
Turbocharging Heuristics for
Weak Coloring Numbers

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Alexander Dobler, BSc.
Matrikelnummer 01631858

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Inform. Dr.rer.nat. Martin Nöllenburg
Mitwirkung: Univ.Lektor Dr.rer.nat. Manuel Sorge

Projektass.(FWF) Anaïs Villedieu

Wien, 1. Dezember 2021
Alexander Dobler Martin Nöllenburg

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Turbocharging Heuristics for
Weak Coloring Numbers

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Alexander Dobler, BSc.
Registration Number 01631858

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.Prof. Dipl.-Inform. Dr.rer.nat. Martin Nöllenburg
Assistance: Univ.Lektor Dr.rer.nat. Manuel Sorge

Projektass.(FWF) Anaïs Villedieu

Vienna, 1st December, 2021
Alexander Dobler Martin Nöllenburg

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Alexander Dobler, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Dezember 2021
Alexander Dobler

v

Acknowledgements

I want to especially thank my co-advisors Manuel Sorge and Anaïs Villedieu, and my
advisor Martin Nöllenburg who supported me in many hours of fruitful discussions, who
guided me through the process of writing this thesis, solving difficult tasks, and answering
the main research questions. The idea for this thesis was posed by Manuel Sorge, and I
am thankful that I could work on such interesting problems.

I want to express my gratitude towards my family and especially my parents, who
made it possible to pursue the path that I am on right now. They supported me on every
step along the way, and always had the right answers when I was needing advice.

Lastly, I want to thank my friends who made all the time of studying enjoyable, and
who always had time for me when I needed some time off.

vii

Kurzfassung

In den letzten Jahren wurden komplexere Charakterisierungen von dünnbesetzten Gra-
phen, die nirgendwo-dichte Graphklassen und Graphklassen mit beschränkter Expansion
umfassen. Beide fallen in die Kategorie der strukturellen Sparsität und ermöglichen in
der Theorie eine Vielzahl effizienter Algorithmen.

Während es viele Charakterisierungen für diese Graphklassen gibt, kann eine in Form
von schwachen Färbungszahlen angegeben werden. Für jeden Radius r ∈ N werden diese
durch lineare Ordnungen von Knoten eines Graphen definiert. Jede Ordnung von Knoten
in einem Graphen hat eine schwache r-Färbungszahl, und die schwache r-Färbungszahl
eines Graphen ist die minimale schwache r-Färbungszahl der Ordnungen seiner Knoten.
Die schwache r-Färbungszahl eines Graphen misst Erreichbarkeitseigenschaften an der
Entfernung r, hat aber auch direkte algorithmische Anwendungen.

Obwohl es viele Forschungsartikel gibt, die sich auf obere und untere Schranken von
schwachen Färbungszahlen in spezifischen Graphklassen konzentrieren, gibt es bis jetzt
wenig Forschung in Bezug auf Komplexitätsergebnisse für die Berechnung schwacher
r-Färbungszahlen und den Entwurf von Algorithmen zur Berechnung von Ordnungen mit
kleinen schwachen Färbungszahlen. Es hat sich gezeigt, dass die Berechnung schwacher
r-Färbungszahlen für r ≥ 3 NP-vollständig ist, und daher benötigen wir effiziente
Heuristiken, um gute obere Schranken für schwache r-Färbungszahlen zu berechnen.

In dieser Arbeit entwerfen wir mehrere Heuristiken zur Berechnung oberer Schranken
von schwachen Färbungszahlen, die das Turbocharging-Framework verwenden. In der
allgemeinsten Fassung kann das Framework als „Erweitern eines heuristischen Algorith-
mus mit einem exakten Algorithmus“ beschrieben werden, oder mit anderen Worten,
„Turbocharging der Heuristik“. Mittels einiger bekannter Heuristiken entwickeln wir meh-
rere exakte Algorithmen, die diese Heuristiken lokal ergänzen und zusätzlich beweisen
wir obere und untere Komplexitätsgrenzen dieser Algorithmen. Wir implementieren die
daraus resultierenden Ansätze und führen eine umfassende experimentelle Auswertung
für reale Graphinstanzen durch.

Dabei diskutieren wir Vor- und Nachteile des Turbocharging-Ansatzes, die während
unserer Forschung auftraten und für zukünftige Forschungen relevant sein könnten.

ix

Abstract

In recent years, more involved characterizations of sparse graphs were introduced, involv-
ing nowhere dense graph classes and graph classes of bounded expansion. Both fall into
the category of structural sparsity and exhibit a wide variety of efficient algorithms in
theory.

One characterization for these graph classes can be given in terms of weak coloring
numbers. They are defined in terms of vertex orderings of a graph for a given radius r ∈ N.
Each ordering has a weak r-coloring number, and the weak r-coloring number of a graph
is the minimum weak r-coloring number over all its vertex orderings. The weak r-coloring
number of a graph measures reachability properties at distance r, but also has direct
algorithmic applications.

Although there are many results focusing on upper and lower bounds for weak coloring
numbers in specific graph classes, there is little research with regard to complexity results
for computing weak r-coloring numbers and designing heuristics that compute vertex
orderings with small weak r-coloring number. Computing weak r-coloring numbers is
NP-complete for r ≥ 3, and thus we need efficient algorithms to compute good upper
bounds on weak r-coloring numbers.

In this thesis, we propose several algorithms that compute orderings of small weak
coloring numbers by applying the turbocharging framework. In the most general form,
the framework can be described as “augmenting a heuristic algorithm with an exact
algorithm”, or in other words, “turbocharging the heuristic”. Given some known heuristics
that iteratively compute an ordering of small weak coloring numbers, we propose several
exact algorithms that locally augment these heuristics, and additionally, prove upper and
lower complexity bounds of these algorithms. We implement the resulting approaches
and provide a thorough experimental evaluation for real-world graph instances.

In the process, we discuss advantages and drawbacks of the turbocharging approach
that came up during our research and might be relevant for future research.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Sparsity and Structural Properties of Graphs 1
1.2 Weak Coloring Numbers . 2
1.3 Turbocharging . 2
1.4 Our Contribution . 3
1.5 Structure of the Work . 4

2 Preliminaries 5
2.1 Preliminary Problem Definitions . 8
2.2 Parameterized Complexity . 9

3 Generalized Coloring Numbers and Structural Sparsity 13
3.1 Weak and Strong Coloring Numbers 13
3.2 Relation to Structural Sparsity . 15
3.3 Problem Definitions and Complexity 17

4 Turbocharging and Known Heuristics for Weak Coloring Numbers 19
4.1 Turbocharging . 19
4.2 Turbocharging and Weak Coloring Numbers 22
4.3 Known Heuristics for Weak Coloring Numbers 23

5 Left-to-Right Heuristics and Turbocharging 25
5.1 Definitions and First Observations . 25
5.2 A First Natural Turbocharging Problem 27
5.3 A More Local Approach . 34
5.4 Turbocharging by Iterative Swapping 36
5.5 Turbocharging by Merging . 37
5.6 Discussion . 46

xiii

6 Optimizations and Implementation Details 49
6.1 Placing Full Vertices Next . 49
6.2 Implementation Details of Turbocharging Approaches 51
6.3 Swapping and Rotations . 53
6.4 Considering Connected Components 56
6.5 Ordered Adjacency List . 56
6.6 Lower Bounds . 57
6.7 Discussion . 64

7 Right-to-Left Heuristics and Turbocharging 65
7.1 Definitions and First Observations . 65
7.2 Turbocharging Problem and its Complexity 67
7.3 A Lower Bound . 70
7.4 Discussion . 71

8 Experimental Evaluation 73
8.1 Hard- and Software . 73
8.2 Test Data . 73
8.3 The Evaluation Framework . 74
8.4 Results and Analysis . 76
8.5 Comparing Lower and Upper Bounds 92
8.6 Discussion . 93

9 Conclusion 95

List of Figures 97

List of Tables 99

List of Algorithms 101

Bibliography 103

CHAPTER 1
Introduction

We start by introducing some related background work on sparsity and structural
properties of graphs (Section 1.1), weak coloring numbers (Section 1.2), and turbocharging
(Section 1.3). This should serve as motivation for the subject of the thesis. We will
further elaborate on the notions introduced in Sections 1.1 to 1.3 in Chapters 3 and 4. In
Section 1.4 we will give the main research goals and contents of this thesis. Section 1.5
gives a brief overview on the structure of the work.

1.1 Sparsity and Structural Properties of Graphs
Complex networks such as social networks, biological networks and more have been studied
intensively in recent years. We often need efficient algorithms to study computationally
hard problems on such graphs. Usually, a requirement to obtain such algorithms is to
identify structural properties of the underlying graph structures. The simplest example
are graphs where the maximum degree is bounded by a constant; there have been
established many results for this graph class, too many to even list here.

Many graph measures try to capture sparsity properties of classes of graphs. Intu-
itively, sparse graphs have few edges compared to their number of vertices. While this
characterization is simple, it is far too vague and weak — in the sense that it is not useful
for developing efficient algorithms. Thus, in recent years more involved characterizations
of sparse graphs were introduced, involving nowhere dense graph classes [NM11] and
graph classes of bounded expansion [NM08a; NM08b; NM08c]. Both fall into the category
of structural sparsity. These classes are defined in terms of bounded-depth-minors— which
are in some sense contractions of subgraphs of small diameter into a single vertex. The
full definitions of these classes will be given in later parts of the thesis. Still, we want to
mention that there is a relation between bounded-depth-minors and small local clusters
of vertices in a graph — which could be formed by local communities in social networks.
Both nowhere dense graph classes and graph classes of bounded expansion immediately

1

1. Introduction

exhibit a wide variety of efficient algorithms in theory [DK09; Eic+17; GKS17; KRS19].
There are many characterizations of nowhere dense graph classes and graph classes of
bounded expansion, one of them being weak coloring numbers.

1.2 Weak Coloring Numbers
Weak coloring numbers were first introduced by Kierstead and Yang [KY03], and for
a radius r ∈ N they are defined in terms of vertex orderings of a graph. Each vertex
ordering of a graph has a weak r-coloring number, and the weak r-coloring number of
a graph is the minimum weak r-coloring number over all its vertex orderings. A full
definition for weak r-coloring numbers is given in Chapter 3. The weak r-coloring number
of a graph measures reachability properties at distance r, but weak r-coloring numbers
and orderings of small weak r-coloring number also have direct algorithmic applications
[RS20; Eic+17; PST18; RVS19; Ami+18; Dra+16; Dvo13; Dvo19; GKS17]. Zhu [Zhu09]
has shown that nowhere dense graph classes and graph classes of bounded expansion can
be characterized in terms of weak coloring numbers, showing a close connection between
weak coloring numbers and notions of structural sparsity.

There are many papers that study weak r-coloring numbers, most of them showing
upper and/or lower bounds on weak r-coloring numbers for different graph classes (see
e.g. [JM21; Heu+17; HW18; Gro+18]). For a detailed list see Chapter 3.

Despite all the algorithmic applications of weak r-coloring numbers, there is little
research focusing on complexity results for weak r-coloring numbers and designing
algorithms that compute weak r-coloring numbers. A well-known graph measure that
can be computed in linear time is the degeneracy of a graph [MB83]. As weak 1-coloring
numbers correspond to the degeneracy plus one, they can be computed in linear time.
Grohe et al. have shown that computing weak r-coloring numbers for r ≥ 3 is NP-
complete [Gro+18]. The complexity of computing weak r-coloring numbers for r = 2
is still unknown. Furthermore, there are no results with regard to the complexity of
computing weak r-coloring numbers under the introduction of some structural properties
of the input instance — that is, there are no fixed-parameter tractability/intractability
results for the problem. Only one paper that we know of focuses on designing algorithms
to compute upper bounds for weak r-coloring numbers: Nadara et al. [Nad+19]. They
proposed several heuristics that compute vertex orderings of real-word graphs with
small weak r-coloring numbers. They implemented all their algorithms and conducted
experiments for different classes of real-world graphs and different radii r. As this is
the only paper that focuses on computing upper bounds for weak r-coloring numbers of
real-world graphs, we think that there is still a lot of room for improvement.

1.3 Turbocharging
Turbocharging is a problem-solving framework that was first applied by Hartung and
Niedermeier [HN13] to the list coloring problem under the name of “parameterization by
conservation”. In the most general form, the framework can be described as “augmenting

2

1.4. Our Contribution

a heuristic algorithm with an exact algorithm”, or in other words, “turbocharging the
heuristic”. That is, while computing a solution for a specific problem with a heuristic, we
might at some point apply an exact subroutine that optimizes the computed solution.
Depending on the complexity of the exact algorithm, applying the turbocharging problem-
solving framework might be fruitful for practical applications to solve hard problems.
There are several papers that apply the turbocharging problem-solving framework.
Gaspers et al. [Gas+19]: They apply it to augment heuristics that compute upper bound
on the treewidth of a graph, while, as stated before, Hartung and Niedermeier use it for
the list coloring problem. Ramaswamy and Szeider [RS21] use it to augment algorithms
for bayesian network structure learning. We will give a refinement of the explanation for
turbocharging and a detailed explanation of previous work in Chapter 4.

1.4 Our Contribution

The main focus of this thesis lies on designing competitive algorithms that improve
upper bounds of weak r-coloring numbers by applying the turbocharging framework. Our
guiding research question is: “Can the turbocharging framework be successfully applied
to the domain of computing orderings of small weak r-coloring number?”

That is, we start by taking several greedy heuristics that compute orderings of small
weak coloring numbers by Nadara et al. [Nad+19], and then, we identify ways to apply
the turbocharging framework by defining several local exact algorithms that can be
applied during the application of said heuristics. We analyze those problems from a
theoretical standpoint, giving lower and upper bounds on their algorithmic complexity —
also considering structural properties and parameters arising in problem inputs. These
parameters (e.g. maximum degree of the input graph) will be incorporated into the
problem definitions, maybe sometimes resulting in tractable algorithmic complexity
bounds assuming those parameters are small (see parameterized complexity in Section 2.2).

Furthermore, we implement promising algorithmic approaches that apply the tur-
bocharging framework. These implementations involve optimizations with proven guar-
antees, and heuristic optimizations based on empirical observations with respect to the
considered input instances.

We then conduct a variety of experiments to validate the performance of the imple-
mented algorithms. We compare the performance of our approaches to the performance
of the heuristics of Nadara et al. [Nad+19]. Additionally, we present the results, and
discuss them.

As far as we know, turbocharging has not yet been applied to computing orderings
of small weak r-coloring numbers yet. Furthermore, the inspection of algorithmic and
complexity properties of computing weak r-coloring numbers is still an open research
field.

3

1. Introduction

1.5 Structure of the Work
This thesis is divided into several chapters. We start with Chapter 2 by giving some
preliminaries on linear orders, graph theory, and fixed-parameter tractability.

In Chapter 3, we introduce the concept of generalized coloring numbers, especially
weak coloring numbers. We review previous research about generalized coloring numbers,
and define the main problem of this thesis — computing orderings of vertices with weak
r-coloring numbers at most k ∈ N.

Chapter 4 gives an overview on previous research on turbocharging. Furthermore, we
start to relate turbocharging to computing orderings of small weak r-coloring numbers.

The greedy heuristics of Nadara et al. [Nad+19] for computing orderings of small
weak r-coloring number can be divided into two categories — heuristics that compute
orderings from “left to right”, and heuristics that compute orderings from “right to left”.
Both approaches initiate a different line of research with respect to turbocharging, which
is why we also divide them into separate chapters. In this thesis, we mostly focus on
turbocharging heuristics that build orderings from left to right (see Chapter 5), we give
implementation details and some optimizations in Chapter 6. Finally, we initiate the
research for turbocharging heuristics that build orderings from right to left in Chapter 7.

In Chapter 8, we present experimental results for all the approaches and optimizations
discussed in Chapters 5 to 7. We discuss results and compare them with the results of
Nadara et al. [Nad+19].

We conclude the thesis with Chapter 9, giving a brief summary of the most important
results and observations.

Most chapters include a section where we discuss important insights and ideas for
future research at the end.

4

CHAPTER 2
Preliminaries

General preliminaries. We denote by N the set of all natural numbers, starting at 1.
Furthermore, for n ∈ N, [n] is the set {1, . . . , n}.

One of the main mathematical objects studied in this thesis are linear orders L of a
set S. A linear or total order L is a relation, hence L ⊆ S × S, on L, which is reflexive,
transitive, antisymmetric and total. For s1, s2 ∈ S we write

• s1 L s2 if and only if (s1, s2) ∈ L,

• s1 ≺L s2 if and only if (s1, s2) ∈ L, and s1 �= s2,

• s1 �L s2 if and only if s2 L s1, and

• s1 �L s2 if and only if s2 ≺L s1.

We will also write linear orders as sequences of its elements, that is, L = (s1, . . . , sn) if
and only if s1 ≺L . . . ≺L sn for linear orders L of a set S = {s1, . . . , sn}. Furthermore,
we say that s1 is to the left (to the right) of s2 if and only if s1 ≺L s2 (s1 �L s2). Given
a subset S� ⊆ S with S� �= ∅, we say that an element s ∈ S� is the leftmost (rightmost)
element of S� if and only if s s� (s � s�) for all s� ∈ S�. We will also refer to linear
orders as orderings. Linear orders induce positions of elements, for s ∈ S we say that
posL(s) = k if and only if |{s� ∈ S | s� L s}|= k. For example, posL(s) = 1 for the
leftmost element of L. Let L be an ordering of a set S and S� ⊆ S, we define L[S�] as the
ordering of the set S� such that s L[S�] s� if and only if s L s� for all s, s� ∈ S�. That is,
L[S�] is the induced ordering induced by L on S�, and we say that L[S�] agrees with L
on S�.

Graph theory. We only consider undirected graphs without loops. A graph G is a
tuple G = (V, E) where V is a set of vertices and E is a set of edges. Edges are of the
form {u, v} with u, v ∈ V . Thus, we have E ⊆ {{u, v} | u, v ∈ V, u �= v}. A vertex v ∈ V

5

2. Preliminaries

and edge e ∈ E are incident to each other if and only if v ∈ e. Vertices u, v ∈ V are
adjacent to each other if and only if {u, v} ∈ E. A path P = (v0, . . . , v�) in a graph G is a
non-empty sequence of vertices, such that two consecutive vertices share an incident edge.
The length # of a path is the number of vertices it contains minus one, thus, empty paths
have length 0. Vertex v ∈ V is reachable from u ∈ V if there is a path P = (v0, . . . , vl)
in G such that v0 = u and vl = v. By this definition v is reachable from itself by a path
of length zero. A graph G is connected if there exists a path between each pair of vertices
in G.

Graph notation. We follow up with further graph notation that will be used frequently.
Let G = (V, E) be a graph, we denote by

V (G) the vertex set of G;

E(G) the edge set of G;

nG the number of vertices of G, more formally, nG = |V (G)|;
G[V �] the induced subgraph on the vertices V � ⊆ V , more formally,

G[V �] = (V �, {{v, w} ∈ E | v, w ∈ V �});

G − v the graph obtained by removing v and its incident edges, more formally,
G − v = G[V − {v}];

G� ⊆ G that G� is a subgraph of G, more formally, G� consists of vertices V � ⊆ V
and edges E� ⊆ E such that for each {v, w} ∈ E� we have that v, w ∈ V �;

Nm
G (v) the set of vertices that are reachable from v ∈ V (G) in G by a path of

length # s.t. 1 ≤ # ≤ m;

NG(v) the set of vertices that are adjacent to v in G, more formally,
NG(v) = N1

G(v);

dG(v) the degree of v, more formally, the number of adjacent vertices.
Hence, d(v) = |{{v, w} | {v, w} ∈ E}|;

distG(v, w) the distance between v and w in G, more formally, distG(v, w) is the length
of the shortest path in G between v and w, where v, w ∈ V (G). By
convention distG(v, w) = ∞, if there is no path between v and w in G;

Π(G) the set of all linear orders of the set of vertices V (G);

6

CC(G) the connected components of G, more formally, (V �, E�) = G� ∈ CC(G) if
and only if

• G� = G[V �],

• G� is connected, and

• ∀v ∈ V (G) \ V � : G[V � ∪ {v}] is not connected.

That is, CC(G) consist of the maximally connected induced subgraphs of G,
which form a disjoint union of G.

If it is clear from the context, we might omit explicitly mentioning the graph G in
the above notations.

Vertex sets. Let G be a graph. A vertex set S ⊆ V (G) is called

independent set if ∀v, w ∈ S : v �= w ⇒ {v, w} �∈ E(G) [GJ79];

clique if ∀v, w ∈ S : v �= w ⇒ {v, w} ∈ E(G) [GJ79].

Graph parameters. Let G be a graph, we denote by

δ(G) the minimum degree of a vertex in G, more formally,
δ(G) = minv∈V (G) d(v);

Δ(G) the maximum degree of a vertex in G, more formally,
Δ(G) = maxv∈V (G) d(v);

diam(G) the diameter of G, more formally,
diam(G) = max(v,w)∈V ×V distG(v, w);

radius(G) the radius of G, more formally,
radius(G) = minv∈V (G) maxw∈V (G) distG(v, w);

degeneracy(G) the degeneracy of G [NM12], which is defined in terms of vertex orderings
as

degeneracy(G) = min
L∈Π(G)

max
v∈V (G)

|{w ∈ NG(v) | w ≺L v}|.

We call orderings L in this definition degeneracy orderings
and define the degeneracy of a degeneracy ordering L as
maxv∈V (G)|{w ∈ NG(v) | w ≺L v}|; the degeneracy is a measure of the
sparsity of a graph and can be computed in linear time [MB83].

7

2. Preliminaries

td(G) the treedepth of G [NM12]. Formally, the treedepth of G can be defined
as

td(G) =

����
1, if |V (G)|= 1
1 + minv∈V (G) td(G − v) if G is connected and |V (G)|> 1
maxG�∈CC(G) td(G�) otherwise

where CC(G) are the connected components of G. There are further
equivalent definitions, and the treedepth is also a measure of sparsity of
a graph.

Search trees. Branching algorithms for a specific problem often induce search trees
with a number of search tree nodes. Each search tree node contains a subproblem of the
original problem and its children make this subproblem more restricted by making a
choice for the subproblem. Leaves of the search tree constitute solutions to the original
problem of the root node.

2.1 Preliminary Problem Definitions
We define some well known problems here. Problems that are thoroughly discussed in
the thesis will be introduced in later chapters.

Independent Set (IS) [GJ79]
Input: A graph G = (V, E) and an integer p.
Problem: Does G have an independent set of size at least p?

3-SAT [GJ79]
Input: A set Var of variables and a set C of clauses such that

• cl ⊆ Var ∪ {¬v | v ∈ Var} for all cl ∈ C, and

• |cl|= 3 for all cl ∈ C.

Problem: Is there a variable assignment A : Var → {0, 1} such that

• A(#) = 1 for at least one # ∈ cl for each clause cl ∈ C,

where A(¬v) = 1−A(v) for each v ∈ Var? Elements v and ¬v for v ∈ Var are
called literals. The required assignment A is called a satisfying assignment.

8

2.2. Parameterized Complexity

2.2 Parameterized Complexity
Parameterized complexity studies algorithmic problems parameterized by a specific
parameter arising in the problem itself or its problem input. One of the standard
textbooks is by Cygan et al. [Cyg+15], from which we will be citing the most important
definitions. The interested reader is encouraged to study this book for more elaborate
explanations, examples and more involved concepts and problem-solving techniques used
in parameterized complexity.

Parameterized problems. Let Σ be a fixed, finite alphabet and Σ∗ be the set of
finite words over Σ. In standard complexity theory we are studying decision problems
L ⊆ Σ∗. We say x ∈ Σ∗ is a YES-instance if x ∈ L, otherwise it is a no-instance. In
parameterized complexity we extend problems by parameters.

Definition 2.2.1 (Parameterized Problem [Cyg+15]). A parameterized problem is a
language L ⊆ Σ∗ × N. For an instance (x, k) ∈ Σ∗ × N, k is called the parameter.

There are many examples for such problems, we will discuss some parameterized
problems specific to this thesis topic in later chapters. The size of an instance (x, k) of
a parameterized problem is defined as |x|+k. This definition is also easily extendable
to problems, where instead of one parameter, we have multiple parameters. For an
instance (x, k, #) to a parameterized problem with multiple parameters, say k and # are
two parameters, we set the instance size to be |x|+k + # and the parameter size to k + #.

Parameterized complexity classes. The most fundamental complexity class in
parameterized complexity is FPT.

Definition 2.2.2 (Fixed-Parameter Tractability [Cyg+15]). A parameterized problem
L ⊆ Σ∗ × N is called fixed-parameter tractable (FPT) if there exists an algorithm A
(called a fixed-parameter algorithm), a computable function f : N → N, and a constant c
such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly decides whether (x, k) ∈ L
in time bounded by f(k) · |(x, k)|c. The complexity class containing all fixed-parameter
tractable problems is called FPT.

Another way to state fixed-parameter tractability is that it can be decided in time
f(k)·|(x, k)|O(1) whether an instance (x, k) belongs to L, where f : N → N is a computable
function. W.l.o.g. we can assume that f is non-decreasing, as otherwise we can simply
set f �(n) = maxn

i=1 f(k) for n ∈ N and receive another computable function f �. There
is a vast landscape of literature studying problems from multiple different domains
with regard to their parameterizations by a wide variety of parameters. Of course, the
quality of the algorithm A also heavily depends on the function f . If this function
grows rapidly with k, A will not be applicable in practice. In parameterized complexity
we often strive to find parameters that are small in practice, and then design FPT-
algorithms for problems parameterized by these parameters. If the function f of a
designed parameterized algorithm does not grow too fast, say 2k, and the parameter is

9

2. Preliminaries

small in practice, say k ≤ 20 we are left with a fast algorithm. This approach has been
applied successfully throughout many works in the literature, designing fast algorithms
for otherwise hard problems. Hence, in practice there are classes of instances that admit
small parameters, that in turn can be used to design FPT-algorithms.

Another well-known complexity class is XP.

Definition 2.2.3 (Slice-Wise Polynomial [Cyg+15]). A parameterized problem L ⊆
Σ∗ × N is called slice-wise polynomial (XP) if there exists an algorithm A and two
computable functions f, g : N → N such that, given (x, k) ∈ Σ∗ × N, the algorithm A
correctly decides whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|g(k). The complexity
class containing all slice-wise polynomial problems is called XP.

For the same reason as before we can assume that f and g are non-decreasing.
Notice that FPT ⊆ XP holds. Furthermore, a whole hierarchy of complexity classes
FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[P] ⊆ XP has been established. We omit the definitions
of complexity classes in the W-hierarchy as they are rather complex, but they can be
found in the textbook [Cyg+15]. It is widely believed that FPT �= W[1]. This leads to the
question: How to show that a parameterized problem is not in FPT, i.e. is fixed-parameter
intractable?

Showing fixed-parameter intractability. Similarly, as one would show NP-hardness
of a problem by a polynomial reduction, parameterized complexity makes use of similar
problem reductions.

Definition 2.2.4 (Parameterized Reduction [Cyg+15]). Let A, B ⊆ Σ∗ × N be two
parameterized problems. A parameterized reduction from A to B is an algorithm that,
given an instance (x, k) of A, outputs an instance (x�, k�) of B such that

1. (x, k) is a YES-instance if and only if (x�, k�) is a YES-instance of B,

2. k� ≤ g(k) for some computable function g, and

3. the running time is f(k) · |x|O(1) for some computable function f .

Again, we can assume that f and g are non-decreasing. The new instance size |x�| is
now not polynomially bounded by |x|, but by a polynomial in |x| times a function of k.

The problems that are W[c]-hard for c ≥ 1 are all the problems that admit a
parameterized reduction to a W[c]-complete problem. Here, complete refers to complete
in the sense of parameterized reductions. Furthermore, parameterized reduction can be
used to show fixed-parameter intractability.

Theorem 2.2.5 ([Cyg+15]). If there is a parameterized reduction from A to B and B
is FPT, then A is FPT as well.

Corollary 2.2.6. If there is a parameterized reduction from A to B and A is not FPT,
then B is not FPT as well.

10

2.2. Parameterized Complexity

This leads to the standard procedure of proving fixed parameter-intractability. If we
want to show fixed parameter intractability of a problem B, we pick a problem A which
is not FPT (possibly W[1]- or W[2]-hard) and prove a parameterized reduction from A
to B. Of course this only works under the assumption that FPT �= W[1] (FPT �= W[2]).

11

CHAPTER 3
Generalized Coloring Numbers

and Structural Sparsity

In this chapter, we will introduce the concept of weak and strong r-coloring numbers and
present some interesting results and relations with other graph parameters. Furthermore,
we will define the problems we want to solve and give known complexity results that we
know of.

3.1 Weak and Strong Coloring Numbers
Let us now define the concept of weak and strong coloring numbers, which were introduced
by Kierstead and Yang [KY03] in the context of coloring games and marking games on
graphs.

Definition 3.1.1 (Weak Coloring Number [KY03]). Let G be a graph, r ∈ N, L be an
ordering of vertices V (G), and u, v ∈ V (G). Then u is weakly r-reachable from v with
respect to L if u L v and there is a path P of length # with 0 ≤ # ≤ r between u and v
such that

∀w ∈ V (P) : u L w.

Let Wreachr(G, L, v) be the set of vertices that are weakly r-reachable from v in G with
respect to L. Furthermore, let Wreach−1

r (G, L, v) = {u ∈ V : v ∈ Wreachr(G, L, u)}. We
say that Wreachr(G, L, v) is the weakly r-reachable set of v w.r.t. L, and Wreach−1

r (G, L, v)
is the weakly r-reaching set of v w.r.t. L. The weak r-coloring number wcolr(G, L) of L is

wcolr(G, L) = max
v∈V (G)

|Wreachr(G, L, v)|,

and the weak r-coloring number wcolr(G) of G is

wcolr(G) = min
L∈Π(G)

wcolr(G, L).

