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Abstract

In many applications, we want to influence the decisions of
independent agents by designing incentives for their actions.
We revisit a fundamental problem in this area, called GAME
IMPLEMENTATION: Given a game in standard form and a set
of desired strategies, can we design a set of payment promises
such that if the players take the payment promises into ac-
count, then all undominated strategies are desired? Further-
more, we aim to minimize the cost, that is, the worst-case
amount of payments.
We study the tractability of computing such payment
promises and determine more closely what obstructions we
may have to overcome in doing so. We show that GAME IM-
PLEMENTATION is NP-hard even for two players, solving in
particular a long-standing open question and suggesting more
restrictions are necessary to obtain tractability results. We
thus study the regime in which players have only a small con-
stant number of strategies and obtain the following. First, this
case remains NP-hard even if each player’s utility depends
only on three others. Second, we repair a flawed efficient al-
gorithm for the case of both small number of strategies and
small number of players. Among further results, we charac-
terize sets of desired strategies that can be implemented at
zero cost as a generalization of Nash equilibria.

1 Introduction
Nudge theory (Thaler and Sunstein 2008), gamifica-
tion (Hamari 2019), and the design of blockchain sys-
tems (Buterin et al. 2020) are just a few areas in which we
apply incentives in order to coax agents towards behaving
in a desirable way. In these general settings, agents select
strategies on their own volition, but we may add incentives
(or incur penalties) that increase (resp. decrease) the salience
or utility of particular strategies in situations of our choice.
The goal is to implement a desired set of strategies or strat-
egy profiles, that is, to ensure that undesired strategies entail
smaller utility than desired ones.

With the advent of blockchain systems, we feel that this
topic has gained renewed relevance. First, the design of a
blockchain system itself, such as Bitcoin or Ethereum, in-
volves the design of a protocol that rewards intended be-
havior (e.g., validating transactions by mining blocks for
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block rewards in Bitcoin) or penalizes unintended behav-
ior (e.g., by slashing the stake of validators that deviate
from a consensus in the recent upgrade of Ethereum). The
latter is a form of enforcing the existence of a Schelling
point via incentives. Second, there are now base-layer sys-
tems like Ethereum in place that allow world-wide consis-
tent general-purpose computations and thus the straightfor-
ward creation of new moneys (called tokens) that can be
made to behave in new ways: generated, burned, exchanged,
locked, etc. Thus an immense design space for incentive-
based protocols was opened up and we witness its contin-
ued exploration. There are for example stablecoins, which
are tokens that use incentive-based mechanisms to try and
reflect the value of some underlying security (Maker DAI,
Terra USD, FRAX Shares, and many more)1. Another direc-
tion are incentive-based consensus mechanisms for adjudi-
cation, moderation, and transferring real-world information
onto blockchains (such as Kleros, UMA, Chainlink oracles,
and again many more)2.

In all of the above design problems, there are independent
actors that we want to incentivize to behave in a certain
desired way. A fundamental underlying problem herein
is GAME IMPLEMENTATION (Monderer and Tennenholtz
2004), stated as follows: We are given a game in standard
form (a set of players, strategies for each player, and their
utility) and for each player a set of desired strategies. We
want to specify a set of payment promises that define
additional utilities that we give to players for playing certain
strategies. These payment promises shall implement our
desired sets of strategies, that is, when taking the payments
into account, no player wants to play an undesired strategy.
In technical terms, each strategy that is not dominated by
any other strategy is desired (see Section 2 for the formal
definitions).3 Furthermore, we want to minimize the cost

1See https://makerdao.com/en/whitepaper/, https:
//terra.money/Terra White paper.pdf, and https://docs.frax.
finance/overview.

2See https://kleros.gitbook.io/docs/, https://docs.umaproject.
org/, and https://chain.link/whitepaper.

3We focus here only on pure strategies. Furthermore, GAME
IMPLEMENTATION implements a set of strategy profiles rather than
a set of strategies for each player. Implementing sets of strategies
corresponds to implementing so-called rectangular strategy pro-
files, see the formal definitions in Section 2.
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of the implementation, that is, the amount paid in the worst
case. More precisely, we want to minimize, over all strategy
profiles that consist of undominated strategies, the sum of
payment promises to all players. In this work, we explore
the question “How difficult is it to implement a desired set
of strategies?”

Contribution. We obtain the following results. We first
show that GAME IMPLEMENTATION is NP-hard, even if
there are only two players and even if our budget for the
cost is 0 (Theorem 3.1). This strengthens two results by
Deng, Tang, and Zheng (2016) who showed that GAME IM-
PLEMENTATION is NP-hard for six players, and that GAME
IMPLEMENTATION is NP-hard for two players with mixed
strategies, both with positive budgets.4 We note that hard-
ness for mixed-strategies or positive budgets is less surpris-
ing because there are a priori more possibilities for encod-
ing combinatorial structure into the solutions. Instead, our
reduction shows that the difficulty lies already and mainly
in selecting, for each undesired strategy x, a desired strategy
that dominates x.

We then study a variant of GAME IMPLEMENTATION that
was supposedly more tractable (Monderer and Tennenholtz
2004), called EXACT GAME IMPLEMENTATION: In addi-
tion to requiring undominated strategies to be desired, no
desired strategy may be dominated by another strategy. We
show that also this a priori simpler-looking problem is NP-
hard even for two players (Theorem 5.1); this answers an
open question by Eidenbenz et al. (2011). Indeed Monderer
and Tennenholtz (2004) gave a polynomial-time algorithm
for EXACT GAME IMPLEMENTATION which was shown to
produce suboptimal results by Eidenbenz et al. (2011).

