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Guided Visual Analytics for Image Selection in Time and Space

Ignacio Pérez-Messina
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Fig. 1: Our system for Image Selection for UXO detection. The timeline visualization (a) shows image and flight metadata (1),
attacks and coverage (2), and their aggregated relations (3). The user selection (green), orienting guidance (blue), and prescribing
guidance (orange) are represented in different colors and can be switched on/off from the menu (4). In the map view (b), the area of
interest in purple (1) and the images (2), are shown. There, photographs can be inspected and manually georeferenced (3).

Abstract—Unexploded Ordnance (UXO) detection, the identification of remnant active bombs buried underground from archival aerial
images, implies a complex workflow involving decision-making at each stage. An essential phase in UXO detection is the task of
image selection, where a small subset of images must be chosen from archives to reconstruct an area of interest (AOI) and identify
craters. The selected image set must comply with good spatial and temporal coverage over the AOI, particularly in the temporal
vicinity of recorded aerial attacks, and do so with minimal images for resource optimization. This paper presents a guidance-enhanced
visual analytics prototype to select images for UXO detection. In close collaboration with domain experts, our design process involved
analyzing user tasks, eliciting expert knowledge, modeling quality metrics, and choosing appropriate guidance. We report on a user
study with two real-world scenarios of image selection performed with and without guidance. Our solution was well-received and
deemed highly usable. Through the lens of our task-based design and developed quality measures, we observed guidance-driven
changes in user behavior and improved quality of analysis results. An expert evaluation of the study allowed us to improve our
guidance-enhanced prototype further and discuss new possibilities for user-adaptive guidance.

Index Terms—Application Motivated Visualization, Geospatial Data, Mixed Initiative Human-Machine Analysis, Process/Workflow
Design, Task Abstractions & Application Domains, Temporal Data
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INTRODUCTION

UXO detection is the practice of finding and removing active bombs
buried underground from aerial bombings during past armed conflicts,
particularly WWII, and ensuring the safety of the area, such as buildings
and civilians. It is costly and hazardous but necessary work. Interest-
ingly, aerial photographic reconnaissance flights, which were a crucial
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part of the Allied strategic bombing campaigns, now offer the most
valuable source of information for the detection of ordnance, and the
analysis of this archival material has become an essential part of UXO
detection [29,34]. UXO detection comprises different stages that may
overlap but can be considered independent: image selection, image
georeferencing, crater detection, and risk assessment, among others
(see Fig. 2). In this paper, we focus on image selection.

In the image selection process, experts must first consider all avail-
able imagery in the archives that has some coverage over a specified
Area of Interest (AOI) and select the best subset of images that will
allow them to create a faithful reconstruction of the AOIL, i.e., one that
leaves no space for undetected UXOs (false negatives). This process
can be costly and time-consuming since even for small AOIs there
could be hundreds of relevant images. The resulting image subset must
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have good spatial coverage over the AOI but also temporal coverage
over known attacks. Thus, image selection is an autonomous and com-
plex task crucial to the success and quality of UXO detection. More
in general, image selection belongs to an exciting class of problems
involving decision-making that has been barely explored in Visual An-
alytics (VA) literature, namely, combinatorial optimization (similar to
the knapsack problem [24]), where experts must produce a minimal
selection while optimizing different criteria (cost and quality of images,
spatial and temporal coverage, resilience to poor quality images, etc.)
and use their knowledge on site-specific historical events, to assess the
actual quality of the photographs selected.

Currently, only general-purpose software such as Excel, Google
Earth, and ArcGIS is used for UXO detection, with little automation
and no task-specific visualization techniques. Hence, our task was to
design a functional tool that experts could effectively integrate into their
workflow to improve the quality of their work. For its design, we used
guidance as a conceptual framework, as guidance is defined as “the
computer-aided process of actively resolving user knowledge gaps” [5]
featuring a user-centered approach focused on studying how users
can be supported and understanding the implications of recommender
models on the analysis.

Through a series of semi-structured interviews with domain experts
from a partner company, we identified the spectrum of user tasks,
derived the knowledge gaps, and defined the necessary guidance to
support them. Our guidance-enhanced interface (Fig. 1) is composed
of two coordinated views that show the available images in their geo-
graphical and temporal dimensions. In the timeline (Fig. 1A) images
are organized into a custom glyph representing reconnaissance flights.
A guidance model that captures expert criteria orients users towards the
best candidate images and prescribes full image selection sets, using
only color-coding as visual variables. The production of a selection
by a user follows an iterative divide and conquer approach, where the
whole time period of a project is partitioned into smaller time frames
which can be independently analyzed by temporal zooming.

We evaluated the usability of our interface and the appropriateness
of our guidance-enhanced system through a user study with domain
experts where they performed image selection over two real-world
scenarios, with and without guidance, confirming that our approach
helped improve the quality of results produced by experts.

Our contributions are (1) a domain characterization of image selec-
tion for UXO detection with a visualization and guidance task analysis
(Sec. 3), (2) a guidance-enriched visualization design for time-oriented
data (Sec. 4), (3) a qualitative user study of our working prototype
(Sec. 5-7), and (4) a model that predicts selection quality in alignment
with expert criteria (Sec. 8).

2 BACKGROUND AND RELATED WORK

The expected outcome of image selection is an “optimized subset” of
the whole set of candidate images; hence, it involves decision-making.
Interestingly, interactive approaches supporting this task appear as
an underrepresented topic in the literature, although it is a class of
problems that appears in a wide variety of real-world scenarios. Notably,
in the review of design papers mentioning decision-making as a goal,
no system deals with combinatorial optimization (i.e., optimizing the
choice of items in a set) [10]. Moreover, within the domain of UXO
detection, the only visualization approach we found is Amor-Amorés
et al. [2], which is, nonetheless, limited to image georeferencing.

