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Strange metals appear in a wide range of correlated materials. Electronic localization–
delocalization and the expected loss of quasiparticles characterize beyond-Landau
metallic quantum critical points and the associated strange metals. Typical settings
involve local spins. Systems that contain entwined degrees of freedom offer new
platforms to realize unusual forms of quantum criticality. Here, we study the fate
of an SU(4) spin–orbital Kondo state in a multipolar Bose–Fermi Kondo model, which
provides an effective description of amultipolar Kondo lattice, using a renormalization-
group method. We show that at zero temperature, a generic trajectory in the model’s
parameter space contains two quantum critical points, which are associated with the
destruction of Kondo entanglement in the orbital and spin channels, respectively. Our
asymptotically exact results reveal an overall phase diagram, provide the theoretical
basis to understand puzzling recent experiments of a multipolar heavy fermion metal,
and point to a means of designing different forms of quantum criticality and strange
metallicity in a variety of strongly correlated systems.

quantum criticality | strongly correlated electrons | Kondo destruction |
entwined degrees of freedom | multipolar Kondo effect

Simple metals such as copper and aluminum are well described in terms of weakly
correlated itinerant electrons. In a wide range of strongly correlated metals, the electrons’
Coulomb repulsion is comparable to or is larger than their bandwidth (1, 2). The strong
correlations are expected to cause a loss of Landau quasiparticles and the associated strange
metallicity (3, 4). Correlations turn certain bare electrons into effective local degrees of
freedom in the building blocks for the low-energy physics. A prototypical case is the heavy
fermion metals, which feature a wide variety of quantum phases (5–7). Here, local spins
are associated with the correlated 4f -electrons. Their entanglement with the background
conduction electrons gives rise to the spin-isotropic [SU(2)-symmetric] Kondo effect (8).
The destruction of the Kondo effect corresponds to a localization of the 4f -electrons,
is expected to cause a loss of quasiparticles, and represents a prototype mechanism for
strange metallicity and beyond-Landau quantum critical points (QCPs) (9–17).

The notion that local correlation effects drive different forms of quantum fluctuations
raises the possibility of designing various types of quantum criticality by controlling local
degrees of freedom. For the Kondo effect per se, various kinds of local degrees of freedom
have led to a variety of Kondo states relevant to multipolar heavy fermion metals (18–
25), multiorbital iron-based compounds (26–29), synthetic systems such as ultracold
atoms (30) and mesoscopic devices (31–33), and other correlated settings (34–37).
Recent experiments (38, 39) have motivated the idea (40, 41) that, through molecular
orbitals (of limited spatial extent), Kondo effects develop as a proper description of the
low-energy physics even for d -electron-based flat band systems. Meanwhile, in twisted
graphene structures, there have been proposals for their understanding in terms of Kondo
effects that are associated with the degrees of freedom of moiré unit cells (42–44). In
these systems, different kinds of crystalline symmetries or stacking/twisting in different
types of flat bands can yield various forms of local degrees of freedom. In heavy fermion
metals, the nature of the local degrees of freedom is controlled by the cooperation of
strong correlations, large spin–orbit coupling, and crystalline symmetry. Indeed, there is a
growing list of heavy fermion metals in which the role of multipolar degrees of freedom has
been explored for their quantum criticality (2, 45). These include Pr(TM)2Al20 (TM = Ti,
V), which have nonmagnetic doublets in the ground-state manifold (46, 47), PrOs4Sb12,
which involves field-induced local quadrupolar moments (48, 49), and YbRu2Ge2, which
hosts quasi-degenerate spin and higher-rank moments (50, 51).

The hope of advancing this design principle for new types of quantum criticality is in
particular triggered by recent experimental studies (52) on a heavy fermion compound
Ce3Pd20Si6, ref. 53 as a function of a nonthermal control parameter (magnetic field).
Surprisingly, the experimental results show two stages of Kondo-destruction quantum
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Fig. 1. Illustration of the model. The multipolar Bose–Fermi Kondo model
(Eq.1) describes entwined local spin–orbital degrees of freedom that are
coupled to a bosonic and fermionic bath.

criticality (SI Appendix, section A). In this system, the 4f electrons
form a total angular momentum J = 5/2 state whose six-
fold degeneracy is further split as dictated by the point-group
symmetry (54). What lies in the ground-state manifold is the Γ8
quartet (55), which can be represented in the pseudospin E� and
pseudoorbital E� bases (SI Appendix, section A). The competition
between the Kondo entanglement in the Γ8-manifold and the
associated RKKY interactions may therefore be responsible for
this sequential Kondo destruction.