13

3. Generalized Coloring Numbers and Structural Sparsity

u v

u ∈ WReach5(G,L, v)

L

u v

u ∈ SReach4(G,L, v)

L

Figure 3.1: Visualization of weak and strong r-reachability.

Definition 3.1.2 (Strong Coloring Number [KY03]). Let G be a graph, r ∈ N, L be an
ordering of vertices V (G), and u, v ∈ V (G). Then u is strongly r-reachable from v with
respect to L if u L v and there is a path P of length # with 0 ≤ # ≤ r between u and v
such that

∀w ∈ V (P) \ {u, v} : v w.

Let Sreachr(G, L, v), called strongly r-reachable set of v w.r.t. L, be the set of vertices
that are strongly r-reachable from v in G with respect to L. The strong r-coloring number
scolr(G) of G is

scolr(G) = min
L∈Π(G)

max
v∈V (G)

|Sreachr(G, L, v)|

An example for both concepts is given in Figure 3.1, where vertex u is weakly (resp.
strongly) r-reachable from v by a path of length 5 (resp. 4).

Clearly, if a vertex u is strongly r-reachable from a vertex v, then it is also weakly
r-reachable. It follows that

scolr(G) ≤ wcolr(G)
for all r ∈ N. We also have that

wcol1(G) = scol1(G) = degeneracy(G) + 1.

Furthermore, by Definition 3.1.1 and Definition 3.1.2 we also observe that

wcol1(G) ≤ wcol2(G) ≤ . . . ≤ wcolnG(G)

and
scol1(G) ≤ scol2(G) ≤ . . . ≤ scolnG(G).

It has been shown that strong and weak coloring numbers converge to well-known and
already thoroughly studied graph parameters.

Lemma 3.1.3 ([NM12, Lemma 6.5]). Let G be a graph. Then

wcolnG(G) = wcol∞(G) = td(G).

The value td(G) refers to the treedepth of G.

Lemma 3.1.4. Let G be a graph. Then

scolnG(G) = scol∞(G) = tw(G) + 1.

14

3.2. Relation to Structural Sparsity

The value tw(G) refers to the treewidth of G. A proof can be found in [Gro+18].
Combining Lemma 3.1.3, Lemma 3.1.4, and the observation that scolr(G) ≤ wcolr(G),
we obtain an alternative proof for tw(G) ≤ td(G). Furthermore, Kierstead and Yang
[KY03] showed that wcolr(G) ≤ scolr(G)r for graphs G, meaning that there is a strong
relation between weak and strong coloring numbers of graphs.

Multiple papers have studied different upper and lower bounds for weak r-coloring
numbers. To give some examples we extend here a list by Joret and Micek [JM21] in
Table 3.2.

3.2 Relation to Structural Sparsity
To further motivate strong and weak r-coloring numbers we want to state their relation
to nowhere dense graph classes and graph classes of bounded expansion. Nowhere dense
graph classes and graph classes of bounded expansion were introduced by Nesetril and
Ossona de Mendez [NM08a; NM08b; NM08c; NM11; NM12] in the context of structural
sparsity and are defined in terms of bounded-depth minors. We use the definitions of
Grohe et al. [Gro+18] and Nadara et al. [Nad+19], as they are rather compact and
understandable. A graph H is a minor of a graph G, if there are pairwise vertex-disjoint
connected subgraphs H1, . . . , Hn of G such that whenever {vi, vj} ∈ E(H), there are
ui ∈ V (Hi) and uj ∈ V (Hj) with {ui, uj} ∈ E(G). We then call (H1, . . . , Hn) a minor
model of G. Let r ∈ N. Then H is a depth-r minor of G if there is a minor model
(H1, . . . , Hn) of H in G such that each Hi has radius at most r. The density of a graph G
is |E(G)|/|V (G)|. We are now ready to define nowhere dense graph classes and graph
classes of bounded expansion.

Definition 3.2.1. A class C of graphs has bounded expansion if there exists a function
f : N → N such that for every radius r ∈ N the density of depth-r minors in graphs
from C is bounded by f(r).

Definition 3.2.2. A class C of graphs is nowhere dense if there exists a function
t : N → N such that for every radius r ∈ N the graphs from C exclude the complete
graph Kt(r) as depth-r minor.

With these definitions it is easy to see that graph classes of bounded expansion are
also nowhere dense. Furthermore, it has been demonstrated that nowhere dense graph
classes have nice algorithmic properties [DK09; Eic+17; GKS17; KRS19]. Interestingly,
Zhu [Zhu09] proved that both classes can also be characterized by weak coloring numbers.

Theorem 3.2.3 ([Zhu09]). A class C of graphs has bounded expansion if and only if
there exists a function f : N → N such that wcolr(G) ≤ f(r) for all r ∈ N and all G ∈ C .

Theorem 3.2.4 ([Zhu09]). A class C of graphs is nowhere dense if and only if there is
a function f : N×R → N such that for every real ε > 0 and every r ∈ N and all n-vertex
graphs H that are subgraphs of some G ∈ C ,we have wcolr(H) ≤ f(r, ε) · nε.

15

3. Generalized Coloring Numbers and Structural Sparsity

Table 3.2: Upper and lower bounds on weak r-coloring numbers. The subscripts in the
asymptotic notation mean that the hidden constant may depend on the parameter in the
subscript. For full definitions of the graph classes we refer to the respective references.

graph class C bounds on wcolr(G) over all graphs G ∈ C
outerplanar Θ(r log r) Joret and Micek

[JM21]

planar Ω(r2) and O(r3) van den Heuvel et
al. [Heu+17]

Ω(r2 log r) Joret and Micek
[JM21]

Euler genus g Og(r3) van den Heuvel et
al. [Heu+17]

K3,k-minor free Ok(r3) van den Heuvel and
Wood [HW18]

Ks,k-minor free Ok(rs+1) van den Heuvel and
Wood [HW18]

treewidth ≤ k at most
�r+k

k

�
Grohe et al.
[Gro+18]

simple
treewidth ≤ k

Ωk(rk−1 log r) and O(rk−1 log r) Joret and Micek
[JM21]

Kk-minor free Ωk(rk−2) and O(rk−1) Grohe et al.
[Gro+18], van
den Heuvel et al.
[Heu+17]

max. degree ≤ Δ
for Δ ≥ 4

Ω
�

(Δ−1
2)r

�
Grohe et al.
[Gro+18]

paths at most �log r
 + 2 Joret and Micek
[JM21]

paths on at least
2r − 2 vertices

at least �log r
 + 1 Joret and Micek
[JM21]

Nowhere dense graph classes generalize and include many other sparse graph classes,
such as graph classes of bounded degree, classes of bounded genus and classes excluding

16

3.3. Problem Definitions and Complexity

(topological) minors. Furthermore, they admit surprisingly different but natural char-
acterizations, meaning that being nowhere dense is a rather robust property. We have
already mentioned that nowhere dense graph classes and graphs of bounded expansion
have nice algorithmic properties in theory. Aforementioned reasons resulted in nowhere
dense graphs and graphs of bounded expansion gaining more popularity and further
motivate us to construct algorithms to compute upper bounds of weak coloring numbers.

3.3 Problem Definitions and Complexity
In this section, we define the main problems with regard to weak coloring numbers
and discuss known complexity bounds. First, let us define the main decision problem
WCOL(r), where we want to know if a graph has weak r-coloring number of at most k.

Weak r-coloring Number (WCOL(r))
Input: A graph G = (V, E), and an integer k.
Problem: Does G have weak r-coloring number ≤ k?

In fact, we define a problem WCOL(r) for each r ≥ 1. As wcol1(G) = degeneracy(G)+1,
we know that WCOL(1) is solvable in polynomial time due to a well known greedy
algorithm for the degeneracy of a graph [MB83]. It was then shown by Grohe et al. that
this is not the case for r ≥ 3 (Unless P = NP).

Theorem 3.3.1 ([Gro+18]). Deciding WCOL(r) for r ≥ 3 is NP-complete.

Grohe et al. have shown Theorem 3.3.1 by giving a reduction from the balanced
bipartite clique problem [GJ79]. Of course, we not only want to decide if wcolr(G) ≤ k for
a graph G, but we also want to compute an ordering L with wcolr(G, L) ≤ k. Therefore,
we define the problem WCOLORD(r).

Weak r-coloring Number Ordering (WCOLORD(r))
Input: A graph G = (V, E), and an integer k.
Problem: Compute an ordering L ∈ Π(G) such that wcolr(G, L) ≤ k or report that

there exists no such ordering.

By the same greedy algorithm for degeneracy as mentioned above, WCOLORD(1) is
solvable in polynomial time. Furthermore, by solving WCOLORD(r) we also solve
WCOL(r), hence WCOLORD(r) is also NP-complete for each r ≥ 3. To our knowledge,
it is still unknown whether WCOL(r) and WCOLORD(r) are NP-complete for r = 2.

In this thesis, we want to solve the problem WCOLORD(r) using the technique
of turbocharging (see Chapter 4). Clearly, we will not be able to give exact algorithms
that work efficiently for all instances as the problem is NP-complete for r ≥ 3 (unless
P = NP). But we will exploit properties of real-world graph instances that allow us to
design algorithms for finding orderings of small weak r-coloring number. Such properties
will for example include parameters that we will use for parameterized algorithms.

17

CHAPTER 4
Turbocharging and Known

Heuristics for Weak Coloring
Numbers

In this chapter, we introduce the concept of turbocharging, and give some background
and related research. Next, we will relate turbocharging to computing orderings with
small weak r-coloring numbers. As turbocharging is closely related to greedy heuristic
approaches, we will also present some already known heuristics for computing orderings
of small weak r-coloring numbers.

4.1 Turbocharging
Turbocharging framework. We want to start by explaining turbocharging in a rather
generic fashion, later relating it to some problems it has been applied to. But we have to
note that turbocharging, as we explain it here, is adapted to the problems we are dealing
with. In the literature turbocharging may simply be known as “augmenting heuristics by
exact methods”.

Let P be a problem and I be an instance of this problem. Solutions of this instance
w.r.t. to the problem all have size n ∈ N, but there are also incomplete solutions of size
less than n. Additionally, each solution S has a quality q(S) ∈ N. We also know that
extending an incomplete solution S of size m < n creates a new solution S� of size k� > k.
Let us call an extension S� of S full extension, if the size of S� is n. It is now possible
that an incomplete solution tells us something about the quality of its full extensions.
If we know that q(S�) ≤ k for any full extension S� of an incomplete solution S, we set
q(S) = k. In other words, the value q(S) is an upper bound for the quality of any full
extension. Additionally, q(S�) ≤ q(S) for any extension S� of S. Lastly, let H be an

19

4. Turbocharging and Known Heuristics for Weak Coloring Numbers

Algorithm 4.1: Turbocharging framework
Input: Instance I of problem P and c ∈ N
Output: Solution S with quality at least k or false

1 S ← ∅;
2 while size(S) < n do
3 S ← H(S);
4 if q(S) < k then
5 Try applying turbocharging algorithm TC(S, c) that changes c values of S

such that q(S) ≥ k or return false if it fails;
6 end
7 end
8 return S;

iterative greedy heuristic that has as its input an incomplete solution S of size k and as
its output an extension S� of S with size k + 1, meaning H(S) = S�.

With these definitions out of the way, we are ready to explain turbocharging. A
framework for turbocharging is illustrated in Algorithm 4.1. The framework takes as
input an instance I of a problem P that has solutions of size n, and outputs a solution of
quality at least k, or false if no such solution could be found. It is important to note that
if the framework returns false, it does not mean that there does not exist a solution of
quality at least k. Starting from the empty incomplete solution, Algorithm 4.1 iteratively
applies the heuristic H, that creates a new (in)complete solution, whose size is larger. It
might be that at some point S is an incomplete solution that cannot be extended to a
solution that has quality at least k (Line 4). At this point we apply turbocharging; that
is, we apply a turbocharging algorithm TC to S, that tries to “fix” S, such that q(S) ≥ k.
In other words, TC tries to find a solution to a turbocharging problem. The second input
to TC is the conservation parameter c, that says that the solution S may be changed
at up to c positions. It can also be the case, that a specific part of S of size c may be
changed. This approach is promising if k and c are small and TC is an exact algorithm
that admits a fixed-parameter runtime — meaning that TC can be computed in time
f(k, c) · |I| for a computable function f .

We also want to mention the strong relation of turbocharging to a problem-solving
technique from fixed-parameter complexity named iterative compression [DF95]. In
iterative compression we add in one step an element such as a vertex to a problem. A
solution that was known prior to the addition of that element is used to find a solution
for the larger problem. Similarly, in turbocharging we also add one element in each step
to a solution and a turbocharging algorithm might be used to “fix this solution” if it does
not fit quality requirements.

Let us now present some known papers applying turbocharging and relate its studied
problems to the turbocharging framework as we presented it.

20

4.1. Turbocharging

Research on turbocharging. The first paper we want to present is by Hartung and
Niedermeier [HN13], who study the list coloring problem w.r.t. turbocharging. Although
they call it parameterized by conservation, their paper fits the spirit of turbocharging as we
explained it here, and it is also the first paper that we know of that presents this approach.
In the list coloring problem we are given a graph G = (V, E), and for each vertex v ∈ V
a set of colors L(v) ⊆ {1, . . . , k}. The task is to find a coloring f : V → ∪v∈V L(v) such
that f(v) ∈ L(v) for each v ∈ V and f(v) �= f(w) for all {v, w} ∈ E. Such colorings are
called k-list colorings. They propose the following turbocharging problem.

Incremental Conservative k-List Coloring (IC k-List Coloring) [HN13]
Input: A graph G = (V, E), x ∈ V , a k-list coloring f for G[V \ {x}] with respect

to the color lists L(v) ⊆ {1, . . . , k} for all v ∈ V , and c ∈ N.
Question: Is there a k-list coloring f � for G such that the cardinality of {v ∈ V \{x} |

f(v) �= f �(v)} is a most c?

They also show that IC k-List Coloring can be solved in O(k ·(k−1)c)·(|V |+|E|)) time,
which is FPT-time parameterized by k and c. It is not immediate how this turbocharging
problem could be used inside a turbocharging framework, so let us explain. Incomplete
solutions S for the list coloring problems could be colorings f of graphs G[V �] where
V � ⊆ V and f(v) ∈ L(v) for all v ∈ V �. The size of S is |V �|, and we want to find a
solution of size |V |. The quality of a (incomplete) solution is hidden in the constraint
that f(v) �= f(w) for {v, w} ∈ E. Clearly, an incomplete solution cannot be extended if
f(v) = f(w) for some {v, w} ∈ E. A heuristic may color one vertex after the other until a
vertex x cannot be assigned a color that none of its neighbors is assigned to. At this point
the IC k-List Coloring algorithm may be applied to fix the coloring, such that it can
be extended and x is also assigned a color. The conservation parameter c demonstrates
how to model that an incomplete solution may be changed at up to c positions. Notice
that without the conservation parameter IC k-List Coloring is very similar to an
iterative compression problem; that is, if IC k-List Coloring were fixed-parameter
tractable parameterized by only k, we would prove that the k-list coloring problem is
fixed-parameter tractable parameterized by k; this being only a hypothetical thought, as
IC k-List Coloring is not FPT parameterized by k [HN13, Theorem 2].

Another problem where turbocharging has been applied to is treewidth. We chose this
problem as it is very similar to weak r-coloring numbers because it also involves vertex
orderings. Gaspers et al. [Gas+19] proposed a turbocharging problem for treewidth
and also used it in combination with well-known heuristics to conduct experiments on
real-world graph instances. The treewidth of a graph G can be characterized by so-called
elimination orders which are linear orders of vertices of G, and normally the treewidth of
such computed orders has to be minimized. Furthermore, partial elimination orderings,
that are linear orders of a set of vertices V � ⊆ V , also have a so-called width that is
a lower bound to the treewidth of any extension of that partial elimination order. In
this case an extension of a partial elimination order π of vertices V � is another partial
elimination order π� of vertices V �� ⊇ V � that agrees with π on the first |V �| positions.

21

4. Turbocharging and Known Heuristics for Weak Coloring Numbers

The quality k of a partial elimination order is its width, where lower widths symbolize
“better” quality. Gaspers et al. proposed the following turbocharging problem.

IC Treewidth [Gas+19]
Input: A graph G, a non-negative integers k and c, and a partial elimination

order π of length # ≥ c and width ≤ k.
Question: Does there exist a partial elimination order π� of length #+1 and width ≤ k

such that π and π� are identical on the first # − c positions?

Given a partial elimination order π of length #, we have to find a partial elimination
order π� of length # + 1, and we are only allowed to change the suffix of length c. Notice
that in this case the conservation parameter restricts the part of the incomplete solution
we are allowed to change. Gaspers et al. proved that IC Treewidth is fixed-parameter
tractable when parameterized by c + k. Additionally, they turbocharge some well-known
heuristics for building elimination orders that iteratively place vertices from left to right
into a partial elimination order π. Whenever the heuristic would place a vertex to
the right of π such that the width of π would exceed k, they apply their algorithm
for IC Treewidth. They then applied the turbocharged heuristics to a variety of
graph instances. To summarize their results, for most of their considered instances, the
turbocharged versions of the heuristics obtained orderings of better treewidth than only
the heuristics themselves.

4.2 Turbocharging and Weak Coloring Numbers
We want to start our research on weak r-coloring numbers w.r.t. turbocharging. As already
mentioned we will design algorithms that compute upper bounds of weak r-coloring
numbers by finding orderings L of vertices V such that wcolr(G, L) is as small as possible.
Our method of choice is turbocharging, so let us first relate notions of turbocharging to
orderings and their weak r-coloring numbers. Let us start by answering the question,
how to define an incomplete solution for orderings of vertices. Clearly, the first thing
that comes to mind are orderings of some subset S ⊆ V of vertices of a graph G = (V, E);
we want to capture this in the following definition.

Definition 4.2.1. Let G = (V, E) be a graph. A subordering L is an ordering of vertices
S ⊆ V . We call T = V \ S the set of free vertices.

Throughout the rest of the thesis, suborderings L of vertices S ⊆ V will refer to
incomplete solutions of the WCOLORD(r) problem. Naturally, we define the size of
a subordering as |S|, and “full” solutions have size |V |. It is now clear how to define
extensions. Let L be a subordering of vertices S; an extension L� of L is a subordering of
vertices S� � S such that L� agrees with L on the relative order of S, that is, L�[S] = L.
Lastly, we need to define the quality of a subordering L, that is, a lower bound on the
weak r-coloring number of any full extension L� of L. From our definition of extensions,

22

4.3. Known Heuristics for Weak Coloring Numbers

it follows that a natural definition for the quality q(L) of a subordering of vertices S ⊆ V
is

q(L) = max
v∈S

|Wreachr(G[S], L, v)|,

as for any extension L� of L we have that for v ∈ S, Wreachr(G[S], L, v) ⊆
Wreachr(G[S�], L�, v), where L� is a subordering of vertices S� � S. In Chapter 5
we will see a better lower bound than q(L), under the assumption that we know that all
free vertices will be placed to the right of L in a full extension of L.

4.3 Known Heuristics for Weak Coloring Numbers
As we mentioned before, a key component for turbocharging is an iterative greedy
heuristic. In this thesis we will not design new heuristics for weak coloring numbers, but
we will instead use some heuristics that were introduced by Nadara et al. [Nad+19], that
are easy to implement, and that achieved relatively good results. These heuristics were
already applied to a wide variety of graph instances from different domains, which gives
us a set of benchmarking instances for our implementations, and we can also compare
our results with those achieved by Nadara et al.

The heuristics that we will be using for our implementations can be classified into
two types:

1. Heuristics that iteratively construct an ordering from left to right; that is the
heuristic starts with the empty ordering and, in one step, places one vertex to the
right of that ordering.

2. Heuristics that iteratively construct an ordering from right to left; that is the
heuristic starts with the empty ordering and, in one step, places one vertex to the
left of that ordering.

Let us briefly describe said heuristics, classify them into the two types, and give them
identifiers.

Left-to-right heuristics.

• Wreach-Heuristic: Let L be a subordering of vertices S ⊆ V . A crucial observation
is that for each free vertex v we already know the weakly r-reachable set w.r.t. S
for any potential full extension of L that places all free vertices to the right of L.
This is formalized in more detail in the next chapter (Definition Definition 5.1.2,
Lemma 5.1.3). Furthermore, if v were to be placed directly to the right of L, then
its weakly r-reachable set in any full extension where free vertices are placed to the
right would correspond exactly to that said set. The Wreach-Heuristic uses this
fact and makes a locally optimal choice for L by placing the free vertex that has
the largest weakly r-reachable set w.r.t. S to the right of L, extending L by one
vertex. Ties are broken by choosing vertices with larger degrees first.

23

4. Turbocharging and Known Heuristics for Weak Coloring Numbers

• Degree-Heuristic: The Degree-Heuristic orders vertices by descending degree; that
is, for a subordering L, in one step, it places the free vertex with maximum degree
in G to the right of L.

Notice that the Wreach-Heuristic gives different orderings for different values of radii r,
while the Degree-Heuristic does not.

Right-to-left heuristics.

• Sreach-Heuristic: Let L be a subordering of vertices S with free vertices T , and
we know that vertices from T will be placed left of L. This heuristic is based on
strongly reachable sets. A key observation is that strongly r-reachable sets for
vertices in S are already fixed when considering any extension of L where free
vertices will be placed to the left. Not only that, but if we know that a vertex
from v ∈ T will be placed directly to the left of L, then we also know the strongly
r-reachable set of v, we call this set potentially strongly r-reachable set, adopting
the term from Nadara et al. The Sreach-Heuristic now places the vertex u ∈ T
to the left of L that has smallest potentially strongly r-reachable set. This makes
sense, as the strongly reachable sets are subsets of weakly reachable sets, and we
want an ordering where the maximum size of a weakly r-reachable set is as small
as possible.

• Degree-Heuristic: The Degree-Heuristic can also be seen as a right-to-left heuristic.
That is, for a subordering L, in one step the heuristic places the vertex of minimum
degree in G to the left of L.

Nadara et al. also proposed further heuristics that match the concept of right-to-left
heuristics such as heuristics based on treewidth and treedepth. We do not consider them
in this thesis due to time restrictions and their higher complexity when compared to
the Sreach- and Degree-Heuristic. Furthermore, the heuristics we consider here, are the
ones that achieved the smallest weak coloring numbers in the experiments conducted by
Nadara et al.

In this thesis, we will mostly focus on left-to-right heuristics, as they are easier to work
with and admit easy implementations. But we will also investigate a simple turbocharging
problem that comes up for right-to-left heuristics.

We have to mention that all turbocharging approaches that we will propose will most
likely be invoked multiple times during the computation of an ordering. That means,
even though we achieve good running time bounds for a turbocharging problem, it may
be that computing orderings of small weak r-coloring number with this approach might
still be time-consuming for medium size to large size instances.

24

CHAPTER 5
Left-to-Right Heuristics and

Turbocharging

In this chapter, we want to study turbocharging problems for left-to-right heuristics that
compute weak coloring numbers. That is, we will present descriptions and complexity
results for turbocharging problems that arise during the Wreach-Heuristic and the
Degree-Heuristic. Unless stated otherwise, the radius r is a fixed constant throughout
the chapter.

5.1 Definitions and First Observations
In this section, we will relate the turbocharging framework and its notions such as
incomplete solutions and extensions to left-to-right heuristics. Let us first start by
introducing some definitions and by discussing some observations that will be useful for
turbocharging left-to-right heuristics. In Chapter 4 we have already discussed extensions
of suborderings. But if we know that all free vertices will be placed to the right of a
subordering, then we can adjust the definition for extensions accordingly.

Definition 5.1.1. Given a subordering L of vertices S ⊆ V , a right extension L� of L is
a subordering of vertices S� such that

• S� ⊇ S,

• L�[S] = L, and

• u ≺L� v for all u ∈ S, v ∈ S� \ S.

Informally, L� is a subordering that places vertices S� \ S to the right of the vertex set S.
If S� = V , then we say that L� is a full right extension.

25

5. Left-to-Right Heuristics and Turbocharging

Let us relate right extensions to left-to-right heuristics: Given a subordering L of
vertices S, in one step, a left-to-right heuristic computes a right extension L� of L with
size |S|+1.

In the description for the Wreach-Heuristic we have already mentioned that weakly
r-reachable sets w.r.t. S are fixed for any right extension L� of a subordering L which
orders vertices S. We want to formalize this in the following lemma and definition.

Definition 5.1.2. Let G be a graph. Given a subordering L of vertices S ⊆ V (G), a
vertex u ∈ V (G) is weakly left r-reachable from v ∈ V (G) with respect to L if

• v = u, or

• u ∈ S and there is a path P of length # with 0 ≤ # ≤ r between u and v such that

∀w ∈ V (P) ∩ S : u L w.

Let Wreachleftr(G, L, v) be the set of vertices that are weakly left r-reachable from v
in G with respect to L. We say Wreachleftr(G, L, v) is the weakly left r-reachable set of v
w.r.t. L. Let Wreachleft−1

r (G, L, v) = {u ∈ V : v ∈ Wreachleftr(G, L, u)}, calling this the
weakly left r-reaching set of v.

Lemma 5.1.3. Let L be a subordering of vertices S ⊆ V with free vertices T and let L�

be a right extension of L. Then

• Wreachleftr(G, L, v) ⊆ Wreachleftr(G, L�, v) for all v ∈ T , and

• Wreachleftr(G, L, v) = Wreachleftr(G, L�, v) for all v ∈ S.

Proof. Observe that if u is weakly left r-reachable from v in L, then u is also weakly left
r-reachable from v in L�.

The above lemma gives an alternative description for the Wreach-Heuristic: Given
a subordering L of vertices S, in one step, the Wreach-Heuristic places a free vertex v
with maximum |Wreachleftr(G, L, v)| to the right of L, creating a right extension L�

of size |S|+1. Due to the fact that we want to minimize weak r-coloring numbers,
Lemma 5.1.3 gives a justification for this heuristic, as it places vertices with large weakly
left r-reachable sets earlier, such that these sets cannot get larger anymore.

In fact, we know even more than what is stated in Lemma 5.1.3: Let L be a
subordering of vertices S and free vertices T . By placing a vertex v ∈ T to the right of L,
we add v to the weakly left r-reachable sets of all vertices in N r

G[T](v). This is useful for
implementations for heuristics and turbocharging problems, when computing weakly left
r-reachable sets of right extensions. Adding a free vertex to the right of a subordering L,
we need a single breadth-first search of depth r in G[T] to update weakly left r-reachable
sets.

Weakly left r-reachable sets of suborderings L also give us a new lower bound for
the weak r-coloring number of any full right extension of L, that can be seen as the

26

5.2. A First Natural Turbocharging Problem

quality of a subordering. Namely, we know that the weak r-coloring of any full right
extension is at least maxv∈V |Wreachleftr(G, L, v)|. When applying the turbocharging
framework, we want to compute vertex orderings with weak r-coloring number of at
most k ∈ N. That means that we apply a left-to-right heuristic iteratively, until it made
too many “bad choices”, creating a subordering L such that |Wreachleftr(G, L, v)|> k
for at least one vertex v ∈ V . Notice that in this case v is a free vertex. We say that
vertices v ∈ V with |Wreachleftr(G, L, v)|> k are overfull. Furthermore, we call such
orderings non-extendable.

5.2 A First Natural Turbocharging Problem
Now that we have seen some observations and problems that come up in turbocharging
left-to-right heuristics we want to introduce a first turbocharging problem. That means
that we are given a non-extendable subordering L, and we want to fix this subordering
such that it is extendable by making a limited number of modifications. Similarly to
Gaspers et al. [Gas+19] who modified suffixes of partial elimination orderings, we want
to change the suffix of L with size c. That is, we want to try replacing the rightmost c
vertices of L by a (possibly) different set of vertices. For this, we define the problem
IC-WCOL-LEFT(r) that already assumes that we have removed the last c vertices of a
non-extendable subordering.

Incremental Conservative Left Weak r-coloring (IC-WCOL-LEFT(r))
Input: A graph G = (V, E), a subordering L of vertices S ⊆ V , and positive

integers k and c.
Problem: Is there an extendable right extension L� of L of vertices S� with |S� \S|= c.

Again, we in fact define a problem IC-WCOL-LEFT(r) for each r ≥ 1. The motivation
for this approach is that we assume that a heuristic made a “bad choice” during the
last c placements of a vertex, so that replacing them by different vertices would achieve
a subordering of higher quality. Assuming that k and c are small, we would like to find
an FPT-algorithm for IC-WCOL-LEFT(r). But of course, the probability of fixing a
non-extendable subordering grows with larger c. Still, under the assumption that we
are working with a good heuristic that makes a small amount of mistakes, we would
believe that we can fix a non-extendable subordering with little changes. Furthermore,
we assume that the considered input graphs are sparse in the sense of structural sparsity,
meaning that there are orderings of vertices that achieve small weak r-coloring numbers.

5.2.1 Complexity
The first main result of this thesis that we want to present is the NP-hardness of IC-
WCOL-LEFT(r) for each r ≥ 1, which gives first insights into the complexity of the
problem.

Theorem 5.2.1. IC-WCOL-LEFT(r) is NP-hard for each fixed r ≥ 1.

27

5. Left-to-Right Heuristics and Turbocharging

u vx
uv

1
x
uv

2r−1x
uv

r

u v

G

G
′

y
uv

1

y
uv

2

y
uv

r+1

Figure 5.1: Sketch for subdivision of edge {u, v}.

