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Kurzfassung

Motion Capture Technologien existieren bereits seit mehreren Jahrzehnten und werden
in verschiedenes Gebieten für unterschiedliche Zwecke verwendet. In der Unterhaltungsin-
dustrie hat es die Erstellung von realistischen und komplexen Animationen, die manuell
sonst sehr schwierig und zeitaufwändig zu erstellen wären, stark erleichtert. Über die
Jahre wurden verschiedene Motion Capture Technologien erfunden und sie alle habe ihre
Stärken und Schwächen.
Inertial Motion Capture ist eine kostengünstige Alternative, die sich auf Inertialsensoren
für die Schätzung der Orientierung und Position eines Objektes im dreidimensionalen
Raum verlässt. Inertialsensoren bestehen aus einem Gyroskop und einem Beschleuni-
gungssensor und sind oft in inertiale Messeinheiten enthalten. Durch ihre Erforschung und
Entwicklung in den vergangenen Jahren sind diese kleiner, leichter, günstiger, stromspa-
render geworden und bieten höhere Abtastraten. Dies macht sie ideal für die Entwicklung
eines Motion Capture Systems. Die ausgegebenen Messwerte von diesen Sensoren leiden
aber unter verschiedenen Verzerrungen, was ein Kalibrierungsverfahren notwendig macht,
um diese Verzerrungen zu minimieren.
In dieser Arbeit habe ich eine komplett kabellose und konfigurierbare Inertial Motion
Capture Lösung entwickelt mit einem roboterassistierten Kalibrierungsverfahren. Diese
Motion Capture Lösung besteht aus mehreren selbstgebauten Bewegungstracker, die an
dem Benutzer befestigt sind und die Messdaten kabellos an einen Computer versendet.
Ich habe einen quaternion-basierten Extended Kalman-Filter als eine Sensordatenfusi-
onsmethode implementiert, welches die Sensordaten verwendet, um die Orientierung des
Bewegungstrackers zu schätzen.
Da ich keinen Magnetometer in meiner Trackinglösung verwende, ist es schwierig eine
gute Genauigkeit für die Schätzung des Gierwinkels zu erreichen. Diese Genauigkeit
wird beeinträchtigt durch akkumulierte Driftfehler über einen längeren Zeitraum bei
der Schätzung dieses Winkels. Deswegen ist meine Motion Capture Lösung nur geeignet
für das Aufnehmen kurzer Animationen für humanoide 3D Charaktere. Zum Schluss
werde ich meinen entwickelten Bewegungstracker einer auf den Markt bereits angebo-
tenen Trackinglösung gegenüberstellen. Die Ergebnisse zeigen, dass mit Ausnahme des
Gierwinkels für die geschätzte Orientierung akzeptable Resultate erbracht werden.
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Abstract

Motion capture technology has now existed for several decades and has been used in
many different fields for a variety of purposes. In the entertainment industry, it has
facilitated the creation of realistic and complex animations that, if created manually,
would be too difficult and time-consuming. Different motion capture technologies have
been invented over the years and they all have their strengths and weaknesses.
Inertial motion capture is a low-cost alternative that relies on inertial sensors to estimate
the orientation and position of a tracked object in three-dimensional space. Inertial
sensors are a combination of a three-axis gyroscope and a three-axis accelerometer and
are often contained in devices called inertial measurement units. In recent years they
have become smaller, more lightweight, cheaper, less power-consuming and offer high
sampling rates which makes them ideal for building a motion capture system. However,
the outputted measurements from these sensors suffer from distortion which means that
there needs to be a calibration procedure in place in order to minimize these distortions
from the measurements.
In this work, I developed a completely wireless configurable inertial motion capture
solution with a robot-assisted calibration procedure. This motion capture solution con-
sists of multiple motion trackers that are attached to the capture subject and wirelessly
transmit the motion data to a receiving computer. I implemented a quaternion-based
Extended Kalman filter as a sensor fusion method that uses the inertial data to estimate
the orientation of the motion tracker.
Due to the absence of a magnetometer sensor in this tracking solution, it is difficult to
maintain a good enough accuracy when estimating the yaw angles of the motion trackers
which leads to accumulated drifting errors over time. Therefore, this solution is only
suitable for recording short animations for humanoid 3D characters. Furthermore, I
compared my developed motion trackers to an existing commercially available tracking
solution and the results indicate, with the exception of the low accuracy of the yaw angle
estimation, acceptable orientation estimates.
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CHAPTER 1
Introduction

1.1 Problem Statement and Motivation

In this diploma thesis, I will present a low-cost and low-weight motion capture solution
using inertial measurement units (IMUs).
Motion capture is used across different fields and industries where the goal is to record
and sample the motions of humans or animals in three-dimensional space [KW08]. This
provides a major advantage when trying to create realistic and complex animations in a
fast and efficient way [Rah18] or when trying to analyze the motion data for research
purposes. There are several available motion capture technologies that have been de-
veloped over the years such as optical, mechanical or magnetic motion capture systems
where each technology has its advantages and disadvantages in terms of accuracy and
cost [KW08].
Inertial motion capture solutions have emerged as low-cost alternatives that are also
more versatile, portable, easy to setup and do not suffer from expensive post-processing
which is ideal for real-time applications [VP20].
Because of their low cost, small weight and size, micro-electromechanical system inertial
sensors have become increasingly popular in recent years. They offer high sampling rates
and allow the user to extract position and orientation information [CGD+19]. IMUs,
which contain these inertial sensors, can be placed on the user’s body or interactable
objects and transfer the sensor data to a virtual environment via a wireless connection
such as Wi-Fi. Unfortunately, measurements extracted from these sensors are often dis-
torted which could lead to noticeable errors when estimating the orientation of the sensor.
Therefore, a calibration procedure is necessary in order to minimize these errors [TPM14].

1



1. Introduction

1.2 Aim of the Work
The aim of this work is to track the user’s movement using a self-developed inertial
motion capture suit that will transfer the orientation data to a receiving motion capture
application running on a computer and contains a full rigged 3D character. This
application will communicate with all motion trackers simultaneously and receive real-
time inertial measurement unit (IMU) data. Each of these IMUs will be connected
to a microcontroller powered by a rechargeable battery, which are all encompassed in
a self-designed 3D printed chassis. For the microcontroller, I will use the cheap and
low-power consuming ESP32, which has an integrated Wi-Fi module and, for the IMU, I
will use the MPU-6050. Additionally, I will design a Printed Circuit Board (PCB) which
will allow me to efficiently and compactly assemble each motion tracker.
I plan to track the following body parts: head, left upper arm, left lower arm, right upper
arm, right lower arm, chest, tailbone, left upper leg, left lower leg, right upper leg and
right lower leg
Each motion tracker will be attached to all the above-mentioned body parts or other
objects the user wishes to track. The IMU data will be transferred via Wi-Fi using User
Datagram Protocol (UDP) communication to the receiving application. Then, I can
estimate the orientation of each individual object or body segment. In order to estimate
the orientation of an IMU sensor, I implemented a quaternion-based Extended Kalman
filter which takes the IMU data as input and outputs reliable rotation data parameterized
as a quaternion.
Due to the mentioned distortions of the IMU measurements, I will introduce a robot-
assisted calibration procedure that aims to estimate the sensor errors of each IMU which
can be then incorporated as additional parameters in my attitude estimation approach.
The self-designed robot has an arm with an IMU attached that can rotate around the
roll, pitch and yaw axes which is an important part of the data collection process in order
to estimate the calibration parameters.
Finally, I plan to provide an extensive technical evaluation of my motion capture system
where I will compare my motion trackers to an existing commercially available tracking
solution (HTC Vive tracker). Then I will analyze the accuracy of the full-body motion
capture results.

1.3 Structure of the Work
This thesis has the following structure. In chapter 2, I will explain important theoretical
concepts that are utilized in this thesis. I will give an overview on motion capture
and inertial sensors. Then, I will explain aspects of sensor fusion and the Kalman
filter algorithm. I will also cover angular velocity integration methods and rotation
parameterization using Euler angles and quaternions. Finally, I will give a brief overview
on the numerical minimization algorithm which I will use in my proposed calibration
procedure. In chapter 3, I will dive into the related work and present already existing
inertial motion capture solutions as well as state-of-the-art research papers describing
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1.3. Structure of the Work

the usage of IMUs for human motion tracking. Chapter 4, will present the methodology
behind my software and hardware implementation of my proposed inertial motion capture
system. Chapter 5 and 6 will discuss the implementation details for the hardware and
software solutions described in this thesis, respectively. In chapter 7, I will provide a
technical evaluation of my inertial motion capture system and highlight its strengths and
weaknesses. Finally, in chapter 8, I will summarize the project and provide suggestions
for possible improvements for future work.
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CHAPTER 2
Theoretical Background

In this chapter, I will describe important theoretical concepts that are utilized in this
thesis. First of all, I will give a general overview on motion capture and describe the
different technologies that exist along with their advantages and disadvantages. Then,
I will describe inertial sensors and explain how accelerometers and gyroscopes work
on a higher level. Afterwords, I delve into the topic of sensor fusion and describe the
complementary filter and the Kalman filter. In the Kalman filter section, I will also
highlight the differences between the regular Kalman filter and the Extended Kalman
filter algorithm. Subsequently, I will describe numerical methods for performing angular
velocity integration, primarily using Euler’s method and the Runge-Kutta method. In the
following section, I will explain how the orientation of a rigid body can be parameterized
in three-dimensional space using Euler angles and quaternions. Finally, I will write about
the Levenberg–Marquardt algorithm which I will use in my calibration algorithm.

2.1 Motion Capture
Motion capture can be seen as the recording and sampling of human motion or the motion
of animals and inanimate objects as data in three-dimensional space. The development
of contemporary motion capture technology can be attributed to research in the fields
of medical science, military and computer generated imagery (CGI) where it used for
various purposes [KW08]. In the movie, gaming and animation industry, it is used as a
mean to speed up the animation process and achieve high quality animations that would
otherwise be too complex to create manually [Rah18]. There are different categories of
motion capture systems which I will describe in the following sections.

2.1.1 Optical Motion Capture
Optical motion capture systems usually consist of a computer that controls multiple
cameras responsible for capturing the motions of a subject. Often times, markers are
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2. Theoretical Background

placed on the subject that are either reflective, which are also called passive markers, or
light-emitting, which are also referred to as active markers. For that, it is effective if the
subject wears a full-body unitard made from a stretchy fabric [KW08].
Passive markers, which are fabricated with reflective materials, have either spherical,
semi-spherical or circular shapes. Sizes and shapes of these markers vary based on
camera resolutions and capture subjects. For instance, markers that are placed on the
subject’s face are smaller than the ones placed on the subject’s torso. Light reflected
by passive markers come from light-emitting diodes (LEDs) that are mounted on the
cameras [KW08].
Active markers themselves consist of LEDs. There are systems where all LEDs are
illuminated simultaneously and there are ones where only selected LEDs are illuminated
at the same time, which eliminates the requirement to identity each individual marker at
a given time. The modulation of the amplitude or frequency of the LEDs allows them to
be identified by the system.
In order to triangulate the 3D position of a marker, at least two cameras are needed.
Accuracy of the estimated 3D position is increased by adding more cameras to the optical
system [KW08].
The advantages of optical motion capture are

• high optical data accuracy,

• high capture rate,

• the simulations capture of multiple subjects,

• the easily changeable configuration of the marker system depending on the project
and

• the possibility for the subjects to move freely in the capture volume.

The disadvantages of optical motion capture are

• expensive data post-processing,

• the high possibility of occlusion of the markers by other subjects or objects in the
capture volume,

• the need to control the lighting inside the capture volume and

• the expensive hardware required for these types of systems [KW08].

Figure 2.1 shows two optical motion capture systems being used, where one system uses
active markers and the other uses passive markers [Ver21].

Optical motion capture can also be performed without the use of markers. This is
referred to as markerless motion capture which was enabled by research advancements
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2.1. Motion Capture

Figure 2.1: An optical motion capture system: Upper image shows a performer wearing
passive markers and the lower image shows a performer wearing active markers [Ver21].

in the filed of computer vision. The subject’s movement is analyzed in multiple video
streams by computer vision algorithms to detect the human forms and decompose them
into single, isolated parts, which are then used for tracking [Nog12]. An example can be
seen in Figure 2.2.

2.1.2 Magnetic Motion Capture

A magnetic motion capture system consists of multiple tracking sensors placed on a
subject which are then used to measure their spatial relationship to a magnetic transmitter.
Since each sensor can output its translation and orientation, post-processing is reduced
compared to optical systems which makes magnetic systems very convenient for real-
time applications. Additionally, the problem of occlusion is eliminated which is also an
advantage over optical motion capture systems. Similar to optical systems, multiple
subjects can be recorded simultaneously with multiple setups. Another big advantage is
their lower cost compared to optical systems.
Their big disadvantage, however, is the possible distortion of the output by magnetic and
electrical interference caused by electronics or metal objects in the environment [KW08].
Sometimes even the building’s own structure can cause these kinds of interferences
to the magnetic system[Nog12]. One can divide magnetic systems into two groups.
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2. Theoretical Background

Figure 2.2: Markerless motion capture was used during filming of the Lord of the Rings
trilogy. The movements analyzed in the upper image are used to generate the CGI
character Gollum in the lower image which mimics the movements performed by the
actor [Nog12].

The first group relies on direct current (DC) electromagnetic fields, which are highly
sensitive to copper and aluminium, and the second group utilized alternating current
(AC) electromagnetic fields, which are sensitive to steel and iron [KW08].
Additionally, the batteries, which need to be recharged every few hours, and the wiring
needed to power the tracking sensors can be limiting to the movement of the capture
subject. Also, the sampling rate is lower than what is possible with optical systems
and the magnetic data can suffer from noise. Magnetic systems also lack the easiness of
changing the configuration of the tracking sensors and their capture volume is generally
smaller than optical systems [KW08].
Figure 2.3 shows an example of a magnetic motion capture suit [BRRP97].

2.1.3 Mechanical Motion Capture

A mechanical motion capture system measures the joint angles of a subject wearing
an exo-skeleton, which is an articulated device consisting of straight rods linked to
potentiometers at the joints of the body. Additional types of mechanical systems are
digital armatures and data gloves [KW08].
Mechanical motion capture systems can be used in real-time applications, are low cost,
easily transportable, do not suffer from occlusion or magnetic and electrical interferences.
Also, if the mechanical system is wireless, it can provide a large capture volume [KW08].
Another advantage theses types of systems have, are the similarity of the interface to stop
motion systems which are commonly used in the film industry. This similarity allows for
an easy transition between the technologies [Nog12].
A big issue of mechanical motion capture systems is their inability in measuring accurate
global translation, which they measure using accelerometers. For instance, if the subject
jumps, the recorded data will not follow the subject and instead stay on the floor. Often
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2.1. Motion Capture

Figure 2.3: A magnetic motion capture suit. [BRRP97].

times, magnetic sensors are added to increase the accuracy of the system. Another
disadvantage is the restriction of the subjects movement by the exo-skeleton, which can
also break if the subject performs movements that can damage the device, like rolling
on the floor. Additionally, mechanical systems suffer from low sampling rate and fixed
sensor configuration [KW08].
Figure 2.4 shows an example of a mechanical motion capture suit [Rah18].