Guidance in VA We designed and implemented a guidance-
enhanced VA approach to support image selection. Guidance is a
mixed-initiative process that refers to approaches (e.g., recommender
systems) for enhancing analytical tasks and it describes how assistance
can be provided to the user [6]. Guidance approaches can be char-
acterized by the user’s knowledge gap it aims to resolve and by the
constraints guidance imposes over user action. The latter has been
classified into three guidance degrees, from lowest to maximum con-
straint [5]: orienting — usually highlighting interesting elements (e.g.,
previously recorded patterns in malware detection [35], number of
segments as a parameter for the discovery of cyclical patterns [9]);
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Fig. 2: UXO Detection workflow: Images that have coverage of the
AOI are automatically extracted from different archives’ catalogs, from
which a small set of images is manually selected. Then, images are
manually georeferenced and craters are identified to produce the UXO
map. In this paper, we focus only on the process of image selection.

Image
selection

directing — providing a ranked set of suggestions, common in appli-
cations where different options can be clearly defined (e.g., sampling
from a large parameter space, recommending different actions and
analysis paths [11]); and prescribing, or automated and self-enacted
decision-making, more commonly used in analytical systems to pro-
vide a starting point or path for analysis (e.g., touring the user through
calculated interest points in very large images [15]). These types of
guidance were recently abstracted into system guidance tasks, coupled
to the analysis of user tasks, and further expanded into a typology by
Pérez-Messina et al. [23], on which we base our task analysis (Sec. 3).
A general framework for providing guidance in practical scenarios is
still part of the guidance research agenda. However, there are attempts
at implementing such aframework [31].

Guided decision making Image Selection can be generalized as
a broader problem in VA, namely, interactive optimization or Parameter
Space Exploration (PSE) [28]. PSE deals with situations where not
a single optimal solution but an infinite set of Pareto-optimal options
exist, allowing users to interactively search in a wider range of, some-
times generative, solution design options [27]. VA systems supporting
this task have already been applied in many domains: architecture
and industrial design [1, 3,33], space lighting design [36], yacht hull
design [16], graphical layout design [8,22], visual design [17], to name
some. However, none of these approaches involves discrete combina-
torial optimization, and neither explicitly employs guidance. To the
latter point, we find exceptions in the work of El-Assady et al. [11]
and Sperrle et al. [32], which study the effect of providing different
guidance degrees to model building tasks and generalize Speculative
Execution as a technique for guided PSE [30].

3 DOMAIN CHARACTERIZATION

The ultimate goal of UXO detection using aerial photographs is min-
imizing the risks and costs associated with on-site bomb detection
and deactivation, for instance, on construction sites where armed con-
frontations (i.e., during wars) are known to have taken place. The final
product of this process is a map showing risk-level zones and the loca-
tion of identified UXOs. Obtaining this result is costly, either in terms
of money and time, and can only be achieved through the meticulous
reconstruction in time and space of the AOI by using archival photo-
graphic material, historical registries of bombings, and considerable
location-specific tacit domain knowledge [13]. We can roughly divide
the workflow into three manually-performed analytical stages: Image
selection, image georeferencing, and image analysis (crater detection)
as shown in Fig. 2. At the start of image selection, a set of all images
that overlap with the AOI at some point in time is automatically ex-
tracted from international archives. Even for a very small AOI, the
number of potentially useful images can be in the order of hundreds.
For very small projects (but it varies widely with the distribution of
attacks and images in time), a subset of 40-120 images will be selected,
covering all known attacks so that a faithful reconstruction may be
achieved and reduce the possibility that bombs may have escaped anal-
ysis, i.e., maximizing temporal coverage and image quality over the
AOI. Experts mostly base their decision on (1) image metadata, (2)
image preview (when available) to check if the image effectively covers
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the AOI, and its quality (e.g., absence of clouds, damage, etc.), and
(3) image temporal position in relation to recorded attacks. Once se-
lected, images are retrieved (purchased from the archives if necessary)
and then finely georeferenced (i.e., correctly transformed and placed
over the same orthophoto map). Lastly, all images are examined in
detail to pinpoint craters, to generate a hazard-level map, with markers
indicating possible UXOs.

Problem statement In this work, we focus on image selection
for UXO detection. Abstractly, the problem can be stated as picking
a minimal subset of images of a subject (the AOI) that contains the
information of all relevant changes of the subject in a timespan of years
(bomb craters and damages) with a focus on particular events (aerial
attacks). Considering that the value of an image does not only depend
on its quality and metadata, but on its relations in time to attacks and
to the other selected images, image selection represents a complex
task involving unevenly-spaced time-oriented data which can greatly
benefit from a VA approach. Our goal is also to provide guidance, as
analysts usually face knowledge gaps that could hinder the analysis.
Typically, the entire workflow is carried out manually by experts, as
there is no commercially available specialized software for this task.
Hence, our first aim was to design and implement a guidance-enriched
VA tool integrating all the necessary features for the analysis, such as
visualizing images and their metadata in time and space and with a
clearly defined interactive workflow.

In the following, we present our domain characterization according
to the data-users-task design paradigm [21]. We also describe how we
designed the guidance workflow by performing guidance task analysis
and providing essential definitions.

3.1 Data

A project in UXO detection is defined by an AOI (e.g., a construction
site): this determines what set of images will be processed for selec-
tion and which attack registries (of aerial bombings) are relevant. The
primary data source for UXO detection is photographic material (i.e.,
aerial images) captured by reconnaissance flights during WWII, which
are stored in the US, UK, and Russian archives. Images correspond to
a point in time and an area in space and are identified by the flight that
took them, the camera’s identification, and a sequence number. The
relevant metadata of an image consist of: geographic center position,
scale, camera, date (day), precalculated coverage over AOI (not accu-
rate, as images are not properly georeferenced at this point), and owned
status (whether they have already been acquired for a previous project).
Typically, on reconnaissance flights, there are two types of cameras:
overview and detail, the latter also having chirality (i.e., a pair of left
and right cameras). Overview images have a larger scale, meaning they
also have less information over a given area than detail images when
coverage is fixed. Also, two subsequent detail images with the same
chirality (from now on, an image pair) can be combined to produce
a stereoscopic (3D), higher-resolution image. These properties define
a hierarchy of images: Analysts will always prefer image pairs rather
than single detail images, and only if detail images are not available
will they select overview images. In other words, we can calculate, for
each image, its information value, which is proportional to the pixels
an image/pair contains for a fixed geographical area. These criteria
are essential but do not represent hard constraints, as different experts
will employ different strategies to deal with specific cases (e.g., some
analysts would choose two detailed images from different dates rather
than two unpaired images from one flight).