Proof. We give a reduction from Independent Set which is NP-complete [GJ79].
Let (G, p) be an instance of Independent Set. We construct an instance (G�, L, k, c)
of IC-WCOL-LEFT(r) as follows. First, let k = 2 and c = p. Constructing G� from G
proceeds in two steps.

• We subdivide each edge {u, v} ∈ E(G) 2r −1 times, introducing 2r −1 new vertices.
Let us call them xuv

1 , . . . , xuv
2r−1 ordered from u to v.

• For each edge {u, v} ∈ E(G) we introduce a path P = (yuv
1 , . . . , yuv

r+1) of r + 1
vertices connecting the end vertex yuv

r+1 to xuv
r .

A sketch of the construction for a single edge {u, v} is shown in Figure 5.1. Note that
the length of the shortest path from u and v to any vertex yuv

i with 1 ≤ i ≤ r + 1 is at
least r + 1. On the other hand, shortest paths from vertices xuv

i with 1 ≤ i ≤ 2r − 1
to yuv

r+1 have length at most r. Lastly, we define the subordering L of vertices S ⊆ V
such that L is an arbitrary subordering of vertices S = {yuv

1 : {u, v} ∈ E(G)}. Note
that Wreachleftr(G, L, yuv

i) = {yuv
1 , yuv

i } for 2 ≤ i ≤ r + 1. The remaining vertices only
contain themselves in their weakly left r-reachable set. We claim the correctness of this
reduction, that is, we proceed by showing that there is an independent set I of size p if
and only if there is an extendable right extension L� of L of vertices S� with |S� \ S|= c.

“⇒”: Assume that G has an independent set I of size |I|= p = c. Then any right
extension L� of L of vertices S� ⊇ S with S� \S = I is extendable and |S� \S|= c. Observe
that |S� \ S|= c holds. Now we can look at values |Wreachleftr(G�, L�, v)| for vertices
v ∈ V (G�).

• Clearly Wreachleftr(G�, L�, v) ⊆ {v} for v ∈ V (G), as v can only weakly left r-reach
itself in I due to the subdivision of edges. Thus, |Wreachleftr(G�, L�, v)|≤ k holds.

28

5.2. A First Natural Turbocharging Problem

• As I is an independent set, we also have that |Wreachleftr(G�, L�, xuv
i)|≤ 2 for all

{u, v} ∈ E(G) and 1 ≤ i ≤ 2r − 1. This is true because u and v are the only
potentially r-reachable vertices in I, but u and v cannot both be in I. Again
|Wreachleftr(G�, L�, xuv

i)|≤ k holds.

• Finally, Wreachleftr(G�, L�, yuv
j) = {yuv

1 , yuv
j } for all {u, v} ∈ E(G) and 1 ≤ j ≤ r+1

holds as all paths to vertices I ⊆ V (G) have length greater than r.

Summarizing this, we have

∀v ∈ V (G�) : |Wreachleftr(G�, L�, v)|≤ k,

and we can conclude the forwards direction.
“⇐”: Assume that we found an extendable right extension L� of L of vertices S� with

|S� \ S|= c. We can observe that vertices yuv
i with 2 ≤ i ≤ r + 1 cannot be in S� \ S

because this would result in a too large set Wreachleftr(G�, L�, yuv
j) for some 2 ≤ j ≤ r+1.

Consequently, S� \ S cannot contain any vertex xuv
i , as otherwise yuv

r+1 could weakly left
r-reach one of the vertices xuv

i appearing left-most in L�. Putting this together we have
(S� \ S) ⊆ V (G) and define I = (S� \ S). It remains to show that I is an independent
set, meaning that we have {u, v} �⊆ S for edges {u, v} ∈ E(G). But this has to hold as
otherwise xuv

r could weakly left r-reach both u and v, meaning that

|Wreachleftr(G�, L�, xuv
r)|= |{xuv

r , u, v}|> k = 2,

which leads to a contradiction. Hence, the backwards direction holds as well.
Note that this reduction is polynomial under the assumption that r is a constant.

Consequently, we can conclude the proof.

We want to mention that we are not that satisfied with this reduction, as there
is never an ordering of vertices of G� that achieves a weak r-coloring of 2, and this is
easily detectable — we will never be able to place one of the vertices yuv

i for i ≥ 2 and
{u, v} ∈ E in any right extension of L. It would be nice to have a reduction that also
reflects the hardness of the entire problem, including right extensions of larger size.

Nonetheless, we can copy the proof for Theorem 5.2.1, and show that IC-WCOL-
LEFT(r) is W[1]-hard when parameterized by k and c, meaning that we cannot expect an
FPT-algorithm for IC-WCOL-LEFT(r) parameterized by k and c unless FPT = W[1].

Theorem 5.2.2. IC-WCOL-LEFT(r) parameterized by c is W[1]-hard for each fixed
r ≥ 1 and k ≥ 2. In particular, the problem is W[1]-hard when parameterized by k + c
for each r ≥ 1.

Proof sketch. We observe that this is achieved by the same reduction as in the proof
for Theorem 5.2.1 by adding further vertices. Namely, for k > 2 we add k − 2 vertices
for each edge {u, v} in the original graph and make them adjacent to yuv

2 . This will
result in an offset for the size of weakly left r-reachable sets of vertices xuv

r . Note that
Independent Set is W[1]-hard parameterized by the size p of the independent set
[DF95]. The parameter p of Independent Set is transformed to parameter c = p. For
fixed k, the integer k + c only depends on p, and we have a parameterized reduction.

29

5. Left-to-Right Heuristics and Turbocharging

As we now know that k and c are not enough for designing an FPT-algorithm, we
look for other parameters that often come up in graph theory. A well-known parameter
is the maximum degree Δ of a graph. We want to present an FPT-algorithm that makes
use of this parameter, showing fixed-parameter tractability of IC-WCOL-LEFT(r)
parameterized by r, c and the maximum degree of a graph. Although the maximum
degree of a graph is not always small in real-world graph instances, there are still instances
where it might be small, and our presented algorithm might be useful. Furthermore, this
results gives first insights for parameterizations by other parameters, as the maximum
degree is an upper bound to a variety of other graph parameters.

Theorem 5.2.3. IC-WCOL-LEFT(r) is solvable in time O((2c)c · Δ3r·c · n
O(1)
G). In

particular, IC-WCOL-LEFT(r) is fixed-parameter tractable when parameterized by c +
r + Δ.

Proof. We provide a search tree algorithm that runs in FPT-time and results in a NO-
instance, a YES-instance, or an instance where an exponential algorithm will run in a
time bounded by c, r, and Δ. Let (G, L, k, c) be an instance of IC-WCOL-LEFT(r)
such that L is a subordering of vertices S ⊆ V and G has maximum degree Δ. It follows
immediately that |NG

r (v)|≤ Δr and |NG
2r(v)|≤ Δ2r. Notice that this also holds for every

subgraph G� of G. We have to place c vertices of V \ S to the right of L. Let us call
these c positions right of L slots and let a slot be free if no vertex is placed into the slot.
Let the set of slots be [c]. In a particular node in the search tree we will have that some
slots are occupied by a vertex from V \ S and some slots are free. Notice that the sets
Wreachleft−1

r (G, L�, v) cannot change for each v ∈ S in any right extension L� of L by
Lemma 5.1.3. Furthermore, Wreachleftr(G, L�, v) = Wreachleftr(G, L, v) for any right
extension of L� of L and v ∈ S. Moreover, Wreachleftr(G, L�, v) ⊇ Wreachleftr(G, L, v)
for any right extension of L� of L and v ∈ V \ S. As new paths resulting in the increase
of a weakly left r-reachable set will never go through S we can forget about S completely
during the algorithm, only tracking sizes of weakly left r-reachable sets of vertices
v ∈ V \ S w.r.t. L. Hence, let G� be the graph obtained from G by removing all vertices
in S and let f(v) = |Wreachleftr(G, L, v)| for each v ∈ V \ S. To formalize all of this, we
define the following more general problem.

30

5.2. A First Natural Turbocharging Problem

IC-Left-Branch
Input: A graph G, a function f : V (G) → N ∪ {0}, integers k and r, and an

injective assignment g : X → V (G) with X ⊆ [c].
Problem: Find an injective assignment g� : [c] → V (G) such that

• g(s) = g�(s) for all slots s ∈ X and

• f(v) + Wreachleftr(G, L, v) ≤ k for each v ∈ V (G),

where L is the subordering induced by the function g�. To be more
precise, L is a subordering of the vertices g�([c]) with u L v if and only if
g−1(u) ≤ g−1(v) for u, v ∈ g�([c]).
Otherwise, state that there is no such assignment.

In each node of the search tree we are given an instance of IC-Left-Branch that we
want to solve. The problem instance of IC-Left-Branch corresponding to the root
node of the search tree will have g = ∅ as every slot is free. Problem inputs f, k and r are
defined as above, and the input graph is G�. We define Y as the set of vertices that are
already placed into a slot, so Y = g(X). The set of free slots is [c]\X. In what follows, G
refers to the graph corresponding to the problem IC-Left-Branch. We continue by
providing the following branching rule that decides on placing a vertex into a free slot —
creating a new assignment g� by extending the domain of g by one new slot.

Branching rule. We are given an instance (G, f, k, r, g, X) of IC-Left-Branch. Let
v ∈ V \ Y be any vertex with NG

2r(v) ∩ Y = ∅ and ∀w ∈ NG
r (v) : f(w) < k.

(1) Try all possibilities of placing a vertex u ∈ NG
2r(v) \ NG

r (v) into any free slot,
resulting in |N2r(v) \ NG

r (v)|·# branches where # is the number of free slots inside
the current search tree node.

(2) Try all possibilities of placing a vertex u ∈ ({v} ∪ NG
r (v)) into the leftmost free

slot, that is, the slot min{s ∈ [c] \ X}, resulting in |NG
r (v)|+1 branches.

Correctness of the branching rule. We argue that if there is valid a solution g∗,
that is, an injective assignment satisfying the requirements of IC-Left-Branch that
extends the current branch, then there is a (possibly different) solution g� that extends
the current branch and can be found in a branch obtained by branching rules (1) and (2).
Let L∗ and L� be the suborderings corresponding to the assignments g∗ and g� respectively.
Let S∗ = g∗([c]) and S� = g�([c]). We consider two cases.

• Case 1: S∗ contains a vertex u ∈ NG
2r(v) \ NG

r (v). Observe that g∗ can be found in
some branch resulting from (1).

• Case 2: S∗ does not contain any vertex from NG
2r(v) \ NG

r (v).

31

5. Left-to-Right Heuristics and Turbocharging

– Case 2.1: S∗ contains vertices from {v} ∪ NG
r (v). Then inspect the leftmost

vertex u ∈ S∗ ∩ ({v}∪NG
r (v)) w.r.t. L∗. We construct another solution L� that

places u in the first free slot w.r.t. to the current branch by rotating vertices
between the first free slot and u inclusively one step to the right; that is, we
replace (v1, . . . , vm, u) by (u, v1, . . . , vm), where v1 is the vertex placed at the
first free slot w.r.t. the current branch and (v1, . . . , vm, u) is the consecutive
part of the subordering L∗ between the first free slot and u, inclusively. This
is another solution because shortest paths from u to vertices v1, . . . , vm have
length at least r + 1 as S∗ does not contain vertices from NG

2r(v) \ NG
r (v), and

we chose the leftmost u.
– Case 2.2: S∗ does not contain any vertex from {v}∪NG�

r (v). We can construct
another solution L� that places v in the first free slot s w.r.t. the current branch
by shifting every vertex in L∗ starting from s one step to the right and placing v
at slot s; that is, we replace (v1, . . . , vm) by (v, v1, . . . , vm−1) where v1 is the
vertex placed at slot s and (v1, . . . , vm) is the consecutive part of L∗ from slot s.
The vertex vm simply is removed from the ordering. This is another solution
because f(u) < k for each u ∈ NG�

r (v), so that v being in weakly left r-reachable
sets of vertices u does not contradict f(u) + |Wreachleftr(G, L�, u)|≤ k.

Branching is not applicable anymore. Assume that the branching rule is not
applicable anymore. There are two cases, either there are no free slots or there are free
slots. If there are no free slots, we check if we have a valid solution for the original instance
of the problem IC-WCOL-LEFT(r) by checking the value f(v) + |Wreachleftr(G, L, v)|
for every v ∈ V (G) which can be done in polynomial time.

In the second case there still are free slots, so we have work to do by placing vertices
into slots.

Bounded number of vertices. We argue that in the second case the vertices that
still can be placed into a free slot such that we obtain a valid solution is bounded by a
function of r, Δ, and c. A simple exponential algorithm that tries to place these vertices
into the remaining free slots in any order will run in FPT-time parameterized by r, Δ,
and c. As the branching rule is not applicable anymore, for every vertex v ∈ V \ (S ∪ Y)
we have that either NG

2r(v) ∩ Y �= ∅ or ∃w ∈ NG
r (v) : f(w) ≥ k. We consider two cases:

• Case 1: NG
2r(v)∩Y �= ∅. As we have c free slots in the beginning of the algorithm, |Y |

is at most c. Each vertex u ∈ Y can contribute to at most |NG
2r(u)|≤ Δ2r vertices v

with NG
2r(v) ∩ Y �= ∅. Hence, we have at most c · Δ2r vertices v of this kind.

• Case 2: NG
2r(v) ∩ Y = ∅ and ∃w ∈ NG

r (v) : f(w) ≥ k. It follows that w �∈ Y . We
would only be able to place v into a free slot if we also place w into an earlier slot.
So we consider two cases:

– Case 2.1: ∃x ∈ NG
r (w) : f(x) ≥ k. As NG

r (w) ⊆ NG
2r(v) we have that x �∈ Y .

In this case we will not be able to place neither w nor x into a free slot such

32

5.2. A First Natural Turbocharging Problem

that we obtain a valid solution. Thus, we also cannot place v, and we do not
have to count v at all as there is no solution that will place v into a free slot.
Notice that this case is detectable in polynomial time.

– Case 2.2: ¬∃x ∈ NG�
r (w) : f(x) ≥ k. As the branching rule is not applicable

anymore we must have that NG
2r(w) ∩ Y �= ∅. Thus, w is one of the c · Δ2r

vertices from case 1. Furthermore, w can only contribute to Δr vertices v.
Hence, we can only have c · Δ3r vertices v.

Putting everything together we have at most c · (Δ3r + Δ2r) ≤ 2c · Δ3r vertices that still
can be placed into a free slot. For the remaining part of the algorithm we can simply
apply a brute-force algorithm, that tries putting any of the vertices into the remaining
free slots of the current node of the branching tree.

Time complexity. Without loss of generality we assume that the branching rule can
always be applied 0 ≤ i ≤ c times. Then the branching part of the algorithm runs in time

O(nO(1)
G ·

i−1	
j=0

[(Δ2r − Δr)(c − j) + Δr]) ⊆ O(nO(1)
G ·

i−1	
j=0

[Δ2r(c − j)])

⊆ O(nO(1)
G · ci · Δ2r·i).

For each node of the search tree where the branching rule cannot be applied anymore
the remaining part runs in time

O(nO(1)
G ·

c−1	
i

[2c · Δ3r]) = O(nO(1)
G · (2c)c−i · Δ3r·(c−i)).

Putting everything together the whole algorithm will run in O((2c)c · Δ3r·c · n
O(1)
G),

meaning that the problem is fixed parameter tractable parameterized by c + r + Δ.
Certainly, there exists a better bound, but we do not expect there to be a feasible
asymptotic runtime applying this branching rule.

We do not implement the algorithm contained in the above proof, as the implementa-
tion would be rather complicated, and we do not see a big runtime improvement compared
to the following XP-algorithm of Proposition 5.2.4. Furthermore, the polynomial factor
of the FPT-algorithm is also rather high if we want to update weakly left r-reachable
sets during the branching algorithm to achieve lower bounds for weakly left r-reachable
sets, as we do not always place vertices at the end of a subordering. Thus, Theorem 5.2.3
exclusively serves as theoretical evidence. As an open question we propose looking at
other parameters that are always smaller than the maximum degree of a graph such as
the h-index [ES12].

A much simpler algorithm for IC-WCOL-LEFT(r) can be found by realizing that
IC-WCOL-LEFT(r) is in XP.

Proposition 5.2.4. IC-WCOL-LEFT(r) parameterized by c is in XP.

33

5. Left-to-Right Heuristics and Turbocharging

Proof. We can simply try placing any of the vertices from V \ S into the next free slot.
As there are c free slots the overall algorithm runs in O(|V \ S|c·nO(1)

G) ⊆ O(nc
G · n

O(1)
G)

time.

We include the algorithm acquired by Proposition 5.2.4 in our implementations.
Furthermore, we call the turbocharging approach that applies IC-WCOL-LEFT(r)
implementing this algorithm TC-LastC. We will see more on the implementation details
of this approach in Chapter 6.

Furthermore, our implementations also include an approach that only changes the
order of the last c vertices of a non-extendable subordering, we call this approach TC-
LastC-reorder. Clearly, the runtime of a trivial implementation is bounded by O(c! ·nO(1)

G).
Note that TC-LastC-reorder is more of a heuristic approach — it could be that there is
an extendable subordering of size |S|, but TC-LastC-reorder does not find it, even if we
let c = |S|.

5.3 A More Local Approach

Due to the relatively bad results achieved by the TC-LastC approach for turbocharging
left-to-right heuristics we continue designing new turbocharging problems. For this, we
want to point out a big weakness of only considering the last c positions of a subordering
during turbocharging. Namely, a heuristic could have made mistakes rather early in
the subordering, while the caused problem in the form of an overfull vertex in a non-
extendable subordering, is detected at a much later point in time. We would have to
make the parameter c very big to fix this problem using the TC-LastC approach, leading
to infeasible runtimes. Motivated by this we want to present two different turbocharging
problems that do not consider the last c vertices of a non-extendable subordering but
rather a specific part that we deem to cause the aforementioned problem.

To find such problematic parts we consider the first indication for problems in a non-
extendable subordering — overfull vertices, that is, vertices whose weakly left r-reachable
sets exceed size k. Let L be a non-extendable subordering of vertices S and U be the
set of overfull vertices. Assuming that we can fix the problem by only considering local
neighborhoods of vertices in U , we can look at either the r-neighbourhoods of vertices
in U , or the weakly left r-reachable sets of vertices in U . These two different local
neighborhoods lead to two new turbocharging problems. But as in both of them we want
to replace a subset of vertices of S by different vertices, we can combine both approaches
into the single theoretical problem IC-Replace(r).

34

5.3. A More Local Approach

IC-Replace(r)
Input: A graph G, a subordering L of vertices S ⊆ V , a positive integer k, and a

set of vertices X ⊆ S.
Problem: Compute an extendable subordering L� of vertices S� such that

• (S \ X) ⊆ S�,

• |S|= |S�|, and

• posL�(v) = posL(v) for all v ∈ (S \ X).

Otherwise, report that there exists no such subordering.

Informally, IC-Replace(r) asks, for a subordering L of vertices S, to replace the vertices
X ⊆ S by (possibly) different vertices. It is clear that we can solve IC-WCOL-LEFT(r)
with IC-Replace(r) by letting X be the rightmost c vertices of L. Due to this, we
directly obtain some hardness results.

Corollary 5.3.1. IC-Replace(r) is NP-hard for each r ≥ 1 and is W[1]-hard when
parameterized by |X| for each fixed r ≥ 1 and k ≥ 2.

Proof sketch. This result follows immediately from Theorem 5.2.1 and Theorem 5.2.2 by
a reduction from IC-WCOL-LEFT(r) to IC-Replace(r).

But as for IC-WCOL-LEFT(r) there is a trivial XP-algorithm for IC-Replace(r)
that we will be using as a starting point for our implementations.

Proposition 5.3.2. IC-Replace(r) parameterized by |X| is in XP.

Proof sketch. We can simply try placing any of the vertices from V \ (S \ X) into the
next free position that is held by a vertex from X. As there are |X| free positions the
overall algorithm runs in O(|V \ (S \ X)||X|·nO(1)

G) ⊆ O(n|X|
G · n

O(1)
G) time.

Some implementation details for the XP-algorithm sketched above that allow efficient
updating of weakly left r-reachable sets during placement of a vertex into a free position
will follow in Chapter 6.

We want to describe two turbocharging approaches that make direct use of IC-
Replace(r). Let L be a non-extendable subordering of vertices S with overfull vertices U ,
and let c be a positive integer. We propose two different invocations of IC-Replace(r)
that try to make L extendable again.

• TC-RNeigh: Let X be a random subset of S∩(�v∈U [NG
r (v)∪{v}]) of size min(c, |S∩

(�
v∈U [NG

r (v) ∪ {v}])|). Try to fix L by applying IC-Replace(r) with this set X.

• TC-Wreach: Let X be a random subset of S ∩ (�
v∈U Wreachleftr(G, L, v)) of

size min(c, |S∩(�v∈U Wreachleftr(G, L, v))|). Try to fix L by applying IC-Replace(r)
with this set X.

35

5. Left-to-Right Heuristics and Turbocharging

As we fixed c, we only obtain sets X of size at most c for both turbocharging problems.
Hence, we can bound the running time of both approaches. The motivation for both
approaches is that we want to fix problematic parts of the subordering L for each overfull
vertex by considering the two kinds of local neighborhoods — r-neighbourhoods and
weakly left r-reachable sets.

As for the TC-LastC approach we also include an implementation that only changes
the order of vertices in X for vertices X defined as in TC-RNeigh and TC-Wreach. We
call these approaches TC-RNeigh-reorder and TC-Wreach-reorder; again, running times
of trivial implementations for both approaches are bounded by O(c! ·nO(1)

G).
Note that in contrast to TC-LastC, for all approaches TC-RNeigh, TC-RNeigh-

reorder, TC-Wreach, and TC-Wreach-reorder there is a possibility that they do not find
an extendable subordering of size |S| if there exists such a subordering, even if we let
c = |V |.

5.4 Turbocharging by Iterative Swapping
During their research regarding weak coloring numbers, Nadara et al. [Nad+19] not
only proposed a variety of heuristics for computing orderings of small weak r-coloring
numbers, but also proposed a local search that takes an ordering and tries to modify
it until its weak r-coloring number decreases. We want to briefly describe this local
search algorithm and propose a turbocharging approach based on it. We do this as the
local search by Nadara et al. performs exceptionally well and improves weak r-coloring
numbers of orderings computed by heuristics for a lot of instances by a significant amount.
Furthermore, we have to mention that the following turbocharging approach does not
fit the spirit of turbocharging, as we are not using an exact method. Rather, we are
augmenting a heuristic with another heuristic.

Let L be an ordering of vertices; the local search by Nadara et al. makes use of the
following two rules.

Rule 1: Let v ∈ V be any vertex such that the value |Wreachr(G, L, v)| is maximal. Swap v
with a random vertex earlier in the ordering. This should decrease the size of the
weakly r-reachable set of v. If the swap did not decrease the weakly r-reachable set
of v, we still apply this swap.

Rule 2: If we sort V by |Wreachr(G, L, v)|, choose v ∈ V randomly among the 10 largest
vertices w.r.t. this order; let k1 = |Wreachr(G, L, v)| and choose k2 randomly
such that max(1, k1 − 3) ≤ k2 ≤ k1 − 1. Swap v with its left neighbor until
|Wreachr(G, L, v)|= k2.

During one run of the local search, in the first step Rule 1 is applied a number of times or
until there is no improvement in the weak r-coloring number of L for a specific amount
of applications of Rule 1. Then Rule 2 is applied a number of times to the best obtained
ordering in the first step. The ordering with the smallest weak r-coloring number that
was found during one of both steps is returned.

36

5.5. Turbocharging by Merging

Algorithm 5.1: Turbocharging with iterative swapping
Input: A graph G = (V, E) and a non-extendable subordering L with overfull

vertices U
Output: An extendable subordering

1 while L is non-extendable do
2 Apply TC-Rule 2 until L is extendable or the size of U did not decrease for

the last 50 applications of TC-Rule 2;
3 Apply TC-Rule 1 until L is extendable or at most 20 times;
4 end
5 return L

Based on this local search algorithm we propose a similar local search algorithm
that fixes a non-extendable subordering L. Let L be a non-extendable subordering of
vertices S with overfull vertices U . We again make use of two rules.

TC-Rule 1: Let v ∈ U be a random overfull vertex. Swap v with a random vertex earlier in the
subordering. If v �∈ S, then v will replace a random vertex w ∈ S, while w will be
removed from the subordering, making it a free vertex.

TC-Rule 2: If we sort V by |Wreachleftr(G, L, v)|, choose v ∈ V randomly among the 10 largest
vertices w.r.t. this order; let k1 = |Wreachleftr(G, L, v)| and choose k2 randomly
such that max(1, k1 − 3) ≤ k2 ≤ k1 − 1. Swap v with its left neighbor until
|Wreachleftr(G, L, v)|= k2. If v �∈ S then the first swap will make the rightmost
vertex of L free and place v at the rightmost position instead.

The applications of TC-Rule 1 and TC-Rule 2 during the local search are illustrated in
Algorithm 5.1. TC-Rule 2 does a more local search by small changes to L. But if the
application of TC-Rule 2 does not make any progress, then TC-Rule 1 is applied a number
of times such that we make bigger changes to L. The values 50 and 20 were chosen as
they empirically produced good results. We call the turbocharging approach based on
Algorithm 5.1 TC-Iterative-Swap. Again, we want to emphasize that this approach does
not fit the scheme of turbocharging as we defined it, notice that Algorithm 5.1 cannot
return a negative result but can only time out, and that we do not have a conservation
parameter c.

5.5 Turbocharging by Merging
The last turbocharging approach for a left-to-right heuristic we want to present is based
on “merging” a set of vertices into a fixed subordering L. That is, we might assume
that the relative order of a vertex set S1 ordered by L is already correct, but we want to
extend it by another vertex set S2 of vertices whose relative order we might or might not
know. To formalize this we introduce the problems WCOL-Merge-Ordered(r) and
WCOL-Merge(r), and discuss their complexity. Later we will describe how we apply

37

5. Left-to-Right Heuristics and Turbocharging

WCOL-Merge(r) to non-extendable suborderings, introducing another turbocharging
approach.

WCOL-Merge-Ordered(r)
Input: A graph G, an integer k, three disjoint sets S1, S2, and T such that

V (G) = S1 ∪ S2 ∪ T , and two suborderings L1 and L2 such that L1 is a
subordering of the vertex set S1, and L2 is a subordering of the vertex
set S2.

Problem: Compute an extendable subordering L of vertices S1 ∪ S2 such that

• L[S1] = L1, and

• L[S2] = L2.

Otherwise, report that there is no such subordering.

Informally, WCOL-Merge-Ordered(r) asks to find an extendable subordering of
vertices S1 ∪ S2 that agrees with L1 on S1 and that agrees with L2 on S2.

WCOL-Merge(r)
Input: A graph G, an integer k, three disjoint sets S1, S2 and T such that V (G) =

S1 ∪ S2 ∪ T , and a subordering L1 of the vertex set S1.
Problem: Compute an extendable subordering L of vertices S1 ∪ S2 such that

• L[S1] = L1.

Otherwise, report that there is no such subordering.

Informally, WCOL-Merge(r) asks to find an extendable subordering of vertices S1 ∪ S2
that agrees with L1 on S1.

First, we want to investigate whether WCOL-Merge-Ordered(r) admits a polyno-
mial time algorithm. We already know that this is not the case for WCOL-Merge(r)
because by setting S1 = T = ∅ we could solve WCOLORD(r). In Theorem 5.5.1 we show
that we cannot expect a polynomial-time algorithm for WCOL-Merge-Ordered(r)
(unless P = NP).

Theorem 5.5.1. WCOL-Merge-Ordered(r) is NP-complete for r = 2 and k = 6.

To prove Theorem 5.5.1, we first introduce the problem Restricted 2,3-SAT and
show its NP-hardness. The idea for this problem and its NP-hardness proof stem from a
post on https://cs.stackexchange.com/ [17].

38

https://cs.stackexchange.com/

5.5. Turbocharging by Merging

Restricted 2,3-SAT
Input: A set Var of variables and a set C of clauses such that

• cl ⊆ Var ∪ {¬v | v ∈ Var} for all cl ∈ C,

• |cl|= 3 or |cl|= 2 for all cl ∈ C, and

• each literal # ∈ Var ∪ {¬v | v ∈ Var} appears in at most two clauses.

Problem: Is there a variable assignment A : Var → {0, 1} such that

• A(#) = 1 for at least one # ∈ cl for each clause cl ∈ C,

where A(¬v) = 1 − A(v) for each v ∈ Var? We call such an assignment A
satisfying assignment.

Comparing to 3-SAT, Restricted 2,3-SAT also allows clauses of size 2, but each literal
can appear in at most two clauses. This does not change its NP-hardness.

Lemma 5.5.2. Restricted 2,3-SAT is NP-hard.

Proof sketch. We give a reduction from 3-SAT which is NP-complete [GJ79]. Let (Var, C)
be an instance of 3-SAT. We construct an instance of Restricted 2,3-SAT as follows.
Let v ∈ Var. For each occurrence of v or ¬v inside a clause cl we introduce a new variable vi

and replace v by vi and ¬v by ¬vi in cl, respectively. Assume that we have introduced k
instances v1, . . . , vk of v. We create k clauses {v1, ¬v2}, {v2, ¬v3}, . . . , {vk, ¬v1} and add
them to C, creating a new clause set C �. This set of clauses forces an equivalence of
variables v1, . . . , vk, hence A(v1) = · · · = A(vk) must hold in every satisfying assignment A.
We have that there is a satisfying assignment A of the given 3-SAT-instance if and only
if there is a satisfying assignment A for the constructed Restricted 2,3-SAT-instance.
Clearly, in the newly constructed instance every literal appears at most twice — once
in an old clause cl ∈ C of size three and once in a new clause of size two that forces its
equivalence with other variables.