Figure 2.4: A mechanical motion capture suit (exo-skeleton). [Rah18].

2.1.4 Inertial Motion Capture
An inertial motion capture system aims to estimate the orientation of body segments using
skin-mounted IMUs which contain inertial sensors. The estimation accuracy using these
sensors has improved significantly with recent advancements in the development of IMUs
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2. Theoretical Background

and signal processing techniques [VP20]. The process of calculating the position and ori-
entation from inertial sensor measurements is also referred to as dead-reckoning [KHS17].
There are significant advantages of inertial motion capture systems compared to other
systems such as optical motion capture. They are significantly cheaper, more versatile and
portable. Optical motion capture is often confined to a singular environment, whereas
an inertial system can be used in a variety of environment such as outdoors, in the
laboratory, in the workplace, in clinics or even at home. Additionally, they are not that
complicated or time consuming to set up compared to other motion capture systems
explained above and they also do not suffer from expensive post-processing, which makes
them ideal for real-time applications [VP20].
However, the biggest disadvantage of the sensors used in an inertial system are their
drifting errors, which often times can only be reduced by adding additional sensors [VP20].
Since this work is about my attempt at developing an inertial motion capture system, I
will talk more deeply about their properties and components in the following sections
and chapters.

2.2 Inertial Sensors
The combination of a three-axis gyroscope and a three-axis accelerometer is also referred
to as an inertial sensor. An IMU is a device that contains such an inertial sensor [KHS17].
Nowadays, with the developments of Microelectromechanical systems (MEMS), IMU
devices became much smaller, cheaper and have a reduced power consumption, which
made them more widely used in applications such as robotics, smartphone navigation or
Augmented and Virtual Reality [TN18].
MEMS are a combination of electrical and mechanical components in the micrometer scale.
They are created by a combination of semiconductor and micro-fabrication technologies,
where micro machine processing techniques are used to integrate the mechanical structures,
electronics and sensors into a common silicon substrate [Dad14].

2.2.1 Accelerometer and Gyroscope

Whereas the accelerometer sensor is used for measuring acceleration, the gyroscope is
used for measuring angular velocity as can be seen in figure 2.5 [Dad14].
An accelerometer makes use of Newton’s second law F = ma, which states that the

acceleration a of a body is in the same direction as and directly proportional to the force
F acting on a body and inversely proportional to the body’s mass m [Dad14]. Using this
principle, the accelerometer sensor can be seen as a mass suspended by springs. When
the mass is being displaced due to some movement, that displacement is measured using
a displacement pickoff which provides a signal proportional to the force acting on the
mass in the direction of the input axis. Figure 2.6 illustrates this principle [Woo07].
A gyroscope takes advantage of the Coriolis effect. It explains that a body rotating

in a frame of reference at angular velocity ω and a mass moving with velocity v, has a
force F that can be calculated by Fc = −2m(ω × v). In order to measure the Coriolis

10



2.2. Inertial Sensors

Figure 2.5: Right: Gyroscope measuring angular velocity. Left: Accelerometer measuring
acceleration along its sensitive axis. [Dad14].

Figure 2.6: Shows the spring arm system of an accelerometer [Woo07].

effect MEMS gyroscopes contain vibrating elements. The simplest vibrating element
geometry contains a single mass that can vibrate along a certain drive axis as can be seen
in figure 2.7. Whenever the gyroscope rotates, a secondary vibration is triggered along
the perpendicular sense axis because of the Coriolis force. By measuring this secondary
vibration the angular velocity can by derived [Woo07].

2.2.2 Coordinate frames
It is also important to define the different coordinate frames when talking about the
measurements outputted by gyroscopes and accelerometers [KHS17]:

• Inertial frame: Linear acceleration and angular velocity measured by the IMU
are with respect to this stationary coordinate frame, where the origin is positioned
at the center of the earth.

• Body frame: All inertial measurements are resolved in this frame, which is the
coordinate frame of the IMU device and is aligned with its chassis. The origin

11



2. Theoretical Background

Figure 2.7: A gyroscope containing a vibrating single mass [Woo07].

coincides with the center of the accelerometer triad.

• Navigation frame: This coordinate frame is the local geographical frame where
we want to navigate. In order to do that, we need to express the position and
orientation of the body frame with respect to the navigation frame as seen in figure
2.8 [KHS17]. In our application the navigation frame is stationary, since it does
not need to be moved or rotated.

Figure 2.8: Expressing position and orientation of the moving body frame with respect
to the navigation frame. t1 and t2 represent two different time steps. This is also referred
to as pose estimation. [KHS17].

2.3 Sensor Fusion
When readings from multiple sensors are available that would jointly provide more infor-
mation on the measured system than a sole sensor would provide by itself, a computational
methodology called sensor fusion can be applied to combine the measurements from these

12



2.3. Sensor Fusion

multiple sensors. Sensor fusion algorithms find their use in multiple applications such as
navigation and localization in robotics, understanding traffic scenes in autonomous cars
or analyzing biosignals in biomedical engineering [HS20].
The main objective of any sensor fusion algorithm is taking measurements from multiple
sensors and estimating one or more quantities of interest. One can summarize by saying
that a sensor fusion system consists of three main components (as can be seen in Figure
2.9) [HS20]:

1. Multiple senors for measuring observable quantities

2. One or multiple models for relating these measured quantities to quantities of
interest

3. Estimation algorithm which combines these models and the measured quantities
and estimates the quantities of interest [HS20]

Figure 2.9: Shows the three main components of a sensor fusion system [HS20].

In our case, the multiple sensors are the accelerometer and gyroscope and the quantity
of interest, which we want to estimate, is the orientation of the IMU device.
In the following sections, I will explain two sensor fusion algorithms, the complementary
filter and the more advanced Kalman filter, both of which are used in this project.

2.3.1 Complementary Filter
Given accelerometer and gyroscope measurements, the complementary filter tries to
estimate the attitude at time t based on measurements y1:t. Since both gyroscope and
accelerometer can provide information on orientation of the sensor, the complementary
filter can provide an estimate based on the advantages and disadvantages that are known
about both of these sensors [KHS17].
The orientation calculated from accelerometer measurements are noisy and suffer from
vibrations but have a higher accuracy and can therefore be trusted over long periods of
time. Orientations calculated from the gyroscope, on the other hand, suffer from drift
but are accurate and can be trusted on a short time scale.
The complementary filter exploits these properties when providing an orientation estimate.
When looking at it in the frequency domain, the gyroscope measurements have desirable
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2. Theoretical Background

properties at high frequencies and thus a high-pass filter can be applied on those
measurements. On the other hand, the accelerometer measurements have desirable
qualities at low frequencies and therefore a low-pass filter can be applied on these
measurements. The sum of the high-pass filter and the low-pass filter must equal to one,
which is also the rationality behind the name complementary filter [KHS17].
This concept can be illustrated in the one-dimensional case, where we have an angle
θacc calculated from accelerometer measurements and an angle θgyro calculated from
gyroscope measurements. The estimated angle using the complementary filter θ̂ can be
calculated using the following formula

θ̂t = (1 − γ) θacc,t + γ θgyro,t. (2.1)

γ is the only parameter that needs to be chosen beforehand. Choosing a large γ would
mean that the angle estimated by the gyroscope contributes more to the overall estimated
angle than the accelerometer, which in our case is the desired effect. Choosing a γ closer
to 1 would correspond to applying a high-pass filter to the gyroscope measurements and
a low-pass filter to the accelerometer measurements [KHS17].

2.3.2 Kalman Filter
The Kalman filter, which was published in the 1960s by Rudolf Emil Kalman and has
since revolutionized the field of estimation, can be seen as a recursive predictive filter
that relies on the use of state space techniques and recursive algorithms [Kle04].
The Kalman filter can estimate the state of a dynamic system, that can suffer from noise
which is often assumed to be white noise. The filter then improves the estimated state by
incorporating measurements related to that state. These measurements, however, also
suffer from disturbances [Kle04].
The filter is composed of two core steps, which are

1. the prediction step

2. and the correction step.

The first step predicts the dynamic model while the second step corrects it using the
observation model, where the goal is to minimize the error covariance of the estimator.
This is an iterative process where each time step the state of the previous time step
is used as an initial value. Figure 2.10 shows the prediction and correction step of the
Kalman fitler [Kle04].
The state vector, dynamic model and observation model are the basic components of

the Kalman filter [Kle04]:

• The state vector describes the state of the dynamic system and simultaneously
represents its degrees of freedom. It contains the variables of interest, which are
not measured directly but inferred from the measurements. The state vector takes
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Figure 2.10: Shows the core building blocks of the Kalman filter [Kle04].

two values. The first value is the a priori value which is the predicted value. The
second value is the a posteriori value, which is the corrected value [Kle04].

• The dynamic model can be seen as a description of the transformation of the
state vector over time and it is usually a system of differential equations, which
can be written as

x′(t) = d

dt
x(t) = f(x(t), m(t)) (2.2)

or in the case of a linear system as

x′(t) = d

dt
x(t) = A · x(t) + w(t) [Kle04]. (2.3)

x(t) is the state vector and A is the dynamic matrix. w(t) is the process noise
which is the assumed white noise with a normal distribution [WB01] that has the
covariance matrix Q(t). In a linear system A is constant [Kle04].

• The observation model describes the relationship between the measurements
and the state. When the system is linear, the measurements can be represented
by a system of linear equations that depend on the state variables. This can be
written as

z(t) = h(x(t), v(t)) = H · x(t) + v(t), (2.4)

where H is the observation matrix, z(t) is the vector containing the observations
at time t and v(t) is the measurement noise that has the covariance matrix R(t)
and also has a normal distribution [WB01]. Similar to the dynamic matrix, H is
constant in a linear system [Kle04].

The Kalman Filter Algorithm

Here, I want to give a broad overview of the discrete Kalman filter algorithm.

Prediction Step: This step consists of the time update equations which are responsible
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for projecting the current state and error covariance forward in time in order to get the a
priori estimates for the subsequent time step. The two time update equations are

x̂−
k = Ax̂k−1 + Buk

P −
k = APk−1AT + Q

(2.5)

where k is the time step, A is the state transition matrix, x̂−
k is the a priori state estimate,

Q is the process noise covariance, P −
k is the a priori estimate error covariance and Pk

is the a posteriori estimate error covariance. uk is the optional control input and the
matrix B relates this control input to the state vector [WB01].

Correction Step: This step consists of the measurement update equations which
are responsible for using new measurements to get improved a posteriori estimates. The
three time measurement update equations can be written as

Kk = P −
k HT (HP −

k HT + R)−1

x̂k = x̂−
k + Kk(zk − Hx̂−

k )
Pk = (I − KkH)P −

k

(2.6)

where Kk is the Kalman gain, x̂k is the a posteriori state estimate at step k, R is the
measurement noise covariance, H is the observation matrix, zk is the measurement at
step k and I is an identity matrix [WB01].
(zk − Hx̂−

k ) is also refered to as the measurment innovation or residual and it measures
the difference between the predicted measurement Hx̂−

k and the actual measurement zk.
An innovation of zero means total agreement between the two values. K is also refered
to as the blending factor [WB01] and signifies how large the correction will be [Roj03].

The Extended Kalman Filter Algorithm

The Kalman filter algorithm explained above is only suitable for linear systems. In order
to make the algorithm work for non-linear systems, it has to be modified. The Kalman
filter used to solve non-linear problems is called the Extended Kalman filter [Kle04].
In case of a linear system, the dynamic matrix A and the observation matrix H are
constant and can therefore be pre-computed. This reduces the amount of time consuming
calculations and thus makes it more efficient than having a non-linear system, where
the dynamic matrix and observation matrix are functions of the state and therefore are
subjected to change during every time step [Kle04].
The algorithm for the Extended Kalman filter an be described as follows:

Prediction Step: The two time update equations are

x̂−
k = f(x̂k−1, uk, 0)

P −
k = AkPk−1AT

k + WkQk−1W T
k .

(2.7)
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Correction Step: The three time measurement update equations can be written as

Kk = P −
k HT

k (HkP −
k HT

k + VkRkV T
k )−1

x̂k = x̂−
k + Kk(zk − h(x̂−

k , 0))
Pk = (I − KkHk)P −

k .

(2.8)

There are few differences to note here between this Extended Kalman filter algorithm
and the one explained previously.
The jacobians A, W , H and V have the subscript k attached to them to indicate that they
change at each time step k and have to be recomputed. W is a matrix that represents
the jacobian of partial derivatives of f with respect to w and the V matrix represents
the jacobian of partial derivatives of h with respect to v [WB01].
Also notable is that, for the Kalman gain equation, Hk only magnifies the relevant
components of the measurements. This means that if a one-to-one mapping between
the state and the measurement does not exist, the Kalman gain is affected by Hk so
that it only magnifies parts of the residual zk − h(x̂−

k , 0) that would affect the state. If a
one-to-one mapping does not exist over all the measurements then the algorithm will
diverge, making the process unobservable [WB01].
Figure 2.11 shows a high-level diagram explaining the steps with the equations needed
for the Extended Kalman filter algorithm [WB01].

Figure 2.11: Shows the complete Extended Kalman Filter algorithm [WB01].

2.4 Angular Velocity Integration
The integration of angular velocity is a common application in different fields such as
aerospace navigation, computer graphic or robotics. For example, in the case of an inertial
navigation system, as the one described here in this thesis, the angular velocity measured

17



2. Theoretical Background

from the gyroscope embedded in an IMU is used to approximate the global orientation
of this device. In order to do so, the coordinate transformation matrix between the
body-fixed coordinate system and the spatial coordinate system has to be calculated by
integrating angular velocity-rotation differential equations in real time [ZS11].
Since the angular velocities measured from the gyroscope are not constant in time, the
differential equations to be solved are non-linear making an analytical solution impossible.
Therefore, numerical methods have to be applied to solve these non-linear differential
equations [ZS11].
There are different ways of integrating angular velocity and I am going to explain two
numerical methods in the following sections. These are the Euler method and the
Runge-Kutta method.

2.4.1 Euler Method

In order to approximate the solution of a differential equation, Euler’s method computes
the slope of a tangent line between two points. The tangent in this case represents the
derivative of a function at a certain point and can therefore be used to approximate the
subsequent point. The recursive formula for Euler’s method can be written as

ẏn = f(xn, yn)
yn+1 = yn + hẏn, for n = 0, 1, 2... [Mol18]

(2.9)

In our case, yn represent the rotation angle at a certain time step t. ẏn is the derivative
of the rotation angle at that time step, which is the angular velocity. yn+1 is rotation
angle at the subsequent time step, which we are trying to approximate. h is the step
size and in our example corresponds to the time difference between the two time steps.
Considering these conditions, the angular velocity integration using Euler’s method can
be rewritten as

ϕ(t + ∆t) = ϕ(t) + ω(t)∆t, (2.10)

where ϕ is the rotation angle and ω is the angular velocity.