Equivalence classes Images are related to the AOI spatially and
to attacks temporally. If we consider images and attacks as two different
types of nodes in a graph, we obtain that the temporal relationships
between them form a directed bipartite graph. We say that an attack is
covered by an image iff there is a spatial covering relation between AOI
and the image date is (for obvious reasons) posterior and “relatively
close” in time to when the attack took place. This relative closeness in
time, which can be thought of as a threshold, depends on the character-
istics of the project and can vary from some days to weeks (depending,
for instance, on the weather and season). By suggestion of the domain

experts, we considered a 25-day period as our threshold, meaning that
an image can cover an attack only if it was taken at most 25 days after
the event. By applying this threshold, we obtain the actual coverage
relationships between images and attacks. This relation allows us to
group images into equivalence classes, i.e., two images belong to the
same equivalence class if they cover the same attacks. This means that
images belonging to the same flight are equivalent, but also that flights
can be equivalent. This grouping is useful for visualization design and
guidance. However, images that are closer to the attacks (i.e., the older
flights of an equivalence class) will be preferred by analysts as their
delay is smaller.

3.2 Task analysis

As preparation for the design, we analyzed the user’s tasks, which were
also used to characterize the necessary guidance to support them. We
gathered the necessary information during a structured user workshop,
in which we interviewed domain stakeholders about their expectations
and requirements. We complemented this information with on-site in-
terviews, with two additional domain experts who helped us to develop
our design. The task analysis was then carried out by describing the
user tasks and then the necessary guidance tasks were designed using
the methodology by Pérez-Messina et al. (see [25] where an extended
description of the user and guidance tasks can be found), arriving at the
user-guidance task diagram in Fig. 3.

User tasks The user task analysis displays an iterative structure
(Fig. 3): The analysis starts with loading the data (UT0) and ends (the
output) with a selected subset of images (UT6). Inside this process,
the main user loop (UT1-5) takes place. In each iteration, one or
more images are added (or removed from) the selection, which will
become the result when the user decides to end the analysis (UT6). The
overall analysis strategy resembles a divide-and-conquer approach, as
the whole time period under analysis is split in each iteration into more
manageable, sometimes causally independent subperiods (divide), in
UT?2, and then images are selected to cover each of them (conquer). We
define the target of all user tasks as a single or group of images that
are visually selected for inspection. Thus, all four search types (lookup,
browse, locate, explore) are defined in relation images and their location
in the representation (i.e., path). Next, we list and describe each task
from Fig. 3.

UTO0 Produce the dara for the project by loading the images, attacks,

and area of interest.

UT1 Explore the timeline overview by getting a sense of the distribu-

tion of flights and attacks and decide on a strategy to approach
the analysis.

UT2 Locate a timeframe on the timeline in which to work, and zoom

into.
UT3
UT4
UT5

Browse candidate images from flights of the focused timeframe.
Lookup the actual attack coverage of an image.

Lookup the metadata and geographically positioned preview of
an image for selection.

UT6 Produce the selection of an image or a whole subset of images

and exporting the result for further analysis.

Guidance tasks Having analyzed the user tasks, we comple-
mented them with guidance. Each user task hides a potential knowledge
gap concerning its target or path of analysis, e.g., the images for selec-
tion or the time periods where they are found [25]. We identify two
crucial user tasks, which are subject to the target unknown knowledge
gap: the explore task (UT1) and the browse task (UT3) [4,5]. While
browsing the user does not know a priori what its target is but only
that one may be found in the location where the search is being con-
ducted. According to the guidance task typology [23], browsing tasks
can only be directly supported by the indicate orienting guidance task,
which reduces the target unknown knowledge gap without reducing
user freedom.
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Fig. 3: User and guidance task schema of our guided VA system for Image Selection. Tasks are represented by their why and what dimensions [4,
23], and their input/output relations. Note that, although the whole process is represented as an iterative loop, the user is free to change tasks at
any moment. The guidance prescribe task GT2 changes the user task from UT1 explore to UT5 lookup because of its disruptive nature [23].
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Fig. 4: Encoding of images and metadata. Images are visualized
as circular glyphs (a) encoding three aspects: (1) availability status
(presence of border), (2) amount of information (area of the circle) and
(3) possible pairs (thicker link between the images). Image glyphs of
the same flight are embedded into a flight glyph (b), where they are
ordered vertically by sequence number and horizontally by camera
type, a layout that resembles the reconnaissance flight.

An explore task is subject to both target and path unknown knowl-
edge gaps as it is involved in the generation and weaving of strategies
and hypotheses [4,5]. In interactive optimization problems this relates
to the search for local optima from a global perspective. Although
orienting guidance can also support this task [23], we follow the design
guideline of the methodology for task-driven guidance design [25] and
aim for the highest guidance degree (prescribe), which solves these
knowledge gaps by providing a full solution to the problem.

Hence, we provide the following two guidance tasks:

GT1 Indicate the relative value of every image according to the model
(relative to the images in its temporal vicinity, i.e., the locally
normalized value). This task does not change the user task but
only adds the information from the model’s assessment to the
visualization.

GT2 Prescribe a full selection. This task takes image and attack data
and provides a direct answer to both target and path knowledge
gap, delivering the user directly to the last search task of the
interaction loop (UT5), where the user only needs to verify the

suitability of the suggested images.

