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ABSTRACT Cellular operators tightly monitor their networks to keep up with the market demand and
frequently benchmark their performance against competitors. Typical benchmarking tests compare key
performance indicators, quality of service, and quality of experience parameters on the city- and regional
levels using user-collected crowdsourced data or drive test measurements. However, time-variant parameters
and different user mobility patterns can bias the performance comparison. Designing a measurement
sampling strategy that deals with such issues is critical for achieving a valid benchmark. Whether we would
like to determine how many tiles of a map have to be measured in drive tests or how many samples we
need from crowdsourced data to reach an estimate with the required accuracy, sampling theory can provide
us with an answer. Since propagation conditions depend on user mobility and measurement environment,
splitting the data set into groups or strata allows us to attain an unbiased estimate with fewer samples,
thus allowing for a fair comparison to other mobile network operators with minimum effort measurements.
In this work, we characterize the performance of different sampling methods on the simulated data set while
investigating specific use cases to reveal scenarios where the stratification method pays off. We further
analyze the sampling methods on two real-world crowdsourced data sets from a major Austrian operator.
By stratifying the data into meaningful strata, we obtain the required number of areas and measurements
in each stratum while remaining under the pre-set estimation error level. To our knowledge, this is the first
study on sampling methodologies applied to real-world crowdsourced cellular measurements.

INDEX TERMS 5G, cellular network benchmarking, crowdsensing, crowdsourcing, LTE, MDT, measure-
ments, RSRP, sampling, signal strength, stratification.

I. INTRODUCTION
In the realm of mobile network operators (MNOs), moni-
toring the evolution of coverage and mobile service quality
is a primary task. In order to estimate MNO network per-
formance, continuous data collection is typically performed
either through extensive, time-consuming drive tests or via
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crowdsourced data. However, obtaining an up-to-date and
unbiased performance comparison among different MNOs is
constrained by time- and space-variant key performance indi-
cators (KPIs) and quality of service (QoS) parameters, as well
as differences in MNO users’ mobility patterns. Therefore,
designing a measurement sampling strategy that addresses
these issues is essential for achieving a valid benchmark.

Regulatory bodies in each country typically establish the
minimum requirements for MNOs. For example, in Austria,
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the Regulatory Authority for Broadcasting and Telecommu-
nications (RTR) sets minimum requirements that include cov-
erage, quality of service, and network security [1]. To ensure
compliance with these requirements, MNOs seek to estimate
network performance in a representative and cost-efficient
manner. Sampling theory provides a framework to achieve
this goal by determining the minimum number of mea-
surements required to satisfy a particular estimation error
bound. This allows MNOs to optimize their performance
estimates while minimizing measurement areas, costs, time,
and resources, thereby reducing their environmental impact.

In the following parts of this section, we will introduce the
state of the art in MNO benchmarking and sampling method-
ologies. The remainder of this paper is organized as follows.
Section II summarizes the related work on stratification in
cellular communications and provides further motivation for
this work. Section III provides a theoretical background on
simple random sampling (SRS) and stratified sampling (SS)
methods. Section IV exemplifies the performance difference
between SRS and SS and clarifies the advantages of using
stratification under specific parameter conditions. In Section
V we apply the stratification methodologies on real-world
minimization of drive tests (MDT) data sets. To our knowl-
edge, this is the first paper that applies stratification in mobile
communications to extensive crowdsourced data. Section VI
concludes the paper and summarizes the findings.

A. STATE OF THE ART BENCHMARKING
Benchmarking cellular network coverage is a fundamental
task in ensuring that mobile networks deliver reliable and
consistent service to their users [2], [3]. Sampling method-
ologies play a pivotal role in this task by enabling network
operators to obtain accurate and representative data on net-
work performance across different geographic regions [4].
In recent years, there have been significant advances in
sampling methodologies for benchmarking cellular network
coverage, driven by the increasing availability of high-quality
geospatial data [5] and the development of advanced adaptive
sampling mechanisms [6].

1) DRIVE TESTS
One of the most widely used sampling methods for bench-
marking mobile networks is drive testing, where a vehicle
equipped with specialized measurement equipment travels
through a geographic area and collects data on the network
performance [7]. While drive tests yield highly detailed and
accurate data on network performance, they are expensive
and time-consuming to implement on a large scale and
face challenges regarding speed dynamics and measurement
repeatability [8].

Most drive test campaigns focus only on a subset of major
streets in the area of interest, often disregarding other outdoor
spaces, such as minor streets, parks, or squares, where satis-
factory mobile network quality is equally crucial and should
impact the final mean estimate. Since the measurements

are limited to the on-street scenario they tend to be highly
correlated, making this sampling method far from random.
Therefore, computing representative mean KPI values based
solely on such a subset of measurements is a challenging task.

2) CROWDSENSING
On the other hand, mobile crowdsensing involves collect-
ing data from mobile users through specialized applications
that measure network performance and location information.
Today, many mobile applications allow users to trigger a
measurement at the touch of a button [9], [10], [11]. The
term mobile crowdsensing was introduced in [12], while also
providing several examples of its applications. In [13], the
concept was extended to include mobile computing, where
mobile devices are used not only for the collection of data
but also for its processing. However, a significant challenge
associated with crowdsensing is the lack of sufficient mea-
surements at desired locations and times. To motivate users to
perform tests in locations of interest, researchers [14], [15],
[16], [17], [18], [19], [20] introduce different cost functions
while optimizing reward and recruitment strategies. Alterna-
tively, Tutela [21] incentivizes app developers to integrate
its software development kit into their applications, which
in turn collects anonymized network data from end-users.
While crowdsourced/crowdsensed1 data can provide a wealth
of information on network performance across a wide geo-
graphic area, it may be subject to biases and may not be as
accurate as data collected through drive testing [22]. This type
of passive monitoring involves collecting data on network
performance from devices that are already in use, such as
smartphones or IoT devices. While it can provide highly
granular data on network performance, it can be limited by
the availability of compatible devices and the need to protect
user privacy [23].

