are compared with the forces in the case of the first loading in figure 4.10. 

 

Figure 4.10: Horizontal forces in the shear connectors of the SCSC-plate in the case of different loading steps at the first and the 
2 millionth load cycles: a) forces in the top steel section; b) forces in the bottom steel section. Dimensions in [mm] 



117 

 
 

After this, the gaps at the shear connector of the bottom steel section close by the time that 72,2 % of the load has been 

reached (361th calculation step). In this case the vertical displacement in the middle of the span is 6,44 mm. The 

horizontal forces in the shear connectors are also illustrated in figure 4.10 in comparison with the forces at the first 

loading. 

At the total loading (500th calculation step) the total vertical displacement is 7,96 mm.  Compared with the deflection due 

to the first loading, the increment is 1,32 mm, which means a 19,9 % increase (see figure 4.9).  

At the 2 millionth loading, the horizontal forces in the shear connectors decrease noticeably compared to the results of the 

first loading (see figure 4.10: loading step 500/500). The reason of this effect is that the gaps at the holes are enlarged 

with the value of the increasing slip, so the load transfer between the steel and concrete elements at the shear connectors 

are effective just for a smaller part of the total external vertical load. Moreover, after the second loading the same spring 

stiffness value (Chys) is used. So, there is no compensation of the enlarged inelastic slips with greater spring stiffness 

values, as was the case with the second loading. It is also evident that the top steel section and the bottom steel section do 

not work together until the first gap closes. These effects of the growth of the inelastic slip after the second loading cycle 

play a significant role. For instance, in the middle of the span, the normal forces in the steel plates are smaller at the 2 

millionth loading (102th loading in the framework model). Figure 4.11 shows the above mentioned decrease of horizontal 

forces, too. The green line represents the results at the 2 millionth loading, the black line shows the results at the first 

loading. 

 

Figure 4.11: Normal forces in the steel plates of the SCSC-plate: a) compressive forces in the top steel plate; b) tensile forces in 
the bottom steel plate. Dimensions in [mm] 

4.2.2 Model with three horizontal concrete layers 
4.2.2.1 Introduction  

The spring framework model with three horizontal concrete layers is identical with the structure introduced in chapter 

3.5.2.1. Moreover, different spring stiffness values are used through the diagram in figure 3.36, as in the case of the 

previous chapter. The aim of this chapter is to calculate the effects from the cyclic loading with a more precise model 

compared to the simple model with one concrete beam used in the chapter 4.2.1. Through the model with more concrete 

layers it will be possible to detect the effects of the increasing slip on the internal forces in the concrete, too. 
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Figure 4.12 illustrates the total slips and the inelastic slips due to the first loading at each shear connectors. These 

inelastic slip values will be considered as gaps in the composite connections in the case of the second loading. 

 

Figure 4.12: Total slips and inelastic slips due to the first loading cycle: a) slips between the concrete and the shear connectors 
of the top steel section; b) slips between the concrete and the shear connectors of the bottom steel section 

The inelastic slip values are calculated from the total slip at each composite connection. However, in the case of the two 

composite connections, where the horizontal forces are smaller than 25 kN (see figure 3.40), the inelastic slips are defined 

zero without any calculation. So, as in the case of the model with one horizontal concrete beam (see chapter 4.2.1.1), gap 

elements are modelled at only 22 composite connections of the structure. 

4.2.2.2 Effects due to the second load cycle 

In this chapter, the spring framework model calculation results of the second loading are examined. According to the 

framework model calculation results, the structure has a vertical displacement of 1,23 mm in the middle of the span when 

the first gap of 22 gaps at the holes of the shear connectors closes. At this point, the 56th calculation step of the 500 

calculation steps is activated, which means that actually 11,2 % of the external vertical load is acting. Up to this point, the 

horizontal load transfer is only possible at the two holes of the shear connectors where the inelastic slips were defined 

zero (see figure 4.12). In the case of the first loading, at the 56th calculation step the deflection in the middle of the span 

was only 0,60 mm. Logically, the transfer of forces between the steel and the concrete material was better at the first 

loading. Actually, the gaps at the second loading induce the increment of the vertical displacement of the structure. 
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All the gaps at the holes of the top steel section close when 31,8 % of the external vertical load is effective (159th 

calculation step). The vertical deflection is 2,98 mm at this loading step (159/500). Figure 4.14 illustrates that only 2 

shear connectors of the bottom steel section are activated at this point. Moreover, the horizontal forces in the shear 

connectors are compared with the forces in the case of the first loading in figure 4.14. 

After this, the gaps at the shear connector of the bottom steel section close by the time that 48,6 % of the load has been 

reached (243th calculation step). In this case the vertical displacement in the middle of the span is 4,07 mm. The 

horizontal forces in the shear connectors are also illustrated in figure 4.14 in comparison with the forces at the first 

loading. 

At the total loading (500th calculation step) the total vertical displacement is 7,22 mm which is practically equal to the 

result from the first loading. The increment is only 0,003 mm. The comparison of the deflections at each loading step is 

illustrated in figure 4.13. The black line shows the results at the first loading, the green line represents the results 

calculated at the second loading. The 500th loading step in the figure means the total vertical load of the structure. 

 

Figure 4.13: Comparison of the vertical displacements at midspan at different loading steps 

Although vertical displacements occur until the gaps close, after that the greater spring stiffness value (Chys) is used. 

Therefore, there are no great differences between the total vertical displacements of the first and second loadings. Due to 

the total second loading, the horizontal forces in the shear connectors do not change significantly compared with the 

forces in the case of the total first loading (see figure 4.14: loading step 500/500). So, the model with three horizontal 

concrete layers has the similar behaviour as the model with only one concrete layer examined in chapter 4.2.1.2. 

