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Abstract

The monitoring of Gross Primary Production (GPP) on a global scale is essential for understanding the role
of terrestrial ecosystems in the carbon cycle. Over the past few decades, significant progress has been made
in the ability to globally monitor GPP using process-based models and remote sensing techniques. Despite
these advancements, there are still substantial differences between GPP products and large uncertainties in
GPP estimates. Recently, Vegetation Optical Depth (VOD) has emerged as a useful indicator for deriving
GPP from microwave satellite observations. The carbon-sink driven approach developed by Teubner et al.
(2019) utilizes VOD as a proxy for the carbon-sink strength of terrestrial ecosystems to derive GPP. Wild
et al. (2022) further adapted this approach, creating a global long-term GPP dataset called VODCA2GPP,
based on VOD observations from the Vegetation Optical Depth Climate Archive (VODCA). This approach
has shown promising results with good agreements with in-situ GPP observations and independent GPP
datasets. However, the model still exhibits limited performance in certain regions and biomes, particularly in
arid regions and the tropics, where in-situ data is scarce.

This study builds on the VODCA2GPPv1 model by Wild et al. (2022) and tries to make it more consistent
across biomes. This was done by employing a new random forest machine learning model, by merging three
different eddy covariance datasets to more than double the training data in comparison with VODCA2GPPv1
and by adding two new predictors: Land Cover and low frequency VOD.

Validation with in-situ GPP observations showed significant improvements in comparison with VODCA2GPPv1.
Median correlations increased from 0.67 to 0.78 𝑟, RMSE decreased from 2.81 to 2.25 𝑔𝐶/𝑚2/𝑑, and bias de-
creased from 0.25 to -0.04 𝑔𝐶/𝑚2/𝑑. Analyzing the cross-validation results based on land cover demonstrated
a more consistent performance of the model, making it better suited for diverse regions. Comparisons with
the independent FLUXCOM, MODIS and TRENDY GPP datasets revealed good temporal agreement with
mean global correlations of 0.56, 0.62 and 0.42 𝑟 respectively, which could mostly be improved in comparison
to VODCA2GPPv1 (+0.06, -0.02 and +0.03 𝑟). Furthermore, the new model reduced global overestimation
with respect to these datasets (bias to FLUXCOM and MODIS could be reduced by 0.44 and 0.45 𝑔𝐶/𝑚2/𝑑
respectively).

However, the new model still has limitations. It still tends to globally overestimate GPP, particularly in tropical
regions. Additionally, it exhibits limited performance in arid environments, highlighting the importance of
accounting for water limitation in future models.

Overall, the inclusion of new predictors and additional in-situ data has resulted in a model that aligns better
with in-situ GPP observations and independent GPP datasets. It also demonstrates improved consistency
across different biomes and land cover classes. VODCA2GPPv2 complements existing GPP products and its
long temporal availability makes it a valuable tool for studying the carbon cycle over extended time periods.
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1.1 Background

1.1.1 What is GPP?

At leaf level, terrestrial plants fix atmospheric carbon-dioxide (𝐶𝑂2) as
organic compounds by net photosynthesis. At ecosystem scale, the gross
uptake of 𝐶𝑂2 is known as Gross Primary Production (GPP) (Anav
et al. 2015). GPP is defined as the sum of all carbon fixed by primary (Anav et al. 2015): Anav et al. (2015),

Spatiotemporal Patterns of Terrestrial Gross
Primary Production: A Review

producers (i.e. autotrophic organisms like plants) through the process
of photosynthesis (Beer et al. 2010). It is the largest carbon flux in the

(Beer et al. 2010): Beer et al. (2010), Terres-
trial Gross Carbon Dioxide Uptake: Global
Distribution and Covariation with Climate

carbon cycle (Beer et al. 2010) and is also considered the primary driver
of the terrestrial carbon sink responsible for the uptake of approximately
30 % of anthropogenic 𝐶𝑂2 emissions (Friedlingstein et al. 2020). (Friedlingstein et al. 2020): Friedlingstein

et al. (2020), Global Carbon Budget 2020

Given its central role in the global carbon budget and the increasing need
to comprehend the role of the terrestrial biosphere in the global carbon
cycle, developing a clear understanding of the spatio-temporal patterns
of GPP has become crucial (Anav et al. 2015). Consequently, quantifying (Anav et al. 2015): Anav et al. (2015),

Spatiotemporal Patterns of Terrestrial Gross
Primary Production: A Review

GPP has become a significant focus in studies of global climate change
(Anav et al. 2015) and understanding GPP, and its variability, has become
vital in carbon cycle studies (Yang et al. 2022). (Yang et al. 2022): Yang et al. (2022),

Divergent Historical GPP Trends among
State-of-the-Art Multi-Model Simulations
and Satellite-Based Products

Understanding and quantifying global photosynthesis is also crucial for
society, as photosynthesis supports production of food, fiber, wood and
fuel for humanity (Ryu et al. 2019). From a technical perspective, GPP has (Ryu et al. 2019): Ryu et al. (2019), What Is

Global Photosynthesis? History, Uncertain-
ties and Opportunities

been used to study terrestrial carbon sinks (Cavaleri et al. 2017), predict
crop yields (Marshall et al. 2018; Reeves et al. 2005), and investigate the
impact of environmental factors such as precipitation (Wang et al. 2020)
and soil moisture (Trugman et al. 2018) on carbon sequestration, among
many other use cases.



4 1 Introduction

1.1.2 How is GPP currently retrieved?

Despite the importance of accurately quantifying GPP, it poses a challenge
due to the small spatial scale at which photosynthesis occurs. Locally, GPP
can be measured using the eddy-covariance technique, which estimates
the net exchange of carbon dioxide (CO2), water vapor, and energy
between land ecosystems and the atmosphere (Tramontana et al. 2016).(Tramontana et al. 2016): Tramontana

et al. (2016), Predicting Carbon Dioxide
and Energy Fluxes across Global FLUXNET
Sites with Regression Algorithms

However, this technique is limited to a few hundred so-called FLUXNET
sites worldwide (Tramontana et al. 2016) and is therefore not sufficient
for comprehensive global GPP monitoring on its own.

This issue is worsened by the uneven spatial distribution of FLUXNET
sites (Tramontana et al. 2016), leading to a scarcity of observations in(Tramontana et al. 2016): Tramontana

et al. (2016), Predicting Carbon Dioxide
and Energy Fluxes across Global FLUXNET
Sites with Regression Algorithms

certain biomes and climates. The vast majority of sites are located in
temperate regions and in the Northern Hemisphere, making global
GPP monitoring all the more challenging. These limitations make it
impossible to directly observe GPP on a global level and only tentative
observation-based estimates of global terrestrial GPP have been possible
so far (Beer et al. 2010). However, advancements in Terrestrial Biosphere(Beer et al. 2010): Beer et al. (2010), Terres-

trial Gross Carbon Dioxide Uptake: Global
Distribution and Covariation with Climate

models (TBMs) and remote sensing (RS) techniques have made it feasible
to estimate GPP at a global scale (Fisher et al. 2014).

(Fisher et al. 2014): Fisher et al. (2014),
Modeling the Terrestrial Biosphere

Dynamic Global Vegetation Models (DGVMs)

In particular, over the past few decades, significant progress has been
made in developing Dynamic Global Vegetation Models (DGVMs) that
can simulate GPP (Fisher et al. 2014). By integrating biogeography,(Fisher et al. 2014): Fisher et al. (2014),

Modeling the Terrestrial Biosphere biogeochemistry, biophysics, and vegetation dynamics (Fisher et al. 2014),
DGVMs are capable of simulating terrestrial carbon and biogeochemical
cycles (O’Sullivan et al. 2020). As a result, they can effectively model(O’Sullivan et al. 2020): O’Sullivan et

al. (2020), Climate-Driven Variability and
Trends in Plant Productivity Over Recent
Decades Based on Three Global Products

photosynthesis and GPP.

The photosynthetic process takes place at cellular and intercellular levels.
This makes it impossible to model GPP at a global scale on process level.
That is why most DGVMs use a biochemical approach called enzyme
kinetics, encapsulated by Farquhar et al. (1980) and commonly referred(Farquhar et al. 1980): Farquhar et al.

(1980), A Biochemical Model of Photosyn-
thetic CO2 Assimilation in Leaves of C3
Species

to as the "Farquhar model". This approach combines carbon, water,
and energy through stomatal conductance, bypassing the molecular
process and makes it possible to obtain GPP without having to model the
individual photosynthetic cells (Fisher et al. 2014). However, due to the(Fisher et al. 2014): Fisher et al. (2014),

Modeling the Terrestrial Biosphere complexity of terrestrial ecosystems, all DGVMs make simplifications
that result in divergent estimates of GPP (O’Sullivan et al. 2020). These(O’Sullivan et al. 2020): O’Sullivan et

al. (2020), Climate-Driven Variability and
Trends in Plant Productivity Over Recent
Decades Based on Three Global Products

differences arise from variations in equations and parameterization of
ecosystem processes such as photosynthesis, leaf phenology, canopy
scaling, and nutrient cycling (O’Sullivan et al. 2020). Additionally, the
presence of numerous tunable parameters in DGVMs can cause large
inter-model spreads in GPP simulations (Yang et al. 2022). Hence, recently(Yang et al. 2022): Yang et al. (2022),

Divergent Historical GPP Trends among
State-of-the-Art Multi-Model Simulations
and Satellite-Based Products

many efforts have been made to constrain the global GPP magnitude
based on satellite observations (Yang et al. 2022).

Some examples of well-known DGVMs are LPJ, IBIS, ORCHIDEE, CLM,
JULES, SDVGM, among others. Many of these models are part of the
TRENDY DGVM ensemble run and were used as independent validation
data in this thesis (see Subsection 2.3.3).
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Remote Sensing (RS) based GPP estimation

In the past two to three decades, remote sensing (RS)-based models have
been used to retrieve and quantify spatio-temporal patterns of GPP (Sun et
al. 2019). Compared with process-oriented ecosystem models that entail a (Sun et al. 2019): Sun et al. (2019), Evalu-

ating and Comparing Remote Sensing Ter-
restrial GPP Models for Their Response to
Climate Variability and CO2 Trends

complex combination of model parameterizations, RS-based approaches
are relatively simpler and more efficient for exploring dynamic changes
in GPP and their spatio-temporal variations at global scales (Sun et al.
2019).

In the simplest form GPP can be estimated from RS data using simple
vegetation index (VI) based models. These models are based on empirical
estimations using VIs like the Normalized Difference Vegetation Index
(NDVI), the Enhanced Vegetation Index (EVI) or the Leaf Area Index
(LAI) (Sun et al. 2019). They are generally based on the linkage between (Sun et al. 2019): Sun et al. (2019), Evalu-

ating and Comparing Remote Sensing Ter-
restrial GPP Models for Their Response to
Climate Variability and CO2 Trends

chlorophyll and the presence of photosynthetic biomass, which is essential
for primary production (Sun et al. 2019).

Models, based on the light-use efficiency (LUE) theory (Monteith 1972) are (Monteith 1972): Monteith (1972), So-
lar Radiation and Productivity in Tropical
Ecosystems

more complex and have a stronger physical foundation compared to VI-
based models. They are based on the assumption that GPP is proportional
to the absorbed photosynthetically active radiation (APAR). The fraction
of APAR (fAPAR) is usually estimated from optical RS data and provides
the linkage to GPP (Sun et al. 2019). This approach is powerful and (Sun et al. 2019): Sun et al. (2019), Evalu-

ating and Comparing Remote Sensing Ter-
restrial GPP Models for Their Response to
Climate Variability and CO2 Trends

well-constrained at large scales, because fAPAR can be observed globally,
consistently and with reasonable accuracy. Nonetheless, how much of the
absorbed light gets converted to carbon is highly uncertain (Fisher et al.
2014). MODIS GPP is an example of a widely used LUE-based model (Fisher et al. 2014): Fisher et al. (2014),

Modeling the Terrestrial Biosphere(Steven W Running and Zhao 2015), it was also used as an independent
(Steven W Running and Zhao 2015):
Steven W Running et al. (2015), User’s
Guide: Daily GPP and Annual NPP
(MOD17A2/A3) Products NASA Earth Ob-
serving System MODIS Land Algorithm

validation datasets for this thesis (see Subsection 2.3.1).

Recently Solar-Induced Fluorescence (SIF) has also received much at-
tention as a potential indicator for photosynthetic activity (Damm et al.
2010). Unlike light-use efficiency approaches affected by light conversion

(Damm et al. 2010): Damm et al. (2010),
Remote Sensing of Sun-Induced Fluores-
cence to Improve Modeling of Diurnal
Courses of Gross Primary Production (GPP)

uncertainty1, fluorescence is a direct by-product of photosynthesis and

1: e.g., light could be absorbed but not
used in photosynthesis

has been shown to scale linearly with GPP at global scale (Fisher et al.
2014). Empirical comparisons of SIF and GPP have demonstrated that

(Fisher et al. 2014): Fisher et al. (2014),
Modeling the Terrestrial Biosphere

SIF, even without any model assumptions, exhibits equal or even better
predictive skill than traditional VI-based models (Frankenberg et al.
2011). SIF has also already been used in combination with Neuronal

(Frankenberg et al. 2011): Frankenberg
et al. (2011), New Global Observations of
the Terrestrial Carbon Cycle from GOSAT:
Patterns of Plant Fluorescence with Gross
Primary Productivity

Networks to estimate GPP with very promising results (Alemohammad
et al. 2017).

(Alemohammad et al. 2017): Alemoham-
mad et al. (2017), Water, Energy, and Car-
bon with Artificial Neural Networks (WE-
CANN): A Statistically Based Estimate of
Global Surface Turbulent Fluxes and Gross
Primary Productivity Using Solar-Induced
Fluorescence

Lastly, machine learning (ML)-based models have recently been employed
to estimate GPP by upscaling eddy covariance flux tower measurements
to regional and global scales using remotely sensed ancillary variables.
An example is FLUXCOM (Tramontana et al. 2016), a global GPP product
that utilizes a machine learning approach by integrating FLUXNET ob-
servations with remote sensing data. FLUXCOM was used as a validation
dataset in this thesis (see Subsection 2.3.2).

The approach followed in this thesis can also be counted to this last
category of ML-based models.
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1.1.3 The carbon sink-driven GPP estimation approach

Most RS-based GPP models follow a source-driven (sunlight) approach,
i.e. they estimate GPP either based on the amount of absorbed (fAPAR) or
re-emitted (SIF) sunlight. In recent years, however, it has been proposed
that plant growth may be stronger limited by sink- rather than source-
activity (Fatichi et al. 2014; Körner 2015), and that considering sinks(Fatichi et al. 2014): Fatichi et al. (2014),

Moving beyond Photosynthesis: From Car-
bon Source to Sink-Driven Vegetation Mod-
eling
(Körner 2015): Körner (2015), Paradigm
Shift in Plant Growth Control

of fixed carbon can improve constrains in global vegetation models
(Leuzinger et al. 2013).

(Leuzinger et al. 2013): Leuzinger et al.
(2013), A Sink-Limited Growth Model Im-
proves Biomass Estimation along Boreal and
Alpine Tree Lines

After assessing the relationship between GPP and microwave-derived
Vegetation Optical Depth (VOD) (Teubner et al. 2018),

(Teubner et al. 2018): Teubner et al. (2018),
Assessing the Relationship between Mi-
crowave Vegetation Optical Depth and Gross
Primary Production

Teubner et al. (2019) proposed a "carbon sink-driven approach to es-

(Teubner et al. 2019): Teubner et al. (2019),
A Carbon Sink-Driven Approach to Estimate
Gross Primary Production from Microwave
Satellite Observations

timate GPP from microwave satellite observations". They used VOD as a
proxy for the carbon sink strength of terrestrial ecosystems.

1.1.4 What is VOD? - Vegetation Optical Depth as carbon
sink proxy

Vegetation Optical Depth (VOD) is a measure of the attenuation of
microwave radiation caused by vegetation, which can be derived from
passive and active microwave satellite observations. The amount of
attenuation (and therefore VOD) depends on various factors, such as
the density, type, and water content of vegetation and the wavelength of
the sensor (Moesinger et al. 2020). VOD is related to above-ground dry(Moesinger et al. 2020): Moesinger et al.

(2020), The Global Long-Term Microwave
Vegetation Optical Depth Climate Archive
(VODCA)

biomass (AGB) (Y. Y. Liu et al. 2015) and its relative water content (RWC)

(Y. Y. Liu et al. 2015): Y. Y. Liu et al. (2015),
Recent Reversal in Loss of Global Terrestrial
Biomass

(Momen et al. 2017) and increases with vegetation water content (VWC)
(Jackson and Schmugge 1991). Short wavelengths experience a higher

(Jackson and Schmugge 1991): Jackson
et al. (1991), Vegetation Effects on the Mi-
crowave Emission of Soils

attenuation by vegetation, than longer ones (Jackson and Schmugge 1991).
This makes short wavelength VOD more sensitive to leaf moisture content,
while long wavelength VOD is more sensitive to deeper vegetation layers
(e.g. stem biomass) (Chaparro et al. 2019).