3) SIMULATED DATA: SAMPLING EXAMPLE
To demonstrate the importance of random sampling and com-
pare its effectiveness in crowdsensed and drive test scenarios,
we analyze the simulated map shown in Fig. 1(a), represent-
ing the serving reference signal received power (RSRP) for a
realistic network layout in an urban area. The generated map
is based on the Deep Learning Network Planner (DLNP) pre-
sented in [24] – simulation details are outlined inAppendixA.
Our goal is to estimate the mean RSRP in the aforementioned
area. To this end, we evaluate two sampling methods – a
single street drive test campaign and the crowdsensing of the
entire region, based on the following two scenarios:
■ Drive test: SRS of n samples only from the marked red

street in Fig. 1(a) (red curve in Fig. 1(b)),
■ Crowdsensing: SRS of n samples from the entire RSRP

data set (green curve in Fig. 1(b))
In both cases, the population mean of all simulated RSRP
values (1m × 1m tile = one sample) acts as the ground truth.
The number of random samples n (or 1m × 1m tiles of

1We use these two terms interchangeably.
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FIGURE 1. (a) Simulated outdoor RSRP map in the third Vienna district. Red outlined street is the Landstrasser Hauptstrasse. Blue scatter points are the
BS locations. (b) Absolute error of the mean estimation based on SRS.

the simulated map) is depicted on the x-axis in Fig. 1(b).
For each n the sampling was performed in 500 independent
iterations, to attain the error bounds. Shaded areas of the
curves represent [µe − σe, µe + σe], where µe is the mean
absolute error, and σe is the standard deviation (SD) of the
absolute error for each n.

Out of the 567 209 available samples2 in the population,
a random collection of 200 samples from the entire area is suf-
ficient for a mean estimation well below 1 dB absolute error.
Conversely, if the focus is solely on a single large street that
may be covered in a measurement campaign, an error bias of
nearly 7 dB is observed. The bias persists even by increasing
the sample size to encompass all available samples in that
street. Moreover, this analysis reveals that crowdsourced data
is better suited for mean estimates in comparison to biased
drive test data sets, which primarily capture the propagation
characteristics of the street canyons. In real-world measure-
ment scenarios, the advantage of crowdsourcing is even more
significant as it extends beyond outdoormeasurements to also
include indoor measurements (which were omitted in this
simulation).

The current state-of-the-art in sampling methodologies for
benchmarking cellular network coverage is characterized by
a wide range of approaches that can be customized to meet
the specific requirements and available resources of network
operators. The selection of a sampling methodology depends
on several factors, such as the level of granularity needed, the
geographic coverage of the study, and the available resources.
Thus, adapting the measurement collection or sampling strat-
egy to the individual propagation environments is essential to
achieve the best possible results. As new technologies and

2The number of samples is not rounded due to the missing tiles in the
building indoor areas (outdoor simulation only).

analytical techniques emerge, it is probable that sampling
methodologies for cellular network benchmarking will con-
tinue to progress and improve.

B. BENCHMARKING WITH SAMPLING THEORY
Sampling theory is concerned with selecting a subset of n
samples out of a population with N units, such that the
estimates for the population as a whole can be computed [25].
Since we deal with distinct scenarios in cellular networks,
such as rural vs. urban, mobile vs. stationary, or close
vs. far from the base station (BS), differing in propaga-
tion conditions, sampling theory suggests that these hetero-
geneous regions should be partitioned into homogeneous
strata. By dividing the measurement collection into strata,
it becomes possible to use fewer measurements in total while
achieving the same level of accuracy for mean estimation.

Moreover, for benchmarking different MNOs, in a par-
ticular large-scale area of interest, e.g., country, we have
to acquire randomly distributed measurements across that
area. Provided periodic radio measurements with global posi-
tioning system (GPS) positions, collected by MDT [26] of
different operators, the comparison may suffer from a user
distribution bias since some operators might have more mea-
surements in rural areas, while for others urban areas might
be over-represented. Moreover, in the case of limited sam-
ple sizes, variations in network deployments by different
operators may introduce bias due to potential differences in
the distance to the BS. Similarly, comparing one operator’s
indoor measurements to another’s outdoor measurements is
not a valid benchmark.

To mitigate various biases, it is possible to restrict the
analysis to regions where all MNOs have a sufficient num-
ber of users, as was the case for urban areas, highways,
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or railways in the observed data sets. These regions can be
assigned to distinct strata, and the cellular performance can
be compared across the strata. Since the strata are assumed to
be homogeneous and have low variance, fewer samples are
required for estimating the mean within confidence intervals
than when not distinguishing among the strata. In essence, the
variance is reduced by dividing the data set into strata.

Stratification is a useful approach when planning a drive
test campaign since it allows us to divide the area of interest
into tiles or geographical units (GUs) and assign each GU to
a specific stratum based on expected propagation conditions.
By spatially assigning measurements to the corresponding
GUs and computing the average over them, a ground truth
value is assigned to each GU. This division allows us to
determine the number of tiles of each stratum that must be
covered to obtain an accurate mean estimate for the entire
area of interest, thus reducing the time and costs associated
with the measurement campaign.

II. RELATED WORK
Performance monitoring in mobile cellular networks is of
utmost importance for ensuring the quality of service and
network optimization. In current 5G deployments, the instan-
taneous performance figures are required to conduct slicing,
and network orchestration [27]. In [28] and [29], the 3GPP
defines the measurement methodology and KPIs for physi-
cal, medium access control (MAC), and service level. The
network-wide optimization, monitoring, and root cause anal-
ysis of KPI performance are essential for operators and regu-
latory bodies. Generally, a specified KPI evaluation requires
large-scale measurements in the form of drive tests. A com-
mon compromise is using sampled KPI values from drive
tests, e.g., a set of sampled call drop rate measurements [3].
In cellular 4G and 5G networks, the RSRP as an indicator of
the received signal strength, is used by regulators to evaluate
coverage obligations, such as defined in [30].

In the current literature, many experimental and
exploratory solutions are presented [31], [32]. However,
there is a limited in-depth analysis of sampling strategies for
cellular data for either minimizing the collection of samples,
removing confounding, or validating existing data samples,
e.g., crowdsource data.

The International Telecommunication Union (ITU) sug-
gests that the overall measurement campaign should be split
into two steps: (1) using SS to select the geographic areas to
be measured, and (2) using SRS to determine the required
number of samples per measured area [2], [4]. Although this
approach is commonly used for drive test planning, stratifica-
tion can also be used in crowdsourced scenarios to eliminate
measurement bias introduced by unevenly distributed mea-
surement points [33]. By converting the measurement data
set into a two-dimensional map of GUs through grouping
and averaging, the impact of the measurement distribution
can be removed, providing a truthful map of the performance
indicator being measured. A similar approach was presented
in [34], where stratification with weights proportional to

FIGURE 2. Stratification sampling of GUs in area of interest.

stratum areas was applied to remove bias in mean area tem-
perature estimation.

A. SAMPLING IN MOBILE NETWORKS
Stratification is a statistical technique utilized to reduce the
estimation error bounds in comparison to a simple random
sample of equivalent size [35]. The process involves partition-
ing large areas into smaller subregions, commonly referred
to as GUs, and subsequently assigning them into predeter-
mined strata or groups. Through the application of stratified
sampling, we can determine the number of GUs required to
be measured in each stratum to achieve reliable estimates,
as illustrated in Fig. 2.