We are now ready to prove Theorem 5.5.1.

Proof of Theorem 5.5.1. Obviously, WCOL-Merge-Ordered(r) is in NP. We show
its NP-hardness by a reduction from Restricted 2,3-SAT which is NP-hard by
Lemma 5.5.2. Let (Var, C) be an instance of Restricted 2,3-SAT, where Var =
{v1, . . . , vn} is a set of variables and C = {cl1, . . . , clm} is a set of clauses of sizes two
and three. Without loss of generality let cli with 1 ≤ i ≤ p be the clauses of size three
and clj with p < j ≤ m be the clauses of size two. We write ¬Var for {¬v | v ∈ Var}. We
construct an instance (G, k, S1, S2, T, L1, L2) of WCOL-Merge-Ordered(2) as follows.
Let G = (V, E) where

• V = C ∪ Var ∪ ¬Var ∪ {x, y1, . . . , y6} ∪ {zj,1, zj,2 | p < j ≤ m}, and

39

5. Left-to-Right Heuristics and Turbocharging

ck1
= {vi1 ,¬vi2 , vi3}

v1 vi1 vi2 vn x

L1

L2

ck2
= {vj1 , vj2}

vi3

cl1

vj2vj1

¬v1 ¬vi1 ¬vi3 ¬vn y1 y6 clmclk1
clk2

zk2,1zk2,2¬vi2¬vj2¬vj1

Figure 5.2: Sketch of the reduction for the proof of Theorem 5.5.1.

• E = {{v, ¬v} | v ∈ Var} ∪ {{x, yi} | 1 ≤ i ≤ 6} ∪ {{cl, #} | cl ∈ C, # ∈ cl} ∪
{{clj , zj,1}, {clj , zj,2} | p < j ≤ m}.

Furthermore, let S1 = Var ∪ {x}, S2 = ¬Var ∪ {y1, . . . , y6} ∪ C, and T = ∅. Lastly we
define the two suborderings L1 and L2 as

L1 = (v1, . . . , vn, x),

and

L2 = (¬v1, . . . , ¬vn, y1, . . . , y6, cl1, . . . , clp, zp+1,1, zp+1,2, clp+1, . . . , zm,1, zm,2, clm).

An instantiation for this reduction is depicted in Figure 5.2, where it is shown in more
detail for a clause clk1 of size three and clk2 of size two. We show that there is an
extendable subordering L of vertices V (G) such that

• L[S1] = L1, and

• L[S2] = L2

if and only if there is an assignment A : Var → {0, 1} with

• A(#) = 1 for at least one # ∈ cl for each clause cl ∈ C.

We argue correctness, that is, we show that there is an extendable subordering L of
vertices S1 ∪ S2 such that L[S1] = L1 and L[S2] = L2 if and only if there is a satisfying
assignment A.

“⇒”: Assume that there is the aforementioned subordering L. Notice that vi ≺L clj
for all 1 ≤ i ≤ n and 1 ≤ j ≤ m because x has to be left of y6 and thus also cl1 as

40

5.5. Turbocharging by Merging

otherwise |Wreachleft2(G, L, x)|> 6. We construct an assignment A : Var → {0, 1} as
follows. Let A(v) = 1 if v ≺L ¬v and A(v) = 0 otherwise. We claim that A(#) = 1 for
at least one # ∈ cl for each clause cl ∈ C. Assume to the contrary that this is not true,
hence, there exists a clause cl such that A(#) = 0 for all # ∈ cl. Then by the construction
of A we have that

• vi ≺L ¬vi if # = ¬vi for some i ∈ [n] and

• ¬vi ≺L vi if # = vi for some i ∈ [n].

As all vi and ¬vi are left of cl w.r.t. L we have |Wreachleft2(G, L, cl)|= 7 > 6 because
v, ¬v ∈ Wreachleft2(G, L, cl) if v ∈ cl or ¬v ∈ cl. It does not matter if |cl|= 2 or |cl|= 3
as we have “offset” the weakly left 2-reachable sets of clauses cl of size two by two. Hence,
we have a contradiction.

“⇐” Assume that we have an assignment A : Var → {0, 1} such that A(#) = 1 for at
least one # ∈ cl for each cl ∈ C. Let us define L as

L = (#1
1, #2

1, . . . , #1
n, #2

n, x, y1, . . . , y6, cl1, . . . , clp, zp+1,1, zp+1,2, clp+1, . . . , zm,1, zm,2, clm)),

and

• #1
i = vi if A(vi) = 1 and #1

i = ¬vi otherwise, and

• #2
i = vi if A(vi) = 0 and #2

i = ¬vi otherwise.

It is evident that

• L[S1] = L1, and

• L[S2] = L2.

We only have to check cardinalities of weakly left 2-reachable sets.

• We have that |Wreachleft2(G, L, #j
i)|≤ 6 for all 1 ≤ i ≤ n and j = 1, 2 because

each literal appears in at most two clauses. Hence, #j
i can at most weakly 2-reach

itself, #j�
i , and four other literals that it appears with inside a clause. Here, j� is 1

if j = 2 and 2 otherwise. The vertex #j
i can only weakly 2-reach other literals as all

other vertices are right to it w.r.t. L.

• It is also the case that |Wreachleft2(G, L, cli)|≤ 6 for each 1 ≤ i ≤ m because
for some variable vj where vj ∈ cli or ¬vj ∈ cli not both vj and ¬vj are weakly
2-reachable from cli. This is true because A(#) = 1 for some # ∈ cli. So each clause
of size 3 can weakly 2-reach at most 5 literals and each clause of size two can weakly
2-reach at most 3 literals. Furthermore, clauses ci of size 2 also weakly 2-reach 2
vertices zi,1 and zi,2.

• It is clear that |Wreachleft2(G, L, zj
i)|≤ 5 for p < i ≤ m and j = 1, 2.

41

5. Left-to-Right Heuristics and Turbocharging

• Furthermore, |Wreachleft2(G, L, x)|= 1 and |Wreachleft2(G, L, yi)|= 2 for all 1 ≤
i ≤ 6.

As all cardinalities do not exceed 6 we are done with the backwards direction.
This reduction is polynomial, so we can conclude the proof.

An interesting fact about the proof and the contained reduction of Theorem 5.5.1
is that it could give us insights about another problem — if we could “force” a specific
order of vertices for an ordering without increasing weakly r-reachable sets too much
this could lead to a similar reduction to prove NP-completeness of WCOLORD(r) for
the missing case of r = 2.

As we now know that both WCOL-Merge(r) and WCOL-Merge-Ordered(r)
are NP-complete, we want to focus on finding fixed-parameter algorithms for WCOL-
Merge(r), as it is more powerful than WCOL-Merge-Ordered(r) — in the sense
that it covers more possibilities of merging S2 into S1. In Theorem 5.5.3 we show that
WCOL-Merge(r) is fixed-parameter tractable parameterized by k+ |S2|, which supports
its relevance in designing a turbocharging approach based on it.

Theorem 5.5.3. WCOL-Merge(r) is solvable in time O(|S2|! ·k|S2| · n
O(1)
G). In partic-

ular, WCOL-Merge(r) is fixed-parameter tractable when parameterized by k + |S2|.

For the proof of Theorem 5.5.3 we need definitions for two operations that we will
use throughout the proof. The algorithm that proves fixed-parameter tractability of
WCOL-Merge(r) will apply these operations during a search tree algorithm.

Definition 5.5.4. Let G be a graph, L = (s1, . . . , sn) be a subordering of vertices
S ⊆ V (G), and v ∈ V (G)\S. We denote by placeafter(L, si, v) the subordering of vertices
S ∪ {v} that is obtained by placing v directly after si. To be precise, placeafter(L, si, v)
is defined as

placeafter(L, si, v) = (s1, . . . , si, v, si+1, . . . , sn).

Equivalently, placebefore(L, si, v) is defined as

placebefore(L, si, v) = (s1, . . . , si−1, v, si, . . . , sn).

This leads to the definitions of breakpoints, which will be crucial for the proof of
Theorem 5.5.3.

Definition 5.5.5. Let G be a graph, L = (s1, . . . , sn) be a subordering of vertices
S ⊆ V (G), and v ∈ V (G) \ S. A vertex s ∈ S is called breakpoint of v if

Wreachleftr(G, placebefore(L, s, v), v) �= Wreachleftr(G, placeafter(L, s, v), v).

Let bp(G, L, v) ⊆ S be the set of breakpoints of v.

We also notice another useful property of breakpoints.

42

5.5. Turbocharging by Merging

Observation 5.5.6. We have that s �∈ bp(G, L, v) if and only if

Wreachleftr(G, placebefore(L, s, v), u) = Wreachleftr(G, placeafter(L, s, v), u)

for all u ∈ V (G).

This observation will be very helpful throughout the proof of Theorem 5.5.3.
If we want to merge a vertex v into a subordering L of vertices S, creating a new

subordering L�, then the breakpoints bp(L, v) of v are exactly the candidates for elements
of the weakly left r-reachable set of v w.r.t. L�. We want to formalize this in the following
claim.

Lemma 5.5.7. Let G be a graph, L = (s1, . . . , sn) be a subordering of vertices S ⊆ V (G),
and v ∈ V (G) \ S. Furthermore, let L� be a subordering of vertices S ∪ {v} such that
L�[S] = L. Then

Wreachleftr(G, L�, v) \ {v} = {s ∈ bp(G, L, v) | s L� v}.

Proof. Let X = {s ∈ bp(G, L, v) | s L� v}. We prove both inclusions of
Wreachleftr(G, L�, v) \ {v} = X.

Assume that s ∈ (Wreachleftr(G, L�, v) \ {v}). As s is weakly left r-reachable from v,
there is a path P = (v, u1, . . . , u�, s) of length of at most r that does not go left of s
w.r.t. to L�. Consider the same path P in placeafter(L, s, v). Clearly, s is also weakly
left r-reachable in this ordering because of the same path. Contrary to that, s cannot
be weakly left r-reachable from v in placebefore(L, s, v) because v is left of s in that
ordering. Hence, s ∈ bp(G, L, v) and Wreachleftr(G, L�, v) \ {v} ⊆ X.

Assume that s ∈ X. Then s must be weakly left r-reachable from v w.r.t.
placeafter(L, s, v) through a path P of length at most r. But s is also weakly left
r-reachable from v w.r.t. L� through the same path P . Hence, X ⊆ Wreachleftr(G, L�, v)\
{v} also holds.

We are ready to prove Theorem 5.5.3.

Proof of Theorem 5.5.3. We give a recursive search tree algorithm that solves WCOL-
Merge(r) in time O(|S2|! ·k|S2| · n

O(1)
G). This algorithm is given in Algorithm 5.2 as a

recursive function. Given an instance (G, L1, S1, S2, S3) of WCOL-Merge(r), the given
function can be invoked as Recursive-merge(S1, S2, S3, L1), and will either return an
extendable subordering L� of vertices S1 ∪ S2 such that L�[S1] = L1, or it will return
false if no such subordering exists. In a recursive call, the algorithm places one vertex
v ∈ S2 into L and thus decreases the cardinality of S2 and increases the cardinality of S1.
Furthermore, in each recursive call the following new calls are created for each vertex
v ∈ S2.

(1) For each vertex s ∈ bp(G[S1 ∪ S3 ∪ {v}], L, v) consider L� = placeafter(L, s, v). If
|Wreachleftr(G[S1 ∪ S3 ∪ {v}], L�, v)|≤ k, then create a new recursive call (S1 ∪
{v}, S2 \ {v}, S3, L�).

43

5. Left-to-Right Heuristics and Turbocharging

Algorithm 5.2: Recursive FPT-algorithm for WCOL-Merge(r)
RECURSIVE-MERGE(S1, S2, S3, L)

1 if |S2|= 0 ∧ ∀v ∈ V (G) : |Wreachleftr(G, L, v)|≤ k then
2 return L
3 end
4 for v ∈ S2 do
5 for s ∈ bp(G[S1 ∪ S3 ∪ {v}], L, v) do
6 L� ← placebefore(L, s, v);
7 if |Wreachleftr(G[S1 ∪ S3 ∪ {v}], L�, v)|≤ k then
8 answer←RECURSIVE-MERGE(S1 ∪ {v}, S2 \ {v}, S3, L�);
9 if answer �=false then

10 return answer
11 end
12 end
13 end
14 s ←rightmost vertex of S1 w.r.t. L;
15 L� ← placeafter(L, s, v);
16 if |Wreachleftr(G[S1 ∪ S3 ∪ {v}], L�, v)|≤ k then
17 answer←RECURSIVE-MERGE(S1 ∪ {v}, S2 \ {v}, S3, L�);
18 if answer �=false then
19 return answer
20 end
21 end
22 end
23 return false

(2) Let L� be the subordering obtained from L by placing v at the right end. If
|Wreachleftr(G[S1 ∪ S3 ∪ {v}], L�, v)|≤ k, then create a new recursive call (S1 ∪
{v}, S2 \ {v}, S3, L�).

Notice that we are only considering the induced subgraph G[S1 ∪ S3 ∪ {v}], as we do not
know where the remaining vertices of S2 will be placed. We want to show that in this
way only k new recursive calls are created for each vertex v ∈ S2 and that the algorithm
finds a solution (subordering L�) if there exists one.

Correctness. Assume that we are in a recursive call (S1, S2, S3, L) of the algorithm and
that there exists an extendable subordering L� of vertices S1 ∪ S2 such that L�[S1] = L1.
We show that a (possibly different) subordering L∗ of S1 ∪S2 with these properties can be
found in one of the generated new recursive calls. Consider the rightmost vertex v ∈ S2
w.r.t. L�. There are two possibilities.

• There is a breakpoint of v (w.r.t. L) right of (w.r.t. L�) v, that is bp(G[S1 ∪
S3 ∪ {v}], L, v) ∩ {s ∈ L | v ≺L� s} �= ∅. Then consider the leftmost breakpoint

44

5.5. Turbocharging by Merging

s ∈ bp(G[S1 ∪ S3 ∪ {v}], L, v) that is right of v w.r.t. L�. We shift v left of s,
creating a new subordering L∗ where the weakly left r-reachable sets of all vertices
do not change because of Observation 5.5.6; that is, we replace (v, u1, . . . , u�, s)
by (u1, . . . , u�, v, s), where (v, u1, . . . , u�, s) is the consecutive part of L� between v
and s. Weakly left r-reachable sets cannot change because none of u1, . . . , u� are in
bp(L, v), and v is the rightmost vertex of S2 w.r.t. L�. Clearly, L∗ can be found
in a recursive call generated from (1) in Line 8 because we try all breakpoints for
every vertex v ∈ S2.

• There is no breakpoint of v (w.r.t. L) right of (w.r.t. L�) v, that is, bp(G[S1 ∪ S3 ∪
{v}], L, v) ∩ {s ∈ L | v ≺L� s} = ∅. Then we can shift v to the end of L�, creating
a new subordering L∗ where weakly left r-reachable sets do not change; that is,
we replace (v, u1, . . . , u�) by (u1, . . . , u�, v), where (v, u1, . . . , u�) is the consecutive
part of L� right of v. Again, weakly left r-reachable sets cannot change because
none of u1, . . . , u� are in bp(L, v), and v is the rightmost vertex of S2 w.r.t. L�. The
subordering L∗ can be found in a recursion call generated from (2) in Line 17.

Notice that none of the if-statements in Line 7 and Line 16 of Algorithm 5.2 contradict
the correctness because the cardinality of the weakly left r-reachable set of v can only
increase in subsequent recursive calls.

Runtime. We show that in each recursion call at most k · |S2| new recursion calls are
created. As the size of S2 decreases by one in each of these new calls, the stated runtime
follows. But this is a direct consequence of Lemma 5.5.7, as if a vertex v is placed to the
right of one of its breakpoints s ∈ bp(G[S1 ∪ S3 ∪ {v}], L, v), then s will be in the weakly
left r-reachable set of v. As we do not recurse if the size of the weakly left r-reachable
set of v exceeds k (if-statements in Line 7 and Line 16), we generate at most k recursive
calls for each vertex v ∈ S2. The rest of the algorithm can be implemented in polynomial
time, resulting in an overall runtime bounded by O(|S2|! ·k|S2| · n

O(1)
G).

Algorithm 5.2 is held rather simple for demonstration purposes, but there are further
optimizations that can be implemented and do not affect the overall time complexity:

• Consider the vertex v in Algorithm 5.2. We only have to iterate over the k leftmost
breakpoints of v by Lemma 5.5.7, which can be easily done by keeping track of weakly
left r-reaching sets of v. Let s be a breakpoint of v and let L� = placeafter(L, s, v).
The leftmost s� ∈ Wreachleft−1

r (G[S1 ∪ S3 ∪ {v}], L�, v) that is not v is the next
possible breakpoint of v.

• We do not need to recurse if the size of some set Wreachleftr(G[S1 ∪ S3], L, v)
exceeds k for some v ∈ S1 ∪ S3, as these sets can only increase in subsequent
recursion calls.

By taking a closer look at the proof of Theorem 5.5.3, we can see that we have
implicitly proven that WCOL-Merge-Ordered(r) is solvable in time O(k|S2| · n

O(1)
G),

45

5. Left-to-Right Heuristics and Turbocharging

as in WCOL-Merge-Ordered(r) we do not have to guess which vertex is rightmost
during the recursive algorithm. This means that we could drop the outer loop of
Algorithm 5.2, letting v be the rightmost vertex of S2 w.r.t. L2.

Turbocharging approach. Applying the fixed-parameter algorithm for WCOL-
Merge(r), we want to introduce another turbocharging approach that we call TC-Merge.
Let L be a non-extendable subordering of vertices S with overfull vertices U . Similar to
TC-Wreach, we want to look at weakly left r-reachable sets of all vertices in U . But instead
of replacing them by other vertices, we now want to resolve problems in L immediately
by defining a merging problem where we want to merge these vertices into a subordering.
Let c be a positive integer and let X be a random subset of �

v∈U Wreachleftr(G, L, v) of
size min(c, |�v∈U Wreachleftr(G, L, v)|). If the size of X is less than c, we randomly add
further vertices from V (G) to X, until the size of X is c. We try to fix L by defining a
WCOL-Merge(r) problem that is solved by Algorithm 5.2. Namely, we set S1 = S \ X,
S2 = X, T = V \ (S ∪ X), and L1 = L[S1]. Letting c be our conservation parameter we
obtain a turbocharging approach with a fixed-parameter tractable turbocharging problem
parameterized by k and c. Notice that the size of the subordering L might increase but
never decrease during one application of the turbocharging problem; but that is not a
problem. Due to the addition of random vertices to X if its size is less than c, we achieve
a turbocharging approach that always finds an extendable subordering if there exists one
by letting c be large enough.

5.6 Discussion
We want to briefly summarize this chapter and give pointers for future research. We
have started by relating the turbocharging framework to left-to-right heuristics, later
proposing different turbocharging approaches. In the first approach, called TC-LastC, we
tried replacing the suffix of a subordering of size c by different vertices. We have shown
that the underlying problem is NP-hard and W[1]-hard when parameterized by c and the
weak r-coloring number k, mentioning that we are not satisfied with the proofs as they do
not reflect the hardness of the whole problem of computing an ordering of vertices with
small weak r-coloring number. Next, we showed that by considering another parameter,
the maximum degree of a graph, we can design a fixed-parameter algorithm for the
problem — although we are certain that there can be achieved a better worst-case time
complexity for a fixed parameter algorithm. There are still a variety of graph parameters
left to investigate that could lead to fixed-parameter tractability of the problem. We are
particularly interested if the problem is fixed-parameter-tractable when parameterized by
the h-index [ES12], the suffix size c and the radius r and the weak r-coloring number k.

We continued by proposing two turbocharging approaches that tried to exploit local
neighborhoods of problematic parts of a subordering, and called these two approaches
TC-Wreach and TC-RNeigh, and again showed their W[1]-hardness when parameterized
by c and the weak r-coloring number k, and NP-hardness for the underlying problems.

46

5.6. Discussion

Inspired by a local search algorithm of Nadara et al. [Nad+19], we proposed a
turbocharging algorithm that is similar to this local search, as both the local search and
our approach iteratively apply swaps to a (sub)ordering to decrease sizes of weakly (left)
r-reachable sets of vertices.

The last approach we proposed is based on “merging” a set S2 of vertices into an
already fixed subordering. For this we have proposed the problem WCOL-Merge(r)
and have shown its fixed-parameter tractability parameterized by the weak r-coloring
number k and the size of the set S2. We are wondering whether there is an algorithm that
solves WCOL-Merge(r) with a better running time bound, in particular, if the running
time can be reduced to O(k|S2|nO(1)

G) or if there is an algorithm that achieves a running
time of O(αp(k,|S2|) · n

O(1)
G) for some constant α and a polynomial p. Furthermore, it is

still unclear to us how other graph parameters such as the h-index, the maximum degree,
or decomposition parameters such as treewidth influence the runtime complexity of the
problems w.r.t. fixed-parameter tractability when parameterizing by these parameters.
Moreover, we were not able to prove or contradict W[1]-hardness of WCOL-Merge(r)
when only parameterizing by the size of S2. Additionally, there are certainly different
ways to apply WCOL-Merge(r) to a turbocharging approach, such as merging a random
subset of vertices.

We are also certain that we did not exhaust turbocharging approaches for turbocharg-
ing left-to-right heuristics, so there are still directions to take.

In the next chapter, we will see how we implemented our proposed turbocharging
approaches and some interesting ways to optimize implementations for these approaches
and the underlying heuristics.

47

CHAPTER 6
Optimizations and

Implementation Details

In this chapter, we want to present further optimizations that we will be using for our
implementations of turbocharging approaches for left-to-right heuristics. Furthermore,
we will present some interesting implementation details. We start by presenting an
observation that leads to an optimization for the heuristic part of our algorithms. Then,
we will explain our implementations for all approaches that turbocharge left-to-right
heuristics in more detail. Next, we will show how some operations on suborderings that
are often used in our implementations can be optimized with respect to their runtime.
We will continue by introducing further optimizations based on connected components of
free vertices and on an adjacency list data structure for a graph G that considers the
subordering L of vertices S ⊆ V (G). At the end of the chapter we will present two lower
bounds for weak coloring numbers for full right extensions of a subordering, one of which
can be also used as a new lower bound for weak coloring numbers of graphs. We apply
these lower bounds during heuristics and in our search tree algorithms for turbocharging
approaches to decrease their explored search spaces.

6.1 Placing Full Vertices Next
During the application of a left-to-right heuristic we iteratively extend a subordering by
one vertex to the right. When applying turbocharging, we want to use this heuristic to
find an ordering of vertices that has weak r-coloring number at most k. At some point
this heuristic might have created a subordering L s.t. |Wreachleftr(G, L, v)|= k for a free
vertex v. It makes sense to place this vertex immediately to the right of L, such that its
weakly left r-reachable set cannot increase anymore. In this section, we want to show
that this is always correct; that is, if there is a full right extension of L whose weak
r-coloring number is at most k, then there is another full right extension of L whose

49

6. Optimizations and Implementation Details

weak r-coloring number is at most k and v is placed immediately to the right of L. For
this we need to show the following simple lemma first.

Lemma 6.1.1. Consider an extendable subordering L of vertices S with free vertices T .
Assume that there is a full right extension L� of L with

∀v ∈ V : |Wreachr(G, L�, v)|≤ k.

For each vertex u ∈ T , let XL�(u) = {v ∈ T | v ≺L� u} be the vertices that are placed
between S and u w.r.t. L�. If Wreachr(G, L�, u) ∩ XL�(u) = ∅, then each path of length at
most r between u and a vertex in XL�(u) goes through S.

Proof. Assume to the contrary that there is a path P of length at most r between u and
a vertex in XL�(u) that does not go through S. Consider the leftmost (w.r.t. L�) vertex x
on this path. Since there is a path from u to x of length at most r that does not go left
of x, x has to be in Wreachr(G, L�, u) ∩ XL�(u), yielding a contraction.

Proposition 6.1.2. Consider an extendable subordering L of vertices S with free ver-
tices T . Assume that there is a full right extension L� of L with

∀v ∈ V : |Wreachr(G, L�, v)|≤ k.

If for u ∈ T , |Wreachleftr(G, L, u)|= k, then there is another full right extension L of L
where u is the leftmost vertex of T w.r.t. L and

∀v ∈ V : |Wreachr(G, L, v)|≤ k.

Proof. We construct L from L�. Assume L� = (s1, . . . , sn, t1, . . . , tm) with S = {s1, . . . , sn}
and T = {t1, . . . , tm}; furthermore, assume u = ti with 1 ≤ i ≤ m. We set L =
(s1, . . . , sn, u, t1, . . . , ti−1, ti+1, . . . , tm). The ordering L has the required properties be-
cause of Lemma 6.1.1: Assuming that there exists a vertex v such that |Wreachleftr(G, L, v)|>
|Wreachleftr(G, L, v)|, we will reach a contradiction; by shifting u left, we only increase
weakly r-reachable sets of vertices tj , j �= i, by adding u to their weakly r-reachable sets.
If u is weakly r-reachable from a vertex tj with respect to L, and it was not weakly
r-reachable with respect to L�, then this new path goes through a vertex in XL�(u) as
defined in Lemma 6.1.1 as it cannot go left of u. Whenever |Wreachleftr(G, L, u)|= k,
then XL�(u) ∩ Wreachr(G, L�, u) = ∅. Thus, every path of length at most r from u to a
vertex in XL�(u) must go through S. But since all vertices in S are placed left of u with
respect to L, u cannot be reached from tj , leading to a contradiction.

Proposition 6.1.2 enables us to slightly adapt left-to-right heuristics during tur-
bocharging. That is, if a left-to-right heuristic created a subordering L of vertices S
with free vertices T such that |Wreachleftr(G, L, v)|= k for some v ∈ T , in the next
step of the heuristic we immediately place v to the right of L. Notice that this only
changes the implementation of the Degree-Heuristic, but not the implementation of the
Wreach-Heuristic, as the Wreach-Heuristic already places free vertices with a maximum
size weakly left r-reachable sets next.

50

6.2. Implementation Details of Turbocharging Approaches

6.2 Implementation Details of Turbocharging Approaches
In this section, we want to present some interesting implementation details of our
turbocharging approaches for left-to-right heuristics. Namely, we will present some data
structures, branching strategies for search tree algorithms and runtime optimizations for
TC-LastC, TC-RNeigh, TC-Wreach, TC-Iterative-Swap, and TC-Merge. Throughout the
section, L refers to a subordering of vertices S ⊆ V with free vertices T ⊆ V , where V is
the vertex set of a graph G.

In all implementations we keep track of L using an array A of size |V |. We set
A[posL(v)] = v for v ∈ S. Furthermore, we always keep track of G[T] using a hash set
for T and an array of hash sets as adjacency list for the edges of G[T]. If a vertex v is
removed from T , then we remove v from the hash set and remove all incident edges of v
in G[T] in the adjacency list. If a vertex v is added to T , then we add v to the hash set
and add all edges E(G) ∩ ({{u, v} | u ∈ T }) to the adjacency list.

We continue by explaining implementation details for all turbocharging approaches
individually.

TC-LastC. For the TC-LastC approach we implement the XP-algorithm for IC-
WCOL-LEFT(r) as outlined in Proposition 5.2.4. Given a subordering L of vertices S,
we have to extend L to the right by c vertices, that means that we have c positions to
fill. We are implementing a search tree algorithm that fills these positions from left to
right recursively. Meaning, in a search tree node we try all possibilities of placing a free
vertex into position i and recurse into search tree nodes that try placing the remaining
free vertices into position i + 1, and so on, until all c positions are filled.

If after a placement of a vertex we obtain a non-extendable subordering, we can cut
off this branch of the search tree, as weakly left r-reachable sets of vertices can only
increase in this branch.

Since we keep track of G[T] with T being the free vertices in a search tree node,
updating weakly left r-reaching sets on placement/removal can be realized by a simple
depth-r breadth-first-search in G[T].

Furthermore, we also try placing free vertices T into a free position i in a specific
order inside a search tree node: Let L be the non-extendable subordering that triggered
turbocharging and let v be the rightmost vertex of L. We then try placing u1 ∈ T before
u2 ∈ T into the free slot i if distG(u1, v) < distG(u2, v). We compute distG(u, v) for all
u, v with Johnson’s Algorithm [Cor+09] for sparse graphs.

The implementation for TC-LastC-reorder is the same with some small modifications
— during the search tree algorithm, we do not try placing all free vertices into the next
free position, but only the vertices that were present in the suffix of size c in L.

TC-RNeigh and TC-Wreach. In both approaches we are given a non-extendable
subordering L of vertices S and a specific set X ⊆ S of size c, and we want to replace
vertices in X by (possibly) different vertices such that L becomes extendable. This is
captured by the problem IC-Replace(r) from Section 5.3.

51

6. Optimizations and Implementation Details

The first modification to the basic algorithm of both approaches we make is applying
IC-Replace(r) multiple times, until we find an extendable subordering, where each
time when we apply IC-Replace(r) we use a different set X. If we do not find an
extendable subordering after the 10th application of IC-Replace(r), we report that
turbocharging was not successful.

In the algorithm for IC-Replace(r) we first remove vertices X from L, keeping the
positions p1 < p2 < · · · < pc they were placed in unoccupied for now. We then apply a
search tree algorithm that tries to fill these positions with free vertices from left to right.
That means, in a search tree node we try all possibilities of placing a free vertex into
position pi and recurse into search tree nodes that try placing the remaining free vertices
into position pi+1, and so on, until all c positions are filled.

