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Abstract

We show that the uniform norm of generalized grey Brownian motion over the unit
interval has an analytic density, excluding the special case of fractional Brownian
motion. Our main result is an asymptotic expansion for the small ball probability of
generalized grey Brownian motion, which extends to other norms on path space. The
decay rate is not exponential but polynomial, of degree two. For the uniform norm
and the Hölder norm, we also prove a large deviations estimate.

Keywords: grey Brownian motion; fractional Brownian motion; small ball probabilities; small
deviations; large deviations; Wright M-function.

MSC2020 subject classifications: Primary 60G22, Secondary 60F99.

Submitted to ECP on January 30, 2023, final version accepted on October 1, 2023.

1 Introduction

Generalized grey Brownian motion (ggBm) is a two-parameter stochastic process
Bα,β , which is in general not Gaussian. Introduced in [17, 18], ggBm has been considered
in the physics literature to model anomalous diffusions with non-Gaussian marginals,
including both slow (variance grows slower than linearly) and fast diffusive behavior.
The process Bα,β has stationary increments and is self-similar with parameter H = α/2

[17, Proposition 3.2]. The marginal density of ggBm satisfies a fractional partial integro-
differential equation [17]. Special cases of ggBm include fractional Brownian motion
(fBm; β = 1), grey Brownian motion ([23]; α = β), and Brownian motion (α = β = 1).
Our focus is mainly on the case β < 1. In [17], a generalized grey noise space is defined,
motivated by white noise space, but with the Gaussian characteristic function replaced
by the Mittag-Leffler function. The ggBm is then defined by evaluating generalized grey
noise at the test function 1[0,t). We do not go into details, because for our purposes, the
representation

Bα,β(t) =
√
LβBα/2(t), 0 < α < 2, 0 < β < 1, (1.1)

which was proved in [18], is more convenient. Here, Bα/2 is a fBm with Hurst parameter
H = α/2, and Lβ is an independent positive random variable whose density is the
M -Wright function (see below). The representation (1.1) makes sense also in the limiting
case β = 1, but we will not require this.
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Small ball probabilities for grey Brownian motion

The problem of small ball probabilities, also called small deviations, consists of
estimating

P
[

sup
0≤t≤1

|Bα,β(t)| ≤ ε
]
, ε ↓ 0, (1.2)

asymptotically. More generally, we can consider

P
[
‖Bα,β‖ ≤ ε

]
, ε ↓ 0,

where ‖ · ‖ is a norm on Cγ0 [0, 1], the space of γ-Hölder continuous functions starting at
zero, with 0 < γ < H = α/2. For ggBm with β < 1, our main result (Theorem 2.3) shows
that (1.2) is of order ε2, and that this also holds for some other norms. For Gaussian
processes, such as fBm (β = 1), the small ball problem has been studied extensively [14],
and exponential decay is typical. But there are also many works studying small ball
probabilities for non-Gaussian processes; see, e.g., [1, 2] and the references therein. We
refer to [12, 19] for other examples of processes with the small ball rate ε2 of ggBm.

In Section 2, we will show that the known exponential small ball estimates for fBm
can be used to deduce our quadratic small ball estimate for ggBm. As a byproduct, we
show that the uniform norm (sup norm) of ggBm has a smooth, even analytic, pdf. In
Section 3, we provide a large deviations estimate. The decay rate is exponential, but
slower than Gaussian, depending on the parameter β.

Notation When we write Bα,β , we always mean the process on the time interval [0, 1],
i.e. Bα,β = (Bα,β(t))0≤t≤1. We write FH for the cdf of ‖BH‖, assuming that the choice of
the norm ‖ · ‖ is clear from the context. As usual, R+ = (0,∞) denotes the positive reals.
The letter C denotes various positive constants.