(Chaparro et al. 2019): Chaparro et al.
(2019), Sensitivity of L-band Vegetation Op-
tical Depth to Carbon Stocks in Tropical
Forests: A Comparison to Higher Frequencies
and Optical Indices

Due to its sensitivity to the VWC and AGB, VOD provides the opportunity
for studying large-scale vegetation dynamics (Teubner et al. 2021) as well

(Teubner et al. 2021): Teubner et al. (2021),
Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production

as for different carbon cycle studies. Its applications range from biomass
(Y. Y. Liu et al. 2015; Momen et al. 2017) and drought (H. Liu et al. 2018)
monitoring to phenology (Jones et al. 2011) analyses and estimating the
likelihood of wildfire occurrence (Forkel et al. 2017).

Compared to optical vegetation indexes, VOD has distinct advantages for
monitoring vegetation. These include higher sensitivity to high biomass
(Y. Y. Liu et al. 2015) due to slower saturation and the ability to be retrieved(Y. Y. Liu et al. 2015): Y. Y. Liu et al. (2015),

Recent Reversal in Loss of Global Terrestrial
Biomass

(depending on the wavelength) even under cloud cover (Y. Y. Liu et al.
2011). Such advantages make VOD preferable for monitoring tropical

(Y. Y. Liu et al. 2011): Y. Y. Liu et al.
(2011), Global Long-Term Passive Microwave
Satellite-Based Retrievals of Vegetation Op-
tical Depth

forest areas (Teubner et al. 2019) and therefore specially relevant in high

(Teubner et al. 2019): Teubner et al. (2019),
A Carbon Sink-Driven Approach to Estimate
Gross Primary Production from Microwave
Satellite Observations

productivity areas.

VOD is expected to be related to GPP, because of its sensitivity to
AGB. Biomass and temporal changes in biomass, relate to Net Primary
Production (NPP) and Autotrophic Respiration (Ra) (Teubner et al. 2019),

(Teubner et al. 2019): Teubner et al. (2019),
A Carbon Sink-Driven Approach to Estimate
Gross Primary Production from Microwave
Satellite Observations

the sum of which constitutes GPP (Bonan 2016). Due to this causal

(Bonan 2016): Bonan (2016), Ecological
Climatology: Concepts and Applications

relationship between biomass and GPP, a relationship is expected between
VOD and GPP (Teubner et al. 2019).
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Teubner et al. (2018) analyzed the relationship between VOD and GPP (Teubner et al. 2018): Teubner et al. (2018),
Assessing the Relationship between Mi-
crowave Vegetation Optical Depth and Gross
Primary Production

and came to the conclusion, that “VOD time series should be used jointly
with changes in VOD for the estimation of GPP across biomes”. Based
on these results, Teubner et al. (2019) proposed a “carbon-sink driven (Teubner et al. 2019): Teubner et al. (2019),

A Carbon Sink-Driven Approach to Estimate
Gross Primary Production from Microwave
Satellite Observations

approach to estimate GPP from microwave satellite observations”, where
they used single frequency VOD as well as its temporal changes to predict
GPP. Later, the model was further adapted by Teubner et al. (2021). This

(Teubner et al. 2021): Teubner et al. (2021),
Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production

new version included 2 m air temperature as an additional predictor to
account for the temperature dependency of autotrophic respiration.

Finally, Wild et al. (2022) developed the VODCA2GPP model using the (Wild et al. 2022): Wild et al. (2022),
VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

VODCA v2 CXKu dataset (Zotta et al. in prep.), which is a long-term

(Zotta et al. in prep.): Zotta et al. (in prep.),
VODCA v2: A Multi-Sensor and Frequency
Vegetation Optical Depth Dataset for Long-
Term Canopy Dynamics and Biomass Moni-
toring, in Preparation

multi-sensor and multi-frequency VOD dataset. The model was used to
create a

"new, global, long-term (1988–2020) gross primary produc-
tion dataset from microwave remote sensing". Wild et al.
2022

1.2 Motivation

Despite the importance of global monitoring of GPP and ongoing research,
there is currently no consensus on GPP predictability and GPP trends
(Dunkl et al. 2023; Yang et al. 2022). (Dunkl et al. 2023): Dunkl et al. (2023),

Gross Primary Productivity and the Pre-
dictability of CO2: More Uncertainty in
What We Predict than How Well We Predict
It
(Yang et al. 2022): Yang et al. (2022),
Divergent Historical GPP Trends among
State-of-the-Art Multi-Model Simulations
and Satellite-Based Products

In addressing the need for more research on GPP estimation, Teubner
et al. (2019, 2021) and Wild et al. (2022) have demonstrated the potential of

(Teubner et al. 2019): Teubner et al. (2019),
A Carbon Sink-Driven Approach to Estimate
Gross Primary Production from Microwave
Satellite Observations
(Teubner et al. 2021): Teubner et al. (2021),
Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production
(Wild et al. 2022): Wild et al. (2022),
VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

their novel approach for estimating GPP using VOD. This method shows
promise as an alternative to traditional RS-based approaches and can
complement existing GPP products. However, there are still limitations
in the model that can be addressed.

One major concern is the spatially uneven performance of the model,
when compared to in-situ GPP measurements and other independent
GPP products. Biases as well as model uncertainties are generally much
larger in the Southern Hemisphere, especially in tropical and sub-tropical
regions. This is problematic, as these regions are of particular interest
for carbon cycle studies. Generally these areas of weak agreement match
with areas of low in-situ data availability. This is especially true for the
Southern Hemisphere, where in-situ data is sparse. Additionally, the
model performance is not consistent across all land cover classes, with
larger discrepancies mainly in semi-arid environments (e.g. savannas,
open shrublands, grasslands etc.)
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1.3 Objective

The aim of this thesis is to explore some limitations of the VODCA2GPP
model and discuss and compare different approaches to improve its
performance. This includes addressing drawbacks such as insufficient
in-situ data and uneven performance across different land cover classes.
To achieve this, additional in-situ data is incorporated, and predictors
like land cover are included in a pursuit to make the model more
suitable for different biomes. The thesis will also compare different
modeling approaches, specifically the Generalized Additive Models
(GAM) approach used in Teubner et al. (2021) and Wild et al. (2022) and(Teubner et al. 2021): Teubner et al. (2021),

Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production
(Wild et al. 2022): Wild et al. (2022),
VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

a Random Forest (RF) regressor.

In the course of this investigation, an updated version of the VODCA2GPP
model, referred to as VODCA2GPPv2, is developed. Additionally, the
following research questions are addressed:

Research Questions

Q1 How does including additional in-situ GPP observations
affect the performance of the VODCA2GPPv2 model?

Q2 How does the inclusion of additional predictors affect the
performance of the VODCA2GPPv2 model? What roles do
the different predictors play?

Q4 How does the RF modeling approach compare to the origi-
nally used GAM model?

Q5 How does the VODCA2GPPv2 model compare to in-situ GPP
observations? How do bias, correlation and RMSE compare
in cross validation?

Q6 How does the new VODCA2GPPv2 model compare to in-
dependent GPP products? How do bias, correlation and
RMSE compare?

Q7 What are the spatio-temporal patterns of GPP? How does GPP
vary over time and space? Are the anomalies of different
GPP products comparable?

1.4 Thesis Outline

This thesis starts with this introduction Chapter 1. Afterwards in Chapter 2
"Data" the input data2 to the VODCA2GPP model as well as independent2: Remotely sensed predictors and in-

situ GPP validation datasets are presented. Chapter 3 "Methods" describes the
methodology to derive GPP from VOD and other predictors. It goes
into more detail on the carbon sink-driven GPP estimation approach,
the VODCA2GPPv1 and the new VODCA2GPPv2 model. Additionally,
the means to validate the model are presented. Chapter 4 "Results"
presents the results of the model validation and the comparison to
independent GPP products. Chapter 5 "Discussion" discusses the results,
their implications and future research directions. Finally, Chapter 6
"Conclusions" concludes and summarizes the thesis.
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VODCA2GPPv2 predicts GPP using VOD, air temperature and land
cover as predictors. It is trained on in-situ GPP from three different
FLUXNET datasets and is finally compared to three independent valida-
tion datasets. The following sections will present and discuss the data
used for VODCA2GPPv2 in detail.

Figure 2.1 gives an overview of the input data used for VODCA2GPPv2
and shows its temporal coverage. It contains the temporal coverage of the
predictors (green box), the in-situ GPP (orange box) and the independent
GPP datasets (purple box) used for model evaluation.

Figure 2.1: Overview of datasets used
in this study and their temporal cover-
age. Predictor datasets are shown with
green, in-situ GPP datasets with orange
and evaluation GPP datasets with pur-
ple background. For static predictors
(dashed lines) the mean value was used
for all timestamps, even if the predictor
value was not available at that time. (e.g.
ESA CCI LC, VODCA v2 L)

2.1 Predictors

VODCA2GPPv2 predicts GPP using VOD, air temperature and land cover
as predictors. Table 2.1 contains an overview of the predictor variables
used for VODCA2GPPv2 and their origin datasets. They will be discussed
in detail in the following subsections.

Table 2.1: Datasets and according predictor variables used in the VODCA2GPPv2 model.

Dataset Variable and unit Sensors Temporal cover-
age/resolution

Spatial cover-
age/resolution

Reference

VODCA v2 CXKu-band Vegetation Optical
Depth (VOD) [-]

AMSR-E, AMSR2,
SSM/I, TMI, Wind-
Sat

1987-2018 / daily Global / 0.25° Zotta et al. (in prep.)

L-band Vegetation Optical Depth
(VOD) [-]

SMAP, SMOS 2010-2020 / daily Global / 0.25°

ERA5-Land 2m Air Temperature [°C] - (reanalysis) 1981-2020 / hourly Global / 9km Muñoz-Sabater et
al. (2021)

ESA CCI Land
Cover 2.0.7

Fractional Coverage of Plant
Functional Types (PFTs) [-]

AVHRR, PROBA-
V, Envisat MERIS,
SPOT-VGT

1992-2015 / yearly Global / 300m Defourny and ESA
Land Cover CCI
project team (2017)
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2.1.1 VODCA v2 - The Vegetation Optical Depth Climate
Archive

The Vegetation Optical Depth Climate Archive (VODCA) (Moesinger
et al. 2020) is a VOD dataset, combining VOD retrievals from multiple(Moesinger et al. 2020): Moesinger et al.

(2020), The Global Long-Term Microwave
Vegetation Optical Depth Climate Archive
(VODCA)

passive microwave sensors (Table 2.2), derived through the Land Pa-
rameter Retrieval Model (LPRM). VODCA harmonizes the retrievals
from different satellites and time periods with different measurement
configurations1 to finally provide three VOD products in different spatial1: microwave frequencies, measurement

incidence angles, orbit characteristics, ra-
diometric quality, spatial footprint

bands: Ku-band (period 1987–2017), X-band (1997–2018), and C-band
(2002–2018)

Table 2.2: List of sensors used in VODCA CXKu.

Sensor Time period used AECT
C-band
[GHz]

X-band
[GHz]

Ku-band
[GHz]

Reference

AMSR-E Jun 2002–Oct 2011 13:30 6.93 10.65 18.70 van der Schalie et al. (2017)
AMSR2 Jul 2012 - Jan 2019 13:30 6.93, 7.30 10.65 18.70 van der Schalie et al. (2017)
SSM/I F08 Jul 1987–Dec 1991 18:15 19.35 Owe et al. (2008)
SSM/I F11 Dec 1991–May 1995 17:00–18:15 19.35 Owe et al. (2008)
SSM/I F13 May 1995–Apr 2009 17:45–18:40 19.35 Owe et al. (2008)
TMI Dec 1997–Apr 2015 Asynchronous 10.65 19.35 Owe et al. (2008) and van der

Schalie et al. (2017)
WindSat Feb 2003–Jul 2012 18:00 6.80 10.70 18.70 Owe et al. (2008) and van der

Schalie et al. (2017)

Figure 2.2: Temporal coverage of sen-
sors used in VODCA CXKu. Figure taken
from Moesinger et al. (2020).

Here a new improved version of VODCA, VODCA v2 (Zotta et al. in prep.)(Zotta et al. in prep.): Zotta et al. (in prep.),
VODCA v2: A Multi-Sensor and Frequency
Vegetation Optical Depth Dataset for Long-
Term Canopy Dynamics and Biomass Moni-
toring, in Preparation

version was used, which uses observations from the same sensors as
VODCA v1 (Table 2.2, Figure 2.2), but merges them into one long-running
multi-frequency VOD product, to increase temporal and spatial coverage
and reduce random errors.

This multi-frequency product named VODCA v2 CXKu provides a single
long-term vegetation metric (1988-2020), exceeding the temporal length
of the individual single-frequency products (VODCA v2 C, X and Ku). It
is obtained by first rescaling the C- and Ku-band observations to X-band
to remove biases between the bands and then computing a weighted
average to fuse overlapping observations. The reference frequency for
the scaling of the different frequencies is therefore X-band.

VODCA v2 CXKu merged 15 passive VOD datasets2 retrieved from 72: Scaling of the single-sensor VOD ob-
servations was done by applying cumu-
lative distribution function (CDF) match-
ing.

different sensors using the Land Parameter Retrieval Model (LPRM) (van
der Schalie et al. 2017).

(van der Schalie et al. 2017): van der
Schalie et al. (2017), The Merging of Ra-
diative Transfer Based Surface Soil Moisture
Data from SMOS and AMSR-E
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The LPRM is based on radiative transfer theory introduced by (Mo et al.
1982) and uses forward modelling to simulate the top-of-atmosphere (Mo et al. 1982): Mo et al. (1982), A Model

for Microwave Emission from Vegetation-
Covered Fields

brightness temperatures under a wide range of conditions. Although
primarily developed for soil moisture, it simultaneously solves for VOD
using an analytical solution by Meesters et al. (2005), utilizing the ratio (Meesters et al. 2005): Meesters et al.

(2005), Analytical Derivation of the Veg-
etation Optical Depth from the Microwave
Polarization Difference Index

between H- and V-polarized observations (van der Schalie et al. 2017).

(van der Schalie et al. 2017): van der
Schalie et al. (2017), The Merging of Ra-
diative Transfer Based Surface Soil Moisture
Data from SMOS and AMSR-E

The LPRM assumes that the temperatures of soil and vegetation are
the same, but this assumption may not hold true during the day when
solar radiation causes uneven heating. Therefore, VODCA v2 relies
solely on nighttime observations, assuming that they reflect thermal
equilibrium.

Preprocessing of the level-2 LPRM-retieved VOD data includes projecting
the data onto a 0.25° x 0.25° grid via nearest-neighbour resampling and
selecting the closest nighttime value within a 24h window. Data are
masked for radio-frequency interference, negative VOD retrievals and
low land surface temperatures (< 0 °C).

3 VOD predictors based on VODCA CXKu were used in this study: the
8-daily mean of VODCA CXKu, the temporal difference of the 8-daily
means and a static median VOD predictor (see Table 2.3).

Predictor Description

VOD 8-daily mean of VODCA CXKu
dVOD temporal difference of 8-daily VODCA CXKu mean
medVOD* median of VODCA CXKu (static predictor)

Table 2.3: 3 VODCA CXKu Predictors
used in this study.

In addition to VODCA CXKu, a preliminary version of VODCA at L-band
was used as a predictor. It is processed like VODCA CXKu, but based
on L-band VOD observations from the Soil Moisture Active Passive
(SMAP) and Soil Moisture and Ocean Salinity (SMOS) missions. Longer
wavelength VOD, like L-band VOD, is less attenuated by vegetation and
as a consequence saturates later than shorter wavelength VOD (Jackson
and Schmugge 1991). This characteristic enhances its sensitivity to deeper (Jackson and Schmugge 1991): Jackson

et al. (1991), Vegetation Effects on the Mi-
crowave Emission of Soils

vegetation layers (Chaparro et al. 2019), making it particularly useful for

(Chaparro et al. 2019): Chaparro et al.
(2019), Sensitivity of L-band Vegetation Op-
tical Depth to Carbon Stocks in Tropical
Forests: A Comparison to Higher Frequencies
and Optical Indices

highly productive areas with tall vegetation and high vegetation density,
such as the tropics

VODCA L is only available from the years 2010 to 2020, therefore the
temporal dynamcis of VODCA L are not used in this study. Instead, the
mean of VODCA L is used as a static predictor (see Table 2.4).

Predictor Description

L-VOD* mean L-band VOD from 2010 to 2020

Table 2.4: The VODCA L Predictor used
in this study.

2.1.2 ERA5-Land - 2m Air Temperature

2 m air temperature, provided by ERA5-Land (Muñoz-Sabater et al. 2021) (Muñoz-Sabater et al. 2021): Muñoz-
Sabater et al. (2021), ERA5-Land: A State-
of-the-Art Global Reanalysis Dataset for
Land Applications

was used to account for the temperature dependency of autotrophic
respiration. ERA5-Land is an enhanced global dataset for the land com-
ponent of the fifth generation of European ReAnalysis (ERA5) produced
by the European Centre for Medium-Range Weather Forecasts (ECMWF).
ERA5-Land is available hourly at a spatial resolution of 9 km.
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2 m air temperature was aggregated3 to 8-daily means to get to the T2m3: over day and night
predictor used in this study (see Table 2.5).

