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ABSTRACT

We develop a unified Bayesian framework for optical flow (OF) esti-
mation that uses a variational lower bound to obtain a variational ap-
proximation of the posterior probability distribution. Our framework
enables the incorporation of domain-specific knowledge as well as a
quantification of the uncertainty of OF estimation, and it encom-
passes existing maximum a posteriori (MAP) and variational Bayes
(VB) methods as special cases. We leverage this flexibility for the ul-
trasound modality by using ultrasound-specific likelihood functions
within both MAP and VB methods. Numerical results for the prob-
lem of cardiac motion estimation demonstrate that VB methods out-
perform MAP methods, in addition to providing a more faithful un-
certainty measure.

Index Terms— Optical flow, Bayesian estimation, variational
approximation, ultrasound, cardiac motion estimation.

1. INTRODUCTION
Optical flow (OF) estimation is an important image processing task
with a wide range of applications including video compression, au-
tonomous navigation, and medical diagnosis and intervention [1].
While many recent advances in OF estimation benefit from the use
of deep learning methods, model-based methods continue to be of
relevance. This is especially true in the medical domain where large
training datasets are not widely available and the interpretability of
the OF estimation method has a high priority.

Traditionally, OF estimation is formulated as the minimization
of a suitably designed “energy” function [2, 3]. From a Bayesian
probabilistic viewpoint, this can be interpreted as maximum a pos-
teriori (MAP) estimation involving a posterior probability density
function (pdf). This viewpoint led to the development of advanced
Bayesian OF estimation methods, typically based on the principle
of variational Bayes (VB) [4, 5]. These methods allow for the ex-
traction of additional information from the posterior pdf, including
measures of the reliability (uncertainty) of the OF estimate.

Here, we develop a unified Bayesian framework, inspired by
[6], that uses a variational lower bound rooted in convex analysis.
Our approach differs from the variational lower bound proposed
for image restoration in [7] in that we lower-bound a different ob-
jective (which is not directly related to the Kullback-Leibler diver-
gence). Our framework encompasses both MAP and VB OF estima-
tion methods and makes it possible to incorporate domain-specific
knowledge—in particular, likelihood functions specifically designed
for the imaging modality under consideration, rather than standard
choices such as the t-distribution [4] or a Gaussian mixture distri-
bution [5]. We leverage this flexibility for the ultrasound modality
by using the ultrasound-specific likelihood functions proposed in
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[8] and [9] within both MAP and VB methods. In addition, our
unified framework reveals that also the MAP methods [2], [3] pro-
vide a natural way of calculating an uncertainty measure. Numerical
results for the problem of cardiac motion estimation from ultrasound
sequences demonstrate that VB methods outperform MAP methods,
in addition to providing a more faithful uncertainty measure.

The rest of this paper is organized as follows. In Section 2, we
describe an energy-based model for OF estimation and a correspond-
ing posterior pdf of the OF field. In Section 3, we present a varia-
tional lower bound and use it to obtain tractable approximations to
the posterior pdf. In Section 4, we develop two Bayesian OF esti-
mation methods that are based on the variational lower bound. In
Section 5, we consider two domain-specific likelihood functions for
the ultrasound modality. Finally, in Section 6, we present numerical
results for synthetic cardiac ultrasound sequences.

2. BAYESIAN OF ESTIMATION FRAMEWORK

Our setup for OF estimation is based on the well-established bright-
ness constancy principle combined with a smoothness-based regu-
larization; see [2] for a motivation and a more detailed description.
Let F (x) and G(x) with x= (x y)T∈R2 represent two temporally
consecutive images. The OF vector w(x) =

(
u(x) v(x)

)T ∈ R2

describes the local displacement of the brightness of image F (x) at
spatial position x when changing to image G(x). We consider the
samples wr ≜ w(xr) =

(
u(xr) v(xr)

)T
= (ur vr)

T of w(x)
taken at the vertices xr of a uniform 2D sampling grid, where r ∈
R≜ {1, . . . , N}×{1, . . . ,M}. It will be convenient to stack all the
OF vectors wr , r∈R into an overall OF vector w of length 2NM .
The task is to estimate w from the images F (x) and G(x).