4 SYSTEM DESIGN

The main focus of the visualization interface is to allow the direct ma-
nipulation of the images and ease the selection process with guidance.
The interface, shown in Fig. 1, consists of two coordinated views: a
visualization of image metadata in time (Fig. 1a), and a geographic
map for spatial data and image content previewing (Fig. 1b). The coor-
dination between the two windows has the effect that filters, hover, and
selection operations on the timeline visualization are also applied to
the images displayed on the map. A video showcasing a usage scenario
is available as supplemental material.

(@ Visualization ® GT1 GT2 User
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<OL0-
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> -

Fig. 5: The three-layer color schema to visually separate data, guidance,
and user agency. A first layer in gray-scale contains the images, flight,
attacks and equivalence class encodings (a). The color layers are
superimposed in order: Orienting guidance in blue-scale shows the
model’s assessment of every image (b); prescribing guidance marks
with orange its image selection and attack coverage (c); and, in the
foremost layer, the user selection and attack coverage is set it green (d).

Implementation The system was developed as a plugin for QGIS
to integrate it into the domain experts’ workflow. The timeline visual-
ization runs in JavaScript inside QGIS utilizing Qt for the integration
and p5.js as visualization language and turf.js for the calculation of
spatial coverage and geometric operations. The map visualization runs
in QGIS-native Python.

41

The main concerns addressed in the visualization design were driven by
the gaps in the partner company’s workflow: (G1) having an overview
of the image dataset in time while (G2) making them easily accessible
for inspection, and (G3) visualizing the temporal coverage relations
between images and attacks. Hence, visualizing images in time and
their relations to attacks (also determined by time) was our guiding
principle. We decided to use linear time as the basic structure of the
visual space, so images and attacks could enter into chronological
relation by their position. However, the timestamp of attacks and
images was only of day-granularity, thus needing of a different principle
to organize images taken in the same day. The linear sequence imposed
by the reconnaissance flights themselves was useful to abstract an
ordering for same-day images.

We approached this using simple glyphs for images, which are em-
bedded into a flight superglyph (Fig. 1al). To show coverage relations
between flights and attacks, and the current selection’s attack coverage,
a temporal coverage band(a horizontal strip with a visual encoding for
attacks and equivalence classes) was placed in the upper part of the
timeline (Fig. 1a2-3).

Another concern was to make the guidance visible and clearly rec-
ognizable from the data visualization. We used a layered design pattern
with color as the visual dimension to separate the visualization of data
from the encoding of guidance and from the state of user analysis. As
shown in Fig. 5), the first layer contains all the information coming

Visualization
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Fig. 6: Temporal coverage band visualizes the flight equivalence classes
and their coverage relations to attacks (a), and the attack coverage of
the current selection (b). In the example, a pair of images is selected
(1) covering two attacks (2), while no images from another equivalence
class (4) are selected leaving an attack uncovered (3). The user inspects
an image that could cover this attack with the tooltip (c).

from the data and is represented in grayscale (a). Blue, red, and green
are used to color the first layer with the guidance assessment of all
images (b), guidance prescription (c), and current user selection (d),
respectively. Here, hues are used only as categorical variables that
differentiate the user agency from the guidance agency, and do not
intend to convey any positive/negative valuation.

Next, we describe in detail the timeline layout and the encodings for
images, flights, equivalence classes, and attack data.

Timeline The timeline defines the layout in the horizontal axis for
positioning flights and attacks in time (G1). The user can zoom into a
time period and filter corresponding flights by swiping over the upper
part of the timeline, which corresponds to the temporal coverage band
(Fig. 6). In the temporal coverage band flights are linked to the attacks
they cover (according to the 25-day rule), acting as a summary of the
coverage relations between flights and attacks (G3). These coverage
relations are grouped into the equivalence classes defined in Sec. 3.1.
For each equivalence class, a line extends from the first attack covered
to the last flight that covers it, marking the flights with larger circles
(as flights belong only to one equivalence class but an attack can be
covered by more than one flight). Attacks have a separate encoding
resembling a flag that marks its position in time.The flags’s color shows
its coverage status (which can also be partial), allowing for quick
coverage verification (G3). These encodings aimed to reduce visual
clutter and avoid the introduction of new coordinated views, as using a
node-link diagram or an adjacency matrix would have supposed, which
would have created an unnecessary redundancy of the visual elements.

Images We used an embedded glyph to represent images within
flights (Fig. 4) which effectively represents, along with the position on
the timeline and map, all relevant metadata fields described in Sec. 3.1.
Each aerial image is represented by a circle encoding its amount of
information over the AOI (size of area, Fig. 4a.1) and its owned sta-
tus (presence of border, Fig. 4a.2). These glyphs are embedded into
a (super-)glyph representing the flight that captured the photographs,
which arranges the images according to their position within the flight
(camera and sequence number, Fig. 4b) and their relation to other im-
ages (pairing, Fig. 4a.3). The shape of the flight glyph arises by ordering
the images by sequence number on the vertical axis and by the camera
(left-overview-right) on the horizontal axis, which is an abstraction
that resembles the actual geographical positioning of the image centers
along a flight, and it was praised by the domain analysts as a simple and
effective representation. Hovering over an image reveals a tooltip with
the textual metadata. It was important to use this custom embedded
glyph design, as the flight structure conveys relevant information to the
analysts and it is the first time it was visually represented, effectively
supporting within- and inter-flight image browsing (G2).

Map In the map (Fig. 1b), images are represented as circles
that reveal the aerial photograph (grey/yellow circles represent the
un/availability of a preview image) and allow the user to manipulate its
position, rotation, and size (which affect its spatial coverage). The pur-
ple polygon represents the AOIL. The map is necessary for the execution
of some tasks, such as image quality assessment and georeferencing,
however, we did not consider them in our user task analysis as our
focus was on the abstract visualization and guidance parts.

4.2 Guidance

To visually differentiate the types of guidance (orienting and prescrib-
ing), we encoded them using different colors (Fig. Sb-c). In the follow-
ing, we describe how we implemented the guidance tasks described in
Sec. 3.