Initially, the area of interest is split into N tiles or GUs
of equal size. We can apply the same segmentation strategy
whether we aim to acquire the sample mean for the railways,
car routes, or entire countries of one particular network KPI.
Next, each GU is allocated to one of the predetermined strata
based on predefined criteria, such as population or BS density,
traffic demand, interference levels, or inter-BS distances. The
assignment of a GU to a stratum needs to be unique, i.e.,
the strata need to be mutually exclusive. Also, note that the
strata assignment needs to fulfill the criteria that the variable
of interest should be homogeneous within a stratum. Corre-
spondingly, the assignment needs to be specifically adapted
to the measured KPI.

After the stratification of the measurement area, we can
apply the proportional or optimal allocation method, dis-
cussed in Section III, to determine the necessary number of
GUs to be measured in each stratum. Finally, the GUs to be
measured in each stratum are randomly selected to ensure the
validity of the results.

In simple random sampling (SRS), we draw n samples
without replacement from N units of the whole population.
The samples are thereby selected at random following a
uniform distribution [35]. If the given population is hetero-
geneous, the randomly drawn samples will not faithfully
represent the true parameter estimates. If our population can
be divided into mutually exclusive subgroups that will take
on different mean values for the variable being studied, then
using stratification will allow for more precise statistical
estimates that have lower variance, compared to SRS.
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In stratified sampling (SS), we consider a heterogeneous
population, which we split into a total of L groups or strata,
such that the units in each individual stratum are as similar
as possible. We aim for strata that are homogeneous within,
but heterogeneous among each other [25]. A typical example
of such strata can be observed in different geographic areas
that exhibit different propagation conditions for wireless sig-
nals and consequently varying signal quality, for instance,
rural vs. urban areas. Such an approach allows for a drastic
reduction of the required samples n for a given estimation
error limit.

III. SAMPLING METHODOLOGIES
Sampling methodologies in geospatial applications, such
as cellular coverage, are crucial for obtaining accurate and
representative data. These methodologies involve selecting a
subset of locations or data points from a larger population in
order to make inferences about the population as a whole.
In the context of cellular coverage, sampling can be used
to determine the strength and quality of the signal at differ-
ent locations, which can be useful for optimizing network
infrastructure and improving coverage. We introduce the
following methods: simple random sampling and stratified
sampling. Note that depending on the use case in Section V,
the population samples discussed in Section III-A, and III-C
correspond either to the KPI measurements in our
data set, or the GU averages of the KPI measurement
values.

A. SIMPLE RANDOM SAMPLING (SRS)
Consider a population of size N , where each sample from
the population is associated with a value of the variable of
interest y. The sample mean of that population µ and the
sample variance σ 2 are calculated as:

µ =
1
N

N∑
i=1

yi, (1)

and

σ 2
=

1
N − 1

N∑
i=1

(yi − µ)2. (2)

By drawing n samples at random following a uniform distri-
bution from the given population, we can define the sample
mean as:

y =
1
n

n∑
i=1

yi, (3)

which is an unbiased estimator of the populationmeanµ [35].
Equivalently, we can also estimate the population variance
σ 2, by computing the sample variance s2:

s2 =
1

n− 1

n∑
i=1

(yi − y)2 . (4)

It can again be shown, that s2 is an unbiased estimator
of σ 2 [35].

Further, we derive expressions for the expected variance
of the estimators themselves. The variance of the population
mean estimator y is given by:

var(ȳ) =

(
N − n
N

)
σ 2

n
(5)

and can be estimated using the following expression:

v̂ar(ȳ) =

(
N − n
N

)
s2

n
. (6)

To obtain a confidence interval I for a given estimate,
we select a small number α, which denotes the probability
of our population mean being outside of the confidence inter-
val I . Therefore, for the estimation of the sample mean y, the
populationmeanµ should lie in the interval I with probability
1 − α, i.e., we require that

P(µ ∈ I ) = 1 − α, (7)

where we consider all possible samples of size n.
Under the assumption that the population mean estimates are
normally distributed under random sampling, we obtain the
interval as:

I =

ȳ−t√(N − n
N

)
s2

n
, ȳ+ t

√(
N − n
N

)
s2

n

 , (8)

where t denotes the upper α/2 point of the Student-t distribu-
tion with n − 1 degrees of freedom. In nearly all practical
scenarios, Eq. (8) holds due to the central limit theorem.
As a rule of thumb, we can replace the Student-t distribution
with the standard normal distribution whenever n > 50. For
a more detailed discussion, we refer the interested reader
to [25], [35], and [36].

B. REQUIREMENTS ON SAMPLE SIZE IN SRS
Suppose that one wishes to estimate a population parameter
θ , for example the populationmean, with an estimator θ̂ .With
a basic understanding of SRS, we can address the question of
determining the required sample size n for an estimate with a
predefined accuracy.

We specify the maximum allowable absolute or relative
error d between the estimate and the true value, while allow-
ing for a small probability α that the error may exceed thresh-
old d . We define these probabilities as being less than α for
absolute and relative error respectively as:

α >

P
(
|θ̂ − θ | > d

)
for absolute error,

P
(
|θ̂ − θ | > d |θ |

)
for relative error.

(9)

Under the assumption of an unbiased normally distributed
estimator, the distribution of error normalized by the square
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root of estimator variance

θ̂ − θ√
var(θ̂ )

(10)

approaches a standard normal distribution for large n. This
allows us to reformulate the inequalities from Eq. (9) into Eq.
(11), by introducing z as the upper α/2 point of the standard
normal distribution:

P

 |θ̂ − θ |√
var(θ̂ )

> z

 = P
(

|θ̂ − θ | > z
√
var(θ̂ )

)
= α. (11)

For the case of the population mean estimator under SRS,
we have θ = µ and θ̂ = y, we thus need to solve:

z
√
var (y) =

{
d for absolute error,
d |µ| for relative error,

(12)

with the variance of our population mean estimator specified
in Eq. (5). Solving Eq. (12) for n gives us:

n =
1

1/n0 + 1/N
:= nsrs, (13)

with

n0 =


z2σ 2

d2
for absolute error,

z2σ 2

d2µ2 for relative error,
(14)

for absolute and relative error respectively. To distinguish n
in SRS from n in Section III-D, we denote it as nsrs.
Note, that the main challenge in this setup is the selection of
the population variance σ 2, which has to be done beforehand.

C. STRATIFIED SAMPLING (SS)
Nowwe consider a heterogeneous population, which we split
into a total of L groups or strata, such that the samples in each
individual stratum are as similar as possible. We denote the
number of population samples per stratum h as Nh, such that
the total number of samples in the population is given by:

N =

L∑
h=1

Nh. (15)

Equivalently, we define nh, as the number of randomly drawn
samples from stratum h — then the total number of drawn
samples is given by:

n =

L∑
h=1

nh. (16)

Further, we introduce the mean in a stratum h as µh:

µh =
1
Nh

Nh∑
i=1

yi. (17)

Depending on our use case, yi represents either the KPI of
interest in the ith GU or the ith KPI measurement sample.