Table 2.5: The 2m Air Temperature Pre-
dictor used in this study. Predictor Description

T2m 8-daily mean of 2m air Temperature

2.1.3 ESA CCI LC - Plant Functional Types

Land cover information was used to make the VODCA2GPP model more
generalizable and to account for the poor global distribution of in-situ
GPP measurement stations.44: In situ data is poorly distributed

across the globe, with most sites being
located in the Northern Hemisphere and
in temperate regions.

The ESA Climate Change Initiative (ESA CCI) provides annual land
cover maps which classify the Earth’s land surface into 23 level 1 and 14
level 2 (sub) land cover classes following the United Nations Land Cover
Classification System (LCCS). Version 2.0.7 (Defourny and ESA Land
Cover CCI project team 2017), used in this study, covers all the years from(Defourny and ESA Land Cover CCI

project team 2017): Defourny et al. (2017),
ESA Land Cover Climate Change Initiative
(Land_Cover_cci): Global Land Cover Maps,
Version 2.0.7

1992 to 2015 at a spatial resolution of 300 m.

The workflow used to derive the ESA CCI LC maps is made to guarantee
a high consistency over time. To achieve this, a unique baseline LC map
was generated using data from the MERIS FR and RR archive from 2003
to 2012. Changes in land cover were then detected based on different
satellite data5 from 1992 to 2015. With these changes, the baseline map5: AVHRR time series; SPOT-VGT time

series; PROVA-V was then updated to create the annual LC maps from 1992 to 2015.

For this study the LC maps were first aggregated into a 0.25° spatial
resolution grid and the 37 LC classes were then converted into fractional
coverages6 of 11 Plant Functional Types (PFTs) (Table 2.6) using a custom6: 0-1; all classes sum up to 1.
conversion table. These conversions were done using ESA’s CCI-LC User
Tool (ESA 2014).(ESA 2014): ESA (2014), CCI-LC User Tool

Table 2.6: 11 Plant Functional Type (PFT)
Predictors used in this study. Vegetation

Predictor Leaf type Phenology Growth Form Other

pftTreeBE* Broadleaved evergreen Tree -
pftTreeBD* Broadleaved deciduous Tree -
pftTreeNE* Needle-leaved evergreen Tree -
pftTreeND* Needle-leaved deciduous Tree -
pftShrubBE* Broadleaved evergreen Shrub -
pftShrubBD* Broadleaved deciduous Shrub -
pftShrubNE* Needle-leaved evergreen Shrub -
pftHerb* - - Herbaceous cover -
pftCrop* - - Cropland -
pftBare* - - - Bare soil
pftNoLand* - - - No land

PFTs are a key feature of current generation earth system models and
represent groupings of plant species that share similar structural, phe-
nological, and physiological traits (Poulter et al. 2015). Individual PFTs(Poulter et al. 2015): Poulter et al. (2015),

Plant Functional Type Classification for
Earth System Models: Results from the Eu-
ropean Space Agency’s Land Cover Climate
Change Initiative

combine growth-form (trees, shrubs, herbaceous vegetation, crops) with
leaf type (broadleaved, needle-leaved) and phenology (evergreen, decid-
uous).
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2.2 Target variable - in situ GPP from FLUXNET

GPP is the target variable of the VODCA2GPP model. In-situ GPP from
three different FLUXNET datasets was used to train and validate the
VODCA2GPPv2 model, namely: FLUXNET2015 (Pastorello et al. 2020)
the Fluxnet-CH4 Community Product (Delwiche et al. 2021) and the
FLUXNET Warm Winter release (Team and Centre 2022).

FLUXNET refers to a global network of micrometeorological tower sites
that use eddy covariance7 techniques to measure the exchanges of carbon 7: atmospheric measurement technique

to measure and calculate vertical turbu-
lent fluxes within atmospheric boundary
layers

dioxide, water vapor, and energy between terrestrial ecosystems and the
atmosphere, across a wide variety of biomes and climates (Baldocchi
2003). (Baldocchi 2003): Baldocchi (2003), As-

sessing the Eddy Covariance Technique for
Evaluating Carbon Dioxide Exchange Rates
of Ecosystems: Past, Present and Future

GPP is derived from measured 𝐶𝑂2 fluxes by calculating net ecosystem
exchange (NEE) from 𝐶𝑂2 turbulent and storage fluxes and partitioning
NEE into its components of ecosystem respiration (RECO) and gross
primary production (GPP) (Pastorello et al. 2020). (Pastorello et al. 2020): Pastorello et al.

(2020), The FLUXNET2015 Dataset and
the ONEFlux Processing Pipeline for Eddy
Covariance Data2.2.1 FLUXNET datasets

FLUXNET2015

FLUXNET2015 (Pastorello et al. 2020) is the most complete and newest (Pastorello et al. 2020): Pastorello et al.
(2020), The FLUXNET2015 Dataset and
the ONEFlux Processing Pipeline for Eddy
Covariance Data

(official) FLUXNET dataset. It provides ecosystem-scale data on 𝐶𝑂2,
water, and energy exchange between the biosphere and the atmosphere,
and other meteorological and biological measurements, from 212 sites
around the globe (up to 2014).

VODCA2GPPPv2 uses the February 2020 update of FLUXNET2015,
whereas the older version by Wild et al. (2022) still used the November (Wild et al. 2022): Wild et al. (2022),

VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

2016 version of FLUXNET2015. This new update of FLUXNET2015
included many sites being changed to a Creative Commons Attribution
CC-BY 4.0 license, meaning that a total of 206 sited could now be used
(compared to 110 sites in the original version of VODCA2GPP).

FLUXNET Warm Winter

The FLUXNET Warm Winter dataset (Team and Centre 2022) is a third- (Team and Centre 2022): Team et al.
(2022), Warm Winter 2020 Ecosystem Eddy
Covariance Flux Product for 73 Stations in
FLUXNET-Archive Format—Release 2022-
1

party re-release of most European sites from FLUXNET2015 which now
have a longer temporal coverage (up to 2020). Additionally, it adds some
totally new sites, not included in FLUXNET2015.

Both, the FLUXNET2015 and Warm Winter datasets have been processed
using the same pipeline, making them fully compliant and integrable
with each other.

FLUXNET-CH4 Community Product

FLUXNET-CH4 (Delwiche et al. 2021) is a community product of eddy- (Delwiche et al. 2021): Delwiche et al.
(2021), FLUXNET-CH4: A Global, Multi-
Ecosystem Dataset and Analysis of Methane
Seasonality from Freshwater Wetlands

covariance methane and 𝐶𝑂2 flux measurements. The dataset contains
81 sites globally, most of which are not present in FLUXNET2015.
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2.2.2 Merging of FLUXNET datasets

To mitigate the issue of the small amount of in-situ GPP observations
present in VODCA2GPP v1, all three FLUXNET Datasets presented before,
were merged to obtain a single dataset containing as many stations as
possible. This section will describe the merging procedure in detail.

Figure 2.3: Spatial distribution FLUXNET sites from the FLUXNET 2015, Warm Winter, and CH4 datasets. Stations are colored by their
origin dataset.

As can be seen in Figure 2.3, showing the spatial distributions of all three
FLUXNET datasets, some stations are present in multiple datasets, while
others are only present in one dataset. All stations only available in one
dataset were used as is, while stations present in multiple datasets were
only used once. When deciding which dataset to use for the stations
present in multiple datasets, the Warm Winter dataset was prioritized
since it had the longest observation time (up to 2020) and nearly always
also contained the observations from FLUXNET2015 and FLUXNET-CH4.
If not available, the FLUXNET2015 dataset was used over the FLUXNET-
CH4 (Delwiche et al. 2021) dataset since the observations in the latter(Delwiche et al. 2021): Delwiche et al.

(2021), FLUXNET-CH4: A Global, Multi-
Ecosystem Dataset and Analysis of Methane
Seasonality from Freshwater Wetlands

were shorter and less consistent with the other datasets.

All datasets provide Gross Primary Productivity (GPP) derived using
daytime and nighttime partitioning, which were then averaged to obtain
a single GPP value for each day, following the suggestions from Teubner
et al. (2021) and Wild et al. (2022). Both FLUXNET2015 and Warm Winter(Teubner et al. 2021): Teubner et al. (2021),

Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production
(Wild et al. 2022): Wild et al. (2022),
VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

datasets also provided the NEE_VUT_MEAN_QC quality control flag, which
was used to filter out days with a quality flag below 0.5. This means that
only days where more than 50 % of the data was considered to be of
good quality were utilized.

To ensure that the two newly introduced FLUXNET datasets are integrable
with FLUXNET2015, a comparison of various metrics was conducted.
The datasets were checked for consistency by comparing the mean and
standard deviation of the overlapping GPP observations from the different
datasets, as well as from stations laying in the same climate or land cover
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classes. Additionally, the GPP timeseries from overlapping stations
were examined and found to be consistent across datasets. Detailed
comparative plots illustrating the differences between the datasets can
be found in the appendix (see Figures A.2 to A.5).

As for FLUXNET WarmWinter, Team and Centre (2022) themselves state (Team and Centre 2022): Team et al.
(2022), Warm Winter 2020 Ecosystem Eddy
Covariance Flux Product for 73 Stations in
FLUXNET-Archive Format—Release 2022-
1

that their data is "fully compliant and integrable with the FLUXNET2015
release".

The result of the merging process is a combined dataset containing
in-situ GPP observations at 267 Fluxnet stations. Of these, 145 stations
originate from the FLUXNET2015 dataset, 70 stations come from the
WarmWinter dataset (with 15 of them not present in FLUXNET2015), and
52 stations are from the FLUXNET-CH4 dataset (which are all completely
new stations). The resulting dataset will in the following be referred to as
FLUXNETmerged. A list, as well as a map (Appendix A), of all stations
present in the FLUXNETmerged dataset can be found in Table A.1 in the
appendix.

2.3 GPP Evaluation datasets

Three independent GPP datasets were used to evaluate the perfor-
mance of the VODCA2GPP model. Two remotely sensed GPP products,
namely MODIS GPP (S. Running et al. 2015) and FLUXCOM GPP (S. Running et al. 2015): S. Running et al.

(2015), MOD17A2H MODIS/Terra Gross
Primary Productivity 8-Day L4 Global 500m
SIN Grid V006

(Tramontana et al. 2016), and with TRENDY GPP also a product derived

(Tramontana et al. 2016): Tramontana
et al. (2016), Predicting Carbon Dioxide
and Energy Fluxes across Global FLUXNET
Sites with Regression Algorithms

from an ensemble of DGVM runs.

2.3.1 MODIS GPP

MODIS GPP provides GPP estimates based on the light-use efficiency
(LUE) approach by Monteith (1972), which relates plant productivity to (Monteith 1972): Monteith (1972), So-

lar Radiation and Productivity in Tropical
Ecosystems

the amount of solar radiation absorbed by the vegetation. The MODIS
algorithm uses the optically derived fAPAR8 as a proxy for the absorbed

8: Fraction of Absorbed Photosyntheti-
cally Active Radiationsolar energy to derive GPP.

In this study the MOD17A2H Version 6 Data Product (S. Running et al.
2015) was used. It is an 8-day composite product with a spatial resolution (S. Running et al. 2015): S. Running et al.

(2015), MOD17A2H MODIS/Terra Gross
Primary Productivity 8-Day L4 Global 500m
SIN Grid V006

of 500 m. For the sake of comparison with the VODCA2GPP model, the
MODIS GPP product was aggregated to a spatial resolution of 0.25°.

2.3.2 FLUXCOM GPP

FLUXCOM GPP (Tramontana et al. 2016) is a global GPP dataset derived (Tramontana et al. 2016): Tramontana
et al. (2016), Predicting Carbon Dioxide
and Energy Fluxes across Global FLUXNET
Sites with Regression Algorithms

from upscaling of in-situ eddy covairiance measurements using machine
learning techniques. The upscaling was carried out using remotely
sensed ancillary variables all derived from optical observations from the
Moderate Resolution Imaging Spectrometer (MODIS).

Here FLUXCOM RS was used, one of two FLUXCOM GPP products.
While FLUXCOM RS+MET, the other FLUXCOM GPP Product, is based
on meteorological data and mean seasonal cycle of remotely sensed
variables, FLUXCOM RS is based on remotely sensed variables only.
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This remote sensing data includes Land Surface Temperature, several
vegetation indices (NDVI, EVI, LAI)9, the fAPAR as well as the water9: Normalized Differenced Vegetation

Index; Enhanced Vegetation Index; Leaf
Area Index

indices NDWI10 and LSWI11.

10: Normalized Differenced Water Index
11: Land Surface Water Index

FLUXCOM RS GPP has a 10 km spatial resolution and a temporal
resolution of 8 days. For this study the FLUXCOM GPP product was
aggregated to a spatial resolution of 0.25°.

2.3.3 Trendy-v7 GPP

TRENDY is an ensemble run of DGVMs, which is performed annually
to support the Global Carbon Project’s (GCP) assessment of the global
carbon budget. The specific version used in this study is TRENDY-v7,
which is the seventh version of the TRENDY dataset created for the
GCP’s 2018 global carbon budget assessment (Le Quéré et al. 2018).(Le Quéré et al. 2018): Le Quéré et al.

(2018), Global Carbon Budget 2018
TRENDY-v7 includes 16 DGVMs:

- CABLE-POP
- CLASS-CTEM
- CLM5.0
- DLEM
- ISAM
- JSBACH
- JULES
- LPJ
- LPJ-GUESS
- LPX
- OCN
- ORCHIDEE
- ORCHIDEE-CNP
- SDGVM
- SURFEXv8
- VISIT

In this study, the mean GPP of all 16 DGVMs was utilized. The dataset
covers the time period from 1901 to 2017 at a spatial resolution of 0.5°.
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3.1 The carbon sink-driven GPP estimation
approach

This thesis builds on the carbon sink-driven GPP estimation approach
introduced by Teubner et al. (2019) and further improved and reworked (Teubner et al. 2019): Teubner et al. (2019),

A Carbon Sink-Driven Approach to Estimate
Gross Primary Production from Microwave
Satellite Observations

by Teubner et al. (2021).

(Teubner et al. 2021): Teubner et al. (2021),
Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production

The biogeochemical basis of their GPP model is the relationship between
GPP, ecosystem net uptake of carbon (NPP - Net Primary Production)
and autotrophic respiration (Ra) (Bonan 2016):

(Bonan 2016): Bonan (2016), Ecological
Climatology: Concepts and ApplicationsGPP = Ra����

Rm+Rg

+ NPP (3.1)

Ra can further be split up into maintenance (Rm) and growth respira-
tion (Rg), which are proportional to biomass and change in biomass
respectively.

The first sink-driven GPP model by Teubner et al. (2019) was based solely (Teubner et al. 2019): Teubner et al. (2019),
A Carbon Sink-Driven Approach to Estimate
Gross Primary Production from Microwave
Satellite Observations

on VOD variables. Besides using the VOD time series itself, the model
also incorporated two additional VOD-predictors: the temporal changes
in VOD (dVOD) and the temporal median of VOD (medVOD).

While VOD itself relates to maintenance respiration, the temporal changes
in VOD (dVOD) relate to growth respiration and NPP. The temporal
median of VOD (medVOD) on the other hand serves as a proxy for
vegetation density, it was incorporated to account for larger structural
vegetation components and make the resulting model more closely
related to biomass changes of smaller structural vegetation components
such as leaves.

Teubner et al. (2021) later improved the model by incorporating tem- (Teubner et al. 2021): Teubner et al. (2021),
Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production

perature as an additional predictor variable. This addition accounts for
the strong temperature dependence of autotrophic respiration, which is
mainly attributed to its maintenance part (Bonan 2016). The improved (Bonan 2016): Bonan (2016), Ecological

Climatology: Concepts and Applicationsformulation of the model, considers the temperature dependence of
maintenance respiration through a term representing the interaction
between temperature (T2m) and VOD (Teubner et al. 2021): (Teubner et al. 2021): Teubner et al. (2021),

Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production

GPP(VOD, T2m) = 𝑡𝑒(VOD, T2m) + 𝑠(ΔVOD) + 𝑠(mdn(VOD)) (3.2)
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This equation (3.2), represents the model formulation as defined by
Teubner et al. (2021) and used for VODCA2GPP by Wild et al. (2022).(Teubner et al. 2021): Teubner et al. (2021),

Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production
(Wild et al. 2022): Wild et al. (2022),
VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

All of Teubner et al. (2019, 2021)’s versions of the model, as well as

(Teubner et al. 2019): Teubner et al. (2019),
A Carbon Sink-Driven Approach to Estimate
Gross Primary Production from Microwave
Satellite Observations
(Teubner et al. 2021): Teubner et al. (2021),
Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production

VODCA2GPP (Wild et al. 2022) used the Generalized Additive Models

(Wild et al. 2022): Wild et al. (2022),
VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

(GAM) approach to model the relationship between GPP and the respec-
tive predictor variables. The GAM approach is a flexible non-parametric
method that allows for the estimation of non-linear relationships between
the response and predictor variables. It was chosen over other non-linear
regression methods1 since it is more interpretable and allows for the

1: such as random forest (RF)

estimation of the uncertainty of the model parameters.