The normal forces in the concrete layers are illustrated in figure 4.15. Correspondingly to the horizontal forces in the 

shear connectors, these normal forces in the concrete are also similar to the results at the first loading (see figure 4.15). 
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Figure 4.14: Horizontal forces in the shear connectors of the SCSC-plate in the case of different loading steps at the first and the 
second load cycles: a) forces in the top steel section; b) forces in the bottom steel section. Dimensions in [mm] 
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As shown in figure 4.15, the horizontal forces have a constant value of 190,4 kN around the area of the middle of the span 

in the lower horizontal concrete beam. The reason for this fact is that the tensile stress reaches here the ultimate tensile 

strength of the concrete. Therefore, the bearable loads of the concrete beams are limited in the spring framework model 

with the maximal tensile force of 190,4 kN. 

 

Figure 4.15: Normal forces in the concrete layers of the SCSC-plate: a) first loading; b) second loading. Dimensions in [mm] 

The normal forces in the steel plates at the second loading are illustrated in figure 4.16. Logically, these forces are also 

similar to the results detected at the first loading (see figure 3.39). 
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Figure 4.16: Normal forces in the steel plates of the SCSC-plate: a) compressive forces in the top steel plate; b) tensile forces in 
the bottom steel plate. Dimensions in [mm] 

4.2.2.3 Effects from the growth of the inelastic slip after the second load cycle 

Accordance with the chapter 4.2.1.3, after the second loading, the loading cycles until 2 millionth loading are represented 

with 100 loading cycles in the framework model. At each of the 100 loading cycles in the framework model only 1% of 

the increment of the total increment is used at the shear connectors. However, in the case of small forces in the composite 

connection (< 25 kN) the inelastic slip is not enlarged with additional increasing slip. Figure 4.17 illustrates the inelastic 

slips due to the second and 2 millionth (102th loading in the framework model) loading at each shear connectors. It is 

noticeable that the inelastic slip values rise significantly through the great number of load changes. However, this effect 

arises from the results of the laboratory tests which are considered in the framework model calculation. The increasing 

slip (see figure 4.18) is the difference between the inelastic slip values illustrated in figure 4.17 at each shear connector. 

As in the case of the model with one concrete beam, the maximal value of the increasing slip is 0,139 mm. According to 

the framework model calculation results, the increasing slip value reaches the maximal value at only eight composite 

connections (see figure 4.18). These maximal values are marked with 100 % in figure 4.18. This indicates that at each of 

the 100 loading cycles the increment of the increasing slip (0,00139 mm) was added to the current inelastic slip value. 

As an example, the horizontal forces in the first shear connector of the top steel section are illustrated in figure 4.19(a). 

Here, the horizontal forces exceed 25 kN at each loading cycle. Logically, the increasing slip reaches the maximal value 

(0,139 mm). 

The ninth shear connector of the top steel section has an increasing slip of 0,098 mm (see figure 4.18(a)). Namely, at 70 

loading cycles of the 100 loading cycles the increment of the increasing slip (0,00139 mm) was added to the current 

inelastic slip value. So, 70 % of the maximal value of the increasing slip is activated after 2 millionth loading cycles. At 

each loading cycle it is examined whether the force in the shear connector at the previous loading cycle reached the value 

of 25 kN. Figure 4.19(b) shows that at the second loading and approximately at the first 30 loading cycles of the 100 

loading cycles after the second loading the horizontal force in the composite connection exceeds 25 kN. After the 30th 

loading cycle, the force fluctuate around 25 kN. The reason of this fluctuation was described in chapter 4.2.1.3. 
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Figure 4.17: Inelastic slips due to the second and 2 millionth loading cycle: a) inelastic slips between the concrete and the shear 
connectors of the top steel section; b) inelastic slips between the concrete and the shear connectors of the bottom steel section  

It is also notable in figures 4.17 and 4.18 that increasing slips occur at each shear connectors. However, in the case of the 

twelfth shear connectors of the top and bottom steel sections permanent displacements have not remained after the second 

loading. Moreover, the forces in these two shear connectors are smaller than 25 kN at the second loading (see figure 

4.14). So, at the third loading cycle in the framework model calculation (first loading cycle of the 100 cycles after the 

second loading) these two composite connections do not include any inelastic slip. However, the horizontal forces in this 

two shear connectors change through the additional loading cycles. According to the results, in the case of the top steel 

section, at the twelfth shear connector the horizontal force is higher than 25 kN at 9 loading cycles. In the case of the 

bottom steel section, this limit is exceeded at 10 loading cycles. In this way, small increasing slip values can be emerged 

at these composite connections, too. So, at the 2 millionth loading cycle the spring framework model consists gaps at each 

of the 24 shear connectors. 
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Figure 4.18: Increasing slips due to 2 million load cycle: a) increasing slips between the concrete and the shear connectors of 
the top steel section; b) increasing slips between the concrete and the shear connectors of the bottom steel section 

 
Figure 4.19: Horizontal forces in the shear connectors depending on the loading cycles: a) horizontal forces in the first shear 
connector of the top steel section; b) horizontal forces in the ninth shear connector of the top steel section 
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Next, the spring framework model calculation results after the 2 millionth loading are examined. The comparison of the 

deflections with the results from the first and second loadings is illustrated in figure 4.20 at each loading step. According 

to the framework model calculation results, the structure has a vertical displacement of 2,60 mm in the middle of the span 

when the first gap of 24 gaps at the holes of the shear connectors closes. At this point, the 118th calculation step of the 

500 calculation steps is activated, which means that actually 23,6 % of the external vertical load is acting. Up to this 

point, the horizontal load transfer is not possible at the holes of the shear connectors. In the case of the first loading, at the 

118th calculation step the deflection in the middle of the span was only 1,30 mm. Logically, the increased gaps due to 2 

million loading cycles induce the increment of the vertical displacement of the structure. 

All the gaps at the holes of the top steel section close when 61,2 % of the external vertical load is effective (306th 

calculation step). The vertical deflection is 6,38 mm at this loading step (306/500). Figure 4.21 illustrates that only 2 

shear connectors of the bottom steel section are activated at this point. Moreover, the horizontal forces in the shear 

connectors are compared with the forces in the case of the first loading in figure 4.21. 