2.4.2 Runge-Kutta Method

Euler’s method is generally not recommended when integrating angular velocity as it
lacks the accuracy and stability provided by more advanced numerical methods. One of
these methods is the Runge-Kutta method [PTFV92].
There are different versions of the Runge-Kutta method. The first-order Runge-Kutta
method corresponds to Euler’s method explained above, while the more accurate second-
order Runge-Kutta method, corresponds to the midpoint method, where the slope at
the midpoint of the interval h is considered in the evaluation. However, in this work,
the fourth-order Runge-Kutta method, which is more accurate than the second-order
method, is used for solving these non-linear differential equations. The formula for this
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method can be written as

k1 = hf(xn, yn)

k2 = hf(xn + h

2 , yn + k1
2 )

k3 = hf(xn + h

2 , yn + k2
2 )

k4 = hf(xn + h, yn + k3)

yn+1 = yn + k1
6 + k2

3 + k3
3 + k4

6 [PTFV92].

(2.11)

Similar to Euler’s method, when integrating the angular velocity using the fourth-order
Runge-Kutta method, the formula can be rewritten as

k1 = ω(t, ϕ(t))∆t

k2 = ω(t + ∆t

2 , ϕ(t) + k1
2 )∆t

k3 = ω(t + ∆t

2 , ϕ(t) + k2
2 )∆t

k4 = ω(t + ∆t, ϕ(t) + k3)∆t

ϕ(t + ∆t) = ϕ(t) + k1
6 + k2

3 + k3
3 + k4

6 .

(2.12)

Figure 2.12 illustrates a geometric interpretation of the fourth-order Runge-Kutta method.

Figure 2.12: For the fourth-order Runge-Kutta method, four different evaluations are
necessary. The first evaluation is at the initial point, the second and third evaluations
are at the midpoint of the interval and lastly the fourth evaluation is at the endpoint.
The filled circles are the final function values, while the non-filled circles represent the
function values used for calculating the final values, before being discarded [PTFV92].
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2.5 Orientation representations
In this section, I will describe ways to represent the attitude of a rigid body using
mathematical constructs such as Euler angles and quaternions.

2.5.1 Euler Angles
Using a set of three Euler angles (also refered to as roll, pitch and yaw angles) is the
most common method to describe the attitude of a rigid body in three-dimensional space.
They are easy to understand and have thus become very popular. Unfortunately, they
suffer from disadvantages that make them hard to work with:

• Certain essential Euler angles functions contain singularities.

• The integration of incremental changes in attitude over time is less precise using
Euler angles compared to quaternions [D+06].

Euler angle rotations are calculated by applying three consecutive coordinate rotations,
which are rotations about a single coordinate axis. The rotation matrices for the x-,y-
and z-axes coordinate rotations with Ri : R → SO(3), i ∈ [x, y, z] are

Rx(α) =

1 0 0
0 cos (α) sin (α)
0 − sin (α) cos (α)

 (2.13)

Ry(α) =

cos (α) 0 − sin (α)
0 1 0

sin(α) 0 cos (α)

 (2.14)

Rz(α) =

 cos (α) sin (α) 0
− sin (α) cos (α) 0

0 0 1

 . (2.15)

The Euler angle vector representing the attitude of a rigid body is defined by

u := [ϕ, θ, ψ]T , (2.16)

where the coordinate rotation about the x-axis is by angle ϕ, the coordinate rotation
about the y-axis is by angle θ and the coordinate rotation about the z-axis is by angle ψ.
In order to map the Euler angle vector to its corresponding rotation matrix, one can use
the function, Rxyz : R3 → SO(3),

Rxyz(ϕ, θ, ψ) := Rz(ψ)Ry(θ)Rx(ϕ) [D+06]. (2.17)
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Following regular matrix multiplication rules, Rxyz can be defined as

Rxyz(ϕ, θ, ψ) = cos (θ) cos (ψ) − cos (θ) sin (ψ) − sin (θ)
cos (ϕ) sin (ψ)+sin (ϕ) sin (θ) cos (ψ) cos (ϕ) cos (ψ)−sin (ϕ) sin (θ) sin (ψ) − sin (ϕ) cos (θ)
sin (ϕ) sin (ψ)−cos (ϕ) sin (θ) cos (ψ) sin (ϕ) cos (ψ)+cos (ϕ) sin (θ) sin (ψ) − cos (ϕ) cos (θ)

 (2.18)

.

Out of 12 possible rotation sequences [Hen77], I assume in this case that the rotation
sequence is (x,y,z), where the rigid body is first rotated about the x-axis (roll), then
about the y-axis (pitch) and finally about the z-axis (yaw). When used in this sequence
these Euler angles are also referred to as Cardan angles or Tait-Bryan angles and they
are often used in computer graphics and aerospace engineering [D+06].
A major drawback of Euler angle representations are singularities that emerge from the
so called gimbal lock. Gimbal lock is triggered when the second Euler angle (in this case
the pitch angle) reaches a critical value, e.g. 90 degrees, causing changes in the first and
third Euler angle to be indistinguishable. Quaternions are immune to such singularities
and are therefore the preferred method for representing attitude in three-dimensional
space [D+06].

2.5.2 Quaternions
Mathematician William R. Hamilton introduced in 1843 the concept of quaternions,
which are a generalization of complex numbers, as a way of describing rotations in
three-dimensional space [BA12].

Advantages and disadvantages of quaternions over Euler angles

Compared to Euler angles, important functions of quaternions do not suffer from singu-
larities and are convenient for applying angular velocity integration over time since it is
less computationally expensive. However, quaternions must have unit length, i.e. unit
quaternions, in order to be considered a pure rotation. Unlike Euler angles, which have
three independent parameters, they are not easy to understand, since the four parameters
needed to describe a quaternion are depended on each other and lack intuitive physical
meanings [D+06].

Definition

A quaternion consists of a scalar part, which represents the real value, and a vector part,
which represents the three imaginary values. The sum of the scalar part q0 and the vector
part q⃗ = (q1, q2, q3) describe a quaternion q [Gra08]. This can be written as

q = q0 + q⃗ = q0 + q1i + q2j + q3k, (2.19)
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where i, j and k satisfy the following conditions [BA12]:

i2 + j2 + k2 = −1
ij = k, ji = −k

jk = i, kj = −i

ki = j, ik = −j

(2.20)

Addition and Multiplication

Adding two quaternions together is simply a component wise addition of the four elements
of each quaternion. For quaternions q and p, this can be written as

p + q = (p0 + q0) + (p1 + q1)i + (p2 + q2)j + (p3 + q3)k [Jia22]. (2.21)

Quaternion multiplication is not commutative, as can be shown by 2.20, but satisfies the
associativity rule [Boy17]. The product of quaternions q and p can be written as

q · p = (q0 + q1 + q2 + q3) · (p0 + p1 + p2 + p3) =
p0q0 − q1p1 − q2p2 − q3p3

+ (q1p0 + q0p1 + q2p3 − q3p2)i
+ (q2p0 + q0p2 + q3p1 − q1p3)j
+ (q3p0 + q0p3 + q1p2 − q2p1)k

(2.22)

or more concisely as

q ◦ p = (p0q0 − p⃗ · q⃗, q0p⃗ + p0q⃗ + q⃗ × p⃗) [Gra08]. (2.23)

Norm, conjugate and inverse of a quaternion

The norm of a quaternion is defined as

|q| = q2
0 + q2

1 + q2
2 + q2

3. (2.24)

A quaternion that has a unit length is called a unit quaternion, which is a possible
representation of a rigid body attitude.
The conjugate of a quaternion q is

q∗ = q0 − q1i − q2j − q3k (2.25)

and its inverse is
q−1 = q∗

|q|2 [BA12]. (2.26)

As can be seen by the equation above, for unit quaternions, its inverse equals its conjugate.
However, due to the possibility of numerical errors, this rule could be violated [Boy17].

22



2.5. Orientation representations

Vector rotation

In order to rotate a vector, which lives in R3, using a quaternion, which lives in R4, one
has to transform a vector into a pure quaternion, which is defined as a quaternion with
the real part equal to zero.

Figure 2.13: Mapping a three-dimensional vector to a pure quaternion [Jia22].

The rotation of a vector, mapped to a pure quaternion, from coordinate frame A to
coordinate frame B using a unit quaternion qR can be performed using the conjugation
operation, which can be written as

vB = qR ◦ vA ◦ q∗
R. (2.27)

vA represents the pure quaternion in coordinate frame A and vB represents the pure
quaternion in coordinate frame B after the rotation [BA12]. A unit quaternion can be
converted into a three-dimensional rotation matrix, making converting a vector into a
pure quaternion unnecessary:

v⃗B = R(q)v⃗A, where

R(q) =

2(q2
0 + q2

1) − 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q2

0 + q2
2) − 1 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q2
0 + q2

3) − 1

 [Kui99].
(2.28)

Differentiation and Integration

Here, I will consider the quaternions to be unit quaternions, since their differentiation
formula becomes different and more complicated when their magnitude is not one [Jia22]
and because unit quaternions are the ones I will be using throughout my work.
I will consider a quaternion q to be a function of time t. q(t) describes the relative
change of a moving object’s orientation in its body frame with respect to its world frame.
Furthermore, w(t) describes the angular velocity of the body frame relative to the world
frame [Jia22]. The derivative of q(t) can be written as

q̇ = 1
2Ω(w)q. (2.29)
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Ω(w) is the real matrix representation of the angular velocity vector:

Ω(w) =


0 −w1 −w2 −w3

w1 0 w3 −w2
w2 −w3 0 w1
w3 w2 −w1 0

 [AC13]. (2.30)

For quaternion integration, I will consider Euler’s method as an approximation of a
quaternion at a certain time step. With k being the time step and h the step size, a
quaternion integration using Euler’s method can be written as

qk+1 = qk + 1
2hΩ(wk)qk [Jia22]. (2.31)

2.6 Levenberg–Marquardt algorithm
The problem of fitting a parameterized mathematical model to a collection of data values
by minimizing an objective, which is represented as a sum of squares and errors of
the model function relative to the collection of data values, is called a least squares
problem. If the least squares objective’s parameters are quadratic, the model is linear
in its parameters. Is the model non-linear in its parameters, then the least squares
problem is solved by utilizing iterative solution algorithms, which minimize the sum of
the squares of the errors of the model function with respect to the data values. Usually,
a sequence of carefully selected updates to values of the model parameters are utilized.
The Levenberg-Marquand algorithm is such an algorithm that was developed to solve
non-linear least squares problems [Gav19].
A function to be minimized by this algorithm has the form:

f(x) = 1
2

m

j=1
r2

j (x). (2.32)

x = (x1, x2, ..., xn) represents a vector and rj are called residuals. Each rj is a function
from Rn to R. Furthermore, there is the assumption that m ≥ n [Ran04].
The Levenberg-Marquand algorithm can be considered as a combination of the gradient
decent method and the Gauss-Newton method, both of which are numerical minimization
algorithms [Gav19].

The Gradient Descent Method

The gradient decent method is considered a general minimization algorithm, where at
each step the parameter values are updated by adding the negative of the scaled gradient.
This can be written as

xi+1 = xi − λ∇f [Ran04]. (2.33)

Problems with simple objective functions are good applications for the gradient descent
method, where good convergence is possible [Gav19].
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The Gauss-Newton Method

With the Gauss-Newton method there is the assumption that the objective function near
the optimal solution is approximately quadratic. This method, compared to the gradient
descent method, is well-suited for moderately-sized problems where it generally has a
much faster convergence [Gav19]. The update rule can be written as

xi+1 = xi − ∇f(xi)
∇2f(xi)

[Ran04]. (2.34)

The Levenberg–Marquardt Method

The Levenberg-Marquant algorithms uses the two methods explained above, in order to
combine the advantages provided by the Gauss-Newton method and gradient descent
method. Thus, the update rule is a combination of the two methods and can be written
as

xi+1 = xi − ∇f(xi)
H + λ diag[H] [Ran04]. (2.35)

In the equation above, H represents the Hessian matrix evaluated at xi. The Levenberg-
Marquant method behaves similar to the Gauss-Newton method if the parameters are
near the optimal value, and it behaves similar to the gradient descent method if the
parameters are far from the optimal value [Gav19].

The steps of the Levenberg–Marquardt algorithm can be simply described as

1. Update using the equation 2.35.

2. Calculate the error using the new parameter vector.

3. Has the error increased, then the last step is reversed and λ is increased by a
significant factor. After that, go back to (1).

4. Has the error decreased, then the update step is accepted and λ is decreased by a
significant factor.

5. Go back to (1) [Ran04].
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CHAPTER 3
Related Work

In this chapter, I will describe existing solutions for inertial motion capture. In the
first section, I will present solutions that are already on the market. After that, I will
summarize several state-of-the-art research papers describing the usage of IMUs for
extracting motion data.

3.1 Commercially Available Inertial Motion Capture
Solutions

I this section I will list and describe three commercially available inertial motion capture
systems: Xsens MVN, Sony mocopi and Perception Neuron.

3.1.1 Xsens MVN
Xsens MVN is presented as a full-body human motion capture system that is cheap
and easy to use. It consists of 17 inertial and magnetic motion trackers that capture
the subject’s motion. That motion data is then transmitted via a wireless connection
to a PC which is then processed using advanced algorithms and biomechanical models.
Different versions of the Xsens motion capture engine are offered which target different
customer and market needs. There is MVN Animate for the animation market and MVN
Analyze for the human motion measurement market. In addition to the different motion
capture engines, two different hardware systems are offered: MVN Awinda and MVN
Link [SGB+18].

Hardware

Each of the 17 motion trackers contain both inertial and magnetic sensors which are 3D
gyroscopes, 3D accelerometers and 3D magnetometers. Each tracker offers high sampling
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rates that could exceed 1 kHz and transmits the data at a lower rate, e.g. 60 Hz. The
data outputted by theses sensors are run through an advanced signal processing pipeline.
The 17 tackers are placed on the user’s head, sternum, shoulders, upper arms, fore arms,
hands, pelvis, upper legs, lower legs and feet [SGB+18].
Next, I want to explain the differences between MVN Link and MVN Awinda.

• MVN Link:
MVN Link is the body-wired solution where the motion trackers are wired and
connected to an on-body data hub. This data hub is not only responsible for
powering the trackers but also for gathering the data and sending the data to a
computer via Wi-Fi. The data hub also makes it possible to record the motion data
and store it in its internal memory without transmitting the data to the computer
in real time. The MVN Link system has a battery life of 10 hours during normal
use [SGB+18].
The provided custom lycra suit allows for simplified mounting of the motion trackers
on specific body locations [SGB+18].

• MVN Awinda:
MVN Awinda is a completely wireless solution where the motion trackers are
attached to the body using straps. Each motion tracker has its own battery and
transceiver for wirelessly transmitting the data. The battery life is 6 hours and
thus lower than the battery life of MVN Link [SGB+18].

Figure 3.1 shows MVN Link and MVN Awinda [SGB+18].