By summarizing the estimates for the individual strata we
can derive an unbiased estimator of the population mean µ.
We denote this estimate as the stratified sample mean yst, that
is given by:

ȳst =
1
N

L∑
h=1

Nhȳh. (18)

Note, that Eq. (18) assumes SRS estimates yh for each
stratum.

The variance of the estimator in Eq. (18) is given by:

var (ȳst) =

L∑
h=1

(
Nh
N

)2 (Nh − nh
Nh

)
σ 2
h

nh
. (19)

The corresponding estimator of this variance can be derived
by replacing the population variance σ 2 with the sample
variance s2 for each stratum:

v̂ar (ȳst) =

L∑
h=1

(
Nh
N

)2 (Nh − nh
Nh

)
s2h
nh

. (20)

Given the total number of samples to be drawn n, we need to
specify how to allocate these samples across different strata.
In the following, we distinguish between two different types
of allocation:

1) Proportional Allocation
If the strata differ in size, the proportional allocation
could be used to maintain a steady sampling fraction
throughout the population. Here, we simply select the
number of samples in accordance with the overall units
Nh per stratum such that:

nh =
nNh
N

. (21)

2) Optimal Allocation
Optimal allocation results in the population mean esti-
mate with the lowest variance for a fixed total number
of samples n. Here, we have for the number of samples
per stratum h:

nh =
nNhσh∑L
k=1 Nkσk

. (22)

For this, we again have to estimate the stratum vari-
ances σ 2

h in advance. Typically, this is done with past
data.

D. REQUIREMENTS ON SAMPLE SIZE IN SS
Similar to SRS, we first specify the maximum allowable error
d between the estimate and the true value, while allowing for
a small probability α that the error may exceed the threshold
d. For the estimation of the sample mean µst, this means that
the populationmeanµ should lie in interval I with probability
1 − α, i.e., we require that

P(µ ∈ I ) = 1 − α, (23)

where we consider all possible samples of size n.
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Assuming yst to be normally distributed, using the central
limit theorem the confidence interval can be constructed as
follows:

I =

[
yst−z

√
var

(
yst
)
, yst + z

√
var

(
yst
)]

, (24)

where z is the upper α/2 point of the standard normal distri-
bution. For a more detailed discussion, we refer the interested
reader to [25] and [36].

In analogy with Eqs. (9), and (10) we can derive the
required sample size for fixed choices of d and α. W.l.o.g.
we define dabs := d and drel := d |µ|, and solve for

dX = z ·

√
var

(
yst
)
, where dX denotes either dabs or drel.

Thereby, we insert the expression for variance from Eq. 19
and corresponding allocation according to Eqs. (21), and (22),
to get for:

1) Proportional Allocation

d2X
z2
N 2

+

L∑
h=1

Nhσ 2
h =

L∑
h=1

N 2
h σ 2

h

nh

=
1
n

·

L∑
h=1

Nhσ 2
h N . (25)

Hence, the required number n to achieve the error
bound d with probability 1 − α using proportional
allocation is given by:

n =

∑L
h=1 Nhσ

2
hN

d2X
z2
N 2 +

∑L
h=1 Nhσ

2
h

:= nprop. (26)

2) Optimal Allocation

d2X
z2
N 2

=

L∑
h=1

N 2
h

(
Nh − nh
Nh

)
σ 2
h

nh

=

L∑
h=1

N 2
h σ 2

h

nh
−

L∑
h=1

Nhσ 2
h ,

d2X
z2
N 2

+

L∑
h=1

Nhσ 2
h =

L∑
h=1

N 2
h σ 2

h

nh

=
1
n

·

L∑
h=1

Nhσh ·

(
L∑
k=1

Nkσk

)

=
1
n

·

(
L∑
h=1

Nhσh

)2

. (27)

Hence, the required number n to achieve the error
bound d with probability 1−α using optimal allocation
is given by:

n =

(∑L
h=1 Nhσh

)2
d2X
z2
N 2 +

∑L
h=1 Nhσ

2
h

:= nopt. (28)

Finally, by substituting dX with dabs or drel in Eqs. (26) and
(28), depending on the error measure in question, the number

of samples (nprop, nopt) required to remain below the given
error bound is calculated. As was the case in SRS, the main
challenge in stratification setup is the selection of the strata
variances σ 2

h , which has to be done beforehand.
The main reason for using SS is that it requires a smaller

n to achieve the same error bound, i.e., the required n is
typically significantly smaller than what we obtain for SRS.
Thereby allowing the MNOs to achieve accurate estimates
of the overall network quality while covering fewer GUs or
having fewer measurement samples. In the following section,
we investigate the influence of the strata means, variances,
and sizes on the performance among SRS, SS with propor-
tional allocation, and SS with optimal allocation.

IV. SAMPLING OF SIMULATED DATA SET
Three parameters influence the sampling performance with
respect to the given error bound d :

• strata means µh,
• strata variances σ 2

h and
• strata sizes Nh,

where h = 1, 2, . . . ,L. After extensive simulation analy-
sis, we have found that the key parameter influencing the
required sample size for each method is the stratum vari-
ance. The higher the variance per stratum (or population
in the case of SRS), the larger the sample size required to
achieve the desired level of precision. Furthermore, stratified
sampling outperforms simple random sampling when there
is a significant difference in the strata means. In terms of
stratum size, optimal performance is achieved when the strata
are of the same order of magnitude. However, as stratum
sizes become increasingly unbalanced, with a majority of
samples concentrated in a single stratum, the performance
of all three methods becomes almost indistinguishable.
In Section IV-A, IV-B we examine the impact of these param-
eters on sampling performance by analyzing a general use
case and two boundary special cases to gain a comprehensive
understanding of their influence.

Looking at Eqs. (13), (26), and (28), a causality dilemma
arises, as the variance of either the total population or each
stratum must be known or properly estimated before calcu-
lating the required number of samples for a given acceptable
error. Thus, if we wish to determine the number of samples
in yet unseen regions, we must estimate variances based on
similar previously measured areas. Despite this challenge,
by simulating an artificial data set and examining sampling
performance, we can gain an understanding of how these
parameters influence the sampling process. Depending on the
use case, such an artificial sample corresponds either to a
single measurement or to themeasurement average in a single
GU. In Section V we will resolve the two cases, however, the
following general simulation results apply to both.

