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ABSTRACT: Characterizing uncertainty in machine learning
models has recently gained interest in the context of machine
learning reliability, robustness, safety, and active learning. Here, we
separate the total uncertainty into contributions from noise in the
data (aleatoric) and shortcomings of the model (epistemic),
further dividing epistemic uncertainty into model bias and variance
contributions. We systematically address the influence of noise,
model bias, and model variance in the context of chemical property
predictions, where the diverse nature of target properties and the
vast chemical chemical space give rise to many different distinct
sources of prediction error. We demonstrate that different sources
of error can each be significant in different contexts and must be
individually addressed during model development. Through controlled experiments on data sets of molecular properties, we show
important trends in model performance associated with the level of noise in the data set, size of the data set, model architecture,
molecule representation, ensemble size, and data set splitting. In particular, we show that 1) noise in the test set can limit a model’s
observed performance when the actual performance is much better, 2) using size-extensive model aggregation structures is crucial for
extensive property prediction, and 3) ensembling is a reliable tool for uncertainty quantification and improvement specifically for the
contribution of model variance. We develop general guidelines on how to improve an underperforming model when falling into
different uncertainty contexts.

■ INTRODUCTION
Machine learning models for chemical applications such as
predicting molecular and reaction properties are becoming not
only increasingly popular but also increasingly accurate, for
example for quantum-mechanical properties,1−3 biological
effects,4−6 physicochemical properties,7−11 reaction
yields,12−14 or reaction rates and barriers.15−19 Also, promising
developments in the fields of retrosynthesis20−24 and forward
reaction prediction25−28 have been made.
However, despite the increase in accuracy, many machine

learning models fail in real-world applications.29,30 This can be
due to a lack of generalization, lack of ability to filter out
erroneous predictions for edge cases, or because the employed
training and test sets are simply not reflective of the application
of interest, so that the developed model is suboptimal for the
proposed task. Poor choice of a test set can overestimate or,
more commonly, underestimate the actual errors that a user
will encounter when the model is applied. Optimizing a
mediocre model can be tedious, time-consuming, and often
unfruitful. Moreover, the model architectures, input represen-
tations, and data set characteristics for chemical applications
differ considerably from other fields of research, so that
following general guidelines for optimizing machine learning
models often fails to produce accurate models for molecular
and reaction properties. To optimize a model in a targeted and

efficient manner, it is imperative to understand and identify
possible sources of error and uncertainty in a model.
The separation of the total uncertainty into aleatoric (data-

dependent, noise-induced, irreducible) and epistemic (model-
dependent, reducible) contributions31 has recently received
increasing attention.32−34 The aleatoric uncertainty is often
referred to as the irreducible component of uncertainty that
cannot be overcome by improvements to the model.
Reduction in aleatoric uncertainty can instead come from
improvements in the data itself, such as adding repeat
measurements or removing erroneous entries. In contrast,
epistemic uncertainty characterizes the reducible uncertainty
caused by missing knowledge and can be decreased as the
model is improved.35 The epistemic uncertainty can further be
split into uncertainty arising from the choice of model
(architecture, representation, and featurization) and the
ambiguity of parameter optimization once a model is chosen.35

In this work, we follow the convention36,37 of calling the
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former model bias and the latter variance, but different other
names are sometimes used in the literature, such as model
uncertainty and approximation uncertainty.35 The difference
between reducible and irreducible uncertainty can become
blurred in these considerations, especially for different model
architectures, different representations, and different data and
test sets.32,35 Small data set sizes not only contribute to both
bias and variance components of epistemic uncertainty because
they cause some ambiguity in the optimal model parameters
due to sparsity in some regions but also hinder the model
convergence to a meaningful minimum generally. The size or
nature of the data may additionally influence the choice of
model architecture or machine learning method, providing a
further avenue by which aspects of the data can feed into
epistemic uncertainty.
Many approaches toward characterizing the uncertainty of a

prediction exist, such as mean-variance estimation,38 Bayesian
approaches,39 ensembling,40−43 evidential learning,44 and
conformal predictions,45 among many others.35,46,47 Most
approaches tackle aleatoric uncertainty, as well as those parts of
the epistemic uncertainty that are associated with the
ambiguity of the model parameters. However, uncertainty
from model bias is usually omitted.35 Even when the aleatoric
error is low and plenty of data is available for training, model
bias can still prove to be significant. Model bias can have many
forms and causes, among them limited flexibility of the model,
limited data coverage, incomplete feature representation of the
input data, poor training convergence to an appropriate model,
and poor generalizability of training to the test set or to actual
applications. We discuss how, especially in chemical systems,
uncertainty from model bias can be a large contribution toward
the error in a model’s prediction.
Despite the many works on characterizing uncertainty, little

advice exists on how to optimize a suboptimal model once the
sources of uncertainty are known. Furthermore, the circum-
stances under which the epistemic uncertainty modeled by
ensembling is actually indicative of the true error are not well
researched yet, despite its popularity.46 We therefore studied
the performance of selected deep learning models on chemical
regression prediction tasks where we systematically vary noise
in the input data, the number of data points, the chosen model
architecture, molecular representation, and the number of
models in an ensemble. To this aim, we not only rely on
literature data sets but also construct a new, noise-free,
chemical data set. In the discussion, we then put forward
general guidelines for how to detect and circumvent model
errors caused by noise, bias, and variance. We pay particular
attention to predictions of physicochemical targets, since we
find some of the sources of uncertainty to be specific to
chemistry.

■ METHODS
Data Sets. In this work, a synthetic data set was

constructed for molecular enthalpy at 298 K in units of kcal/
mol as calculated from group additivity coefficients, based on
the Benson group-increment theory.48 The data set was
desired to have characteristics well-suited to the analysis of
errors of different types: no inherent noise, large data set size,
and a property function that was fully described by the features
available to the model. With these characteristics, a model
trained on the data set could be driven to extremely low levels
of noise, bias, and variance error. By starting from a data set
where very low error levels of all types are possible, the data set

can then be manipulated to elevate errors in a controlled way
to exemplify situations in which model performance is
dominated by the different types of error.
We were motivated to generate a synthetic data set for this

study due to the lack of noise-free data set options. Data sets
generated by density functional theory (DFT) calculation are
often considered for the role of a low-noise chemical data set as
they are not subject to experimental uncertainty in data
collection like most data sets would be. Indeed, DFT data sets
are available and with large data set sizes in the case of QM949

or PCQM4Mv2.50,51 The properties calculated in these data
sets depend on the 3D atomic coordinates used in the
calculation. The choice of a different molecular conformer to
be used in calculation or a different optimization process to
find the optimized atomic coordinates would result in different
property targets. In our study of error types, we are using the
connectivity graph representations of molecules, commonly
referred to as 2D representations. The models using 2D graph
representations do not distinguish between variations in
optimized 3D coordinates or choice of molecular conformer,
meaning that the models would not have access to all the
features necessary to calculate the property and therefore
would have some level of irreducible error, manifesting as
noise. By creating a group-additivity data set, the features
necessary to calculate the modeled property are explicitly
available with a 2D model representation, allowing us to avoid
this source of irreducible error.
The synthetic group additivity data set was constructed

using publicly available data and molecules. Group additivity
coefficients were fitted to the enthalpies calculated for the 134
thousand molecules of the QM9 data set49 using ridge
regression. Group structures were defined by a central non-
hydrogen atom and the atoms and bonds within a 1-bond
radius. Only groups that were represented at least 100 times in
QM9 and molecules made up entirely of those groups were
included in the regression. The group additivity coefficients
were rounded to the nearest thousandth kcal/mol. No non-
nearest-neighbor group contributions were included for
symmetry, ring strain, or other inter- or intramolecular
interactions. The fitted coefficients were then applied to a
larger set of molecules, the GDB11 set of over 26 million
unique molecules containing up to 11 C/N/O/F atoms.52,53

