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ABSTRACT Ultrasound imaging is one of the most prominent technologies to evaluate the growth, progres-
sion, and overall health of a fetus during its gestation. However, the interpretation of the data obtained from
such studies is best left to expert physicians and technicianswho are trained andwell-versed in analyzing such
images. To improve the clinical workflow and potentially develop an at-home ultrasound-based fetal moni-
toring platform, we present a novel fetus phantom ultrasound dataset, FPUS23, which can be used to identify
(1) the correct diagnostic planes for estimating fetal biometric values, (2) fetus orientation, (3) their anatomi-
cal features, and (4) bounding boxes of the fetus phantom anatomies at 23 weeks gestation. The entire dataset
is composed of 15, 728 images, which are used to train four different Deep Neural Network models, built
upon a ResNet34 backbone, for detecting aforementioned fetus features and use-cases. We have also evalu-
ated the models trained using our FPUS23 dataset, to show that the information learned by these models can
be used to substantially increase the accuracy on real-world ultrasound fetus datasets. We make the FPUS23
dataset and the pre-trained models publicly accessible at https://github.com/bharathprabakaran/FPUS23,
which will further facilitate future research on fetal ultrasound imaging.

INDEX TERMS Fetus, phantom, ultrasound, dataset, artificial intelligence, features, deep neural networks,
radiology, obstetrics.

I. INTRODUCTION
Ultrasound imaging techniques are used to create an image
of organs and tissues inside the human body without the
use of radiation, such as X-Rays, or expensive equipment,
like Magnetic Resonance Imaging (MRI). Ultrasound tech-
nologies are used in day-to-day healthcare clinics to effi-
ciently diagnose diseases like COVID-19 [1], [2] and detect

The associate editor coordinating the review of this manuscript and

approving it for publication was Gyorgy Eigner .

tumors [3]. Ultrasound is also widely used to monitor the
development of an unborn human fetus to obtain information
regarding its development and overall health. An ultrasound
examination is performed at various stages of the fetus’ ges-
tation to confirm the pregnancy and determine its location,
condition, size, growth, orientation, gestational age, identify
potential birth defects and complications, and many other
factors relevant to the healthy development and delivery of
the fetus. However, the data obtained from such examina-
tions are difficult to understand and require the expertise or

58308 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0557-2166
https://orcid.org/0000-0001-7023-9322
https://orcid.org/0000-0001-6861-3880
https://orcid.org/0000-0002-2607-8135
https://orcid.org/0000-0001-8038-2210


B. S. Prabakaran et al.: FPUS23: An Ultrasound Fetus Phantom Dataset With DNN Evaluations

FIGURE 1. Identifying anatomical fetal features, such as limbs, which can enable the extraction of biometric parameters that determine the growth of
the fetus. Figures (a) - (d) illustrate the ability of an object detection model in detecting various fetus anatomies, across different views, with little
fine-tuning on our FPUS23 dataset.

FIGURE 2. Overview of our methodology for generating and annotating the FPUS23 dataset.

training of sonographers or physicians to accurately interpret
the data. For instance, as depicted in an ultrasound image
of a fetus at 23 weeks gestation (fig. 1), identifying a fetus
can be quite easy. However, identifying the orientation of
the fetus and evaluating key biometric parameters, like the
abdominal circumference or femur length, which are used to
ascertain the gestational age of the fetus, requires the level
of expertise that is currently offered only by trained sono-
graphers and physicians. This ‘‘experience’’ can be learned
and embedded within the deep learning models, which can
be deployed in clinical use-cases as assistants to aid health-
care professionals in data interpretation. These models can
also be used to build an at-home portable ultrasound-based
fetal monitoring platform that can enable the user to
understand the data by collating and interpreting the vital
information.

However, the development of such a deep learning model
for analyzing fetal ultrasound data requires investigation of
the following key research challenges: (1) ultrasound fetus
data fall under the category of healthcare information that
is heavily protected by regulatory requirements regarding
their generation, storage, usage, etc. to ensure patient privacy;
(2) due to these regulations, there are very few openly acces-
sible fetal ultrasound datasets, which can be used to develop
such clinical assistants and at-home monitoring platforms;
(3) even the state-of-the-art datasets that are accessible are
not properly annotated with the relevant information in order
to be able to train DNNmodels, which can be used to infer rel-
evant fetus anatomy information; and (4) the existing datasets
are not large enough to enable the DNN model to learn
the required features efficiently, despite the use of existing
transfer learning approaches.