After this, the gaps at the shear connector of the bottom steel section close by the time that 79,2 % of the load has been 

reached (396th calculation step). In this case the vertical displacement in the middle of the span is 7,74 mm. The 

horizontal forces in the shear connectors are also illustrated in figure 4.21 in comparison with the forces at the first 

loading. At the total loading (500th calculation step) the total vertical displacement is 9,03 mm. Compared with the 

deflection due to the first loading, the increment is 1,81 mm, which means a 25,1 % increase (see figure 4.20). 

 

Figure 4.20: Comparison of the vertical displacements at midspan at different loading steps 

At the 2 millionth loading, the horizontal forces in the shear connectors decrease noticeably compared to the results of the 

first loading (see figure 4.21: loading step 500/500). The reason of this effect is that the gaps at the holes are enlarged 

with the value of the increasing slip, so the load transfer between the steel and concrete elements at the shear connectors 
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are effective just for a smaller part of the total external vertical load. Moreover, after the second loading the same spring 

stiffness value (Chys) is used. So, there is no compensation of the enlarged inelastic slips with greater spring stiffness 

values, as was the case with the second loading. 

 

Figure 4.21: Horizontal forces in the shear connectors of the SCSC-plate in the case of different loading steps at the first and the 
2 millionth load cycles: a) forces in the top steel section; b) forces in the bottom steel section. Dimensions in [mm] 
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The top steel section and the bottom steel section do not work together until the first gap closes. This effect of the growth 

of the inelastic slip after the second loading cycle plays a significant role. For instance, in the middle of the span, the 

normal forces in the concrete are lager at the 2 millionth loading (102th loading in the framework model). Figure 4.22 

illustrates the normal forces in the horizontal concrete layers. 

 

Figure 4.22: Normal forces in the concrete layers of the SCSC-plate: a) first loading; b) 2 millionth loading. Dimensions in [mm] 
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Compared to the first loading, the framework model delivers a higher result (535,8 kN) in the upper horizontal 

compressed concrete zone in the middle of the span (see figure 4.22), with an increase of 32,6 %. The lower and middle 

horizontal concrete beams together have a resulting tensile force of 277,3 kN, which means an increase of 21,5 %. 

In the framework model, according to the ABAQUS results in the case of static loads, the tensile strength of concrete is 

not reduced by concrete cracking. However, as shown above, the horizontal tensile forces in the concrete increase 

significantly through the increasing slip. Therefore, it would be useful to evaluate the effects from cracking of concrete 

with an expansion of the presented framework model. 

Finally, figure 4.23 shows that the normal forces in the steel plates are smaller at the 2 millionth loading (102th loading in 

the framework model) in the middle of the span compared to the forces at the first loading. 

 

Figure 4.23: Normal forces in the steel plates of the SCSC-plate: a) compressive forces in the top steel plate; b) tensile forces in 
the bottom steel plate. Dimensions in [mm] 

4.3 Comparison of results 

In chapter 4.2.1 the model with one horizontal concrete beam was analysed. The results with the more precise model with 

three horizontal concrete beams were demonstrated in the chapter 4.2.2. Finally, in this chapter, the results of these two 

different models will be compared. 

The comparison of the deflections at each loading step is illustrated in figure 4.24 in the case of the second loading. The 

black line shows the results from the model with one horizontal concrete beam, the green line represents the results 

calculated from the model with three horizontal concrete layers. At the 500th loading step the total vertical load of the 

structure is shown in the figure. At this point, the deflection with the simple model with one concrete beam is 6,64 mm. 

The more detailed model with three concrete layers indicates a vertical displacement of 7,22 mm. The 0,58 mm difference 

between the results indicates actually that the model with one concrete beam reflects an increased stiffness compared to 

the model with three concrete layers. This fact is reasonable as the moment capacity of the concrete beam isn’t limited in 

the framework model. Actually, as an approximation, only the bearable normal forces of the concrete beams are limited 

with the maximal tensile force calculated from the ultimate tensile strength of the concrete. However, the bending 

moment in a beam element induces tensile stress additionally, which is not checked in the framework model. In the case 

of the model with one horizontal concrete beam the tensile force does not exceed the limit value. So the calculation runs 
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without any limitation of the concrete beams. However, the high moment in the concrete section produce higher tensile 

stress than the tensile strength of the concrete. In this way, the resistance of the concrete modelled in the framework 

model is higher than the reality. The model with three horizontal concrete layers gives a better approximation for the real 

behaviour of concrete. Namely, the tensile forces in the lower concrete zone are limited in several horizontal concrete 

beams (see figures 4.15 and 4.22). Due to the bending moment transferred in the beams, the tensile stress exceeds the 

tensile strength of the concrete in the case of the model with three horizontal concrete layers, too. The difference between 

the tensile stress and strength, which means actually the failure from the approximation used in the framework model, is 

much less than in the case of the model with one horizontal concrete beam. So, the strength of the concrete core modelled 

with three concrete layers is logically smaller than the strength in the case of the model with one concrete beam. This 

induces higher vertical displacements of the structure at the model with three concrete layers. Logically, if the concrete 

core was divided into more than three horizontal layers, the above mentioned failure would be lower. 

 

Figure 4.24: Comparison of the vertical displacements of the two models at midspan in the case of the second loading 

In the case of the 2 millionth loading the total deflection with the simple model with one concrete beam is 7,96 mm (see 

figure 4.25). The more detailed model with three concrete layers indicates a vertical displacement of 9,03 mm. The 

difference of 1,07 mm between the results indicates again that the model with one concrete beam reflects an increased 

stiffness compared to the model with three concrete layers. The explanation of this fact was described above. 

Figure 4.26 illustrates that both of the models delivers similar horizontal forces in the shear connectors in the case of the 2 

millionth loading. In the case of the first and the second loading the results are also corresponding. This means that the 

simple model with one horizontal concrete beam is also appropriate to evaluate the forces in the composite connections. 