3.2 The updated VODCA2GPPv2 model

In the process of improving the VODCA2GPP model, different model
configurations were trained and tested. The different versions of the
model are summarized in Table 3.1. They differ in the predictor variables
used and the type of regression model used to relate the predictor
variables to the response variable (GPP) as well as in the amount of used
in-situ GPP data during model training.

The model IDs introduced in Table 3.1 will be used to refer to the different
versions of the model throughout this thesis.

Table 3.1: Overview of the different versions of the VODCA2GPP model. The models differ in the predictor variables (static predictors
are marked with *), the type of regression model and the training data used. The final version of the model is highlighted in green.

Predictors

Model ID Regressor FLUXNETmerged? VOD dVOD medVOD* T2m LC* L-VOD*

GAM GAM x x x x
GAM+ GAM x x x x x
RF+ RF x x x x x
RF+_LC RF x x x x x x
RF+_LC_LVOD RF x x x x x x x

The first Version of the Model (GAM) still used GAM and limited in-situ
data (Feb 2016 update of FLUXNET 2015; subset of FLUXNET 2015). It is
equivalent to the model proposed by Wild et al. (2022) and was trained(Wild et al. 2022): Wild et al. (2022),

VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

using the same workflow. All other versions of the model used the new
FLUXNETmerged (see Subsection 2.2.2) dataset to have more training
data available. The latter versions of the model also use random forest
instead of GAM as regressor and subsequently more predictors like land
cover (LC) and L-band VOD (L-VOD) were added.
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LC was introduced to account for the uneven spatial distribution of
model performance in VODCA2GPPv1 (Wild et al. 2022). This problem (Wild et al. 2022): Wild et al. (2022),

VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

was partially addressed with the inclusion of new in-situ GPP data.
However, the addition of LC as a predictor variable was expected to
further improve the spatial consistency of the model. This is because LC
allows the model to account for the changing VOD-GPP relationships of
different vegetation types. This is especially important in areas not well
represented by the in-situ data, such as in the tropics. With similar goals
L-band VOD was introduced as a proxy for vegetation density. However,
due to its latter saturation and deeper penetration depth compared to
optically derived LC, as well as the higher frequency microwave VOD, it
exhibits higher sensitivity to tall and dense vegetation.

The incentive for switching from GAM to RF is derived from Schmidt et al.
(2023), who in assessing the sensitivity of VOD to different vegetation (Schmidt et al. 2023): Schmidt et al.

(2023), Assessing the Sensitivity of Multi-
Frequency Passive Microwave Vegetation
Optical Depth to Vegetation Properties

parameters, compared the performance of GAM and RF. Their conclusion
was that, in most cases, GAM is insufficient for accurately describing the
relation of VOD to vegetation parameters, particularly when including
land cover predictors, and predicting across land cover classes.2 This 2: Schmidt et al. (2023) assessed the sen-

sitivity of VOD to different vegetation pa-
rameters by aiming to predict VOD using
AGB, Live-Fuel Moisture (LFMC), and
LAI. They compared the performance
of GAM and RF, and their conclusion
was that, in most cases, GAM alone is in-
sufficient for accurately predicting VOD,
particularly when including land cover
predictors, and predicting across land
cover classes. While a simpler additive
approach like GAM was adequate for
individual land cover types, they dis-
covered that the relationship between
VOD and other vegetation properties
cannot be easily captured with global
linear, monotonic, and bivariate regres-
sions. Instead, it requires accounting for
the non-linear interactions among vari-
ous ecosystem properties.

incentive led to switching to a RF regressor, especially considering the
added complexity given by the joint introduction of LC predictors.

Independent of the changing model configurations, all models were
trained, applied and validated using the same workflow, described in
the following Subsections and in the next Section.

Figure 3.1 gives an overview of the timespans on which the model
training (orange box), predictions (purple box) and evaluations were
performed.

Figure 3.1: Overview of the times-
pans of model training (orange), ap-
plication (purple) and evaluation of
VODCA2GPPv2.

3.2.1 Preprocessing

Since all input data was already available at (or had previously been con-
verted to) a 0.25° spatial resolution, no spatial resampling was necessary.
Temporal resampling, however, was applied primarily to reduce noise
and computation times. All input data3 was resampled to a 8-days tem- 3: response variable: FLUXNET GPP;

predictor variables: VODCA v2 CXKu,
ERA5-Land T2m, ESA CCI LC PFTs,
VODCA v2 L

poral resolution. The final VODCA2GPP model prediction therefore also
represents the mean of daily GPPs for an 8-day period.4 Since VODCA v2

4: The 8-day temporal resolution was
chosen because the usage of short time
intervals (on the order of several days)
is crucial in reducing the influence of
larger vegetation components (e.g. stems)
and makes the model more sensitive
to changes in leaf biomass (Wild et
al. 2022). Additionally, the validation
datasets MODIS and FLUXCOM GPP
have the same 8-daily resolution which
enhances comparability and facilitates
the validation.

already incorporates extensive quality flagging (e.g. for frozen conditions
and radio-frequency interference), no additional data processing was
necessary.
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3.2.2 Training the model

To train the model, firstly all grid-points where the response variable
(in-situ GPP) was available were selected. Depending on the model
version, different combinations of predictor variables were chosen for
every grid-point and then related to the response variable (GPP) at the
respective in-situ stations. As some stations were located in the same
grid-point, they had identical predictor values, but different values for
the response variable (GPP).

Subsequently, the maximum temporal overlap between predictor and
response variables was determined for each station. Additionally, all
time points where not all the predictor variables were available were
removed from the training data. This was done to ensure that the model
was trained on a consistent set of predictor variables for all stations. To
increase the robustness of the derivation, VOD and dVOD were smoothed
before training the model using a SavitzkyGolay filter with a window
size of 11 data points as suggested by Teubner et al. (2021).(Teubner et al. 2021): Teubner et al. (2021),

Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production Finally, this data was used to train a random forest regression model, using

the scikit-learn (Pedregosa et al. 2011) implementation of the random
(Pedregosa et al. 2011): Pedregosa et al.
(2011), Scikit-Learn: Machine Learning in
Python

forest algorithm. To find the optimal hyperparameters for the model,
several combinations of hyperparameters were tested. The parameters
in Table 3.2 were found to have the best performance in a 10-fold cross-
validation and were therefore used to train the final model.

Table 3.2: Final values of the hyperparameters tested for the random forest model. The hyperparameters with the best performance in a
10-fold stratified group cross validation were used to train the final model.

Hyperparameter Value Description

n_estimators 1200 The number of trees in the forest.

max_features 5 The number of features to consider
when looking for the best split.

min_samples_split sqrt(max_features) The minimum number of samples
required to split an internal node.

min_samples_leaf 15 The minimum number of samples
required to be at a leaf node.

bootstrap True Whether bootstrap samples are used
when building trees.

For the sake of model-comparisons, some models (see Table 3.1) were also
trained following the GAM approach from VODCA2GPPv1 proposed by
Wild et al. (2022) (see Equation 3.2).(Wild et al. 2022): Wild et al. (2022),

VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

3.2.3 Applying the model

The trained model was then applied to all grid points to get a global
dataset of GPP observations at a 0.25° spatial resolution spanning the
years from 1988 to 2020.
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3.3 Model evaluation

3.3.1 Site-level cross validation

To evaluate the performance of the model, a cross validation was per-
formed at site-level. For this, 10 different versions of the model were
trained and validated. In each fold of the cross validation, a different set
of stations (roughly 10%) was used for validation, while the remaining
stations were used for training. Each station was used for validation
exactly once, which is why this approach is called pseudo-random. The
different folds were also stratified by land cover class, this means that the
distribution of land cover classes in the training and validation sets was
set to be as close as possible. This approach can be referred to as 10-fold
stratified group cross validation5. 5: In 10-fold stratified group cross-

validation, the data is divided into ten
equal-sized parts. During each iteration
of model training and evaluation, nine
parts of the data are used for training the
model (i.e., these parts form the training
set), while the remaining one part is used
to evaluate the performance of the model
(i.e., this part forms the validation set).

In this case, stratified group cross-
validation involves first dividing the data
into groups based on a grouping vari-
able, which is station ID. These groups
are then added either to the training or
validation set, such that all observations
from a single group (i.e., station) are ei-
ther used to train or validate the model.

The stratification was done by land cover
class, which means that each fold con-
tains approximately the same proportion
of each land cover class as the whole
dataset. This ensures that the perfor-
mance of each model is evaluated on a
representative sample of the data, rather
than being biased towards any particular
class.

To evaluate the performances of the different models, different per-
formances metrics were calculated at each fold. These metrics were
calculated for every station individually in order to get one value of each
metric for every station.

The metrics used are Pearson’s correlation coefficient 𝑟 (Equation 3.3),
the root mean squared error RMSE (Equation 3.4) and the bias (Equa-
tion 3.5):

𝑟(𝑦, �̂�) =
�𝑛

𝑖=1(𝑦𝑖 − �̄�)(�̂�𝑖 − ¯̂𝑦)��𝑛
𝑖=1(𝑦𝑖 − �̄�)2

��𝑛
𝑖=1(�̂�𝑖 − ¯̂𝑦)2

(3.3)

RMSE(𝑦, �̂�) =
�

1
𝑛

𝑛�
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (3.4)

bias(𝑦, �̂�) = 1
𝑛

𝑛�
𝑖=1

(𝑦𝑖 − �̂�𝑖) (3.5)

Where:

- 𝑦 is the vector of observed (in-situ) GPP
- �̂� is the vector of predicted GPP
- �̄� is the mean of the observations
- ¯̂𝑦 is the mean of the predictions
- 𝑛 is the number of observations

3.3.2 Feature Importances of Predictors

To assess the feature importances two measures, namely the mean
decrease in impurity (MDI) and the SHAP values, were calculated.
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Mean decrease in impurity

The Mean Decrease in Impurity (MDI) is a measure of feature importance
in Random Forests that calculates each feature importance as the sum over
the number of splits (across all trees) that include the feature, weighted
by the number of samples that are affected by the split (Breiman 2001). It(Breiman 2001): Breiman (2001), Random

Forests is sometimes called "gini importance" and is defined as the total decrease
in node impurity (weighted by the probability of reaching that node6)6: which is approximated by the propor-

tion of samples reaching that node averaged over all trees of the ensemble (Pedregosa et al. 2011).
(Pedregosa et al. 2011): Pedregosa et al.
(2011), Scikit-Learn: Machine Learning in
Python SHAP values

SHAP values are a model-agnostic measure of feature importance that
can be calculated for any machine learning model. They are based on
Shapley values, which are a concept from cooperative game theory.
Shapley values are a way to fairly distribute the "payout" of a game
among the players. In the context of machine learning, the "game" is
the prediction task and the "players" are the features. They are based on
the idea of assigning each feature an importance score for a particular
prediction by computing the contribution of each feature to the difference
between the expected model output and the actual model output (Molnar
2022).(Molnar 2022): Molnar (2022), Chapter

8.5 Shapley Values
In contrast to MDI, which is a global measure of feature importance,
SHAP values are a local measure of feature importance. This means that
MDI measures how much each feature reduces impurity across all trees in
the forest while SHAP values measure how much each feature contributes
to a specific prediction. This makes SHAP values more interpretable than
MDI, since they can be used to explain individual predictions (Loecher
2022).(Loecher 2022): Loecher (2022), Debiasing

MDI Feature Importance and SHAP Values
in Tree Ensembles The SHAP values have been calculated using the shap python package

(Lundberg 2023).(Lundberg 2023): Lundberg (2023),
Slundberg/Shap - A Game Theoretic Ap-
proach to Explain the Output of Any Ma-
chine Learning Model. 3.3.3 Comparison with independent GPP datasets

To assess the performance and validate the predictions of different model
versions, as well as of the final model, the predictions were compared to
the independent GPP datasets FLUCXOM, MODIS, and TRENDY GPP
(see Section 2.3 for details on the datasets).

Maps of temporal correlations and biases between datasets were created.
Additionally, latitudinal GPP means were calculated for each dataset and
overlaid in a single plot to compare the latitudinal biases between the
different datasets. Finally, spatio-temporal GPP anomalies were calculated
for each dataset and displayed via hovmöller diagrams to assess the
ability of the model to capture interannual variability.

All comparisons were done on the maximum overlapping timespans,
which were determined by the availability of the comparison datasets.
Figure 3.1 gives an overview of the overlapping timespans between the
different datasets.



3.3 Model evaluation 27





Results 4
4.1 Comparisons between

model versions . . . . . . 29
4.1.1 Agreement with indepen-

dent GPP datasets . . . . . 29
4.1.2 Cross Validation . . . . . . 33
4.1.3 Latitudinal GPP bias . . . 35
4.2 The final VODCA2GPPv2

model . . . . . . . . . . . . 38
4.2.1 Bias to independent GPP

datasets . . . . . . . . . . . 38
4.2.2 Cross Validation . . . . . . 40
4.2.3 Feature Importances . . . 42
4.2.4 Spatio-temporal GPP

patterns - GPP anomalies 44

4.1 Comparisons between model versions

4.1.1 Agreement with independent GPP datasets

The use of additional in-situ (GAM+) data improved the correlation be-
tween the modeled GPP and the independent GPP datasets. Correlation
improvements are in the range of 0.02 and 0.01 r, when comparing to
the remotely sensed GPP products MODIS and FLUXCOM GPP (see
Figure 4.1). However, the magnitudes of regional improvements can be
considerably higher. Spatially, there is a significant variation in the mag-
nitude of correlation improvements, with certain regions experiencing
substantial changes (±0.3 Δ𝑟). Furthermore, MODIS and FLUXCOM GPP
exhibit similar spatial patterns in terms of correlation improvements. The
most notable correlation gains are observed in tropical savannas, as well
as semi-arid and temperate regions, whereas high productivity regions
such as tropical forests, tropical monsoon regions around the equator
and especially arid regions exhibit the biggest reductions.

Figure 4.1: Difference in correlation between models with and without added in-situ data and GPP from FLUXCOM (top) and MODIS
(bottom). The correlations are based on the common observation period between 2001 and 2016 with a 0.25° spatial and 8d temporal
resolution.

When comparing to the GPP from the TRENDY model ensemble (see
Figure 4.2) only regional improvements in correlation can be observed.
These improvements are particularly notable in the Southern Hemisphere,
with the most significant improvement observed in Australia. However,
in the global mean, no improvements in correlation could be achieved.

It is important to note that the correlations with TRENDY GPP are
generally much lower compared to correlations with the remotely sensed
GPP products (0.38 𝑟 vs. 0.58-0.63 𝑟).
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Figure 4.2: Difference in correlation between models with and without added in-situ data and GPP from TRENDY. The correlations are
based on the common observation period between 1988 and 2017 with a 0.5° spatial and 1 month temporal resolution.

Switching to a RF regressor and incorporating land cover information
(RF+_LC) lead to significant improvements in correlation with FLUXCOM
GPP (see Figure 4.3; first row). The improvements are substantial at a Δ𝑟
of 0.05 and are accompanied by significant changes in the spatial patterns
of correlation magnitudes. The most notable improvements are observed
in tropical regions, particularly in areas with a tropical rainforest and
tropical monsoon climate, as well as to a lesser extent in tropical savanna.
Correlations in these regions completely shift from strongly negative to
clearly positive. On the other hand, temperate regions only showed slight
improvements1, while desert and arid regions (and to a smaller extent,1: Temperate regions had already been

improved in GAM+ through the inclu-
sion of more in-situ stations, most of
which were located in temperate regions.

semi-arid regions) exhibited significant decreases in correlation.

However, the results for MODIS (Figure 4.3; second row) were not as
favorable, as more areas demonstrated decreasing correlation. Overall,
the mean correlation with MODIS decreased by 0.03, primarily due to
large decreases in arid regions.22: Even though the patterns of correla-

tion increases and decreases were simi-
lar to those in FLUXCOM, MODIS cov-
ers more arid regions where the correla-
tions decreased the most. This leads to
reduced correlations in MODIS but not
in FLUXCOM. Additionally, the tropical
regions where correlations increased are
arguably more interesting for GPP.

Additionally, the inclusion of land cover significantly increased the
correlations with TRENDY GPP as shown in Figure 4.4. The average
increase is 0.05 𝑟 globally.
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Figure 4.3: Difference in correlation between models with and without land cover data and GPP from FLUXCOM (top) and MODIS
(bottom). The correlations are based on the common observation period between 2001 and 2016 with a 0.25° spatial and 8d temporal
resolution.

Figure 4.4: Difference in correlation between models with and without land cover data and reference GPP from TRENDY. The correlations
are based on the common observation period between 1988 and 2017 with a 0.5° spatial and a monthly temporal resolution

Finally, the inclusion of L-band VOD (RF+_LC_LVOD) as a predictor does
only yield minor improvements in correlation with the independent GPP
datasets. The improvements are minimal, with negligible gains of 0.01 r
only for MODIS (see Figure 4.5). For FLUXCOM, the changes are overall
insignificant, with no discernible spatial patterns following climate or
land cover classes. In contrast, the improvements for MODIS are more
pronounced, bringing the correlations with MODIS and FLUXCOM to
a similar level. The most noticeable improvements are observed in the
Australian desert, although this pattern does not hold true for all desert
regions, as decreases in correlation are observed in the Sahara, Arabian
desert, and Middle East.