To address these research challenges, we build theFPUS23
dataset (see fig. 2) by: (1) using a fetus phantom at 23 weeks
gestation, instead of actual human fetuses, thereby cir-
cumventing the regulations associated with healthcare data;
(2) not generating or using any healthcare data in our
dataset – FPUS23 will be openly accessible to further facil-
itate future research and advancements in this domain;
(3) properly labeling and annotating the dataset with the
help of scientists with experience in fetal ultrasound imag-
ing to generate a dataset that can be used to identify
(i) diagnostic planes for extracting fetal biometric parameters,
(ii) fetus orientation, (iii) fetus anatomies, and (iv) bound-
ing boxes of the fetus anatomies; (4) building a dataset
with 15,728 ultrasound image samples that can be used to
learn the required information; (5) extensive evaluation of
our datasets with appropriate transfer learning approaches,
including model compression techniques, as illustrated in
Section IV.

II. RELATED WORK
There is an abundance of ultrasound datasets for various use-
cases, which can be used to generate DNN-based models
for classification and segmentation. For instance, the breast
ultrasound image dataset presented by Al-Dhabyani et al.
[6], which is composed of normal, benign, and malig-
nant images that can be used to train to a model to
act as a classifier. Similarly, the POCUS dataset, pre-
sented by Born et al. [1], and the COVIDX-US dataset, by
Ebadi et al. [2], are openly accessible for buildingDNN-based
clinical assistants that can aid in the analytics and diag-
nosis of COVID-19. Leclerc et al. [7] presented a car-
diac ultrasound electrocardiography dataset containing image
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FIGURE 3. Overview of (a) the phantom abdomen in the mother body torso and its possible rotations; (b) the fetus phantom placed in the abdomen;
(c) the four possible fetus orientations; (d) the Philips Epiq-7 ultrasound system (adapted from [4] and [5]).

sequences with two and four-chamber views of the heart of
500 patients. Likewise, there are a wide number of ultrasound
datasets for diagnosing and analyzing several internal body
organs.

A. FETAL ULTRASOUND
Deep learning has also been explored for fetal ultrasound
imaging, albeit not as widely or comprehensively. Refer-
ence [8] proposed a multi-scale self-attention generator that
can be used to automatically generate ultrasound images from
various segmentation masks, which can then be used for fetal
brain segmentation and analysis. Reference [9] proposed the
use of deep learning to automatically analyze the fetal heart
by encoding and translating Spatio-temporal information in
order to classify amongst three different fetal heart planes.
Reference [10] proposed a CNN-based classifier that can
be used to detect cardiac abnormalities in fetal ultrasound
images. Reference [11] have proposed the use of CNNs to
detect the six standard fetal brain planes on a proprietary
dataset containing 30, 000 2D fetal ultrasound images gath-
ered between 16 and 34 weeks gestation, to achieve 91%
accuracy. Reference [12] presented two DNN models that
are used to detect the ideal frame for the fetal head, fol-
lowed by its segmentation, which is used to measure the
head circumference, a key biometric parameter. Reference
[13] proposed an improved multi-task learning network that
improves the segmentation capabilities of the model when
compared to [12]. Although ultrasound examinations of a
fetus are very common, there are very few openly accessible
datasets for researchers to build DNN-based models that can
aid in the analytics of fetal ultrasound images. Reference [14]
presented a dataset of fetal ultrasound images with anno-
tations regarding the head circumference, as shown in [12]
and [13]. Reference [15] presented a fetal ultrasound dataset
with over 12, 400 images from 1, 792 patients, which were
categorized into six classes containing the anatomical planes.
Most of the other works in this category primarily work on
proprietary datasets, which are not accessible for analysis and
evaluation.