Moreover, it is clear to see that the horizontal forces in the shear connectors do not decrease largely 25 kN. So, in the 
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framework model used limit value (25 kN) for the consideration of inelastic slips plays a significant role relating to the 

forces in the composite connections. 

 

Figure 4.25: Comparison of the vertical displacements of the two models at midspan in the case of the 2 millionth loading 

 

Figure 4.26: Comparison of the horizontal forces in the shear connectors of the two models at the 2 millionth loading: a) forces 
in the top steel section; b) forces in the bottom steel section. Dimensions in [mm] 
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4.4 Flowchart of the MATLAB code 

Finally, the structure diagram of the spring framework model calculation is shown in this chapter. Actually, the flowchart 

represents the MATLAB code referring to the framework models in chapter 4. The differences between the model with 

one horizontal concrete beam (chapter 4.2.1) and the model with three horizontal concrete layers (chapter 4.2.2) cannot be 

detected in the flowchart because only the data input (geometry) is different. Figure 4.27 illustrates the structure diagram 

for the first loading. Figure 4.28 shows the diagram for the second loading. At last, figure 4.29 represents the chart in the 

case of the third loading. The third loading demonstrates 2 million loading cycles after the second loading cycle. 

Logically, the three charts are connected to each other as the results of the first loading are required for the additional 

calculations. 

 
Figure 4.27: Flowchart of the MATLAB code: part 1/3 (first loading) 
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Figure 4.28: Flowchart of the MATLAB code: part 2/3 (second loading) 
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Figure 4.29: Flowchart of the MATLAB code: part 3/3 (“third” loading) 
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4.5 Conclusion 

As shown in chapter 4, cyclic loading can be considered with the two-dimensional spring framework model. As a 

complex ABAQUS model is not applicable for the fatigue analysis, the framework model calculation is the only solution 

to get important information about the load-bearing behaviour of the SCSC-plate in the case of the high number of cycles. 

Thus, the presented spring framework model is appropriate for the engineering practice to analyse composite structures.  

Based on the laboratory tests described in chapter 3.2, increasing inelastic slips arise in the composite connections due to 

the cyclic loading. This effect, which means actually the cyclic creep of the concrete, is modelled with the gap elements 

in the spring framework model. Fatigue investigations on composite beams [21] have demonstrated that the consideration 

of fatigue damage in the shear connectors has positive consequences, too. Namely, the forces in the composite 

connections are redistributed towards the less stressed connections. Figure 4.21 illustrates that this advantage exists also 

in the case of the SCSC plate: the maximal horizontal force in the shear connectors decrease by 7,3 % due to the 2 million 

loading cycles in the case of the spring framework model with three horizontal concrete layers.  

In contrast to composite beams, negative consequences arise also from the inelastic slip increments in the case of the 

SCSC plate. The maximal vertical displacement in the middle of the span increase significantly by 25,1 %. However, the 

increment is only 1,81 mm. Moreover, the stresses of the concrete are lager at the 2 millionth loading (102th loading in 

the framework model) compared to the first loading (see figure 4.22). This conclusion is reasonable. According to the 

results of the framework model with three concrete layers at the 2 millionth loading, 23,6 % of the external vertical load 

is acting when the first gap of 24 gaps at the holes of the shear connectors closes. Until this point, the top steel section and 

the bottom steel section do not work together, so the concrete beam has to carry most of the external load.  

It was shown in chapter 3 that ABAQUS detects some tensile cracking and compressive crushing of the concrete material 

in the case of the static loading (first loading). Moreover, these failure mechanisms do not influence significantly the 

main load-bearing behaviour of the steel-concrete-steel composite plate. As the load of the concrete core is enlarged due 

to the additional loading cycles, tensile cracking and compressive crushing are not negligible anymore. It is important to 

point out that the presented spring framework model needs to be developed to consider the fracturing process of the 

concrete core in the structure. Logically, the tensile cracking in the concrete plays a significant role. As a rough estimate 

to illustrate the effects of tensile cracking, the spring framework model with three horizontal concrete layers can be 

analysed after the second loading cycle with a modified concrete material which does not have any tensile strength. In 

that case, the deflection in the middle of the span is 9,65 mm at the 2 millionth loading. Compared to the result at the first 

loading (7,22 mm), the increment is 33,7 %. Moreover, the tensile forces in the bottom steel plate increase obviously 

(1055,0 kN in the middle of the span). Logically, the horizontal forces in the shear connectors of the bottom steel section 

are also larger. 

The results of this chapter demonstrated also that the forces in the composite connections are sensitive to the initial 

conditions (inelastic slip values) of the model. So, at the 2 millionth loading most of the forces are approximately 25 kN, 

which is equal the limit value for the increasing slip calculation in the framework model. Thus, it is important to perform 

additional experimental tests to evaluate more precise the spring stiffness values and the inelastic slips referring to the 

composite connection. 

The most important conclusion is that the cyclic behaviour of concrete cannot be neglected in the case of the examined 

composite plate. The presented calculations have shown that the effects of cyclic creep of the concrete can be considered 

through a spring framework model. This simple model can be a proper solution for the practical applications, too. 



135 

 
 

5. Conclusion and perspective 
This chapter contains conclusions for the different calculations performed, and summarizes the suggestions for further 

research.  

As shown in chapter 2, the extremely slender SCSC plate developed for a trough bridge system for the Austrian Federal 

Rail Company (ÖBB) is appropriate to transfer the loads in the transverse direction. The ABAQUS calculation results 

were analysed in fatigue limit state (FLS) in this thesis. Additionally, four different simple engineering models were 

introduced which can describe approximately the main mechanisms of the complex composite construction. However, 

these simple models cannot substitute the ABAQUS calculation, because they operate partly with the results from the 

Finite-Element-Analysis software.  