Choosing only molecules made up entirely of structures
included in the fitted coefficients, we obtain 7.9 million
molecules. The result is a large data set with a property
function that can be exactly calculated and relies on the local
graph structure of molecules. Because the groups are only
defined in terms of local connectivity, we expect the directed
message passing encoding used by our model will be able to
fully learn the necessary representation. The only inherent
noise is at the level of numerical precision. Accurate
representation of experimentally observable enthalpies was
not a consideration in the construction of this data set and
would be unnecessary for it to be used in evaluating
contributions of different error types. This data set and
models trained from it should not be used for estimation of
experimental molecular enthalpies. Our data set of artificial
enthalpy values is available for public download from a Zenodo
repository.54

Models trained on the group additivity data set were
evaluated using a single held out test set comprising 10% of the
data set (790,681 data points), chosen randomly. When the
number of data points used in training are indicated in figures,
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that is the combined number of data points in the training and
validation sets, split randomly at a ratio of 80:20. When
multiple submodels are combined in an ensemble for the
synthetic data set, the same data splits are used in each
submodel. Ensemble submodels are differentiated by beginning
training of the model from different random parameter
initializations. When the number of data points used for
training is unspecified, a consistent set of about 0.7 million
data points is used, corresponding to 10% of the nontest data
remaining in the data set.
Furthermore, the QM9 data set49,55 was used as a low-noise

real-world data set. We selected the enthalpy at 298 K and
internal energy at 0 and 298 K as size-extensive properties, as
well as the HOMO−LUMO gap as a size-intensive property.
We trained directly on the quantum chemical energies, without
subtraction of the atomic reference values. A single held out
test set comprising 10% of the data (13,083 data points) was
used. The rest of the data was used for the training and
validation sets, where a specified number of data points were
selected randomly and split into training and validation sets in
ratios of 80:20. To compute learning curves using QM9, i.e.
the model performance dependent on data set size, differently
sized training and validation sets were drawn containing a
specified number of data points N, while leaving the test set
untouched. Submodels in an ensemble using the QM9 data
share the same data splits with different initial model
parameters.
Model Structure. Three machine learning architectures

were employed within this study: (i) directed message passing
neural networks (d-MPNNs) as described by Yang et al.8 and
implemented in the Chemprop software package56 as a class of
2-dimensional graph-convolutional neural networks using
learned representations, (ii) feed-forward neural networks
(FFNN) on molecular fingerprints, and (iii) the 3-dimensional
convolutional neural network SchNet.57 Ensembles of five
models were trained for each architecture and task if not
specified otherwise.
The d-MPNN model takes the molecular graph as input and

performs several steps of message passing to update atom and
bond features with information from their neighborhood to
yield an atomic representation. A molecular representation is
then obtained by aggregating the atomic representations using
an aggregation function such as summing or averaging.
Subsequently, a feed-forward neural network transforms the
learned molecular representation into the respective target
property. Unless otherwise noted, d-MPNN models trained on
the synthetic group additivity data set use a hidden size of
1000, four steps of message passing, two feed-forward layers,
scaled sum aggregation (called “norm” in Chemprop), and 200
epochs of training unless otherwise indicated. In contrast, d-
MPNN models trained on QM9 differ slightly by using a
hidden size of 300. In the following, the hidden size is
specified, that is the hidden size in both the d-MPNN and the
FFNN parts. All other hyperparameters were chosen according
to their default values in Chemprop.
FFNNs take a molecular fingerprint, here a Morgan

fingerprint58 as implemented in RDKit,59 as input and
transform it into the respective target property. We used
FFNNs as implemented in ref 56, where we omitted the
message-passing. Model training used a hidden size of 300, two
feed-forward layers, and 200 epochs of training unless
indicated otherwise.

SchNet was used as provided in ref 57 with default
hyperparameters and trained only on QM9 tasks. It takes as
input the nuclear charges and coordinates of each atom in a
molecule which are calculated using quantum chemistry and
provided along with the QM9 data set. The atomic
representations of each atom are refined using continuous-
filter convolutional layers, thus taking into account other atoms
in the molecule based on their relative distance. The atomic
representations are then utilized to compute atomic con-
tributions to the overall target, which are subsequently
averaged or summed up to the total molecular target value.
Since SchNet does not directly support ensembling, models
with different initialization seeds were trained manually, and
their predictions were averaged for each data point in the test
set.
For all architectures, the validation set was used to select the

best model within 200 epochs, which was further used to
evaluate the test performance.
Ensemble Metrics. Throughout this work, we refer to the

predictions made by and errors resulting from ensembles of
submodels. To explain the meaning of different ensemble
metrics, we will use ŷi,j(Xn) to denote the model prediction on
the input Xn (test data molecule n), where i indicates model
initialization, and j indicates the split configuration of the full
data into training, validation, and test sets. The target for each
data point is given by y(Xn). For ensembling, we obtain Nens
models with different i on the exact same data splits j = 1. The
prediction of the ensemble, y (Xn), is given by

y X
N

y X( )
1

( )n
i

N

i n
ens 1

,1

ens

=
= (1)

where the submodel predictions for a particular test data point
n are averaged together over the number of submodels
included in the ensemble, Nens. The reported mean absolute
error of an ensemble model is
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(with an analogous expression for the root mean squared
error). Here, we find the absolute error between the ensemble
prediction and its corresponding target value. The overall
model performance is reported as an average over all Ntest data
points in the test set.
The standard deviation of the ensemble prediction of each

point n may be used to define confidence intervals and
uncertainty bounds. The standard deviation used is the
unbiased standard deviation of the submodel predictions for
each data point.

s X
y X y X
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2

ens
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=
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The standard deviation of the ensemble prediction is used to
define uncertainty intervals in two different ways in this work.
In the case where we use the measure directly to evaluate error
magnitude (Figure 8), we will define the confidence interval
for predictions of each test data point n indicated by the
standard deviation as
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where t is the Student-t factor for the specified confidence p
and degrees of freedom Nens−1. In the case where we are using
the ensemble standard deviation only as a relative indicator of
total error within the data set (Figure 3), the uncertainty
bounds will be the standard deviation as given in eq 3 and
scaled to match the average error of the competing uncertainty
method.
The ensemble mean and standard deviation y (Xn) and s(Xn)

can further be used to estimate the contributions of bias and
variance error to the overall observed MAE via Bayesian
inference. Here, we follow the method of ref 60. In this
approach, the different predictions made by individual models i
for a single test data point, ŷi,j(Xn), are assumed to be normally
distributed around a mean distribution value μj(Xn), with a
spread related to the ensemble standard deviation s(Xn). In
accordance to the central limit theorem, an ensemble
prediction y (Xn) will converge to μj(Xn) at very large
ensemble sizes. The nonvariance contribution to error is
considered to be the absolute error occurring in a theoretical
very large ensemble