The above hardness results do not apply in scenarios in
which players have only a small constant number of strate-
gies to choose from. We hence consider this regime next. If
both the number of players and the number of strategies are
small constants, then the only part of the input that may be
of unbounded size are the quantities specified in the utility
functions. Eidenbenz et al. (2011) showed that in this case
EXACT GAME IMPLEMENTATION can be solved efficiently;
however, as we observe here there is a flaw in the algorithm.
We simplify the algorithm and repair the flaw for a large
though not universal class of problem instances, providing
the first nontrivial algorithm for implementing strategies that
is formally proven to be correct (Theorem 6.2).

As we increase the number of players, the size of the
input (the number of utility values we have to specify) scales
exponentially in the number of players (and strategies).
A common way to deal with this explosion is to instead
consider the relevant special case of graphical games
(Kearns, Littman, and Singh 2001), where the players are
situated in a graph and the utility of a player depends only
on its neighbors. We hence study this case next, that is,
GAME IMPLEMENTATION on graphical games with small
constant number of strategies per player. We show that
even the case where each player’s utility depends only on

4Monderer and Tennenholtz (2004) claimed NP-hardness of
GAME IMPLEMENTATION, but the proof was erroneous (Eiden-
benz et al. 2011).

three others and each player has only two strategies remains
NP-hard (Theorem 4.1). As the case where each player has
only one strategy is trivial, a promising future direction is
to consider the case where each player depends only on two
others or tree-structured games.

Finally, before discovering our NP-hardness reduction for
GAME IMPLEMENTATION we believed that zero-cost im-
plementation could be solved efficiently. As a tool towards
this we characterized strategy sets that can be implemented
at cost 0 as a form of generalized Nash equilibria. We
believe that this characterization is of independent interest,
in particular because it generalizes the result of Monderer
and Tennenholtz (2004) that states that Nash equilibria
can be implemented at cost 0. Moreover, it captures a
fundamental property of self-enforcing sets of strategies,
such as morality, which we are not aware of having been
formally defined before.

Further related work. Implementation theory (Maskin
1999; Maskin and Sjöström 2002) generally studies the im-
plementation of social-choice rules with incentives and it is
impossible to give an overview over the large body of work
here. Conitzer and Sandholm (2014) studied the complex-
ity of implementing social-choice rules. The main difference
to GAME IMPLEMENTATION is that the payment promises
to the players that we may choose from are restricted and
given in the input. Such restrictions give significantly more
leeway for designing hardness reductions. Brill, Freeman,
and Conitzer (2015) considered a problem related to GAME
IMPLEMENTATION in which some of the utility values are
missing and we are to complete the missing values, possibly
with negative ones. The goal is to ensure that strategies par-
ticipating in some Nash equilibrium are desired. In GAME
IMPLEMENTATION we have much more freedom in design-
ing our solutions. Wooldridge et al. (2013) studied imple-
mentation questions for Boolean games, that is, where the
strategies of the players correspond to a selection of truth
values of some variables intrinsic to the game. They aimed
at implementing Boolean formulas on the variables in some
or all Nash equilibria. Because of the relation to Boolean
satisfiability, implementation for Boolean games is situated
higher in the polynomial hierarchy. Zero-cost implementa-
tion has been studied for routing games by Moscibroda and
Schmid (2009). They gave bounds on the difference between
anarchistic equilibria and those achievable by zero-cost im-
plementation. Finally, Letchford and Conitzer (2010); Deng
and Conitzer (2017, 2018) considered the complexity of
committing to certain behaviors as a way for one player to
change the outcome of a game to his favor.

2 Preliminaries
(Full) proofs for results marked by ⋆ are deferred to the full
version (Chen et al. 2022). Throughout, for t ∈ N we use [t]
to denote the set {1, 2, . . . , t}.

A game G is a tuple (N,X ,U) where N is the set of
players; usually N = [n]. We specify for each player i ∈ N
a set Xi of strategies available to i. Then the set X equals
X1 × X2 × . . . × Xn. We call elements of X strategy
profiles. Finally, U = {U1, U2, . . . , Un}, where each Ui is a
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function X → R, called utility function for player i.
As a notational shorthand, for any i ∈ N we use X−i to

denote X1 ×X2 × . . .×Xi−1 ×Xi+1 × . . .×Xn.
Let x = {x1, . . . , xn} be a strategy profile. Then we

use x−i to refer to x without its ith element, i.e., x−i =
(x1, . . . , xi−1, xi+1, . . . , xn). Similarly, we use xi to refer
to its ith element, i.e., xi = xi.

We sometimes write the value of a utility function Ui such
that the strategy played by player i comes first in the argu-
ment of Ui and the remaining strategies second. For x above
and player i ∈ N , we could write U(xi,x−i). However,
if there are only two players, then the first argument x of
Ui(x, y) always refers to the strategy of player 1 and the
second argument y always refers to the strategy of player 2.