The striking experimental observations motivate a well-defined
theoretical question: What is the generic type of QCPs that
result from this type of competition? The minimal prototype
model of interest is the spin–orbital-entwined multipolar Bose–
Fermi Kondo model (BFK) (52, 56), as illustrated in Fig. 1. The
model involves the local degrees of freedom, containing both the
spin � and the orbital � components, which are coupled to the
fermionic and bosonic baths. The former couplings describe
the (fermionic) Kondo effect, while the latter describes the
collective fluctuations associated with the RKKY interactions.
An outstanding question is whether a generic tuning trajectory
leads to two-stage transitions or whether it could also involve a
one-stage transition. The multipolar Bose–Fermi Kondo model
arises as an effective Hamiltonian of the multipolar Kondo lattice
model through the extended dynamical mean field theory (56–
59) (SI Appendix, section B). In addition, we take advantage of
the understanding of spin-only systems; namely, the emergence
of additional fixed points beyond the Fermi liquid one in the
Bose–Fermi Kondo model is insensitive to the spin symmetry
(56, 60) and, furthermore, the Kondo destruction fixed points of
the Bose–Fermi model are realized in the corresponding Kondo
lattice model through the extended dynamical mean field analysis.
Accordingly, we i) will analyze the multipolar Bose–Fermi Kondo
model in its Ising-anisotropic case to allow for comprehensive
analytical studies, though we expect that the conclusion that
additional fixed points develop in this model will apply to the
spin-isotropic case as well and ii) expect that the additional fixed
points that we identify in the multipolar Bose–Fermi Kondo
model will be realized as Kondo destruction quantum critical
points in the multipolar Kondo lattice model.

We thus study the multipolar Bose–Fermi Kondo model
at zero temperature. By using a Coulomb-gas representation
of the Bose–Fermi Kondo model, we carry out analytical
renormalization-group (RG) calculations that are controlled by
an expansion in terms of a small quantity � (defined in Eq. 3).
We uncover an overall phase diagram at zero temperature, which
reveals the mechanism for the sequential Kondo destruction
and shows that it appears for any generic trajectory in the
phase diagram. Our asymptotically exact theory points to a
design principle for beyond-Landau quantum criticality and
strange metallicity in a variety of other strongly correlated

systems, including d -electron-based flat band systems and moiré
structures.

Results

Sequential Destruction of Multipolar Kondo Entanglement.
Our key findings are visualized in terms of an overall phase
diagram presented in the g�z-g�z parameter space, as illustrated in
Fig. 2. Here, g�z and g�z are the couplings of the local multipolar
moment to the bosonic fields in the spin and orbital channels,
respectively. The fermionic Kondo couplings are kept fixed. Our
main results are as follows:

• In the special case with the spin and orbital bosonic couplings
being equal, g�z = g�z , we identify a critical fixed point that
is accessible by the �-expansion. This critical point, marked by
the red point in Fig. 2, describes a one-stage transition for the
destruction of the SU(4) spin–orbital Kondo effect.

• We find that the anisotropy between these two bosonic
couplings is relevant in the RG sense. This implies that the one-
stage Kondo destruction cannot describe the quantum phase
transition along a generic trajectory in the phase diagram.

• Moreover, we are able to determine the complete phase diagram
asymptotically exactly, as shown in Fig. 2. This is made possible
by realizing that all the phase boundaries meet at the equal-
bosonic-coupling critical fixed point, near which the run-away
RG flows are still small within the �-expansion. It is further
substantiated by a more comprehensive RG analysis presented
in SI Appendix, sections C and D.

The overall phase diagram implies two stages of Kondo-
destruction QCPs for any generic tuning trajectory at zero
temperature, one each in the spin and orbital channels despite
their entwining in the Hamiltonian. This is illustrated by the
sequence of quantum phase transitions along the solid black lines
in Fig. 2.