Software

As previously mentioned, the Xsens software engine has customized versions for the 3D
Character Animation market (MVN Animate), which includes games and movies, and
for the Human Motion Measurement market (MVN Analyze), which includes research,
sports and ergonomics [SGB+18].
The user can choose between two processing modes that are offered by the engines. In
the first mode, the data outputted by all motion trackers is combined with advanced
biomechanical models in real time. The second mode adds an additional feature where
the data is processed over a larger time window for achieving more consistent and optimal
estimations of position and orientation of each body segment [SGB+18].

Motion tracking

The biomechanical model is a key component in the Xsens engine for estimating the
final position and orientation of a tracked body part. The model consists of 23 segments
which are the head, neck, shoulders, upper arms, lower arms, hands, pelvis, L5, L3, T12,
T8, upper legs, lower legs, feet and toes. However, L5, L3, T12, neck and toes do not
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Figure 3.1: Xsens MVN Awinda on the left and Xsens MVN Link on the right [SGB+18].

have inertial or magnetic sensors attached and their movements are estimated using a
combination of the biomechanical model and the information from the connected tracked
segments [SGB+18].
Additionally, the software engines provide different ways for handling interactions with
the environment, specifically how to deal with different floor levels caused by inclines,
stairs or soft floor [SGB+18]. Figure 3.2 shows the main components needed for the
Xsens software engine to perform motion capture [SGB+18].

Calibration

Before performing motion capture using the Xsens MVN, a calibration process is required
to estimate the size and proportions of the tracked subject and the orientation of the
sensors with respect to the body parts they are attached to [SGB+18].
Adjusting the scale can be performed by several input parameters provided by the user.
Body height and foot length are the minimum parameters required to find the most
optimal scale. Providing additional input parameters can help the engine better estimate
the scale of the virtual counterpart of the tracked subject.
To find the alignment between the body parts and their attached sensors, the tracked
subject has to stand still in either the N-pose or the T-pose (see Figure 3.3) and then
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Figure 3.2: An overview of how inertial motion capture is performed by the Xsens
MVN [SGB+18].

walk a few meters back and forth for a short time period [SGB+18].
In order to find the origin and the forward X-direction of the local coordinate system,

Figure 3.3: The N-pose on the left and the T-pose on the right. [SGB+18].

the last calibration step requires the subject to stand in either the N-pose or T-pose
while facing towards the forward direction of the measurement environment [SGB+18].

3.1.2 Sony mocopi

Sony mocopi is a 3D inertial motion capture solution that consists of six lightweight
sensors (see Figure 3.4). The manufacturer calls this solution Mobile Motion Capture,
because this technology allows the user to record his or her own movements and trans-
fer that information to digital characters all while wearing everyday clothes in various
indoor and outdoor locations without the need for expensive and time-consuming hard-
ware setups [moc23a]. A compatible smartphone is enough to use this motion capture
system [moc23b].
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Figure 3.4: The six light-weight sensors where each one is assigned to a specific body
segment [moc23b].

Hardware

Each sensor module consists of a 3D accelerometer and a 3D gyroscope. A magnetometer
sensor is not present in this tracking solution. Each sensor weighs 8 grams and has a
diameter of 3.2 cm [moc23b].
Each sensor, which has a battery life of up to 10 hours, is paired with a compatible
smartphone using Bluetooth. After successful pairing, the mocopi smartphone application
can then transfer the motion data to a computer via Wi-Fi and the UDP protocol. The
motion data is transmitted at a rate of 50 Hz [moc23b].

Software

The smartphone application support two modes, which are either saving videos of the
motion data applied to an avatar in a chosen backdrop or saving the recorded raw
motion data on the smartphone device. Additionally, it makes it possible to stream
the motion data using Wi-Fi to a computer with a running Unity or Unreal Engine
application [moc23b].
Since the data processed from the accelerometers and gyroscopes can drift over time,
the provided software allows the user to reset the origin and orientation of the targeted
avatar [moc23b].
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Motion tracking

From the six sensors attached to head, waist, hands and legs, the 3D position and posture
of every joint angle is estimated. This process is performed in two steps (see Figure 3.5):

1. Estimation of the joint positions where the sensors are attached: First
the data from the accelerometers and gyroscopes are captured. Using integral
calculation, the 3D position of the joints can be estimated which, however, are
prone to errors that accumulate over time. Using an AI model, these errors can be
corrected to get better estimations of each joint position [moc23a].

2. Estimation of the intermediate joint positions where the sensors are
not attached: The posture and position of an intermediate joint, that connects
two IMU-tracked body segments, cannot be uniquely calculated using simple
geometric operations because of the complicated structure of the human body and
the high degree of freedom of its joints. Therefore, an interpolation of the joint
positions is performed assisted by an AI model which was trained on various human
movements [moc23a].

Figure 3.5: The data from the accelerometers and gyroscopes (1) are used to calculate
joint posture (2) and joint position (3) [moc23b].

Calibration

Calibrating the sensors is done in four consecutive steps:

1. Selecting the height of the tracked subject in the smartphone application.

2. Standing still in the N-pose.
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3. Walking one step forward.

4. Standing still in the N-pose [moc23b].

3.1.3 Perception Neuron
Perception Neuron is another inertial motion capture solution which is offered in two
different variants: Perception Neuron Studio and Perception Neuron 3.

Hardware

Perception Neuron Studio is considered to be the manufacturer’s flagship solution which is
more advanced in both accuracy and performance. The battery life of each of the included
18 sensor modules is up to 10 hours and the system supports frame rates up to 240 FPS
with a wireless range of 7 meters. Each sensor module has an embedded 9 degrees of
freedom (DoF) IMU sensor. This solution can also be paired with the Perception Neuron
Studio Gloves, which offer five-finger tracking using six IMUs strategically placed on each
glove [pns23a].
Perception Neuron 3 is a less expensive and more portable solution with a battery life
of up to 5 hours for all 18 sensors, 60 FPS sampling frequency and a 4 meter wireless
range. All motion data is transferred to the computer using a provided USB Transceiver
to ensure seamless communication. This solution can be paired with three-finger capture
gloves. By only tracking the user’s thumb, index and middle fingers using three separate
IMUs, the orientation and position of the remaining fingers are approximated [pns23b].
Figure 3.6 shows the Perception Neuron 3 inertial sensor and Figure 3.7 shows all 18 of
those trackers attached to a capture subject.

Figure 3.6: The Perception Neuron 3 body sensor with the dimensions 27.9 x 16.2 x 11.6
mm and 4.1 grams weight. [pns23b].

Software

With each of the hardware solution explained above, the capture and recording software
solution Axis Studio is also provided. It not only supports real-time capture and recording
but also streaming into third party 3D applications. Features of this software include

33



3. Related Work

Figure 3.7: All 18 sensors attached to a capture subject using body straps [pns23c].

advanced data processing, for cleaning up recorded motion capture data before export,
and a magnetic field sweeper, which visualizes magnetic field data in the environment
to assist the user in finding the most optimal location for performing inertial motion
capture with minimal magnetic interference [pns23d].

Calibration

The manufacturer describes four calibration steps necessary to optimally estimate the
capture subject’s posture [SFM+19]:

1. Sitting in a chair while remaining as still as possible.

2. Standing up, placing hands down on the side of the thighs while keeping feet
parallel.

3. Standing still in a T-pose.

4. Bending knees to approximately 45 degrees and placing arms forward while palms
face the floor [SFM+19].

3.2 Other Solutions for Extracting Motion Data using
IMUs

I found several state-of-the-art research papers describing the usage of IMUs to extract
motion data.
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3.2.1 Inertial motion capture for gait analysis
[CGD+19] developed a modular inertial motion cature system using low-cost IMUs that

is able to estimate body segment orientation, posture angle trends as well as performing
gait recognition for working activities in industrial environments. Each sensor module
consists of an IMU (MPU-6050), that is composed of a 3D accelerometer and a 3D
gyroscope, and a 3D magnetometer sensor (HMC5883L). For their microcontroller they
used a Raspberry Pi. The sensors are attached to the following body segments: pelvis,
trunk, left/right arm, left/right forearm, left/right upper leg and left/right lower leg.
The orientation extracted from each sensor module is parameterized using quaternions
in order to avoid singularities. In order to achieve reliable attitude estimation, they
performed sensor fusion using an Extended Kalman Filter algorithm, which takes the
accelerometer, gyroscope and magnetometer readings as input. For each body segment
the Kalman Filter outputs the Tait-Bryan Euler angles (roll, pitch and yaw). Figure 3.8
shows the motion tracking system in an upper-body configuration [CGD+19].

Figure 3.8: The body motion tracking system as proposed by [CGD+19].

3.2.2 Inertial motion capture for underwater gait analysis
[MFPC+21] studied underwater gait kinematics for patients in rehabilitation using an

underwater inertial measurement system. They conducted a study where the goal was to
evaluate the proposed underwater IMU system for calculating the subject’s knee angles
during gait in both land and underwater settings while comparing the results to an
optical tracking solution, which they consider to be the ground truth.
The wearable inertial trackers are placed on the right upper and lower leg of the capture
subject. For the IMU sensor the BNO055 was selected which has a 3D accelerometer, 3D
gyroscope and also includes a 3D magnetometer. Figure 3.9 shows the basic hardware
components of each of these waterproof trackers [MFPC+21].
The proposed calibration procedure for each subject consists of first standing in an
upright position, then lifting the right leg up in hip flexion for at least 5 seconds. Finally,
the subject walks along a straight line. They concluded that their proposed system
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Figure 3.9: The waterproof motion trackers worn by the subjects [MFPC+21].

provides reliable and repeatable results when calculating the knee angles in an underwater
setting [MFPC+21].

3.2.3 Inertial motion capture for teleoperation
[ZPW+22] suggest a solution for robot teleoperation using an IMU-based wearable

motion-capture suit. Their project focuses not only on providing methods for remote
controlling a robot in a more intuitive way but also providing the user with the capability
of triggering more complex movements, which would be otherwise difficult to perform
using e.g a joystick.
Their hardware for the robot consists of a quadruped robot, a modified 5-IMU robotic
arm and RGB camera, which is responsible for providing the user with visual feedback
via a VR headset, thus enabling telepresence. For their motion capture suit, they used
the commercially available solution Perception Neuron. In addition to the 16 IMU
sensors that are attached to the different body segments of the captured subject, the user
also wears Studio Motion Capture gloves for accurate finger tracking. The HTC Vive
Pro was used as a VR system. Figure 3.10 shows the teleoperation system developed
by [ZPW+22].

3.2.4 Angular kinematic analysis in sports using IMUs
In the research paper published by [DGVRM+21], the level of agreement for angular
velocity between an IMU gyroscope and a 3D optical motion capture system are evaluated
in the context of playing tennis. They state that optical capture methods are considered
to be the gold standard for kinematic evaluation due to their high accuracy. However,
they describe the limitations that optical motion sensors have, including mandatory line
of sight, specific lighting conditions as well as movement restrictions and discomfort of
the user caused by the high number of markers placed on the capture subject. They
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Figure 3.10: The user controlling the robot while wearing the inertial motion capture
suit and a VR headset [ZPW+22].

further emphasize the importance of a high sampling rate for achieving good results
whether the motion is recorded using optical or inertial sensors [DGVRM+21].
For their gyroscope sensors, they used the IDG-650 (for x- and y-axes) and ISZ-650 (for
z-axes) and they recorded the angular velocity at a frequency of 128 Hz. The tracker were
placed on the participant’s body segments using 2 cm wide elastic belts and they ensured
that they did not cause any discomfort that would affect the participant’s movements
while playing tennis. For optical tracking they placed passive marker on the IMU trackers
and the cameras recorded the subject’s movement also with a sampling frequency of 128
Hz. Each participant wore four trackers on the head, trunk, arm and forearm as can be
seen in Figure 3.11 [DGVRM+21].
After conducting the experiments described in the paper, the authors concluded that the
IMU gyroscope data and the data extracted from optical sensors show almost perfect
linear relationship and concordance in both relative and absolute values [DGVRM+21].

3.2.5 Inertial motion capture with an improved Extended Kalman
Filter algorithm

[LLW+22] propose a full-body inertial motion capture system with an improved sensor
fusion method to not only estimate orientation but position of the capture subject in the
virtual environment. For sensor fusion, they use the Extended Kalman Filter algorithm
in combination with the foot-mounted zero-velocity-update (ZUPT) technique, which is
used to estimate the position. Similar to [DGVRM+21], they compare their results to an
optical motion capture system.
Their trackers consist of the IMU sensor MPU-9280, which has a built-in 3D accelerometer,
3D gyroscope and 3D magnetometer, the microprocessor STM32F103C8T6, a Wi-Fi
module and a 450-mAh lithium polymer rechargeable battery. The entire hardware
system can be seen in Figure 3.12. An internet router provides a Wi-Fi hotspot for both
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Figure 3.11: A participant wearing four IMU trackers with reflective markers attached to
them [DGVRM+21].

the sensor modules and the computer which allows for wireless data transmission between
computer and each sensor module via the UDP protocol. This proposed system has a
sampling frequency of 150 Hz [LLW+22].

[LLW+22] propose a calibration procedure for the inertial sensors. For the accelerometer

Figure 3.12: The basic hardware setup for the inertial motion capture system as proposed
by [LLW+22].

calibration, they rely on the fact that when the sensor is in a static state, the sensor
readings are only affected by gravity and thus in the absence of any errors the condition
g = a2

x + a2
y + a2

z must be satisfied in any direction. This can also be visualized as a
sphere which has the radius g. However, in the real world, accelerometer sensors always
suffer from orthogonal or bias errors between the axes which distort the output of the
sensor and therefore make the sphere appear more like an ellipsoid. [LLW+22] suggest
using the ellipsoid fitting method for reducing these errors. To collect the data for the
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calibration, the sensor is placed in multiple orientations as can be seen in Figure 3.13.
For the gyroscope calibration the sensor is also placed in a stationary position, in order
to retrieve the bias error for each axis, which is considered to be the main error source.
Ideally, when placed in a static state the angular velocities read from the gyroscope
should have a normal distribution with zero mean [LLW+22].
For sensor fusion, [LLW+22] proposed the ZUPT-Aided Extended Kalman Filter, which

Figure 3.13: For the accelerometer calibration the IMU is placed in 12 different orienta-
tions [LLW+22].

uses the ZUPT method to update the state estimation whenever the foot is on the floor.
The ZUPT method takes advantage of the fact that velocity should be exactly zero when
the foot is on the floor and uses the difference between the velocity output and the value
zero as the observation for the Kalman Filter.
After analyzing their results, [LLW+22] claim that their proposed method outperforms
existing attitude estimation algorithms for motion tracking using inertial sensors and
that their solution is feasible for 3D human motion capture.
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CHAPTER 4
Methodology

In this chapter, I will describe the methodological approach for implementing my proposed
inertial motion capture system. First, I will give a general overview of the implemented
system and then describe my design for its hardware and software components.