Let x, y ∈ Xi be two strategies of player i. We say
that x dominates y if for each x−i ∈ X−i we have
Ui(x,x−i) ≥ Ui(y,x−i) and there exists x−i ∈ X−i such
that Ui(x,x−i) > Ui(y,x−i).5 We say that x ∈ Xi is un-
dominated if no other strategy of player i dominates x. For
each player i ∈ N we denote by X⋆

i the set of undominated
strategies in Xi. For a game G, by X ⋆

G we denote the set of
strategy profiles that consist entirely of undominated strate-
gies, that is, X ⋆

G = X⋆
1 ×X⋆

2 × . . .×X⋆
n. We omit the index

G if it is clear from the context.
Let G = (N,X ,U) be a game. We now define the mod-

ified game obtained from G after payments are promised to
the players. A payment promise to player i in G is a func-
tion X → R, usually denoted by Vi. A payment promise for
game G is the set of payment promises of the players: V :=
{V1, V2, . . . , Vn}. The modified game G[V] obtained from
G with a payment promise V is the game (N,X , [U + V]),
wherein [U + V] := {[Ui + Vi] | i ∈ N} and for each
i ∈ N the function [Ui + Vi] is defined as [Ui + Vi](x) :=
Ui(x) + Vi(x) for all x ∈ X . The cost, denoted as cost(V),
of a payment promise V is maxx∈X⋆

G[V]

∑
i∈N Vi(x).

We consider the following decision problem.

GAME IMPLEMENTATION
Instance: A game G = (N,X ,U), a set of strategy

profiles O ⊆ X , and a real budget δ ∈ R≥0.
Question: Is there a payment promise V such that
cost(V) ≤ δ and X ⋆

G[V] ⊆ O?

A payment promise V as above implements O. The follow-
ing is a variant of GAME IMPLEMENTATION where we want
a given set of strategy profiles to be undominated and say
that a payment promise V as below implements O exactly.

EXACT GAME IMPLEMENTATION
Instance: A game G = (N,X ,U), a set of strategy

profiles O ⊆ X , and a real budget δ ∈ R≥0.
Question: Is there a payment promise V such that
cost(V) ≤ δ and X ⋆

G[V] = O?

5This notion of domination is commonly referred to as weak
domination. Alternative notions of domination are also studied,
such as strict domination in which we require Ui(x,x−i) >
Ui(y,x−i) for all x−i ∈ X−i. In keeping with the literature on im-
plementation (Eidenbenz et al. 2011; Deng, Tang, and Zheng 2016)
we focus on weak domination; the results are usually transferable.

We give an example in the full version. We mainly focus
on the special case where the strategy profile sets O are rect-
angular. A strategy profile set Y for a game with player set
N is rectangular if for each i ∈ N there is Yi ⊆ Xi such
that Y = Y1 × Y2 × . . .× Yn. For a given player i ∈ N , we
use Y−i to denote Y1 × · · · × Yi−1 × Yi+1 × . . . × Yn. All
our hardness results indeed hold even for rectangular strat-
egy profile sets O.

Graphical games. For a more succinct representation we
also use the concept of a graphical game. This is a tuple
(G,H), where G = (N,X ,U) is a game and H an undi-
rected graph with vertex set N and edge set E. Let us use
NH(i) to denote the neighborhood of a vertex i ∈ N , i.e., the
set of all the vertices that are adjacent to i. For every i ∈ N ,
the utility function Ui and the potential payment promise Vi

map from Xj1 × · · · × Xjk to R, where j1, . . . , jk is the
canonical ordering of the vertices restricted to NH(i) ∪ {i}.
In other words, the utility of player i only depends on its own
actions and the actions of its neighbors in H . The degree of
(G,H) is the maximum vertex degree.

Properties of the domination relation. We now describe
a few simple properties of the dominance relation, which are
useful in our proofs.
Observation 2.1 (⋆). Domination is transitive.
Observation 2.2 (⋆). Domination is asymmetric. In other
words, if x dominates y, then y does not dominate x.
Observation 2.3 (⋆). Every dominated strategy is domi-
nated by some undominated strategy.

This immediately implies the following observation:
Observation 2.4. The set of undominated strategies is non-
empty.

3 GAME IMPLEMENTATION is NP-hard for
Two Players and Zero Budget

In this section we prove that GAME IMPLEMENTATION is
NP-hard even in the very restricted case where we have two
players and the budget is zero.
Theorem 3.1. GAME IMPLEMENTATION is NP-hard, even
for two players and zero budget.
We reduce from the following NP-hard problem (Schaefer
1978):

X3C
Instance: A set of 3n̂ elements A and a collection of
3n̂ sets C} such that Cj ⊂ A and |Cj | = 3 for every
j ∈ {0, . . . , 3n̂ − 1} and every element ai ∈ A
appears in exactly three sets, i.e., |{C ∈ C | ai ∈
C}| = 3.

Question: Is there an exact cover of A, i.e., a subcol-
lection S ⊂ C s.t. |S| = n̂ and A =

⋃
C∈S C?

Let I = (A = {a0, . . . , a3n̂−1}, C = {C0, . . . , C3n̂−1})
be an instance of X3C, where |A| = 3n̂. We create an in-
stance I ′ of GAME IMPLEMENTATION with two players p1
and p2. Let X1 = X2 = A ∪ {cai

j | Cj ∈ C, ai ∈ Cj} and
O1 = O2 = {cai

j | Cj ∈ C, ai ∈ Cj}. Throughout, we take
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i + 1 and i − 1 modulo 3n̂. For each i ∈ [3n̂] and each set
Cj , Cp ∈ C with ai ∈ Cj , ai−1 ∈ Cp, we define the utilities
as

U1(ai, c
ai
j ) = 2, U1(ai, c

az
j ) = 1,

U1(c
ai
j , cai

j ) = 2, U1(c
ai
j , caz

j ) = 1 ∀ az ∈ Cj \ {ai},
U2(c

ai−1
p , ai) = 1, U2(c

ai−1
p , cai

j ) = 1.