2 Analyticity of the cdf and small ball probability

The M -Wright function, which is the pdf of Lβ in (1.1), is defined by

Mβ(x) =

∞∑
n=0

(−x)n

n!Γ(1− β − βn)
, x ≥ 0, 0 < β < 1. (2.1)

It is not obvious that Mβ is a pdf; for this, and more information on Mβ and its general-
izations, we refer to [16]. For later use, we note that it follows from Euler’s reflection
formula that

1

Γ(1− β − βn)
=

sin
(
π(β + βn)

)
π

Γ(β + βn) (2.2)

(cf. [24, p. 41] and [16, (3.8)]), which shows, by Stirling’s formula for the gamma function,
that the series in (2.1) defines an entire function. For this, the crude version

Γ(x) = xx+o(x), x ↑ ∞, (2.3)

of Stirling’s formula suffices. We will also need the asymptotic behavior of Mβ at
infinity [16, (4.5)],

Mβ(x) = exp
(
−1− β

β
(βx)

1
1−β +O(log x)

)
, x ↑ ∞. (2.4)

Our main assumption is that fBm satisfies an exponential small ball estimate w.r.t. to
the chosen norm ‖ · ‖.
Assumption 2.1. For 0 < H < 1, there are θ, C1, C2 > 0 such that

−C1ε
−θ ≤ logP

[
‖BH‖ ≤ ε

]
≤ −C2ε

−θ, ε ∈ (0, 1].
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Small ball probabilities for grey Brownian motion

For the uniform norm, it is known that this holds with θ = 1/H,

− C1ε
−1/H ≤ logP

[
sup

0≤t≤1
|BH(t)| ≤ ε

]
≤ −C2ε

−1/H . (2.5)

Assumption 2.1 also holds for the γ-Hölder norm, where 0 < γ < H, and for the L2-norm.
See [4, 14, 15] for the corresponding values of θ, and for much more information on
small ball probabilities for fBm and other Gaussian processes.

The examples we just mentioned are norms in the classical sense, and so we stick
to this terminology in our statements. From our proofs, it is clear that it would suffice
throughout to assume that ‖ · ‖ is a measurable non-negative homogeneous functional.

Proposition 2.2. Let 0 < α < 2, 0 < β < 1. If the norm ‖ · ‖ satisfies Assumption 2.1,
then the cdf of ‖Bα,β‖ is an analytic function on R+. In particular, this holds for the cdf
of ‖Bα,β‖∞ = sup0≤t≤1 |Bα,β(t)|.

Proof. Recall that FH denotes the cdf of ‖BH‖. From (1.1) we find

P
[
‖Bα,β‖ ≤ ε

]
=

∫ ∞
0

FH(εx−1/2)Mβ(x)dx

= 2ε2
∫ ∞
0

FH(y)Mβ(ε2/y2)y−3dy. (2.6)

As Mβ extends to an entire function (see above), the last integrand clearly is an entire
function of ε for any fixed y > 0. The function Mβ is bounded on R+, as follows, e.g.,
from (2.1) and (2.4). Thus, the integrand in (2.6) can be bounded by an integrable
function of y, independently of ε. Hence, the conditions of a standard criterion for
complex differentiation under the integral sign [8, Theorem IV.5.8] are satisfied, which
yields the assertion.

Note that fBm, i.e. β = 1, is not covered by Proposition 2.2. In [13], it is shown by
Malliavin calculus that sup0≤t≤1BH(t) (without the absolute value) has a C∞ density.

We now show that, for β < 1, the small ball probability of ggBm is of order ε2 as ε ↓ 0.
For 2/θ + β < 1 (α+ β < 1 for the uniform norm), we express it as a power series, which
yields a full asymptotic expansion. We write

ηk(H) := E
[
‖BH‖−k

]
, k ∈ N,

for the negative moments of the norm of fBm, omitting the dependence on the norm ‖ · ‖
in the notation ηk(H). By integration by parts, it is easy to see that ηk(H) is finite under
Assumption 2.1.