4.1 System Overview
My motion capture system consists of 11 motion trackers, which are attached to the
user’s head, left upper arm, left lower arm, right upper arm, right lower arm, chest,
tailbone, left upper leg, left lower leg, right upper leg and right lower leg using body
straps. It is a completely wireless solution, where each motion tracker is powered by its
own rechargeable battery and sends the motion data via Wi-Fi using UDP to a receiving
computer at 60Hz. The trackers are also partially modular, which allows the user to
swap the battery or IMU in case of hardware damage.
I also introduce a calibration procedure to my system, which uses a self-build robot which
I will refer to as Mini-Robot and a calibration algorithm which I implemented to retrieve
the most optimal calibration parameters for each IMU. The Mini-Robot has an arm to
which the IMU can be attached and then rotated in different orientations.
Each motion tracker is configurable using a configuration software I developed. The
configuration software allows the user to change the targeted body part as well as the
kind of data that is sent from the motion tracker. The user can program the tracker
to send either raw IMU data or the already estimated orientation in a quaternion or
Euler angle format. Additionally, the user can send the calibration parameters of the
IMU using this application and then choose whether to send calibrated IMU data or not.
Another important configuration which is possible by using this software, is setting the
UDP port, IP address of the targeted computer as well was the name and password of
the Wi-Fi network.
The receiving computer has an application running with a fully rigged 3D humanoid
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character that receives the motion data from all trackers and retargets that motion data
to the specified joints of the humanoid 3D character.
I have implemented a sensor fusion algorithm for calculating the tracker’s orientation in
3D space. The algorithm runs on both the motion tracker (if it is not configured to send
the raw IMU data) and the motion capture application on the receiving computer.
Each motion tracker is also designed to work for purposes other than full-body motion
capture, for example, objects the user wishes to track in the real world. By configuring
the motion tracker to send orientation data in quaternion or Euler angle format, the user
only needs to retrieve the precomputed orientation using my developed sensor fusion
algorithm in a custom application. When configured to sending raw data, the IMU
output is sampled and send at a rate of 60Hz. When configured to sending orientation
data, the IMU output is sampled at 1000Hz and sent at a rate of 60Hz.
An overview of my described system is further explained and can be seen in Figure 4.1.

4.2 Hardware Design
In this section, I will describe my design for the two hardware devices which I developed
for this project: The motion tracker and the Mini-Robot

4.2.1 Motion Tracker
My intent with this work, is to develop a low-cost alternative to available inertial motion
captures solutions. Therefore, I started with assembling and designing a motion tracker
which consists of the following four primary components:

• An IMU sensor for detecting the movements of the tracker using acceleration and
angular velocity

• A microcontroller which reads the IMU data and output the sensor’s orientation in
three-dimensional space

• A Wi-Fi module for transmitting the data to a receiving computer

• A rechargeable battery that powers the motion tracker

My final design for the motion tracker can be seen in Figure 4.2 and here is a description
of the hardware components that I used for each individual tracker:

• The ESP32 low-cost SoC (System on Chip) microcontroller, which was developed
by the Espressif System company, is considered a successor to the ESP8266. It
includes an integrated Wi-Fi 802.11 b/g/n, dual mode Bluetooth, I2C interface
and 4MB flash memory. In addition to the over 30 available GPIO (General-
Purpose Input/Output) pins, it comes with two CPU cores adjustable to up to
240 MHz [BFS19]. The microcontroller’s operating voltage is between 2.3 to
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Figure 4.1: A high-level overview of my proposed inertial motion capture system: The
IMU can be detached from the motion tracker and attached to the robot arm in order to
perform the calibration. After the calibration parameters are computed, the IMU can be
reattached to the motion tracker. The tracker can then be configured by the configuration
software by first connecting the tracker to the computer. The user’s selected configuration
and the calibration parameters are sent to the motion tracker using the configuration
software. The configured 11 motion trackers are then attached to the capture subject’s
body segments which are marked by the red circles. The motion data is then sent from
the trackers to the receiving computer via Wi-Fi and then processed and targeted to the
rigged 3D character.

3.6V [Esp23]. Using the Micro USB port of the ESP32, I can establish a serial
connection to the computer.

• The MPU-6050 is a 6 DoF IMU device which contains a 3D gyroscope and a 3D
accelerometer. With the three onboard 16-bit analog-to-digital converters (ADCs)
the gyroscope and accelerometer outputs are digitized. With the user-programmable
full-screen ranges, precision tracking of both fast and slow motions is possible. Full-
screen ranges available for the gyroscope are ±250, ±500, ±1000and±2000o/sec and
the full-screen ranges available for the accelerometer are ±2g, ±4g, ±8gand ± 16g.
Communication with this device can be performed using I2C.

• A 3.7V 1100mAh rechargeable lithium battery with a cut-off voltage of
4.2V [Spe].
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Figure 4.2: The circuit diagram for my proposed motion tracker: (1) ESP32, (2) MPU-
6050, (3) 3.7V 1100mAh lithium battery, (4) TP4056, (5) 20V/1A Schottky diode, (6)
100µf electrolytic capacitor, (7) LED, (8) 220Ω resistor.

• The TP4056 Type-C USB module is a constant-current and constant-voltage
linear charger for single cell lithium-ion batteries with a fixed 4.2 charge volt-
age [Nan]. Using the TP4056, the lithium battery can be recharged via USB-C.

• A 20V/1A Schottky diode for low forward voltage drops [Tai]. The Schottky
diode serves to protect the ESP32 from the high voltage of an overcharged lithium
battery. When overcharged the output voltage of the battery used in my system
becomes close to 4.2V which exceeds the maximum operating voltage of the ESP32
which is 3.6V.

• A 100µf electrolytic capacitor which is used for energy storage, filtering and
output voltage regulation [TJS23].

• A 3-pin toggle switch serving as an on/off switch for the microcontroller.

• A 220Ω resistor to limit the current flowing through the light-emitting diode
(LED). The LED serves as a signal to the user, that the motion tracker is turned
on. Also, when dim, it signals the user that the battery needs to be recharged.
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I have encompassed all these components in my self-designed chassis which I have 3D
printed. In order to assemble these components as compactly as possible, I designed a
PCB. PCBs are non-conductive substrate plates which are utilized in the assembly and
interconnection between electronic components. These interconnections are facilitated
through routes of a conductive material recorded on the substrate [SSM19].
I would like to further note that this proposed hardware design can be easily modified,
for instance, by choosing a different microcontroller or a different IMU sensor. The
MPU-6050 has a dedicated digital motion processor (also referred to as DMP) which can
fuse the accelerometer and gyroscope data and output orientation data as quaternions.
However, this is very specific to the MPU-6050 and possibly not transferable to other
IMU sensors. My introduced sensor fusion method should be compatible across different
commercially available inertial sensors.

4.2.2 Mini-Robot for Calibration
This Mini-Robot is responsible for automatically placing an IMU in several random
orientations, which are recorded and then used during my calibration process. Using
three different servo motors connected by a serf-designed 3D printed rig, this Mini-Robot
is capable for rotating around the roll, pitch and yaw axes.
For each servo motor, I use the SG90 9g micro servo motor, which is a light-weight
motor with a maximum rotation of 180o [lux]. All servo motors are controlled by an
ESP32 microcontroller. On the top-most surface of the robot’s rig (arm), which should
be parallel to the ground when in idle position, I placed a socket for easy attachment
and detachment of the IMU. Unlike the motion tracker, this robot is not powered by a
battery but through the ESP32’s Micro USB port.
My final design for the Mini-Robot can be seen in Figure 4.3

4.3 Software Design
In this section, I will describe the design of my developed software responsible for the
IMU calibration, attitude estimation from the IMU data and applying that information
to a 3D humanoid virtual character.

4.3.1 Calibration
Ideally, an IMU’s tri-axial accelerometer and gyroscope share the same 3D orthogonal
sensitivity axes with a scaling factor that converts the digital measurements by each
sensor into real physical quantities. However, due to sensor axis misalignments, cross-axis
sensitivities, inaccurate scaling and non-zero biases of low-cost MEMS based IMUs, as
the ones used in this project, these measured quantities are distorted. These errors could
be the result of inaccuracies in the assembly of these products. Therefore, a calibration
procedure is needed to identify the values of these distortions [TPM14].
My approach for calibrating the IMU sensors is based on the work by [TPM14]. I will
give a summary of their work and then describe my approach and how it differs.
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Figure 4.3: The circuit diagram for the Mini-Robot.

[TPM14] suggest that during the data collection phase, the IMU should first be put
in a static position with no motion for a certain time period and then moved into
different positions to generate unique temporarily stable rotations. This collected data is
subsequently used to estimate the sensor errors. They do note, however, that cross-axis
sensitivity errors are not addressed in their work since they are not easily distinguishable
from minor misalignment errors. [TPM14] use the idea, that when an accelerometer
is put in a static state, the magnitude of the outputted acceleration vector equals the
magnitude of the gravity added by noise, biases and misalignment errors. By applying a
minimization algorithm over the set of static positions, these errors can be estimated and
thereby calibrate the accelerometer. The accuracy of the accelerometer relies on precisely
identifying the static positions in the collected data. This is done with a variance-based
static detector where the magnitude of the variance of the accelerometer values in a
specific time interval is checked against a predefined threshold.
Using the gravity vector positions measured by the calibrated accelerometer as a reference,
the gyroscope can be calibrated. By applying angular velocity integration using the fourth-
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order Runge-Kutta method between two consecutive static attitudes, the gravity vector
position of the new orientation can be estimated. By minimizing the errors between
the estimated gravity vectors and the ones given by the accelerometer as reference,
the gyroscope can be successfully calibrated. However, the accuracy of the gyroscope
calibration is strongly reliant on the preciseness of the accelerometer calibration [TPM14].
The key difference in my approach is the absence of a static detector as all the static
positions are clearly identified by my self-build Mini-Robot. Additionally, I have omitted
the accelerometer bias error parameters as they have caused problems in my attitude
estimation approach.

Data Collection

As previously mentioned, performing data collection using the Mini-Robot adds the
advantage of unmistakably labeling the periods in which the IMU is in motion or in a
static position. This should increase the accuracy of the calibration output, since the
approach described in [TPM14] relies on statistical methods. Additionally, the IMU
sensors are securely placed in the robot’s IMU socket which should prevent the sensor
from slipping or tilting when moved in a static position, which is a possibility when the
sensor is instead moved by hand as described in [TPM14]. Also, [TPM14] recommend
rotating the IMU in 35 to 50 static positions which is a tedious process when manually
done by hand. The Mini-Robot, however, adds a level of automation to that process. The
downside of using the robot for data collection is the need for an additional device to
perform the calibration task.
Figure 4.4 shows a high-level diagram of the data collection process using the Mini-Robot.
First the robot arm is reset to its idle position. While the raw IMU data is read during
every frame, the data collection process starts by calculating the gyro bias after the robot
leaves its idle state after Tgyroinit seconds. After that, the robot arm with its attached
IMU is set in a random orientation, while the IMU data recorded during that event is
marked as data collected while in motion. After Tmotionwait seconds, the robot arm should
be in a static position free from any jittering caused by the fast movements of the robot
arm. The IMU data recorded during Tstaticwait is marked as data collected while in a
static position. As suggested by [TPM14], the accelerometer data collected during the
static states should be averaged to filter out possible noise. Therefore, after the robot
arm enters the static state, the program waits Tstaticwait seconds before it repositions the
robot arm in the next iteration. During this entire process the collected data is recorded
by an external software and saved in a file which will then be fed to the actual calibration
algorithm.

Accelerometer calibration

As explained above, the goal of this calibration is to convert the non-orthogonal accelerom-
eter frame into an orthogonal one while also estimating the scaling errors. Similar to
[TPM14], I will refer to the non-orthogonal accelerometer frame as AF and the orthogonal
accelerometer frame as AOF. They also define the condition that the AOF’s x-axis must
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Figure 4.4: Data collection as performed by the Mini Robot.

coincide with the AF’s x-axis and that the AOF’s y-axis must lie in the plan spanned by
the AF’s x and y axis. Furthermore, the body frame (BF) is defined which in our case
corresponds to the coordinate frame of the IMU chassis and is also orthogonal. Generally,
there is no connection between the body frame and the accelerometer and gyroscope
frames but they might deviate by small angles. By following the assumption that the
AOF coincides with the BF, the AF can be transformed into the AOF using the equation

aO = T aaS , T α =

1 −αyz αzy

0 1 −αzx

0 0 1

 [TPM14]. (4.1)

aS is the skewed acceleration vector (in the AF) outputted by the accelerometer which is
transformed into the orthogonal acceleration vector aO (in the AOF) using the rotation
matrix T α, where αij refers to the rotation of the i-th AF axis around the j-th AOF or
BF axis. Because the AOF is equal to the BF, the lower triangular matrix of T α equals
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to zero [TPM14]. Figure 4.5 shows the relationship between a non-orthogonal sensor
frame and the body frame.
In addition to the misalignment errors, the scaling errors need to be taken into account

Figure 4.5: Transforming the non-orthogonal sensor frame, defined by the axes xS , yS and
zS , into the orthogonal body fame, defined by the axes xB , yB and zB . βij refers to the
rotation of the i-th non-orthogonal sensor frame axis around the j-th BF axis [TPM14].

as well. This can be done by incorporating a scaling matrix Ka into equation 4.1. The
final accelerometer sensor error model equation thus becomes

aO = T aKaaS , Ka =

sa
x 0 0
0 sa

y 0
0 0 sa

z

 [TPM14]. (4.2)

Similar to [TPM14], I am also neglecting the measurement noise errors, since during the
data collection approach the accelerometer outputs during the static positions of the
IMU are gathered over a period of time with the intent of averaging them before using
them in the calibration algorithm. However, as previously mentioned, I am neglecting the
bias errors, which are incorporated into the accelerometer sensor error model proposed
by [TPM14], due to problems that occurred during my implementation when performing
attitude estimation.
From equation 4.2, a vector containing the unknown parameters that need to be estimated
for the accelerometer calibration can be derived and be written as

θacc = [αyz, αzy, αzx, sa
x, sa

y, sa
z ]. (4.3)

Using that parameter vector, 4.2 can be rewritten as the function

aO = f(aS , θacc) [TPM14]. (4.4)
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In our case, aS corresponds to the averaged acceleration vector gathered during a period
in which the IMU sensor was in a static state. [TPM14] defines the cost function used to
estimate the parameter vector θacc as

L(θacc) =
N

k=1
(||g||2 − ||f(aS

k , θacc)||2)2 (4.5)

where N is the number of static positions assumed by the Mini-Robot during data
collection, aS

k is the averaged accelerometer vector taken during the k-th static position
and g is the gravity vector. As described by [TPM14], I use the cost function 4.5
to estimate and minimize the parameter vector θacc with the help of the Levenberg-
Marquardt algorithm, which is the final goal of the accelerometer calibration.