Obviously, it would be useful to perform the presented analyses of the ABAQUS results in ultimate limit state (ULS), 

too. Moreover, further studies are required in order to take into account the tensile stresses in the longitudinal direction of 

the trough bridge. As mentioned also in the introduction, the normal stresses in the SCSC plate from bending of the whole 

bridge are not considered through the construction part modelled with ABAQUS in this thesis. For this purpose, 

numerical analyses with ABAQUS and experimental tests are currently performed at TU Wien, Research Unit Steel 

Structures. 

As it was illustrated in chapter 3, a two-dimensional spring framework model is suitable to substitute the complex 

ABAQUS calculation referring to the SCSC-plate. However, ABAQUS and the spring framework model calculation take 

into consideration differently the inelastic behaviour of concrete. As the spring stiffness values of the framework model 

are based on six laboratory tests, it is relevant to perform additional experiments to evaluate more precise the input data 

of the calculation.  

The developed spring framework model does not figure the fracturing process of the materials (for example the tensile 

cracking and compressive crushing of the concrete) in the structure. Thus, the used model is applicable until the 

beginning of these failure mechanisms. According to the ABAQUS results, at the examined fatigue limit state the effects 

from material damage can be neglected as an approximation. However, an expansion of the presented framework model 

is necessary in the case of higher external loads to evaluate the effects from cracking and crushing of concrete. 

As shown in chapter 4, increasing inelastic slip in the composite connection due to the cyclic loading (cyclic creep of the 

concrete) needs to be considered. This effect can be modelled with the spring framework model. Actually, a system of 

linear equations with 342 unknowns is solved 51 000 times in MATLAB to get results. Both the positive and the negative 

consequences of fatigue damage in the shear connectors were presented. It is meaningful that the maximal vertical 

displacement in the middle of the span increase by 25,1 %. Another important result is that the stresses of the concrete are 

enlarged due to the cyclic loading. Thus, in contrast with the approximation at static loading, tensile cracking and 

compressive crushing of the concrete material are not negligible anymore. Therefore, the spring framework model needs 

further development to consider the failure mechanisms, too. 

Furthermore, it is necessary to perform additional experiments to evaluate reliably the increasing inelastic slip values in 

the composite connection of the SCSC plate. 

Another benefit of the presented spring framework model is that slab railway bridges constructed with the SCSC plate 

can be also easily analysed. Here, railway bridges with short spans (up to 8 m) are designed so that the shear connectors 

of the SCSC plate lie parallel to the length of the slab bridge. In this case the SCSC plate is the solo load-bearing element 
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in the longitudinal direction. Logically, the presented framework model needs to be modified according to the actual 

length of the slab bridge. Moreover, the loading of the spring framework model is also a bit different. 

The presented dissertation is a preliminary step to derive the design models for the SCSC plate in the fatigue limit state 

(FLS). Logically, based on the presented result analyses and engineering models, final design methods need to be 

developed for the verifications of the fatigue limit state (FLS) and the ultimate limit state (ULS). 
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Appendix A – The dead load of the SCSC plate applied in chapter 2.2 

The volume (V) and weight (W) of the steel structures of the ABAQUS model: 

 ܸ௕௢௧௧௢௠ ௦௧௘௘௟ ௣௟௔௧௘ = 15 ∙ 1000 ∙ 2040 = 30600000 ݉݉ଷ 

 ܹ௕௢௧௧௢௠ ௦௧௘௘௟ ௣௟௔௧௘ = 30600000 ሾ݉݉ଷሿ ∙ 7,85 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 2402 ܰ = 2,402 ݇ܰ  
 ܸ௧௢௣ ௦௧௘௘௟ ௣௟௔௧௘ = 15 ∙ 1000 ∙ 2040 = 30600000 ݉݉ଷ 

 ܹ௧௢௣ ௦௧௘௘௟ ௣௟௔௧௘ = 30600000 ሾ݉݉ଷሿ ∙ 7,85 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 2402 ܰ = 2,402 ݇ܰ  
 ܸ௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଵ = 10 ∙ 170 ∙ 2023 − 12 ∙ 10 ∙ 50ଶ ∙ ߨ = 2496622 ݉݉ଷ 

 ܹ௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଵ = 2496622 ሾ݉݉ଷሿ ∙ 7,85 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 196 ܰ = 0,196 ݇ܰ  
 ܸ௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଶ = 20 ∙ 170 ∙ 2023 − 12 ∙ 20 ∙ 50ଶ ∙ ߨ = 4993244 ݉݉ଷ 

 ܹ௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଶ = 4993244 ሾ݉݉ଷሿ ∙ 7,85 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 392 ܰ = 0,392 ݇ܰ  
 ܸ௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଷ = 10 ∙ 170 ∙ 2023 − 12 ∙ 10 ∙ 50ଶ ∙ ߨ = 2496622 ݉݉ଷ 

 ܹ௦௛௘௔௥ ௖௢௡௡௘௖௧௢௥ ଷ = 2496622 ሾ݉݉ଷሿ ∙ 7,85 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 196 ܰ = 0,196 ݇ܰ  
 ܸ௘௡ௗ ௦௧௜௙௙௘௡௘௥ ଵ = 15 ∙ 55 ∙ 170 = 140250 ݉݉ଷ 

 ܹ௘௡ௗ ௦௧௜௙௙௘௡௘௥ ଵ = 140250 ሾ݉݉ଷሿ ∙ 7,85 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 11 ܰ = 0,011 ݇ܰ  
 ܸ௘௡ௗ ௦௧௜௙௙௘௡௘௥ ଶ = 15 ∙ 110 ∙ 170 = 280500 ݉݉ଷ 

 ܹ௘௡ௗ ௦௧௜௙௙௘௡௘௥ ଶ = 280500 ሾ݉݉ଷሿ ∙ 7,85 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 22 ܰ = 0,022 ݇ܰ  
 ܸ௘௡ௗ ௦௧௜௙௙௘௡௘௥ ଷ = 15 ∙ 55 ∙ 170 = 140250 ݉݉ଷ 