A. SAMPLING PERFORMANCE: GENERAL USE CASE
Using a set of parameters S = {µh, σh,Nh} we generate
an artificial stratified data set, by drawing samples from a
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Normal distribution with mean µh and standard deviation σh
of size Nh for each stratum, finally combining these strata
into a full artificial data set. Here we wish to point out, that
different distributions can be used for the data set generation,
e.g., Student-T, Gumball, and even multi-modal Gaussian,
as long as the sample mean estimate is approximately nor-
mally distributed.

W.l.o.g., we show the results simulated using Normal dis-
tribution. The simulation parameters we used for generat-
ing an artificial RSRP data set consisting of two strata are
provided in Table. 1 (general use case). Next, we choose
α = 0.05 and generate a range for acceptable sampling error
d , which is represented on the x-axis of Fig. 3. For each of
the d-values, we use Eqs. (13), (26) and (28) to calculate the
required number of samples for each sampling method (solid
curves in Fig. 3). Thereby we assume perfect knowledge
of Nh and σh for both strata – something we will need to
estimate for real-world data. For proportional and optimal SS
we further use Eqs. (21) and (22) respectively, to calculate the
number of samples required in each stratum (dashed curves
in Fig. 3). Horizontal dashed lines illustrate Nh – the popu-
lation total for each stratum. Considering Fig. 3(a), assume
we want to predict the mean value of the simulated RSRP
data set. If we are willing to accept that the absolute error
between the mean estimate (calculated from the sample) and
the population mean is in 95% of the cases (1−α) below d =

10−1, then we require nSRS ≈ 11 800 samples (≈90%) using
the SRS method. On the other hand, using the proportional
stratification method, this number reduces to nprop ≈ 10 600
(≈80%), while the optimal stratification method requires
only nopt ≈ 9 000 (less than 70%) samples in total (solid lines
in Fig. 3(a)). While in proportional stratification the number
of samples in each stratum proportionally rises until reaching
its boundary at respective Nh (red dashed curves), the optimal
scheme exploits the knowledge of strata variances.

For lower strata variance, fewer samples are required
for accurate stratum mean estimation (S2 SS opt curve in
Fig. 3(a)). However, if the variance in a stratum is too high,
the algorithm would require more samples than we have
available (S1 SS opt curve overshoots the N1 level). This
might represent a problem if we are, for instance, trying to
determine how many tiles need to be measured in the area
of interest, as we cannot simply introduce more tiles in that
area. However, if we are determining the number of required
measurements, we merely would have to measure more in
those areas where the variance is high. The dotted part of
the nopt (total SS opt curve in Fig. 3(a)) curve symbolizes the
overshot of one of the stratum curves.

For verifying that under SRS of nh samples in each stra-
tum, we truly remain under set estimate error level d in
(1−α)100% of the cases, we apply the verification algorithm
provided in Appendix C.

B. SPECIAL CASES
To help us understand when the increased complexity of
stratification proves beneficial and when it is preferable to

stay in the simpler SRS domain, we consider the following
specific scenarios.
Scenario I: equal variances
Let us assume all stata variances are equal, i.e., the SD are

equal σ1 = σ2 = · · · = σL := σs, then we can simplify
Eq. (26) and (28) to:

nprop =

∑L
h=1 Nhσ

2
hN

d2X
z2
N 2 +

∑L
h=1 Nhσ

2
h

=
Nσ 2

s
∑L

h=1 Nh
d2X
z2
N 2 + σ 2

s
∑L

h=1 Nh

=
σ 2
s N

2

d2X
z2
N 2 + σ 2

s N
,

(29)

nopt =

(∑L
h=1 Nhσh

)2
d2X
z2
N 2 +

∑L
h=1 Nhσ

2
h

=

σ 2
s

(∑L
h=1 Nh

)2
d2X
z2
N 2 + σ 2

s
∑L

h=1 Nh

=
σ 2
s N

2

d2X
z2
N 2 + σ 2

s N
.

(30)

From Eqs. (29) and (30), we notice that nprop and nopt are
equal as long as there is no difference in variance among
strata. This is also supported by the results of our simula-
tions, as illustrated in Fig. 3(b) and based on the simulation
parameters outlined in Table. 1 (equal strata variances). In the
simulation, two strata were employed, each with differing
mean values and sizes but with equal variances. The maxi-
mum available samples in each stratum from which sampling
can be conducted are depicted by horizontal dashed lines.
The curves portray the number of samples required to remain
below the absolute error bound d . In situations where the
variances of the strata are identical, the nprop and nopt curves
coincide, and both outperform the SRS approach. Thus, the
use of the optimal allocation scheme, which requires greater
computational effort than the simpler proportional allocation
scheme, is unnecessary when strata variances are known to
be equal. However, employing stratification in cases where
the strata means and sizes differ surpasses the simple SRS
approach.
Scenario II: equal means and sizes
Let us now assume that strata variances are not equal, but

strata means and strata sizes are, i.e., µ1 = µ2 = · · · = µL
and N1 = N2 = · · · = NL =

N
L . By substituting the second

condition into Eq. (26) we get:

nprop =

∑L
h=1 Nhσ

2
hN

d2X
z2
N 2 +

∑L
h=1 Nhσ

2
h

=

∑L
h=1

N
L Nσ 2

h
d2X
z2
N 2 +

N
L

∑L
h=1 σ 2

h

=
1

d2X
z2

L∑L
h=1 σ 2

h
+

1
N

. (31)

Since themeansµh and strata sizesNh are equal, we can prove
that under the assumption of large Nh, the averaged variances
of different strata will amount to the variance of the entire
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FIGURE 3. Simulation results for two strata (S1 and S2) for a general use case (a) and two special use cases, namely strata with equal variances (b) and
equal strata means and sizes (c). N1 and N2 correspond to the total number of samples in S1 and S2 respectively, while their sum N1 + N2 = N
corresponds to total samples that we can sample from. Note that all curves and vertical lines are normalized by N to represent n as a fraction of total
samples N .

TABLE 1. Simulation parameters for three use cases represented in Fig. 3 in analogous order. The abbreviation SD stands for standard deviation and is
equal to the squared root of the variance.

combined sample (see Appendix B), i.e.:

σ 2
=

∑L
h=1 σ 2

h

L
. (32)

By inserting Eq. (32) into Eq. (31) the SRS result from Eq.
(13) is again obtained:

nprop =
1

d2X
z2σ 2 +

1
N

= nsrs. (33)

It follows that the proportional stratification provides no ben-
efit to SRS in cases where the means and sizes of strata are
identical. Hence, in such a scenario, proportional stratifica-
tion is unnecessary as it does not improve estimate accuracy
while only bringing higher computational costs. The opti-
mal allocation remains the only viable option that can bring
further improvement, as it still depends on different strata
variances.