The undefined utilities are 0 and the budget δ is also 0. The
utilities of p1 and p2 are shown in Section 3.

Before continuing with the proof, let us explain some in-
tuition. For each ai ∈ A we denote the sets containing ai as
Ci,1, Ci,2, Ci,3. The utilities of value 2 for p1 and the zero
budget enforce that for every ai ∈ A exactly one of the
strategies cai

i,1, c
ai
i,2, c

ai
i,3 can be undominated for p2: To dom-

inate ai for p1 with, say, cai
i,2, we must promise a positive

amount for playing cai
i,2 whenever p2 plays cai

i,3 or cai
i,1. Thus

we must have that neither of those latter strategies is undom-
inated for p2 in order to stay within the budget.

The utilities of value 1 for p1 enforce consistency, i.e., if
as ∈ A is covered by Cr, then every ai′ ∈ Cr must also be
covered by Cr. If cas

r is undominated for p2, then if we were
to dominate ai ∈ Cr with cai

i,2 where Ci,2 ̸= Cr, we would
have to pay p1 least 1 for the strategy cai

i,2 when p2 plays cas
r .

But since these are both undominated strategies, we would
exceed the budget.

The utilities for p2 enforce that we cover every element
ai ∈ A. Player p1 always tries to match the element p2 is
playing, whereas p2 tries to be one ahead. This prevents the
two players from picking some element az ∈ A and only
playing the strategies related to that.

Formally, we claim that I is a positive instance of X3C if
and only if I ′ is a positive instance of GAME IMPLEMEN-
TATION.

For the forward direction, assume that (A, C) admits an
exact cover S . For each element ai ∈ A and two distinct
sets Cj , Cp ∈ C with ai ∈ Cj ∩ Cp, where Cj ∈ S and
for each element az ∈ Cj , we define V1(c

ai
j , caz

p ) = ∞. For
each element ai ∈ A and two distinct sets Cj , Cp ∈ C with
ai ∈ Cj ∈ S , while ai−1 ∈ Cp but Cp /∈ S , we define
V2(c

ai−1
p , cai

j ) = ∞. To show that this is a valid implemen-
tation, we will show that X ⋆ ⊆ O and cost(V) = 0.

Claim 3.2 (⋆). For each Cj ∈ S , each ai ∈ Cj and each
Cℓ ∈ C \ {Cj} with ai ∈ Cℓ, we have that cai

j dominates
both ai and every cai

l for both p1 and p2.

Proof of Claim 3.2. Observe that for p1, strategy ai domi-
nates cai

j for every Cj ∈ C where ai ∈ Cj in G. Since S is
an exact cover, no Cl ∈ C \ {Cj} such that ai ∈ Cl is in S .
Thus payment promise V1 is 0 when p1 plays cai

l . Thus ai
also dominates cai

l in G[V]. Because dominance is transitive
(Observation 2.1), it is enough to show that cai

j dominates ai.
To see that cai

j dominates ai for p1, we show that the
utility for playing cai

j is always at least that of playing ai.

Case 1: p2 plays cai
j .

Then, [Ui + Vi](c
ai
j , cai

j ) = 2 = [Ui + Vi](ai, c
ai
j ).

Case 2: p2 plays cai

l for some Cl ∈ C \ {Cj} s.t. ai ∈ Cl.
Then, since ai is covered by Cj , we know that
Cl /∈ S . Therefore, [U1 + V1](c

ai
j , cai

l ) = ∞ > 2 =

[U1 + V1](ai, c
ai

l ).
Case 3: p2 plays caz

j for some az ∈ Cj \ {ai}.
Then, [U1 + V1](c

ai
j , caz

j ) = 1 = [U1 + V1](ai, c
az
j ).

Case 4: p2 plays caz

l for some az ∈ A\{ai}, Cl ∈ C\{Cj}
where ai, az ∈ Cl.
Then, since element ai is covered by Cj we know that
Cl /∈ S . Therefore [U1 + V1](c

ai
j , caz

l ) = ∞ > 1 =

[U1 + V1](ai, c
az

l ).
Case 5: p2 plays caz

l for some az ∈ A \ {ai}, Cl ∈
C \ {Cj}, where ai /∈ Cl, az ∈ Cl.
Then, [U1 + V1](c

ai
j , caz

l ) = 0 = [U1 + V1](ai, c
az

l ).
Case 6: p2 plays az ∈ A (ai, az not necessarily distinct).

Then, [U1 + V1](c
ai
j , az) = 0 = [U1 + V1](ai, az).