Orienting guidance To provide orienting guidance for the brows-
ing task (UT3), we need to indicate the relative importance of images
(GT1). We achieve this by using an interest function (described in
Sec. 5) that calculates the interest of the aerials considering the im-
age metadata and their vicinity’s precalculated interest. The resulting
interest value is encoded using different saturations of blue. The pre-
liminary interest value prelnterest(I) = owned - paired - in formation
is calculated for each image by weighting its information value (spatial
coverage and level of detail) by an owned factor and a paired factor.
Then, the final interest value is calculated by normalizing each image
value to the highest value found in its 25-day temporal neighborhood,
as these represent possible alternative candidates.

Prescribing guidance Prescribing guidance provides a direct so-
lution to the task of finding a sound subset of images (GT2), using a
heuristic function. The guidance is shown by adding the encoding of
the selected aerials to the color layer of the prescribing guidance (red).
To calculate a solution, we build upon the interest function already
defined for orienting guidance and add an additional constraint for the
equivalence classes. The solver takes the most interesting candidate
image/pair from each equivalence class to cover all attacks (as not all
equivalence classes are necessary to this end). Also, attacks that are
covered by the prescribed images are also visualized in red, to show
the effect of the guide’s selection. The user can either pick or discard
the suggested images or build upon them and improve the solution.
Typically, the employed heuristic, which was used for the user study,
does not arrive at Pareto-optimal solutions. In Sec. 8 we show how
it can be improved using a second model which was developed by
analyzing the study’s results.

5 EXPLORATORY MODEL FOR SELECTION QUALITY

When designing the guidance-enhanced system, one of our goals was
to determine what would constitute with sufficient precision a good
solution to the image selection task, or in other words, capture the
quality of a set of images selected by the user in order to evaluate user
selections and create a better guidance model. To tackle this challenge,
we created two models in two subsequent phases: First, we created
an initial exploratory model to characterize and assess the quality of a
set of aerial images. This first model was based on the results of our
semi-structured interviews with two domain experts, during which we
identified factors that they deemed useful to pursue the image selection
task effectively. The model is composed of multiple partial metrics
(indexes) that are used to evaluate different aspects of an image set.
This first model proved useful to understand what was essential for the
expert’s criteria. This initial model was also used and evaluated during
a first user study. According to the results gathered in this study, we
could develop a second, more advanced, and precise, model, described
in Sect.8. Interestingly, many metrics we considered for this first model
resulted to be of secondary importance in our second model. However,
some of the initial metrics which instead considered temporal relations
between data cases were the most meaningful for an effective image
selection. We describe our initial exploratory model in the following.

Partial indexes As a first exploratory model, we devised a set of
partial metrics to measure the desirable qualities of a selection, shown
in Table 1. We call them indexes as all of them are normalized between
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Index Description

Intrinsic indexes

Detail Ratio of detail images within the selection (as opposed to overview images)

Information Average information of images within the selection (normalized)

Pairing Ratio of images that constitute image pairs (as opposed to single images)

timeCoverage Ratio of time covered by images, within the whole time-length of the project

Resilience Average number of images by which an attack is covered (up to a maximum of 5, normalized)

bestShot Average score for each attack, where the score is the maximum image value found within its covering image set (normalized)
Overall Average of all the above

Guidance indexes
prescribedIndex
orientingIndex

Ratio of selected images which were also being prescribed
Average of the interest value per selected image given as orienting guidance.

Table 1: Description of the partial metrics used as an exploratory model to evaluate user study results.

0 and 1, for simplicity. The first set, the intrinsic indexes, measure prop-
erties of image metadata or relations between images and attacks. Each
of these indexes aims to capture a partial aspect of the experts’ criteria
for selecting images, and thus none suffices alone as a comprehensive
quality measure. Also, although a high value in each of the metrics
is desired in a good-quality image set, it is not necessarily desirable
for a set to reach the maximum value in all metrics. This is due to
economic reasons (each image selected is resource-consuming, in terms
of analysis time and money if the image needs to be purchased) and to
expert knowledge that goes beyond the available data (e.g., the presence
of unregistered bombings). The indexes Detail and Information
measure metadata features of the selection; Pairing, the pair rela-
tion between selected images; timeCoverage, the distribution of the
selection in time; Resilience and bestShot, the relations between
selected images and attacks. We also devised the guidance indexes
prescribedIndex and orientingIndex, to measure the similarity
of a user’s selection to the images suggested by our guidance model, to
further investigate the results of the user study.

6 EVALUATION

To evaluate our VA tool for image selection and assess the effects of
guidance, we performed a user study where we asked six domain ex-
perts to solve two real-world tasks using our system. After the study,
we asked them to answer two Likert scale questionnaires about the
system’s usability. Finally, we had a semi-structured group discus-
sion to gather more feedback about the system and the guidance. We
inspected and analyzed the study results (the images selected by the
participants) using the partial indexes described above. In addition, we
assessed the quality of the submitted solutions with domain experts,
who ranked them by quality and gave us a detailed explanation of their
ranking decisions. We structured the study into two sessions, one in
which participants received guidance and one without guidance. At the
beginning of the study, we introduced the prototype with a 10-minute
onboarding presentation. The onboarding was followed by a 5-minute
in-platform tutorial, where the participants could learn the essential
interaction with the tool (how to filter, browse and select images) and
familiarize themselves with the tool. As experts in UXO detection are
very rare, and because visualization experts were deemed not suited for
evaluating this system for their lack of domain knowledge, we did not
aim for a quantitative analysis.

6.1 Task-based User Study

Participants We recruited six domain experts actively working
in the field of UXO detection, not including experts E1-2 which were
involved in the system design process. We asked each of them, in
a 1-hour long session, to perform image selection on two different
real-world datasets and answer a questionnaire after each task. The
participants had varying levels of expertise in the specific task of image
selection: 1 novice, 1 medium-experienced, 3 experts, and 1 senior
expert with extensive knowledge of the Vienna area, where our test
scenarios were situated.