OF estimation is typically formulated as the minimization of a
suitably designed “energy” function [2]

E(w) ≜
∑
r∈R

Er(w) , (1)

where
Er(w) ≜ αΦ

(
Ar(w)

)
+ βΨ

(
Br(w)

)
. (2)

Here, Φ(ξ) and Ψ(ξ) are concave nondecreasing differentiable
penalty functions on [0,∞), and α ≥ 0 and β ≥ 0 determine the
relative influence of the respective penalty terms. Furthermore,

Ar(w) ≜
(
Dr +G(x)

r ur +G(y)
r vr

)2
, (3)

with

G(x)
r ≜

∂G(x)

∂x

∣∣∣∣
x=xr+w̄r

, G(y)
r ≜

∂G(x)

∂y

∣∣∣∣
x=xr+w̄r

(4)

and

Dr ≜ G(xr + w̄r)− F (xr)−G(x)
r ūr −G(y)

r v̄r , (5)

quantifies violation of the brightness constancy constraint [2]. We
note that Ar(w) is obtained by squaring the linear approximation of
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the difference between G(xr +wr) and F (xr) around a given OF
value w̄, where w̄r = (ūr v̄r)

T denotes the r-th component vector
of w̄. Thus

Ar(w) ≈
(
G(xr+wr)−F (xr)

)2
. (6)

Finally,

Br(w) ≜
∑
δ∈N

(
(ur+δ−ur)

2 + (vr+δ−vr)
2) , (7)

withN ≜ {(1, 0), (0, 1)}, quantifies violation of the spatial smooth-
ness constraint [2].

We adopt a Bayesian perspective of OF estimation by consider-
ing w, F (x), and G(x) as random elements and interpreting E(w)
in (1), (2) as the energy of a Markov random field [5], [10, Sec. 8.3].
This allows us to introduce a posterior pdf of w as

p(w|F,G) ≜
h(w)

Z
with h(w) ≜ exp

(
−E(w)

)
, (8)

where Z ≜
∫
exp

(
−E(w)

)
dw < ∞. Inserting (1) and (2) in (8),

we obtain h(w) = L(w)P(w) with

L(w) ≜ exp

(
−α

∑
r∈R

Φ
(
Ar(w)

))
, (9)

P(w) ≜ exp

(
−β

∑
r∈R

Ψ
(
Br(w)

))
. (10)

Here, L(w) describes the statistical relation between w and the im-
ages F , G and can be interpreted as a likelihood function, and P(w)
can be interpreted as an improper prior. Further technical details re-
garding our Bayesian perspective (including conditions for Z<∞)
are discussed in the supplementary material [11, Sec. S4].

3. VARIATIONAL LOWER BOUND

The proposed Bayesian methods for OF estimation are based on an
upper bound on the energy E(w) or, equivalently, a lower bound
on h(w). This bound is obtained by lower-bounding the functions
Φ(ξ) and Ψ(ξ). As shown in [12, Sec. 3.3], for any closed concave
nondecreasing function Φ(ξ), there exists a unique closed concave
conjugate defined as1

Φ⋆(λ) ≜ inf
ξ≥0
{λξ−Φ(ξ)} . (11)

Here, λ≥ 0 is referred to as the variational parameter. By (11), we
have λξ−Φ(ξ) ≥ Φ⋆(λ) or equivalently Φ(ξ) ≤ λξ−Φ⋆(λ), for
any λ≥0. The last inequality can be used to obtain the upper bounds
Φ
(
Ar(w)

)
≤ λrAr(w) − Φ⋆(λr) and, similarly, Ψ

(
Br(w)

)
≤

µrBr(w)−Ψ⋆(µr), for any λr, µr ≥ 0. Inserting these bounds in
(2) gives Er(w)≤Er(w;λr) with

Er(w;λr) ≜ α
(
λrAr(w)−Φ⋆(λr)

)
+ β

(
µrBr(w)−Ψ⋆(µr)

)
,

(12)
where λr ≜

(
λr µr

)T∈R2
+. Using (1), we furthermore obtain

E(w) ≤ E(w;λ) with E(w;λ) ≜
∑
r∈R

Er(w;λr) , (13)

where the vector λ of length 2NM stacks all the λr . Finally, using
(8), we obtain the variational lower bound

h(w) ≥ h(w;λ) with h(w;λ) ≜ exp
(
−E(w;λ)

)
. (14)

1In (11), we implicitly follow the standard approach from convex analy-
sis and assume that the convex function −Φ(ξ) and its (convex) conjugate
−Φ⋆(λ) are proper closed extended-valued functions, i.e., with range in R
∪{∞}. Thus, the concave functions Φ(ξ) and Φ⋆(λ) have range R∪{−∞}.
In our application context, it suffices to restrict their domain to R+.