III. FPUS23: THE FETAL ULTRASOUND DATASET
A. DATA COLLECTION
The required ultrasound fetal data was generated and col-
lected using the ‘‘US-7 SPACE FAN-ST’’ fetus phantom [5],
which has been typically used to train sonographers to assess
the development and condition of the fetus. Figs. 3(a) and 3(b)
illustrate an overview of the oval-shaped phantom abdomen,
which mimics the uterus containing a fetus at 23 weeks gesta-
tion, and the life-size fetus demonstrationmodel that is placed
inside the phantom abdomen, respectively. We propose to use
a 23-week old phantom as a mid-pregnancy scan is typically
performed around this time to check for fetus anomalies.
The phantom abdomen can be rotated into four different
positions to change the orientation and presentation (cephalic
or breech) of the fetus phantom (see fig. 3(c)). The fetus
model includes full skeletal structure and key organic features
that can be observed and used to train the sonographer to
assess the fetus’ anatomy (like head, arms legs, abdomen) and
internal body organs (like brain, skull, spine, cardiac cham-
bers, stomach, kidney, blood vasculature, etc.). The biometric
parameters of the fetus can also be measured/learned using an
ultrasound of the fetus phantom at the appropriate positions
or the correct diagnostic planes. Besides the aforementioned
features, the quantity of amniotic fluid, any potential abnor-
malities, location of the placenta, fetal posture, etc. can also
be learned with the help of this model.

We use the X6-1 xMATRIX array transducer [16], which
is interfaced with the Philips Epiq-7 system [4] to collect and
process the data to generate the final ultrasound image (see
fig. 3(d)). The Anatomically Intelligent Ultrasound (AIUS)
imaging technology deploys advanced organ modeling and
imaging techniques to generate a two-dimensional image of
the fetus phantom using the default settings for the ‘‘OB Fetal
Echo’’ imaging option. The imaging depth was set to 12cm
and captured at a 23Hz frame rate. Sufficient ultrasound gel is
applied on the phantom abdomen to ensure acoustic coupling
with the probe, thereby reducing acoustic impedance, and
enabling clear imaging. We executed two protocols to collect
the images used in the FPUS23 dataset:
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FIGURE 4. Super-labels of the FPUS23 dataset and corresponding samples in each class.

(1) Protocol-I: The probe is placed on the phantom
abdomen surface and navigated to the correct diagnos-
tic planes that can be used for the measurement of the
three primary biometric parameters of the fetus, namely
the transvetricular plane, which is used to obtain the
brain’s Biparietal Diameter (BPD), abdominal stan-
dard plane, which is used to estimate the Abdominal
Circumference (AC), and the femur standard plane,
which is used to estimate the fetus’ Femur Length (FL).
The correct diagnostic planes were identified using the
clinical protocols discussed by Salomon et al. [17] and
Bethune et al. [18]. To further enrich the dataset, after
the acquisition of several frames at the correct diag-
nostic plane, we tilt, rotate, or traverse the ultrasound
probe in random directions to collect more information.

(2) Protocol-II: The focus of this protocol is to obtain
images capturing the anatomies of the fetus phantom
in the generated images. We do this by navigating the
probe to obtain the head, abdomen, arms, and legs,
individually or combined, in the picture and move
the probe in different directions to obtain a hetero-
geneous set of images capturing the fetal anatomies.
Furthermore, the phantom abdomen was also rotated

and placed in the four possible orientations [head up
(hu) or down (hd), view front (vf) or back (vb)], when
collecting the ultrasound data, to potentially mimic the
real-life behavior of fetus orientation and presentation
(see fig. 3(c)). Additionally, the probe orientation was
also changed between horizontal and vertical, with
respect to the abdomen, when the data was collected
to enhance the dataset with more information.

B. ANNOTATION
The data streams obtained by the Philips Epiq-7 ultrasound
system are converted to PNG image sequences, of dimen-
sion 664 × 388, using custom in-house software for easier
labeling, annotating, and processing. The stored PNGfiles are
annotated using a customized version of the Computer Vision
Annotation Tool – CVAT [19], which was primarily opted
for its ease-of-use and wide-range features. Each acquired
ultrasound frame was subsequently annotated by scientists
with experience in fetal ultrasound imaging.

The sequences obtained using Protocol-I are labeled as
a correct diagnostic plane for one of the three biometric
parameters (BPD, AC, FL) or as a non-diagnostic plane.
Since the number of data samples obtained for each of the
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TABLE 1. Breakdown of the number of labeled data samples in each
class of our FPUS23 dataset; Of the 15, 728 images, not all contain
relevant information for labeling – images obtained during probe
movements may not accurately depict anatomies.

diagnostic planes is quite smaller than the non-diagnostic
plane output class, the samples were augmented in each of
the other three output classes to ensure equal representation
of data across all classes. The data obtained using Protocol-II
is, first, labeled with fetus orientations, namely huvf, huvb,
hdvf, or hdvb, as discussed earlier, based on the position of the
phantom abdomenwhen the scans are made. Next, the images
are tagged with the anatomies present in the image, such as
heads, arms, legs, and abdomen. The images are subsequently
exhaustively annotatedwith boxes representing the respective
anatomies to determine their bounds and potentially estimate
biometric parameters later, such as femur length, at the cor-
rect diagnostic plane. Images that do not contain any vital
and/or relevant information regarding the fetus are not labeled
or annotated. These finalized labels and annotations, for each
valid image in the dataset, are extracted as an XML file,
which can be used to train various deep learning models as
required.