Gyroscope calibration

Similar to the accelerometer, the non-orthogonal gyroscope frame is referred to as GF
and the orthogonal gyroscope frame is referred to as GOF. The condition that the GOF’s
x-axis must coincide with the GF’s x-axis and that the GOF’s y-axis must lie in the plan
spanned by the GF’s x and y axis also applies here. However in this case the GOF does
not coincide with the BF.
The sensor error model equation for the gyroscope is very similar to that of the accelerom-
eter and can be written as

ωO = T gKgωS , T g =

 1 −γyz γzy

γxz 1 −γzx

−γxy γyx 1

 Kg =

sg
x 0 0
0 sg

y 0
0 0 sg

z

 [TPM14]. (4.6)

ωS is the skewed angular velocity vector (in the GF) retrieved from the gyroscope and
is transformed into the orthogonal angular velocity vector ωO (in the GOF) using the
transformation matrix T g, where γij refers to the rotation of the i-th GF axis around
the j-th AOF or BF axis. Because the GOF does not coincide with the BF, the lower
triangular matrix of T g does not equal to zero. Similar to the accelerometer measurements,
the scaling errors also need to be taken into account and therefore the scaling matrix Kg

is added to the equation. The bias errors can be neglected as they were already calculated
during the data collection process. I also neglect measurement noise as described by
[TPM14].
From equation 4.6, a vector containing the unknown parameters that need to be estimated
for the gyroscope calibration can be derived and written as

θgyro = [γyz, γzy, γzx, γxz, γxy, γyx, sg
x, sg

y, sg
z]. (4.7)

[TPM14] describe the cost function for minimizing the parameter vector θgyro as

L(θgyro) =
N

k=2
(||ua,k − ug,k||2) (4.8)
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where
ug,k = Ψ[ωS

i , ua,k−1]. (4.9)
Ψ is an operator that takes a series of gyroscope readings ωS

i and an initial accelerometer
vector ua,k−1, which corresponds to an accelerometer vector measured and averaged in
the k-1-th static state and was subsequently corrected using θacc and equation 4.4, and
then computes a final accelerometer vector using the gyroscope readings taken between
the k-1-th and the k-th static state. The cost function 4.8 compares the actual calibrated
acceleration vector measured at the k-th static state with the one calculated using the
gyroscope readings [TPM14]. In my case and like the approach proposed by [TPM14],
Ψ is an angular velocity integration algorithm that uses the fourth-order Runge-Kutta
method.
In order to rotate ua,k−1 into ug,k, a rotation matrix must be calculated using the
gyroscope readings. I calculate the matrix by first applying angular velocity integration
on a quaternion where the scalar part is one and the vector part equals to the zero vector.
After that I convert the resulting quaternion into a three-dimensional rotation matrix
(as described in 2.5.2).
As described by [TPM14] and similarly to the accelerometer calibration, I use the cost
function 4.8 to estimate and minimize the parameter vector θgyro with the help of the
Levenberg-Marquardt algorithm. After calculating the estimates, I append the bias
vector [bg

x, bg
y, bg

z] to the estimated parameter vector θgyro. Thus, the final parameter
vector outputted by the algorithm becomes

θgyro = [γyz, γzy, γzx, γxz, γxy, γyx, sg
x, sg

y, sg
z, bg

x, bg
y, bg

z]. (4.10)

The results from both the accelerometer and gyroscope calibrations are stored in a
separate file via a software I developed, which implements these described algorithms.
The file containing the calibration parameters can be used by the configuration software
explained in the next section.

4.3.2 Motion tracker configuration software
In this section, I will describe the configuration software I developed for reprogramming
the motion tracker according to the user’s needs. I designed a user interface for the
software to make it easier to use. In order to configure the motion tracker, it has to be
connected to the computer, on which the configuration software is running, via USB.
The software has the following features:

• Upon launch the active COM ports are detected and if only one is active and a
motion tracker is connected to it, all the previously stored configuration data is
read from the motion tracker’s memory and fed to the configuration software and
visualized. That way the user can see the current configuration of the motion
tracker.

• If more than one motion tracker is connected, the user can select between them
from a dropdown menu.
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• In order to connect the motion controller to an available network, the user can
enter the Wi-Fi name and associated password in the appropriate input fields and
send that information to the motion tracker.

• If the user wants to target a different computer or if the receiving computer’s IP
address has changed, that new IP address can be also entered. I am also providing
the option of detecting the computer’s IP address automatically by the software,
which can be triggered by clicking on a single button.

• The UDP port, to which the motion data is sent by the motion trackers, can be
changed by the user.

• An important feature is the possibility of choosing the targeted body part of the
motion tracker via the user interface.

• The user can choose via the configuration software how the data is being sent by the
motion tracker. Either the raw IMU data is sent or the orientation data computed
by the motion tracker’s microcontroller is sent as Euler angles or as a quaternion
using my proposed sensor fusion algorithm (described in the following section). In
either scenario, the data will be transmitted via Wi-Fi at a rate of 60Hz. However,
if the orientation data is transmitted, the sampling rate of the IMU output will be
set to 1000Hz. If the raw IMU data is sent, the sampling rate of the IMU output is
set to 60Hz.

• The calibration parameters, which were stored in a file by the calibration software,
can be sent through the configuration software.

• The user can also choose via the interface, whether the motion tracker should use
the calibration parameters or not.

In order to control the integrity of the data strings that are assembled and sent by
the configuration software to the motion tracker, I implemented a simple handshake
mechanism between the two systems. When the user tries to send the newest configuration
to the tracker, a data string containing the new configuration information is assembled
and sent via serial communication to the motion tracker. The tracker receives that
information parses it and sends the data string back to the configuration software. Once
it is received, the configuration software compares the received data string with the data
string that was sent out by the software itself. If the string matches, a positive feedback
message is displayed in the interface of the software. This handshake mechanism is
illustrated in 4.6.

4.3.3 Attitude estimation
In this section, I will explain my approach for estimating the 3D orientation of the motion
tracker.
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Figure 4.6: My implemented handshake mechanism when there is a communication
between the configuration software and the motion tracker.

Data correction and reorientation

The first step is to correct the accelerometer and gyroscope data using the calibration
parameters θacc and θgyro calculated by the calibration software and passed to the motion
tracker through the configuration application. This is done on the microcontroller directly
after retrieving the new input from the IMU and using the equations 4.2 and 4.6. Even if
the user decides not to send the calibrated values from the microcontroller, the gyroscope
bias will always be removed using the gyroscope bias error vector stored as the last three
elements of θgyro since this is the biggest source of error for gyroscope sensors.
The next step is to perform sensor fusion using a quaternion-based Extended Kalman
filter, which I have implemented on both the microcontroller and the motion capture
application on the receiving computer. However, before processing the IMU data using
the Kalman filter, I first reorient the IMU output. The reason for that is the skewed
position in which the IMU sensor lies in my assembled motion tracker since, ideally, I
want the IMU to lie horizontal to the ground of the motion tracker chassis. Currently, the
IMU is strongly rotated around its y-axis in order to fit inside the motion tracker chassis.
By employing the rotating matrix for the y-axis Ry(α), as given by 2.14, I reorient both
the accelerometer input a and gyroscope input g using

anew = Ry(α)T · a, gnew = Ry(α)T · g. (4.11)

After this reorientation, the IMU data can finally be processed by the subsequently
explained sensor fusion method.

Quaternion-based Extended Kalman filter

Due to the advantages quaternions provide over Euler angles (as described in 2.5.2), I
have decided to implement a quaternion-based Extended Kalman filter as a sensor fusion
method. As part of my work, I designed two variations of that Kalman filter. The first
one is based on the work by [Sab11], [FLZ+17] and [WZS15] while the second variation
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was a result of my own experimentation with Kalman filters. Henceforth, I will refer to
the former as KF1 and the latter as KF2.
After covering the theoretical aspects of the Kalman filter in 2.3.2, in this section, I
will describe how I designed the Kalman filter for processing IMU data and outputting
quaternions as orientation estimates.

KF1 Design

I will explain the design of this Kalman filter using its basic components which are the
state vector, dynamic model and observation model (as explained in 2.3.2):

• The state vector: Since this Kalman filter is quaternion-based, the state vector
is represented by a 4D vector containing a quaternion which is expressed by
xk = [q0, q1, q2, q3] [FLZ+17] and is always normalized after each frame.

• The dynamic model: Angular velocities outputted by 3D gyroscopes are measured
in the body frame which allows the kinematic equations of a rigid body to be used
in calculating the orientation state. In this case, angular velocities are treated as
external inputs to the Kalman filter as opposed to measurements and the gyroscope
noise is considered to be process noise and not measurement noise. The advantage
of this approach is the reduced dimension of the state vector which results in a
more efficient Kalman filter algorithm [Sab11].
The state transition matrix A can be derived from the quaternion derivative equation
q̇ = 1

2Ω(w)q using the angular velocity vector ω (see Chapter 2.5.2). In order to
project the state xk forward in time, the equation

xk+1 = f(xk, wk) = xk + .
∆t

2 Ω(wk)xk (4.12)

can be used (∆t is the time interval between xk and xk+1) [Sab11], which can be
rewritten as (and as result derive the state transition matrix A)

xk+1 = f(xk, wk) = Ak · xk,

Ak =


1 −∆t

2 wk,1 −∆t
2 wk,2 −∆t

2 wk,3
∆t
2 wk,1 1 ∆t

2 wk,3 −∆t
2 wk,2

∆t
2 wk,2 −∆t

2 wk,3 1 ∆t
2 wk,1

∆t
2 wk,3

∆t
2 wk,2 −∆t

2 wk,1 1

 .
(4.13)

One difference in my approach in creating the dynamic model for the Kalman
filter, is that I use the second-order Runge-Kutta method (or midpoint method)
for numerical integration as opposed to the Euler method in order to increase
the accuracy of the estimated state (see 2.4.2). This method takes as input two
consecutive angular velocity vectors which are then averaged. Thus, 4.13 becomes

xk+1 = f(xk,
wk + wk+1

2 ). (4.14)
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Finally, the process noise covariance matrix Q representing the gyroscope noise is a
4x4 identity matrix multiplied by a selected predefined value.

• The observation model: Here, I will establish an observation model by using the
3D accelerometer data as measurements z. In the work by [Sab11], [FLZ+17] and
[WZS15], an observation model is described using the data from the magnetometer
sensor as well which is not part of my proposed system.
First, I will define the normalized gravity vector in the navigation frame n which
is gn = [0 0 1]T and the accelerometer vector in the body frame b which is
ab = [ax ay az]T . The predicted state vector x expressed as a quaternion q describes
the orientation of the body frame with respect to the navigation frame and as
described in chapter 2.5.2, a vector can be rotated by a matrix representation of a
quaternion R(q). Utilizing that information, ab can be expressed as

ab = R(q)T · gn

=

gn
x(0.5 − q2

y − q2
z) + gn

y (qwqz + qxqy) + gn
z (qxqz + qwqy)

gn
x(qxqy + qwqz) + gn

y (0.5 − q2
x − q2

z) + gn
z (qwqx + qyqz)

gn
x(qwqy + qxqz) + gn

y (qyqz + qwqx) + gn
z (0.5 − q2

x − q2
y)

 .
(4.15)

Since gn = [0 0 1]T , I can simplify the equation above and subsequently define the
observation model

h(xk) =

(xk,1xk,3 + xk,0xk,2)
(xk,0xk,1 + xk,2xk,3)
(0.5 − x2

k,1 − x2
k,2)

 [WZS15]. (4.16)

When calculating the measurement innovation, both zk and h(xk) need to be
normalized.
Due to the non-linearity of the measurement equation, the Jacobian matrix H
needs to be computed as well which can be written as

H(xk) = δh(xk)
δx

= δh(xk)
δx0

δh(xk)
δx1

δh(xk)
δx2

δh(xk)
δx3

. (4.17)

and be further simplified to

H(xk) =

−xk,2 xk,3 −xk,0 xk,1
xk,1 xk,0 xk,3 xk,2
xk,0 −xk,1 −xk,2 xk,3

 [WZS15]. (4.18)

KF2 Design

The static vector and dynamic model of this variation of the Kalman filter are identical
to KF1. The main difference lies in the observation model where the measurement vector
is another quaternion. First, I calculate the roll and pitch angles from the accelerometer
vector using

rollacc = arctan2(ay, az), pitchacc = arctan2(−ax, a2
y + a2

z) [dfr23]. (4.19)
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Since I cannot infer the yaw angle from the accelerometer, I use the state vector quaternion
to read the existing yaw angle. This can be done by converting the quaternion q to Euler
angles (roll, pitch and yaw) [D+06] using rollx

pitchx

yawx

 =

arctan2(2 ∗ (q0 ∗ q1 + q2 ∗ q3), 1 − 2 ∗ (q2
1 + q2

2))
arcsin(2 ∗ (q0 ∗ q2 − q3 ∗ q1))

arctan2(2 ∗ (q0 ∗ q3 + q1 ∗ q2), 1 − 2 ∗ (q2
2 + q2

3))

 . (4.20)

After getting the yaw angle from the state vector quaternion x, the measurement
quaternion vector z can be formed by converting the Euler angles rollacc, pitchacc

and yawx to a quaternion [D+06] using
zw

zx

zy

zz

 =


cos( rollacc

2 ) cos(pitchacc

2 ) cos(yawx

2 ) + sin( rollacc
2 ) sin(pitchacc

2 ) sin(yawx

2 )
sin( rollacc

2 ) cos(pitchacc

2 ) cos(yawx

2 ) − cos( rollacc
2 ) sin(pitchacc

2 ) sin(yawx

2 )
cos( rollacc

2 ) sin(pitchacc

2 ) cos(yawx

2 ) + sin( rollacc
2 ) cos(pitchacc

2 ) sin(yawx

2 )
cos( rollacc

2 ) cos(pitchacc

2 ) sin(yawx

2 ) − sin( rollacc
2 ) sin(pitchacc

2 ) cos(yawx

2 )

 . (4.21)

Here, the observation model is simply h(xk) = xk and the observation matrix H is simply
a 4x4 identity matrix.
By using the accelerometer to calculate the Euler angles, I am introducing a major flaw
to this design because the calculated angles are only stable in certain ranges. The pitch
angle can only be reliably calculated in the range +/-90 degrees. If the calculated angle
exceeds that range, then the sensor fusion algorithm should only rely on the gyroscope
for estimating the attitude. In KF1, the Kalman gain is automatically adjusted to such
scenarios but this is not the case in this Kalman filter variation. Therefore, I must
manipulate the Kalman gain by external inputs at runtime. I check if accz is higher that
a certain threshold (level of tilt), where the pitch angle can still be reliably calculated. If
that is not the case, I set the Kalman gain matrix values to zero, thus forcing the Kalman
gain to only trust the gyroscope values. If accz is again higher that the predefined
threshold, then I replace the Kalman gain zero-matrix with last Kalman gain matrix
before the manipulation.
However, this proposed Kalman filter is still not yet fully stable. The reason is that a
rotation can be represented by two different unit quaternions, where one is the negative
of the other. Therefore, before I calculate the measurement innovation using z, I check
whether the scalar parts of z and x match. If not, I negate z which solves this instability
problem.