Every time when we place a free vertex into a position, or when we remove it again,
we have to update some weakly left r-reaching sets of vertices of the subordering. But
notice that these placements and removals of vertices are similar to rotations of vertices
as defined in Section 6.3, so we only update a subset of weakly left r-reaching sets similar
as in Section 6.3; we omit the details here.

Furthermore, computing weakly left r-reaching for a vertex v ∈ S requires a depth-r
breadth-first-search in G, where we have to make sure not to go left of v w.r.t. L. We
cannot use G[T] here, as the positions we are placing vertices into, are not to the right of
the subordering.

If we place a vertex into position pi, obtaining a subordering Li, then we know that
weakly left r-reachable sets of vertices that are placed in positions p > pi can only
increase. Hence, if the weakly left r-reachable set of a vertex that is placed at such a
position exceeds k, we can cut off the current branch. Weakly left r-reachable sets of
free vertices v ∈ T could decrease by placing them into a position pj with j > i, but
Wreachleftr(G, Li, v) ∩ ({v} ∪ {u | p ≤ pi, posLi

(u) = p}) is already fixed. We use this
intersection for lower-bounding the weakly left r-reachable set of v, and cut off branches
if its size exceeds k.

The implementations for TC-Wreach-reorder and TC-RNeigh-reorder are the same
with some small modifications — in search tree nodes, we again only try placing free
vertices from X, instead of vertices from X ∪ T .

TC-Iterative-Swap. In TC-Iterative-Swap we try to fix a non-extendable subordering
by iteratively applying rules that swap vertices in the subordering.

Most of the details for this approach can be found in Section 5.4 and Algorithm 5.1.
There is only one optimization missing that is based on Lemma 6.3.3 of the next section.
Namely, during swaps of vertices we do not have to update all weakly left r-reaching sets
as done by Nadara et al. [Nad+19] in their local search implementation, but we only
update weakly left r-reaching sets for some vertices.

Furthermore, notice that if we swap two neighboring vertices u and v in L with
u ≺L v during TC-Rule 1, and u �∈ Wreachleftr(G, L, v), then we do not have to update
any weakly left r-reaching sets.

52

6.3. Swapping and Rotations

TC-Merge. In TC-Merge we try to merge a set of vertices into an already fixed
subordering. These vertices consist of weakly left r-reachable sets of overfull vertices in a
non-extendable subordering. The main algorithm for this approach is already given in
Algorithm 5.2. We now present further runtime optimizations that we have implemented.

Let L be the non-extendable subordering of vertices S that caused us to apply the
turbocharging algorithm. Recall that we have a subordering L1 of vertices S1 = S \X and
want to merge S2 = X into L1; furthermore, we have free vertices S3 = V (G) \ (S1 ∪ S2).
This is captured in the problem WCOL-Merge(r) defined in Section 5.5.

As for TC-RNeigh and TC-Wreach, the first modification we make is applying WCOL-
Merge(r) multiple times with different randomly selected different sets X as defined
in Section 5.5, until we obtain an extendable subordering. Again, if we do not find an
extendable subordering after the 10th application of WCOL-Merge(r), we report that
turbocharging was not successful.

We now discuss the implementation of WCOL-Merge(r). As we do not know where
we will place vertices S2 into L1, we need a data structure that allows such placements
efficiently. We use an array A of size |S2|·(|S1|+1) + |S1|, such that for a vertex v ∈ S1 we
have that A[i · |S2|+i] = v if posL1(v) = i. Then, before and after each vertex v ∈ S1, we
have exactly |S2| free indices where we can place the vertices of S2. If we want to place a
vertex w ∈ S2 between two vertices, then we have to move at most |S2|−1 vertices of S2
to a different index to make place for w, and a placement takes O(|S2|) time. We only
use this data structure during the turbocharging algorithm and not during the heuristic.
We do not use other data structures such as linked lists that allow for these placements
in constant time because our implementation is much simpler, and the time-consuming
part of the algorithm is updating weakly left r-reaching sets — making the added time
complexity of O(|S2|) irrelevant.

Assume that we are in a search tree node of Algorithm 5.2, we have a subordering L
of vertices S1, and want to merge S2 into L. Updating a weakly left r-reaching set
for a vertex v is done by a depth-r breadth-first-search in G that does not go left
of v w.r.t. the current subordering L. We can cut off branches of the search tree if
|Wreachleftr(G[S1 ∪ S3 ∪ {v}], L, v)|> k for some v ∈ S1 ∪ S3 because the sizes of those
sets can only increase in subsequent search tree nodes. But we also know subsets of weakly
left r-reaching sets of vertices S2 that are already fixed. Namely, for all v ∈ N r

G[{u}∪S3]
with u ∈ S2, u will always be in the weakly left r-reachable set of v if u is placed
somewhere into the ordering L. We use this to increase the lower bound for sizes of
weakly left r-reachable sets of vertices in S3.

6.3 Swapping and Rotations
In our implementations for turbocharging problems (see Section 6.2) we make use of
two operations on suborderings. We want to look at these two operations — swaps and
rotations — and their effect on weakly left r-reachable(reaching) sets. We will show that
only a subset of weakly left r-reaching sets will change. Some of our observations are
helpful for optimizing runtimes of turbocharging algorithms, as in our implementations

53

6. Optimizations and Implementation Details

we keep track of all weakly left r-reachable sets and weakly left r-reaching sets for a
subordering. Hence, when we swap or rotate vertices we only need to update a subset of
the weakly left r-reaching sets.

Let us first define the operations formally.

Definition 6.3.1. Let L be a subordering of vertices S ⊆ V with u, v ∈ S s.t. u ≺L v.
By swapL(u, v) we denote the subordering that is obtained by swapping u and v, that is,
if

L = (x1, . . . , xi, u, xj , . . . , xk, v, x�, . . . , xn),

then
swapL(u, v) = (x1, . . . , xi, v, xj , . . . , xk, u, x�, . . . , xn).

Definition 6.3.2. Let L be a subordering of vertices S ⊆ V with u, v ∈ S s.t. u ≺L v.
By rotate(u, v) we denote the subordering that is obtained by rotating the consecutive
part of L between u and v inclusive by one step to the right, that is, if

L = (x1, . . . , xi, u, xj , . . . , xk, v, x�, . . . , xn),

then
rotate(u, v) = (x1, . . . , xi, v, u, xj , . . . , xk, x�, . . . , xn).

To keep track of a subordering L, we are always computing weakly left r-reaching
sets of vertices, from which we can derive weakly left r-reachable sets. That is, if during
some operation a weakly left r-reaching set of a vertex v changes, then we need a single
breadth-first search of depth r to determine which vertices U ⊆ V can now weakly left
r-reach v; then we can simply add v to the weakly left r-reachable sets of all u ∈ U . In
the following lemma we show that during a swap, only some weakly left r-reaching sets
need to be updated.

Lemma 6.3.3. Let L be a subordering of vertices S ⊆ V with u, v ∈ S s.t. u ≺L v,
and Ls = swapL(u, v). Let B(u, v) = {x ∈ S : u ≺L x ≺L v} and let w ∈ V (G). If
Wreachleft−1

r (G, L, w) �= Wreachleft−1
r (G, Ls, w) then

• w = u and (B(u, v) ∪ {v}) ∩ Wreachleft−1
r (G, L, u) �= ∅ or

• w = v and (B(u, v) ∪ {u}) ∩ Wreachleftr(G, L, v) �= ∅ or

• w ∈ B(u, v) and w ∈ (Wreachleftr(G, L, v) ∪ Wreachleft−1
r (G, L, u)).

Proof. We first notice that by swapping u and v, Wreachleft−1
r (G, L, w) cannot change if

w �∈ ({u, v} ∪ B(u, v)). Indeed, paths in G with w as endpoint and that do not go left
of w are the same w.r.t. L and Ls. We consider the three remaining cases:

1. w = u: In this case Wreachleft−1
r (G, L, w) � Wreachleft−1

r (G, Ls, w) because paths
in G of length at most r that do not go left of w w.r.t. Ls also do not go left of w
w.r.t. L. Thus, there exists a vertex x that weakly left r-reaches w in L but not
in Ls. Consider a path P from w to x that results in x ∈ Wreachleft−1

r (G, L, w).

54

6.3. Swapping and Rotations

This path goes through (B(w, v) ∪ {v}) as otherwise x ∈ Wreachleft−1
r (G, Ls, w)

and hence (B(w, v) ∪ {v}) ∩ Wreachleft−1
r (G, L, w) �= ∅.

2. w = v: In this case Wreachleft−1
r (G, L, w) � Wreachleft−1

r (G, Ls, w) because paths
in G of length at most r that do not go left of w w.r.t. L also do not go left of w
w.r.t. Ls. Thus, there exists a vertex x that weakly left r-reaches w in Ls but not
in L. Consider a path P from w to x that results in x ∈ Wreachleft−1

r (G, Ls, w).
Again, this path goes through (B(u, w)∪{u}). The vertex y ∈ V (P)∩(B(u, w)∪{u})
that is leftmost w.r.t. L must be in Wreachleftr(G, L, w), and hence (B(u, w) ∪
{u}) ∩ Wreachleftr(G, L, w) �= ∅.

3. w ∈ B(u, v): As Wreachleft−1
r (G, L, w) �= Wreachleft−1(G, Ls, w), there exists a

vertex x s.t. x ∈ Wreachleft−1
r (G, L, w) and x �∈ Wreachleft−1

r (G, Ls, w), or there
exists a vertex x s.t. x �∈ Wreachleft−1

r (G, L, w) and x ∈ Wreachleft−1
r (G, Ls, w).

We argue both cases:

3.1 There is a vertex x s.t. x ∈ Wreachleft−1
r (G, L, w) and x �∈

Wreachleft−1
r (G, Ls, w). Consider a path P from w to x that results

in x ∈ Wreachleft−1
r (G, L, w). This path goes through v as other-

wise x ∈ Wreachleft−1
r (G, Ls, w). Thus, w ∈ Wreachleftr(v) and w ∈

(Wreachleftr(G, L, v) ∪ Wreachleft−1
r (G, L, u)).

3.2 There is a vertex x s.t. x �∈ Wreachleft−1
r (G, L, w) and x ∈

Wreachleft−1
r (G, Ls, w). Consider a path P from w to x that results in

x ∈ Wreachleft−1
r (G, Ls, w). Similar to before, this path goes through u,

and we have w ∈ Wreachleft−1
r (G, L, u).

In a special setting no weakly left r-reaching sets and thus no weakly left r-reachable
sets change at all.

Corollary 6.3.4. Let L be a subordering of vertices S ⊆ V with u, v ∈ S s.t. u ≺L v, and
Ls = swapL(u, v). If Wreachleft−1

r (G, L, u)∩({v}∪B(u, v)) = ∅ and Wreachleftr(G, L, v)∩
({u} ∪ B(u, v)) = ∅ then

∀w ∈ V : Wreachleftr(G, L, w) = Wreachleftr(G, Ls, w).

As we can model rotations by series of swaps, we can also find which weakly left
r-reaching sets change during a rotation.

Corollary 6.3.5. Let L be a subordering of vertices S ⊆ V with u, v ∈ S s.t. u ≺L v,
and Lr = rotateL(u, v). If Wreachleft−1

r (G, L, w) �= Wreachleftr(G, Lr, w) then

• w = v and Wreachleftr(G, L, v) ∩ (B(u, v) ∩ {u}) �= ∅, or

• w ∈ B(u, v) ∪ {u} and w ∈ Wreachleftr(G, L, v).

Proof sketch. The rotation is equivalent to multiple swaps of neighboring (w.r.t. L)
vertices, where v is swapped with its left neighbor until v is at the required position. The
statement follows immediately.

55

6. Optimizations and Implementation Details

In our implementations we also use more general swaps and rotations that include
free vertices. Swaps of that kind replace a vertex u ∈ S with v, making u free, and
rotations place u between two vertices in L, making the rightmost vertex of L free. To
model this, these swaps and rotations can be realized by placing u directly to the right
of L updating weakly left r-reachable sets w.r.t. u, doing a swap or rotation,applying
Lemma 6.3.3 or Corollary 6.3.5, removing the new rightmost vertex from the ordering
again, and updating weakly left r-reachable sets w.r.t. the removed vertex. Thus, during
these more general swaps and rotations we also only have to update a subset of weakly
left r-reaching sets.

6.4 Considering Connected Components
In this section, we discuss exploiting connected components of the graph induced by
free vertices of a subordering, to guide heuristics to make more local consecutive choices.
Consider a subordering L of vertices S with free vertices T . Let u, v ∈ T such that u and v
reside in two different connected components of G[T]. Then u �∈ Wreachleftr(G, L�, v)
and v �∈ Wreachleftr(G, L�, u) for any right extension L� of L. This observation can be
utilized in the following way. Let L be a subordering of vertices S with free vertices T and
let v ∈ S be the rightmost vertex w.r.t. L. Assume that there exists a vertex w ∈ T that is
adjacent to v and let Gw be the connected component of G[T] such that w ∈ V (Gw). We
can force the heuristic to place a vertex from V (Gw) next because V (Gw) is independent
of T \ V (Gw) w.r.t. weakly left r-reachable sets in any right extension of L. This pushes
the heuristic to make “bad” choices earlier that would have appeared later if we chose
the correct vertex w, and that the constructed subordering will be better — in the sense
that adjacent vertices w.r.t. L will be in the same connected component w.r.t. the graph
induced by free vertices during their placement. We leave as on open question, which
vertex w adjacent to v to choose. If v does not contain an adjacent vertex w ∈ T , we can
choose any vertex w ∈ T and define Gw as above. Again, we can force the heuristic to
choose a vertex from V (Gw) next.

Additionally, we implement an optimization for the branching algorithm of the TC-
LastC approach to reduce its search space that is based on this observation. Namely,
for a subordering L with free vertices T , we do not have to consider all possibilities of
placing vertices in the set T next; we can restrict the possibilities to V (Gw) where Gw is
defined as above.

We implement an optional program parameter that enables both optimizations —
guiding left-to-right heuristics and reducing the search space of the TC-LastC approach.
In all implementations the vertex w is chosen randomly.

6.5 Ordered Adjacency List
An optimization that applies to all approaches except TC-LastC and TC-LastC-reorder
concerns the computation of weakly left r-reaching sets of vertices that are not rightmost
w.r.t. a subordering L. Consider the following straight forward way of computing weakly

56

6.6. Lower Bounds

left r-reaching sets. Let L be a subordering of vertices S with free vertices T , v ∈ S
and let i = posL(v). By setting posL(u) = ∞ for all u ∈ T , we can compute the weakly
left r-reaching set of v by a depth-r breadth-first-search in G that does not go left of v
w.r.t. L. Assume that this implementation uses a simple adjacency list for the graph G. If
we encounter a vertex w ∈ V with posL(w) ≥ v during the breadth-first-search, we must
iterate over all vertices in the set NG(w), even though only NG(w)∩{u ∈ V (G) | v L u}
is significant.

Instead, we can speed up this computation using adjacency lists, where we impose an
order on the vertices NG(w) for a vertex w ∈ V (G) that corresponds with the order L.
Namely, our implementations include an adjacency list for G, that is an array of sorted
sets; an entry of the array corresponds to the vertex set NG(w) for a vertex w ∈ V (G);
the vertices NG(w) are sorted w.r.t. L, that is, a vertex u1 comes before u2 in the sorted
set for w if and only if posL(u1) < posL(u2). Note that we again assume posL(u) = ∞
for free vertices u ∈ T w.r.t. the subordering L. Ties between free vertices for a sorted
set are broken arbitrarily by assigning numbers to vertices. We can now optimize the
breadth-first-search that does not go left of v w.r.t. L using this new adjacency list: If
we encounter a vertex w ∈ V with posL(w) ≥ v during the breadth-first-search, we can
iterate the sorted set corresponding to NG(w) from the end to the beginning until we
encounter a vertex that is left of v w.r.t. L. This allows us to only iterate over the vertex
set NG(w) ∩ {u ∈ V (G) | v L u}, as we wanted.

In this approach, updating the adjacency list requires non-negligible time whenever
a position of a vertex changes. If the position of a vertex w ∈ V (G) changes, we have
to update all sorted sets for neighbors NG(w) of w. As we use sorted sets this takes

u∈NG(w) log|NG(u)| time. We discovered that in some cases (see Chapter 8) not using
this ordered adjacency list might be an improvement. Due to this problem, we do not
always use the ordered adjacency list in our implementations, but rather add an optional
program parameter to enable this feature.

6.6 Lower Bounds
Lower bounds are crucial for the design of search tree algorithms as they might reduce
the search space drastically by recognizing parts of solutions that cannot be extended
to meet some quality criteria. In our case, we consider a subordering L of vertices
S ⊆ V (G). Lower bounds can be helpful for all our turbocharging approaches, as they
recognize suborderings that are not extendable anymore, during the heuristic and/or
during some of our turbocharging approaches. If said lower bound exceeds our target
value k for turbocharging, we know that there is no full right extension L� of L such that
wcolr(G, L�) ≤ k. The simplest lower bound for the weak r-coloring number of any full
right extension is

max
v∈V (G)

|Wreachleftr(G, L, v)|.

In this section we explore tighter bounds. We will introduce a lower bound that is similar
to degeneracy, but also considers weakly left r-reachable sets. We will then adjust this

57

6. Optimizations and Implementation Details

lower bound such that it also considers the radii r by contracting some parts of a graph
into single vertices.

6.6.1 Lower Bound Based on f-degeneracy
From Section 3.1 we know that degeneracy(G) + 1 ≤ wcolr(G) for all graphs G and
r ≥ 1. Considering a subordering L of vertices S ⊆ V (G), we want to define a variant of
degeneracy for the graph induced by the free vertices T that considers the subordering L,
that can be computed in polynomial time, and that is a lower bound for the weak
r-coloring number of any full right extension of L. Note that the degeneracy of G[T]
is also a lower bound, but we will also consider weakly left r-reachable sets induced by
vertices from S. We first define the general notion of f -degeneracy.

Definition 6.6.1. Let G be a graph and f : V (G) → N be a function. We define the
f -degeneracy of G as

f -degeneracy(G) = min
L∈Π(G)

max
v∈V (G)

{f(v) + |{v� ∈ NG(v) | v� ≺L v}|}

The f -degeneracy of a graph G and a function f is similar to the degeneracy of G,
but the cardinality of adjacent vertices left of a vertex v are offset by the value f(v).
In the following lemma we show that f -degeneracy can be used as a lower bound for
weak r-coloring numbers of right extensions by setting f(v) = |Wreachleftr(G, L, v)| for
a subordering L.

Lemma 6.6.2. Let G be a graph, L be a subordering of vertices S with free vertices T ,
and let f(v) = |Wreachleftr(G, L, v)| for v ∈ T ; let L� be any full right extension of L.
Then

f -degeneracy(G[T]) ≤ max
v∈T

|Wreachleftr(G, L, v)|.

Proof. Consider the subordering LT = L[T]. Then

|Wreachleftr(G, L, v)|+|{v� ∈ NG[T](v) | v� ≺LT
v}|≤ |Wreachr(G, L�, v)|

for each v ∈ T because {v� ∈ NG[T](v) | v� ≺LT
v} ⊆ Wreachr(G, L�, v). The claim

follows immediately.

An interesting question is, in which cases f -degeneracy(G[T]) is a tight bound. That
is, let L� be a full right extension of L such that maxv∈T |Wreachleftr(G, L, v)| is minimal.
We would like to know when f -degeneracy(G[T]) = maxv∈T |Wreachleftr(G, L�, v)|. Of
course that is the case for r = 1. We propose an open question: For which graph
classes G[T], functions f and radii r does this also holds?

We also want to mention that the f -degeneracy is a “better” lower bound than weakly
left r-reachable sets, as

max
v∈T

|Wreachleftr(G, L, v)|≤ f -degeneracy(G)

58

6.6. Lower Bounds

Algorithm 6.1: f -degeneracy
Input: Graph G = (V, E) and function f : V → N
Output: f -degeneracy(G)

1 answer ← 0;
2 while V �= ∅ do
3 select vertex v from V that has minimum dG(v) + f(v);
4 answer← max(answer, dG(v) + f(v);
5 for w ∈ NG(v) do
6 remove edge {v, w} from G;
7 end
8 V ← V \ {v};
9 end

10 return answer;

for suborderings L with free vertices T .
For a lower bound to be useful during search tree algorithms, we need to be able to

compute it efficiently. The next lemma shows that this is possible for the f -degeneracy.

Lemma 6.6.3. Let G = (V, E) be a graph and f : V → N be a function. Then
f -degeneracy(G) can be computed in time Θ((|V ||+|E|) · log|V |).

Proof. The algorithm that computes the f -degeneracy is depicted in Algorithm 6.1.
It repeatedly removes the vertex v of minimum dG(v) + f(v) from G. The answer
is the maximum over all dG(v) + f(v) for all removed vertices v at the time of their
removal. Notice that this algorithm is similar to the standard algorithm that computes
the degeneracy of a graph (see [MB83]). We now argue correctness and runtime.

Correctness. Let vi be the i-th vertex of V that is removed during Algorithm 6.1.
Furthermore, let G0 = G and Gi = Gi−1 − vi for 1 ≤ i ≤ |V |. Notice that Gi−1 contains
the same edges as the variable G during the removal of vertex vi. Consider the ordering L
of vertices V that achieves minimum maxv∈T {f(v) + |{v� ∈ NG(v) | v� ≺LT

v}|}. Let LGi

be the ordering of vertices V (Gi) such that u1 LGi
u2 if and only if u1 LT

u2 for
u1, u2 ∈ V (Gi). Considering the rightmost vertex v w.r.t. LGi , we have that

dGi−1(vi) + f(vi) ≤ |{v� ∈ NGi(v) | v� LGi
v}|+f(v)

≤ |{v� ∈ NG(v) | v� L v}|+f(v)
≤ f -degeneracy(G),

as we always choose the vertex vi with minimum dGi−1(vi) + f(vi). This is true for
each vi, 1 ≤ i ≤ |V |, hence our algorithm returns at most f -degeneracy(G).

Let L� be the ordering of vertices V such that vi vj iff i ≥ j. Clearly, Algo-
rithm 6.1 returns maxv∈V {f(v) + |{v� ∈ NG(v) | v� ≺L� v}|}, thus it returns at least
f -degeneracy(G). Hence, Algorithm 6.1 returns f -degeneracy(G).

59

6. Optimizations and Implementation Details

Runtime. We can keep track of values dG(v) + f(v) using an ordered set. Then Line 3
runs in O(log|V |) steps. Furthermore, we remove each edge in E(GT) at most once in
Line 6, and update the values in our ordered set. Edge removal can be implemented in
constant time using an array of linked lists as adjacency list. The outer loop runs |V |
times. This leads to a runtime of

Θ((|V |+|E|) log|V |+|E|) = Θ((|V |+|E|) log|V |).

We observe that minv∈V (G�){f(v) + dG�(v)} ≤ f -degeneracy(G) for any subgraph G�

of G. This will be useful for the next lower bound that we propose.

6.6.2 Contracting Subgraphs of Diameter � r−1
2 �

By setting f(v) = |Wreachleftr(G, L, v)|, the value f -degeneracy(G[T]) does not consider
the radii r besides for the function f . This makes f -degeneracy impractical as a lower
bound for larger values of r, as weak r-coloring numbers grow for larger values of r.
We want to introduce an adaptation of f -degeneracy, that is inspired by the MMD+
algorithm of Bodlaender and Koster [BK11] and considers the radius r. The MMD+
algorithm computes a lower bound for treewidth, that combines degeneracy computation
with arbitrary edge contractions. In our case we cannot use arbitrary edge contractions,
but as we will see below we can contract subgraphs of diameter � r−1

2 � into a single vertex.
Let us first recall minors and minor models from Section 3.2: A graph H is a minor

of a graph G, if there are pairwise vertex-disjoint connected subgraphs H1, . . . , Hn

of G such that whenever {vi, vj} ∈ E(H), there are ui ∈ V (Hi) and uj ∈ V (Hj) with
{ui, uj} ∈ E(G). We then call (H1, . . . , Hn) a minor model of H in G, and let φ(vi) = Hi.

Let us now formulate the key lemma for this new lower bound.

Lemma 6.6.4. Let G = (V, E) be a graph and L be a subordering of vertices S ⊆ V
with free vertices T . Furthermore, let H be a minor of G[T] such that for its minor
model (H1, . . . , Hn) each Hi, i ∈ {1, . . . , n}, has diameter at most � r−1

2 �; lastly, define
f(v) = maxu∈φ(v)|Wreachleftr(G, L, u)| for each v ∈ V (H). Then

f -degeneracy(H) ≤ max
v∈T

|Wreachr(G, L�, v)|

for each full right extension L� of L.

Proof. Let L� be any full right extension of L. We construct an ordering LH of the vertex
set V (H). For each v ∈ V (H), let α(v) ∈ V (φ(v)) be the leftmost vertex w.r.t. L�. We
define LH such that v1 ≺LH

v2 if and only if α(v1) ≺L� α(v2). We claim that

f(v) + |{v� ∈ NH(v) | v� ≺LH
v}|≤ max

u∈V (φ(v))
|Wreachr(G, L�, u)|

for all v ∈ V (H). We start with an arbitrary vertex v ∈ V (H). Let β(v) ∈ V (φ(v)) be
any vertex with |Wreachleftr(G, L, β(v))|= f(v). Consider an arbitrary vertex v� ∈ NH(v)
with v� LH

v. There is a path P1 of length at most � r−1
2 �+1 from β(v) to some vertex in

60

6.6. Lower Bounds

G[T] u1, 20

u2, 2

w1, 20

w2, 2 v2, 2

v1, 20

u, 20

v, 20w, 20

H

Figure 6.1: Counterexample for contracting subgraphs of diameter more than � r−1
2 �. The

integer values besides the node labels represent |Wreachleft(G, L, v)| for v ∈ V (G[T])
and f(v) for v ∈ V (H), respectively.

u ∈ V (φ(v�)) because φ(v) has diameter at most � r−1
2 �. Furthermore, there is a path P2

from u to α(v�) of length at most � r−1
2 �. The path P that is a concatenation of P1 and P2

is a path of length at most r that goes from β(v) to α(v�) and that does not go left
of α(v�) w.r.t. L�, meaning α(v�) ∈ Wreachr(G, L�, β(v)). As α(v�) is different for each
v� ∈ {v� ∈ NH(v) | v� ≺LH

v} and α(v�) ∈ T , we have that

f(v) + |{v� ∈ NH(v) | v� ≺LT
v}| = f(β(v)) + |{v� ∈ NH(V) | v� ≺LT

v}|
≤ f(β(v)) + |Wreachr(G, L�, β(v)) ∩ T |
≤ max

u∈V (φ(v))
|Wreachr(G, L�, u)|,

which concludes the proof.

To complement the relevance of Lemma 6.6.4, we want to show that we really only
can contract subgraphs of diameter not larger than � r−1

2 � with the following example.

Example 6.6.5. In this example we assume that r = 2. Consider the graphs G[T]
and H from Figure 6.1. The graph G[T] represents the subgraph induced by vertices T ,
which are free vertices w.r.t. a subordering L. Integer labels to the side of node labels
represent the value |Wreachleftr(G, L, x)| for x ∈ T (those exact values are obtainable
for a subordering L and a graph G). The graph H is a minor of G[T] with minor model
(G[{u1, u2}], G[{v1, v2}], G[{w1, w2}]) where each subgraph has diameter one, and the
integer values represent f(x) = maxy∈V (φ(x))|Wreachleftr(G, L, y)| for x ∈ V (H). Notice
that f -degeneracy(H) = 22. But ordering the vertices from G[T] s.t. u1 ≺ v1 ≺ w1 ≺
u2 ≺ v2 ≺ w2 for a full right extension L� of L we have

|Wreachr(G, L�, v)|≤ 20

for all v ∈ V (G[T]). This means that f -degeneracy(H) is no longer a lower bound and
for r = 2 we cannot contract subgraphs of diameter one.

We present Algorithm 6.2 that computes a lower bound for the weak r-coloring number
of any full right extension of a subordering L, and makes direct use of Lemma 6.6.4.

61

6. Optimizations and Implementation Details

Algorithm 6.2: WCOL-MMD+
Input: A graph G = (V, E), a subordering L of vertices S ⊆ V with free

vertices T
Output: A lower bound for the weak r-coloring number of any full right

extension of L
1 answer ← 0;
2 H ← G[T];
3 f(v) = |Wreachleftr(G, L, v)| for v ∈ T ;
4 while V (H) �= ∅ do
5 select v from V (H) that has minimum dG(v) + f(v);
6 answer← max(answer, dH(v) + f(v));
7 if ∃w ∈ NH(v) : diam(G[V (φ(v)) ∪ V (φ(w))]) ≤ � r−1

2 � then
// Strategy can be used for selection of w

8 Contract v and w in H, creating a new vertex u with
f(u) = max(f(v), f(w));

9 else
10 H ← H − v
11 end
12 end
13 return answer;

The values φ(v) for v ∈ V (H) refer to the contracted subgraphs with respect to the
minor H of G[T]. Comparing Algorithm 6.2 to Algorithm 6.1, instead of removing the
vertex v of minimum dH(v) + f(v), we first check if there is a vertex w that we can
merge onto v. This is possible if G[V (φ(v)) ∪ V (φ(w))] has diameter at most � r−1

2 �.
Contracting v and w yields a new vertex u that has f(u) = max(f(v), f(w)). We call
this algorithm WCOL-MMD+ inspired by the MMD+ algorithm by Bodlaender and
Koster [BK11]. WCOL-MMD+ returns a lower bound for the weak r-coloring number
of any full right extension because of Lemma 6.6.4, as we only contract subgraphs of
diameter at most � r−1

2 �, and we set f(v) = maxu∈φ(v)|Wreachleftr(G, L, u)|.
We can use different strategies for the selection of w. For our implementations

we select a vertex w that has minimum f(w) + dH(w), to potentially increase values
f(v) + dH(w) in H for vertices v ∈ V (H). This strategy is also similar to a strategy for
the MMD+ algorithm mentioned by Bodlaender and Koster.