The “energy upper bound” E(w;λ) in (13) is convex in λ and
quadratic in w. The first property can be shown as follows. Ac-
cording to (11), Φ⋆(λ) is defined as the pointwise minimum of a
family of affine functions of λ, which implies that it is concave [12,
Sec. 3.3], so −Φ⋆(λ) is convex. Therefore, we conclude from (12)
that Er(w;λr) is convex in λr . Finally, since E(w;λ) is the sum
of convex functions, it is itself convex in λ. Next, inserting (3) and
(7) into (12) and the resulting expression into (13) yields

E(w;λ) =
∑
r∈R

(
α
(
λr

(
Dr +G(x)

r ur +G(y)
r vr

)2
− Φ⋆(λr)

)
+ β

(
µr

∑
δ∈N

(
(ur+δ−ur)

2

+ (vr+δ−vr)
2)−Ψ⋆(µr)

))
. (15)

This is seen to be a quadratic function of ur and vr for any r ∈R.
Thus, we can write E(w;λ) up to an additive constant as a quadratic
form (w−w0)

TJ(w−w0) with some offset w0 and matrix J. As
we show in [11, Sec. S4], J is positive definite. This implies that

q(w;λ) ≜
h(w;λ)

Z(λ)
=

exp
(
−E(w;λ)

)
Z(λ)

, (16)

with Z(λ) ≜
∫
exp

(
−E(w;λ)

)
dw < ∞, is a Gaussian pdf with

mean w0 and precision matrix J. As a consequence, Z(λ) can be
determined easily. Motivated by (8) and (14), we use q(w;λ) as an
approximation of the posterior pdf p(w|F,G).

4. BAYESIAN OF ESTIMATION METHODS

We now use the variational lower bound derived in the previous sec-
tion to develop two Bayesian methods for OF estimation.

4.1. MAP Estimation

In the MAP framework, the OF estimate is ideally obtained by min-
imizing the energy function E(w) in (1) or, equivalently, by maxi-
mizing h(w) in (8). Note that this is indeed MAP estimation since,
by (8), h(w) equals the posterior pdf p(w|F,G) up to a normal-
ization constant. Because maximizing h(w) is difficult, we instead
maximize the lower bound h(w;λ) in (14) with respect to both w
and λ in an iterative, alternating manner. Methods of this kind are
called “Type I” methods in [6]. More precisely, we update the vari-
ational parameter estimate λ̂ and subsequently the OF estimate ŵ
according to

λ̂ = argmax
λ⪰0

log h(ŵ;λ) , (17)

ŵ = argmax
w

log h(w; λ̂) , (18)

where ⪰ denotes elementwise ≥. The recursion (17), (18) is re-
peated until a stopping criterion is satisfied.

As we show in [11, Sec. S1], the maximization (17) has a closed-
form solution given by

λ̂r= Φ′(Ar(ŵ)
)
, µ̂r= Ψ′(Br(ŵ)

)
, r∈R , (19)

where the prime denotes the derivative. Furthermore, as also shown
in [11, Sec. S1], the maximization (18) amounts to solving the sys-
tem of 2NM linear equations

∂

∂ur
E(w; λ̂) = 0 ,

∂

∂vr
E(w; λ̂) = 0 , r∈R (20)

for w. Here, expressions of the partial derivatives ∂
∂ur

E(w; λ̂) and
∂

∂vr
E(w; λ̂) are provided in [11, Eqs. (S4), (S5)].



The recursion (17), (18) can be modified with the goal of reduc-
ing the error in the approximation (6), which tends to be large when
∥wr− w̄r∥ is large [2]. A commonly used strategy is to update
the linearization point w̄r in each iteration. The resulting modified
algorithm is stated in [11, Sec. S3]. This algorithm is an instance
of the half-quadratic minimization algorithm [13], which has been
used, e.g., in [2] and [3]. However, our Bayesian formulation makes
it possible to derive quantities characterizing the reliability (uncer-
tainty) of the OF estimate, as will be discussed in Section 4.3.