AE X X y X( ) ( ) ( )NV n j n n= | | (5)

The nonvariance error consists of bias and noise errors, and in
noise-free data sets it represents only the bias error. The
variance error is considered to be the difference between the
total absolute error of the ensemble prediction and the
nonvariance error

AE X y X y X E X( ) ( ) ( ) ( )V n n n NV n= | | (6)

Bayesian inference is used to calculate the posterior
distribution of μi(Xn) − y(Xn) for each data point, using the
distribution of y(Xn) − y(Xn) over the data set as an initial
prior distribution, which is subsequently iteratively refined.
The posterior distribution can be used to calculate expected
values of the absolute error from variance and nonvariance
defined in eq 5 and eq 6 for each data point. The contributions

are then averaged across the data set to arrive at the expected
variance and nonvariance contributions to the data set MAE.
Software and Data Availability. The Chemprop

software56 and SchNet software61 used in model training are
both freely available through GitHub. The constructed noise-
free data set of group additivity enthalpies is available through
Zenodo.54 The QM9 data set can be downloaded from the
MoleculeNet Web site.9 The implementation of the Bayesian
inference method for calculating nonvariance contribution is
available through GitHub (https://github.com/cjmcgill/
ensemble_projection).62 Other scripts necessary to train the
models analyzed in this work and recreate the results are
provided through GitHub (https://github.com/cjmcgill/
characterizing_uncertainty_scripts).63

■ RESULTS
In the following, we describe the influence of noise, bias, and
variance on the observed model performance, as well as
possible pitfalls associated with each type of error. We often
discuss the shape of the learning curve, i.e. the test set error as
it depends on the size of a data set, as different types of
limitations caused by noise, bias, or variance can lead to unique
patterns in the learning curve. The slope of the learning curve
characterizes the change in error upon addition of data and can
be utilized to predict how much data is needed to achieve a
specific accuracy. In general, a steep, negative slope on a log−
log plot without plateaus is desirable.
Noise. Noise in the target data obstructs a model’s ability to

learn meaningful relations between an input and a target. In
general, noise can be of random, uniform nature (homo-
scedastic), afflicting all data points with the same error
probability distribution, or systematic (heteroscedastic), where
different domains of data are affected by different error
probability distribution. We discuss both options separately in
the following, because they require different remedies. In our
demonstration of random noise, we also show that noise has
distinct effect behaviors when it is present in the training set
versus the test set, with the effects in the training set actually
leading to reducible errors that can be improved with

Figure 1. Left: Influence of random noise (magnitude of 1 kcal/mol) in the training and test sets on the reported root mean squared error of the
test set as a function of the data set size. The labels indicate whether noise was applied to the training/test sets. Right: Dependence of performance
on the magnitude of noise in the case where noise was applied to both the test and training sets. The black dashed line describes the aleatoric limit,
where the observed RMSE equals the standard deviation of the noise distribution. The labels indicate the size of the data set used for training (N).
Noise is applied to both the training and test sets.
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additional training data, whereas the effect of noise in the test
data is irreducible.
Random Noise. To showcase the influence of noise on a

machine learning model, we use the noise-free data set of
artifical, additive enthalpies to train a d-MPNN model. The
respective model performance with different sizes of the data
set is depicted in Figure 1 for different levels of noise. For
clean, noise-free training, validation, and test sets (labeled
“clean/clean”, left panel), a standard d-MPNN can learn the
target property to seemingly arbitrary accuracy, because the
task is simple and learnable. Adding Gaussian noise with
standard deviation, i.e. magnitude, of 1 kcal/mol to the training
data but not the test data (labeled “noisy/clean”, left panel)
leads to a loss in performance, diverging after the RMSE for
the clean model approaches the noise level. The model
continues to learn with added data and could still achieve
reasonable accuracies, requiring more data for the same
performance compared to the model trained on the clean data.
Though noise-based, the error from noise introduced while
training is not irreducible. However, when noise also affects the
test set (labeled “noisy/noisy”, left panel), it leads to an
additional perceived loss in observed performance. The trained
model is the exact same for the “noisy/clean” and “noisy/
noisy” curves; only the test set differs in the addition of noise.
The true model performance is thus described by the “noisy/
clean” curve, but instead the noise in the test set causes the
“noisy/noisy” curve to be observed. The learning curve of the
noisy test and training sets approaches an asymptote at 1 kcal/
mol, which is the standard deviation of the employed noise
distribution. Upon addition of more data, no further
improvement in observed performance is perceived. The
aleatoric limit is reached, where the observed test set error is
dominated by noise. The effect of noise in the test set on the
perceived model error is irreducible. This aleatoric limit is not
a true limit of the model performance, however, but a property
of the test set used to evaluate the model. Users who observe
this sort of asymptotic behavior with respect to the data set size
should consider test set noise as a possible cause.
The right panel of Figure 1 depicts the observed test set

performance of noisy test and training sets with different levels
of noise and different numbers of training points. We can see
how the model performance changes as it approaches the
aleatoric limit (dashed black line) where the RMSE equals the
standard deviation of the noise distribution. With a small

number of training points, such as 71 or 711 (indigo and violet
curves), the test set error is not governed by noise (but instead
dominated by bias and variance errors caused by the tiny
number of data points), so that the magnitude of added
random noise does not influence the observed performance
significantly. As the aleatoric limit increases and approaches
the performance of the other three data set sizes, the RMSE of
the data sets is deflected upward. As the noise level surpasses
the baseline non-noise error for the data set sizes, model
performances converge and become indistinguishable as can be
seen at the 1 kcal/mol noise level for the two largest data set
sizes. A similar trend with the presence of an aleatoric limit due
to controlled addition of noise was also noted by Xie et al.64

The noise we discussed so far was drawn from a Gaussian
distribution. We also tested uniform, hyperbolic, and bimodal
noise distributions, where the respective parameters were
chosen so that each distribution had a standard deviation of 1
kcal/mol and was centered around 0 kcal/mol. Figure 2
depicts the respective distributions and their observed model
performances. Both the training and test sets contained noise.
We did not observe any difference in overall model
performance between different error distributions, as long as
the mean and standard deviation of the noise was the same,
respectively. Though noise distributions found in real data may
be non-Gaussian, if homoscedastic, they should still follow the
same trends of approaching an asymptote due to noise.
Systematic Noise. If different regions of chemical space lead

to larger noise levels, it is possible for a model to learn which
regions are unreliable if the loss function is adapted
accordingly, as first reported by Nix et al.38 When a model is
trained using mean-variance estimation, the model outputs two
values per target instead of one, namely the mean and variance.
The two outputs of a mean-variance estimation model describe
the model prediction probabilistically, with the mean being the
center of the prediction distribution and the variance
indicating the Gaussian spread of uncertainty around the
mean. Other variations and extensions of mean-variance
estimation also exist, such as evidential deep learning where
the values returned by the model express uncertainty
distributions for the values of the mean and variance.44