In all cases, the new utility of cai
j is higher than or equal

to the utility of ai, and in the Cases 2 and 4 the utility is
strictly higher. Thus cai

j dominates ai for p1. The analogous
observation for p2 is proved in the full version. ⋄

Since the set of undominated strategies is non-empty (Ob-
servation 2.4), Claim 3.2 implies that for every i ∈ [2],
X⋆

i ⊆ {cai
j | Cj ∈ S, ai ∈ Cj} as all other strategies

are dominated. Therefore X ⋆ ⊆ {cai
j | Cj ∈ S, ai ∈

Cj} × {cai
j | Cj ∈ S, ai ∈ Cj} ⊆ O, as required. For every

j ∈ [2], we have that Vj(s1, s2) > 0 only when s1 or s2 is in
{cai

j | Cj /∈ S, ai ∈ Cj}. Since none of these strategies is in
X⋆

j′ , we have that cost(V) = maxx∈X⋆
G[V]

∑
i∈[2] Vi(x) =

0, as required. This concludes the forwards direction.
For the backward direction, assume that we have a pay-

ment promise V such that cost(V) = 0 and X ⋆ ⊆ O in the
modified game G[V].
Claim 3.3. Let Cj ∈ C, ai ∈ A. If cai

j ∈ X⋆
2 , then in G[V]

(i) cai
j ∈ X⋆

1 ,
(ii) cai

j dominates ai for p1,
(iii) cai

l /∈ X⋆
2 where Cl ∈ C \ {Cj} and ai ∈ Cl.

Proof of Claim 3.3. We first show (i). Since V imple-
ments O, by Observation 2.3 there is an undominated strat-
egy that dominates ai for p1. For a strategy s ∈ X⋆

1 to dom-
inate ai for p1 we need that V1(s, c

ai
j ) ≥ U1(ai, c

ai
j ) −

U1(s, c
ai
j ) = 2 − U1(s, c

ai
j ). Because s is undominated,

(s, cai
j ) ∈ X ⋆

G[V]. By the definition of cost, we have that
0 ≥ cost(V) = maxx∈X⋆

G[V]

∑
i∈[2] Vi(x) ≥ V1(s, c

ai
j ). By

combining these, we obtain that U1(s, c
ai
j ) ≥ 2. The only

strategy for p1 that satisfies this condition is cai
j . Since cai

j
dominates ai, (ii) follows directly.

To prove (iii), assume that both cai
j and cai

l are undom-
inated for p2. By (i) and (ii), strategy cai

j dominates ai for
p1 and cai

j is undominated. Thus [U1 + V1](c
ai
j , cai

l ) ≥
U1(ai, c

ai

l ) = 2. From U1(c
ai
j , cai

l ) = 0 it follows that
V1(c

ai
j , cai

l ) ≥ 2. But since cai
j is undominated for p1

and cai

l for p2, (cai
j , cai

l ) ∈ X ⋆ and thus cost(V) =
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Play
er
p1 Player p2

ca0
0,1 ca0

0,2 ca0
0,3 . . . cai

i,1 cai
i,2 cai

i,3 . . . c
ai′
i′,2 . . . c

a3n̂−1

3n̂−1,3

ca0
0,1 2 . . . . . . . . .

ca0
0,2 2 . . . . . . . . .

ca0
0,3 2 . . . . . . . . .

...
...

...
...

...
...

...
...

...

cai
i,1 . . . 2 . . . 1 . . .

cai
i,2 . . . 2 . . . . . .

cai
i,3 . . . 2 . . . . . .
...

...
...

...
...

...
...

...
...

c
ai′
i′,2 . . . 1 . . . 2 . . .

...
...

...
...

...
...

...
...

...

c
a3n̂−1

3n̂−1,3 . . . . . . . . . 2

a0 2 2 2 . . . . . . . . .
...

...
...

...
...

...
...

...
...

ai . . . 2 2 2 . . . 1 . . .
...

...
...

...
...

...
...

...
...

a3n̂−1 . . . . . . . . . 2

Play
er
p2 Player p1

c
ai−1

i−1,1 c
ai−1

i−1,2 c
ai−1

i−1,3 cai
i,1 cai

i,2 cai
i,3

cai
i,1 1 1 1

cai
i,2 1 1 1

cai
i,3 1 1 1

c
ai+1

i+1,1 1 1 1

c
ai+1

i+1,2 1 1 1

c
ai+1

i+1,3 1 1 1

...
...

...
...

...
...

...

ai 1 1 1

ai+1 1 1 1

Table 1: Left: The partial utility matrix of p1 from the proof of Theorem 3.1. For each element aℓ ∈ A, let Cℓ,1, Cℓ,2, Cℓ,3 denote
the sets containing it. For the sake of example, we assume that ai ∈ Ct such that Ci′,2 = Ci,1 = Ct. Columns corresponding
to strategies ai,∈ [3n̂] for p2 are omitted: their values are 0. Right: The utility matrix of p2 from the proof of Theorem 3.1.
Columns corresponding to strategies ai,∈ [3n̂] for p1 are omitted: their values are 0.

maxx∈X⋆

∑
i∈[2] Vi(x) ≥ V1(c

ai
j , cai

l ) = 2 which a con-
tradiction to cost(V ) = 0. ⋄

Claim 3.4. Let Cj ∈ C, ai ∈ A. If cai
j ∈ X⋆

1 , then c
ai+1

l ∈
X⋆

2 for some Cl ∈ C such that ai+1 ∈ Cl.

Proof of Claim 3.4. Since V implements O, by Observa-
tion 2.3, there is an undominated strategy s ∈ X⋆

2 that dom-
inates ai+1 for p2. For s to dominate ai+1 we need that
[U2 + V2](c

ai
j , s) ≥ U2(c

ai
j , ai+1) = 1.