4.2. VB Estimation

VB methods rely on the choice of an approximation of the posterior
pdf from a family of tractable pdfs [14]. Here, we employ this strat-
egy to find an optimal value of the variational parameter vector λ.
Following [6], we define this optimal value, denoted λ∗, as the value
of λ minimizing

∫ ∣∣h(w)−h(w;λ)
∣∣dw. A connection to the VB

principle is established by the fact that h(w) and h(w;λ) are (up to
normalization) the posterior pdf and its approximation, respectively.
Methods of this kind are called “Type II” methods in [6].

By (14), the absolute value in the integral
∫ ∣∣h(w)−h(w;λ)

∣∣dw
can be dropped. Thus, we obtain

λ∗ = argmax
λ⪰0

∫
h(w;λ) dw . (21)

Following [15], we perform the maximization in (21) using the ex-
pectation maximization (EM) algorithm presented in [16]. Let

Q(λ, λ̂) ≜
∫

h(w; λ̂) log h(w;λ) dw

= Z(λ̂)

∫
q(w; λ̂) log h(w;λ) dw

= Z(λ̂) E(λ̂){log h(w;λ)
}
, (22)

where (16) was used in the second line and E(λ̂){·} denotes expec-
tation with respect to the pdf q(w; λ̂). The EM algorithm alternates
between the E-step and the M-step until a stopping criterion is sat-
isfied. In the proposed algorithm, in each iteration, we perform the
M-step first because in our context it is easier to initialize. To ob-
tain a tractable algorithm, we restrict the precision matrix J to a
diagonal matrix (retaining the same diagonal elements).2 With this
simplification, under the distribution q(w; λ̂), ur and vr′ are now
uncorrelated for all r, r′∈R, and furthermore ur and ur′ as well as
vr and vr′ are uncorrelated unless r=r′.

In the M-step, λ̂ is updated by maximizing Q(λ, λ̂) with respect
to λ, i.e.,

λ̂← argmax
λ⪰0

Q(λ, λ̂) . (23)

As we show in [11, Sec. S2], this amounts to

λ̂r ← Φ′(E(λ̂){Ar(w)
})

, µ̂r ← Ψ′(E(λ̂){Br(w)
})

, (24)

for all r ∈ R. Closed form expressions for E(λ̂)
{
Ar(w)

}
and

E(λ̂)
{
Br(w)

}
that can be evaluated in terms of the posterior means

ûr and v̂r and posterior variances s
(u)
r and s

(v)
r of ur and vr are

provided in [11, Eqs. (S8), (S9)].
In the E-step, the posterior means ŵr = (ûr v̂r)

T and posterior
variances s(u)r and s

(v)
r are updated for all r∈R. Because q(w; λ̂)

2This restriction is equivalent to replacing q(w;λ) by the nearest (in
terms of minimal Kullback-Leibler divergence) fully factorizing pdf [17]. In
this view, our algorithm can be interpreted as a variational EM algorithm
using the mean-field approximation [18].

is a Gaussian pdf, its mean equals its mode, which was calculated
by the MAP method (see (18)). That is, the new posterior means
are the solutions of the system of linear equations (20). Finally, with
knowledge of λ̂r and µ̂r for r ∈R, the posterior variances can be
evaluated in closed form as stated in [11, Eqs. (S11), (S12)].

As in Section 4.1, we update the linearization point w̄r in each
iteration to reduce the approximation error in (6). The resulting al-
gorithm is stated in [11, Sec. S3]. This algorithm generalizes the
algorithms presented in [4, 5] in that it allows for the use of a wider
range of likelihood functions and prior pdfs.

4.3. Discussion

Upon convergence, the VB method naturally produces an approx-
imation of the posterior pdf p(w|F,G), namely, q(w; λ̂) in (16),
where λ̂ is the final value of the variational parameter returned after
termination. Interestingly, this is true also for the MAP method,
a fact that was not noted in [2], [3]. Thus, our variational frame-
work provides a unified view of the VB and MAP methods in the
sense that both calculate a (Gaussian) approximate posterior pdf
q(w; λ̂). In both methods, the OF estimate ŵ is given by the mode
of q(w; λ̂), and the uncertainty of the estimate can be characterized
by the entropy hr ≜−E(λ̂)

{
log q(wr; λ̂)

}
[5]. By the Gaussianity

of q(w; λ̂) and our assumption that ur and vr are uncorrelated
under this distribution, the entropy is given by [5]

hr =
1

2

(
log s(u)r + log s(v)r

)
+ c, (25)

where c is an irrelevant constant. Here, both methods calculate the
variances s

(u)
r and s

(v)
r according to the closed form expressions

given in [11, Eqs. (S11), (S12)], using the final values of λ̂r and
µ̂r after termination. Note that within this unified view of the VB
and MAP methods, the two methods differ merely in the way the
variational parameter estimate λ̂ is calculated.