The WCOL-MMD+ algorithm has high time complexity, as there are no fast algo-
rithms for computing the diameter in Line 7 of Algorithm 6.2. The best algorithms
we know of are Floyd Warshall’s Algorithm [Cor+09] that runs in O(|V |3) time and
Johnson’s Algorithm [Cor+09] for sparse graphs that runs in O(|V |2· log|V |+|V |·|E|).
There is also strong evidence that the diameter cannot be computed in subquadratic
time as this would otherwise refute the orthogonal vectors conjecture [AWW16]. This
conjecture is implied by the Strong Exponential Time Hypothesis (SETH) which is
widely believed, further supporting this evidence. That means that we cannot really

62

6.6. Lower Bounds

use WCOL-MMD+ during search tree algorithms as it will be invoked a lot of times.
To tackle this problem, we adapt WCOL-MMD+ by upper-bounding the diameter of
contracted subgraphs. We use the simplest upper bound — the number of vertices minus
one. This upper bound is easy to compute and implement, and we did not find tighter
upper bounds that work better during our research. We replace the if-statement in Line 7
by ∃w ∈ NH(v) : |V (φ(v))|+|V (φ(w))|−1 ≤ � r−1

2 �, calling the newly obtained algorithm
WCOL-UB-MMD+. WCOL-UB-MMD+ will be used as lower bound during branching
in turbocharging algorithms and during heuristics, as it performs better than only the
f -degeneracy in most cases.

Finally, we want to mention that the algorithms WCOL-MMD+ and WCOL-UB-
MMD+ can also be used for computing lower bounds for weak r-coloring of graphs G,
by letting the initial subordering L of vertices be empty. In that case, T = V (G), S = ∅
and |Wreachleftr(G, L, v)|= 1 for all v ∈ V (G).

In our implementations we add an optional program parameter that enables lower
bounding by WCOL-UB-MMD+. For a subordering L of vertices S, let kLB be the lower
bound computed by WCOL-UB-MMD+. We use max(kLB, maxv∈S |Wreachleftr(G, L, v)|)
as lower bound for the weak r-coloring number of any right extension of L during
heuristics and for the turbocharging approaches TC-LastC(-reorder), TC-Iterative-Swap,
and TC-Merge. We do not see a simple way to use it for TC-RNeigh-(reorder) and
TC-Wreach-(reorder) because of the implementation details we chose for those approaches:
During the placement of a vertex in the search tree algorithm, the size of the weakly left
r-reachable set of this vertex might decrease, which prohibits us from using free vertices
in the lower bound.

Additionally, note that complexity results for our turbocharging problems are based
on the lower bound maxv∈V |Wreachleftr(G, L, v)|, because all problems pose the question
of finding a subordering that is extendable with respect to this lower bound. When
applying another lower bound such as WCOL-MMD+, the complexity results may change,
but we strongly believe they do not.

Furthermore, we have to adapt some turbocharging approaches when applying this
lower bound. Notice that if the lower bound based on the WCOL-UB-MMD+ reports
that a subordering L is not extendable, it could be that there is no overfull vertex.
But the problem we want to solve in TC-Merge is almost entirely based on weakly left
r-reachable sets of overfull vertices. If the lower bound WCOL-UB-MMD+ reports
non-extensibility during the heuristic, we tackle this problem, by instead considering
weakly left r-reachable sets of the last vertex that was placed by the heuristic for merging.
Similarly, we adapt TC-Rule 1 of TC-Iterative-Swap such that it selects a vertex v for
swapping such that v is chosen exactly as in TC-Rule 2.

Furthermore, we add another optional program parameter that disables lower bound-
ing by weakly left r-reachable sets of free vertices. That is, for a subordering L of
free vertices S, we apply maxv∈S |Wreachleftr(G, L, v)| as the lower bound for the weak
r-coloring number of any full right extension L� of L if this program parameter is enabled.

63

6. Optimizations and Implementation Details

6.7 Discussion
In this chapter, we have given a more detailed look on our implementations for approaches
that we use to turbocharge left-to-right heuristics. We have explained details of search
tree algorithms, data structures that we use, and given some optimization methods

— some of which required formal proofs. As most of our approaches have a heuristic
character, there is still additional fine-tuning that can be done. We are also certain
that there are many possibilities for optimizations that need to be investigated such as
lowering the search space of search tree algorithms.

Additionally, we have proposed two lower bounds for weak r-coloring numbers of
full right extensions of a subordering. We are curious whether these lower bounds can
be made even tighter, and if they give new insights for lower bounds regarding weak
r-coloring numbers of graphs. Another interesting question is, under which conditions
our provided lower bounds for weak r-coloring numbers are tight. Based on the difference
between good lower bounds and computed upper bounds for weak r-coloring numbers,
we could also evaluate the performance of algorithms for computing weak r-coloring
numbers.

64

CHAPTER 7
Right-to-Left Heuristics and

Turbocharging

In this chapter, we want to start investigating turbocharging for right-to-left heuristics
for weak coloring numbers. We will proceed as in Chapter 5 by first giving some simple
observations for suborderings if we know that remaining vertices will be placed left of
that subordering. Then we will define a simple turbocharging problem and prove some
complexity results. At the end of the chapter we will give a lower bound for the weak
r-coloring number of an ordering that is obtained by placing vertices left of a subordering.

7.1 Definitions and First Observations
For right-to-left heuristics we know that, given a subordering L of vertices S, the remaining
free vertices T will be placed to the left of L. Motivated by this, we define the following
notion.

Definition 7.1.1. Given a subordering L of vertices S ⊆ V , a left extension of L is a
subordering L� of vertices S� such that

• S� ⊇ S,

• L�[S] = L, and

• u �L� v for all u ∈ S, v ∈ S� \ S.

Informally, S� is a subordering that places vertices S� \ S to the left of vertices in S.
If S� = V , then we say that L� is a full left extension.

Thus, given a subordering L, in one step, a right-to-left heuristic will generate a
left extension of L by adding one vertex to the left. We might want to ask, which

65

7. Right-to-Left Heuristics and Turbocharging

parts of weakly r-reachable sets of vertices are already fixed with respect to any full left
extension L� of L. For this, we define the following notions, which will lead to an answer
of the stated question in Lemma 7.1.3.

Definition 7.1.2. Let G be a graph. Given a subordering L of vertices S ⊆ V (G) with
free vertices T , a vertex u ∈ V (G) is weakly right r-reachable from v ∈ S with respect
to L if

• u ∈ Wreachr(G[S], L, v), or

• there exists a path P of length at most r from v to u in G such that V (P)∩T = {u}.

Let Wreachrightr(G, L, v), the weakly right r-reachable set of v w.r.t. L, be the set
of vertices that are weakly right r-reachable from v in G with respect to L. Let
Wreachright−1

r (G, L, v) = {u ∈ V : v ∈ Wreachrightr(G, L, u)}, calling this the set
of weakly right r-reaching set of u.

Note that Wreachrightr(G, L, v) is only defined for v ∈ S. Furthermore, notice
that Sreachr(G, L�, v) ⊆ Wreachrightr(G, L, v) for any full left extension L� of L, where
Sreachr(G, L�, v) is the strongly r-reachable set of v w.r.t. L� (see Section 3.1). We now
show that weakly right r-reachable sets can only increase for left extensions.

Lemma 7.1.3. Let L be a subordering of vertices S ⊆ V with free vertices T and let L�

be a left extension of L. Then

• Wreachrightr(G, L, v) ⊆ Wreachrightr(G, L�, v) for all v ∈ S.

Proof. Let v ∈ S and let u ∈ Wreachrightr(G, L, v). We show that u ∈
Wreachrightr(G, L�, v). There are two cases per Definition 7.1.2:

• Case 1: u ∈ Wreachr(G[S], L, v). We know that G[S�] ⊃ G[S] and L�[S] = L, hence
u ∈ Wreachr(G[S�], L�, v).

• Case 2: There exists a path of length at most r from v to u in G such that
V (P) ∩ T = {u}. Let T � = V (G) \ S� be the free vertices with respect to L�. If
u ∈ T �, then V (P) ∩ T � = {u}, and u ∈ Wreachrightr(G, L�, v) because of the same
path P . If u ∈ S�, then notice that u ∈ Wreach(G[S�], L�, v) because of P , as this
path certainly does not go left of u w.r.t. L� as L� is a left extension of L.

In both cases u ∈ Wreachrightr(G, L�, v), which concludes the proof.

This leads us to non-extensibility and quality of a subordering when considering right-
to-left heuristics and turbocharging problems for right-to-left heuristics. In this chapter,
the quality of a subordering is defined as maxv∈S |Wreachrightr(G, L, v)|, because this
certainly is a lower bound for the weak r-coloring of any full left extension L� of L. Further-
more, we say that a subordering is non-extendable if maxv∈S |Wreachrightr(G, L, v)|> k.
Turbocharging problems will be designed such that they take a non-extendable suborder-
ing L and make it extendable.

66

7.2. Turbocharging Problem and its Complexity

Definition 7.1.2 and Lemma 7.1.3 also enable us to give an alternative definition for the
Sreach-Heuristic proposed by Nadara et al. [Nad+19]. Namely, given a subordering L of
vertices S with free vertices T , we define the set of potentially strongly r-reachable vertices
for v ∈ T as Wreachrightr(G, L�, v), where L� is obtained from L by placing v to the left
of L. These vertices are called potentially strongly r-reachable as Sreachr(G, L, v) ⊆
Wreachrightr(G, L�, v) for any full left extension L of L�. The Sreach-Heuristic places the
vertex v ∈ T with smallest potentially strongly r-reachable set left of L. Notice that for
r = 1 this results in an exact algorithm for computing wcol1(G) = degeneracy(G) + 1
[MB83].

We continue by presenting a simple turbocharging problem and a turbocharging
approach that is based on in.

7.2 Turbocharging Problem and its Complexity
Motivated by the turbocharging problem for treewidth introduced by Gaspers et al.
[Gas+19] that replaces a suffix of size c for an ordering, we present a similar turbocharging
problem that replaces the prefix of a subordering of size c.

Incremental Conservative Right Weak r-coloring (IC-WCOL-RIGHT(r))
Input: A graph G = (V, E), a subordering L of vertices S ⊆ V , and positive

integers k and c.
Question: Is there an extendable left extension L� of L of vertices S� with |S� \S|= c?

This problem is similar to IC-WCOL-LEFT(r), but instead of extending to the right,
we extend the subordering to the left.

An interesting observation is that by our definition of weakly right r-reachable sets,
including potentially strongly r-reachable sets, the problem is solvable in polynomial time
for r = 1 by greedily taking the vertex with smallest potentially strongly r-reachable set
(see [MB83] for the algorithm idea). In Theorems 7.2.1 and 7.2.2 we show two hardness
results for IC-WCOL-RIGHT(r) for r ≥ 3.

Theorem 7.2.1. IC-WCOL-RIGHT(r) is NP-hard for each fixed r ≥ 3.

Proof. We give a reduction from Independent Set which is NP-complete [GJ79].
Let (G, p) be an instance of Independent Set. We construct an instance (G�, L, k, c)
of IC-WCOL-RIGHT(r) as follows. First, let k = 2r and c = 2p. We obtain G� from G
by adding the following vertices and edges.

• We subdivide each edge {u, v} ∈ E(G) 2r − 3 times, introducing 2r − 3 new vertices
xuv

1 , . . . , xuv
2r−3, ordered following the path from u to v.

• For each vertex u ∈ V , we introduce 2r = k vertices u�, yu
1 , . . . , yu

2r−1. We add edges
such that vertices u�, yu

1 , . . . , yu
2r−1 form a clique. Furthermore, we add the edge

{u, u�}.

67

7. Right-to-Left Heuristics and Turbocharging

u vxuv

1
xuv

2r−3xuv

r−1

u v
G

G′

u′ v′

Cu Cv

xuv

1
, xuv

2r−3
≺L xuv

2
, xuv

2r−4
≺L . . . ≺L xuv

r−2
, xuv

r
≺L xr−1

Figure 7.1: Sketch for subdivision of edge {u, v}.

It is worth mentioning that xuv
r−1 lies exactly in the middle of the shortest path from u

to v and that the shortest paths from xuv
r−1 to u� and v� have length r. Let L be any

subordering of the vertex set S, where

S = {xuv
i | {u, v} ∈ E(G), 1 ≤ i ≤ 2r − 3} ∪ {yu

i | u ∈ V (G), 1 ≤ i ≤ 2r − 1},

and that satisfies

∀{u, v} ∈ E(G)∀i, j ∈ [2r − 3] : |i − (r − 1)|> |j − (r − 1)|⇒ xuv
i ≺L xuv

j .

Notice that such a subordering exists and that this condition enforces that all vertices xuv
i

with 1 ≤ i ≤ 2r − 3 are in the weakly right r-reachable set of xuv
r−1 w.r.t. L. A sketch

for this construction for an edge {u, v} ∈ E(G) is shown in Figure 7.1. The circles
labelled Cu and Cv denote the cliques G�[{u�, yu

1 , . . . , yu
2r−1}] and G�[{v�, yv

1 , . . . , yv
2r−1}]

of size k for vertices u and v.

Correctness. We continue by arguing correctness of the reduction. That is, we show
that G contains an independent set of size p if and only if there exists an extendable
left extension L� of L on vertices S� such that |S� \ S|= 2p = c. We argue forwards and
backwards direction of the stated equivalence.

“⇒”: Let I be an independent set of size p in G. We obtain L� from L by adding the
vertices I ∪ {u� | u ∈ I} to the left such that u� ≺L� u for all u ∈ I, otherwise ordered
arbitrarily. It remains to show that the weakly right r-reachable sets of vertices in L� do
not exceed size k.

• We have |Wreachrightr(G�, L�, u)|= |{u, u�}|≤ k for all u ∈ I. All other vertices
that are not right of u w.r.t. L� have distance more than r to u because of the
subdivision of edges. Notice that 2r − 2 > r holds for r ≥ 3, where 2r − 2 is the
length of the shortest path from u to v in G� for {u, v} ∈ E(G).

68

7.2. Turbocharging Problem and its Complexity

• |Wreachrightr(G�, L�, u�)|= |{u�}|≤ k for all u ∈ I. Again, all other vertices that are
not right of u� w.r.t. L� have distance more than r to u� because of the subdivision
of edges.

• Wreachrightr(G�, L�, yu
i) ⊆ {u�, yu

1 , . . . , y2r−1} for all u ∈ V (G) and 1 ≤ i ≤ 2r − 1
because if u� is placed in L�, then u is also placed right of u�, and u� separates all yu

i

with 1 ≤ i ≤ 2r − 1 from the rest of G�.

• Notice that for all {u, v} ∈ E(G) and 1 ≤ i ≤ 2r − 3

Wreachrightr(G�, L�, xuv
i) ⊆ Wreachrightr(G�, L�, xuv

r−1),

as xuv
r−1 is the rightmost vertex w.r.t. L� considering the subdivision between u

and v, and u and v separate the vertices introduced during the subdivision from
the rest of the graph. Furthermore,

Wreachrightr(G�, L�, xuv
r−1) ⊆ {u, v, u�, v�, xuv

1 , . . . , xuv
2r−3}.

It remains to argue that u� and v� cannot be both in Wreachrightr(G�, L�, xuv
r−1).

But this is clearly true, as I is an independent set. If u� and v� both were in
Wreachrightr(G�, L�, xuv

r−1), then u and v must have been placed in L�, contradicting
that I is an independent set.

No weakly right r-reachable set exceeds size k = 2r, so we can conclude this direction.
“⇐”: Let L� be an extendable left extension of L of vertices S� such that |S� \

S|= c = 2p. We observe that, if u� ∈ S� for a vertex u ∈ V (G), then u ∈ S� must
hold, because otherwise |Wreachrightr(G�, L�, yu

i)|= |{u, u� yu
1 , . . . , yu

2r−1}|> 2r for the
rightmost yu

i , i ∈ {1, . . . , 2r − 1} w.r.t. L�. Furthermore, if {u, u�} ⊆ S� for u ∈ V (G) then
u� ≺L� u must hold because of the same reason. As u� ∈ S� implies u ∈ S�, we have that
|S� ∩V (G)|≥ p. We let I ⊆ |S� ∩V (G)| be any set of size p, which clearly exists. We claim
that I is an independent set in G by contradiction. Assume that there exists an edge
{u, v} ∈ E(G) with {u, v} ⊆ I ⊆ S�. If u� ∈ S�, we have seen that u� ≺L� u holds. Hence,
u� ∈ Wreachrightr(G�, L�, xuv

r−1) follows because of the construction of L. If u� �∈ S�, then
u� ∈ Wreachrightr(G�, L�, xuv

r−1) because of the construction of L and the definition of
weakly right r-reachable sets. Equivalently, we argue v� ∈ Wreachrightr(G�, L�, xuv

r−1).
We conclude |Wreachrightr(G�, L�, xuv

r−1)|= |{u, v, u�, v�, xuv
1 , . . . , xuv

2r−3}|> 2r = k, which
clearly is a contradiction to the assumption that L� is extendable.

We now see why the proof fails for r = 2: The subdivision of edges {u, v} creates a
single vertex for each edge. This means that the shortest path between u and v will have
length 2 = r. We cannot bound the weakly right r-reachable sets of u or v if u ∈ I or
v ∈ I.

The given reduction immediately gives another result with respect to fixed-parameter
tractability.

Theorem 7.2.2. IC-WCOL-RIGHT(r) is W[1]-hard when parameterized by k + c for
each r ≥ 3.

69

7. Right-to-Left Heuristics and Turbocharging

Proof sketch. In Theorem 7.2.1 we gave a polynomial reduction from Independent Set
to IC-WCOL-RIGHT(r) for each r ≥ 3. This reduction can be seen as parameterized
reduction, where the parameter p indicating the size of the independent set is transformed
to k = 2r and c = 2p. The claim follows from W[1]-hardness of independent set when
parameterized by p [DF95], and by the assumption that r is a constant.

We can still find a simple algorithm that solves IC-WCOL-RIGHT(r) for small
graphs and small c efficiently based on the following result.

Proposition 7.2.3. IC-WCOL-RIGHT(r) parameterized by c is in XP.

Proof. We can simply try placing any of the vertices from the free vertices T into the
next free position left L. As there are c free position the overall algorithm runs in
O(|V \ S|c·nO(1)

G) ⊆ O(nc
G · n

O(1)
G) time.

We include an implementation of the algorithm based on Proposition 7.2.3 that we use
for turbocharging the Sreach-Heuristic and the Degree-Heuristic. We call the underlying
turbocharging approach TC-LastC-RL. As we have to keep track of all potentially strongly
r-reachable sets of free vertices for a subordering in our implementation, the polynomial
overhead of the algorithm is worse than the overhead for IC-WCOL-LEFT(r). We will
see how this affects the performance of TC-LastC-RL in the experimental part.

7.3 A Lower Bound
We have already seen that maxv∈S |Wreachrightr(G, L, v)| is a lower bound for the weak
r-coloring number of any full left extension L� of L. We want to propose an even tighter
lower bound that is based on the degeneracy of a graph that is formed by the free vertices
or L.

Proposition 7.3.1. Let L be a subordering of vertices S ⊆ V (G) with free vertices
T ⊆ V (G). Let G� = (T, E�) where E� = E(G[T]) ∪ ET . The set ET is defined such that
{u, v} ∈ ET if and only if

• u, v ∈ T with u �= v, and

• there exists a path P in G of length at most r such that V (P) ∩ T = {u, v}.

Then
degeneracy(G�) + 1 ≤ wcolr(G, L�)

for any full left extension L� of L.

Proof. Consider any full left extension L� of L. Let M(v) = {u | {u, v} ∈ E(G�), u ≺L� v}.
Observe that it is enough to show that |M(v)|+1 ≤ |Wreachr(G, L�, v)| for all v ∈ T
because degeneracy(G) = maxv∈V (G)|M(v)|. Let u ∈ M(v). If {u, v} ∈ E(G) then
clearly u ∈ Wreachr(G, L�, v). If there exists a path P in G of length at most r such
that V (P) ∩ T = {u, v} then this path does not go left of u w.r.t. L�, hence u ∈
Wreachr(G, L�, v). The plus one comes from v �∈ M(v) but v ∈ Wreachr(G, L�, v).

70

7.4. Discussion

Notice that the lower bound in Proposition 7.3.1 can be computed efficiently, as G�

can be found efficiently when keeping track of potentially strongly r-reachable sets, and
the degeneracy can be computed in linear time [MB83]. This is why we implement a
lower bound for TC-LastC-RL that is maxv∈S |Wreachrightr(G, L, v)|+degeneracy(G�),
where G� is constructed as in Proposition 7.3.1. We added an optional program parameter
enabling this lower bound for the heuristic and turbocharging part to see how it affects
the performance of the turbocharging approach.

7.4 Discussion
In this chapter, we have initiated research with regard to turbocharging for right to left
heuristics for weak coloring numbers. We have defined a simple turbocharging approach,
TC-LastC-RL, that is based on the problem IC-WCOL-RIGHT(r). The defined problem
has two parameters: k, which is an upper bound on the weak coloring number we want to
achieve, and c, which defines the length of the prefix of the subordering we want to replace.
We have given a reduction that proves NP-hardness and W[1]-hardness of the problem
when parameterized by k+c for r ≥ 3. Even though this reduction only works for r ≥ 3, it
shows that we cannot expect an algorithm that runs in f(k, c) · |G|O(1) for all r. Follow-up
research discussions have shown that there possibly is a reduction from the Independent
Set on regular graphs problem which is W[1]-hard when parameterized by the size of
the independent set [Cyg+15] to IC-WCOL-RIGHT(r). This reduction would show
NP-hardness and W[1]-hardness when parameterized only by c of IC-WCOL-RIGHT(r)
for r ≥ 2. Hence, it would include the case where r = 2, but provide a weaker result with
regard to fixed-parameter intractability.

71

CHAPTER 8
Experimental Evaluation

In this chapter, we will be evaluating turbocharging approaches. We will compare weak
coloring numbers of computed orderings by heuristics and the corresponding turbocharged
heuristics. We apply a novel framework for evaluating turbocharged heuristics, that
iteratively tries to improve the computed ordering for one graph instance. Furthermore,
we will also compare turbocharging approaches to each other.

Moreover, we will also evaluate how some optimizations described in Chapter 6 affect
the performance of turbocharged heuristics with respect to the weak coloring numbers of
the computed orderings.

8.1 Hard- and Software
All experiments were performed on a cluster of 16 nodes provided by the Algorithms and
Complexity Group at the Vienna University of Technology. Each node is equipped with
two Intel Xeon E5-2640 v4, 2.40GHz 10-core processors and 160 GB ram. The sizes of
inputs and outputs are relatively small, so network communication is also small, and we
never exceed the provided RAM.

All implementations were done in C++17, and made use of the Boost library [21a]
with version 1.77.0. The source code is published online [Dob21].

8.2 Test Data
Our data set consists of the same graphs as used by Nadara et al. [Nad+19]. This enables
us to use weak coloring numbers of orderings computed by Nadara et al. as a baseline.
Furthermore, we can compare for a heuristic, the improvement achieved by the local
search of Nadara et al. to the improvement achieved by our turbocharging approaches.

The graphs consist of real-world data, the PACE 2016 Feedback Vertex Set problems,
random planar graphs, and random graphs with bounded expansion. For a detailed

73

8. Experimental Evaluation

Table 8.1: Overview of graph sizes for the different classes.

|V (G)| |E(G)|
group min med avg max min med avg max
small 34 115 223 620 62 612 521 930
medium 235 1302 1448 4941 1017 3032 3343 8581
big 1224 7610 7963 16264 10445 21000 19518 47594
huge 3656 27775 34599 77360 48130 186940 237300 546487

explanation and references for all input graphs we refer to [Nad+19], where, additionally,
a reference is provided for downloading all instances.

Nadara et al. classified the graphs into four classes based on the number of edges
— small, medium, big, and huge. A detailed overview of graph sizes for the different
classes is shown in Table 8.1. As graphs from the class “big” already have over 10K
edges we only consider graphs from the small and medium classes, as most of our exact
turbocharging approaches would time out for small conservation parameters c on graphs
from the big and large classes.

8.3 The Evaluation Framework
When applying a turbocharged version of a heuristic to an input graph, we have to set a
target weak r-coloring number k, such that the turbocharged heuristic tries to compute
an ordering of vertices with weak r-coloring number at most k. As we do not know k in
advance, we propose a novel (to our knowledge) evaluation framework, that iteratively
applies the turbocharged heuristic to decrease weak r-coloring numbers of computed
orderings. In the process, we also adapt the conservation parameter c. The evaluation
framework is given in Algorithm 8.1. The input is a graph G, an integer r, a heuristic H
that computes orderings of vertices V (G), and a turbocharged version TC-H of the
heuristic H. An initial ordering of vertices is computed by the heuristic and assigned
to L. Next, a timer that runs for t seconds is started. When the timer expires, the
ordering L is returned and the program is terminated; note that L can still change after
the timer is started. In the two nested loops, we try to decrease the weak r-coloring
number of the computed ordering L by applying the turbocharged version of H, where
we iteratively decrease the target weak r-coloring number by one. If we are unsuccessful
with a conservation parameter c for a target weak r-coloring number, we increase c by
one, until we find the desired ordering. Note that the inner loop does not make sense for
turbocharging approaches without a conservation parameter such as TC-Iterative-Swap,
so we drop it for these approaches.

During our experiments we applied all combinations of heuristics and the turbocharged
versions to each graph. Furthermore, we computed orderings for radii ranging from 2
to 5, motivated by Nadara et al. who used the same values. The timeout t for all

74

8.3. The Evaluation Framework

Algorithm 8.1: Evaluation framework for turbocharging a heuristic
Input: A graph G = (V, E), an integer r, a heuristic H, and a turbocharged

heuristic TC-H
Output: An ordering L of vertices V

1 L ← ordering of vertices V computed by the heuristic H;
2 k ← wcolr(G, L);
3 Start a timer; after t seconds abort the program, and return the current value

of L
4 while true do
5 c ← 1;
6 while true do
7 Try to compute an ordering of vertices V with weak r-coloring number

k − 1 using TC-H with conservation parameter c;
8 If successful, assign this ordering to L, set k ← wcolr(G, L), and break;
9 Otherwise, set c ← c + 1;

10 end
11 end

experiments consisting of a combination of a heuristic, a turbocharging approach with
possible optimizations, and a radius r is 300 seconds.

Quality ratio. We evaluate the quality of an approach the same way as is done
by Nadara et al.: For each graph and each radius we take note of the smallest weak
r-coloring number of an ordering of vertices of this graph that was computed by one
of the approaches of Nadara et al. Note that these approaches also include a local
search that iteratively tries to reduce the weak r-coloring number of an ordering, and
that achieved significant improvements of weak coloring numbers. Then, we take the
average ratio of the computed weak r-coloring number of the ordering computed by the
turbocharged heuristic to the aforementioned upper bound minus one. We provide this
value in percent broken down by radius and by the class of graphs (small and medium).
Note that negative values mean that the approach achieves lower weak coloring numbers
when compared to the best weak coloring numbers achieved by Nadara et al. when we
average over the instances over which the average is taken. Positive values mean that the
averaged weak coloring numbers are higher. Furthermore, we also provide the average
relative reduction of the weak r-coloring number when comparing the heuristic to the
turbocharged heuristic; that is, the relative reduction is 1− coloring number turbocharge

coloring number heuristic .
We choose this evaluation approach to see how our turbocharged heuristics fare against
the algorithms given by Nadara et al.

We will also see how the baseline weak r-coloring number of the ordering computed
by a heuristic affects the performance of a turbocharging approach.

All plots are created with Plotnine [21c] which is a python library based on ggplot

75

8. Experimental Evaluation

[21b].

8.4 Results and Analysis
In this section, we will present experimental results and discuss unexpected outcomes.
For each turbocharging approach we will present its quality without any optimizations.
By “without optimizations” we mean without optimizations for which we added optional
program parameters, that is, ordered adjacency (Section 6.5), and optimizations based
on connected components (Section 6.4), and lower bounds (Sections 6.6 and 7.3). We
will then describe how some optimizations influence the quality of the turbocharging
approach. Note that we will not be presenting every combination of optimizations for
each turbocharging approach and each heuristic, as this would exceed a reasonable
length for an experimental part. Rather, we will focus on optimizations that significantly
improve the performance of a turbocharging approach, or where an optimization results
in unexpected changes of the performance.

In Table 8.2 we present the results by Nadara et al. that are relevant to us. The gray
columns show the average quality ratios minus one of the heuristics (resp. heuristics
after applying their local search to the computed orderings) and the gray columns show
relative improvements. We only selected the results for the Wreach-, Degree-, and Sreach-
Heuristic, as they are subject to our turbocharging approaches; furthermore, we only
present results for the small and medium data set. We chose exactly these three heuristics
because they fared best compared to other heuristics in the work by Nadara et al. To
quote Nadara et al. [Nad+19]: “In summary, on our data sets, the greedy approaches of
Sections 3.5.1 and 3.5.2 produce the best results and have competitive running times. If
one looks for something faster, then the simple sort-by-degrees heuristic is consistently
the fastest and produces good results.” The greedy approaches from Sections 3.5.1 and
3.5.2 they refer to are the Wreach-Heuristic and the Sreach-Heuristic. Note that those
heuristics being the best is not contradicted by values in Table 8.2 in the gray columns
being positive, as these are averaged values, and while one heuristic might have produced
the best upper bound for one instance, another heuristic might have computed the best
upper bound for another instance. As these results are subject to the same evaluation
scheme we use, the numbers can be directly compared to ones achieved by the different
turbocharging approaches in this thesis.