Data We used two real projects to identify possibly active bombs
located around the center of Vienna, Austria. Due to time constraints,
we reduced the projects to only the last year of imagery available
(1945), which accounts for about a third of the whole time period of
the projects. We selected these projects for having small AOIs within
an urban area, which diminishes the geospatial complexity of images
with highly varying coverage ratios but accentuates the complexity in
the temporal dimension, with a dense distribution of attacks and flights.

Tasks The participants were asked to perform the same task,
namely, fo select the best-quality minimal subset of aerials that covers
all attacks, in both projects. When solving the first task, no guidance
was made available to the participants, while during the second task,
the guidance was set visible. Both tasks had a maximum time length of
20 minutes, during which no feedback was given to the participants ex-
cept for technical questions, matters for which they were also provided
with a cheat sheet regarding visualization and guidance encodings and
interactions (provided as supplemental material). The participants were
not asked to think aloud.

6.2 Questionnaires

After each task, the participants were asked to answer a 7-point Likert
scale questionnaire to assess their evaluation of the system (question-
naires and anonymous answers are provided as supplemental material).
The first questionnaire was constituted of 5 questions to evaluate the five
user search tasks identified during the task analysis (Fig. 3a, UT1-5).
Thirteen additional questions were selected from the ICE-T question-
naire [37]. The second questionnaire, which was given after the second
task, was constituted of 12 questions to evaluate the effectiveness of
the guidance the participants received, 3 questions directly correspond-
ing to our proposed guidance tasks (Fig. 3b, GT1-2) and the same
5 user task-specific questions from the previous questionnaire. The
latter questions were repeated to identify possible perceptual effects of
guidance on the analysis. Every question was accompanied by a short
example to facilitate its understanding. After the task sessions, a focus
group session was performed where additional qualitative impressions,
comments, and feedback was gathered.

7 RESULTS
7.1 Questionnaires

As shown in Fig. 7, the participants evaluated positively the visual-
ization and the prototype, averaging 6+ points on the 7-point Likert
scale, except for the 5.5 scores of the exploration task (UT1). This
lower score can be explained by its higher abstraction level, requiring
a higher cognitive load that is not completely alleviated by the visual-
ization itself. The lowest scoring dimension in ICE-T was confidence,
particularly in the “highlighting of unexpected data issues”(however,
the design of the user study did not consider testing for such cases).
Guidance was particularly well appreciated for its visibility (it can be
“easily identified and distinguished from the rest of the visual environ-
ment”) but not for its adaptiveness (as the guidance was not designed
to react to user selections). During the semi-structured feedback ses-
sion, participants generally favored orienting guidance over prescribing
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7-point Likert scale. The distribution of scores for each question is represented on a grayscale (rightmost). User Tasks questions (UT1-5) were
repeated in the second questionnaire to test for perceptual independency of user and guidance tasks.

guidance, as the former “gives more freedom”, makes the best candi-
dates “easier to see” and allows to “pick the first spotlights”, making
the overall process “faster with guidance.” This result is in line with
the results obtained by El-Assady et al. [11], where solutions achieved
with prescribing guidance were perceived by users as less valuable, due
to the users’ lack of agency, even though prescribed results had the
highest quality according to the indexes.

The small average variation of task-specific question scores between
with and without guidance questionnaires suggests that user and guid-
ance tasks are perceived as different and can be measured independently,
thus supporting the assumptions of task-based approaches, particularly
for guidance. This is also an important consideration for including guid-
ance in the nested workflow model for VA design and validation [12].

7.2 User study

Selection quality We calculated for each participant’s image set
the partial indexes described in Sec. 5 to investigate the effect of
guidance on the quality of the solution and measure how much the
participants followed the provided guidance (Fig. 8a-g). We observe
an increase in quality for most participants when tasks were supported
with guidance, which is shown by a general increase in the overall
index. Particularly, four participants averaged worst than guidance
in T1 (without guidance) and improved to a better-than-guidance av-
erage in T2 (with guidance). Noteworthy cases are P1 (consistently
averaging better than guidance in both tasks), P3 (consistently aver-
aging below guidance in both tasks), and PS5 (which shows the most
significant quality improvement). PS was an experienced analyst whose
solutions were consistently top-ranked by experts (see Sec. 7.3); the
improvement, in this case, can be explained by its compliance with
the provided orienting guidance in T2 (Fig 8i), as this guidance was
designed to optimize the criteria reflected by the partial metrics. By
looking at the guidance-related metrics, we can characterize P3 as
heavily biased towards distrusting guidance [20]. Also, P3’s results in
both tasks were qualitatively low according to metrics and experts alike.
This indicates low compliance with the given task. Although a small
fraction of the P3’s selection was also part of the (invisible) prescribing
guidance in T1, in T2, P3 selected none of the images suggested by the
guidance, not improving its overall quality. The results of P1, the most
knowledgeable and experienced analyst, shows that an effective human-
computer collaboration may be unfeasible if the guidance model is not
as proficient as the user.

Guidance Indexes The orientingIndex and prescribed
Index metrics (Fig. 8h-i) show how much the users followed the pro-
vided guidance in T2, in contrast to how much their solution for T1
followed the guidance calculated interests and suggestions (which was
not shown to the participants during T1). We found, in some cases, a
negative reaction to prescribing guidance, i.e., the prediction of pre-
scribing guidance for T1 was higher than its effect on T2. This means
that, as reported by participants in the group interview, they took the
prescribed set as a “starting point” for their analysis and tried to im-
prove it. A similar result was found for orienting guidance. This
emergent “agonistic behavior” —where the user is put into a state of
conflict towards the system suggestions— in guided VA systems was
already hypothesized for disruptive degrees of guidance [23]. This
leads us to observe that user-diversion from guidance can also lead

to improved results, as the guidance solution works only as a starting
point for analysis.

Other effects  Although learning effects between tasks cannot be
completely ruled out, we assume these did not influence the results of
the study since participants were not given any feedback about their
solutions and because most participants had long experience with image
selection. Dataset-related effects (e.g., differences in the overall valua-
tion of images) were reduced by considering the dataset differences for
each partial metric and normalizing the results.