5. DOMAIN-SPECIFIC LIKELIHOOD FUNCTIONS
A major advantage of the proposed Bayesian methods, besides pro-
viding an approximate posterior pdf and not just a point estimate, is
that they admit a wide range of domain-specific likelihood functions
L(w) and priors P(w). This flexibility is due to the formulation of
L(w) and P(w) in terms of the penalty functions Φ(ξ) and Ψ(ξ)
according to (9) and (10), combined with the fact that Φ(ξ) and Ψ(ξ)
are merely required to be concave and nondecreasing.

Here, we focus on likelihood functions designed for the ultra-
sound imaging modality [19]. Concretely, we consider the likelihood
functions proposed in [8] and [9], which we refer to as LCD2(w) and
LMS(w), respectively. Both admit the expression (9) except that in
[8] and [9], Ar(w) in (3) is replaced by

(
G(xr+wr)− F (xr)

)2
(see (6)). We will use Ar(w) instead, which provides a good ap-
proximation as long as ∥wr − w̄r∥ is small. The corresponding
penalty functions, to be used in (9), are

ΦCD2(ξ) ≜ 2 log
(
1 + exp(ξ′)

)
− ξ′,

ΦMS(ξ) ≜ ΦCD2(ξ) +
3

2
log

(
1− 4ρ exp(ξ′)

(exp(ξ′) + 1)2

)
.

Here, ξ′ ≜ 2
√

ξ
b

, where b > 0 is a log-compression factor (i.e., the
B-mode [19, Ch. 10] images F (x) and G(x) are obtained by ap-
plying the b log(·) transformation to the corresponding envelopes),
and ρ ∈ [0, 1) is the noise correlation coefficient of F (x) and G(x)
(see [9] for details). Finally, we consider a third likelihood function,



denoted as LC(w), that uses the penalty function ΦC(ξ) ≜
√
ξ + ϵ

with a small ϵ> 0 [2]. This likelihood function is not related to the
ultrasound modality. All three penalty functions ΦCD2(ξ), ΦMS(ξ),
and ΦC(ξ) are concave and nondecreasing.

6. NUMERICAL RESULTS
We present numerical results3 for the synthetic cardiac ultrasound
dataset STRAUS [20]. From each 3D volume in that dataset, we ex-
tracted a slice to obtain 2D image data. We compare the performance
obtained with the proposed MAP and VB methods using the likeli-
hood functions LCD2(w), LMS(w), and LC(w). For Ψ(ξ) (involved
in the prior P(w), see (10)), we use the penalty function

√
ξ + ϵ

(equal to ΦC(ξ)). We consider the following performance metrics:
the average endpoint error (AEE) [1] calculated by averaging the
endpoint error over all pixels of all sequences; the area under the
sparsification plot (AUS) [5], and the “conditional likelihood” (CL)
calculated by evaluating the logarithm of the approximate posterior
at the ground-truth value of the OF [21]. We note that the highest CL
is achieved when the mean of the approximate posterior coincides
with the ground truth and the variance is minimal. For comparison,
we also present the AEE for the state-of-the-art methods proposed
in [22] and [23], which we refer to as “SPtrack” and “Monogenic,”
respectively. Since these methods only provide point estimates of
the OF, the AUS and CL metrics cannot be computed. The param-
eters of all methods were optimized using the ladprox sequence of
the STRAUS dataset. This was done by minimizing the CL metric
in the case of the VB method and the AEE metric in the case of the
MAP method and the benchmark methods [22, 23]. We note that for
the MAP method, minimizing the CL metric did not yield the best
overall performance.