We start by presenting results for turbocharging approaches for left-to-right heuristics
— TC-LastC, TC-RNeigh, TC-Wreach, TC-Iterative-Swap, and TC-Merge.

8.4.1 TC-LastC
Without optimizations. In Table 8.3 we present the performance of the TC-LastC
approach without any optimizations. Only for the medium data set and the Wreach-
Heuristic we achieve a slightly better relative improvement of weak r-coloring numbers
than the relative improvement of the local search by Nadara et al. It is also evident that
the relative improvement achieved for the Degree-Heuristic is significantly higher than for

76

8.4. Results and Analysis

Table 8.2: Results obtained by Nadara et al. for their heuristics and their heuristics after
the local search (LS). White columns depict average quality ratios minus one and gray
columns depict relative improvements when comparing with the underlying heuristic
without turbocharging and without local search.

tests r Wreach Degree Sreach

small

2 8.3% 26.7% 15.5%
3 10% 27.6% 10.7%
4 17.7% 26.9% 7.5%
5 22.6% 29% 8.4%

medium

2 8.5% 28.5% 19.2%
3 11.6% 27.1% 10.4%
4 8.9% 28.5% 5.8%
5 16.3% 29.4% 4%

tests r Wreach LS Degree LS Sreach LS

small

2 6.9%

6.7%

5.3%

16.2%

6.3%

7.3%3 5.3% 6.5% 4.1%
4 9.6% 6.6% 3.2%
5 13.6% 10% 5.6%

medium

2 7%

2.8%

2.4%

17.1%

1.2%

9.9%3 11% 6.2% 1.1%
4 10.8% 8.7% 0.6%
5 16.1% 11.8% 2.1%

the Wreach-Heuristic, although this is partly due to the fact that the Degree-Heuristic
achieved worse results than the Wreach-Heuristic before turbocharging.

In Figure 8.4 we compare the performance of TC-LastC to the best weak coloring
numbers achieved by Nadara et al. based on the weak coloring numbers of the underlying
heuristics without turbocharging and without local search. That is, for each red data
point, its x-value corresponds to the weak coloring number of the Wreach-Heuristic (resp.
Degree-Heuristic), and its y-value corresponds to the weak coloring number achieved by
the turbocharged variant of the Wreach-Heuristic (resp. Degree-Heuristic). The y-values
of blue points correspond to the best weak coloring number achieved by approaches of
Nadara et al. Both plots contain data points for all graphs from the data sets small
and medium, and radii ranging from 2 to 5. Note that the x- and y-axis are scaled
logarithmically to spread data points across the plot. We also added linear trend lines,
which clearly show that for TC-LastC combined with both heuristics we are still off the
achievable weak coloring numbers.

77

8. Experimental Evaluation

Table 8.3: Results for TC-LastC without optimizations. White columns depict average
quality ratios minus one and gray columns depict relative improvements when comparing
with the underlying heuristic without turbocharging and without local search.

tests r Wreach TC-LastC Degree TC-LastC

small

2 6.2%

6.3%

7.3%

14.0%3 7.3% 9.2%
4 11.3% 11.2%
5 15.8% 16.8%

medium

2 5.6%

3.2%

6.3%

13.7%3 9.2% 9.6%
4 11.5% 15.5%
5 16.8% 20.1%

10 30 100 300

Heuristic

10

30

100

300

Best Nadara Turbocharge

(a) Wreach-Heuristic

10 30 100 300

Heuristic

10

30

100

300

Best Nadara Turbocharge

(b) Degree-Heuristic

Figure 8.4: Comparing performances of TC-LastC to the best weak coloring numbers
achieved by Nadara et al. based on the weak coloring numbers of the underlying heuristics
without turbocharging and without local search.

TC-LastC-reorder. Table 8.5 shows results for TC-LastC-reorder. We added a
comparison to the results of TC-LastC in the brackets. We see that, while TC-LastC
improved the performance for the Wreach-Heuristic, it decreased the performance for
the Degree-Heuristic. Our explanation is that the Wreach-Heuristic is superior to the
Degree-Heuristic — in the sense that it is enough to reorder some parts of the ordering
generated by the Wreach-Heuristic to decrease its weak coloring number, whereas for the
Degree-Heuristic we have to replace parts of an ordering completely.

78

8.4. Results and Analysis

Table 8.5: Results for TC-LastC-reorder without optimizations. White columns depict
average quality ratios minus one and gray columns depict relative improvements when
comparing with the underlying heuristic without turbocharging and without local search.
Values in brackets correspond to comparisons with TC-LastC without optimizations.

tests r Wreach TC-LastC reorder Degree TC-LastC reorder

small

2 7.2% (+0.9)

7.5% (+1.3)

11.9% (+4.5)

13.1% (-0.9)3 4.6% (-2.6) 9.3% (+0.1)
4 8.7% (-2.6) 13.4% (+2.2)
5 13.4% (-2.4) 16.1% (-0.7)

medium

2 4.3% (-1.3)

4.6% (+1.4)

10.7% (+4.4)

11.2% (-2.5)3 8.6% (-0.6) 12.8% (+3.2)
4 6.8% (-4.7) 19.0% (+3.5)
5 17.9% (+1.1) 24.0% (+3.8)

Table 8.6: Results for TC-LastC with the optimization based on connected components.
White columns depict average quality ratios minus one and gray columns depict relative
improvements when comparing with the underlying heuristic without turbocharging
and without local search. Values in brackets correspond to comparisons with TC-LastC
without optimizations.

tests r Wreach TC-LastC CC Degree TC-LastC CC

small

2 6.0% (-0.2)

6.8% (+0.6)

8.3% (+1.0)

15.6% (+1.6)3 5.6% (-1.7) 5.7% (-3.5)
4 10.6% (-0.7) 8.4% (-2.8)
5 15.7% (-0.1) 13.2% (-3.6)

medium

2 4.8% (-0.9)

3.6% (+0.3)

5.2% (-1.1)

15.2% (+1.4)3 9.2% (+0.1) 7.9% (-1.8)
4 11.0% (-0.5) 13.3% (-2.3)
5 16.3% (-0.5) 17.1% (-3.1)

None of the optimizations increased the performance of TC-LastC-reorder, so we do
not present further results for this approach.

Considering connected components. In Table 8.6 we can see results for TC-LastC
when applying the optimizations based on connected components (CC) from Section 6.4.
We observe that this optimization increases the performance of both approaches by a
small amount, independent of the radii.

79

8. Experimental Evaluation

Table 8.7: Results for TC-LastC with the optimization based on lower bounds. White
columns depict average quality ratios minus one and gray columns depict relative im-
provements when comparing with the underlying heuristic without turbocharging and
without local search. Values in brackets correspond to comparisons with TC-LastC
without optimizations.

tests r Wreach TC-LastC LB Degree TC-LastC LB

small

2 4.6% (-1.6)

6.9% (+0.7)

7.5% (+0.1)

14.1% (+0.0)3 7.0% (-0.3) 8.6% (-0.6)
4 10.8% (-0.5) 12.4% (+1.1)
5 15.3% (-0.5) 16.0% (-0.8)

medium

2 6.2% (+0.5)

3.2% (-0.0)

6.6% (+0.2)

13.8% (+0.1)3 8.6% (-0.6) 9.2% (-0.4)
4 11.4% (-0.1) 15.4% (-0.1)
5 16.9% (+0.1) 21.1% (+0.9)

Lower bound. Table 8.7 shows results for TC-LastC when applying the WCOL-UB-
MMD+ lower bound from Section 6.6 to both the turbocharging part and the heuristic
part of the approach. To our surprise we only see small improvements in weak coloring
numbers for the small data set and the Wreach-Heuristic. That means that either the
lower bound is not tight enough, or the benefit of the lower bound only slightly exceeds
drawbacks coming from its computational cost.

8.4.2 TC-RNeigh(-reorder) and TC-Wreach(-reorder)
We continue by presenting results for TC-RNeigh(-reorder) and TC-Wreach(-reorder). As
tables would otherwise exceed the space limit, for a set of optimizations, we only present
results for one of the approaches TC-RNeigh and TC-Wreach. During inspection of the
results for both approaches we noticed that TC-Wreach is always slightly superior to TC-
RNeigh with respect to weak coloring numbers of computed orders when considering no,
or any optimization. Furthermore, TC-RNeigh-reorder is superior to TC-Wreach-reorder.
That led us to only present a subset of results for TC-RNeigh and TC-Wreach-reorder.

TC-Wreach without optimizations. In Table 8.8 we present results for TC-Wreach
without optimizations for the Wreach- and Degree-Heuristics. We can see that this
is the first approach where the relative improvement compared to the local search by
Nadara et al. is significantly higher, and that we come close to the best weak coloring
numbers achieved by Nadara et al. Again, the relative improvement for the Degree-
Heuristic is significantly higher than the relative improvement for the Wreach-Heuristic,
based on the fact that the Wreach-Heuristic achieves better weak coloring numbers
before turbocharging. The quality ratios for the turbocharged versions of both heuristics

80

8.4. Results and Analysis

Table 8.8: Results for TC-Wreach without optimizations. White columns depict average
quality ratios minus one and gray columns depict relative improvements when comparing
with the underlying heuristic without turbocharging and without local search.

tests r Wreach TC-Wreach Degree TC-Wreach

small

2 1.8%

11.7%

2.6%

20.0%3 0.5% 2.0%
4 3.5% 2.1%
5 6.2% 3.9%

medium

2 3.2%

6.9%

1.5%

18.2%3 2.9% 4.3%
4 5.2% 7.1%
5 11.3% 12.1%

10 30 100 300

Heuristic

10

30

100

300

Best Nadara Turbocharge

(a) Wreach-Heuristic

10 30 100 300

Heuristic

10

30

100

300

Best Nadara Turbocharge

(b) Degree-Heuristic

Figure 8.9: Comparing performances of TC-Wreach to the best weak coloring numbers
achieved by Nadara et al. based on the weak coloring numbers of the underlying heuristics
without turbocharging and without local search.

are similar, meaning that this turbocharging approach also works for slightly “worse”
heuristics.

Figure 8.9 shows a plot that compares weak coloring numbers of the TC-Wreach
approach to the best weak coloring numbers achieved by Nadara et al. The data points
underlie the same principle as in Figure 8.4. We notice that the turbocharged versions of
the heuristics perform worse, when the weak coloring number computed by the heuristic
is already high. This is shown by the blue line, that is above the red line for higher
x-values.

81

8. Experimental Evaluation

Table 8.10: Results for TC-RNeigh-reorder without optimizations. White columns depict
average quality ratios minus one and gray columns depict relative improvements when
comparing with the underlying heuristic without turbocharging and without local search.
Values in brackets correspond to comparisons with TC-Wreach without optimizations.

tests r Wreach TC-RNeigh-reorder Degree TC-RNeigh-reorder

small

2 3.5% (+1.7)

12.5% (+0.8)

3.3% (+0.8)

20.4% (+0.4)3 -0.5% (-1.0) 0.6% (-1.4)
4 1.9% (-1.6) 1.5% (-0.6)
5 4.1% (-2.0) 3.5% (-0.4)

medium

2 0.1% (-3.2)

8.3% (+1.4)

3.5% (+2.0)

18.1% (-0.1)3 2.4% (-0.5) 4.0% (-0.3)
4 3.8% (-1.3) 6.8% (-0.3)
5 9.9% (-1.3) 10.9% (-1.2)

TC-Wreach and optimizations. The optimization based on connected components
from Section 6.4 slightly decreased the performance of TC-Wreach for all radii and both
classes of instances (small and medium), so we do not present the results here.

Applying the ordered adjacency list from Section 6.5 does not influence the quality
ratios for TC-Wreach in any significant way, so we also refrain from presenting results
for this optimization. Note that we also explained why we are not applying the lower
bound WCOL-UB-MMD+ from Section 6.6 to TC-Wreach. As expected, the lower bound
maxv∈S |Wreachleftr(G, L, v)| for a subordering of vertices S from Section 6.6 where we
ignore weakly left r-reachable sets of free vertices, only decreased the performance of
TC-Wreach.

We continue presenting results for TC-RNeigh-reorder.

TC-RNeigh-reorder without optimizations In Table 8.10 we show results for
TC-RNeigh-reorder without optimizations when compared with TC-Wreach without
optimizations. Surprisingly, for this rather straight-forward adaptation of TC-RNeigh we
achieve decent results for both left-to-right heuristics. We even achieve a quality ratio of
below one for small graphs with radii 3 and the Wreach-Heuristic. Overall, this approach
achieves slightly better results than TC-Wreach.

TC-RNeigh-reorder and optimizations Again, the optimization based on con-
nected components from Section 6.4 only slightly decreased the performance of TC-
Wreach for all radii and both classes of instances (small and medium), so we do not
present the results here.

As for TC-Wreach, the optimization based on ordered adjacency lists from Section 6.5
did not influence the results when comparing with TC-RNeigh-reorder without optimiza-
tions. For all the approaches where ordered adjacency did not influence the results, we

82

8.4. Results and Analysis

Table 8.11: Results for TC-Iterative-Swap without optimizations. White columns depict
average quality ratios minus one and gray columns depict relative improvements when
comparing with the underlying heuristic without turbocharging and without local search.

tests r Wreach TC-Iterative-Swap Degree TC-Iterative-Swap

small

2 3.5%

9.8%

1.9%

18.4%3 1.2% 2.3%
4 5.4% 4.1%
5 9.8% 7.4%

medium

2 2.9%

4.4%

3.7%

15.3%3 8.5% 7.4%
4 9.4% 11.3%
5 15.6% 16.7%

think that comes from our timeout of 300 seconds being rather high. For smaller timeouts,
we saw the expected trade off: Namely, for small radii (2,3) the performance decreased,
and for larger radii (4,5) the performance increased. This comes from the fact that
updating ordered adjacency lists takes some time. But for larger radii this computation
cost is exceeded by the decrease in runtime of computing weakly left r-reaching sets, as
weakly left r-reaching sets are generally larger for larger radii r.

As stated for TC-Wreach and due to the same reason, we do not provide results for
TC-RNeigh-reorder applying the WCOL-UB-MMD+ lower bound from Section 6.6. The
lower bound maxv∈S |Wreachleftr(G, L, v)| where we ignore weakly left r-reachable sets
of free vertices only decreased the performance of TC-RNeigh-reorder.

8.4.3 TC-Iterative-Swap

Without optimizations. In Table 8.11 we show results for TC-Iterative-Swap without
optimizations for both left-to-right heuristics. Even though TC-Iterative-Swap is very
similar to the local search algorithm of Nadara et al., it still achieves higher relative
improvements for all classes of graphs, all radii, and both heuristics. We think this could
be due to two reasons. First, turbocharging is mostly applied to suborderings that do
not include all vertices. That is, if we find that a subordering L is not extendable during
the heuristic part of turbocharging, then L mostly consists of a subset of vertices V (G).
There are fewer possibilities to swap vertices in L than there would be possibilities
if L consisted of all vertices V (G). Hence, the probability of fixing this non-extendable
ordering for fewer vertices is higher.

Second, our implementations for swapping vertices and subsequent updates of weakly
left r-reachable sets are further optimized with respect to runtime when comparing to
the implementation of Nadara et al. (see Section 6.3), resulting in a larger search space
that can be explored during the turbocharging algorithm.

83

8. Experimental Evaluation

10 30 100 300

Heuristic

10

30

100

300

Best Nadara Turbocharge

(a) Wreach-Heuristic

10 30 100 300

Heuristic

10

30

100

300

Best Nadara Turbocharge

(b) Degree-Heuristic

Figure 8.12: Comparing performances of TC-Iterative-Swap to the best weak coloring
numbers achieved by Nadara et al. based on the weak coloring numbers of the underlying
heuristics without turbocharging and without local search.

Our results give first empirical evidence for these hypotheses. Furthermore, they
suggest that it is worth investigating if local search algorithms can be adapted for
turbocharging.

In Figure 8.12 we compare weak coloring numbers achieved by TC-Iterative-Swap to
the best weak coloring numbers achieved by Nadara et al. A description for how data
points in the plot are drawn is given in Section 8.4.1. We see a similar distribution of data
points as for TC-Wreach indicated by the linear trend line. For smaller weak coloring
numbers of orderings computed by the heuristic, TC-Iterative-Swap achieves similar weak
coloring numbers as the best weak coloring numbers of Nadara et al. Yet, for larger weak
coloring numbers, TC-Iterative-Swap achieves larger weak coloring numbers. We have to
mention that the best weak coloring numbers that were achieved by Nadara et al. for
larger radii (where weak coloring numbers are larger) stem from the Sreach-Heuristic,
that is not a left-to-right heuristic, and thus we cannot apply any of the turbocharging
approaches for left-to-right heuristics. Thus, this could have influenced the distribution
of data points and the trend lines seen in Figures 8.4, 8.9, 8.12 and 8.15.

TC-Iterative-Swap and Optimizations As for other turbocharging approaches, the
optimization based on connected components from Section 6.4 and the optimization
based on an ordered adjacency list from Section 6.5 did not influence the results for
TC-Iterative-Swap in any significant way. We will provide reasons for this in Section 8.4.5.

In Table 8.13 we present results for TC-Iterative-Swap when applying the WCOL-UB-
MMD+ lower bound from Section 6.6. We do not see any significant changes in quality
ratios and relative improvements. As TC-Iterative-Swap is designed to decrease weakly

84

8.4. Results and Analysis

Table 8.13: Results for TC-Iterative-Swap with the WCOL-UB-MMD+ lower bound (LB).
White columns depict average quality ratios minus one and gray columns depict relative
improvements when comparing with the underlying heuristic without turbocharging and
without local search. Values in brackets correspond to comparisons with TC-Iterative-
Swap without optimizations.

tests r Wreach TC-Iterative-Swap LB Degree TC-Iterative-Swap LB

small

2 3.2% (-0.3)

10.1% (+0.3)

1.3% (-0.7)

18.8% (+0.3)3 1.4% (+0.2) 1.6% (-0.8)
4 5.4% (+0.0) 3.5% (-0.5)
5 8.5% (-1.3) 7.5% (+0.1)

medium

2 3.1% (+0.3)

4.3% (-0.1)

3.7% (+0.0)

15.2% (-0.1)3 8.5% (+0.0) 7.2% (-0.2)
4 9.4% (+0.0) 12.8% (+1.4)
5 16.0% (+0.4) 16.8% (+0.1)

Table 8.14: Results for TC-Merge without optimizations. White columns depict average
quality ratios minus one and gray columns depict relative improvements when comparing
with the underlying heuristic without turbocharging and without local search.

tests r Wreach TC-Merge Degree TC-Merge

small

2 0.6%

14.6%

-2.4%

23.4%3 -2.3% -2.3%
4 -0.2% -1.1%
5 1.3% -0.2%

medium

2 -2.4%

11.3%

-1.3%

21.4%3 -0.2% -0.7%
4 -0.5% 2.6%
5 4.6% 6.2%

left r-reachable sets, it could have difficulties dealing with non-extensibility based on the
WCOL-UB-MMD+ lower bound. So this result was expected.

8.4.4 TC-Merge
We continue by presenting results for TC-Merge in Table 8.14. As we reach a quality
ratio of below one for most instance classes and radii it is clear that this turbocharging
approach performs best when compared with other turbocharging approaches for left-to-
right heuristics. The only types of instances where we do not reach weak coloring numbers
of Nadara et al. are graphs from the medium class with radius 5. It is also interesting that

85

8. Experimental Evaluation

10 30 100 300

Heuristic

10

30

100

300

Best Nadara Turbocharge

(a) Wreach-Heuristic

10 30 100 300

Heuristic

10

30

100

300

Best Nadara Turbocharge

(b) Degree-Heuristic

Figure 8.15: Comparing performances of TC-Merge to the best weak coloring numbers
achieved by Nadara et al. based on the weak coloring numbers of the underlying heuristics
without turbocharging and without local search.

while the Degree-Heuristic generally computes orderings of higher weak coloring number
than the Wreach-Heuristic, the turbocharged version of the Degree-Heuristic computes
orderings of similar or even lower weak coloring numbers than the turbocharged version
of the Wreach-Heuristic. We do not see an obvious reason for that.

In Figure 8.15 we show a comparison of the weak coloring numbers achieved by
TC-Merge to the best weak coloring numbers of Nadara et al. based on the weak coloring
number of orderings produced by the underlying heuristics without turbocharging and
without local search. We spot an expected difference of the two linear trend lines —
while the trend line for the turbocharged heuristic is below the trend line of the best
achieved weak coloring numbers by Nadara et al. for small x-values, it is above that line
for larger x-values. We argue that this is based on the fixed-parameter tractability of
the underlying problem of TC-Merge, where the target weak coloring number k is part
of that parameterization, resulting in a rapid increase of computational complexity for
larger values k. Furthermore, we have to mention that this slightly skews the evaluation
based on quality ratio. Namely, whenever we come below the best weak coloring number
of Nadara et al. for graphs that have small weak coloring numbers, this will have a larger
impact on the average quality ratio. Still, we can say for certain that this turbocharging
approach is effective when we expect the weak r-coloring number of the inspected graph
instance to be small.

TC-Merge and optimizations. Both the optimization based on connected compo-
nents from Section 6.4, and the optimization based on ordered adjacency lists from
Section 6.5 did not influence the performance of TC-Merge in any significant way. We
only present results for TC-Merge when applying the WCOL-UB-MMD+ lower bound

86

8.4. Results and Analysis

Table 8.16: Results for TC-Merge with the optimization based on the WCOL-UB-MMD+
lower bound (LB). White columns depict average quality ratios minus one and gray
columns depict relative improvements when comparing with the underlying heuristic
without turbocharging and without local search. Values in brackets correspond to
comparisons with TC-Merge without optimizations.

tests r Wreach TC-Merge LB Degree TC-Merge LB

small

2 4.0% (+3.3)

13.2% (-1.4)

1.9% (+4.3)

21.2% (-2.2)3 -1.8% (+0.5) 1.5% (+3.9)
4 0.5% (+0.7) -0.3% (+0.7)
5 3.3% (+2.1) 2.7% (+2.9)

medium

2 -0.9% (+1.6)

10.0% (-1.4)

4.0% (+5.3)

19.2% (-2.3)3 2.1% (+2.3) 2.4% (+3.1)
4 1.0% (+1.6) 5.1% (+2.5)
5 6.3% (+1.7) 10.4% (+4.2)

from Section 6.6 in Table 8.16. We observe that the relative improvement decreased
for all considered classes of graphs and both heuristics. This suggests that it is not
appropriate to apply this lower bound for TC-Merge, because TC-Merge is almost entirely
based on weakly left r-reachable sets of overfull vertices; that is, TC-Merge defines a
turbocharging problem based on weakly left r-reachable sets of overfull vertices. Still,
we proposed an adaptation of TC-Merge that enables us to apply WCOL-UB-MMD+
that is explained in Section 6.6. But WCOL-UB-MMD+ can report that an ordering
cannot be extended based on a more complex algorithm where parts of the input graph
are contracted into a single vertex, even if there are no overfull vertices — not giving any
feedback on where this “problem” stems from. TC-Merge is not designed to tackle this
problem, as it requires some indication of the problem, in the form of overfull vertices
that enable us to focus on a specific search space.

8.4.5 Discussing Optimizations for Left-to-Right Heuristics

In experimental results for most of the left-to-right turbocharging approaches we have
seen that most of the optimizations from Chapter 6 where we added an optional program
parameter did not influence the performance of those approaches or even had a negative
effect. We want to discuss possible reasons in this section.

Connected components. We have seen that the optimization based on connected
components from Section 6.4 only increased the performance of the TC-LastC approach.
One reason is that this optimization is especially important for TC-LastC, as we could
decrease the search space of only this approach based on this optimization. But this

87

8. Experimental Evaluation

does not explain why some turbocharging approaches even perform worse with this
optimization, and we do not have an obvious explanation for that.

It could be argued though that this optimization is not fully worked out yet. Recall
that the optimization can roughly be described as, for a subordering L of vertices S with
free vertices T , selecting a connected component of G[T] and placing V (G[T]) to the right
of L as a contiguous part. We left open how to select which connected component of G[T]
to choose, thus, it might be that our implementation sometimes chooses a suboptimal or
even disadvantageous connected component. This leaves room for further research, and
we are interested if a policy that enforces how to choose a connected component of G[T]
can increase the effectiveness of this optimization for turbocharging approaches different
from TC-LastC.

Ordered adjacency list. The ordered adjacency list from Section 6.5 did not influence
the performance of any left-to-right-heuristic where it has been applied to in any significant
way. We have already touched on the reasons for this. Namely, our timeout of 300 seconds
for all experiments is rather high, which results in the optimization based on ordered
adjacency lists not influencing the explored combinations of conservation parameters c
and target weak coloring numbers k that can be explored for a specific instance enough.
For a graph instance, we think that a turbocharging approach and the same approach
applying the ordered adjacency list will time out during the same combination of target
weak coloring number k and conservation parameter c, because the runtime increases
exponentially for increasing c.

Nonetheless, we have seen the influence of the optimization based on ordered adjacency
lists for smaller timeouts: For smaller radii, the performance of turbocharging with this
optimization decreased, and for larger radii it increased. The reason is that updating
the ordered adjacency list takes some time if the position of a vertex in the subordering
changes. But for larger radii this time is exceeded by the time that is saved by applying
the ordered adjacency list for computing weakly reaching sets.

Lower bounds. Firstly, the lower bound maxv∈S |Wreachleftr(G, L, v)| for a suborder-
ing L of vertices S from Section 6.6, where we ignore the weakly left r-reachable sets of
free vertices, did not improve the performance of any approach.

Secondly, the lower bound WCOL-UB-MMD+ only increased the performance of
the Wreach-Heuristic with TC-LastC and the small graph class. We think that this
is because the TC-LastC approach is a more general and less heuristic approach than
all the other turbocharging approaches that we have seen: Assume that for any other
approach the lower bound WCOL-UB-MMD+ reports that the current subordering is
non-extendable, and we have to turbocharge. Then this could be because of a part of
the graph where weakly left r-reachable sets are still relatively small when compared to
the maximum size of a weakly left r-reachable set, and particularly, we have no overfull
vertices. The “more heuristic” turbocharging approaches are all designed such that
they examine a specific search space based on the weakly r-reachable sets of overfull
vertices. This “indication of non-extensibility” in the form of overfull vertices is normally

88

8.4. Results and Analysis

given by the basic lower bound maxv∈V |Wreachr(G, L, v)|. Now that the lower bound
WCOL-UB-MMD+ reported non-extensibility, the turbocharging approach is lacking
this indication, and might consider a less suitable search space. Instead, for TC-LastC
the search space is not based on any lower bound, but only based on the assumption that
we can fix non-extensibility by replacing some vertices of the suffix of the subordering.

As we will see in Section 8.5, another problem is that the WCOL-UB-MMD+ lower
bound is not that tight, and will rarely find that there is no full right extension of desired
weak r-coloring number soon enough. So the trade-off or running time and tightness
seems to be unfavorable.

We want to further expand on why some unexpected behavior might occur for lower
bounds and our specific turbocharging framework. First, let us mention that all lower
bounds # we consider for a subordering L are lower bounds for the weak r-coloring number
of any full right extension of L. Thus, # is a lower bound for the weak r-coloring number
of an ordering computed by the considered left-to-right heuristic. The value # might not
be a lower bound in another context: Assume that we computed a lower bound # ∈ N for
the weak r-coloring number of any full right extension L� of a subordering L during some
“heuristic” turbocharging algorithm (that is TC-Wreach, TC-RNeigh, TC-Iterative-Swap,
or TC-Merge). Furthermore, assume that this turbocharging algorithm was successful in
fixing the non-extendable subordering such that L is still the left part of the subordering.
The heuristic part of the turbocharging framework might now place some vertices until
our subordering is non-extendable again. The turbocharging algorithm is now applied
again but may compute an extendable subordering where the lower bound for the weak
r-coloring number of any full right extension is even less than #. This is because the
turbocharging algorithm might change parts of the subordering that are in the beginning
(to the left) w.r.t. that subordering. Hence, # is not a lower bound when considering the
combination of turbocharging algorithm and heuristic.

To fix this issue we propose two different solutions to tackle this problem for future
research: Either lower bounds could be adapted in some way to “also be lower bounds” for
applications of the turbocharging problem in the future, or the turbocharging framework
may be redesigned in some way, such that this problem does not occur anymore. The
stated problem should also give some intuition why tighter lower bounds may perform
worse than weaker lower bounds when applied during the turbocharging framework: As
a lower bound for the weak r-coloring number of any full right extension might not be
a lower bound for the combination of the heuristic and turbocharging, it could give
some false indication of non-extensibility. It could be that a lower bound reports that
a subordering is non-extendable, but a later application of a turbocharging algorithm
might still fix this problem. Note that this is why we even performed experiments for
the rather weak lower bound that is maxv∈S |Wreachleftr(G, L, v)| for a subordering L of
vertices S.

The main takeaway from this discussion is that we have to be careful when designing
lower bounds in the turbocharging framework that we apply for weak coloring numbers.
It might be that we have to tailor a turbocharging approach to a lower bound and also
the other way around, there being an intricate interplay. We can relate this to TC-Merge,

89

8. Experimental Evaluation

Table 8.17: Results for TC-LastC-RL without optimizations. White columns depict
average quality ratios minus one and gray columns depict relative improvements when
comparing with the underlying heuristic without turbocharging and without local search.

tests r Sreach TC-LastC-RL Degree TC-LastC-RL

small

2 2.2%

13.1%

8.5%

16.9%3 -1.4% 7.5%
4 -4.0% 6.5%
5 -3.8% 9.0%

medium

2 8.6%

9.0%

15.0%

11.9%3 3.7% 13.0%
4 0.6% 16.9%
5 -1.1% 17.9%

which is based on merging weakly left r-reachable sets of overfull vertices. These overfull
vertices are in turn signified by the lower bound maxv∈V |Wreachleftr(G, L, v)| exceeding
size k for a subordering L.