Mean-variance estimation and similar techniques can be very
successful in training models on noisy data sets if the error is a
function of the input features, since it allows the model to learn
on which data points to focus and which to regard as

Figure 2. Performance for models trained with different noise distributions applied to the data set. Both the training and test sets contain noise.
Left: The applied noise distributions, each with standard deviation of 1 kcal/mol, shown at left. Right: Root mean squared error for the different
noise distributions as a function of data set size. The four noisy data sets yield very similar performance (points overlap in the figure).
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unreliable.34,46,65−67 However, it is not amenable to noise that
is uniformly distributed over all data points or systematic noise
that is applied based on external factors not represented in the
input features of the training data. For example, if one
measurement instrument had increased noise in data collection
but the identity of the instrument used in collection was not
included in the input features and could not be inferred from
the input features, then the systematic noise applied according
to the external factor of a faulty instrument would not be
distinguishable. Concerns around suboptimal performance of
mean-variance estimation techniques have been recently
reported in the literature.67 We therefore recommend that
users consider whether there are identifiable sources of
systematic noise related to model input features and that
they compare performance of a mean-variance estimation
model against a simple model.
As with our demonstrations of behavior under random noise

(Figure 1, Figure 2), we use the data set of noise-free additive
enthalpies to demonstrate behavior under systematic noise. We
use two different cases of systematic noise application as
demonstrations, using training data set sizes of 711,613 data
points. In the first case (Figure 3, violet), we apply Gaussian
noise of standard deviation 20 kcal/mol for nitrogen-
containing molecules and Gaussian noise of standard deviation
2 kcal/mol for non-nitrogen-containing molecules. When
training a model to predict these data points using a mean-
variance estimation approach, the model is able to distinguish
between the noise regimes of the non-nitrogen-containing
molecules and the nitrogen-containing molecules. For non-
nitrogen-containing molecules in the test set, the model has an

RMSE of 2.12 kcal/mol and a mean predicted standard
deviation of 2.35 kcal/mol. For the nitrogen-containing
molecules in the test set, the model has an RMSE of 20.0
kcal/mol and a mean predicted standard deviation of 20.0
kcal/mol. We see that in this case where the noise is the
predominant error source and clearly delineated based off the
input features to the model, the mean-variance estimation
method performs well at quantifying the error magnitude in
the different noise regimes.
In the second case (Figure 3, orange), we apply a Gaussian

noise of standard deviation 20 kcal/mol for molecules with
positive enthalpy and Gaussian noise of standard deviation 2
kcal/mol for molecules with negative enthalpy. For this case,
we contrast the performance of uncertainty estimation by
ensembling (bottom left) with the mean-variance estimation
method (bottom right). As we discuss in a later section,
ensembling is a measurement of variance error and does not
directly incorporate noise error. Ensembling also requires a
scaling calibration to match the magnitude of errors unless
variance error dominates, so the ensemble uncertainty was
scaled so that the ensemble and mean-variance estimation
would have the same average value. In this case, the
ensembling method of uncertainty estimation does a poor
job of distinguishing the noise regimes, with a mean
uncertainty of 10.6 kcal/mol for molecules with negative
original target enthalpy and a mean uncertainty of 11.5 kcal/
mol for molecules with positive original target enthalpy. The
mean-variance estimation is able to distinguish and quantify
the noise regimes appropriately, with a mean uncertainty of 2.4
kcal/mol for molecules with negative original target enthalpy

Figure 3. Examples of uncertainty methods being used in models with distinct systematic noise regimes. One model (violet) was trained and
evaluated with 20 kcal/mol standard deviation noise applied to nitrogen-containing molecules and 2 kcal/mol standard deviation for non-nitrogen-
containing molecules. The mean-variance estimation method is able to quantitatively distinguish between the low noise (top left) and high noise
(top right) regimes. A second model (orange) was trained and evaluated with 20 kcal/mol standard deviation noise applied to positive enthalpy
molecules and 2 kcal/mol standard deviation noise applied to negative enthalpy molecules. The ensemble variance method (bottom left) is less able
to distinguish the noise regimes than mean-variance estimation (bottom right).
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and a mean uncertainty of 19.5 kcal/mol for molecules with
positive original target enthalpy. This example shows how
mean-variance estimation can distinguish between noise
regimes better than a method suited to other error types.
Bias. For noiseless data sets, the accuracy of a model in

general increases with the size of a data set, as visible and
discussed in Figure 1. The performance is also influenced by
the model size, i.e. the number of parameters, as well the input
representation and architecture of the model. These factors
contribute to the error caused by model bias and are discussed
in the following.
Data Coverage. We first discuss model bias errors due to

the number of data points, using models trained with the d-

MPNN. Figure 4, top left, depicts the model performance as a
function of the training set size and model size (size of hidden
layers in the message passing and feed-forward networks). For
a model of a given number of parameters, increasing the
number of data points increases the accuracy of the model’s
predictions, where the slope on a log−log plot is nearly
independent of the number of parameters. The error reduction
with more data is presumptively the data coverage error, but
where is this data coverage error coming from? Is it caused by
model bias, where a low number of data points does not allow
the model to find the true global minimum in the high-
dimensional parameter space? Or is it caused by variance,
where differently initialized models converge to a distribution

Figure 4. Top left: Mean absolute errors as a function of the data set size for different model sizes. Top right: Fraction of the reported test set error
not originating from the variance error. Middle left: The mean absolute error attributable to the bias error as a function of the data set size for
different model sizes. Middle right: The mean absolute error attributable to the variance error as a function of the data set size for different model
sizes. Bottom: Contributions to the total error from variance and bias to the performance with a hidden size h = 2000 (left) and h = 20 (right).
Here, bias accounts for all nonvariance error.
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of model outcomes with associated random variations in
observed error? Our recent work applying Bayesian inference
to ensembling uses the observed variation in prediction error
within an ensemble to estimate the distribution of errors before
variance is applied, i.e. the nonvariance component of the
error.60 Using this method, we decompose the total error into
contributions from variance and bias (here, bias is computed as
all error not from variance, which is a valid assumption for a
noiseless data set). The mean absolute errors shown in Figure
4 are for single models, though the inference of the bias and
variance contributions was made using the distribution of
predictions observed in ensembles of 5 submodels.
The middle left panel of Figure 4 shows the trends in the

bias error across data set sizes and for different model sizes.
These learning curves show that in these demonstrations,
increasing the number of training data reduces the bias error
present at a rate that is roughly linear on a log−log plot.
Unsurprisingly, the bias error is most severe when the training
data set size is small.
The middle right panel of Figure 4 shows how the variance

error decreases with the data set size as well. The slope of the
decrease is steeper with the bias error than with the variance
error. This dynamic gives rise to the changing proportion of
error attributable to bias (top right panel). At small data set
sizes, the error is dominated by bias errors with only a small
fraction due to variance. As the data set size increases, both the
bias and variance errors decrease, but the proportion of error
steadily becomes dominated by the variance error. The bottom
panels of Figure 4 depicts the total error for hidden sizes of
2000 (left) and 20 (right) decomposed into variance (dashed
line) and bias (dotted line), showing the transition from the
bias dominated error to the variance dominated error clearly in
the two extreme model size cases.
In this case, adding data is an important factor to decrease

model bias and arrive at a model that is mainly limited by
errors stemming from variance. In general, the vast chemical
space makes data size and coverage a large source of error
compared to other fields of research, where many chemical
structures are unique or under-represented in (experimental)
data sets. The implications of this shortcoming on uncertainty
estimations are discussed later in this work. In the following,
we first investigate other possible sources of model bias.
Model Architecture and Representation. As visible in