Table 1 depicts an overview of our FPUS23 dataset and
the number of input samples present in each class for each of
the four different super-labels: (1) Diagnostic Plane, (2) Fetus
Orientation, (3) Fetus Anatomy, and (4) Anatomy Bounds,
using box annotation. The dataset is split in the ratio of
8 : 1 : 1, with respect to training, validation, and testing,
respectively, for the first three cases. We split the anatomy
bounds data and use 80% of it for training and 20% for
validating the model. Fig. 4 depicts a few sample images
and their corresponding annotations for the four different
super-labels of our FPUS23 dataset.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP
The experimental evaluations illustrated in this section, which
depict the efficacy of the DNN models trained using our
FPUS23 dataset, are primarily completed on a CentOS 7.9

TABLE 2. Preliminary quality evaluations (accuracy and F1-score) and
hardware requirements (Flops and memory) of the modified ResNet34
model trained using the FPUS23 dataset.

Operating System running on an Intel Core i7-8700 CPU
with 16GB RAM and 2 Nvidia GeForce GTX 1080 Ti
GPUs. Our scripts were executed with the following software
versions: CUDA 11.5, Pytorch 3.7.4.3, torchvision 0.11.1,
and Pytorch-lightning 1.5.1. We use a ResNet34 [20] DNN
model, pre-trained using the ImageNet [21], and retrain it
with our dataset for 15 epochs using the cross-entropy loss
function. The initial and final layers of the ResNet34 archi-
tecture were adapted to accommodate the custom input data
dimensions and output classes, respectively. We use a modi-
fied Faster-RCNN [22] with our ResNet34 backbone to build
the model used for determining the anatomy bounds of the
fetus in our dataset. The learning rate for all models was set
to 0.001 using the Adam Optimizer with a step size of 20 and
γ = 0.1.

We use the traditional metrics of accuracy, precision, and
recall to determine the efficacy of the deep learning models
illustrated in this section. Accuracy is the ratio of the total
number of inputs accurately predicted with respect to the total
number of predictions, which is a primary evaluation metric
for classification systems. For the anatomy bounds, we use
the mean Average Precision (mAP; IoU = [.50:.05:.95]),
which is the ability of the model to not label a negative
sample as positive, and mean Average Recall (mAR; IoU =

[.50:.05:.95]), which denotes the ability of the model to iden-
tify all positive instances of each class:

mAP =
1
N

∑N
i=1 pi,i∑N

i=0
∑N

j=1 pi,i + pi,j
(1)

mAR =
1
N

∑N
i=1 pi,i∑N

i=0
∑N

j=1 pi,i + pj,i
, i, j = 1, . . . ,N (2)

where N denotes the total number of output classes, pi,i the
number of pixels classified as class i and labeled as class
i, and pi,j, pj,i are the number of pixels classified as class i
and labeled as class j and vice-versa. We also evaluate the
model’s F1-score, which is the harmonic mean of the model’s
precision and recall.

B. BASELINE MODEL
To illustrate the effectiveness of the FPUS23 dataset,
we retrain a modified version of the ResNet34 architecture,
which we consider as the baseline, to illustrate the capability
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TABLE 3. Exhaustive evaluations of the compressed baseline ResNet34 model.

of the network to learn relevant information regarding the
classification of labels and detecting fetal anatomies. Accu-
racy and F1-score are the two metrics used to determine the
quality of the model, whereas the number of floating-point
operations (Flops) and memory (MB) are relevant to esti-
mate the hardware and resource requirements of the base-
line model and determine its deployability in edge devices.
The results of these experiments are illustrated in Table 2.
Achieving ∼ 99% accuracy in the classification of diag-
nostic planes, fetus orientation, and fetus anatomy gives us
the understanding that the models are able to learn the fea-
tures quite well. Similarly, the modified Faster-RCNNmodel,
embedded with our ResNet34 backbone, is able to detect fetal
anatomies at significantly high precision. Note, the signifi-
cantly high quality of themodels can also be attributed to their
over-parameterization, which implies that smaller networks,
achieving similar output accuracy, can be obtained with Neu-
ral Architecture Search (NAS) [23] and model compression
techniques [24] (see Section IV-C).
Moreover, the use of an inverted probe during an ultra-

sound exam leads to the generation of an inverted image.
To design a robust network model that can extract features
and information from the inverted image to ensure correct
classification, relevant image samples need to be collected,
with the probe inverted, and included in the dataset during the
training stage. However, this information can also be added to
the model by flipping the collected images along the y-axis,
which mimics probe-inverted images, and adding them to the
original dataset before training.