4.3.4 Data preparation and transmission
After the orientation is calculated using the sensor fusion algorithm described above, the
data is prepared to be send either as a quaternion or as Euler angles. If the user wishes
to receive the orientation as a quaternion, no further operation is needed when preparing
the data for transmission, since the state vector of the Kalman filter is a quaternion.
If Euler angles are desired, then the quaternion is converted to Euler angles using the
equation 4.20.
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Body part Index
Head 0
Chest 1

Tailbone 2
Left Upper Arm 3
Left Lower Arm 4

Right Upper Arm 5
Right Lower Arm 6
Left Upper Leg 7
Left Lower Leg 8

Right Upper Leg 9
Right Lower Leg 10

Table 4.1: A lookup table which shows the index assigned to each body part.

If the user desires to receive only the raw IMU data from the motion tracker, then the
data correction and sensor fusion processes are skipped to reduce the number unnecessary
calculations on the microcontroller. The raw data consists of the 3D acceleration vector,
the 3D angular velocity vector and the value deltaT ime, which corresponds to the time
interval between two consecutive samplings of the IMU data. The reason the raw IMU
data is sampled at 60Hz, is to ensure that the deltaT ime value is consistent with the
sending rate which is also 60Hz. Since the step size deltaT ime is important in the
numerical integration part of the sensor fusion algorithm, it needs to be as accurate as
possible when the motion capture application on the receiving computer is performing
sensor fusion instead of the microcontroller.
No matter in what format the data is sent, it includes the body part index which is
derived from the assigned body part in the configuration software using the lookup table
4.1.
The entire process of preparing and transmitting the data is further illustrated in Figure
4.7.

4.3.5 Motion capture application
I developed the motion capture application which receives the motion data from the
motion tracker and applies it to a 3D fully rigged humanoid character [3dc23] using the
3D gaming engine Unity.
By listening to a specified UDP port in a dedicated thread, the transmitted data from
the motion trackers can be received in the Unity application. The received data is parsed
and according to the structure of the data different actions are triggered. If the structure
is recognized as data containing the raw IMU information, the sensor fusion algorithm,
previously described in 4.3.3, is performed on that data. If the structure is recognized
as data containing quaternions or Euler angles, then the computed orientation by the
motion tracker is directly fed to the tracked virtual object.
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Unity uses a left-handed Y-up coordinate system, which is different from the coordinate
system of the IMU chosen in my system (MPU-6050), which has a right-handed Z-up
coordinate system. Therefore, every orientation calculated from the sensor data needs to
be mapped to Unity’s coordinate system using the following mapping:x

y
z


IMU

⇒
 x

−z
y


Unity

. (4.22)

After getting the new orientation, I use the body part index to map it to the targeted
body segment of the virtual character. However, since the motion tracker can face
different directions depending on where it is placed on the subject’s body, there needs to
be another axis manipulation as can be seen and explained in detail in Figure 4.8.
Finally, after each calculated rotation (a quaternion) a final correction is performed. Even
after reorienting the sensor data as described in 4.3.3, the first calculated orientation
might still not be parallel to the ground (rotation about z-axis is zero) even if the tracker
is placed parallel to the ground as well. To fix that, the calculated quaternion is rotated
using the initial quaternion saved after the first orientation calculation for a particular
body segment. This can be done by

qnew = qnew ∗ q∗
initial. (4.23)

In order for the motion capture process to work correctly, the capture subject must first
stand in the N-pose similar to Figure 3.3.
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Figure 4.7: Shows the data preparation and transmission process performed by each
motion tracker.
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Figure 4.8: Shows motion trackers attached to the capture subject (from behind). The
coordinate axes in the bottom-right corner of the figure represent the coordinate axes in
Unity whose coordinate system I assume corresponds to the real-world coordinate system
(navigation frame). Each motion tracker’s IMU’s z-axis (body frame) faces a different
direction depending on where it is placed on the body. The directions are visualized by
the arrows (trackers attached to the head and chest face towards the navigation frame’s
positive z-axis and the tracker attached to the tailbone faces towards the navigation
frame’s negative z-axis). The table in the top-right corner of the image shows how for
each targeted body part the axes of the orientation in Unity has to be changed. Since in
my application, the tailbone is only responsible for the yaw-movements of the capture
subject, the x and z values of its rotation in Unity are set to zero.
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CHAPTER 5
Hardware Implementation

I this chapter, I will detail my approach on how I assembled the motion trackers and the
Mini-Robot.

5.1 3D printing
I have 3D printed the chassis of all 11 motion trackers as well as the rig for the Mini-Robot
using the Anycubic i3 Mega S 3D printer. For the filament, I chose PLA and I 3D printed
with the following parameters (using the 3D printing software Ultimaker Cura):

• Layer Height: 0.2

• Printing temperature: 200◦C

• Build Plate Temperature: 60◦C

First, I 3D-modeled the chassis and the robot rig in the 3D-software Maya which I then
exported to stl-files. The 3D model for the chassis can be seen in Figure 5.1 and the
model for the rig can be seen in Figure 5.2. The dimensions of each motion tracker
chassis is 6.3 x 4.2 x 2.7 cm. The base of the Mini-Robot rig has the dimensions 10 x 7 x
1 cm while the maximum height of the assembled robot is 15 cm.
Since I want the side of the motion tracker chassis to be see-through (to be able to see
the LEDs illuminated when the trackers are powered on), I decided not to print the side
cover for the chassis. Instead, I manually cut 2 mm acrylic glass (6.3 x 4.2 cm) which I
then mounted onto the open side of the chassis using all-purpose waterproof glue. Before
gluing the glass, however, I had to cut out the corner of each glass piece (2 x 1 cm) in
order to access the toggle switch used for turning the trackers on and off.
Due to occasional irregularities of the surfaces of the final prints, especially around and
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inside the screw holes, I had to manually embellish the printed models using a variety of
file tools.

Figure 5.1: Shows the 3D model of the motion tracker chassis.

Figure 5.2: Shows the 3D model of the Mini-Robot rig.

5.2 Motion trackers
In this section, will give an overview of the wiring, PCB design and describe how I
assembled the motion trackers while adding some degree of modularity to them.

5.2.1 Wiring
Here, I want to detail the connections between the individual hardware components I
used for assembling each motion tracker:
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• Connect the lithium battery’s power wire to the TP4056’s positive B pin and the
battery’s ground wire to the negative B pin.

• The TP4056’s negative OUT pin is connected to the ESP32’s GND pin. The
TP4056’s positive OUT pin is connected to the middle pin of the 3-pin toggle
switch.

• The left or right pin of the toggle switch is connected to the anode of the Schottky
diode. The Schottky diode’s cathode is connected to the electrolytic capacitor’s
positive pin.

• The electrolytic capacitor’s positive pin is connected to the ESP32’s 3v3 pin. The
electrolytic capacitor’s negative pin is connected to the ESP32’s GND pin.

• The MPU-6050’s VCC pin is connected to the ESP32’s 3v3 pin and its GND pin
is connected to the ESP32’s GND pin. The MPU-6050’s SCL pin is connected to
the ESP32’s GPIO22 pin. The MPU-6050’s SDA pin is connected to the ESP32’s
GPIO21 pin.

• The ESP32’s GPIO5 pin is connected to the resistor and the resistor is connected
to the LED’s cathode. The LED’s anode is connected to the ESP32’s GND pin.

5.2.2 PCB
In order to build a compact motion tracker, I designed a PCB to minimize the number
of wires needed to connect the hardware components. I designed the PCB using the
open-source software Fritzing [fri]. To reduce the size and simultaneously avoid the
intersections of the individual routes, I decided to use a two-layer PCB. When designing
the PCB, as suggested by [SSM19], I avoided bends with 90 degree angles when placing
the routes and replaced them by 45 degree bends instead. In my final design, the PCB
has the dimensions of 53 x 35 x 1 mm.
Figure 5.3 show both the PCB design in Fritzing as well as the manufactured PCB which
I have ordered from [jlc].

5.2.3 Modularity
As previously mentioned, I tried to introduce a certain degree of modularity to the
motion trackers in case of faulty or damaged hardware components. In my proposed
motion tracker, it is possible to remove and exchange both the IMU and the battery.
Also, hard-soldering the IMU to the PCB, would make it difficult to rerun the calibration
process as the IMU would need to be inserted into the IMU socket of the Mini-Robot for
data collection.
Instead of soldering the IMU itself, I soldered a 4-pin female header where the IMU can
be inserted. Similarly for the battery which has a Micro JST 1.25 connector, I soldered a
Micro JST 2-pin female connector into the two pins on the PCB intended for the battery
(see Figure 5.4).
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Figure 5.3: a) Shows my two-layer PCB design in Fritzing. The light-orange routes are
the traces on the top layer and the dark-orange routes are the traces on the bottom
layer. b) Shows where each hardware component is placed on the PCB. c) Shows the
real manufactured PCB I received after placing the order.

5.2.4 Assembly

Apart from the IMU and the battery, all hardware components are placed on the PCB’s
top layer and soldered. The ESP32 is the last component whose pins are soldered to the
PCB because several hardware elements such as the resistor and the TP4056 lie directly
under the microcontroller which is possible due to the elevation provided by the ESP32’s
male pin headers. Additionally, I completely removed several of the ESP32’s male pin
headers to ensure accessibility and enough space for the TP4056’s USB-C port. Since
the battery is placed directly under the PCB, I had to make sure that all the ESP32’s
metal pins sticking out of the PCB bottom layer are cut off.
I soldered 90 degree bend male 4-pin headers to the MPU-6050 which allowed me to
insert it into the 4-pin female header (see Figure 5.4). However, the IMU will not fit
unless the male pins are bent to an obtuse angle, which eventually results in the IMU
output correction step explained in 4.3.3.
The assembled motion tracker, before it is inserted into the chassis, can be seen in Figure
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Figure 5.4: Shows the 4-pin female header for the IMU and the Micro JST 2-pin female
connector for the battery.

5.5. The motion tracker inside the 3D printed chassis with the glued-on strap can be
seen in Figure 5.6. The weight of each motion tracker is around 75 grams.
I have repeated this process for all 11 motion trackers.

Figure 5.5: Shows the assembled motion tracker without its chassis.

5.3 Mini-Robot for Calibration

In this section, will give an overview of the wiring and assembly of the Mini-Robot.
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Figure 5.6: Shows the assembled motion tracker with its chassis and glued on body strap.

5.3.1 Wiring
Similarly to the motion tracker, I will detail the connections between the individual
hardware components I used to assemble the Mini-Robot:

• Each SG90 9g micro servo motor’s VCC pin is connected to the ESP32’s V5 pin
and each servo motor’s GND pin is connected to the ESP32’s GND pin. All three
servo motor’s signal pins are connected to the ESP32’s GPIO12, GPIO13 and
GPIO14 pins, respectively.

• The MPU-6050’s VCC pin is connected to the ESP32’s 3v3 pin and its GND pin
is connected to the ESP32’s GND pin. The MPU-6050’s SCL pin is connected to
the ESP32’s GPIO22 pin. The MPU-6050’s SDA pin is connected to the ESP32’s
GPIO21 pin.

5.3.2 Assembly
I decided against designing a PCB for the Mini-Robot since I needed the weight of the
breadboard which in addition to the 3D printed base provides good enough stability
when the robot arm is in movement. All individual components of the 3D printed rig are
either glued together or attached to the servo horns using screws. Similar to the motion
tracker, a 4-pin female header is glued to the top surface of the robot arm so that the
IMU can be easily attached or detached during the calibration process. The assembled
Mini-Robot, which has a weight of 170 grams, can be seen in Figure 5.7.
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Figure 5.7: Shows the Mini-Robot in the idle position (left) and with the robot arm
rotated in a random orientation (right).
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CHAPTER 6
Software Implementation

I this chapter, I will detail my implementation approach for the software which I developed
to process the motion capture data. First, I will discuss my implementation for the
calibration software and move into the implementation of the attitude estimation approach
using the Kalman filter on both the ESP32 and in the Unity game engine.

6.1 Calibration
The calibration procedure can be divided into two key steps:

1. Data collection using the Mini-Robot and recording

2. Accelerometer and gyroscope calibration

In this section, I will focus only on the software implementation for the data collection
and calibration process.

6.1.1 Data collection and recording
The script containing the instructions (see Algorithm 6.1) for controlling the robot and
collecting the data was written by me in the Arduino IDE environment. Here is a
breakdown of the important parts of the algorithm:

• Line 1-7: These instructions are executed in the start() function of the Arduino
script. In the first instruction, I set the three servo motors to their start positions
so that the top-most surface of the Mini-Robot lies parallel to the ground. After
that I set the full-screen range of the IMU. I set the accelerometer sensitivity to
2g, which means that the raw accelerometer data needs to be divided by 16384,
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and the gyroscope sensitivity to 250◦/sec, which means that the raw gyroscope
data needs to be divided by 131. This ensures that both sensors have the highest
possible sensitivity.

• Line 8: Here we enter the loop() function of the Arduino script. Ns is the number
of static positions, which the robot arm has to rotate to. I have set Ns = 60.

• Line 10-11: Here is where I read the data from the IMU.

• Line 12-14: Before setting the different static positions, the gyroscope bias needs
to be calculated. For that, the robot arm stands still in its idle position until Ng

angular velocity samples are read from the gyroscope sensor. Afterwards, the bias
is calculated by averaging all collected samples across each axis and the result is
stored in a 3D vector. For Ng, I chose 10000 to achieve a high accuracy for the
resulting bias vector.

• Line 15-21: This step is reached after the gyroscope bias was calculated and if
enough time has passed since the last time a new static position was set. If that
condition is satisfied, the robot arm is set in a random orientation. This is done
by passing three values to the three servo motors which are responsible for setting
the roll, pitch and yaw rotations. These values are in the range between 0 and
180. Immediately after setting the robot arm’s new orientation, the boolean flag
IMUinMotion is set to true to indicate that from this time on all the data that
is gathered is stored while the IMU is moving. Additionally, the attitudeNum
counter variable is increased to mark the new static position. Tstatic is the time span
the robot arm should remain in a static position, which I have set to 5.5 seconds.
Tmotion is the amount of time the robot arm should wait (after moving to a new
position) before marking the collected data with IMUinMotion = False. In my
implementation Tmotion is set to 4.5 seconds. Due to the uneven structure of the
robot arm, quick movements of the servo motors lead to jittering which affect the
IMU readings. Therefore, Tmotion makes sure to wait until the jittering of the robot
arm has diminished before entering the static state.

• Line 24: During each iteration and only after the gyroscope bias was calculated,
all the collected data is printed to the serial port.