7.3 Expert evaluation

After running the study, we conducted an additional qualitative as-
sessment of the results by showing them to our two domain expert
partners E1-2, as they did not take part in the task-based user study. We
asked them to rank independently —from what they thought was the
best solution to the worst— the image sets submitted by the participants
during the study according to their own (tacit) criteria and to comment
on them. In addition to the participants’ results, we also provided the
experts with the solutions suggested by our guidance mechanism (for
both projects) and the project groundtruths (the actual selection used in
these past projects). In the interviews with the experts, and following a
similar methodology as the Critical Decision Method for knowledge
elicitation [7], we asked them to explain their ranking and their deci-
sion criteria clearly. Fig. 9a shows an agreement between experts in
what constitutes a good solution, and thus that there are well-defined
tacit quality criteria. The top 2 participants (P1 and PS5, at the top)
were defined unanimously as having provided the best solutions in
both tasks. Same for what constitutes an unsuitable solution (0 and 4,
at the bottom). According to these rankings, we were able to update
the exploratory model we used to evaluate the study results to a non-
parametric model that can predict the expert rankings and capture what
constitutes a good solution for the domain experts (which we describe
in Sec. 5) .

Analyzing the between-task rankings by expert E1 in Fig. 9b (the
effect of guidance on user solution quality), we observe there are three
position changes in the ranking of participants: P2, P4, and the ground
truth itself (7). The quality of the ground truth is independent of
our experiment and speaks to the fact that the quality of our partner
company’s image selection is highly variable and their UXO detection
workflow and proofreading protocols can benefit from this work. P2,
the participant with the least expertise in the task of image selection,
improved “from a barely usable to a good solution”, according to
El, suggesting that guidance could resolve knowledge gaps regarding
the familiarity with the task (i.e., an experience gap, as P2 had never
seen what constituted a possible solution apart from its own until being
provided with prescribing guidance in T2). P4 exceeded the time limit
during T1 and had to be stopped at a point where the later attacks
were not covered, explaining why the selection was deemed unusable
(as it would raise ethical concerns to have no selected images after a
registered attack). In T2, P4 was able to conclude the task in the allotted
20 minutes and showed a positive reaction to guidance, suggesting that
guidance could be used to speed up analysis (although for all other
participants, we did not see significant time differences between tasks,
with and without guidance).
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Fig. 8: Difference charts of the partial metrics of participant selections
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line marks the guidance solution score in T2 for reference.

8 SELECTION QUALITY MODEL

The expert evaluation provided us with further insight into the study
results and a better understanding of the criteria experts used to deter-
mine the quality of solutions to the image selection task. Analyzing the
collected data along with our partner experts, we could identify that
from our partial metrics, timeCoverage and bestShot were the most
significant for quality assessment, and building an improved guidance
model. We identified six criteria (C1-6) that an image set must comply
with, listed in the following in order of importance:

C1 All attacks must be followed at some point in time (not neces-
sarily covered) by an image. Otherwise, the selection is deemed
unethical.

C2 All attacks should be covered, when possible, by one (or more)

image/s.

C3 Each attack should be covered by, in order of preference, an image

pair, a single detail image, or an overview image.

C4 A wave of attacks (attacks that are very close in time) should be

covered with minimum delay.

C5 Temporal extremes (the period before and after attacks) of the
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Fig. 9: Comparison of rankings of solution quality produced by experts
E1-2 (a), between tasks (b), and between E1 and our quality model M
(c). Participant solutions (1-6) and colored by expertise level (darker
shade of green is higher expertise). The ground truth (7, blue), guidance
solution (8, orange), and whole dataset (0, gray) were as well included.
Above each ranking is the number of edge crossings (X#).

project, even when there are no registered attacks, should be
covered.

C6 If all of the above criteria are matched, no additional images
should be selected (i.e., minimal set).

After gathering these criteria, we transformed them into mathemati-
cal functions derived from our first exploratory model and integrated
them into a second non-parametric model. The new model comprises
two metrics, representing the quality of a selection. The first, which
captures how effectively (also from an economic perspective) each
attack is covered by a set of images S, can be calculated as follows:

attacks
bestShot, - (1 —del T hreshold
economylndex(S) = )" estShoty - ( ea)')/cvg reshold)
selectedCoveringlmages,

a=1
)
where bestShot is the maximum information value found within
the selected covering images of an attack, cvgT hreshold the threshold
defined to the maximum time extent that is admitted for a coverage
relation to be established, measures the average achieved quality of
coverage for each attack, responding to C2-4 and C6. An exception is
added: when there are no selected images after the last attack, this func-
tion returns O to account for C1. The second metric, which measures
how well-distributed in time the selection and how much of the times-
pan of the project covers (independently of attacks), can be represented
as follows:

selected
timeCvglndex(S) = SaWeygThreshold (time; — time;_1 ),
i=1

@)

Wwhere Saw ey gThreshola 18 @ linearly decreasing function with a period
of cvgT hreshold, and time; — time;_; the temporal distance between
image i and the previous image measures how even and expansive
is the distribution of the selection in time, responding to C5. These
two indexes, which measure competing criteria, are then united in the
Quality Index

_ timeCvglndex(S) - economyIndex(S)

qualitylndex(S) , 3

attacks - pro jectTimespan

where the optimization problem is represented as the maximization
of the area defined by the economy and time coverage of the selection.

8.1 Quality model validation

We revalidated the model with the experts by showing them its output
rankings. As shown in Fig. 9c, this improved selection quality model
predicts the expert rankings and captures what constitutes a good so-
lution for the domain experts with an error rate not much greater than
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the between-expert variance (Fig. 9a). The experts were also able to
explain the criteria behind the model as if it were their own rating
and agreed with the model’s ranking, just noting that the model had a
stronger preference for economic solutions rather than more resilient
ones.