Model and Solution Methods. We now specify the model and
describe the setup for our asymptotically exact analysis. The

Fig. 2. The overall phase diagram. Presented here is the phase diagram
in the g�z-g�z parameter space, for fixed Kondo couplings, of the model
given in Eq.1. KD and KS refer to the phases with Kondo destruction and
Kondo screening, respectively, whereas � and � refer to spin and orbital
(c.f., Fig. 1), respectively. The black arrows mark generic trajectories in the
parameter space that correspond to the tuning of a nonthermal physical
control parameter. The overall phase diagram implies two stages of Kondo
destruction along any generic tuning trajectory.
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multipolar Bose–Fermi Kondo model, schematically described
by Fig. 1, is given by the following Hamiltonian:

HBFK = H0 + HK,0 + HBK. [1]

Here,H0 is the noninteracting part for the conduction electron
cp,i� and the bosonic baths E��, q (where � = �, �, m):

H0 =
∑
p,i�

�pc†p,i�cp,i�

+
∑
q

Wq
(
E�†
�,q · E��,q + E�†

�,q · E��,q + E�†
m,q · E�m,q

)
. [2]

To set up controlled RG calculation, we introduce an
expansion parameter �, which is defined through the bosonic
spectrum Wq:

∑
q

[
�
(
!−Wq

)
− �

(
!+ Wq

)]
=

(
K 2

0
�

)
|!|1−� sgn!, [3]

with 0 < � < 1, and for |!| < Λ, which specifies a high-energy
cutoff scale. The fermionic Kondo coupling between the local
multipolar moment and conduction electrons is as follows:

HK,0 = [ J� E� · E�c + J� E� · E�c + 4JM (E�i ⊗ E�) · (E�c ⊗ E�c)] , [4]

where E� (E�) and E�c (E�c) are the spin (orbital) operators of
the single impurity and the conduction electrons, respectively.
Further details and definitions are given in Methods, Section I.

Finally, the coupling between the local multipolar moment
and the bosonic bath is given by:

HBK = g�z�z��z + g�z�z��z + gm (�z ⊗ �z)�m, [5]

where E�� =
∑

q

(
E��,q + E�†

�,−q

)
with � = �, �, m. We focus

on the Ising-anisotropic case for the couplings in both the spin
and orbital channels (g�z and g�z , respectively) as well as for the
spin–orbital mixed coupling (gm). The BFK model HBFK (Eq. 1)
is mapped from a multipolar Kondo lattice model that contains
a lattice of local levels with a four-fold degeneracy by the scheme
of extended dynamical mean field theory (56–59).

We now summarize how to set up the framework to tackle
this rich problem using the (asymptotically exact) RG approach.
We aim to determine the generic phase diagram in the g�z-
g�z parameter space. In other words, we fix the fermionic
Kondo couplings and vary g�z and g�z , and we can keep the
mixed bosonic coupling gm = 0 (Methods, Section I). We are
able to set up systematic RG calculations using a Coulomb-
gas representation, as described in some detail in (Methods,
Section I). We achieve this by dividing the analysis into two
steps. First, we analyze the problem along a fine-tuned trajectory
in the phase diagram: along the diagonal in the g�z-g�z space,
viz. the trajectory “I” in Fig. 3A. This analysis leads to an
anchoring point, which allows us to determine the sequence of
quantum phase transitions along generic trajectories of the phase
diagram.

Quantum Phase Transitions: Fine-Tuned Case. We now carry
out RG calculation of the spin–orbital coupled Bose–Fermi
Kondo model (Eq. 1). As outlined in Methods, Section I, we
will start from trajectory “I” of Fig. 3A, which corresponds to
the fine-tuned case of equal bosonic couplings in the spin and
orbital channels, g�z = g�z . We demonstrate a critical point

A

B

Fig. 3. Renormalization-group analysis. (A) Trajectories in the parameter
space of the BFK model (Eq.1), marked as “I”–“III,” along which the RG analyses
are carried out in steps. The labels “G,” “K1,” “K2,” and “K3” describe the RG
fixed points for the corresponding phases. (B) RG flow diagram of the reduced
beta functions (Eq.7), where g = g�z = g�z . “R1" marks the unstable fixed
point that captures the transition along the fine-tuned trajectory “I" of (A).