Figure 4, top left, the model performs better for a higher

number of parameters for a given data set size, but the effect
levels off, so that adding more parameters indefinitely is not
advisible. A comparison of the bias errors shown in Figure 4,
middle left panel, shows that increasing the number of
parameters decreases the absolute magnitude of the error
from model bias. A steady improvement in the bias error
appears to be present across all data set sizes as the model
hidden size is increased from 50 to 1000, though further
improvement with increases to hidden sizes of 1500 and 2000
are not readily apparent. A too small model (for example h =
20) therefore contributes to model bias and should be avoided.
Besides the model size, there are also other factors

contributing to model bias, such as molecular representations
and model architectures. We explore the effects of architecture
and representation by comparing the performance of a d-
MPNN to SchNet. Message passing neural networks are built
on 2-dimensional graph representations, whereas SchNet takes
the 3-dimensional coordinates as input. We therefore expect
SchNet to perform better for targets that depend on the 3-
dimensional conformation, such as the enthalpy in the QM9
data set.
The left panel of Figure 5 depicts the mean absolute errors

of a d-MPNN and SchNet for HOMO−LUMO gaps. The 3-D
method (SchNet) needs more training data to perform well
than the simpler 2-D method (d-MPNN) but provides better
performance with very large data set sizes. To choose the best
model for a given data set, it is therefore advisible to take into
account the size and diversity of the data. For small (or highly
diverse and sparse) data sets, a simpler model is often
preferred.
Besides the general model architecture, many smaller details

and hyperparameters largely influence model performance, too.
We showcase this effect by examining the influence of the
aggregation function that combines atomic into molecular
representations or properties. Both d-MPNN and SchNet first
compute vectors of properties for each atom in a molecule and
then combine these atom vectors to construct a single fixed-
length learned-fingerprint vector for the molecule. This vector
is the input to a conventional feed-forward neural-net in the d-
MPNN or directly produces the target within SchNet.
However, what is the best way to combine the atom vectors,
by averaging or summing? In Figure 5 (left), one can see that
either method of combination works about equally well for
predicting HOMO−LUMO gaps. But in Figure 5 (right), the

Figure 5. Mean absolute errors as a function of the data set size for mean (dashed line) and sum (continuous line) aggregation for d-MPNN (2D)
and SchNet (3D) models. Left: Enthalpies H(298 K) from QM9. Right: HOMO−LUMO gaps from QM9.
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“sum” method works much better than the “avg” method. This
is because enthalpy is an extensive quantity, that increases
more or less linearly with the number of atoms. If one averages
(rather than sums) the atom vectors, one loses information
about how many atoms are in the molecule. In contrast, the
HOMO−LUMO gap has a much weaker dependence on
molecular size, it is more like an intensive quantity, so it can be
modeled using “avg” about as well as it is modeled using “sum”.
An extensive (size-conserving) representation and architecture
is therefore essential for size-extensive properties like the
energy.68 However, it can be easily overlooked when training
models, especially when training multitask models for a mixed
set of extensive and intensive targets such as the QM9 data set
which contains both. As visible in Figure 5, choosing an
intensive architecture (averaging over all atoms) for an
extensive property such as the enthalpy leads to large
performance losses for both the d-MPNN and SchNet. For
an intensive property, there is nearly no difference in
performance, so we recommend using extensive representa-
tions and architectures when in doubt.
In Figure 5 (right), we furthermore observe that the

enthalpy which largely depends on the 3-dimensional
conformation can be modeled by a 3-D approach in much
greater detail. However, a direct comparison is difficult since
SchNet differs not only in the general architecture but also in
the way the model is initialized. Namely, SchNet utilizes the
mean and standard deviation of average atomic contributions
to the target properties in the training set to initialize the
model with a good guess of the target property of each
molecule. This is especially helpful for extensive properties
since it enforces additivity of the atomic contributions. As
such, d-MPNN and SchNet are not directly comparable, since
the d-MPNN has to explicitly learn the additivity from the
data.
Featurization. Once a model architecture and representa-

tion for molecules (2D graph, 3D coordinates, fingerprint,
string) has been chosen, there are still many options for what
input features to use for the encoding of molecules within that
representation. The inclusion of features relevant to the target
property can make a significant difference in the ability of the
model to learn the property function.68,69 Errors due to the
choice of input features are a form of model bias. Figure 6
depicts model performances for the QM9 targets enthalpy and
HOMO−LUMO gap for different model inputs. First, we

skipped the message passing step and used a Morgan
fingerprint58 of size 10, 100, or 1000 as input to a feed-
forward neural network. Second, we modified the default d-
MPNN representation of the molecular graph not to discern
between carbon and nitrogen (labeled ‘d-MPNN C,N’) or
carbon, nitrogen, and oxygen (labeled ‘d-MPNN C,N,O’) to
artificially create bad features. For both targets, d-MPNNs
outperform fingerprints, where smaller fingerprints lead to even
worse performance. Bad features in the d-MPNN again
decrease model performance. With increasing data, models
with corrupted features can regain performance, since bias
from featurization can be a reducible error source if the missing
information can be learned, e.g. from the structure of the rest
of the molecule. Thus, finding optimal features is less
important for large data sets but essential for medium-sized
data sets. However, error from featurization can also be
irreducible if the model loses important information that it
cannot learn or infer. This is the case for the fingerprint of size
10 in Figure 6, which is too small to faithfully represent the
diversity of molecules present in the data set. Despite these
insights being rather expected, we find that often not enough
attention is paid to featurization when building new models.
For example, targets like the enthalpy might require additional
features such as ring sizes, which are not default in e.g. the
implementation of d-MPNNs we utilized in this work. In fact,
adding a one-hot encoded ring size to atom and bond features
increases the performance of our d-MPNN from mean
absolute errors of 0.30 to 0.19 eV for N = 100,000. We also
recently trained d-MPNNs to predict solute parameters,
solvation free energies, enthalpies, or solubilities, where we
found atom features specific to solvation such as the presence
of H-bond donors or acceptors to be key to good model
performance.11,70 For the prediction of molecular UV−vis
absorption peaks, we furthermore found that the inclusion of a
model prediction trained on low-fidelity data as an additional
custom molecular feature within a high-fidelity model can be
beneficial.71

Variance. As detailed in the previous sections, reducing
error from (nonsystematic) noise and bias is a tedious and
manual process that requires expertise and knowledge of the
problem at hand. In contrast, error from variance can be
tackled with an easy and automated, though computationally
intensive method: ensembling.