Theorem 2.3. Let 0 < α < 2, 0 < β < 1, and define H = α/2. Under Assumption 2.1,
the small ball probability of ggBm satisfies

P
[
‖Bα,β‖ ≤ ε

]
∼ η2(H)ε2

Γ(1− β)
, ε ↓ 0. (2.7)

If, additionally, 2/θ + β < 1, then it has the convergent series representation

P
[
‖Bα,β‖ ≤ ε

]
=

∞∑
n=0

(−1)nη2n+2(H)

(n+ 1)n!Γ(1− β − βn)
ε2n+2, ε ≥ 0. (2.8)

In particular, if ‖ · ‖ = ‖ · ‖∞, then (2.8) holds for α+ β < 1.
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Small ball probabilities for grey Brownian motion

Proof. By integration by parts, we have∫ ∞
0

FH(y)

y2n+3
dy =

1

2n+ 2

∫ ∞
0

y−2n−2FH(dy) =
η2n+2(H)

2n+ 2
. (2.9)

The assertion (2.7) follows from (2.6), (2.1) for x = 0, (2.9) for n = 0, and dominated
convergence, because Mβ is a bounded function. For the next statement, define

GN (ε, y) :=

∞∑
n=N+1

(−1)nε2n−2N+1

y2nn!Γ(1− β − βn)
, y > 0, ε ∈ [0, 1],

so that (2.6) yields, for N ∈ N,

P
[
‖Bα,β‖ ≤ ε

]
= 2ε2

∫ ∞
0

FH(y)

y3

N∑
n=0

(−ε2/y2)n

n!Γ(1− β − βn)
dy + 2ε2N+1

∫ ∞
0

FH(y)

y3
GN (ε, y)dy. (2.10)

For the finite sum, we can use (2.9) to rewrite the summands as in (2.8). We now provide
an integrable bound for the last integrand in (2.10) that does not depend on ε ∈ [0, 1]. It
is clear that

|GN (ε, y)| ≤
∞∑

n=N+1

1

y2nn!Γ(1− β − βn)
, y > 0, ε ∈ [0, 1]. (2.11)

By (2.2) and Stirling’s formula,

1

n!|Γ(1− β − βn)|
≤ n−(1−β)n+o(n) ≤ Cn−(1−β̂)n, n ∈ N, (2.12)

for any β̂ > β; we will fix β̂ later. From (2.11), (2.12), and Stirling’s formula, we conclude

|GN (ε, y)| ≤ C
∞∑

n=N+1

1

y2nΓ((1− β̂)n)

= y−2E1−β̂,1−β̂(y−2)−
N∑
n=1

1

y2nΓ((1− β̂)n)
, (2.13)

where

Eu,v(z) =

∞∑
n=0

zn

Γ(un+ v)
, u, v > 0, z ∈ C,

denotes the two-parameter Mittag-Leffler function. (Alternatively, we could also ar-
gue with the less common function z 7→

∑
n≥1 n

−unzn; see the asymptotic formula on
p. 55 of [11] and the references given there.) We now use the uniform bound (2.13)
in (2.10). Integrability at∞ is obvious, and we now show integrability at zero. By [10,
Theorem 4.3],

E1−β̂,1−β̂(y−2) = exp
(
y
− 2

1−β̂
(
1 + o(1)

))
, y ↓ 0.

We see, using Assumption 2.1 for FH , that the last integrand in (2.10) satisfies

FH(y)

y3
GN (ε, y) ≤ exp

(
−C2y

−θ + y
− 2

1−β̂ + o
(
y
−
(
θ∧ 2

1−β̂

)))
, y ↓ 0,

uniformly w.r.t. ε ∈ [0, 1]. This is integrable if θ > 2/(1− β̂), i.e., 2/θ + β̂ < 1. Clearly, our
assumption that 2/θ + β < 1 allows us to chose such a β̂ > β. By the following lemma,
η2n+2(H) = 22n/θ+o(n). Using (2.12), we can thus take the limit N ↑ ∞ in (2.10) for fixed
ε ∈ [0, 1], which proves (2.8) for these ε. The extension to any ε ≥ 0 follows by analytic
continuation, using Proposition 2.2.
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Small ball probabilities for grey Brownian motion

In the preceding proof, we applied the following estimate for negative moments of
the supremum of fBm. Note that moments with positive exponent are estimated in [22];
see also [21].