Similar to the remotely sensed GPP products, the improvements in
correlation with TRENDY GPP obtained by adding L-band VOD are also
negligible (see Figure 4.6).
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Figure 4.5: Difference in correlation between models with and without L-band VOD and GPP from FLUXCOM (top) and MODIS (bottom).
The correlations are based on the common observation period between 2001 and 2016 with a 0.25° spatial and 8d temporal resolution.

Figure 4.6: Difference in correlation between models with and without L-band VOD and GPP from reference GPP from TRENDY. The
correlations are based on the common observation period between 1988 and 2017 with a 0.5° spatial and a monthly temporal resolution.

Overall, the correlation improvements from the first model (GAM), as
used by (Wild et al. 2022), to the final random forest model with land(Wild et al. 2022): Wild et al. (2022),

VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

cover and L-band VOD (RF+_LC_LVOD) are highly significant when
comparing to the remotely sensed and DGVM-based GPP products.
The total correlation improvements from the original model version
for MODIS and FLUXCOM, as well as for TRENDY, are shown in the
Appendix in Figures B.1 and B.2, respectively.
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4.1.2 Cross Validation

Figure 4.7, contains the cross validation metrics (𝑟 Equation 3.3, RMSE
Equation 3.4, bias Equation 3.5) for the different models. Each value
represents the respective performance metric calculated for one specific
site during cross validation. The box-plots show the distribution of the
performance metrics across all sites.

Figure 4.7: Box-plots of cross validation (CV) performance metrics (𝑟 Equation 3.3, RMSE Equation 3.4, bias Equation 3.5) for different
models. Each value represents the respective performance metric calculated for one specific site during CV. The center line as well as the
annotation represent the median while box extents represent the 25th and 75th percentiles. The maximum length of the whiskers is 1.5
times the interquartile range, and outliers are shown as single points.

The site based cross validation results (Figure 4.7), show clear improve-
ments for every new iteration of the model. The step from the simple
GAM model to adding more in-situ data (blue to orange) is clearly benefi-
cial to the model, as can be seen in the higher correlations (𝑟), the reduced
RMSE and the slightly lower bias3. Differences between GAM and RF 3: Although it is hard to say if those are

really model improvements or just come
from the pure fact that more stations (267
compared to 110) are available now.
Many of the new stations are in the
Northern Hemisphere and in temperate
regions (where the model is known to
work better).
The apparently better values could also
come from the fact, that the ratio changed
towards more "easy to predict" stations.
This would show here without necessar-
ily improving the model.

(orange to green) are not as clear, with correlations staying similar and
RMSE getting slightly larger while bias marginally improves. Biggest
increases are achieved when adding new predictors (green to red and
purple). Especially, with the inclusion of LC (red) bringing significant
improvements across all metrics. Overall, the final model is significantly
better than the first model in all of the chosen metrics.

Continuous improvements can also be observed in Figure 4.8, containing
plots of in-situ GPP vs. predicted4 4: during cross validationGPP for the different models. The
diagonal line represents the 1:1 line, where predicted GPP equals in-situ
GPP. The closer the points are to the diagonal line, the better the model
performs.
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Figure 4.8: Scatter plots of predicted (dur-
ing CV) GPP against in-situ GPP for the
models: (a) GAM, (b) GAM+, (c) RF+,
(d) RF+_LC, and (e) RF+_LC_LVOD. The
dashed line represents the 1:1 line, the
red line represents the linear regression
fit.

(a) GAM - simple GAM model (b) GAM+ - GAM with added in-situ GPP

(c) RF+ - RF with added in-situ data
(d) RF+_LC - RF with added in-situ data and
LC

(e) Final VODCA2GPPv2 model: RF+_LC_-
LVOD - RF with added in-situ data, LC and
L-band VOD

The two GAM models (Fig. 4.8a, b) exhibit nearly identical distribution
patterns. This is expected since they both rely on the same model. The
only difference between them is the higher amount of in-situ data used
for GAM+ (Fig. 4.8b).5 However, it appears that this additional in-situ5: The two GAM figures also indicate

that there has been minimal addition of
new high GPP in-situ data. This is to
be expected, given that most new sites
are located in temperate regions in the
Northern Hemisphere.

data does not noticeably impact the performance of the model at site
level. Both models reach saturation early, resulting in underestimation
of high GPP values. In fact, no GPP values above 10 𝑔𝐶𝑚−2𝑑𝑎𝑦−1 (and
almost none for GAM+) are predicted.
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The scattering patterns exhibit changes when switching to a RF regressor
(Fig. 4.8c-e). Notably, the inclusion of the new land cover (4.8d) and, to a
lesser extent, the L-band VOD predictors (4.8e) leads to further changes
in the patterns. All RF models are capable of predicting GPP values above
10 𝑔𝐶𝑚−2𝑑𝑎𝑦−1 to some extent. However, the distribution of points still
remains fairly saturated. Especially for the RF+ model, which is arguably
not better than the GAM version.

The addition of land cover in the RF+_LC and RF+_LC_LVOD models
(Figures 4.8d,e) results in a notable improvement in the point distribution,
with a higher density of points aligning close to the 1:1 line. As a result,
there is an overall better agreement between predicted and in-situ GPP.
The linear regression fit (red line) also shows a better fit to the 1:1 line.

Improvements from adding L-band VOD (Fig. 4.8e) are minor again.6 6: L-band VOD has other advantages
though, such as the better agreement
with GPP from MODIS at pixel level.

4.1.3 Latitudinal GPP bias

Figure 4.9 shows the latitudinal GPP patterns of the different models,
as well as MODIS and FLUXCOM GPP. It contains the latitudinal GPP
means calculated on the common observation period of 2001 to 2016 on
pixels present in all datasets.

Figure 4.9: Latitudinal GPP mean for dif-
ferent VODCA2GPP models, as well as
MODIS and FLUXCOM GPP. The mean
was calculated for the common obser-
vation period of 2001 to 2016, consider-
ing only pixels present in all datasets.
The gray dots represent the mean GPP
observed at FLUXNET sites, with the
marker size representing the number of
observations at each site.
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As depicted in Figure 4.9, the MODIS and FLUXCOM models exhibit
a high level of agreement in predicting GPP. Both models demonstrate
similar latitudinal patterns and minimal biases across all latitudes.

Similarly, the various VODCA2GPP models also display comparable
latitudinal GPP patterns, although they significantly overpredict GPP
compared to MODIS/FLUXCOM.7 However, this bias is reduced by7: Note that this overprediction is ob-

served in relation to MODIS/FLUXCOM
but not necessarily in comparison with
in-situ GP (see below).

including new predictors and using a RF regressor.

While including additional in-situ data only slightly reduces the bias
(shown by the orange line; GAM+), switching to a RF regressor noticeably
reduces the bias, especially in the subtropics and temperate zone. The
inclusion of land cover and, to a lesser extent, L-VOD further reduces
the bias significantly, further increasing the agreement between the
VODCA2GPP models and MODIS/FLUXCOM. Unfortunately, there are
not many improvements in reducing the bias in the tropics. Notably, it
seems that other models perform better in those regions.88: Interestingly, the final model with L-

VOD, which successfully mitigated bias
in many latitudes, seems to underper-
form in large parts of the tropics, par-
ticularly in terms of bias towards MOD-
IS/FLUXCOM. It should be noted, how-
ever, that predicting GPP in the tropics is
notoriously challenging, and there is cur-
rently no consensus on GPP magnitudes
in those regions. GPP from optical ob-
servations, which tend to saturate earlier
than microwave data, can certainly not
be considered a reliable "true reference"
for GPP in the tropics.

Moreover, upon examination of the gray dots representing in-situ GPP
observations in Figure 4.9, it becomes apparent that MODIS and FLUX-
COM do not necessarily exhibit better agreement with in-situ observation
than the VODCA2GPP models. In fact, the VODCA2GPP models seem
to more closely resemble in-situ GPP, as their latitudinal means align
closer with what is the center of the value range observed in the in-situ
GPP data.

This raises the question of whether the VODCA2GPP models offer a
superior fit, implying that the accuracy of MODIS/FLUXCOM may be
comparatively lower. Overall, in this simple visual comparison, there
appears to be better agreement between the VODCA2GPP models and
in-situ GPP than with MODIS/FLUXCOM. Although it is challenging to
make a definitive assessment, this outcome is certainly not surprising
given the simple machine learning approach used in the VODCA2GPP
models and more importantly by the fact that the VODCA2GPP models
in contrast to the other products are trained on this exact in-situ GPP data
shown in the plot.9 Consequently, it is expected that the VODCA2GPP9: MODIS does not employ any in-

situ GPP for training, while FLUXCOM
does but not the exact subset utilized by
VODCA2GPP and displayed here.

models would closely align with the patterns observed in the shown
in-situ GPP data.

The confidence in the correctness of the VODCA2GPP models is further
strengthened by comparing its latitudinal means to those of TRENDY
GPP (Figure 4.10). Notably, TRENDY GPP exhibits a significantly smaller
bias towards VODCA2GPP compared to MODIS and FLUXCOM (as
shown in Figure 4.9). In general, the different VODCA2GPP models,
especially the final model with L-VOD (purple), demonstrate strong
agreement with TRENDY GPP and exhibit highly similar latitudinal
patterns.1010: However, it should be noted that

Figures Figures 4.9 and 4.10 cannot be
directly compared because the latitudi-
nal means were calculated for different
time periods. Moreover, the spatial avail-
ability of the data sets also differs, with
TRENDY GPP including more regions
than MODIS/FLUXCOM. As a result,
the latitudinal means were calculated
using different latitudinal pixel subsets,
making them not directly comparable.
Additionally, TRENDY GPP has a lower
spatial resolution compared to MODIS-
/FLUXCOM, which may further affect
the latitudinal means.
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Figure 4.10: Latitudinal GPP mean for
different VODCA2GPP models, as well
as TRENDY GPP. The mean was calcu-
lated for the common observation pe-
riod of 1988 to 2017, considering only
pixels present in all datasets. The gray
dots represent the mean GPP observed
at FLUXNET sites, with the marker size
representing the number of observations
at each site.



38 4 Results

4.2 The final VODCA2GPPv2 model

The previously presented results show the RF+_LC_LVOD model to be
the best performing model. Since it was chosen as the final model it will
be referred to as VODCA2GPPv2 from now on. The following sections
will focus on the results of this model.

4.2.1 Bias to independent GPP datasets

Figure 4.11 shows the mean GPP for, and biases between, the original
GAM model (bb), the updated VODCA2GPPv2 model (aa), and reference
GPP from MODIS (cc) and FLUXCOM (dd). The maps are arranged in
a matrix like layout, with the main diagonal showing the mean GPP
for each model and the off-diagonal elements showing the difference in
mean GPP (bias) between the models. The GPP means as well as biases
are all calculated for the common observation period of 2001 to 2016.

Figure 4.11: Mean GPP and bias for different models and MODIS and FLUXCOM GPP, arranged in a matrix like layout. The main
diagonal shows the mean GPP for each model and the off-diagonal elements show the difference in mean GPP (bias) between the models.
Means as well as biases are calculated for the common observation period between 2001 and 2016 with a 0.25° spatial resolution.
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One thing immediately apparent from Figure 4.11, is that VODCA2GPP
versions overestimate GPP across nearly all regions, often with significant
discrepancies.

This behavior, while being very pronounced for the original GAM ver-
sion of the model is slightly mitigated in the new VODCA2GPPv2.
This can be observed by comparing the biases between the two ver-
sions of VODCA2GPP and the reference datasets11. Generally, the new 11: The Bias between the GAM model

and the validation datasets (bc, bd)
is consistently larger than the bias of
VODCA2GPPv2 version with the same
datasets (ac, ad).

VODCA2GPPv2 model yields lower GPP predictions compared to GAM,
which is also reflected in reduced biases with the reference GPP. Across
the map, biases with respect to the reference datasets have improved
(with the mean bias decreasing by 0.45 and 0.44 𝑔𝐶𝑚−2𝑑−1 for MODIS
and FLUXCOM), except for India where the bias increased. These find-
ings are consistent with the observations from the latitudinal bias plot
(Figure 4.9) discussed in Subsection 4.1.3, which also provides evidence
of the overprediction of final VODCA2GPP compared to the original
version at approximately 20° north12. 12: In the latitudinal plot,

VODCA2GPPv2’s prediction is
noticeably larger than the one from the
original version within a latitude range
of about 15° centered around 20° north.
This observation aligns with the region
of increased bias in India whereas in
almost all other regions, the bias maps
as well as latitudinal bias plots show
decreased bias.

Overall, Figure 4.11 demonstrates a significant improvement in the re-
duction of biases with the independent GPP datasets for VODCA2GPP.
However, it should be noted that the biases, although mitigated to some
extent, still remain relatively large. This is particularly evident when
comparing with the bias between the two comparison datasets MODIS
and FLUXCOM (Figure 4.11cd), which show a much higher level of
agreement.
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4.2.2 Cross Validation Results - Site based comparison
with in-situ GPP

Figure 4.12: Histograms of site-based cross validation performance metrics (𝑟 eq. 3.3; RMSE eq. 3.4; bias eq. 3.5) for the final
VODCA2GPPv2 model.

Figure 4.13: Violin plots of in-situ GPP
and VODCA2GPPv2 GPP at all sites.

The cross-validation metrics (𝑟 eq. 3.3, RMSE eq. 3.4, bias eq. 3.5) for
the VODCA2GPPv2 model are displayed in Figure 4.12. The histograms
illustrate the performance metric distribution across all sites. Correlations
between the model and in-situ GPP are particularly strong, with over 75%
of the sites exhibiting higher correlations than 0.58 𝑟. Additionally, the
median correlation is remarkably high at 0.78 𝑟. The bias follows a fairly
normal distribution centered around 0, indicating that the model does not
have a tendency to consistently over- or underpredict GPP. Roughly 50%
of the sites have a bias of smaller magnitude than 1. However, it’s worth
noting that both bias and RMSE can become considerably large, especially
when considering the total range of GPP values (see Figure 4.13).

Displaying the correlation coefficients on a map (Figure 4.14) reveals
that the model performs best in Europe and North America. Generally,
the Northern Hemisphere outperforms the Southern Hemisphere sig-
nificantly. The model’s performance aligns well with the distribution
of sites, as most sites are located in temperate regions in the Northern
Hemisphere. This indicates that the uneven distribution of sites is inher-
ited by the model, resulting in its superior performance in the Northern
Hemisphere and temperate regions.

Figure 4.14: Map of Pearson correlation coefficients (𝑟 Equation 3.3) between predicted (during CV) and reference (in-situ) GPP at
FLUXNET sites. Sites are colored by correlation coefficient (continuous color map), the marker type represents the LC class.
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Interestingly, the correlations in Australia are not as strong as those in
North America and Europe, despite the presence of numerous sites.
This discrepancy may be attributed to the fact that Australia is a region
with limited water availability, where temperature is not such a strong
constraint on GPP as in other regions. The poor performance in the tropics,
on the other hand, can likely be attributed to the limited availability of
sites and consequently training data in these areas.

Model performance does not only vary spatially, but also depends on
the land cover class of the site. This can be observed by looking at the
different markers representing each land cover class in the correlation
map (Figure 4.14). However, it becomes even more clear when the sites
are grouped into land cover classes and box plots are used to visualize
the performance metrics of each group. This is demonstrated in the
following Figure 4.15.

Figure 4.15: Box-plots of Pearson corre-
lation coefficients (mid) and biases (bot-
tom) calculated during CV, grouped by
land cover classes. Together with his-
togram showing amount of sites per LC
class.
Each value represents the respective per-
formance metric calculated for one spe-
cific site during cross validation. Box ex-
tents represent the 25th and 75th per-
centiles. The maximum length of the
whiskers is 1.5 times the interquartile
range, outliers points are shown as sin-
gle dots.

As seen in Figure 4.15, correlations between predicted and in-situ GPP
vary considerably between land cover classes. The land cover classes with
the highest number of sites13 tend to exhibit the best model performance. 13: grassland, needle-leaved evergreen

forest, broadleaved deciduous forest,
shrubs

The superior model performance for these classes can be attributed to the
larger sample size of training data, and the model therefore being trained
to work better for these classes. Correlations are also generally higher on
forested sites, especially on mixed forests. On the other hand, low and
sparse vegetation sites14 generally have slightly lower correlations, except 14: such as croplands, shrubs, and sparse

vegetationfor grasslands which perform quite well. In forested sites, NE stations
consistently display exceptionally high correlations across almost all sites,



42 4 Results

while BD stations exhibit a wider range of correlations. This difference
may be attributed to the fact that NE sites are exclusively located in
the Northern Hemisphere, whereas BD sites are more geographically
dispersed. Additionally, the temporal dynamics of evergreen vegetation
in needle-leaved evergreen forests may be easier to predict compared to
broadleaved deciduous forests.