This behavior is also noticed in our simulation results in
Fig. 3(c) with two strata S1 and S2. Simulation parameters
are given in Table. 1 (equal strata means and sizes). Here,
the nsrs and nprop curves overlap. However, nopt outperforms
them both as it requires fewer samples in total to achieve the
same estimate. The dotted part of nopt, where d < 10−1,
results from high variance in strata S2. The optimal scheme
here requires more sampled segments than we have available
in that strata, making such sampling unfeasible. However,
for d > 10−1 the performance of the optimal scheme is

TABLE 2. MDT data sets.

better than the proportional one. Thus, depending on the
mean estimate error d we are willing to accept, we can use
simulations to choose the sampling scheme for a specific use
case at hand.

Assuming further equal variances among the strata, the
methods of SRS, SS with optimal allocation, and SS with
proportional allocation can be reduced to a common formula.
The reduction results in the same performance for all three
methods in terms of error bounds. However, the methods still
differ in their complexity. In such cases, it is recommended
to use the simplest method, i.e., the SRS.

V. SAMPLING THE CROWDSOURCED MDT DATA SET
In this section, we apply the sampling methodologies to a
real-world MDT data set. First, we describe the MDT mea-
surements in Section V-A. Then, we apply and compare the

53780 VOLUME 11, 2023



S. Tripkovic et al.: Unbiased Benchmarking in Mobile Networks: The Role of Sampling and Stratification

TABLE 3. Austria, RSRP statistics per frequency band.

TABLE 4. Vienna, RSRP statistics per frequency band.

sampling methods to MDT data on a measurement level in
Section V-B and on a GU-level in Section V-C.

A. MDT MEASUREMENTS DATA SET
The MDT data sets evaluated in this study were provided
to us by a major MNO in Austria. The measurements were
collected in a live long-term evolution (LTE) network on a
large number of end-user consumer-grade devices through
a dedicated Android application using the Netscout Geo-
Analytics tool for data collection [37]. The first data set
is gathered in the city of Vienna, Austria, consisting of a
total of 10 000 000 samples. The second data set contains
10 000 000 samples in the entire country of Austria in the
same network. Features of both data sets are summarized in
Tables. 2 to 4.

Both data sets contain only measurements from the user
equipments (UEs) connected to LTEmacro BSs in the area of
interest. Before applying sampling algorithms, we first clean
up the data, by removing all measurements with erroneous or
inaccurate attributes. To this end, we apply the following data
processing:

• Using the reported GPS location, we filter out the points
that are outside of the area of interest, even though they
are connected to the BS in the area. We are interested
in predicting the mean KPI in the area of interest only.
To achieve this, we acquire country and city borders
from OpenStreetMap (OSM) using Python Overpass
API [38] and use Python Geopandas library [39] for
geospatial manipulations and filtering.

• Next, we filter out all points where the inmeters reported
timing advance (TA) is smaller than the calculated line-
of-sight (LOS) Euclidean distance to the BS. TA corre-
sponds to the time a signal takes to reach the BS from
a mobile phone. The BS can use precise arrival time to
determine the distance to the mobile phone [40]. Since it
is physically impossible for the TA values to be smaller
than the minimum LOS distance, we exclude such mea-
surement points from our data sets. For calculating the
distance to the serving BS, we use precise BS locations
in Austria, provided by the MNO.

• Since indoor/outdoor mapping depends on the GPS
accuracy, we remove the measurements with imprecise
GPS values, by filtering based on the reported GPS
uncertainty (in meters). In particular, we limit our anal-
ysis only to measurements with a reported GPS uncer-
tainty below 45m.

• Finally, we split the data sets based on frequency bands
and look at each band individually.

To test and compare different sampling methodologies on
each of the MDT data sets, we have to split the data into
sensible strata. Our goal is to obtain an accurate mean RSRP
estimate with a minimum number of measurements and/or a
minimum number of GUs used for the mean estimate calcu-
lation in each method. We investigate both alternatives in the
following sections.

B. REQUIRED NUMBER OF MEASUREMENTS
In a real-world context, effectively leveraging the benefits of
stratification necessitates identifying the specific conditions
that strongly influence the reported KPI values. To achieve
a suitable separation of strata, it is important to base the
split on the statistical characteristics of the KPI in question.
For the case of RSRP, one possible approach is splitting the
data into groups based on factors such as radio conditions,
position, and motion of the UE, since the reported value
correlates with these parameters. The resulting groups exhibit
distinctive RSRP statistics with different means and smaller
standard variations when compared to the full data set. On the
other hand, for other KPIs such as reported throughput value,
the relevant parameters for the stratification split decision
are expected to be user tariffs, available bandwidth, and cell
load. If there is no prior knowledge regarding the statistics
and dependencies of the KPI, clustering methods can be
employed to identify underlying correlations in the data set
and determine the groups or strata. In a practical realization,
the split can be based on the various regions of interest
(e.g. tunnels, stadiums, stations, industry sites, rural and
urban areas) that share common propagation conditions.

Fig. 4 depicts the filtered measurement data sets. Clas-
sification to Indoor, Mobile, and Outdoor Stationary mea-
surements is provided by the operator and is based on radio
conditions at the time of the measurement, as well as the
GPS details. We use this classification to separate our mea-
surement data sets into three corresponding groups or strata.
Figs. 5 and 6 provide more detailed characteristics of the
measurement data sets in the form of boxenplots [41]. Since
we are only considering UEs connected to LTEmacro BS, the
lowest mean RSRP value is observed in the Indoor scenario,
due to high building penetration loss (BPL) [42], [43]. UEs in
Mobile scenario experience many physical cell identity (PCI)
changes and handovers (HOs) with lower signal qualities on
the cell edges, while Outdoor Stationary case ensures the
best signal quality, as it does not have to deal with HOs
and BPL. This trend is visible in Fig. 5 for both Austria and
Vienna data sets, where indicated values represent the mean
in the particular stratum. The speed profiles in Fig. 6 further
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FIGURE 4. Filtered MDT measurement data sets of a large MNO in Austria. In the map on the left, the red square marks the city of Vienna. Different
colors represent TrueCall Netscouts’ radio condition-dependent environment classification, with the following categories: Indoor, Mobile, and Outdoor
Stationary. We use these classes as three separate strata in the following.

FIGURE 5. RSRP distribution per environment and data set in 1800 MHz frequency band. Marked green points represent the mean RSRP values. Strata
tendencies observed in the 800 and 2600 MHz bands are similar.

FIGURE 6. Speed profile per environment strata and data set for all three frequency bands combined.

illustrate that onlyMobile stratum has average speeds higher
than 5 km/h, with few outliers in both static strata. We can
also notice the speed difference between the country and city
data set, with the city (right) having lower average speeds
compared to the country (left) as expected.

We use these three strata, to calculate how many measure-
ments from each group and in total are required to achieve a
mean RSRP estimate with an error below level d in over 95%
of the cases (α = 0.05). The statistics of each stratum are
provided in Table. 5.