Lemma 2.4. Under Assumption 2.1, for k ↑ ∞, we have ηk(H) = kk/θ+o(k).

Proof. We show only the upper estimate, as the lower one can be proven analogously.
By (2.5), there is ε0 > 0 such that

FH(y) ≤ 2 exp(−C2y
−θ), 0 < y ≤ ε0.

Define K̃ := 2 ∨ exp(C2ε
−θ
0 ). Then,

FH(y) ≤ K̃ exp(−C2y
−θ), y > 0;

note that the right hand side is ≥ 1 for y ≥ ε0. This implies

ηk(H) =

∫ ∞
0

y−kFH(dy) = k

∫ ∞
0

y−k−1FH(y)dy

≤ kK̃
∫ ∞
0

exp(−C2y
−θ)y−k−1dy

= eO(k)

∫ ∞
0

e−wwk/θ−1dw

= eO(k)Γ(k/θ − 1) = kk/θ+o(k),

by Stirling’s formula (2.3) for the gamma function.

If 2/θ + β > 1, then the series in (2.8) diverges for any ε > 0. Indeed, there is an
increasing sequence (nj) in N such that the lower bound

dist(1− β − βnj ,Z) ≥ C > 0, j ∈ N,

holds. For rational β ∈ (0, 1), this is clear by periodicity. For irrational β, it follows from
the classical fact that the sequence of fractional parts {nβ} is dense in [0, 1] (Kronecker’s
approximation theorem). Hence, again by (2.2) and Stirling’s formula,

1

|Γ(1− β − βnj)|
≥ nβnj+o(nj)j ,

which, together with Lemma 2.4, shows divergence. We leave it as an open problem
if (2.8) still holds in the sense of an asymptotic expansion of the small ball probability, if
2/θ + β ≥ 1.

3 Large deviations

For fractional Brownian motion, it is well known that

P
[

sup
0≤t≤1

|BH(t)| ≥ y
]

= exp
(
− 1

2y
2 + o(y2)

)
, y ↑ ∞. (3.1)

Indeed, the upper estimate follows from

P
[

sup
0≤t≤1

|BH(t)| ≥ y
]
≤ 2P

[
sup

0≤t≤1
BH(t) ≥ y

]
and the Borell-TIS inequality [20, Theorem 4.2], and the lower one is clear from
sup0≤t≤1 |BH(t)| ≥ BH(1). The following result gives a large deviation estimate for
ggBm. For β = 1, the distribution has a Gaussian upper tail, of course. For 0 < β < 1,
the decay is between exponential and Gaussian, which is sometimes called compressed
exponential.
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Small ball probabilities for grey Brownian motion

Theorem 3.1. Let 0 < α < 2 and 0 < β ≤ 1, and assume that ‖ · ‖ is a norm on the
Hölder space Cγ0 [0, 1], where 0 < γ < H = α/2, such that

P
[
‖BH‖ ≥ y

]
= exp

(
−κy2 + o(y2)

)
, y ↑ ∞, (3.2)

for some κ > 0. Then there are constants K1,K2 > 0 such that

exp
(
−K1y

2
2−β
(
1 + o(1)

))
≤ P

[
‖Bα,β‖ ≥ y

]
(3.3)

≤ exp
(
−K2y

2
2−β
(
1 + o(1)

))
, y ↑ ∞. (3.4)

Proof. We may assume β < 1, because for β = 1 we have Bα,1 = BH , and the assump-
tion (3.2) makes the statement trivial. With F̄H = 1− FH the tail distribution function of
‖BH‖, we have, from (1.1),

P
[
‖Bα,β‖ ≥ y

]
=

∫ ∞
0

F̄H(yx−1/2)Mβ(x)dx. (3.5)

If κ = 1
2 , then F̄H satisfies

F̄H(y) = exp
(
− 1

2y
2 + o(y2)