9 DiscussION

Our guidance-enriched system was successfully deployed and evaluated
in a user study with real-world scenarios, showing the potential of
guidance to improve quality in fine-grained solutions. We used the
results of our user study to improve our initial model to better align
it with expert criteria. With only a 15-minute introduction, even the
least experienced expert was able to produce a relatively good image
selection, a result that experts deemed unlikely without our guidance-
enhanced prototype. That speaks to the fact that a great part of the
knowledge needed to perform the task is already condensed in the
design of the visualization and guidance. In contrast, participants
valued visualization confidence and guidance trustworthiness the least,
unveiling a need for more explainability. This should be, however,
handled with care, as some forms of explainability have been shown to
build excessive trust in poorly performing systems [20].

We also observed that, as theorized in previous work on guidance,
prescribing guidance raises agonistic behavior in users, i.e., some re-
acted to the guidance suggestion as something to overcome [23]. As
the guidance model did not provide Pareto-optimal solutions during the
user study, convergence towards prescribing guidance would only help
participants who scored less overall than the guidance in T1.

Lessons learned The guidance design presented here was an
instantiation of the methodology for task-driven guidance design by
Pérez-Messina et al. [25], which also features more extensive task
descriptions for this domain problem as a case study. The positive
results of the evaluation support the effectiveness of this methodology,
and its modular task nature makes it applicable to other problems of
interactive optimization (e.g., domains that can be modeled by the
problem-solving loop [18]). Scheduling problems, for instance, fall
into a similar category of combinatorial optimization problems, where
decisions have to be made about the temporal arrangement of elements
to optimize multiple objectives.

Decision-making has been critically considered to be left out of the
task literature [10]. In this work, we have tackled a problem involving
explicit decision-making through a task-driven approach, implying that
decision-making processes can be represented by a combination of
search and produce tasks, where new data (i.e., the output of decisions)
is created as a result of solving the search tasks and inputting these
results back into the system. Furthermore, in our task analysis (Fig. 3),
we considered an iterative task loop as its overall structure. To the
best of our knowledge, the idea of task loops has not been explored
outside interaction loops in games [14], although being fundamental in
high-level VA models [5,19,26].

Echoing similar results of user studies in guidance-enhanced VA
approaches involving decision-making (e.g., [11]), participants favored
lower guidance degrees (i.e., users preferred orienting rather than pre-
scribing guidance). This could indicate that users prefer to retain their
agency and do not trust fully automated results, even when deemed
optimal according to calculated metrics. Hence, prescribing guidance
should not be used alone but complemented with the lower guidance
degrees. A theoretical schema for such a mixed-initiative scenario
has been proposed in the typology of guidance tasks used for our de-
sign [23]. More empirical studies to validate these claims are still an
open area for research.

Furthermore, participants in our study could quickly get a grasp of
the concepts of orienting and prescribing guidance, and differentiate
them from the novel encodings of the visual environment, validating
guidance degrees as an intuitive and effective framework to communi-
cate design patterns and automated suggestions.

From our experience in this design study, we can confirm the im-
portance and added value of mixed-initiative solutions. We highlight
that the combined effect of guidance and direct manipulation afforded

by the system was highly valued in the post-study discussion. A fully-
automated or purely prescriptive solution would not offer the flexibility
and customization that Pareto-front optimization scenarios pose.

Limitations In this work, we focused on UXO detection projects
with small AOIs, more common within urban areas. Image selection
tasks can also be performed on large projects with long AOIs spanning
dozens of kilometers (e.g., for highways, power transmission lines,
etc.) where selections comprise hundreds of images and even so spatial
and temporal coverage might be sparse. This is a scalability issue that
calls for a reevaluation of our visualization and guidance model design.
Even for our user study, the guidance algorithm used to calculate image
selections for prescriptive guidance was on the lower half of the expert
rankings, but we were only able to build an improved model that
predicted better the expert criteria through our retrospective analysis
and expert evaluation of the user study results.

In general, our current system only addresses a few of the recom-
mendations for highly-interactive optimization systems [19], which
we believe stand for valuable guidelines. We regret that, due to the
participants’ time constraints, we could not test orienting and prescrib-
ing guidance in separate tasks. Also, a design and implementation of
directing guidance could highly benefit our system and is also left for
future work. Although the interaction of having to preview images
before selecting them is admittedly cumbersome (also pointed out by
the study participants), it was requested as a design “feature” by our
partner experts, as they did not want that the step of verifying image
quality could be neglected.

Future work  Although our design and evaluation process allowed
us to reach a model that satisfies expert criteria, this does not mean the
task of image selection can be fully automated, but on the contrary, it
means that better guidance can be provided and so improve human-
computer collaboration and analysis quality even further. Our aim
in the future is to go beyond the guidance described in this study
towards progressive guidance. Progressive guidance can be defined as
adapting the degree of guidance (orienting, directing, and prescribing)
to better suit the users’ needs. For example, users could tell the guidance
the points in time when they consider that an image/pair should be
searched for. This could be done prior to analysis (before the direct
manipulation phase), explicitly during analysis or even captured as
implicit user feedforward [5] from the temporal filter task (UT2). With
this information, orienting guidance could be turned into directing
guidance (by ranking images according to their calculated interest)
or prescribing (by selecting the highest ranking image/pair, in case
the interest difference with other candidates is larger than a certain
threshold). In other words, by collecting more information about the
analysis path (or progress), a guidance task can be played up or down
to reduce the frictions that arise with higher (disruptive) guidance [23]
and deliver a smoother human-computer collaboration.

10 CONCLUSION

We have presented a guidance-enhanced VA system for image selection
within the UXO detection workflow. We have modeled this task as a
multi-objective optimization task, where users can directly change the
solutions prescribed by the guidance model. By testing our prototype
in controlled setups with domain experts, using guided and unguided
versions of the system, we found that guidance had a positive effect
by estimating different quality metrics, even when user reaction to
guidance was non-uniform. By closely analyzing the user study results
with our partner experts, we were able to build an improved model
that better aligns with their criteria, which can be used to provide more
accurate guidance and improve UXO detection tasks. Domain experts
validated the guidance and the VA prototype, and additional challenges
for progress-adaptive guidance are discussed for future work.
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