 ܹ௘௡ௗ ௦௧௜௙௙௘௡௘௥ ଷ = 140250 ሾ݉݉ଷሿ ∙ 7,85 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 11 ܰ = 0,011 ݇ܰ  
Total sum of the weights of the steel structures of the ABAQUS model without the end plate: 

 ܹ௦௧௘௘௟ ௦௧௥௨௖௧௨௥௘௦ = 2,402 + 2,402 + 0,196 + 0,392 + 0,196 + 0,011 + 0,022 + 0,011 = 5,632 ݇ܰ  
The volume (V) and weight (W) of the concrete structures of the ABAQUS model: 

 ܸ௖௢௡௖௥௘௧௘ ௗ௢௪௘௟ ଵ = 20 ∙ 170 ∙ 2023 + 12 ∙ 10 ∙ 50ଶ ∙ ߨ = 7820678 ݉݉ଷ 

 ܹ௖௢௡௖௥௘௧௘ ௗ௢௪௘௟ ଵ = 7820678 ሾ݉݉ଷሿ ∙ 2,40 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 188 ܰ = 0,188 ݇ܰ  
 ܸ௖௢௡௖௥௘௧௘ ௗ௢௪௘௟ ଶ = 2 ∙ 20 ∙ 170 ∙ 2023 + 12 ∙ 20 ∙ 50ଶ ∙ ߨ = 15641356 ݉݉ଷ 

 ܹ௖௢௡௖௥௘௧௘ ௗ௢௪௘௟ ଶ = 15641356 ሾ݉݉ଷሿ ∙ 2,40 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 375 ܰ = 0,375 ݇ܰ  
 ܸ௖௢௡௖௥௘௧௘ ௗ௢௪௘௟ ଷ = 20 ∙ 170 ∙ 2023 + 12 ∙ 10 ∙ 50ଶ ∙ ߨ = 7820678 ݉݉ଷ 

 ܹ௖௢௡௖௥௘௧௘ ௗ௢௪௘௟ ଷ = 7820678 ሾ݉݉ଷሿ ∙ 2,40 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 188 ܰ = 0,188 ݇ܰ  
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 ܸ௖௢௡௖௥௘௧௘ ௖௢௥௘ ଵ = 390 ∙ 170 ∙ 17 + 440 ∙ 170 ∙ 2023 = 152447500 ݉݉ଷ 

 ܹ௖௢௡௖௥௘௧௘ ௗ௢௪௘௟ ଵ = 152447500 ሾ݉݉ଷሿ ∙ 2,40 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 3659 ܰ = 3,659 ݇ܰ  
 ܸ௖௢௡௖௥௘௧௘ ௖௢௥௘ ଶ = 390 ∙ 170 ∙ 17 + 440 ∙ 170 ∙ 2023 = 152447500 ݉݉ଷ 

 ܹ௖௢௡௖௥௘௧௘ ௗ௢௪௘௟ ଶ = 152447500 ሾ݉݉ଷሿ ∙ 2,40 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 3659 ܰ = 3,659 ݇ܰ  
Total sum of the weights of the concrete structures of the ABAQUS model: 

 ܹ௖௢௡௖௥௘௧௘ ௦௧௥௨௖௧௨௥௘௦ = 0,188 + 0,375 + 0,188 + 3,659 + 3,659 = 8,069 ݇ܰ  
Total sum of the weights of the steel and concrete structures of the ABAQUS model without the end plate: 

 ܹ௦௧௘௘௟ ௔௡ௗ ௖௢௡௖௥௘௧௘ ௦௧௥௨௖௧௨௥௘௦ = 5,632 + 8,069 = 13,701 ݇ܰ  
The distributed load on the ABAQUS model from the dead weight of the steel and concrete structures: ݃௞,௦௧௘௘௟ ௔௡ௗ ௖௢௡௖௥௘௧௘ ௦௧௥௨௖௧௨௥௘௦ = 13,701 2,04⁄ = 6,716 ݇ܰ/݉ଶ  
The weights of the superstructures (ballast bed with a height of 550 mm, the insulation, the reinforced concrete sleepers, 

the rails (2 x UIC 60) and the rail fastening system) of the trough bridge (1 m length of the bridge is examined in 

accordance with the ABAQUS model):  

 ܹ௕௔௟௟௔௦௧ ௕௘ௗ = ܸ ∙ ߩ ∙ ݃ = 2495545000 ሾ݉݉ଷሿ ∙ 2,00 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 49911 ܰ = 49,911 ݇ܰ  
where:  

The volume (V) is based on the area of the ballast bed (A = 2 495 545 mm2) measured in the digital drawing (see 

figure 2.4(a))  

 ܹ௜௡௦௨௟௔௧௜௢௡ = (10 ∙ 4200 ∙ 1000) ሾ݉݉ଷሿ ∙ 2,50 ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ = 1050 ܰ = 1,05 ݇ܰ  
Comment: the insulation with 10 mm thickness is installed on the surface of the top steel plate of the SCSC plate 

illustrated in figure 2.4(a). 

 ܹ௦௟௘௘௣௘௥௦ = (2600 ∙ 260 ∙ 210) ሾ݉݉ଷሿ ∙ (2,50 − 2,00) ∙ 10ି଺ ሾ݇݃/݉݉ଷሿ ∙ 10 ሾ݉/ݏଶሿ ∙ 1000600 = 1183ܰ = 1,183 ݇ܰ  →  ܹ௦௟௘௘௣௘௥௦ = 1,00 ݇ܰ (According to the approximation in [4]) 

Comment: the density difference between the reinforced concrete and the ballast bed is considered because the volume of 

the sleeper was counted in the area of the ballast bed.   