Similar patterns observed for correlations are also evident for the bias
(bottom of Figure 4.15). The most represented classes, such as grasslands,
needle-leaved evergreen (NE) and broadleaved deciduous (BD) forests,
and shrubs, consistently demonstrate the best performance, with biases
centered around 0. The effects of uneven representation in the training
data are, however, even more pronounced for biases than for correla-
tions. The underrepresented classes notably exhibit worse performance,
showing clear systematic biases with a clear tendency to overpredict GPP
(positive bias) in mixed forests and underpredict GPP (negative bias) in
croplands15.15: This negative bias for croplands is

particularly interesting as it could show
the impacts of irrigation practices. Overall, Figure 4.15 demonstrates that the model performs best for the

most represented land cover classes. This is expected since the model is
trained to excel on these classes. However, there is a noticeable difference
in performance for underrepresented classes. On correlations the model
still performs relatively well for these classes. On the other hand, the
performance on bias is notably worse, for the underrepresented classes.
This indicates that the generalizability of the model, particularly in terms
of bias, is not yet ideal.

Note

Figure B.3, in the Appendix, contains a similar Figure to 4.15, with
the difference that it also includes the correlations and bias for the
GAM+ model. This allows to illustrate the improvements on model
generalizability though the inclusion of LC and LVOD across
biomes and will be referred to in Section 5.4 in the discussion.

4.2.3 Feature Importances

The Mean Decrease in Impurity (MDI) and SHAP values, described
in Subsection 3.3.2, were utilized to assess the importance of various
predictors in VODCA2GPPv2. These values are visualized in Figure 4.16
(bottom row: 4.16c and 4.16d), alongside the feature importances for the
simple model (top row: 4.16a and 4.16b) which only uses the original
VODCA2GPP model’s previous predictors (VOD, dVOD, medVOD,
T2M).

Both MDI (4.16a and 4.16c) and SHAP values (4.16b and 4.16d) highlight
temperature as the most significant predictor, for the basic as well
as for the full-feature model. This is logical considering the strong
temperature dependence of 𝑅𝑎 . Additionally, the simple model assigns
high importance to median VOD. It is important to note that median VOD
serves solely as a static predictor without providing temporal dynamics.
As a result, in the simple model the temporal dynamics are primarily
driven by temperature.
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In the full-feature model, although temperature remains the most impor-
tant predictor, the VOD timeseries becomes the dominant VOD predictor.
This aligns well with the expected behavior of a VOD-based model,
where VOD should primarily be utilized for capturing temporal dynam-
ics. Consequently, the importance of median VOD decreases as its role
is assumed by land cover data in the form of fractional coverages of
PFTs16. 16: It is worth mentioning that median

VOD, suggested as a predictor by Teub-
ner et al. (2019) to serve as a proxy for
vegetation density, may no longer be nec-
essary, as its role is mostly fulfilled by
land cover data in the form of fractional
coverages of PFTs.

Many of the land cover predictors exhibit high feature importances,
with Broadleaved Deciduous (BD) and Bare Soil (Bare) being the most
important ones.17 17: It is interesting to observe the inverse

relationship between BD and Bare with
the predicted GPP. A high feature value
of BD increases the predicted GPP, while
a high feature value of Bare is associated
with lower GPP value.

(a) Mean Decrease in Impurity (MDI) - RF+ (b) SHAP values - RF+

(c) Mean Decrease in Impurity (MDI) - RF+_LC_LVOD (d) SHAP values - RF+_LC_LVOD

Figure 4.16: MDI and SHAP values for the random forest models trained on the simple (VOD, T2M) and extended (VOD, T2M, LC,
LVOD) feature sets.
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4.2.4 Spatio-temporal GPP patterns - GPP anomalies

To compare anomaly pattern in space and time between the different
datasets, the GPP anomalies were calculated for each dataset by sub-
tracting the mean GPP for each month from the respective monthly GPP
values. The anomalies were averaged on a latitudinal basis and are shown
in Figure 4.17. For comparisons Figure 4.17 also contains the GAM model,
which is equivalent to the VODCA2GPPv1 model by Wild et al. (2022).(Wild et al. 2022): Wild et al. (2022),

VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

The anomalies are calculated for the common observation period of 2001
to 2016.

Figure 4.17: Hovmöller plots of monthly
mean GPP and GPP anomalies.
The anomalies are calculated by subtract-
ing the mean GPP for each month from
the respective monthly GPP values on a
latitudinal basis.

Visually anomalies from VODCA2GPPv2 seem to match MODIS anoma-
lies best, followed by TRENDY, while FLUXCOM anomalies match worst.
Several of the extreme events captured in VODCA2GPPv2 are also de-
tected in at least one of the other datasets. The most prominent anomalies
examples present in VODCA2GPPv1 and highlighted by Wild et al. (2022)(Wild et al. 2022): Wild et al. (2022),

VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

are also detected in VODCA2GPPv2. These include the pronounced posi-
tive anomalies centered at 20-30 °S from 2010 to 2012, likely resulting from
record-breaking rainfall in Australia during that period (Wardle et al.
2013). VODCA2GPPv2 also captures the prominent negative anomalies(Wardle et al. 2013): Wardle et al. (2013),

Greening of Arid Australia: New Insights
from Extreme Years
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around 20°C in 2002/2003 and early 2005 discussed by Wild et al. (2022).
These anomalies can be attributed to severe drought events occurring in
those years (Bureau of Meteorology 2003, 2005), which are often associ- (Bureau of Meteorology 2003): Bureau

of Meteorology (2003), Annual Climate
Report 2003
(Bureau of Meteorology 2005): Bureau
of Meteorology (2005), Annual Climate
Report 2005

ated with El Niño events (Taschetto and England 2009). Furthermore, a

(Taschetto and England 2009): Taschetto
et al. (2009), El Niño Modoki Impacts on
Australian Rainfall

distinct decline in GPP during 2015/2016, within similar latitudes, may
be linked to El Niño-related drought events (Zhai et al. 2016).

(Zhai et al. 2016): Zhai et al. (2016), The
Strong El Niño of 2015/16 and Its Dominant
Impacts on Global and China’s Climate

Although Wild et al. (2022) reported that extreme events were more

(Wild et al. 2022): Wild et al. (2022),
VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

evident in VODCA2GPPv1 compared to their comparison datasets18,

18: They used the same compari-
son datasets: FLUXCOM, MODIS, and
TRENDY GPP

this is not the case for VODCA2GPPv2. VODCA2GPPv2 is clearly less
influenced by extreme events than it’s predecessor. This distinction is
clearly depicted in Figure 4.17, where GAM and VODCA2GPPv2 exhibit
very similar patterns but with a substantial difference in magnitude.
While part of this difference can be explained by the overall shorter
range of GPP values in VODCA2GPPv2 (VODCA2GPPPv2 on average
predicts 0.45 𝑔𝐶/𝑚2/𝑑 less than GAM; refer to Figures 4.9 and 4.11), the
disparity in magnitude remains significant. One possible explanation for
this discrepancy is the importance of the new land cover predictors in
VODCA2GPPv2 (see Figure 4.16), which, due to their static nature, may
reduce temporal dynamics in the prediction and consequently diminish
the magnitude of the anomalies.
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5.1 Observed bias between VODCA2GPP and
independent GPP products

There is a minimal bias observed between VODCA2GPP and in-situ GPP
measurements (Figures 4.7 and 4.15). However, a substantial bias exists
between VODCA2GPP and other RS based GPP products (Figures 4.9
and 4.11).

In tropical regions, where bias between VODCA2GPP and FLUXCOM
and MODIS is the largest, this bias can be partly explained by a reported
and observed tendency of FLUXCOM and MODIS to underestimate
GPP in these regions. For instance, the FLUXCOM RS setup used in this
study, has been reported to yield lower global estimates compared to the
FLUXCOM RS+METEO setup or GPP estimates from vegetation models
(Jung et al. 2020). Similarly, MODIS has been found to underestimate GPP (Jung et al. 2020): Jung et al. (2020), Scal-

ing Carbon Fluxes from Eddy Covariance
Sites to Globe: Synthesis and Evaluation of
the FLUXCOM Approach

in tropical regions (Turner et al. 2006). The need for improved constraints

(Turner et al. 2006): Turner et al. (2006),
Evaluation of MODIS NPP and GPP Prod-
ucts across Multiple Biomes.

on GPP estimates, particularly in the tropics, is widely acknowledged
(MacBean et al. 2018), and various studies have addressed this issue
(MacBean et al. 2018; Wu et al. 2020). However, the low availability of

(MacBean et al. 2018): MacBean et al.
(2018), Strong Constraint on Modelled
Global Carbon Uptake Using Solar-Induced
Chlorophyll Fluorescence Data
(Wu et al. 2020): Wu et al. (2020), Using
SMOS Soil Moisture Data Combining CO2
Flask Samples to Constrain Carbon Fluxes
during 2010–2015 within a Carbon Cycle
Data Assimilation System (CCDAS)

in-situ estimates often hampers these efforts.

Outside the tropics, there are still discrepancies in absolute GPP, although
they are significantly less pronounced. One possible explanation, already
discussed by Wild et al. (2022), for this behavior in regions with pro-

(Wild et al. 2022): Wild et al. (2022),
VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

nounced seasonality is the presence of high VOD during winter months,
where little to no primary productivity is expected. This overestimation
can be attributed to the water content in vegetation that remains present
even during dormant periods. The sensitivity of microwaves to this
water content leads to non-zero VOD and, consequently, non-zero GPP
(Teubner et al. 2021). This bias affects regions with strong seasonality and

(Teubner et al. 2021): Teubner et al. (2021),
Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production

a pronounced dormant period, which could possibly explain (part of)
the bias observed in temperate and continental climates.

In arid regions, the bias is possibly affected by the effect of isohydricity.
This term refers to the water regulation adaptation of plants in cases
of low water availability. In drought-prone regions, plants often reduce
transpiration by limiting stomatal conductance in order to maintain a
constant water potential even during times of extreme water scarcity
(Sade et al. 2012). This isohydric behavior of vegetation could partly (Sade et al. 2012): Sade et al. (2012), Risk-

Taking Plantsexplain the relatively high VOD and consequently the overestimated
GPP in those regions (Teubner et al. 2021). (Teubner et al. 2021): Teubner et al. (2021),

Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production

Furthermore, surface water contamination has been observed in some
VODCA pixels, which partially contain water bodies such as lakes and
rivers. These pixels consistently exhibit lower VOD values compared
to neighboring pixels without water bodies. This discrepancy has two
implications. Firstly, it leads to underestimation in the VODCA2GPP
model for pixels that contain surface water. Secondly, it affects the model
training process. If a station falls within a water-contaminated pixel, the
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VOD is underestimated at the 0.25° pixel scale, while in-situ GPP remains
largely unaffected. Consequently, this leads to a slight but systematic
global overestimation. Although masking for water-contaminated pixels
seems promising, Wild et al. (2022) showed it would significantly reduce(Wild et al. 2022): Wild et al. (2022),

VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

the already limited data available for training, and was thus deemed not
worth the trade-off.

Finally, it must be acknowledged that there is currently no consensus
among GPP datasets, and especially the productivity magnitudes can
vary greatly between datasets. GPP from DGVMs seems to match the
magnitudes of VODCA2GPP more closely, as was tested with TRENDY
GPP, but it is important to note that these models are not without their
own limitations. On the other hand, the optical nature of many RS
datasets makes them more susceptible to saturation, which undoubtedly
impacts their relatively lower predictions. Hence, VODCA2GPP, but also
the other GPP datasets for that matter, should not be regarded as an
absolute reference but rather as supplementary data aiding in a more
comprehensive understanding of global GPP and its role in the carbon
cycle.

5.2 Limited availability of in-situ GPP and
independence of validation datasets

A common challenge in the process of upscaling GPP measurements
to derive global GPP estimates is the limited availability of in-situ
observations. In the context of VODCA2GPPv1, this issue was particularly
pronounced, but was partially addressed in this thesis via the inclusion
of two new FLUXNET datasets. As a result, the number of sites could be
more than doubled. However, although this expansion of training data
was important and beneficial, the problem of insufficient global coverage
remains unresolved as most sites overlap with regions already covered by
the previous training data. Achieving equal coverage across all regions
still remains a distant goal, as shown in Figure 2.3 and Appendix A.

The scarcity of in-situ GPP measurements, especially their uneven dis-
tribution, not only hinders achieving spatially consistent upscaling per-
formance but also impedes fair evaluation and validation at the global
scale.

Alternatively, VODCA2GPP (and global GPP products in general) can be
evaluated by comparing them with independent global GPP products.
However, this approach poses a different challenge, as the question of
whether different RS GPPs are truly independent has to be addressed. In
the absence of alternative high-accuracy GPP observations, FLUXNET
GPP is extensively used in deriving most (if not all) global RS GPP
products. For example, both FLUXNET and MODIS rely on in-situ GPP
measurements from FLUXNET to some extent. FLUXCOM was trained
against FLUXNET GPP1 (Jung et al. 2020; Tramontana et al. 2016), and1: although with a different subset of

stations
(Jung et al. 2020): Jung et al. (2020), Scal-
ing Carbon Fluxes from Eddy Covariance
Sites to Globe: Synthesis and Evaluation of
the FLUXCOM Approach
(Tramontana et al. 2016): Tramontana
et al. (2016), Predicting Carbon Dioxide
and Energy Fluxes across Global FLUXNET
Sites with Regression Algorithms

MODIS GPP has been partly calibrated using data from select FLUXNET
stations (Steven W. Running et al. 2004). Consequently, they cannot be

(Steven W. Running et al. 2004): Steven
W. Running et al. (2004), A Continuous
Satellite-Derived Measure of Global Terres-
trial Primary Production

considered fully independent from VODCA2GPP. However, at present,
there are no other alternatives for constraining global GPP estimates
besides utilizing FLUXNET measurements (Teubner et al. 2021).
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In contrast, process-driven GPP estimations such as TRENDY GPP from
DGVMs can be largely considered independent from VODCA2GPP.

5.3 The random forest regressor

The random forest algorithm was chosen over other machine learning
algorithms, and specially over the GAM approach of VODCA2GPPv1
(Wild et al. 2022) because of its ability to handle complex interactions (Wild et al. 2022): Wild et al. (2022),

VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

between predictors and its robustness against overfitting. This is partic-
ularly important in the context of VODCA2GPPv2, where the number
of predictors is relatively high compared to the number of observations.
Even when comparing simpler models with the original feature set of
VODCA2GPPv1, Random Forest performed slightly better than GAM
in cross-validation, especially in terms of correlation and bias. It also re-
duced latitudinal bias to MODIS, FLUXCOM, and TRENDY GPP datasets
(Figures 4.9 and 4.10). While the difference in models with limited pre-
dictors was noticeable, it was not substantial. The real improvements
came from the model with land cover predictors. Although GAM was
not tested with new predictors, the added complexity of the model
makes RF a better choice. This aligns with the suggestion by Schmidt
et al. (2023), who proposed that GAM may not be sufficient to accurately (Schmidt et al. 2023): Schmidt et al.

(2023), Assessing the Sensitivity of Multi-
Frequency Passive Microwave Vegetation
Optical Depth to Vegetation Properties

model the complex relationship between VOD and vegetation properties,
particularly when including land cover predictors.

5.4 Land cover and improved generalizability of
the model

As demonstrated in previous figures, the performance of the model
in relation to in-situ measurements and bias with independent GPP is
inconsistent across different regions of the world (Figure 4.11), latitudes
(Figures 4.9 and 4.10) or LC classes (Figure 4.15). Some reasons for the
large discrepancies between GPP products and the implications of limited
and unevenly distributed in-situ GPP, have already been discussed in
Sections 5.1 and 5.2. However, the question remains whether the model
is capable of generalizing across different biomes and LC classes, and
whether the inclusion of LC as a predictor has been successful in this
regard.

The inclusion of LC information has significantly contributed to reducing
latitudinal bias to the FLUXCOM, MODIS, and TRENDY datasets. In
terms of correlations, it has reversed the negative agreement observed in
a lot of the highly densely vegetated areas like the Amazon rainforest,
resulting in improved consistency across different biomes. Generally,
there have been substantial improvements in the correlation of the
model with independent GPP in regions where in-situ data is limited.
This suggests that the model can effectively use LC information for
generalization, partially compensating for the lack of in-situ data.

However, it is important to note that the model still heavily relies on
in-situ data. This dependence becomes evident when considering CV
performance across different LC classes. As depicted in Figure 4.15 and
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discussed in Subsection 4.2.2, the model performs better in LC classes that
are well-represented in the training data. Notably, this behavior is more
prominent in the version of VODCA2GPP without LC (refer to Figure B.3
in the appendix for a comparison of the 2 model versions). Specifically,
when using LC predictors, correlations exhibit greater consistency across
LC classes, and biases are closer to zero with a significant reduction in
systematic over- and underestimation based on LC class.

Despite these improvements, there is still room for further enhancement,
as performance continues to vary across LC classes even after incorpo-
rating LC information. This variability can partly be attributed to the
microwave-based approach, which may exhibit varying sensitivities to
different vegetation types. Moreover, the lack of sufficient in-situ data for
certain LC classes also contributes to this variability. Finally, while LC
data can contribute to generalization across different LC classes to some
extent, it remains imperative to have adequate in-situ data in order to
accurately train the model for all the different LC classes.