Since s is undominated, (cai
j , s) ∈ X ⋆

G[V]. Therefore
0 ≥ cost(V) = maxx∈X⋆

G[V]

∑
i∈[2] Vi(x) ≥ V2(c

ai
j , s).

Since we need [U2 + V2](c
ai
j , s) ≥ 1, it follows that

U2(c
ai
j , s) ≥ 1. The only strategies for p2 that satisfy this

condition are c
ai+1

l where Cl ∈ C such that ai+1 ∈ Cl. ⋄

We know from the definition of implementations that
X⋆

2 ̸= ∅. Therefore there are some Cj ∈ C, ai ∈ Cj such
that cai

j ∈ X⋆
2 . By Claim 3.3(i) we have that cai

j ∈ X⋆
1 . By

Claim 3.4 we have that cai+1
p ∈ X⋆

2 for some Cp ∈ C such
that ai+1 ∈ Cp. By repeating this argumentation 3n̂ times,
we obtain that for every ai′ ∈ A, there is some Cj′ ∈ C
such that ai′ ∈ Cj′ and c

ai′
j′ ∈ X⋆

2 .
This shows that S := {Cj | Cj ∈ C, ∃ ai ∈ A, s.t. cai

j ∈
X⋆

2} is a cover of A, i.e.,
⋃

C∈S C = A. To show that S is
an exact cover, we must show that if Cj ∈ S and ai ∈ Cj

then for every Cl ∈ C \ {Cj} such that ai ∈ Cl, we have
that Cl /∈ S .

Assume, towards a contradiction, that some ai ∈ A is
covered twice, i.e., there are Cj , Cl ∈ S where ai ∈ Cj ∩
Cl. By Claim 3.3(iii) we cannot have both cai

j ∈ X⋆
2 and

cai

l ∈ X⋆
2 . Therefore, without loss of generality, assume that

cai
j ∈ X⋆

2 and caz

l ∈ X⋆
2 for some az ∈ Cl \ {ai}. Then

by Claim 3.3(ii) cai
j dominates ai for p1. Moreover, [U1 +

V1](c
ai
j , caz

l ) ≥ U1(ai, c
az

l ) = 1 because ai ∈ Cl.
Because U1(c

ai
j , caz

l ) = 0, we have V1(c
ai
j , caz

l ) ≥ 1. By
Claim 3.3(i) we have cai

j ∈ X⋆
1 and we assumed that caz

l ∈
X⋆

2 . Thus cost(V) ≥ V1(c
ai
j , caz

l ) ≥ 1 > 0, a contradiction.
Therefore each element ai ∈ A is covered exactly once, and
S is an exact cover. This finishes the proof of Theorem 3.1.

4 GAME IMPLEMENTATION is NP-hard for
Max. Degree Three and Two Strategies

In all earlier reductions, the number of strategies per player
has been unbounded. In this section we show that in graph-
ical games even bounding the number of strategies and the
degree of players together does not help to lower the com-
plexity.

Theorem 4.1 (⋆). GAME IMPLEMENTATION on graphical
games is NP-hard even for degree three and if each player
has at most two strategies.

Proof. To show NP-hardness we reduce from X3C. Let
(A = {a0, . . . , a3n̂−1}, C = {C0, . . . , C3n̂−1}) be an in-
stance of X3C. We construct an instance (N,X ,U ,O, δ) of
graphical GAME IMPLEMENTATION in the following way:
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Let N := C ∪ A be the set of players, let Xp = {Tp, Fp} be
the set of strategies for player p ∈ N .

Construct the underlying graph H := (N,E), where
E := {{ai, Cj} | Cj ∈ C, ai ∈ Cj}. It is easy to see
that H has degree 3. Throughout this proof, for an element
ai ∈ A, let us denote the sets that include it as C1

i , C
2
i , C

3
i

in the order of increasing indices in C. When defining util-
ity functions, if the utility of the player does not depend on
the strategy played by some other player, the strategy of this
player is omitted from the function arguments.

For each element ai ∈ A, we define

Uai(TC1
i
, TC2

i
, TC3

i
, Fai) = Uai(FC1

i
, FC2

i
, FC3

i
, Fai)

= Uai
(TC1

i
, TC2

i
, FC3

i
, Fai

) = Uai
(TC1

i
, FC2

i
, TC3

i
, Fai

)

= Uai
(FC1

i
, TC2

i
, TC3

i
, Fai

) = 1

The undefined combinations pay out 0. For every Cj ∈ C,
utility function UCj is 0 for every strategy profile.

For every ai ∈ A we put Oai
= {Tai

}. For every Cj ∈
C, we put OCj

= XCj
, concluding the construction. The

correctness proof is in the full version.

5 EXACT GAME IMPLEMENTATION is
NP-hard

The complexity of EXACT GAME IMPLEMENTATION has
so far been open. In this section we show that it is NP-hard
even when we have only two identical players.

Theorem 5.1 (⋆). EXACT GAME IMPLEMENTATION is NP-
hard, even for two players and rectangular desired strategy-
profile sets.

Proof. We give a reduction from the NP-hard 3-COLORING
problemin which are a graph H and need to decide whether
H can be properly colored with three colors. That is,
whether we can assign each vertex exactly one color such
that no two adjacent vertices receive the same color.