[marked by the red solid point in Fig. 3A] that is accessible by an
�-expansion in our RG analysis. It describes a direct transition
from the spin and orbital Kondo-destroyed (KD) phase to the
fully (spin or orbital) Kondo-screened (KS) phase. It will be
shown in the next section that, by analyzing the vicinity of this
critical point, we can determine the structure of the overall phase
diagram.

Generally, the total number of coupling constants is
seven (Methods, Section I). However, under the trajectory
g�z = g�z = g, some of the coupling constants are irrelevant or
can be combined due to the symmetry constraint, and thus,
the numbers of relevant RG equations (the beta functions)
are substantially reduced. We leave the details in SI Appendix,
section D and present the final reduced beta functions and their
analysis in (Methods, Section II). The RG beta functions are
expressed in terms of y ∝ J�⊥ = J�⊥, which flips either spin
or orbital indices, M ∝ g2

�z = g2
�z = g2, and y1 ∝ JM1, which is

the part of the Kondo coupling JM that flips both the spin and
orbital indices (SI Appendix, Eq. S.8 in section C).

From these reduced beta functions, Eq. 7, we identify a critical
point marked by the red dot in Fig. 3 and labeled as R1.
Importantly, this fixed point is accessible by our �-expansion.
It has one relevant direction and separates the spin and orbital
KD phase from the SU(4) KS phase, which we call K3 for latter
convenience. Because R1 is accessible by the �-expansion, we
can address what happens in the vicinity of this fixed point.
We will show in the next section that any small asymmetry
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between g�z and g�z around R1 is relevant in the RG sense.
As a result, the direct phase transition between spin and orbital
KD phase and SU(4) KS phase is fine-tuned. In other words,
this direct transition occurs at a point in the parameter space—
the red dot in Fig. 3 A and B—instead of through a boundary
line.

Quantum Phase Transitions: Generic Cases. So far we have
considered the case of equal bosonic couplings in the spin and
orbital channels, i.e., g�z = g�z = g. However, these two
couplings are generically different. Thus, we have to determine
the quantum phase transitions along trajectories away from the
diagonal in the g�z-g�z parameter space. We find that there are
two sets of trajectories, which are marked by “II” and “III” in
Fig. 3A. We describe our analyses of these two cases in turn.

We next consider the transition between the spin and orbital
KD phase and the spin or orbital KS phase. Importantly, we do
so by starting from the RG trajectory around the critical point
R1 where g�z = g�z = g∗ between the spin and orbital KD and
the SU(4) KS phases. As we have just alluded to, around R1, any
small asymmetry between g�z and g�z is relevant with the scaling
dimension

√
2� (up to the order

√
�) in RG sense.

Consider first the case with a slight increase of the coupling
constant g�z , while keeping all the other parameters fixed; in
other words, now g�z > g�z = g∗. The RG trajectory will
flow toward g�z → ∞. We can then vary g�z to map out the
RG flow. The corresponding trajectory in the phase diagram is
denoted as an arrow (II) in Fig. 3A. Along this trajectory, the
reduced beta functions are determined (see Methods, Eq. 8) in
terms of y2 ∝ J�⊥, which flips only the orbital indices, and
M�
∝ g2

�z .
From the reduced beta functions (Eq. 8), one can identify an-

other critical fixed point (y∗2 ,M
�∗) =

(√
�

2 , 1
)

. This fixed point

has one relevant direction with scaling dimension
√

2� (up to the
order

√
�) and separates the spin KS phase (y2 →∞,M�

→ 0)
from the spin and orbital KD phase (y2 → 0,M�

→∞).
The schematic RG flow structure is shown in Fig. 4, where the

spin and orbital KD phase and the spin KS phase, denoted as G
and K1, respectively, are separated by the critical point denoted
as F1. Based on this RG structure, we establish the transition
between the spin and orbital KD phase and the spin KS phase.
By applying a precisely parallel analysis, we establish the phase
transition between spin and orbital KD phase and the orbital KS
phase; we name the associated critical point as F2.

We have so far analyzed the transitions out of the spin and
orbital KD phase. This phase can transit into the spin or orbital
KS phase without fine-tuning the parameters. It can also transit
into the SU(4) KS phase by fine-tuning the parameters.