An example of the results of the VB method using the likelihood
function LC(w) is shown in Fig. 1. Note that the high endpoint error
at the bottom left part of the heart muscle (Fig. 1(c)) is matched by a
high uncertainty (Fig. 1(d)). Further numerical results are provided
in Table 1 for data corresponding to short-axis and long-axis scans of
the heart [20]. The reported metrics are based on measuring the OF
in units of pixels (px); the pixel size is 0.67×0.85mm2 for the short-
axis scan and 0.67×0.58mm2 for the long-axis scan. We see that
both the MAP and VB methods yield significantly smaller AEE val-
ues than the two benchmark methods [22, 23]. Furthermore, for the
same likelihood function, the VB method consistently outperforms
the MAP method: it is more accurate (indicated by a moderately
smaller AEE), yields more faithful uncertainty estimates (indicated
by a significantly smaller AUS), and its approximate posterior has a

3Source code and data used to generate the numerical results are available
at https://github.com/deu439/BOF.

0.5 1.0
(a) (b) (c) (d)

Fig. 1. Example result of the VB method with likelihood function
LC(w) for the ladprox sequence; long-axis scan. (a) True OF, (b) OF
estimate, (c) endpoint error (in [px], with color bar), (d) uncertainty
(entropy, see (25)). In (a) and (b), hue and saturation indicate OF
direction and magnitude, respectively.

larger CL. Therefore, we further consider only the VB method.
Regarding the influence of the likelihood function on the VB

method, we see that the ultrasound-specific likelihood function
LMS(w) leads to a lower AEE and a higher CL compared to LC(w),
but the AUS is larger. Furthermore, LCD2(w) consistently yields
poorer results than LMS(w). We conjecture that this is because
LCD2(w), contrary to LMS(w), does not take into account the noise
correlation of F (x) and G(x), which is significant for the used
dataset [20]. Overall, the VB method using the ultrasound-specific
likelihood function LMS(w) achieves the best performance, except
that LC(w) leads to better uncertainty estimates.

Finally, the runtime of our nonoptimized single-threaded Python
3.10 implementation of the VB method on an Intel(R) Core(TM) i5-
7500 CPU with 3.40GHz clock rate was around 1.8 s per image pair,
for image size 208×224 px.

7. CONCLUSION
We developed a Bayesian framework for OF estimation that uses
a variational lower bound to obtain a variational approximation of
the posterior distribution. Our framework provides a unified varia-
tional formulation of the MAP and VB approaches to Bayesian OF
estimation. Moreover, it is able to accommodate domain-specific
likelihood functions and prior distributions, and it provides a quan-
titative measure of the uncertainty of OF estimation. Numerical ex-
periments on synthetic cardiac ultrasound data confirmed the impor-
tance of these features. In particular, we observed that the use of
ultrasound-specific likelihood functions improves the performance
of Bayesian OF estimation, and that the VB method outperforms the
MAP method. Interesting directions for future research include the
optimal selection of the penalty function defining the prior distribu-
tion and the use of locally-adaptive likelihood functions such as [24],
[25] within our Bayesian OF estimation framework.

Short-axis Scan Long-axis Scan
AEE [px] AUS CL AEE [px] AUS CL

SPtrack [22] 0.462 (+32.9%) — — 0.421 (+47.0%) — —
Monogenic [23] 0.433 (+24.7%) — — 0.388 (+35.4%) — —

MAP (C) 0.348 (0.0%) 1.060 (0.0%) −4.58 · 105 0.287 (0.0%) 0.932 (0.0%) −6.43 · 105
MAP (CD2) 0.370 (+6.3%) 1.036 (−4.7%) −6.53 · 104 0.291 (+1.5%) 0.888 (−4.7%) −5.51 · 104
MAP (MS) 0.340 (−2.2%) 1.077 (+1.6%) −6.81 · 105 0.271 (−5.6%) 1.054 (+13.1%) −1.02 · 106

VB (C) 0.345 (−0.7%) 0.838 (−21.0%) 1.27 · 104 0.280 (−2.4%) 0.681 (−26.9%) 1.20 · 104
VB (CD2) 0.354 (+1.8%) 0.928 (−12.5%) 1.23 · 104 0.289 (+0.8%) 0.748 (−19.7%) 1.90 · 104
VB (MS) 0.330 (−5.2%) 0.889 (−16.2%) 1.35 · 104 0.266 (−7.2%) 0.718 (−23.0%) 1.96 · 104

Table 1. Performance of the MAP and VB methods using the likelihood functionsLCD2(w),LMS(w), andLC(w), obtained for STRAUS data
corresponding to a short-axis scan (left) and a long-axis scan (right) of the heart. The % values in parentheses are the relative improvement
with respect to the MAP method using LC(w), which is effectively equivalent to the benchmark method in [2].
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