Given an instance H of 3-COLORING we proceed as
follows to construct an instance of EXACT GAME IM-
PLEMENTATION that consists of a game G = (N,X ,U),
a rectangular strategy profile set O, and the real budget
δ = 1. There are two players, that is, N = {1, 2}. The
sets of strategies of the two players are identical, that is,
X = X1 × X2 and X1 = X2. Thus, we only describe X1.
For each vertex in V (H) there is a corresponding strategy
in X1, that is, V (H) ⊆ X1. We call these vertex strategies.
Furthermore, for each combination of a color c ∈ [3] and a
vertex v ∈ V (H) there is a strategy (v, c) ∈ X1. We call
these color-choice strategies, and we use C to denote the
set of color-choice strategies, that is, C = {(v, c) | v ∈
V (H) ∧ c ∈ [3]}. Finally, we have a set D of 3n dummy
strategies. Overall, X1 = X2 = V (H) ∪ C ∪D.

The strategies to implement are the color-choice strate-
gies, that is, O1 = O2 = C and O = O1 × O2. Intuitively,
the strategy (v, c) in O1 that dominates strategy v after
promises shall correspond to choosing color c for vertex v.

The utility functions are symmetric, that is, for
each x ∈ X1 = X2 and y ∈ X2 = X1 we have
U1(x, y) = U2(y, x). Thus, we only describe U1 explicitly.

Moreover, we only give the non-zero values of U1, all
values not explicitly mentioned are 0. First, for each pair
(v, c1), (v, c2) of color-choice strategies that correspond to
the same vertex v ∈ V (H) we put

U1((v, c1), (v, c2)) =

{
3, c1 = c2
2, c1 ̸= c2.

Second, for each pair (u, c1), (v, c2) of color-choice strate-
gies corresponding to adjacent vertices u, v ∈ V (H) we put

U1((u, c1), (v, c2)) = U1((v, c1), (u, c2)) =

{
1, c1 = c2
2, c1 ̸= c2.

Third, for each vertex strategy v and each color-choice
strategy (v, c) corresponding to v we put U1(v, (v, c)) = 3.
Fourth, for each vertex strategy u and each color-choice
strategy (u, c) corresponding to a neighbor u ∈ NH(v) of
v we put U1(v, (u, c)) = 2. Finally, for each color-choice
strategy x ∈ X1 we pick a distinct dummy strategy y ∈ X2

and put U1(x, y) = 1. This concludes the description of the
EXACT GAME IMPLEMENTATION instance I = (G,O, δ)
where G = (N,X ,U) and δ = 1.

Intuitively, the players are highly incentivized to play
vertex strategies because of the values U1(v, (v, c)) = 3.
In order to dominate a vertex strategy v, we need to pick a
color-choice strategy corresponding to that vertex v because
in order to make a different strategy dominate v we would
exceed the budget of 1. The values U1((v, c1), (v, c2)) will
enforce that both players select the same color for each ver-
tex. Afterwards, if two adjacent vertices u, v would receive
the same color c then the values U1((u, c), (v, c)) = 1 =
U2((u, c), (v, c)) enforce that we would have to pay both
players: These two color-choice strategies would have to
dominate u (for player 1) and v (for player 2), respectively,
and we have U1(u, (v, c)) = 2 = U2((u, c), v).

The proof of the correctness is in the full version.

6 Correction to Algorithm for EXACT GAME
IMPLEMENTATION

Eidenbenz et al. (2011) gave an algorithm which on input of
a game G and a desired strategy-profile region O, finds the
minimum δ such that (G,O, δ) is a positive instance of EX-
ACT GAME IMPLEMENTATION. This is Algorithm 1 in (Ei-
denbenz et al. 2011), which for completeness is contained in
the full version.

The algorithm fails to give an exact implementation when
for some player i ∈ N , a strategy in Oi dominates some
other strategy in Oi. We show an example where it fails
and provide a fix for a class of games which we refer to as
equitable games.

To see that the algorithm does not always construct a cor-
rect payment promise V , consider a 2-player instance where
player 1 and player 2 both have two strategies {s1, s2}. Let
us define the utility functions for both players i ∈ [2] as

Ui(s1, s1) = 2 Ui(s2, s1) = 1

Ui(s1, s2) = 1 Ui(s2, s2) = 0.

Let O1 = {s1, s2} and O2 = {s1}.
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Algorithm 1: Minimum cost exact implementation
input : A game G = (N,X ,U) and a rectangular

strategy profile region O = O1 × · · · ×On.
output : A payment promise V and δ ≥ 0 such that V

implements O and maxo∈O
∑

i∈N Vi(o) = δ is
smallest possible.