Fig. 4. The schematic renormalization-group flow structure. Illustrated here
is the RG flow structure of the phase transition between the orbital and spin
KD phase and the spin KS phase denoted as G and K1, respectively. Around
the multicritical point R1, once the g�z is slightly enlarged, the RG trajectory
will flow toward F1, which is the generic critical point separating G and K1.

Fig. 5. The schematic structure of the fixed points. Illustrated here are the
structure of the fixed points and the relative RG flow of the BFK model (Eq.1),
as derived from the RG analysis. KS and KD denote the Kondo-screened and
Kondo-destroyed fixed points, respectively. The boxes K1–K3 are different
kinds of strong Kondo coupling fixed points, and the box G is the spin and
orbital KD fixed point. The red boxR1 is a multicritical point between spin and
orbital KD phase and SU(4) KS phase. The blue-boxed F1–F2 are the generic
critical point separating different types the spin and orbital KD phases to
either spin or orbital KS phases. Because the strong Kondo coupling fixed
points K1, K2, and K3 are stable fixed points, they are separated by the
generic critical points, denoted as orange boxes X1 and X2.

Because the spin or orbital KS phase and the SU(4) KS phase
correspond to different stable strong coupling fixed points, there
must be other generic critical points that separate them. These
generic critical points describe the phase transition between the
spin or orbital KS phase and the SU(4) KS phase, as shown in
the phase diagram trajectory denoted as the dashed arrow (III)
in Fig. 3A. Here, we would like to finally establish the transition
between the spin or orbital KS phase and the SU(4) KS phase,
which corresponds to the trajectories (III) in Fig. 3A.

Again, we focus on the RG trajectory around the critical point
R1 where g�z = g�z = g∗ between the spin and orbital KD and
SU(4) KS phases. If we keep all the other parameters fixed but just
slightly decrease the coupling constant g�z , that is, g�z < g�z =
g∗, then the RG trajectory will flow toward g�z → 0. We can
then vary g�z to explore the RG trajectory. The corresponding
trajectories in the phase diagram are denoted as the arrow III in
Fig. 3A.

However, unlike R1 and F1, the real locations of the X1 are
harder to identify directly from the beta functions. To proceed,
we exploit the property of the critical point R1 that we alluded to
earlier: Here, all of the fugacity y is ∼

√
� around R1. Near R1,

one can thus neglect in a controlled way the higher-order terms
of
√
� in the beta functions of the fugacity (see SI Appendix,

section D for more details), and in the end, the reduced beta
functions are determined (see Methods, Eq. 9) in terms of y1,
M � , and y3 ∝ J�⊥.

From the reduced beta functions (Eq. 9), we identify a critical
line

(
y∗1 , y
∗
3 ,M

�∗) =
(
a,
√
�−4a2

2 , 1
)

where a is a constant, which
separates the spin and orbital KS phase from the spin KS phase
and corresponds to the critical point X1 in Fig. 5 with scaling
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dimension
√

2�. By a parallel analysis, the transition between the
spin and orbital KS phase and the orbital KS phase can also be
established.

Phase Diagram and the Sequential Kondo Destruction. Based
on the above, we have established the overall phase diagram,
which is shown in Fig. 2. This phase diagram is also seen through
a complete RG flow, Fig. 3A, which combines the RG flows along
the various trajectories we have described in the previous sections
(A complementary, and more comprehensive, way of deriving
this complete RG flow is given in SI Appendix, section D). We
summarize the characterization of the various phases and their
transitions as follows:

• The boxesK1–K3 are different kinds of strong Kondo coupling
fixed points, and the box G is the spin and orbital KD fixed
point. These fixed points are all stable according to the beta
functions (SI Appendix, Eq. S.44) in SI Appendix, section C,
and thus describe phases of matter.

• The red box R1 is a multicritical point between the spin and
orbital KD phase and SU(4) KS phase since there are two
relevant directions around it.

• The blue-boxed F1–F2 are the generic critical point separating
different types the spin and orbital KD phases to either spin or
orbital KS phases.

• Because the strong Kondo coupling fixed points K1, K2, and
K1 are stable fixed points, they are separated by the generic
critical points X1 and X2. The generic critical points X1 and
X2 control the critical phenomena of the trajectories III in
Fig. 3A.