C. MODEL COMPRESSION
To further reduce the model’s hardware requirements,
we use compression techniques like pruning and quanti-
zation. We have implemented the technique proposed by
Han et al. [25], which proposes to eliminate the smallest
x% of total weights and associated connections from the
network, followed by a network retraining stage, wherein the
model relearns the information on the reduced set of available
parameters, to potentially achieve similar output quality as
the original model. We analyze the quality and hardware
require-ments of the models that are 30%, 50%, and 70%
pruned. The pruned networks are subsequently quantized to
8-bit integer (INT8) precision, using the quantization-aware
training strategy presented by Khudia et al. [26], to further
reduce themodel’s size and improve its computational perfor-
mance; INT8 computations are several orders of magnitude
faster than 32-bit floating-point (FP32) operations [27]. Simi-
lar to the regularizing effect illustrated in [28], compression of
the baseline models led to potential scenarios where the com-
pressed models outperform the original. This regularizing
effect is especially prominent when the ResNet34 classifiers
are compressed, due to their heavy over-parameterization.
Table 3 illustrates the quality evaluations and the hardware
requirements of these models when trained on FPUS23.
Plenty of research works on automated NAS have demon-

strated their efficacy in reducing the number of parameters
and computations for achieving similar quality results com-
pared to over-parameterized architectures that are typically
designed by hand. Towards this, we first investigate the
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TABLE 4. Evaluations of the DNN model obtained through exhaustive neural architecture search; As expected, a smaller model achieves the same or
similar output quality as the baseline while reducing the hardware requirements by up to 17×.

effectiveness of two state-of-the-art automated NAS
approaches presented by Fang et al. [29] and Wang et al. [30]
in reducing the number of Flops and memory while retaining
the output quality. Both these approaches yield a resid-
ual DNN with 10 intermediate feature extraction layers to
achieve an output quality similar to that of the baseline. How-
ever, while exhaustively generating and exploring smaller
networks from scratch, we generated a residual DNN with
8 layers, instead of the 10 proposed by [29] and [30], which
offers similar output quality while requiring a fewer number
of parameters.We use this ResNet8 architecture to buildmod-
els for classifying the diagnostic planes, fetus orientation, and
fetus anatomy. However, we have observed that the quality
of the Faster-RCNN model, built using a ResNet8, is sub-
stantially lower as opposed to the model using a ResNet10
backbone. Therefore, the Faster-RCNN model is built using
a ResNet10 backbone instead. From the results, it is quite
evident that the ResNet8 model achieves a similar output
quality as the original baseline models, even when both of
them are compressed using pruning and/or quantization. For
instance, a fetus anatomy classifier built using the ResNet8
architecture, which has been 30% pruned and INT8 quan-
tized, achieves an output quality greater than the baseline
ResNet34 model, while requiring less than 10MB in mem-
ory, making it ideal for deployment on resource-constrained
processing platforms. The Faster-RCNN built using the
ResNet10 backbone also achieves similar quality to the
baseline model while substantially reducing the hardware
requirements. Table 4 illustrates the quality evaluations and

the hardware requirements of the NAS models when trained
on the FPUS23 dataset.