1 foreach i ∈ N do
2 foreach mapping Fi : Xi \Oi → Oi do
3 V Fi ← ComputeV(Fi, Xi, Oi)
4 δ ←∞; V ← (0 , . . . , 0 );
5 foreach F = (F1, . . . , Fn) ∈ F do
6 δF ← maxo∈O

∑
i∈N V Fi(o);

7 if δF < δ then δ ← δF ; V ← F ;
8 foreach i ∈ N do
9 foreach oi ∈ Oi do

10 foreach x−i ∈ X−i \ O−i do Vi(oi,x−i)←∞;
11 return δ,V
12 def ComputeV(Fi, Xi, Oi ):
13 foreach oi ∈ Oi do
14 foreach o−i ∈ O−i do
15 if F−1

i (oi) ̸= ∅ then
16 Vi(oi,o−i)← max{0,
17 max

xi∈F−1
i (oi)

Ui(xi,o−i)− Ui(oi,o−i)};
18 else Vi(oi,o−i)← 0;
19 return Vi

We can see that for both players s1 dominates s2, so
X⋆

i = {s1} for all i ∈ [2]. Because |X⋆
i \ Oi| = 0 for all

i ∈ [2], the check on line (1) of Algorithm 1 from (Eiden-
benz et al. 2011) is always false and the algorithm returns
that O can be implemented exactly with cost 0. However,
V1 constructed by the Algorithm is 0 everywhere, and thus
O1 ̸= X⋆

1 , meaning this is not an exact implementation of O.
Towards a correction, if we can for every player i ∈ N ,

pick for each of its desired strategies oi ∈ Oi an undesired
strategy profile xoi ∈ X \ O, such that xoi

i = oi, and for no
desired strategy o′i ∈ Oi \ {oi} do we have that xoi

−i = x
o′i
−i.

In other words, we require

|Oi| ≤ |X−i \ O−i|. (1)

Then we can ensure at no extra cost that no strategy in Oi

dominates another strategy in Oi. Let us call a game for
which, for every i ∈ N , Equation (1) holds equitable.

We start by showing that, if a game is equitable then
we can translate every non-exact implementation to an
exact implementation, where the cost is bounded by the
worst-case payment over O in the initial implementation.

Throughout this section, let F denote the Cartesian prod-
uct of the possible functions from Xi \ Oi to Oi for every
player, i.e., F = (X1 \O1 → O1)×· · ·×(Xn \On → On).
Theorem 6.1 (⋆). Let G = (N,X ,U) be an equitable game
and O ⊂ X a rectangular strategy profile region. Let
V implement O (not necessarily exactly) and let δ =
maxo∈O

∑
i∈N Vi(o). Then the payment promise V∗ below

implements O exactly with cost(V∗) = δ. Let M = Umax+
δ + 1 with Umax = maxi∈N,x∈X Ui(x), (i.e., Umax is the
maximum amount any player may receive in utility). For ev-
ery player i ∈ N , for each of its desired strategies oi ∈ Oi,

we choose an undesired strategy profile xoi ∈ X \ O, such
that xoi

i = oi, and for no desired strategy o′i ∈ Oi \ {o′i}
do we have that xoi

−i = x
o′i
−i. Since G is equitable, we can

choose such strategy profiles for every i ∈ N, oi ∈ Oi.
To define V∗, for every i ∈ N , x ∈ X , set

V ∗
i (x) =


0, if xi ∈ Xi \Oi

Vi(x), if xi ∈ Oi,x−i ∈ O−i

M + 1− Ui(x), if xi ∈ Oi,x−i = xoi
−i

M − Ui(x), otherwise.

(2)

The idea behind the payments is to enforce that every
desired strategy has one undesired strategy profile where it
is the best possible option. This prevents any other strategy
from dominating it.

Next we show that Algorithm 1 by Eidenbenz et al.
(2011) identifies a payment promise V minimizing
maxo∈O

∑
i∈N Vi(o). To make the analysis of the algo-

rithm easier, we give a simplified version of their algorithm,
which is shown in Algorithm 1. We obtain the following:
Theorem 6.2 (⋆). For a given equitable game G =
(N,X ,U) and a set of desired strategy profiles O ⊆ X , the
smallest δ ≥ 0 such that (G,O, δ) is a positive instance of
EXACT GAME IMPLEMENTATION can be identified in time
O(|O|maxi∈N (n|Oi||Xi\Oi||O||Xi \Oi|+ |Oi|n|Xi\Oi|)).

7 Characterization of Zero-Budget
Implementation

In this section we characterize rectangular strategy profiles
P = P1 × . . . × Pn that can be implemented at zero cost.
We call such profiles promise-Nash equilibrium (PNE).
The naming comes from two considerations. First, if each
player i has only one strategy in Pi, then a PNE is equivalent
to a Nash equilibrium. Second, a PNE encapsulates the
notion that no player i has an incentive to switch towards
a strategy outside of Pi provided that each other player j
plays only strategies in Pj . We believe this notion to be of
independent interest because it models situations in which
certain types of strategies may be off limits for, e.g., moral
reasons. Using PNE may thus enable studying the price (or
value) of morality and similar ideas. Formally:
Definition 7.1. Let G = (N,X ,U) be a game. A rectangu-
lar strategy profile region P1 × · · · × Pn ⊂ X1 × · · · ×Xn

is a promise-Nash equilibrium (PNE) if

∀ i ∈ N, ∀ xi ∈ Xi \ Pi ∃ pi ∈ Pi :

∀ p−i ∈ P−i : Ui(pi,p−i) ≥ Ui(xi,p−i).

We observe the following.
Theorem 7.2 (⋆). Let G = (N,X ,U) be a game. A rect-
angular strategy profile region P = P1 × · · · × Pn ⊂
X1 × · · · ×Xn can be implemented with cost 0 if and only
if P is a promise-Nash equilibrium.
In fact, this theorem has an interpretation in the morality set-
ting above: Let a profile P consist only of moral strategies
and no amoral ones. Then P is a PNE if and only if morality
is incentivized without any incentives having to actually be
realized. In other words, morality is self-enforcing if and
only if it constitutes a PNE.
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