The solid black arrows in Fig. 2 marks the generic tuning
trajectories in the zero-temperature phase diagram. Along each
of such trajectories, two stages of Kondo destruction take place,
each characterizing a QCP in the spin or orbital channel. This
asymptotically exact result provides a firm theoretical basis to
understand the field-induced quantum phase transitions that
have been experimentally observed in Ce3Pd20Si6 (52).

Discussion

In this work, we have performed a detailed renormalization-
group analysis of a spin–orbital-entwined Bose–Fermi-Kondo
model, which is mapped from a multipolar Kondo lattice model.
We are able to determine the overall phase diagram at zero
temperature, which reveals the mechanism for the sequential
Kondo destruction and shows that it appears for any generic
trajectory in the phase diagram. As such, our results provide a firm
theoretical basis for understanding the surprising experimental
results in the heavy fermion metal Ce3Pd20Si6 (52). More
generally, our work elucidates the quantum criticality in spin–
orbital-coupled heavy fermion systems.

Our asymptotically exact theoretical results also make it
clear how the entwining of spins, orbitals, and other quantum
numbers in local degrees of freedom allows for unexpected types
of quantum criticality and associated strange metallicity. This
represents a design principle for creating and realizing new forms
of quantum criticality and associated strange metallicity: The
cooperation of strong correlations, large spin–orbit coupling,
and crystalline symmetry represents a robust means to create
varied local degrees of freedom; and the tuning of such strongly
correlated systems can realize a sequence of beyond-Landau
quantum critical points. Beyond heavy fermion metals, effective

local degrees of freedom have also been advanced for pertinent
molecular orbitals of d -electron-based flat band systems (38–41)
and for moiré states of twisted structures (42–44). Thus, we
expect this design procedure to operate not only in multipolar
heavy fermion metals but also in transition-metal compounds,
synthetic systems such as moiré structures, and beyond.

Methods

I. Model and the Renormalization-Group Method. In the definition of the
model, Eqs. 1–4, the spin and orbital operators of the conduction electrons are
defined as:

E�c =
1
2

∑
i,��

c†
i�Es�� ci� ,

E�c =
1
2

∑
ij,�

c†
i�
Etijcj� ,

E� ⊗ E�c =
1
4

∑
ij,��

c†
i�Es�� ⊗Etijcj� .

[6]

Here, we use�, �, and i, j to denote the spin and orbital indices, respectively.
Thus,Es�� andEtij are Pauli matrices in the spin and orbital subspaces, respectively.
For the fermionic Kondo Hamiltonian alone, the anisotropy in the couplings is
generically unimportant as the system restores the SU(4) symmetry in the
Kondo-entangled ground state (8). We have therefore chosen the bare Kondo
Hamiltonian to be SU(2) symmetric in the spin as well as in the orbital sector, with
an overall SU(2)⊗SU(2) symmetry. The full renormalized Kondo Hamiltonian
(SI Appendix, Eq. S.8) for the later RG analysis is shown in SI Appendix,
section C.

We now describe the framework to tackle this rich problem using the
(asymptotically exact) RG approach. Further details can be found in SI Appendix,
section C.

First, our goal is to study the generic phase diagram in the g�z -g�z parameter
space. In other words, we fix the fermionic Kondo couplings and vary g�z and
g�z . For this purpose, it suffices to keep the mixed bosonic coupling gm = 0. A
nonvanishing but small gm does not modify the structure of the phase diagram,
as we show in SI Appendix, section E. To proceed, we use a bosonization approach
to represent the BFK model (Eq. 1) in terms of a Coulomb gas, from which a
controlled RG calculation based on an expansion in � is possible (60–62).

We note that the Coulomb-gas RG calculation is based on a dilute-instanton
expansion, which is nonperturbative in stiffness constants but perturbative in
terms of fugacities (60).

Second, the Ising couplings of HBK (Eq. 5) break not only the SU(4) symmetry
but also the smaller SU(2)× SU(2) symmetry. While the Kondo couplings in HK
respect the SU(2) × SU(2) symmetry, under the RG flow, these couplings will
generically become spin anisotropic. It turns out that one needs to consider five
types of Kondo couplings. Together with the spin and orbital Ising couplings g�z
and g�z of HBK (Eq. 5), the total number of RG coupling constants is seven. The
large number of the RG charges makes it a challenge to determine the overall
RG flow structure. We are able to accomplish this goal by analyzing the problem
in several steps.