5.5 L band VOD and the wavelength
dependency of the VOD - GPP relationship

L-band VOD was introduced for its ability to penetrate deeper vegetation
layers, making it more sensitive to areas with high biomass and vegeta-
tion density. However, assessing the results is challenging, as there are
improvements in reducing latitudinal biases (Figures 4.9 and 4.10) and
in correlation with MODIS (Figure 4.5), but also an increased positive
bias towards independent GPP datasets in the tropics. This outcome can
be attributed to L-band VOD being less saturated in tropical regions,
leading to higher predictions. However, it contradicts the objective of
reducing latitudinal bias.

L-band VOD provides more robust AGB estimates compared to lower
frequency VOD. Nevertheless, the impact of potential saturation with
biomass on GPP estimation is less straightforward, especially in densely
vegetated areas like the tropics (Teubner et al. 2021). Teubner et al. (2019,(Teubner et al. 2021): Teubner et al. (2021),

Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production

2018) demonstrated that X-band VOD has a stronger relationship with

(Teubner et al. 2019): Teubner et al. (2019),
A Carbon Sink-Driven Approach to Estimate
Gross Primary Production from Microwave
Satellite Observations
(Teubner et al. 2018): Teubner et al. (2018),
Assessing the Relationship between Mi-
crowave Vegetation Optical Depth and Gross
Primary Production

GPP than L-band VOD. This finding may appear unexpected considering
the higher sensitivity of L-band VOD to AGB. However, AGB is largely
composed by woody structural components. In contrast, X-band VOD
is more sensitive to metabolically active plant parts like leaves and fine
roots, making it a suitable estimator for GPP (Teubner et al. 2021). The use

(Teubner et al. 2021): Teubner et al. (2021),
Impact of Temperature and Water Availabil-
ity on Microwave-Derived Gross Primary
Production

of VOD as a proxy for aboveground metabolically active parts, related
to GPP, is supported by its sensitivity to water content in metabolically
active cells.

While L band VOD might not be particularly suited as the primary VOD
input for predicting the temporal dynamics of GPP, it can still be used
as an additional predictor. Although its temporal dynamics may not be
particularly useful for predicting GPP, its ability to saturate less and its
sensitivity to deeper vegetation layers might be useful when considering
it as a proxy for vegetation density, similar to how medianVOD2 is used.2: high frequency VOD.
Additionally, using LVOD only as a static predictor, without considering
its temporal dynamics, has the significant advantage of not reducing
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the training data. The low availability period from 2010 to 2020 would
otherwise severely reduce the training data and the timespan of possible
VODCA2GPP predictions.

Ultimately it is difficult to make a final assessment as many of the
insecurities regarding global GPP estimations also play a role when
evaluating the performance increases of this new predictor. However, es-
pecially the cross-validation results, which are independent of the global
GPP datasets, suggest that L-band VOD can be a useful supplementary
predictor for GPP.

5.6 Future research

The new predictors included in this study are not based on GPP drivers
or environmental conditions that influence GPP. Instead, the aim was to
stay true to the sink-driven approach by Teubner et al. (2019) and try to (Teubner et al. 2019): Teubner et al. (2019),

A Carbon Sink-Driven Approach to Estimate
Gross Primary Production from Microwave
Satellite Observations

adapt it to work better on a global scale. Thus, the predictors aimed to
enhance generalizability and consistency across different biomes. This
objective was successfully achieved through the inclusion of LC data, in
the form of fractional coverages of PFTs, and to a lesser extent, through a
static predictor based on L-band VOD.

The importance of LC is significant because it characterizes the vegetation
type within each grid cell, and GPP exhibits substantial variation among
different vegetation types. Furthermore, the fractional coverage aspect
of the predictor provides information on vegetation density. Similarly,
L-band VOD serves as a proxy for vegetation density, with additional
sensitivity to vegetation height. Its deeper penetration allows for higher
sensitivity to vegetation height when compared to median (high fre-
quency) VOD and PFTs. However, its results are less conclusive than
those of LC as was discussed in Section 5.5.

This raises the question of whether the median VOD, fractional coverages
of PFTs, and the static L band VOD predictor all provide a unique
contribution in the context of capturing vegetation density. Notably, the
feature importance of median VOD decreases when the new predictors
are included, resulting in similar levels of importance for both L-band
VOD and median VOD. LC should definitely be retained as it is the
only predictor that directly provides information on vegetation type3. 3: medianVOD and L-band VOD pro-

vide indirect information on vegetation
type through their sensitivity to vegeta-
tion density

However, further tests should be conducted to determine if both L-band
VOD and median VOD are necessary.

Additionally, exploring the incorporation of predictors that more directly
represent the drivers of GPP, such as water availability, solar radiation, or
atmospheric𝐶𝑂2 levels, provides material for future research. Specifically,
water availability could have significant implications, as evidenced by
decreased performance in the case of Australia despite ample training data
availability. Australia is known to be a water-limited region, suggesting
the importance of water availability for predicting GPP. Soil moisture
or the Standardized Precipitation Evapotranspiration Index (SPEI) are
indicators of water availability that could be considered as potential
predictors.4 4: Microwave derived soil moisture is

particularly interesting as it is not only a
good indicator for water availability but
also aligns with the microwave-based
approach of VODCA2GPP.
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Furthermore, other potential predictors to consider are solar radiation
and 𝐶𝑂2 concentrations. While these predictors hold promise, it is crucial
to assess whether their incorporation would still align with the sink-
driven approach. Solar radiation, for instance, is clearly a source-driven
predictor. It is essential to determine whether the potential improvements
of new predictors outweigh the deviation from this approach or if it is
more worthwhile to continue pursuing a strictly sink-driven approach to
retain the unique insights into GPP dynamics specific to it.
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6 Conclusions

In this thesis the VODCA2GPPv2 model, a new updated Gross Primary
Production model from microwave-derived VOD observations was de-
veloped. Building on the first version of the VODCA2GPP model by Wild
et al. (2022), its uneven spatial performance was addressed in an aim (Wild et al. 2022): Wild et al. (2022),

VODCA2GPP – a New, Global, Long-
Term (1988–2020) Gross Primary Produc-
tion Dataset from Microwave Remote Sens-
ing

to make it more consistent across biomes. Several enhancements to the
original model were made to achieve this goal: three different in-situ
GPP observation datasets were merged to more than double the amount
of available training locations, a new machine learning algorithm was
employed, namely a random forest regressor and two new predictors
were introduced, LC and (low frequency) L-band VOD.

Comparisons with the independent GPP records from MODIS, FLUX-
COM, and TRENDY revealed that this new model is capable of capturing
temporal GPP patterns more effectively than VODCA2GPPv1 in many
regions of the world. Additionally, the amount of overestimation (in
comparison to independent GPP) could be significantly reduced. Compar-
isons with local GPP measurements demonstrated that the new model is
more consistent across different biomes and land cover types and exhibits
improved performance during cross-validation, with higher correlations
and reduced bias and RMSE. Furthermore, the model reaches saturation
at a slower rate than VODCA2GPPv1 and is capable of predicting higher
GPP values.

These findings imply that the changes were successful in developing a
new model that is more generalizable. The new model is less dependent
on in-situ data distribution and density and able to better capture the
spatial patterns of GPP across biomes, land cover type and latitudes.

However, it should be noted that there is still a tendency for the model to
perform better in regions and land cover classes with high in-situ data
density and that its dependence on in-situ data could only be mitigated
but not eliminated. Furthermore, while overestimation of GPP at the
global scale could be reduced, it still remains high, especially in the
tropics where GPP predictability is known to be notoriously difficult.

To address some of these limitations, future research could consider
incorporating soil moisture as a predictor to account for water availability.
This may help address the performance decrease observed in regions
where photosynthetic activity is hampered by limited water availability.
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Furthermore, it may be beneficial to include additional drivers of GPP,
including direct ones such as radiation. Although this possible deviation
from the carbon sink-driven approach needs to be assessed carefully.

In conclusion, the improvements implemented in this thesis have re-
sulted in an enhanced GPP model that demonstrates closer agreement
with independent GPP datasets and in-situ observations. These results
further increase the confidence in the carbon sink-driven GPP estima-
tion approach. Moreover, the unique approach makes the resulting
VODCA2GPPv2 dataset a valuable complementary dataset, which, if
used jointly with traditional RS-based models, can aid in a more compre-
hensive understanding of the dynamics of GPP and its role in the global
carbon cycle.
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Figure A.1: Spatial distribution of FLUXNET sites used in VODCA2GPPv1 (Wild et al. 2022) (blue), and newly added sites for
VODCA2GPP v2 (orange). Marker size is scaled to the number of days of observations.

Table A.1: FLUXNET sites used in this study
FLUXNET ID Name Lat [°N] Lon [°E] Origin dataset No. of obs. [days]

AR-SLu San Luis -33.46 -66.46 2015 467
AR-Vir Virasoro -28.24 -56.19 2015 741

AT-Neu Neustift 47.12 11.32 2015 3924
AU-ASM Alice Springs -22.28 133.25 2015 1557
AU-Ade Adelaide River -13.08 131.12 2015 558
AU-Cpr Calperum -34.00 140.59 2015 1501

AU-Cum Cumberland Plain -33.62 150.72 2015 788
AU-DaP Daly River Savanna -14.06 131.32 2015 1933
AU-DaS Daly River Cleared -14.16 131.39 2015 2399
AU-Dry Dry River -15.26 132.37 2015 1699
AU-Emr Emerald -23.86 148.47 2015 863
AU-Fog Fogg Dam -12.55 131.31 2015 928

AU-GWW Great Western Woodlands, Western Australia, Aus... -30.19 120.65 2015 696
AU-Gin Gingin -31.38 115.71 2015 1016

AU-How Howard Springs -12.49 131.15 2015 4173
AU-Lox Loxton -34.47 140.66 2015 294

AU-RDF Red Dirt Melon Farm, Northern Territory -14.56 132.48 2015 611
AU-Rig Riggs Creek -36.65 145.58 2015 1326
AU-Rob Robson Creek, Queensland, Australia -17.12 145.63 2015 362
AU-Stp Sturt Plains -17.15 133.35 2015 2092

AU-TTE Ti Tree East -22.29 133.64 2015 888
AU-Tum Tumbarumba -35.66 148.15 2015 4616
AU-Wac Wallaby Creek -37.43 145.19 2015 1029
AU-Whr Whroo -36.67 145.03 2015 1125
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FLUXNET ID Name Lat [°N] Lon [°E] Origin dataset No. of obs. [days]

AU-Wom Wombat -37.42 144.09 2015 1707
AU-Ync Jaxa -34.99 146.29 2015 555
BE-Bra Brasschaat 51.31 4.52 WarmWinter 6834
BE-Dor Dorinne 50.31 4.97 WarmWinter 3472
BE-Lcr Lochristi 51.11 3.85 WarmWinter 675

BE-Lon Lonzee 50.55 4.75 WarmWinter 5980
BE-Maa Maasmechelen 50.98 5.63 WarmWinter 1659
BE-Vie Vielsalm 50.30 6.00 WarmWinter 8451

BR-Npw Northern Pantanal Wetland -16.50 -56.41 CH4 1122
BR-Sa1 Santarem-Km67-Primary Forest -2.86 -54.96 2015 2364
BR-Sa3 Santarem-Km83-Logged Forest -3.02 -54.97 2015 1221

BW-Gum Guma -18.96 22.37 CH4 365
BW-Nxr Nxaraga -19.55 23.18 CH4 365
CA-Gro Ontario - Groundhog River, Boreal Mixedwood Forest 48.22 -82.16 2015 3617

CA-Man Manitoba - Northern Old Black Spruce (former BO... 55.88 -98.48 2015 3626
CA-NS1 UCI-1850 burn site 55.88 -98.48 2015 1136
CA-NS2 UCI-1930 burn site 55.91 -98.52 2015 1191
CA-NS3 UCI-1964 burn site 55.91 -98.38 2015 1499
CA-NS4 UCI-1964 burn site wet 55.91 -98.38 2015 810
CA-NS5 UCI-1981 burn site 55.86 -98.48 2015 1319
CA-NS6 UCI-1989 burn site 55.92 -98.96 2015 1423
CA-NS7 UCI-1998 burn site 56.64 -99.95 2015 1137
CA-Oas Saskatchewan - Western Boreal, Mature Aspen 53.63 -106.20 2015 5293
CA-Obs Saskatchewan - Western Boreal, Mature Black Spruce 53.99 -105.12 2015 4160
CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce 49.69 -74.34 2015 2547
CA-SCB Scotty Creek Bog 61.31 -121.30 CH4 1417
CA-SCC Scotty Creek Landscape 61.31 -121.30 CH4 1338
CA-SF1 Saskatchewan - Western Boreal, forest burned in... 54.49 -105.82 2015 558
CA-SF2 Saskatchewan - Western Boreal, forest burned in... 54.25 -105.88 2015 724
CA-SF3 Saskatchewan - Western Boreal, forest burned in... 54.09 -106.01 2015 949
CA-TP1 Ontario - Turkey Point 2002 Plantation White Pine 42.66 -80.56 2015 2858
CA-TP2 Ontario - Turkey Point 1989 Plantation White Pine 42.77 -80.46 2015 810
CA-TP3 Ontario - Turkey Point 1974 Plantation White Pine 42.71 -80.35 2015 3246
CA-TP4 Ontario - Turkey Point 1939 Plantation White Pine 42.71 -80.36 2015 4531
CA-TPD Ontario - Turkey Point Mature Deciduous 42.64 -80.56 2015 1058
CG-Tch Tchizalamou -4.29 11.66 2015 960

CH-Aws Alp Weissenstein 46.58 9.79 WarmWinter 3391
CH-Cha Chamau grassland 47.21 8.41 WarmWinter 5267
CH-Dav Davos 46.82 9.86 WarmWinter 8619
CH-Fru Fruebuel grassland 47.12 8.54 WarmWinter 5229
CH-Lae Laegern 47.48 8.37 WarmWinter 5956
CH-Oe1 Oensingen grassland 47.29 7.73 2015 2388
CH-Oe2 Oensingen crop 47.29 7.73 WarmWinter 6072
CN-Cha Changbaishan 42.40 128.10 2015 1033
CN-Cng Changling 44.59 123.51 2015 1199
CN-Dan Dangxiong 30.50 91.07 2015 709
CN-Din Dinghushan 23.17 112.54 2015 978
CN-Du2 Duolun_grassland (D01) 42.05 116.28 2015 705
CN-Du3 Duolun Degraded Meadow 42.06 116.28 2015 280
CN-Ha2 Haibei Shrubland 37.61 101.33 2015 1081

CN-HaM Haibei Alpine Tibet site 37.37 101.18 2015 1062
CN-Hgu Hongyuan 32.85 102.59 CH4 960
CN-Qia Qianyanzhou 26.74 115.06 2015 1092

CN-Sw2 Siziwang Grazed (SZWG) 41.79 111.90 2015 413
CZ-BK1 Bily Kriz forest 49.50 18.54 WarmWinter 5477
CZ-BK2 Bily Kriz grassland 49.49 18.54 2015 2011
CZ-KrP Kresin u Pacova 49.57 15.08 WarmWinter 2544
CZ-Lnz Lanzhot 48.68 16.95 WarmWinter 2126
CZ-RAJ Rajec 49.44 16.70 WarmWinter 3196
CZ-Stn Stitna 49.04 17.97 WarmWinter 3862
CZ-wet Trebon 49.02 14.77 WarmWinter 5307

DE-Akm Anklam 53.87 13.68 WarmWinter 2293
DE-Dgw Dagowsee 53.15 13.05 CH4 1461
DE-Geb Gebesee 51.10 10.91 WarmWinter 7190
DE-Gri Grillenburg 50.95 13.51 WarmWinter 5890
DE-Hai Hainich 51.08 10.45 WarmWinter 7172

DE-HoH Hohes Holz 52.09 11.22 WarmWinter 2176
DE-Hte Huetelmoor 54.21 12.18 CH4 2922

DE-Hzd Hetzdorf 50.96 13.49 WarmWinter 2713
DE-Kli Klingenberg 50.89 13.52 WarmWinter 5540

DE-Lkb Lackenberg 49.10 13.30 2015 1253
DE-Lnf Leinefelde 51.33 10.37 2015 2753

DE-Obe OberbÃƒÂ¤renburg 50.79 13.72 WarmWinter 4468
DE-RuR Rollesbroich 50.62 6.30 WarmWinter 3477
DE-RuS Selhausen Juelich 50.87 6.45 WarmWinter 3091

DE-RuW Wustebach 50.50 6.33 WarmWinter 2528
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FLUXNET ID Name Lat [°N] Lon [°E] Origin dataset No. of obs. [days]