Fig. 7 shows the comparison between different sampling
methods. The x-axis represents the acceptable error d , while
the y-axis indicates howmanymeasurements are required per
strata (dashed) and in total (solid curves) to achieve the mean
RSRP estimate under the error bound d with 95% accuracy.
Notice that in Table. 5 for both data sets, the Mobile stratum
has the highest SD. Therefore, to achieve the estimation error
of less than 10−2 dB we require more samples than we
have available in that stratum in our crowdsourced data sets,
which is why we have an overshoot over N2 level in both
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FIGURE 7. Required fraction of samples n plotted over acceptable estimation error d for different sampling schemes in Austria (left) and Vienna (right)
data set (1800 MHz), based on radio-condition and speed-dependent strata split. All curves are normalized by N .

TABLE 5. Strata RSRP statistics for both data sets in the 1800 MHz frequency band.

FIGURE 8. Required fraction of GUs n plotted over acceptable estimation error d for different sampling schemes in Austria outdoor (left) and indoor
(right) data set (1800 MHz), based on BS-density strata split. All curves are normalized by N .

cases for optimal allocation scheme. On the other hand, the
Indoor stratum has the lowest SD in both data sets. Therefore,
the optimal scheme does not require all available Indoor
measurements for any requested estimation error level and
remains well below the N1 level. On the total (solid lines),

proportional (red) and optimal (blue) allocation schemes per-
formed almost identically since the difference among the SD
levels in all three strata was much smaller compared to our
simulated data set in Section IV. However, both stratification
schemes outperform the SRS (green). Considering that the
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TABLE 6. Strata RSRP statistics for outdoor (left) and indoor (right) Austria data set in the 1800 MHz frequency band.

FIGURE 9. Filtered MDT measurement data set of a large MNO in Austria.
Different colors represent measurement classification based on the
BS-density in a 2 km radius of the measurement GU. BS-dense
deployments in red overlap with larger cities in Austria (denoted by black
squares), while the blue corresponds to more suburban and rural areas.

performances of proportional SS and SRS would overlap for
equal strata means and sizes, we notice that this difference
originates in the discrepancy among different strata means.
However, since their discrepancy is not as high as in the
simulated scenario, we see only a minor advantage to SRS,
which is valid for both city and country levels. Note, how-
ever, by finding an even better-suited strata split, than the
one the operator is providing, the strata mean differences
may increase, such that stratification schemes show a higher
advantage to SRS than the one we are currently seeing.
The findings demonstrate that, in the present configuration,
obtaining a mean RSRP estimate with a mean absolute esti-
mation error lower than 10−2 dB requires the utilization of
50-65% of the available measurements in both data sets.
The specified threshold for mean absolute estimation error of
10−2 dB was chosen as an indication of a substantially high
degree of accuracy in the RSRP estimation.

C. REQUIRED NUMBER OF GUs
Given a measurement data set, whether it is crowdsourced,
drive- or train-test data, it often happens that measurements
get accumulated in certain areas, and are infrequent in others.
For illustration, a driving train in an ongoing measurement
campaign makes longer stops at train stations, while on some
parts of the tracks, it reaches speeds of 250 km/h. Under such
conditions measurement data set gets very confounded in
time [8]. To solve this problem, we can bin the measurement
data into GUs, take the average, and get representative KPI
values per train length, independent of the train speed [44].
To remove measurement bias created by having more mea-
surements in very crowded areas, compared to very few

measurements in suburban/rural regions, we can apply the
same binning strategy with crowdsourced data and then work
with GU averages instead of the measurement samples.

Stratification sampling can also be used to determine
which environment types and in what amount should be
covered in a measurement campaign. For instance, rural and
urban regions have different BS deployments, in terms of BS
density, propagation loss, and LOS connectivity. This fact
is particularly relevant in developing countries, where the
population is more concentrated in rural areas despite poorer
BS deployment [45]. To have a better understanding of the
overall network quality in such conditions, and to be able
to plan a measurement campaign more efficiently, we can
split the area of interest, e.g. country, into fixed-sized GUs,
and assign rural or urban property (strata) to each. With the
addition of having an expected SD of the KPI in each stratum,
we can determine how many GUs of each stratum we should
cover to gain an accurate KPI mean on the whole.

To this end, we test sampling techniques on aGU-level, and
we only take a look at a single data set – Austria. To reduce
the influence of the BPL we split the data into Indoor and
Outdoor data sets and look at these scenarios separately.
By splitting the entire country area into, e.g. 500 m × 500 m
large, GUs, we can determine how many of them need to be
taken into account for an accurate mean RSRP estimation.

Since we do not have a clear rural/urban area split in
Austria, we use the macro BS locations in Austria (provided
by the operator), to determine how many BSs are in a 2 km
radius of each GU. If more than 50 BSs are found in the
radius, then the GU is classified as urban or BS-dense, oth-
erwise, we classify it as rural or BS-sparse. Measurements
are then mapped to their belonging GU and thus to their
corresponding stratum – Fig. 9 depicts the mapping of the
outdoor measurement data set. Notice that the red BS-dense
areas overlap with larger cities in Austria, e.g. Vienna, Graz,
Linz, Salzburg, Innsbruck.

All crowdsourced data are then binned by their GUs and
the mean for each GU is calculated. These GU averages
represent our population ground truth in the following sam-
pling schemes. Table. 6 presents the RSRP GU statistics in
the 1800 MHz band. The statistics show as expected, that
indoor and outdoor measurements have ≈ 7 dB discrepancy,
while the strata alone in each data set, show a difference
of 4 – 6 dB. In the Outdoor scenario, we have predominantly
BS-sparse GUs, while in the Indoor scenario number of BS-
sparse and BS-dense GUs is in the same order of magni-
tude. This indicates, that many GUs in Austria are missing
Indoor measurements in the crowdsourced data. If we look
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at the performance comparison between applied sampling
strategies in Fig. 8, we can hardly notice a difference in the
performance of the three sampling methods. This is the case
due to the very small SD difference among the strata, as well
as insufficient mean discrepancies. This testifies to the fact
that the coverage of the operator in question is as good in
rural areas as it is in urban, as separating the data set into
strata brings almost no advantage. Due to its higher variance,
the BS-sparse stratum (S1) experiences an overshoot of the
N1 level when approaching the 10−2 dB error bound in both
data sets. In the Outdoor scenario, we found that we would
need to cover approximately 50% (15,440 GUs) of the cur-
rently measurement-covered GUs in Austria to maintain a
mean estimation error of less than 10−1 dB in 95% of cases,
regardless of the sampling method employed. Similarly,
in the Indoor scenario, we would need to cover around 55%
(6,032 GUs) of the currently measurement-covered GUs to
achieve the same level of accuracy.