Crucially, we take the first step to be a fine-tuned trajectory in the phase
diagram. Recall that the g�z -g�z parameter space is of our interest. For clarity,
we visualize this parameter space in Fig. 3A, which marks the relevant phases.
The fine-tuned trajectory we focus our initial analysis on corresponds to identical
couplings to the bosonic baths in the spin and orbital sectors. It goes along
the diagonal in the g�z -g�z space and is marked as trajectory “I.” The result
of the analysis of this fine-tuned trajectory provides a anchoring point, which
allows us to determine the sequence of quantum phase transitions along generic
trajectories of the phase diagram.

We note that it is possible to rigorously establish the phase diagram, Fig. 3A,
through a comprehensive RG analysis without taking the fine-tuned trajectory “I”
as the starting anchoring point. This is described in SI Appendix, sections C and D).
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We choose to present the step-by-step analysis here in the main text, given that
it reveals the underlying physics in a considerably more transparent way.

II. RG Equations and Analysis: Fine-Tuned Case. The RG analysis, described
in SI Appendix, section D, leads to the following reduced beta functions:

dy1
dl

= (1− 2M) y1 + 2y2,

dy
dl

= (1− M) y + 2y1y,

dM
dl

=
(
� − 4y2

1 − 4y2
)

M.

[7]

Note that we can set J�⊥ = J�⊥, given that we are considering a
path in the parameter space that preserves the symmetry � ↔ � . From
these reduced beta functions (Eq. 7), we identify a critical point (up to

the order
√
�) at

(
y∗1 , y∗, M∗

)
=

(
−1+
√

1+12�
12 ,

√
−1+12�+

√
1+12�

6
√

2
,

5+
√

1+12�
6

)
∼=

(
0,
√
�

2 , 1
)

. This fixed point has one relevant di-

rection with the scaling dimension
√

2� and separates the spin and
orbital KD phase (y1 → 0, y→ 0, M→∞) from the SU(4) KS phase
(y1 →∞, y→∞, M→ 0)(64). The RG flow structure of the reduced beta
functions (Eq. 7) is plotted in Fig. 3. For latter convenience, we name SU(4) KS
phase as K3 and the critical point (the red dot in Fig. 3) as R1.

For our analysis, one feature of the fixed pointR1plays a crucial role. While the
fixed-point value for the RG charge M is O(1), the values for the RG charges (the
fugacities) y1 and y are of order

√
�. Because of this feature, the quardratic-in-y�

terms in the beta functions of the fugacities turn out to be unimportant for both
RG flow structure and the leading order of the scaling dimensions. The same
conclusion is also seen in the scaling dimensions of the RG variables near R1; to
the leading nonvanishing order in �, they are the same regardless of whether
the quardratic-in-y� terms are kept in the beta-functions of the fugacities. In the
next section, we will see how this allows us to determine the overall structure of
the phase diagram by expanding the RG equations around the fixed point R1.
In particular, it allows us to carry out a complete analysis of the quantum phase
transition along trajectory “III,” which otherwise would have been much harder
to achieve.

III. RG Equations for the Generic Case—Trajectory II. Along this trajectory,
the reduced beta functions are calculated to be as follows:

dy2
dl

= (1− M�) y2,

dM�

dl
=
(
� − 4y2

2

)
M� .

[8]

Again, we leave the details of the derivation to SI Appendix, section D.

IV. RG Equations for the Generic Case—Trajectory III. Along this trajectory,
the reduced beta functions are as follows:

dy1
dl

= (1− M�) y1,

dy3
dl

= (1− M�) y3,

dM�

dl
=
(
� − 4y2

1 − 4y2
3

)
M� .

[9]

Data, Materials, and Software Availability. All data needed to eval-
uate the conclusions in the paper are presented in the paper and/or
SI Appendix.

Note Added in Proof. The sequential Kondo destruction that we identify in the
minimal prototype multipolar model has now also been seen in a related model
that contains additional couplings and has continuous spin symmetry (S. E. Han,
D. J. Schultz, and Y. B. Kim, “Microscopic theory of multistage Fermi surface
reconstruction in higher-rank moment quantum materials”).
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