Figure 6. Mean absolute errors as a function of data set size for NN models with Morgan fingerprints with a radius of 2 and length of 10, 100, and
1000 as input compared to d-MPNN models with standard or disrupted atomic features (N represented as C in features or N and O both
represented as C in features). Left: Enthalpies H(298 K) from QM9. Right: HOMO−LUMO gaps from QM9.
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Bias-Variance Relationship in Noiseless Data Sets. We
engage with ensembling as a tool of reducing the variance error
later in this section. First, we analyze trends previously noted in
the Bias section that apply to the variance error for indications
of when ensembling may be more effective.
Figure 4 shows trends in the bias and variance errors when

trained on the noiseless group additivity enthalpy data set. A
first noteworthy trend in this data set is the relationship
between the variance error and model size (middle right
panel). In much the same way that increasing model size
improved the bias error for all data set sizes, larger models
appear to gradually improve variance performance for all data
set sizes up to a point of diminishing returns. This is significant
because it shows a case where adding additional parameters
tightens the distribution behavior for the performance of
individual model instances. Adding more randomly initialized
parameters decreases the randomness of the outcome,
presumably due to improved convergence dynamics in a larger
model.
The figure shows that as the data set size is increased, both

the bias error and variance error decrease steadily (middle left
and middle right panels). The bias error starts at a higher level
but decreases more steeply, leading to a changing proportion
of error due to variance and nonvariance sources (top right
panel). The result is that the bias error dominates at low data
set sizes and the variance error dominates at high data set sizes,
regardless of the model size. In this demonstration, variance
error contributes roughly 5−10% of the total error at low data
set sizes and 60−80% of the total error at high data set sizes.
This indicates in large data sets with low noise, that
ensembling has the potential to be highly effective because

the variance errors that it can reduce are so significant. We also
can see that in high bias regimes, such as for low data set sizes,
the variance error to be corrected is present but small, making
ensembling a less attractive measure. The data set used for this
demonstration is a relatively simple one, so users should expect
that the proportions and data set size needed to transition
between regimes will differ accordingly.
The nature of the transition between the dominant error

regimes is of interest as well (Figure 4 top right panel).
Though all of the considered model sizes trend toward higher
variance contribution at large data set sizes, the proportions do
not track tightly together. Variance becomes a significant error
source at an intermediate data set size for the smaller model
sizes than for the larger model sizes. The reason behind this is
more due to differences in variance error behavior rather than
bias error behavior. If we exclude the behavior of the hidden
size 20 model as an outlier, the bias error versus learning
curves (middle left) are relatively tightly clustered, with the
error varying by roughly a factor of 2 between hidden sizes 50
and 2000. The variance error learning curves (middle right)
are much less tightly clustered, with the error varying by
roughly a factor of 10 between hidden sizes 50 and 2000 at
intermediate data set sizes. This trend implies a need to
consider larger model sizes when used with intermediate data
set sizes in order to avoid the onset of significant variance
losses.
The Importance of Ensembling. In this work, we produce

ensembles of submodels by starting each training run from
differently initialized model parameters. Many other techni-
ques for generating randomly differentiated submodels exist,
such as bootstrapping,41 Monte Carlo-dropout,42 or saving

Figure 7. Mean absolute error as a function of ensemble size for different data set sizes (top left), different model sizes (top right), different
magnitudes of noise in the training data (bottom left), and different featurization strategies (bottom right).
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snapshots43 from different training epochs.46,47 Our reported
model prediction is the average of the predictions of the
submodels in the ensemble (eq 1). Figure 7 depicts the
observed mean absolute error of the test set of several d-
MPNN models trained on the artificial enthalpy data set as a
function of the number of models in the ensemble. The
different panels in Figure 7 refer to different situations in which
additional model errors have been introduced with data
coverage (top left), model size (top right), noise (bottom left),
and architecture (bottom right). Regardless of the sources of
additional error in the model, ensembling always improves
model performance on average. The performance with
increasingly large ensembles will approach an asymptote.
This is because ensembling purely addresses variance error. A
large ensemble can remove the variance error, as the ensemble
prediction y(Xn) will converge to the variance distribution
mean μj(Xn) (eqs 5, 6). However, bias and noise errors remain
even when an ensemble size is made very large. The lower the
error from other sources, the larger the performance gains
available from ensembling. This effect could already be
anticipated from Figure 4, where a larger contribution of
variance error was observed for lower data coverage error. We
further note that the performance gains for adding an
additional submodel to an ensemble are diminishing, while
the computational cost of training and saving models scales
roughly linearly with the number of submodels. Adding a small
number of additional submodels to improve the model
performance may be justified against the costs while adding
a large number of additional submodels may not be.
Ensemble Variance as a Measure for Prediction Error.

Training an ensemble of models and inspecting the variance
between predictions of the individual submodels furthermore
is a popular method to estimate the uncertainty associated with
a prediction.40,46,47,72,73 Ensemble uncertainties can be used for
risk management or active learning, among others, and are thus
valuable information when judging the reliability of a
prediction. However, uncertainties from ensembles only
directly represent the true error for variance-dominated
systems, i.e. the model uncertainty caused by model bias is
not included. To showcase this, the deviation between the

uncertainty from the ensemble variance and the true observed
error was computed for all systems of Figure 7 using an
ensemble of five submodels.
There are several available methods to evaluate uncertainty

predictions that take into account different aspects of
uncertainty. Here, we assess the quality of the uncertainty
estimation by computing the calibration error curve, which is
obtained by counting the fraction of test set data points that lie
within a p confidence interval around the predicted value.
Confidence intervals were modeled via eq 4 on a single split.
For a perfectly calibrated model, the observed, empirical
coverage (fraction of the test set with targets within each
interval) should equal p, i.e. 95% of the test set should have a
true target value within the 95% confidence interval spanned
by the ensemble mean and variance of each prediction. The
area under the calibration error curve, AUCE, measures the
deviation of the observed calibration curve from perfect
calibration. An AUCE of 0 corresponds to perfect calibration;
larger values indicate an imperfect calibration.
Calibration curves and the respective AUCEs for the

considered models are shown in Figure 8, where a very good
calibration is observed for systems with low noise and bias (N
= 711613, h ≥ 100, noise ≤0.02, and mean aggregation). In
fact, the artificial data set employed in this study is an ideal test
case for calibration, because it features a controlled amount of
noise and can be approximated with an arbitrary level of
accuracy with a sufficient amount of data points and model
degrees of freedom. We find that ensembling of d-MPNNs
yields a well-calibrated measure of uncertainty for a prediction
in this case. However, when adding larger errors from noise or
bias, worse values for the AUCE are observed, since the total
error of each prediction is now dominated by other
contributions, thus impacting the correlation between
ensemble uncertainty and true error. Model bias is often
ignored as an error source but can significantly impact the
ability of ensemble uncertainties to depict true errors. Data sets
with a low amount of data points and large noise have been
shown to lead to ill-calibrated models in the literature (for
example the Lipophilicity data set in ref 47), but the
contribution of data coverage and other sources of bias is