VI. CONCLUSION
Accurate estimation of KPIs in mobile networks is critical for
improving network performance and customer satisfaction.
Sampling methods can be used to estimate KPIs with an
acceptable error level while minimizing the number of mea-
surements required. In this work, we investigated the behavior
of three sampling methods for accurate KPI mean estimation
in mobile networks: SRS, SS with proportional allocation,
and SS with optimal allocation.

We characterized the performance of all three methods on
the simulated KPI data set while investigating specific cases
to reveal scenarios where stratification pays off. We then ana-
lyzed the same samplingmethods on twoMDT crowdsourced
data sets from a major Austrian operator. To test and compare
different sampling methods on both MDT data sets, we strati-
fied the data intomeaningful strata to obtain an accurate mean
RSRP estimate with a minimum number of measurements
and/or a minimum number of GUs used for mean estimate
calculations in each method. Our analysis showed that the
first strata split, based on the GPS position, speed, and radio
channel conditions, offered a subtle advantage of the SS
methods over the SRS method. All three approaches resulted
in between 50 and 65% of the total measurements being
required to remain below a mean absolute estimation error
of 0.01 dB in both data sets.

We further binned the data into equally sized GUs, remov-
ing the confounding by determining a single representative
KPI value for each GU. Using BS-density-based stratifica-
tion, we determined how many rural and urban GUs are
required for accurate mean prediction. Again, we compared
three sampling techniques while using calculated mean GU
KPI values as our population ground truth. The analysis
revealed that we would have to cover around 50% of the GUs
to remain below a mean absolute estimation error of 0.1 dB.
Stratification provided a minimal advantage to SRS due to
the comparable coverage of this operator in rural and urban

regions in Austria, with minor differences in mean and SD
among these two strata.

Although we observed only a slight advantage of strati-
fication in real-world data sets for RSRP mean estimation,
we can utilize these methods to determine howmany samples
or areas are required for determining the mean of any KPI in
the network. For instance, considering throughput and cell
load, possibly more distinct strata can be found to utilize
stratification to its full benefit. The findings of this study
can help network operators determine the required number
of measurements and measurement areas for accurate KPI
estimation while minimizing costs and time. The values for
the strata variances we derived from the real-world data can
allow other researchers to initialize their methods.

APPENDIX
A. RSRP SIMULATION
To illustrate the importance of random sampling and compare
it in crowdsourced and drive test scenarios, we simulate
an outdoor RSRP map for a part of Vienna’s third district
using the deep learning network planner (DLNP) from [24],
with the following simulation parameters: 15 sectors (three
sectors at each of the five BS locations) with PTX = 15 W,
f = 1 800 MHz, sector down-tilt of 10◦ and BS height of
30 m. The simulated area has a dimension 1 000 m ×

1 000 m, with an RSRP map resolution of 1 m. The DLNP
utilizes the geospatial building model, obtained from the
Geodatenviewer der Stadtvermessung Wien [46] and a real-
istic network layout. The serving RSRP map is obtained by
computing the maximum RSRP value across all 15 sectors
at each location of the map grid and is depicted in the final
map shown in Fig. 1(a). Blue scatter points represent five
BS locations, while the red line outlines the Landstrasser
Hauptstrasse street in Vienna, obtained from OSM using
Python Overpass API [38].

B. VARIANCE APPROXIMATION
Assuming two separate sample sets or stata
S1 = {x(1)1 , x(1)2 , . . . , x(1)Nh }, S2 = {x(2)1 , x(2)2 , . . . , x(2)Nh } that
have same mean µ and sample size Nh, we define their
variances as:

σ 2
1 =

∑Nh
i=1(x

(1)
i − µ)2

Nh − 1
,

σ 2
2 =

∑Nh
i=1(x

(2)
i − µ)2

Nh − 1
. (34)

Then the average variance of the two groups is given as

σ 2
1 + σ 2

2

2
=

∑Nh
i=1

[
(x(1)i − µ)2 + (x(2)i − µ)2

]
2(Nh − 1)

=

∑2Nh
i=1 (x

(1,2)
i − µ)2

2Nh − 2
. (35)

In comparison, if we combine these two strata into one set
S1,2 = S1 ∪ S2 = {x(1)1 , x(1)2 , . . . , x(1)Nh , x

(2)
1 , x(2)2 , . . . , x(2)Nh },
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Algorithm 1 Algorithm for Stratification Verification
Input: population samples d , R, yi, nh for h = 1, 2, . . . ,L
Output: α

1: Compute strata mean µh = 1/N
∑Nh

i=1 yi for h =

1, 2, . . . ,L
2: Compute population mean as µ = 1/N

∑L
h=1 µhNh

3: for h = 1 to L do
4: if (nh = 0) then

nh = 1
5: end if
6: if (nh > Nh) then

nh = Nh
7: end if
8: end for
9: Initialize error list: error = []

10: for i = 1 to R do
11: SRS of nh from Nh in each strata h = 1, 2, . . . ,L
12: Compute sample means µ̂h = 1/nh

∑nh
i=1 yhi

13: Compute SS mean yst = 1/N
∑L

h=1 µ̂hNh
14: error[i] =

∣∣yst − µ
∣∣

15: end for
16: return α =

∑R
i=1 1(error[i]>d)

R

then the variance of the combined set is given by

σ =

∑2Nh
i=1 (x

(1,2)
i − µ)2

2Nh − 1
. (36)

In the limit Nh −→ ∞, the denominator terms in Eq. (35)
and Eq. (36) can be approximated with 2Nh. This approxi-

mation results in σ =
σ 2
1 +σ 2

2
2 , the equation that can be easily

generalized to account for arbitrary L strata:

σ =

∑L
h=1 σ 2

h

L
. (37)

Hence, we can use the approximation from Eq. (37) for
sufficiently large strata sizes.

C. VERIFICATION ALGORITHM
After calculating how many samples nh are required in each
stratum h = 1, 2, . . . ,L for remaining under a certain error
bound d with 95% accuracy, we can verify this result by using
calculated nh in each of R sampling iterations. In each itera-
tion, we compute the strata sample means, the stratified mean
estimate and the absolute error between the true population
mean and the stratified mean estimate. Finally, we compute
the α, representing the percentage for which the condition
estimation error level is violated. If α indeed lies below 5%
(100-95), then randomly sampling previously calculated nh
samples from the corresponding h stratum, results in the
stratified mean estimate under the estimation error bound
d in 95% of the cases. Note that in the optimal allocation
scheme, it may happen that the calculated nh is higher than
Nh. We address this in step 6. Similarly, step 4. corrects for
the nh values rounded to zero, which can happen in rare cases.

Clearly, a sample size of zero or drawing more samples than
are available in the population is unfeasible. The verification
algorithm is summarized in Algorithm 1.
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