DE-Seh Selhausen 50.87 6.45 2015 1200
DE-SfN Schechenfilz Nord 47.81 11.33 2015 817
DE-Spw Spreewald 51.89 14.03 2015 1464
DE-Tha Tharandt 50.96 13.57 WarmWinter 8733
DE-Zrk Zarnekow 53.88 12.89 2015 582
DK-Eng Enghave 55.69 12.19 2015 1102
DK-Fou Foulum 56.48 9.59 2015 243
DK-Gds Gludsted Plantage 56.07 9.33 WarmWinter 161
DK-Sor Soroe 55.49 11.64 WarmWinter 8470
ES-Abr Albuera 38.70 -6.79 WarmWinter 1839
ES-Agu Aguamarga 36.94 -2.03 WarmWinter 4157

ES-Amo Amoladeras 36.83 -2.25 2015 1630
ES-Cnd Conde 37.91 -3.23 WarmWinter 1828
ES-LJu Llano de los Juanes 36.93 -2.75 2015 3030

ES-LM1 Majadas del Tietar North 39.94 -5.78 WarmWinter 2469
ES-LM2 Majadas del Tietar South 39.93 -5.78 WarmWinter 2448
ES-LgS Laguna Seca 37.10 -2.97 2015 893
ES-Ln2 Lanjaron-Salvage logging 36.97 -3.48 2015 190
FI-Hyy Hyytiala 61.85 24.29 WarmWinter 8440
FI-Jok Jokioinen 60.90 23.51 2015 1114

FI-Ken Kenttarova 67.99 24.24 WarmWinter 969
FI-Let Lettosuo 60.64 23.96 WarmWinter 3650

FI-Lom Lompolojankka 68.00 24.21 2015 1069
FI-Qvd Qvidja 60.30 22.39 WarmWinter 881

FI-Si2 Siikaneva-2 Bog 61.84 24.20 CH4 1827
FI-Sii Siikaneva 61.83 24.19 WarmWinter 1715

FI-Sod Sodankyla 67.36 26.64 2015 4803
FI-Var Varrio 67.75 29.61 WarmWinter 1805

FR-Aur Aurade 43.55 1.11 WarmWinter 5641
FR-Bil Bilos 44.49 -0.96 WarmWinter 2311

FR-FBn Font-Blanche 43.24 5.68 WarmWinter 4541
FR-Fon Fontainebleau-Barbeau 48.48 2.78 WarmWinter 5465
FR-Gri Grignon 48.84 1.95 WarmWinter 5238

FR-Hes Hesse 48.67 7.06 WarmWinter 2522
FR-LBr Le Bray 44.72 -0.77 2015 3787
FR-LGt La Guette 47.32 2.28 WarmWinter 1275

FR-Lam Lamasquere 43.50 1.24 WarmWinter 5384
FR-Pue Puechabon 43.74 3.60 2015 5059
FR-Tou Toulouse 43.57 1.37 WarmWinter 1088

GF-Guy Guyaflux 5.28 -52.92 WarmWinter 6044
GH-Ank Ankasa 5.27 -2.69 2015 694
GL-Dsk Disko 69.25 -53.51 WarmWinter 364
GL-NuF Nuuk Fen 64.13 -51.39 2015 1000
GL-ZaF Zackenberg Fen 74.48 -20.55 2015 511
GL-ZaH Zackenberg Heath 74.47 -20.55 2015 1994

HK-MPM Mai Po Mangrove 22.50 114.03 CH4 1096
ID-Pag Palangkaraya undrained forest -2.32 113.90 CH4 365
IE-Cra Clara 53.32 -7.64 WarmWinter 366
IL-Yat Yatir 31.35 35.05 WarmWinter 6627
IT-BCi Borgo Cioffi 40.52 14.96 WarmWinter 5396
IT-BFt Bosco Fontana 45.20 10.74 WarmWinter 731

IT-CA1 Castel d’Asso1 42.38 12.03 2015 1144
IT-CA2 Castel d’Asso2 42.38 12.03 2015 1155
IT-CA3 Castel d’Asso3 42.38 12.02 2015 977
IT-Cas Castellaro 45.07 8.72 CH4 730
IT-Col Collelongo 41.85 13.59 2015 4363

IT-Cp2 Castelporziano2 41.70 12.36 WarmWinter 2112
IT-Cpz Castelporziano 41.71 12.38 2015 2760
IT-Isp Ispra ABC-IS 45.81 8.63 2015 679

IT-La2 Lavarone2 45.95 11.29 2015 555
IT-Lav Lavarone 45.96 11.28 WarmWinter 6167
IT-Lsn Lison 45.74 12.75 WarmWinter 1724

IT-MBo Monte Bondone 46.01 11.05 WarmWinter 6172
IT-Noe Arca di Noe - Le Prigionette 40.61 8.15 2015 3345
IT-PT1 Parco Ticino forest 45.20 9.06 2015 936
IT-Ren Renon 46.59 11.43 WarmWinter 6758
IT-Ro1 Roccarespampani 1 42.41 11.93 2015 2790
IT-Ro2 Roccarespampani 2 42.39 11.92 2015 3283
IT-SR2 San Rossore 2 43.73 10.29 WarmWinter 2777
IT-SRo San Rossore 43.73 10.28 2015 4479
IT-Tor Torgnon 45.84 7.58 WarmWinter 4299

JP-BBY Bibai bog 43.32 141.81 CH4 1461
JP-MBF Moshiri Birch Forest Site 44.39 142.32 2015 560
JP-Mse Mase rice paddy field 36.05 140.03 CH4 366
JP-SMF Seto Mixed Forest Site 35.26 137.08 2015 1411
JP-SwL Suwa Lake 36.05 138.11 CH4 366
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FLUXNET ID Name Lat [°N] Lon [°E] Origin dataset No. of obs. [days]

KR-CRK Cheorwon Rice paddy 38.20 127.25 CH4 1461
MY-MLM Maludam National Park 1.45 111.15 CH4 730

MY-PSO Pasoh Forest Reserve (PSO) 2.97 102.31 2015 2247
NL-Hor Horstermeer 52.24 5.07 2015 2406
NL-Loo Loobos 52.17 5.74 2015 6227
NZ-Kop Kopuatai -37.39 175.55 CH4 1461
PA-SPn Sardinilla Plantation 9.32 -79.63 2015 827
PA-SPs Sardinilla-Pasture 9.31 -79.63 2015 980
PH-RiF Philippines Rice Institute flooded 14.14 121.27 CH4 1096
RU-Ch2 Chersky reference 68.62 161.35 CH4 1096
RU-Che Cherski 68.61 161.34 2015 584
RU-Cok Chokurdakh 70.83 147.49 2015 1109
RU-Fy2 Fyodorovskoye dry spruce stand 56.45 32.90 WarmWinter 2019
RU-Fyo Fyodorovskoye 56.46 32.92 WarmWinter 7553
RU-Ha1 Hakasia steppe 54.73 90.00 2015 601

SD-Dem Demokeya 13.28 30.48 2015 820
SE-Deg Degero 64.18 19.56 WarmWinter 6769
SE-Htm Hyltemossa 56.10 13.42 WarmWinter 2156
SE-Nor Norunda 60.09 17.48 WarmWinter 2525
SE-Ros Rosinedal-3 64.17 19.74 WarmWinter 2293
SE-Svb Svartberget 64.26 19.77 WarmWinter 1939
SJ-Adv Adventdalen 78.19 15.92 2015 377
SJ-Blv Bayelva, Spitsbergen 78.92 11.83 2015 361

SN-Dhr Dahra 15.40 -15.43 2015 710
UK-LBT London_BT 51.52 -0.14 CH4 1461
US-A03 ARM-AMF3-Oliktok 70.50 -149.88 CH4 1461
US-A10 ARM-NSA-Barrow 71.32 -156.61 CH4 2557
US-AR1 ARM USDA UNL OSU Woodward Switchgrass 1 36.43 -99.42 2015 1226
US-AR2 ARM USDA UNL OSU Woodward Switchgrass 2 36.64 -99.60 2015 1125

US-ARM ARM Southern Great Plains site- Lamont 36.61 -97.49 2015 3455
US-ARb ARM Southern Great Plains burn site- Lamont 35.55 -98.04 2015 594
US-ARc ARM Southern Great Plains control site- Lamont 35.55 -98.04 2015 613
US-Atq Atqasuk 70.47 -157.41 2015 1678

US-BZB Bonanza Creek Thermokarst Bog 64.70 -148.32 CH4 1096
US-BZF Bonanza Creek Rich Fen 64.70 -148.31 CH4 1096
US-BZS Bonanza Creek Black Spruce 64.70 -148.32 CH4 731
US-Beo Barrow Environmental Observatory (BEO) tower 71.28 -156.61 CH4 730
US-Bes Barrow-Bes (Biocomplexity Experiment South tower) 71.28 -156.60 CH4 1095
US-Bi1 Bouldin Island Alfalfa 38.10 -121.50 CH4 1096
US-Bi2 Bouldin Island corn 38.11 -121.53 CH4 730
US-Blo Blodgett Forest 38.90 -120.63 2015 3021

US-CRT Curtice Walter-Berger cropland 41.63 -83.35 2015 1081
US-Cop Corral Pocket 38.09 -109.39 2015 1404

US-DPW Disney Wilderness Preserve Wetland 28.05 -81.44 CH4 1465
US-EDN Eden Landing Ecological Reserve 37.62 -122.11 CH4 273
US-EML Eight Mile Lake Permafrost thaw gradient, Healy... 63.88 -149.25 CH4 1080
US-GBT GLEES Brooklyn Tower 41.37 -106.24 2015 655
US-GLE GLEES 41.37 -106.24 2015 3281
US-Goo Goodwin Creek 34.25 -89.87 2015 1400

US-HRA Humnoke Farm Rice Field Ã¢â‚¬â€œ Field A 34.59 -91.75 CH4 238
US-HRC Humnoke Farm Rice Field Ã¢â‚¬â€œ Field C 34.59 -91.75 CH4 238
US-Ha1 Harvard Forest EMS Tower (HFR1) 42.54 -72.17 2015 6872
US-Ho1 Howland Forest (main tower) 45.20 -68.74 CH4 2373
US-IB2 Fermi National Accelerator Laboratory- Batavia ... 41.84 -88.24 2015 2577
US-ICs Imnavait Creek Watershed Wet Sedge Tundra 68.61 -149.31 CH4 1095
US-Ivo Ivotuk 68.49 -155.75 2015 1131
US-KS1 Kennedy Space Center (slash pine) 28.46 -80.67 2015 277
US-KS2 Kennedy Space Center (scrub oak) 28.61 -80.67 2015 1336
US-LA1 Pointe-aux-Chenes Brackish Marsh 29.50 -90.44 CH4 705
US-LA2 Salvador WMA Freshwater Marsh 29.86 -90.29 CH4 704

US-LWW Little Washita Watershed 34.96 -97.98 2015 675
US-Lin Lindcove Orange Orchard 36.36 -119.84 2015 368
US-Los Lost Creek 46.08 -89.98 2015 2941

US-MAC MacArthur Agro-Ecology 27.16 -81.19 CH4 944
US-MMS Morgan Monroe State Forest 39.32 -86.41 2015 5588
US-MRM Marsh Resource Meadowlands Mitigation Bank 40.82 -74.04 CH4 731

US-Me1 Metolius - Eyerly burn 44.58 -121.50 2015 301
US-Me2 Metolius mature ponderosa pine 44.45 -121.56 2015 3809
US-Me3 Metolius-second young aged pine 44.32 -121.61 2015 1876
US-Me4 Metolius-old aged ponderosa pine 44.50 -121.62 2015 874
US-Me5 Metolius-first young aged pine 44.44 -121.57 2015 934
US-Me6 Metolius Young Pine Burn 44.32 -121.61 2015 1374
US-Myb Mayberry Wetland 38.05 -121.77 2015 1322
US-NC4 NC_AlligatorRiver 35.79 -75.90 CH4 1827
US-NGB NGEE Arctic Barrow 71.28 -156.61 CH4 2557
US-NGC NGEE Arctic Council 64.86 -163.70 CH4 457
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US-NR1 Niwot Ridge Forest (LTER NWT1) 40.03 -105.55 2015 5603
US-Ne1 Mead - irrigated continuous maize site 41.17 -96.48 2015 4383
US-Ne2 Mead - irrigated maize-soybean rotation site 41.16 -96.47 2015 4149
US-Ne3 Mead - rainfed maize-soybean rotation site 41.18 -96.44 2015 4309
US-ORv Olentangy River Wetland Research Park 40.02 -83.02 2015 335

US-OWC Old Woman Creek 41.38 -82.51 CH4 669
US-Oho Oak Openings 41.55 -83.84 2015 3361
US-PFa Park Falls/WLEF 45.95 -90.27 2015 6357
US-Prr Poker Flat Research Range Black Spruce Forest 65.12 -147.49 2015 1290

US-SRC Santa Rita Creosote 31.91 -110.84 2015 1887
US-SRG Santa Rita Grassland 31.79 -110.83 2015 2466
US-SRM Santa Rita Mesquite 31.82 -110.87 2015 3974
US-Snd Sherman Island 38.04 -121.75 CH4 1952
US-Sne Sherman Island Restored Wetland 38.04 -121.75 CH4 1096
US-Srr Suisun marsh - Rush Ranch 38.20 -122.03 CH4 1371
US-StJ St Jones Reserve 39.09 -75.44 CH4 365
US-Sta Saratoga 41.40 -106.80 2015 1015

US-Syv Sylvania Wilderness Area 46.24 -89.35 2015 2475
US-Ton Tonzi Ranch 38.43 -120.97 2015 4809
US-Tw1 Twitchell Wetland West Pond 38.11 -121.65 2015 751
US-Tw2 Twitchell Corn 38.10 -121.64 2015 348
US-Tw3 Twitchell Alfalfa 38.12 -121.65 2015 509
US-Tw4 Twitchell East End Wetland 38.10 -121.64 2015 393
US-Tw5 East Pond Wetland 38.11 -121.64 CH4 365
US-Twt Twitchell Island 38.11 -121.65 2015 1880

US-UMB Univ. of Mich. Biological Station 45.56 -84.71 2015 5427
US-UMd UMBS Disturbance 45.56 -84.70 2015 2679

US-Uaf University of Alaska, Fairbanks 64.87 -147.86 CH4 2922
US-Var Vaira Ranch- Ione 38.41 -120.95 2015 5103

US-WCr Willow Creek 45.81 -90.08 2015 3948
US-WPT Winous Point North Marsh 41.46 -83.00 2015 1085
US-Whs Walnut Gulch Lucky Hills Shrub 31.74 -110.05 2015 2737
US-Wi0 Young red pine (YRP) 46.62 -91.08 2015 223
US-Wi1 Intermediate hardwood (IHW) 46.73 -91.23 2015 160
US-Wi2 Intermediate red pine (IRP) 46.69 -91.15 2015 144
US-Wi3 Mature hardwood (MHW) 46.63 -91.10 2015 440
US-Wi4 Mature red pine (MRP) 46.74 -91.17 2015 715
US-Wi5 Mixed young jack pine (MYJP) 46.65 -91.09 2015 234
US-Wi6 Pine barrens #1 (PB1) 46.62 -91.30 2015 250
US-Wi7 Red pine clearcut (RPCC) 46.65 -91.07 2015 170
US-Wi8 Young hardwood clearcut (YHW) 46.72 -91.25 2015 182
US-Wi9 Young Jack pine (YJP) 46.62 -91.08 2015 317

US-Wkg Walnut Gulch Kendall Grasslands 31.74 -109.94 2015 3888
ZM-Mon Mongu -15.44 23.25 2015 677
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Figure A.2: Comparison of in-situ GPP time series for different FLUXNET datasets for the stations CZ-wet (Czech Republic - Třeboň),
CH-dav (Switzerland - Davos), IT-Ren (Italy - Renon) and FI-Hyy (Finnland - Hyytiälä). First column shows GPP derived from daytime
partitioning, second column shows GPP derived from nighttime partitioning.
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Figure A.3: Box plots of overlapping in situ GPP observations from the FLUXNET2015 (blue) and the FLUXNET Warm Winter (orange)
datasets.
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Figure A.4: Box plots of overlapping in situ GPP observations from the FLUXNET2015 (blue) and the FLUXNET CH4 (orange) datasets.

Figure A.5: Box plots of overlapping in situ GPP observations from the FLUXNET CH4 (blue) and the FLUXNET Warm Winter (orange)
datasets.
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Supplementary Results

Figure B.1: Difference in correlation between first GAM model and RF model with LC and L-band VOD with GPP from FLUXCOM (top)
and MODIS (bottom). The correlations are based on the common observation period between 2001 and 2016 with a 0.25° spatial and 8d
temporal resolution.

Figure B.2: Difference in correlation between original and final models with GPP from TRENDY. The correlations are based on the
common observation period between 1988 and 2017 with a 0.5° spatial and 1 month temporal resolution.
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Figure B.3: Box-plots of Pearson correlation coefficients (mid) and biases (bottom) for the VODCA2GPPv2 and GAM+ models, grouped
by Land Cover classes. Together with histogram showing amount of sites per LC class.
Each value represents the respective performance metric calculated for one specific site during cross validation. Box extents represent
the 25th and 75th percentiles. The maximum length of the whiskers is 1.5 times the interquartile range, outliers points are shown as
single dots.
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