)
, y ↑ ∞, (3.6)

by (3.2). We assume κ = 1
2 for rest of the proof, as κ > 0 is a trivial extension. In what

follows, the integral (3.5) is estimated by dividing it into several parts. Let 0 < κ̂ < 1
2 be

arbitrary. Since Mβ is bounded, we obtain∫ 1

0

F̄H(yx−1/2)Mβ(x)dx ≤ C
∫ 1

0

e−κ̂y
2/xMβ(x)dx

≤ C
∫ 1

0

e−κ̂y
2/xdx

= C
(
e−κ̂y

2

− κ̂y2Γ(0, κ̂y2)
)
,

where Γ(a, z) =
∫∞
z
ta−1e−tdt is the incomplete gamma function. Using a well-known

expansion of that function [7, §8.11], we conclude∫ 1

0

F̄H(yx−1/2)Mβ(x)dx ≤ exp
(
−κ̂y2 + o(y2)

)
, y ↑ ∞. (3.7)

As β < 1, this is negligible compared to the decay rate claimed in (3.3) and (3.4). Now
define h(y) := y2/(log y). Since F̄H ≤ 1, and using (2.4), we have∫ ∞

h(y)

F̄H(yx−1/2)Mβ(x)dx ≤
∫ ∞
h(y)

Mβ(x)dx

≤
∫ ∞
h(y)

exp
(
−Cx

1
1−β
)
dx

≤ exp
(
−Ch(y)

1
1−β
)
.

Since h(y) = y2+o(1) and 2/(1− β) > 2/(2− β), this is of faster decay than (3.4).

It remains to show that the integral
∫ h(y)
1

F̄H(yx−1/2)Mβ(x)dx has the claimed growth
order (3.4). By dividing the exponent in (2.4) by 2, which makes the decay slower, we
obtain

Mβ(x) ≤ C exp
(
−1− β

2β
(βx)

1
1−β

)
, x ≥ 1.
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Small ball probabilities for grey Brownian motion

Similarly, (3.6) implies

F̄H(y) ≤ Ce−y
2/3, y ≥ 1.

Analogously, we can increase the constants in the exponents to find lower estimates,
for which the following reasoning is analogous, and yields (3.3). Therefore, we only

discuss the upper estimate for
∫ h(y)
1

. This is a straightforward application of the Laplace
method [5, Chapter 4] to the integral∫ h(y)

1

exp
(
− y

2

3x
− 1− β

2β
(βx)

1
1−β

)
dx,

which results from the two preceding estimates. The integrand is a strictly concave
function with a maximum at

x0(y) = cy
2(1−β)
2−β ∈ (1, h(y))

for some constant c > 0. As we are not concerned with lower order terms, it suffices to
evaluate the integrand at x0(y) to conclude∫ h(y)

1

F̄ (yx−1/2)Mβ(x)dx ≤ exp
(
−Cy

2
2−β (1 + o(1))

)
.

This completes the proof.

We now comment on applying Theorem 3.1 to other norms than the sup norm, which
requires verifying (3.2). As mentioned above, for the sup norm, this follows from the
Borell-TIS inequality. For an arbitrary norm ‖ · ‖ on Hölder space, we have

P
[
‖BH‖ ≥ y

]
= P

[
y−1BH ∈ {‖f‖ ≥ 1}

]
, y > 0.

In principle, this is in the scope of the general LDP (large deviation principle) for Gaussian
measures [6, Theorem 3.4.12], [15, Theorem 8.3], but it may not be trivial to verify the
assumptions. For H = 1

2 and the Hölder norm, this was done in [3], extending Schilder’s
theorem. Note that choosing a stronger topology than the uniform one enlarges the
dual space of path space, making it harder to verify the defining property of a Gaussian
measure. For the Hölder topology, we are on safe grounds, though, by another approach:
Using the double sum method for Gaussian fields, Fatalov has shown that (3.1) holds for
the γ-Hölder norm [9, Theorem 1.3], and so Theorem 3.1 is applicable to this norm (with
0 < γ < H, of course).
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