Figure 8. Confidence-based calibration curves (orange) for different models trained using the group additivity enthalpy data set. The area under
the calibration error curve, AUCE, is highlighted in light gray; perfect calibration corresponds to the diagonal line in gray. If not specified otherwise,
N = 711613, h = 1000, noise = 0, and aggregation = norm.
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usually overlooked relative to the contribution of noise or
variance. Even our artificial, noiseless and easy-to-learn data set
leads to severely ill-calibrated models if the amount of training
data is low (for example for N = 711 or 7116). The bottom
panels of Figure 4 explain this failure: A low amount of training
data leads to a bias-dominated model, where the total error is
nearly exclusively due to bias, not variance. Because many
chemical data sets are made of only hundreds to thousands of
data points,74,75 we expect many deep-learning models to suffer
from the calibration error caused by the data coverage model
bias and should not be assessed using ensemble variance alone.
Splitting and Data Leakage. So far, we have presented

how noise, bias, and variance can lower the true or perceived
performance of a model. An unsatisfactory model performance
is detected easily, but the contributions of various error sources
are often hardly distinguishable. We hope that the tools and
insights presented above can aid scientists to better understand
the sources of error in their models. This understanding can
guide the next steps to optimize the model. Another possible
pitfall comes when the performance of a model on the initial
test set is much better than its performance on the actual
molecules of interest, which can be hard to detect. In fact,
models that reportedly perform well but fail in real-world
applications are a major concern and setback within the
machine learning community.29,30 In the following, we discuss
two important reasons a model may seem to perform
deceptively better than it actually does.
Generalization Performance. Limitations in the model

architecture and representation can be easily overlooked if the

data set only spans a small subset of chemical space. This may
be the case for databases including only molecules with the
same number of atoms or related chemical structures. As an
example, we illustrate how a wrong choice in the aggregation
function (which combines atomic into molecular embeddings)
for the QM9 target enthalpy can be overlooked if the size of
the molecules in the data set only spans a narrow range. To
this aim, we split the QM9 data set into molecules with 1−6
atoms and 7−9 atoms. The machine learning models are then
trained solely using the data set with 7−9 atoms. Figure 9
depicts the performance on test sets containing molecules of
size 1−6 and 7−9 for a mean (top left) and sum (top right)
aggregation function. For the test set containing similarly sized
molecules, both aggregation functions lead to acceptable
performances, and one might wrongly conclude that a mean
aggregation function is a valid choice for an extensive target
like the enthalpy. However, inspecting the test set performance
on molecules of size 1−6 reveals that by using a mean
aggregation function, the model does not gain any additional
performance as more data is added. The bottom panels of
Figure 9 depict the absolute errors for each data point in the
test set as a function of molecular size. Here, the failure of the
model utilizing mean aggregation becomes apparent: mole-
cules with a different size produce absolute errors up to 4
orders of magnitude larger than molecules with a similar size
because the model implicitly learns the average size of the
molecules in the training set to circumvent the shortcoming of
mean aggregation. We note that for sum aggregation, the
extrapolation performance to differently sized molecules is by

Figure 9. Top: Mean absolute errors as a function of the data set size for a test set containing only similar (7−9 atoms) or dissimilar (1−6 atoms)
molecular sizes for a training set consisting of molecules containing 7−9 atoms, model using mean aggregation (left) or sum aggregation (right).
Bottom: Dependence of the test set error of each data point on the molecule size for the model trained on 100,000 data points.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00373
J. Chem. Inf. Model. 2023, 63, 4012−4029

4023

https://pubs.acs.org/doi/10.1021/acs.jcim.3c00373?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00373?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00373?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00373?fig=fig9&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00373?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


no means perfect (bottom right panel), but the model at least
learns to generalize to some extent. In general, an extrapolation
error is visible regardless of the model architecture. This
extrapolation error can be assigned to bias by lack of data
coverage for molecules with a lower molecular weight.
Test Set Contamination. Another prominent reason for a

deceptively good performance is data leakage, where the test
set is too similar to the training set. Rigorously splitting a data
set into training, validation, and test sets is a crucial task that
can be overlooked easily and may lead to drastically wrong
reported performances.76,77 In the following, we showcase this
pitfall by training a model of the QM9 target internal energy at
temperatures T equal to 0 and 298 K. We treat the
temperature as an input (in addition to the molecular graph)
and train on the single property U(T). The temperature is
appended to the aggregated molecular embedding (after the
message-passing neural network, before the feed-forward
neural network). If all data points are treated as independent,
a massive amount of data leakage occurs since many molecules
in the test set also occur in the training set, albeit at a different
temperature. The left panel of Figure 10 depicts the true (only
test set data points without leakage) and perceived (data points
with and without leakage) performance for test sets with a
different number of data points that are leaked. Depending on
the constitution of the test set, different mean absolute errors
are observed. For test sets with a large amount of leakage, the
model appears to perform deceptively well. This perceived
performance does not depict the intended application case,
where the model is supposed to predict the internal energy of a
new molecule outside the training set. The right panel of
Figure 10 shows the distribution of the absolute errors of test
data points that are held out during training versus data points
leaked from the training set, where again the distribution of
errors for leaked data points does not reflect reality, i.e. the
distribution of errors for new, independent molecules.
The data leakage described above is easy to spot, but

sometimes test set contamination occurs via more complex
mechanisms. One example is our own ref 78 where a multitask
model was trained on computational activation energies and
reaction enthalpies of chemical reactions. Both forward and
reverse reactions were included and treated as independent
data points, so some of the reactions in the test set had their
reverse counterpart in the training set. Out of several

developed model architectures, one performed especially
well, with accuracies close to chemical accuracy. However,
this chosen architecture mainly excelled over the other
potential architectures in exploiting the data leakage efficiently,
leading to a seemingly good performance. When tested on
independent reactions, however, the model produced errors
about half an order of magnitude larger than reported. Only
after removing the data leakage were we able to develop
different architectures with better performance.19 In this case,
test set contamination not only caused the reported test set
error to be too low but also hindered model development and
optimization. Similar cases were reported in the literature,
where without a rigorous splitting strategy it was impossible to
select the best architecture and parameters for reaction
models.76,77 Splitting in systems involving multiple molecules
that each may need rigorous splitting (e.g., solute−solvent pairs)
creates an additional complication. In our previous work, we
showed the importance of data splitting by excluding several
solvents, solutes, and substructures from the training set.70 For
chemical data sets, splitting according to molecular scaffolds9,79

or time-stamps80 can be an appropriate measure to prevent
data leakage.8,9,50,70,71,81−84 In fact, the performance of many
models was shown to drop significantly if evaluated on a more
rigorous basis than simple random splits.50,85−89 However,
scaffold splitting also comes with shortcomings, some of which
have no easy remedy, as chemical space is inherently
nonuniform and unbalanced.90 A detailed determination of
optimal splitting strategies extends beyond the scope of this
study. In general, we recommend rigorously splitting data sets
when developing new models and paying increased attention
to possible sources of data leakage.