 ܹ௥௔௜௟௦ ௔௡ௗ ௥௔௜௟ ௙௔௦௧௘௡௜௡௚ ௦௬௦௧௘௠ = 1,70 ݇ܰ (According to ÖNORM EN 1991-1-1, table A.6)  

Total sum of the weights of the superstructures: 

 ܹ௦௧௘௘௟ ௔௡ௗ ௖௢௡௖௥௘௧௘ ௦௧௥௨௖௧௨௥௘௦ = 49,911 + 1,05 + 1,00 + 1,70 = 53,661 ݇ܰ  
The distributed load on the ABAQUS model from the dead weight of the superstructures: ݃௞,௦௨௣௘௥௦௧௥௨௖௧௨௥௘௦ = 53,661 4,08⁄ = 13,152 ݇ܰ/݉ଶ  
The total dead load for the ABAQUS model: ݃௞ = 6,716 + 13,152 = 19,868 ݇ܰ/݉ଶ ≅  19,87 ݇ܰ/݉ଶ 
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Appendix B – The total sum of the normal forces and bending moments in figure 2.64 
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Appendix C – The average slip values based on the six laboratory test results used for 
figure 3.5 
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Appendix D – Calculations and member properties for the validation of the 
framework model 

D.1  The calculation with the formulas from Rubin referring to chapter 3.4.1.2 

Firstly, the detailed calculation of the bending stiffness of the beam (see the cross section in figure 3.8) is presented, 

because this stiffness is the baseline data when using Rubin’s formulas. 

The distance of the centre of mass from the upper edge (see figure 3.8):  

௖௠ݖ = ௦௣ܣ ∙ ௦௣ݖ + ௦௖ܣ ∙ ௦௣ܣ௦௖ݖ + ௦௖ܣ = 15000 ∙ 7,5 + 3400 ∙ 10015000 + 3400 = 45250018400 = 24,592 ݉݉ 

where: ܣ௦௣ = 15000 ݉݉ଶ (Area of the steel plate) ܣ௦௖ = 3400 ݉݉ଶ (Area of the shear connector) ݖ௦௣ = 7,5 ݉݉ (Distance between the centre of mass of the steel plate and the upper edge of the steel plate) ݖ௦௖ = 100 ݉݉ (Distance between the centre of mass of the shear connector and the upper edge of the steel plate) 

The area moment of inertia of the cross section around the axis “y”: ܫ௬ = ௬ି௦௣ܫ + ௦௣ܣ ∙ ൫ݖ௖௠ − ௦௣൯ଶݖ + ௬ି௦௖ܫ + ௦௖ܣ ∙ ௦௖ݖ) − ௖௠)ଶݖ = 

= 1000 ∙ 15ଷ12 + 1000 ∙ 15 ∙ (24,592 − 7,5)ଶ + 20 ∙ 170ଷ12 + 20 ∙ 170 ∙ (100 − 24,592)ଶ = 32 185 276 ݉݉ସ 

where: ܫ௬ି௦௣:  Area moment of inertia of the steel plate around the axis “y” ܫ௬ି௦௖:  Area moment of inertia of the shear connector around the axis “y” 

The modulus of elasticity (Young’s modulus) of the steel (S355) is:  ܧ = 210 000 ܰ ݉݉ଶ⁄  

Thus, the bending stiffness which was also given in equation 3.6 (see chapter 3.4.1.2): ܧ ∙ ௬ܫ = 210 000 ∙ 32 185 276 ∙ 10ିଽ = 6 758,91 ݇ܰ݉ଶ 

Next, the deflection in the middle of the span is calculated with the linear static analysis through Rubin’s formulas (see 
the tables below). In the case of a linear static analysis the coefficient K is zero and the solution function bj is simple:   ܾଵ(݈) = ݈ = 4,1 ݉ ܾଶ(݈) = ݈ଶ2 = 8,405 ݉ଶ 

ܾଷ(݈) = ݈ଷ6 = 11,48683333 ݉ଷ 

ܾସ(݈) = ݈ସ24 = 11,77400417 ݉ସ 

Two separate distributed loads are used for the following calculation according to figure 3.7(a).  ݍଵ = 19,87 ݇ܰ ݉⁄     (The load part on the whole beam) ݍଶ = 106,87 − 19,87 = 87 ݇ܰ ݉⁄  (The load part in the middle of the beam) 
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The shear forces at the support from the distributed loads calculated with Rubin’s table below: 

௜ܳ,௤భ = ܾଶ(݈)ܾଵ(݈) ∙ ଵݍ = 8,4054,1 ∙ 19,87 = 40,7335 ݇ܰ 

௜ܳ,௤మ = ܾଶ(3,435) − ܾଶ(0,665)ܾଵ(݈) ∙ ଶݍ = 3,435ଶ2 − 0,665ଶ24,1 ∙ 87 = 120,495 ݇ܰ 

 
Shear forces Qi, Qk, transversal forces Ri, Rk, rotation angle of the cross section ϕϕi, ϕϕk depending on 
Mi, Mk, wi, wk and the actions on the member in the case of the support condition 



143 

 
 

The total sum of the shear forces at the support: 

௜ܳ = ௜ܳ,௤భ + ௜ܳ,௤మ = 40,7335 + 120,495 = 161,2285 ݇ܰ 

The rotation angles of the cross section at the support from the distributed loads calculated with Rubin’s table above: 

߮௜,௤భ = ܾଷ(݈) ∙ 2݈ − ܾସ(݈)ܾଵ(݈) ∙ ܫܧଵݍ = 11,48683333 ∙ 4,12 − 11,774004174,1 ∙ 19,876 758,91 = 0,008442315 

߮௜,௤మ = ܿ ∙ ݁ ∙ ܾଷ݈ − ܾସ(3,435) + ܾସ(0,665)ܾଵ(݈) ∙ ܫܧଶݍ = 2,77 ∙ 2,05 ∙ 11,486833334,1 − 3,435ସ24 + 0,665ସ244,1 ∙ 876 758,91 = 

= 0,031760649 

The total sum of the rotation angles at the support: ߮௜ = ߮௜,௤భ + ߮௜,௤మ = 0,008442315 + 0,031760649 = 0,040202964 

The following table from Rubin is used to calculate the deflection in the middle of the span depending on the shear force 
and the rotation at the support as well as the distributed loads on the beam. 