D. EVALUATION ON STATE-OF-THE-ART REAL-WORLD
DATASET
To further demonstrate the applicability of our dataset in
real-world fetal ultrasound use-cases, we fine-tune the mod-
els trained using FPUS23 on the training set and evaluate
them on the test set presented by [15]. We train two models:
first, we train the baseline model on the FPUS23 dataset,
before retraining on the real-world dataset, and in the sec-
ond, we train the model directly on the real-world dataset.
Model-1 achieves 91.92% accuracy in detecting the anatom-
ical planes after training for just 1 epoch, whereas Model-2
achieves the same accuracy only after training for more than
16 epochs. Therefore, the models can learn relevant features
regarding fetal ultrasounds from the FPUS23 dataset before
being deployed for other fetal ultrasound datasets with very
little fine-tuning. To re-emphasize this, we perform a small
analysis on the networks under consideration. We consider
the weights of the FPUS23-trained model before and after
fine-tuning on the real-world dataset. Each of the weights
in these two sets are subtracted, squared, and aggregated
together (like sum of squared errors) to obtain a single value,
which denotes the amount of fine-tuning undergone by the
model. We do the same for the ImageNet-trained model and
compare the two. The FPUS23-trained model aggregates a
value of 2.01 × 10−7, whereas the ImageNet-trained model
aggregates to 3.02 × 10−6, which is more than 15× larger.
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FIGURE 5. Evaluation of Faster-RCNN trained on FPUS23; comparison between (a) ground truth and (b) prediction; (c) detecting anatomies incorrectly
during probe navigation; (d) misestimating dimensions of fetus anatomy.

TABLE 5. Evaluation of the models trained using ImageNet and FPUS23
on the real-world fetal ultrasound dataset [15] without any fine-tuning.

TABLE 6. Class-wise prediction breakdown of the ImageNet-trained
model when fine-tuned for the real-world dataset [15] after 5 epochs.

This implies that the former model requires less fine-tuning
in comparison to the latter. Section IV-E presents a compre-
hensive analysis of the knowledge retained and transferred by
models trained on the FPUS23 dataset using ablation studies,
followed by a discussion of the anatomy detection results for
the trained DNN model.

E. ABLATION STUDIES
With no fine-tuning on the state-of-the-art dataset [15], the
FPUS23-trained model is able to make predictions with rel-
atively higher accuracy when compared to an ImageNet-
trained model, as shown by the results in Table 5.
Next, we provide a class-wise prediction breakdown of the

models when fine-tuned on the state-of-the-art dataset. After
15 epochs, the ImageNet-trained model converges to the
same accuracy as the FPUS23-trained model, which requires
just 1 epoch for fine-tuning. The results of these experi-
ments are presented in Tables 6 and 7; the ImageNet-trained
model is fine-tuned for 5 epochs and converges to the same
accuracy-level as the FPUS23-trained model after 15 epochs.

We have also trained the two models using a 40% subset
of the real-world training data to achieve the same accuracy
as the baseline (92%) when using the FPUS23-trained model.
Whereas the ImageNet trained model is unable to achieve the
same accuracy and falls short at 88% accuracy.

Fig. 5 provides a sample of the anatomy detection results of
the Faster-RCNNmodel with the ResNet34 backbone trained

TABLE 7. Class-wise prediction breakdown of the FPUS23-trained model
when fine-tuned for the real-world dataset [15] after just 1 epoch.

using the FPUS23 dataset. As illustrated by the ground truth
and prediction, in figs. 5(a) and 5(b), respectively, the pre-
cision achieved by the model is quite high, and can detect
anatomies quite accurately and precisely in most instances,
as illustrated by the overall mAP and mAR values of the
model. However, the model also misclassifies certain abstract
artifacts during probe navigation as fetus anatomies, as illus-
trated by fig. 5(c). Fig. 5(d) illustrates an instance wherein
the model over- or under-estimates the bounds of the fetus
anatomy.

V. CONCLUSION AND FUTURE WORK
In this paper, we present the FPUS23, which is an ultra-
sound dataset of a fetus phantom at 23 weeks gestation.
The data streams are collected and annotated by scientists
with relevant fetal ultrasound experience to obtain informa-
tion regarding the (1) diagnostic plane, (2) fetus orientation,
(3) fetus anatomy, and (4) their bounds, using box annota-
tions. The generated dataset is used to train a variety of deep
learning models to illustrate the model’s ability to extract
vital information, which can be used to accurately distinguish
among the classes in different categories and detect the fetus
anatomy bounds. Furthermore, to evaluate their deployability
in portable resource-constrained devices, we evaluated the
capability of a smaller DNN compressed using pruning and
quantization to illustrate that smaller DNNs are equally com-
petent at extracting relevant information from the dataset and
are capable of execution on resource-constrained devices and
embedded platforms. The FPUS23 dataset is open-source
and the trained models are accessible online. In our future
work, we plan to include annotated data of fetus phantoms at
different gestation durations to offer a more comprehensive
fetal ultrasound dataset.
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