■ DISCUSSION
Here, we discuss the main observed trends caused by noise,
bias, and variance errors. Full diagnostic tools for quantifying
the contributions of different error types do not yet exist.
However, with the example of these trends, a dominant error
type may be identifiable and treatable. We attempt to give
practical advice on how to improve model performance in each
of those cases.
Noise in a data set leads to a true loss in performance, as

well as an additional and significant perceived loss in
performance, which may cause a model seemingly to stop

Figure 10. Left: The true versus the perceived test set error for 0−100% data leakage for d-MPNN models predicting U(T) at T = 0 K and T = 298
K on 100,000 data points, where data leakage corresponds to molecules in the test set that occur in the training set at a different temperature. Right:
Distribution of absolute errors (AEs) for the test set, where the molecules do (“in train”) or do not (“not in train”) also appear in the training set.
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learning as soon as the true model error falls below the
aleatoric limit. Whenever an asymptotic behavior of the model
performance is observed in the learning curve, test noise
should be considered as a possible cause. One example of this
is shown in Figure 7 of ref 91. Further optimizing a model that
has reached the apparent aleatoric limit is difficult, since a
change in hyperparameters like the model size or architecture
will lead to the same perceived test set error even though the
true performance (measured by a clean test set) may have
improved significantly. It is therefore important to construct
test sets with a low amount of noise to develop and optimize
high-precision models. We have recently shown the
importance of a low noise test set for training neural networks
to predict solvation free energies91 and aqueous solid
solubilities,11 where cleaning the test set from large errors
was necessary to develop a meaningful model. When there is
reason to believe that a data set is affected by systematic noise,
we recommend testing a model trained using mean-variance
estimation or similar and comparing it against a simple model
architecture.
For noiseless data sets, the reducible source of error is

divided in a bias and variance term. Our recent application of
Bayesian inference to ensembling allows users to quantify the
error in both reducible contributions.60 By separating the
contributions, it becomes possible to prioritize efforts between
reducing model bias and model variance. Reducing the model
bias error is tedious and requires user experience. Bias can be
reduced by adding more data and by choosing the best
possible molecular representation, model architecture, and set
of features to relate the molecular structure to the target
property. These challenges are particularly common in
chemistry; the vast chemical space makes data size and
coverage a large source of error compared to other fields of
research, where many chemical structures are unique or under-
represented in (experimental) data sets. The representation of
molecules inside machine learning is without question one of
the main challenges in chemical property prediction today. In
other fields of machine learning such as computer vision or
natural language processing, the size of an image or a sentence
does usually not scale with the output target. For example, the
number of words in a sentence or letters in a word do not tell
us about its meaning, conveyed information, or sentience. In
contrast, for extensive properties, the size of a molecule
changes its properties significantly, so that representations and
architectures developed in other fields of research must be
properly adapted to chemical applications. Careful consid-
eration of several representations and selecting the most
appropriate for the target property is crucial in reducing the
bias error. Properties may not always be easily delineated
between intensive and extensive, so we recommend choosing
extensive aggregations in chemical systems when in doubt.
Finding optimal features is important for medium-sized data

sets (bias error by featurization reduces when the relation
between structure and property can be learned from more
data). The customization of atomic and molecular features for
a task at hand is an important aspect of model optimization
even for deep learning models because the optimal features are
not selected automatically. Despite these insights being rather
expected, we find that often not enough attention is paid to
featurization when building new models.
The variance error can be reduced by, for example,

ensembling, regardless of the other sources of error in the
model. There is a trade-off between the gain in model

performance and the computational load of training more
models. For a quick assessment, we recommend training an
ensemble of five models and using the slope of the
performance improvement from subsets of the five models to
estimate whether additional models should be added. For a
more extensive estimation of possible gains from ensembling,
we recommend our method for projecting the expected error
of different ensemble sizes from ref 60. Depending not only on
the task, data set, and architecture but also the availability of
computation power and intended use of the model, a different
number of ensemble models will lead to the best trade-off
between performance and computational workload.
Different error types may be caused by a single source. In

our treatment of the bias and variance error present in the
noiseless data set, we note that bias and variance errors both
increase in circumstances with small data set sizes and small
model sizes. A single source, whether it is data sparsity or a
problem of model architecture choice, can manifest simulta-
neously as both kinds of errors. Similarly, our experiments with
the addition of controlled noise to a data set showed separate
reducible and irreducible errors depending on whether the
noise was in the test set or used in training, an example of noise
addition leading to both noise and bias errors. Interactions,
trends, and correlations between error types will exist in real
data sets that go beyond simple error type assignment.
In addition to the specific error types addressed, we

highlight the importance of avoiding data leakage, which
unfortunately is rather common in chemical data sets. Leaked
data and the associated overly optimistic reported model
performance hamper the development of new models severely,
reduce the confidence in machine learning models, and delay
their application to real world scenarios. We therefore urge the
reader to pay increased attention to data splitting when
developing models on new data sets.
In many cases, the uncertainty quantification tools that we

have discussed here are used in concert with uncertainty
calibration techniques. Various calibration methods exist for
adjusting the magnitude of uncertainty predictions in the
context of regression models.92−94 Application of these
methods often works by scaling the uncertainty predictions
made by a model to match the real errors observed in a held
out calibration data set. Application of calibration methods
may serve to improve some uncertainty evaluation metrics,
such as miscalibration area, while still providing uncertainty
quantifications with functional shortcomings. Two useful
evaluation metrics to consider for the suitability of uncertainty
quantification calibrations are sharpness and dispersion, as
discussed in the context of materials data sets by ref 95.
Sharpness refers to the average level of precision predicted by a
model, in that a model that is accurately represented as low
uncertainty is better than a model that is accurately
represented as high uncertainty. Dispersion refers to the ability
of a model to distinguish between high and low uncertainty
predictions within a data set. Failures to account for error types
using the appropriate tools may be compensated for with
calibration techniques but doing so inappropriately will often
lead to poor sharpness and dispersion. In the systematic noise
section of this paper, the failure of ensemble variance to
distinguish between error regimes is an example of poor
dispersion, even when scaled to a calibrated level. We caution
the reader to apply calibration methods carefully and check
their validity using multiple evaluation metrics.
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■ CONCLUSION
We have demonstrated the role of noise, bias, and variance for
the perceived and true performance of machine learning
models, focusing on chemical applications. Understanding the
possible sources of errors in an underperforming model is an
important prerequisite to identifying potential improvements.
Noise inherent to data is commonly found as experimental

uncertainty in chemical data sets. The presence of noise has a
different effect on the perceived model performance depending
on whether it is found in the training and/or test set. Noise in
the test set leads to an observed aleatoric limit and can cause
an underestimation of the true model performance. We
furthermore highlighted challenges in predicting properties of
molecules, such as the choice of size-conserving representa-
tions and architectures for the prediction of size-extensive
targets. Limitations in the data set size, model architecture, or
representations can cause the overall model error to be
dominated by the contributions of model bias. We discuss
ensembling as a reliable method to reduce model variance
error and the value of using statistical tools to evaluate the
portion of the error due to variance. However, in situations
where noise or bias error dominate, ensembling cannot be used
to correct for those errors, and ensemble variance becomes
ineffective at estimating whole model uncertainty. Lastly, we
showcased the effects of splitting and data leakage when
assessing the real-world performance of a model and strongly
advise researchers to pay close attention to meaningful data
splits avoiding leakage.
In summary, machine learning is a valuable and important

tool to predict physicochemical properties but can suffer from
error sources uncommon to other fields of research. Increased
attention should be paid to noise and bias from data coverage,
model architecture, and representation to identify and remedy
shortcomings of chemistry-related deep learning models
concerning their performance and uncertainty calibration.
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