 
Moment M(x), shear force Q(x), deflection w(x), rotation angle of the cross section ϕϕ(x) 
depending on Mi, Qi, wi, ϕϕi and the actions on the member 
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݈)ݓ 2)⁄ ொ೔ = −ܾଷ(݈ 2) ∙ ௜ܳܫܧ = − 2,05ଷ6 ∙ 161,22856 758,91 = −0,034251176 ݉ൗ  

݈)ݓ 2)⁄ ఝ೔ = 2݈ ∙ ߮௜ = 2,05 ∙ 0,040202964 = 0,082416076 ݉ 

݈)ݓ 2)⁄ ௤భ = ܾସ ൬2݈൰ ∙ ܫܧଵݍ = 2,05ସ24 ∙ 19,876 758,91 = 0,002163343 ݉ 

݈)ݓ 2)⁄ ௤మ = ܾସ(1,385) ∙ ܫܧଶݍ = 1,385ସ24 ∙ 876 758,91 = 0,00197347 ݉ 

The total sum of the deflection in the middle of the span: ݓ(݈ 2)⁄ = ݈)ݓ 2)⁄ ொ೔ + ݈)ݓ 2)⁄ ఝ೔ + ݈)ݓ 2)⁄ ௤భ + ݈)ݓ 2)⁄ ௤మ = = −0,034251176 + 0,082416076 + 0,002163343 + 0,00197347 = 0,052301713 ݉ = 52,302 ݉݉ 

D.2  The calculation of the slipping of the steel sections illustrated in chapter 3.4.2 

It is presumed that the curves of the vertical displacements are identical in the case of the two beams modelled in chapter 
3.4.2. This means also that both sections carry 50 percent of the total loading. Therefore, the results of the analytical 
solution are available simply through halving the results from appendix D.1.  

The rotation angles of the cross section at the support calculated with Rubin’s table above: 

ொ೔(0)′ݓ = ߮(0)ொ೔ = −ܾଵ(0) ∙ ௜ܳܫܧ = −0 ∙ 161,2285/26 758,91 = 0 

ఝ೔(0)′ݓ = ߮(0)ఝ೔ = ߮௜ = 0,0402029642 = 0,020101482 

௤భ(0)′ݓ = ߮(0)௤భ = ܾଷ(0) ∙ ܫܧଵݍ = 0 ∙ 19,87/26 758,91 = 0 

௤మ(0)′ݓ = ߮(0)௤మ = ∆ܾଷ(0) ∙ ܫܧଶݍ = 0 ∙ 87/26 758,91 = 0 

Obviously: ߮(0) = ߮௜ = 0,020101482 

The horizontal displacement between the centroid of one of the steel sections and the centroid of the shear connector: ݔ = ݖ ∙ ߮(0) = 75,41 ∙ 0,020101482 = 1,516 ݉݉ 

where: 

z is the vertical displacement between the centroid of one of the steel sections and the centroid of the shear connector 

As both of the steel sections have the same bending, the double value of this horizontal displacement provides the relative 

horizontal displacement between the two shear connectors (see figure 3.19): 2 ∙ ݔ = 2 ∙ 1,516 = 3,032 ݉݉ 
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D.3  The member properties (A, I) of the spring framework model with one horizontal concrete beam 

Area of the steel plate:  ܣ௦௣ = 15 ∙ 1000 = 15000 ݉݉ଶ 

Area moment of inertia of the steel plate around the axis “y”: ܫ௬ି௦௣ = 1000 ∙ 15ଷ12 = 281250 ݉݉ସ 

Area of the shear connector (substitutive cross section for the shear connector according to chapter 3.4.3.3):  ܣ௦௖ = 20 ∙ (170 − 91) = 1580 ݉݉ଶ 

Area moment of inertia of the shear connector (substitutive cross section) around the axis “y”: ܫ௬ି௦௖ = 20 ∙ 170ଷ12 − 20 ∙ 91ଷ12 = 6932382 ݉݉ସ 

Area of the concrete beam:  ܣ௖ = (1000 − 20 − 20) ∙ 170 = 163200 ݉݉ଶ 

Area moment of inertia of the concrete beam around the axis “y”: ܫ௬ି௖ = 960 ∙ 170ଷ12 = 393040000 ݉݉ସ 

D.4  The member properties (Ac, Iy-c) of the spring framework model with three horizontal concrete layers 

Area of one horizontal concrete layer:  ܣ௖ = (1000 − 20 − 20) ∙ (170/3) = 54400 ݉݉ଶ 

Area moment of inertia of one horizontal concrete layer around the axis “y”: ܫ௬ି௖ = 960 ∙ (170/3)ଷ12 = 14557037݉݉ସ 
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Appendix E – Spring stiffness calculation based on the ABAQUS results 

At the first shear connector of the top steel section: 

The horizontal force in the shear connector: ܨ௛,ଵ,௧௢௣ ௦௧௘௘௟ ௦௘௖௧௜௢௡ = 92,58 ݇ܰ  

The horizontal gap inside the hole:   ߜ௛,ଵ,௧௢௣ ௦௧௘௘௟ ௦௘௖௧௜௢௡ = 0,093761 ݉݉ 

The horizontal spring stiffness value:  ܥ௛,ଵ,௧௢௣ ௦௧௘௘௟ ௦௘௖௧௜௢௡ = 92,58/0,093761 = 987,4 ݇ܰ/݉݉ 

At the eighth shear connector of the top steel section: 

The horizontal force in the shear connector: ܨ௛,଼,௧௢௣ ௦௧௘௘௟ ௦௘௖௧௜௢௡ = 41,12 ݇ܰ  

The horizontal gap inside the hole:   ߜ௛,଼,௧௢௣ ௦௧௘௘௟ ௦௘௖௧௜௢௡ = 0,039117 ݉݉ 

The horizontal spring stiffness value:  ܥ௛,଼,௧௢௣ ௦௧௘௘௟ ௦௘௖௧௜௢௡ = 41,12/0,039117 = 1051,2 ݇ܰ/݉݉ 
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