8.4.6 TC-LastC-RL

We continue presenting results for TC-LastC-RL which is the only approach for tur-
bocharging right-to-left heuristic that we investigated.

Without lower bound. In Table 8.17 we see results for TC-LastC-RL for the Sreach-
and Degree-Heuristic. Although the relative improvements for the turbocharged version
of the Degree-Heuristic are slightly higher, the quality ratios for the turbocharged
version of the Sreach-Heuristic are significantly better. This could imply that TC-
LastC-RL struggles to turbocharge slightly worse heuristics such as the Degree-Heuristic.
Furthermore, we see that for the Sreach-Heuristic the quality ratios are better for larger
radii. The reason for this could be that the Sreach-Heuristic performs well for larger
radii even before turbocharging. We also notice that for the medium graph class the
quality ratios get worse — the reason being that the implementation for turbocharging
right-to-left heuristic is slightly more computationally expensive than for left-to-right
heuristics.

In Figure 8.18 we compare the weak coloring numbers of TC-LastC-RL to the best
weak coloring numbers achieved by Nadara et al. based on the weak coloring numbers of
the heuristics without turbocharging and without local search. The trend line suggests
that, even though the Sreach-Heuristic with TC-LastC performs well for larger radii, it
is still a bit worse for larger weak coloring numbers.

90

8.4. Results and Analysis

10 30 100 300

Heuristic

10

30

100

300

Best Nadara Turbocharge

(a) Sreach-Heuristic

10 30 100 300

Heuristic

10

30

100

300

Best Nadara Turbocharge

(b) Degree-Heuristic

Figure 8.18: Comparing performances of TC-LastC-RL to the best weak coloring numbers
achieved by Nadara et al. based on the weak coloring numbers of the underlying heuristics
without turbocharging and without local search.

Table 8.19: Results for TC-LastC with the optimization based on the lower bound (LB)
from Section 7.3. White columns depict average quality ratios minus one and gray columns
depict relative improvements when comparing with the underlying heuristic without
turbocharging and without local search. Values in brackets correspond to comparisons
with TC-LastC-RL without optimizations.

tests r Sreach TC-LastC-RL LB Degree TC-LastC-RL LB

small

2 2.3% (+0.2)

13.1% (+0.1)

8.7% (+0.2)

16.8% (-0.1)3 -1.6% (-0.2) 7.4% (-0.1)
4 -3.8% (+0.2) 7.0% (+0.6)
5 -4.3% (-0.5) 9.1% (+0.1)

medium

2 8.7% (+0.1)

8.8% (-0.2)

15.3% (+0.3)

11.7% (-0.2)3 4.5% (+0.8) 13.4% (+0.5)
4 0.9% (+0.3) 16.0% (-0.8)
5 -1.3% (-0.2) 19.3% (+1.4)

With lower bound. Table 8.19 shows results for TC-LastC-RL when applying the
lower bound from Section 7.3. We are again surprised that this lower bound results in no
noticeable improvements of quality ratios for both heuristics. We have to assume that
this lower bound is not tight enough to make a difference.

91

8. Experimental Evaluation

8.4.7 Improvements on Upper Bound
We want to conclude this section by presenting, if and for how many graph instances
we were able to improve best known upper bounds for weak coloring numbers. For this
analysis we compare coloring numbers of all the approaches we presented until now and
break them down by left-to-right and right-to-left heuristic. We will also give the average
ratio when comparing the best weak coloring number achieved by Nadara et al. and the
best weak coloring number achieved by any of our approaches.

Improvements on upper bounds. There are a total of 220 instances in our data
set when considering graphs and radii ranging from 2 to 5. Out of these instances
the turbocharged left-to-right heuristics were able to improve upper bounds for 120
instances, the turbocharged right-to-left heuristics for 84 instances. Overall, we were able
to compute tighter upper bounds for 137 instances.

Ratios. The average ratio when taking the best weak coloring numbers achieved by
left-to-right heuristics is 0.955, for right-to-left heuristics it is 1.001. When considering the
best weak coloring number achieved by any of our approaches, the average ratio is 0.939.
As 0.939 is lower than 0.955 by a considerable amount, this means that both approaches
(left-to-right and right-to-left) achieve good results on different classes of instances. By
simply looking at quality ratios for the respective turbocharging approaches, we observe
that left-to-right turbocharging approaches work better for smaller radii and right-to-left
turbocharging approaches for larger radii.

8.5 Comparing Lower and Upper Bounds
In Section 6.6 we have presented two lower bounds, WCOL-UB-MMD+ and WCOL-
MMD+, that are able to compute lower bounds for weak r-coloring of graphs. Further-
more, in Section 8.4 we have seen that the optimization based on the WCOL-UB-MMD+
lower bound rarely improved the performance of any turbocharging approach, which
led us to believe that this lower bound is not tight enough. That is why we want to
compare current best upper bounds for our investigated instances to both lower bounds.
Note that it was not the main goal of this thesis to optimize and design good lower
bounds for weak coloring numbers of graphs. Rather, they emerged as a byproduct
during our research. As results for lower bounds are easy to test and represent, we
still want to devote a small part of the experimental evaluation to lower bounds. For
the best upper bounds, we compare the weak coloring numbers computed by any of
our algorithms and any of the algorithms of Nadara et al., and take the minimum. In
Table 8.20 we present the average ratio of a lower bound to the best known upper bound
broken down by radius and graph class. As a baseline we add the average ratio for
wcol1(G), which clearly is a lower bound for wcolr(G) with r ≥ 1. Ratios being the same
for r = 2 is not an error, as for r = 2, � r−1

2 � is zero, which means that we cannot contract
any vertices in the WCOL-UB-MMD+ and WCOL-MMD+ lower bounds. Under the

92

8.6. Discussion

Table 8.20: Average ratios of lower bounds to best known upper bounds.

tests r wcol1(G) WCOL-UB-MMD+ WCOL-MMD+

small

2 0.522 0.522 0.522
3 0.456 0.472 0.478
4 0.416 0.435 0.442
5 0.389 0.415 0.423

medium

2 0.451 0.451 0.451
3 0.372 0.381 0.383
4 0.329 0.339 0.342
5 0.301 0.314 0.322

assumption that our upper bounds nearly represent the exact weak coloring numbers,
we can see that our believes of the lower bounds not being tight enough got confirmed,
as both WCOL-UB-MMD+ and WCOL-MMD+ are only slightly better than wcol1(G).
Additionally, the ratio gets worse for larger radii. A positive observation is that the ratios
for WCOL-UB-MMD+ and WCOL-MMD+ are not that far apart, meaning that the
upper bound on diameters of subgraphs we use for WCOL-UB-MMD+ does not influence
the tightness of the lower bound to an extensive amount. To summarize, even though
our proposed lower bounds are not as tight as we wanted them to be, they still are an
improvement to the trivial lower bound that is wcol1(G).

8.6 Discussion
In this chapter, we have presented experimental evaluations for proposed turbocharging
approaches and lower bounds. We want to give a brief summary and highlight some
results that are especially worth mentioning.

We have started by explaining our test setup, input data, and our novel (to our
knowledge) evaluation framework in Sections 8.1 to 8.3. Then we have presented results
for all turbocharging approaches. For turbocharging approaches for left-to-right heuristics,
TC-LastC performed the worst, followed by TC-Iterative-Swap, TC-Wreach, and TC-
RNeigh. Interestingly, even though TC-Iterative-Swap is very similar to the local search of
Nadara et al., the computed weak coloring numbers are significantly better. Furthermore,
TC-Wreach-reorder, TC-RNeigh-reorder, and TC-LastC-reorder, performed better than
their non-reordered counterparts. TC-Merge performed the best for both considered
heuristics and was able to improve upper bounds for several instances, predominantly for
instance where the weak r-coloring number is small. For each turbocharging approach
we have also applied several optimizations and in Section 8.4.5 we have explained why
some of them did not perform as expected.

Even though TC-LastC-RL is a very simple turbocharging approach for right-to-left
heuristics, it was still able to compute orderings of small weak coloring numbers and

93

8. Experimental Evaluation

improved upper bounds on weak coloring numbers for several instances, mostly for
instances with larger radii. Its performance is close to TC-Merge, but while TC-Merge
works well for instances of smaller radii, TC-LastC-RL works well for instances of larger
radii. Overall, we were able to improve upper bounds on weak coloring numbers for 137
out of the 220 considered instances by roughly 10% in average.

In Section 8.5 we performed experiments for the WCOL-UB-MMD+ and WCOL-
MMD+ lower bounds for weak coloring numbers of graphs. We compared these lower
bounds to best known upper bounds and have seen that there is still a large gap of
around factor two between them.

94

CHAPTER 9
Conclusion

At the end of most chapters we have already given brief summaries, open questions,
and pointers for future research. We give here a broad summary of the thesis and the
answer to the guiding research question, which asks if we can successfully apply the
turbocharging framework to the domain of computing vertex orderings with small weak
r-coloring numbers. Furthermore, we want to give a bigger picture on possible future
research directions, leaving the details to the aforementioned discussions at the end of
each chapter.

We have studied and designed algorithms to compute vertex orderings of real-world
graphs with small weak coloring numbers. Specifically, we applied a distinct variant of
the turbocharging framework to already established heuristics for computing orderings
of small weak r-coloring number. We divided the research into two parts, designing
turbocharging algorithms for left-to-right heuristics and for right-to-left heuristics. For
left-to-right heuristics, we proposed several turbocharging approaches, some of which
have heuristic aspects to them. As a by-product of this research we also proposed a novel
lower bound for weak r-coloring number of graphs that is based on contracting subgraphs
with diameter at most � r−1

2 � into single vertices.
We proposed one turbocharging approach for turbocharging right-to-left heuristics,

but believe there is room for future research.
In our experimental evaluation we have seen that the performance of the different

turbocharging approaches varied significantly. The turbocharging approach for left-to-
right heuristics that merges a subset of vertices into an already fixed subordering, and
the simple turbocharging approach for right-to-left heuristics that replaces a prefix of an
ordering of a subset of the vertices of a graph by different vertices performed the best for
most of the considered input instances.

With our approaches, we were able to improve upper bounds for 137 of the 220
considered instances. The average ratio of weak coloring numbers achieved by any of our
approaches and the previous best upper bounds is 0.939. Hence, we conclude that for a

95

9. Conclusion

class of real-world graphs turbocharging is a useful tool to compute orderings of small
weak r-coloring number.

Future research. As the main conclusion of the thesis is that turbocharging is as
a fruitful problem-solving framework, it would be interesting to see if and how it can
be applied to different problem domains, as there are a lot of problems that are still
untouched with regard to turbocharging.

Furthermore, the term “turbocharging” is to this date understood in different ways, as
“augmenting heuristics with exact algorithms” is a very vague description. In this thesis,
we adapted the turbocharging framework to our problem domain which is computing
linear orders, which at some points turned out to also pose some problems, for example
with regard to the design of lower bounds (see Section 8.4.5). We would be interested
to see whether there is a unified description of turbocharging that can immediately be
applied to a wide variety of problem domains such as ordering problems or assignment
problems.

We have given several turbocharging problems and provided complexity results, most
of which are hardness results — we are interested if there are further parameterizations
by structural properties of graph instances such as the h-index [ES12] that make the
problems tractable in a fixed-parameter sense.

Additionally, we have only initiated research for turbocharging with regard to right-to-
left heuristics. As the simple turbocharging approach for right-to-left heuristics provided
very good results, further research in this direction might be successful in providing even
better algorithms for computing vertex orderings of real world graphs with small weak
r-coloring numbers.

Nadara et al. [Nad+19] are as far as we know the only other researchers that focused
on algorithms for computing vertex orderings of real-world graphs with small weak
r-coloring numbers. We wonder, how other algorithmic techniques would perform in the
domain of computing upper bounds for weak coloring numbers. Finally, there are still
no tight bounds for the weak r-coloring number of specific graph classes such as planar
graphs or even for small real-world graphs.

96

List of Figures

3.1 Visualization of weak and strong r-reachability. 14

5.1 Sketch for subdivision of edge {u, v}. 28
5.2 Sketch of the reduction for the proof of Theorem 5.5.1. 40

6.1 Counterexample for contracting subgraphs of diameter more than � r−1
2 �.

The integer values besides the node labels represent |Wreachleft(G, L, v)| for
v ∈ V (G[T]) and f(v) for v ∈ V (H), respectively. 61

7.1 Sketch for subdivision of edge {u, v}. 68

8.4 Comparing performances of TC-LastC to the best weak coloring numbers
achieved by Nadara et al. based on the weak coloring numbers of the underlying
heuristics without turbocharging and without local search. 78

8.9 Comparing performances of TC-Wreach to the best weak coloring numbers
achieved by Nadara et al. based on the weak coloring numbers of the underlying
heuristics without turbocharging and without local search. 81

8.12 Comparing performances of TC-Iterative-Swap to the best weak coloring
numbers achieved by Nadara et al. based on the weak coloring numbers of
the underlying heuristics without turbocharging and without local search. 84

8.15 Comparing performances of TC-Merge to the best weak coloring numbers
achieved by Nadara et al. based on the weak coloring numbers of the underlying
heuristics without turbocharging and without local search. 86

8.18 Comparing performances of TC-LastC-RL to the best weak coloring numbers
achieved by Nadara et al. based on the weak coloring numbers of the underlying
heuristics without turbocharging and without local search. 91

97

List of Tables

3.2 Upper and lower bounds on weak r-coloring numbers. The subscripts in
the asymptotic notation mean that the hidden constant may depend on the
parameter in the subscript. For full definitions of the graph classes we refer
to the respective references. 16

8.1 Overview of graph sizes for the different classes. 74
8.2 Results obtained by Nadara et al. for their heuristics and their heuristics after

the local search (LS). White columns depict average quality ratios minus one
and gray columns depict relative improvements when comparing with the
underlying heuristic without turbocharging and without local search. . . . 77

8.3 Results for TC-LastC without optimizations. White columns depict average
quality ratios minus one and gray columns depict relative improvements when
comparing with the underlying heuristic without turbocharging and without
local search. 78

8.5 Results for TC-LastC-reorder without optimizations. White columns depict
average quality ratios minus one and gray columns depict relative improve-
ments when comparing with the underlying heuristic without turbocharging
and without local search. Values in brackets correspond to comparisons with
TC-LastC without optimizations. 79

8.6 Results for TC-LastC with the optimization based on connected components.
White columns depict average quality ratios minus one and gray columns
depict relative improvements when comparing with the underlying heuristic
without turbocharging and without local search. Values in brackets correspond
to comparisons with TC-LastC without optimizations. 79

8.7 Results for TC-LastC with the optimization based on lower bounds. White
columns depict average quality ratios minus one and gray columns depict
relative improvements when comparing with the underlying heuristic without
turbocharging and without local search. Values in brackets correspond to
comparisons with TC-LastC without optimizations. 80

8.8 Results for TC-Wreach without optimizations. White columns depict average
quality ratios minus one and gray columns depict relative improvements when
comparing with the underlying heuristic without turbocharging and without
local search. 81

99

8.10 Results for TC-RNeigh-reorder without optimizations. White columns depict
average quality ratios minus one and gray columns depict relative improve-
ments when comparing with the underlying heuristic without turbocharging
and without local search. Values in brackets correspond to comparisons with
TC-Wreach without optimizations. 82

8.11 Results for TC-Iterative-Swap without optimizations. White columns depict
average quality ratios minus one and gray columns depict relative improve-
ments when comparing with the underlying heuristic without turbocharging
and without local search. 83

8.13 Results for TC-Iterative-Swap with the WCOL-UB-MMD+ lower bound (LB).
White columns depict average quality ratios minus one and gray columns
depict relative improvements when comparing with the underlying heuristic
without turbocharging and without local search. Values in brackets correspond
to comparisons with TC-Iterative-Swap without optimizations. 85

8.14 Results for TC-Merge without optimizations. White columns depict average
quality ratios minus one and gray columns depict relative improvements when
comparing with the underlying heuristic without turbocharging and without
local search. 85

8.16 Results for TC-Merge with the optimization based on the WCOL-UB-MMD+
lower bound (LB). White columns depict average quality ratios minus one
and gray columns depict relative improvements when comparing with the
underlying heuristic without turbocharging and without local search. Values
in brackets correspond to comparisons with TC-Merge without optimizations. 87

8.17 Results for TC-LastC-RL without optimizations. White columns depict aver-
age quality ratios minus one and gray columns depict relative improvements
when comparing with the underlying heuristic without turbocharging and
without local search. 90

8.19 Results for TC-LastC with the optimization based on the lower bound (LB)
from Section 7.3. White columns depict average quality ratios minus one
and gray columns depict relative improvements when comparing with the
underlying heuristic without turbocharging and without local search. Values in
brackets correspond to comparisons with TC-LastC-RL without optimizations. 91

8.20 Average ratios of lower bounds to best known upper bounds. 93

100

List of Algorithms

4.1 Turbocharging framework . 20

5.1 Turbocharging with iterative swapping 37
5.2 Recursive FPT-algorithm for WCOL-Merge(r) 44

6.1 f -degeneracy . 59
6.2 WCOL-MMD+ . 62

8.1 Evaluation framework for turbocharging a heuristic 75

101

Bibliography

[AWW16] Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. „Ap-
proximation and Fixed Parameter Subquadratic Algorithms for Radius and
Diameter in Sparse Graphs“. In: Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016. SIAM, 2016,
pp. 377–391. doi: 10.1137/1.9781611974331.ch28.

[Ami+18] Saeed Akhoondian Amiri et al. „Distributed Domination on Graph Classes
of Bounded Expansion“. In: Proceedings of the 30th on Symposium on Paral-
lelism in Algorithms and Architectures, SPAA 2018. ACM, 2018, pp. 143–151.
doi: 10.1145/3210377.3210383.

[BK11] Hans L. Bodlaender and Arie M. C. A. Koster. „Treewidth computations
II. Lower bounds“. In: Inf. Comput. 209.7 (2011), pp. 1103–1119. doi: 10.
1016/j.ic.2011.04.003.

[21a] Boost C++ Libraries. 2021. url: https://www.boost.org/ (visited on
10/08/2021).

[Cor+09] Thomas H. Cormen et al. Introduction to Algorithms, 3rd Edition. MIT Press,
2009. url: http://mitpress.mit.edu/books/introduction-
algorithms.

[Cyg+15] Marek Cygan et al. Parameterized Algorithms. Springer, 2015. doi: 10.
1007/978-3-319-21275-3.

[DK09] Anuj Dawar and Stephan Kreutzer. „Domination Problems in Nowhere-Dense
Classes“. In: Proceedings of the IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2009.
Vol. 4. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2009,
pp. 157–168. doi: 10.4230/LIPIcs.FSTTCS.2009.2315.

[Dob21] Alexander Dobler. „Turbocharging Heuristics for Weak Coloring Numbers:
Source Code“. In: (2021). doi: 10.5281/zenodo.5732923.

[DF95] Rodney G. Downey and Michael R. Fellows. „Fixed-Parameter Tractability
and Completeness II: On Completeness for W[1]“. In: Theor. Comput. Sci.
141.1&2 (1995), pp. 109–131. doi: 10.1016/0304-3975(94)00097-3.

103

https://doi.org/10.1137/1.9781611974331.ch28
https://doi.org/10.1145/3210377.3210383
https://doi.org/10.1016/j.ic.2011.04.003
https://doi.org/10.1016/j.ic.2011.04.003
https://www.boost.org/
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2315
https://doi.org/10.5281/zenodo.5732923
https://doi.org/10.1016/0304-3975(94)00097-3

[Dra+16] Pål Grønås Drange et al. „Kernelization and Sparseness: the Case of Domi-
nating Set“. In: Proceedings of the 33rd Symposium on Theoretical Aspects of
Computer Science, STACS 2016. Vol. 47. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016, 31:1–31:14. doi: 10.4230/LIPIcs.STACS.
2016.31.

[Dvo13] Zdenek Dvorák. „Constant-factor approximation of the domination number
in sparse graphs“. In: Eur. J. Comb. 34.5 (2013), pp. 833–840. doi: 10.
1016/j.ejc.2012.12.004.

[Dvo19] Zdenek Dvorák. „On distance r-dominating and 2r-independent sets in sparse
graphs“. In: J. Graph Theory 91.2 (2019), pp. 162–173. doi: 10.1002/jgt.
22426.

[Eic+17] Kord Eickmeyer et al. „Neighborhood Complexity and Kernelization for
Nowhere Dense Classes of Graphs“. In: Proceedings of the 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017. Vol. 80.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 63:1–63:14.
doi: 10.4230/LIPIcs.ICALP.2017.63.

[ES12] David Eppstein and Emma S. Spiro. „The h-Index of a Graph and its
Application to Dynamic Subgraph Statistics“. In: J. Graph Algorithms Appl.
16.2 (2012), pp. 543–567. doi: 10.7155/jgaa.00273.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[Gas+19] Serge Gaspers et al. „Turbocharging Treewidth Heuristics“. In: Algorithmica
81.2 (2019), pp. 439–475. doi: 10.1007/s00453-018-0499-1.

[21b] ggplot. 2021. url: https://ggplot2.tidyverse.org/reference/
ggplot.html (visited on 10/11/2021).

[GKS17] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. „Deciding First-
Order Properties of Nowhere Dense Graphs“. In: J. ACM 64.3 (2017), 17:1–
17:32. doi: 10.1145/3051095.

[Gro+18] Martin Grohe et al. „Coloring and Covering Nowhere Dense Graphs“. In:
SIAM J. Discret. Math. 4 (2018), pp. 2467–2481. doi: 10.1137/18M1168753.

[HN13] Sepp Hartung and Rolf Niedermeier. „Incremental list coloring of graphs,
parameterized by conservation“. In: Theor. Comput. Sci. 494 (2013), pp. 86–
98. doi: 10.1016/j.tcs.2012.12.049.

[HW18] Jan van den Heuvel and David R. Wood. „Improper colourings inspired by
Hadwiger’s conjecture“. In: J. London Math. Soc. 98.1 (2018), pp. 129–148.
doi: 10.1112/jlms.12127.

[Heu+17] Jan van den Heuvel et al. „On the generalised colouring numbers of graphs
that exclude a fixed minor“. In: Eur. J. Comb. 66 (2017), pp. 129–144. doi:
10.1016/j.ejc.2017.06.019.

104

https://doi.org/10.4230/LIPIcs.STACS.2016.31
https://doi.org/10.4230/LIPIcs.STACS.2016.31
https://doi.org/10.1016/j.ejc.2012.12.004
https://doi.org/10.1016/j.ejc.2012.12.004
https://doi.org/10.1002/jgt.22426
https://doi.org/10.1002/jgt.22426
https://doi.org/10.4230/LIPIcs.ICALP.2017.63
https://doi.org/10.7155/jgaa.00273
https://doi.org/10.1007/s00453-018-0499-1
https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/ggplot.html
https://doi.org/10.1145/3051095
https://doi.org/10.1137/18M1168753
https://doi.org/10.1016/j.tcs.2012.12.049
https://doi.org/10.1112/jlms.12127
https://doi.org/10.1016/j.ejc.2017.06.019

[JM21] Gwenaël Joret and Piotr Micek. Improved bounds for weak coloring numbers.
2021. arXiv: 2102.10061 [math.CO].

[KY03] Hal A. Kierstead and Daqing Yang. „Orderings on Graphs and Game Coloring
Number“. In: Order 20.3 (2003), pp. 255–264. doi: 10.1023/B:ORDE.
0000026489.93166.cb.

[KRS19] Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. „Polynomial
Kernels and Wideness Properties of Nowhere Dense Graph Classes“. In: ACM
Trans. Algorithms 15.2 (2019), 24:1–24:19. doi: 10.1145/3274652.

[MB83] David W. Matula and Leland L. Beck. „Smallest-Last Ordering and clustering
and Graph Coloring Algorithms“. In: J. ACM 30.3 (1983), pp. 417–427. doi:
10.1145/2402.322385.

[Nad+19] Wojciech Nadara et al. „Empirical Evaluation of Approximation Algorithms
for Generalized Graph Coloring and Uniform Quasi-wideness“. In: ACM J.
Exp. Algorithmics 24.1 (2019), 2.6:1–2.6:34. doi: 10.1145/3368630.

[NM08a] Jaroslav Nesetril and Patrice Ossona de Mendez. „Grad and classes with
bounded expansion I. Decompositions“. In: Eur. J. Comb. 29.3 (2008),
pp. 760–776. doi: 10.1016/j.ejc.2006.07.013.

[NM08b] Jaroslav Nesetril and Patrice Ossona de Mendez. „Grad and classes with
bounded expansion II. Algorithmic aspects“. In: Eur. J. Comb. 29.3 (2008),
pp. 777–791. doi: 10.1016/j.ejc.2006.07.014.

[NM08c] Jaroslav Nesetril and Patrice Ossona de Mendez. „Grad and classes with
bounded expansion III. Restricted graph homomorphism dualities“. In: Eur. J.
Comb. 29.4 (2008), pp. 1012–1024. doi: 10.1016/j.ejc.2007.11.019.

[NM11] Jaroslav Nesetril and Patrice Ossona de Mendez. „On nowhere dense graphs“.
In: Eur. J. Comb. 32.4 (2011), pp. 600–617. doi: 10.1016/j.ejc.2011.
01.006.

[NM12] Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures,
and Algorithms. Algorithms and combinatorics. Springer, 2012. doi: 10.
1007/978-3-642-27875-4.

[PST18] Michal Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. „On the num-
ber of types in sparse graphs“. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018. ACM, 2018, pp. 799–
808. doi: 10.1145/3209108.3209178.

[21c] Plotnine. 2021. url: https : / / plotnine . readthedocs . io / en /
stable/ (visited on 10/11/2021).

105

https://arxiv.org/abs/2102.10061
https://doi.org/10.1023/B:ORDE.0000026489.93166.cb
https://doi.org/10.1023/B:ORDE.0000026489.93166.cb
https://doi.org/10.1145/3274652
https://doi.org/10.1145/2402.322385
https://doi.org/10.1145/3368630
https://doi.org/10.1016/j.ejc.2006.07.013
https://doi.org/10.1016/j.ejc.2006.07.014
https://doi.org/10.1016/j.ejc.2007.11.019
https://doi.org/10.1016/j.ejc.2011.01.006
https://doi.org/10.1016/j.ejc.2011.01.006
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1145/3209108.3209178
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/

[RS21] Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. „Turbocharging
Treewidth-Bounded Bayesian Network Structure Learning“. In: Proceedings
of the Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021. AAAI Press, 2021, pp. 3895–3903. url: https:
//ojs.aaai.org/index.php/AAAI/article/view/16508.

[RS20] Felix Reidl and Blair D. Sullivan. „A color-avoiding approach to subgraph
counting in bounded expansion classes“. In: CoRR abs/2001.05236 (2020).
arXiv: 2001.05236.

[RVS19] Felix Reidl, Fernando Sánchez Villaamil, and Konstantinos S. Stavropoulos.
„Characterising bounded expansion by neighbourhood complexity“. In: Eur.
J. Comb. 75 (2019), pp. 152–168. doi: 10.1016/j.ejc.2018.08.001.

[17] Restricted 2,3-SAT problem. 2017. url: https://cs.stackexchange.
com/questions/90760/variant-of-3-sat-is-np-complete
(visited on 08/09/2021).

[Zhu09] Xuding Zhu. „Colouring graphs with bounded generalized colouring number“.
In: Discret. Math. 309.18 (2009), pp. 5562–5568. doi: 10.1016/j.disc.
2008.03.024.

106

https://ojs.aaai.org/index.php/AAAI/article/view/16508
https://ojs.aaai.org/index.php/AAAI/article/view/16508
https://arxiv.org/abs/2001.05236
https://doi.org/10.1016/j.ejc.2018.08.001
https://cs.stackexchange.com/questions/90760/variant-of-3-sat-is-np-complete
https://cs.stackexchange.com/questions/90760/variant-of-3-sat-is-np-complete
https://doi.org/10.1016/j.disc.2008.03.024
https://doi.org/10.1016/j.disc.2008.03.024

	Kurzfassung
	Abstract
	Contents
	Introduction
	Sparsity and Structural Properties of Graphs
	Weak Coloring Numbers
	Turbocharging
	Our Contribution
	Structure of the Work

	Preliminaries
	Preliminary Problem Definitions
	Parameterized Complexity

	Generalized Coloring Numbers and Structural Sparsity
	Weak and Strong Coloring Numbers
	Relation to Structural Sparsity
	Problem Definitions and Complexity

	Turbocharging and Known Heuristics for Weak Coloring Numbers
	Turbocharging
	Turbocharging and Weak Coloring Numbers
	Known Heuristics for Weak Coloring Numbers

	Left-to-Right Heuristics and Turbocharging
	Definitions and First Observations
	A First Natural Turbocharging Problem
	A More Local Approach
	Turbocharging by Iterative Swapping
	Turbocharging by Merging
	Discussion

	Optimizations and Implementation Details
	Placing Full Vertices Next
	Implementation Details of Turbocharging Approaches
	Swapping and Rotations
	Considering Connected Components
	Ordered Adjacency List
	Lower Bounds
	Discussion

	Right-to-Left Heuristics and Turbocharging
	Definitions and First Observations
	Turbocharging Problem and its Complexity
	A Lower Bound
	Discussion

	Experimental Evaluation
	Hard- and Software
	Test Data
	The Evaluation Framework
	Results and Analysis
	Comparing Lower and Upper Bounds
	Discussion

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