While the data is printed to the serial port, I record it using the application SerialPlot.
This is a Qt-based software for reading data from the serial port while being able to
plot and record that data in real-time (see Figure 6.1) [ser23]. For that, the Mini-Robot
needs to be connected to the computer, on which this software is running, via USB.
After connecting it and choosing the data format, the recording in SerialPlot must be
initialized before the data starts to get printed to the serial port in order to not lose any
information.
After the Mini-Robot has reached its final static position and has finished printing to the
serial port, the data gathered by SerialPlot is saved in a file, which I then convert to a
CSV -file. In Figure 6.2 I explain the structure of the stored file.
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Algorithm 6.1: Mini-Robot IMU data collector
1 Set Robot Arm in idle position
2 Set IMU sensitivity
3 gyroBias ← {0, 0, 0} ▷ Vector containing gyroscope bias
4 attitudeNum ← −1 ▷ Index of current static position
5 gyrocalibrated ← False ▷ After gyroscope bias is calculated this is set to true
6 IMUinMotion ← False ▷ If robot arm is moving then this variable is true
7 deltaT ime ← 0 ▷ Time passed between this frame and last frame
8 while attitudeNum < Ns do
9 deltaTIme = CalculateDeltaT ime()

10 accData = ReadFromAccelerometer()
11 gyroData = ReadFromGyro()
12 if gyrocalibrated = False and Ng samples were collected then
13 gyroBias ← AverageGyroData()
14 end
15 if gyrocalibrated = True and IMUinMotion = False and

(Tstatic + Tmotion) time has passed then
16 Set Robot Arm in random position
17 attitudeNum ← attitudeNum + 1
18 IMUinMotion ← True

19 end
20 if gyrocalibrated = True and IMUinMotion = True and

Tmotion time has passed then
21 IMUinMotion ← False
22 end
23 if gyrocalibrated = True then
24 SendData(accData, gyroData, gyroBias, deltaT ime, IMUinMotion, attitudeNum)
25 end
26 end

6.1.2 Accelerometer and gyroscope calibration
I implemented the calibration algorithm for the accelerometer (see Algorithm 6.2) and
for the gyroscope (see Algorithm 6.3 and 6.4) in Python 3.8.16.
Here, I will describe the important parts of the Algorithm 6.2:

• Line 1: The first step is to read the CSV -file and store it in a Pandas DataFrame.

• Line 3-6: I prepare the data using numpy so that in the end I have a matrix where
the i-th row contains the averaged accelerometer data of the i-th static position.

• Line 7: Here, I need to set my initial guess for the unknown parameter vector θacc

(see Equation 4.3). After trying the initial guess proposed by [TPM14], which is
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Figure 6.1: SerialPlot for reading data from the serial port and plotting it in real-time.

Figure 6.2: This figure illustrates how the recorded data is stored. Each square can be
considered a row in the CSV -file, that contains all the data (listed in the bottom-left
corner) collected during an iteration of the main loop in the Arduino script. This diagram
shows two consecutive static positions which are separated by the dashed green line.
Each static position contains two sets of differently marked data. It starts with a series
of data that is collected while the robot arm is moving and ends with a series of data
that is collected while the robot arm is in a static position.

θacc = [1, 0, 0, 1, 0, 0], I found that the minimization algorithm did not provide good
solutions. Afterwards, I changed it to [0, 0, 0, 1, 1, 1], which means that ideally all
the axes of the AF coincide with the AOF or BF and that there are no scaling
errors. Therefore, these initial values should be closest to the ideal solution if there
are not any severe manufacturing errors with the targeted IMU sensor. With this
initial guess, I was able to receive good estimates for the parameter vector.

• Line 8: In this step, I employ the Levenberg–Marquardt algorithm to provide the
best possible estimates for θacc. For that, I use the already existing implementation
scipy.optimize.least_squares with the parameter method=’lm’ [lm23]. Additionally,
I pass the cost function AccelerometerCostFunc(θacc, SP ) (see Equation 4.5) which
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computes the vector of residuals with respect to θacc.

• Line 9: Get the final result for θacc from the Python function described in line 8.

Algorithm 6.2: Accelerometer Calibration
1 Function CalibrateAccelerometer ()
2 accData, IMUinMotion, attitudeNum ← ReadDataF ile()
3 Filter accData where IMUinMotion = False
4 Group accData by same attitudeNum
5 SP ← new [attitudeNum × 3] matrix ▷ Each row contains a static position
6 SP ← Average accData in the same group
7 θacc ← Init vector with chosen values
8 results ← LevenbergMarquardt(AccelerometerCostFunc, θacc, SP )
9 θacc ← results.solution

10 End Function

11 Function AccelerometerCostFunc (θacc, SP )
12 T a, Ka ← Init [3x3] matrices with chosen values θacc

13 gravityMag ← 9.8
14 residuals ← Init with empty list
15 for k ← 0 to SP.rows do
16 f ← T · K · SP [i]
17 residual ← (||gravityMag||2 − ||f ||2)2

18 residuals[i] ← residual

19 end
20 return residuals

21 End Function

Next, I will describe important aspects of the Algorithm 6.3:

• Since the gyroscope calibration uses the acceleromter calibration as a reference, the
function CalibrateGyroscope takes as input the averaged static positions and the
estimated θacc from Algorithm 6.2.

• Line 1: I read the CSV -file and store it in a Pandas DataFrame.

• Line 3-11: I prepare the data using numpy so that in the end I have one array AV V
where the i-th element has a list of 3D vectors containing the angular velocities
that transition the i-1-th static position into the i-th static position and a second
array dtV that contains the corresponding deltaT ime values.

• Line 12: I set my initial guess for the unknown parameter vector θgyro (see
Equation 4.10) to θgyro = [0, 0, 0, 0, 0, 0, 1, 1, 1]. Similar to my initial guess for θacc,
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this means that ideally all the axes of the GF coincide with the AOF or BF and
that there are no scaling errors.

• Line 13: I employ the Levenberg–Marquardt algorithm to provide estimates for
θgyro. I pass the cost function GyroscopeCostFunc (see Equation 4.8) which
computes the vector of residuals with respect to θgyro. The function requires
additional inputs such as the averaged static positions and the estimated θacc.

• Line 14: Get the final result for θgyro from the Python function described in line
13.

• Line 19-37: In the cost function, I iterate through all the static positions and,
in each iteration, I fetch two consecutive static positions and correct them using
the parameter vector θacc (see lines 22-23 and Equation 4.2). In line 24, I
fetch all the angular velocities that should transform the corrected Attitude into
NextAttitude. Between lines 26-33, I initialize a quaternion with [1, 0, 0, 0], where
the first element is the scalar part, and perform angular velocity integration using
that quaternion as the starting point with the angular velocities previously collected.
I perform the numerical integration using the fourth-order Runge-Kutta method
which is described in Algorithm 6.4 (the operator Ω returns a matrix representation
of the angular velocity vector, see Equation 2.30). It is important to note, that
the angular velocities must be transformed from degrees to radians by multiplying
them with P I

180 because the calculated rotation matrix from the quaternion (in line
33) will be otherwise incorrect. To calculate the 3x3 rotation matrix from the
resulting quaternion see Equation 2.28. Using this rotation matrix, Attitude can
be transformed and compared with the actual value NextAttitude in line 35.

The solutions calculated by CalibrateGyroscope and CalibrateAcceleromter are fed to the
motion tracker calibration software. I have implemented that application using C++
and Qt for the user interface. For communicating with the ESP32, I used the library
SerialPort provided by [Man16].

6.2 Attitude estimation
Here, I will describe the implementation details for my attitude estimation approach in
both the ESP32 and the Unity motion capture application.
On the ESP32, I set the full-screen range of the accelerometer to 2g and that of the
gyroscope to 250◦/sec to ensure that both sensors have the highest possible sensitivity.

6.2.1 Data correction and reorientation
In order to reduce the number of mathematical operations on the ESP32 when correcting
the accelerometer and gyroscope output using the calibration parameters θacc and θgyro,
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Algorithm 6.3: Gyroscope Calibration
1 Function CalibrateGyroscope (θacc, SP )
2 gyroData, gyroBias, deltaT imes, IMUinMotion, attitudeNum ←

ReadDataF ile()
3 Filter gyroData where IMUinMotion = True And attitudeNum > 0
4 Filter deltaT imes where IMUinMotion = True And attitudeNum > 0
5 Remove bias from gyroData using gyroBias vector
6 AV V ← array with size (attitudeNum−1), each entry is list of 3D vectors
7 dtV ← array with size (attitudeNum − 1), each entry is list of floats
8 for i ← 1 to attitudeNum do
9 Add gyroData vectors with attitudeNum = i to list AV V [i − 1]

10 Add deltaT imes values with attitudeNum = i to list dtV [i − 1]
11 end
12 θgyro ← Init vector with chosen values
13 results ←

LevenbergMarquardt(GyroscopeCostFunc, θgyro, θacc, SP, AV V, dtV )
14 θgyro ← results.solution and gyroBias

15 End Function

16 Function GyroscopeCostFunc (θgyro, θacc, SP, AV V, dtV )
17 T g, Kg ← Init [3x3] matrices with chosen values θgyro

18 residuals ← Init with empty list
19 for k ← 0 to SP.rows − 1 do
20 idx ← k
21 nextIdx ← k + 1
22 Attitude ← CorrectAttitude(SP [idx], θacc)
23 NextAttitude ← CorrectAttitude(SP [nextIdx], θacc)
24 angularV elocities ← AV V [nextIdx]
25 deltaT imes ← dtV [nextIdx]
26 q ← {1, 0, 0, 0} ▷ quaternion with scalar part=1 and vector part zero
27 for i ← 0 to angularV elocities.Size − 1 do
28 dt ← deltaT imes[i]
29 ω0 ← angularV elocities[i] ∗ P I

180
30 ω1 ← angularV elocities[i + 1] ∗ P I

180
31 q ← IntegrateRungeKutta4(q, ω0, ω1, dt)
32 end
33 R ← GetRotationMatrixFromQuaternion(q)
34 NextAttitudeEst ← R · Attitude
35 residual ← ||NextAttitude − NextAttitudeEst||2
36 residuals[i] ← residual

37 end
38 return residuals

39 End Function
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Algorithm 6.4: Fourth-order Runge-Kutta integration for quaternions
Input: A quaternion q, angular velocity ω0 at timestep t, angular velocity ω1 at

timestep t + 1, step size deltaT ime which is time passed between t and
t + 1

Output: quaternion qnext at next time step
1 Function IntegrateRungeKutta4 (q, ω0, ω1, ∆t)
2 /*Ω returns a real matrix representation of the angular velocity vector*/
3 q1 ← q
4 k1 ← 0.5 ∗ Ω(ω0) · q1
5 q2 ← q + 0.5 ∗ ∆t ∗ k1

6 k2 ← 0.5 ∗ Ω(ω0+ω1
2 ) · q2

7 q3 ← q + 0.5 ∗ ∆t ∗ k2

8 k3 ← 0.5 ∗ Ω(ω0+ω1
2 ) · q3

9 q4 ← q + ∆t ∗ k3

10 k4 ← 0.5 ∗ Ω(ω1) · q4

11 qnext ← q + ∆t ∗ (k1
6 + k2

3 + k3
3 + k4

6 )
12 qnext ← normalize(qnext)
13 return qnext

14 End Function

I simplified the equations 4.2 and 4.6 toaO
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Next, is the IMU data reorientation step, where the IMU output is rotated based on the
skewed angle of the IMU connected to the ESP32 (which is necessary to make the IMU
fit inside the chassis). I found that the angle α = 75 for the Ry(α) rotation matrix (see
4.11), is a good estimate to ensure that the initial orientation is close to q = [1, 0, 0, 0]T .

6.2.2 Quaternion-based Kalman Filter
I implemented my previously described Kalman filter in both the Arduino IDE, which is
to be uploaded to the ESP32, and the Unity environment.
For the implementation of the Arduino script, I created a C++ library containing all the
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Kalman filter functions. I utilized the single-header public domain linear algebra library
linalg.h developed by [Ors] to perform the necessary vector and matrix operations for
the Kalman filter algorithm.
In Unity, I implemented the Kalman filter in C#. Even though the Unity engine provides
implementations for matrix data structures and operations, it is limited to only square
matrices. Therefore, I used the C# library Math.NET Numerics which provides methods
and algorithms for numerical computations [Mat]. I imported this library into Unity
using the .Net package manger tool NuGet. In order to use Math.NET Numerics in a C#
script, it is necessary to add the line "using MathNet.Numerics.LinearAlgebra;" at
the top of the script.

The algorithm used to implement the Kalman filter (specifically KF1 ) in both the above
mentioned environments can be seen in 6.5 and here I will describe important aspects of
the algorithm:

• line 11-17: Here is where the Kalman filter is initialized when the first set of data
is received by the IMU. I provide an initial estimate measurementinitEst of the
state vector by calculating the roll and pitch Euler angles from the accelerometer
data while presuming that the yaw angle is zero. Since this Kalman filter is
quaternion based, the calculated Euler angles are converted into a quaternion using
the equation 4.21. This quaternion is then used as the initial estimate for the state
vector x. For QV al and RV al, I have chosen the values 0.001 and 10, respectively.

• line 18: Since I am using the second-order Runge-Kutta method (midpoint method)
in my Kalman filter, I need to average the two angular velocity vectors ω0 and ω1
and convert them from degrees to radians.

• line 19: Here, I perform the Kalman filter prediction step.

• line 20: Here, I perform the Kalman filter correction step.

• line 22: I calculate the state transition matrix A using Equation 4.13.

• line 28: I calculate the observation model h(x) using Equation 4.16.

• line 29: I calculate the Jacobian matrix H using Equation 4.18.

• line 33: The state vector x which represents the rotation as a quaternion must
always be normalized for it to be considered a pure rotation.

For the implementation of KF2, the algorithm differs in a few aspects. The Kalman
gain matrix is a 4x4 matrix and the observation matrix H is a 4x4 identity matrix. The
measurement noise covariance matrix R is a 4x4 identity matrix multiplied with the
same RV al = 10 value. The measurement vector z is a 4D vector and is a quaternion
representation of the rotation calculated using the accelerometer data as described in
lines 12-14.
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Algorithm 6.5: Quaternion-based Extended Kalman Filter
1 Function InitializeKalmanFilter ()
2 x ← [1, 0, 0, 0] ▷ state vector (quaternion with scalar part=1)
3 A ← Init [4x4] identity matrix ▷ state-transition matrix
4 H ← Init [3x4] matrix ▷ observation matrix
5 P ← Init [4x4] identity matrix ▷ process covariance matrix
6 Q ← Init [4x4] identity matrix * QV al ▷ process noise covariance matrix
7 R ← Init [3x3] identity matrix * RV al ▷ measurement noise covariance matrix
8 K ← Init [4x3] matrix ▷ Kalman gain matrix
9 End Function

Input: Receive following data from IMU every frame and pass them as
parameters to the Kalman Filter: The 3D accelerometer vector a, 3D
angular velocity vector ω0 at timestep t, 3D angular velocity vector ω1 at
timestep t + 1, step size dt which is time passed between t and t + 1

10 Function ExtendedKalmanFilter(a, ω0, ω1, dt)
11 if KalmanFilterNotIntialized then
12 roll ← arctan2(ay, az)
13 pitch ← arctan2(−ax, a2

y + a2
z)

14 measurementinitEst ← EulerAngleToQuaternion([roll, pitch, 0])
15 InitializeKalmanFilter()
16 x ← measurementinitEst

17 end
18 ωavg = ω0+ω1

2 ∗ P I
180

19 predict(ωavg, dt)
20 correct(a)
21 End Function

22 Function predict (ω, dt)
23 A ← GetStateTransitionMatrix(ω, dt)
24 x ← A · x
25 P ← A · P · AT + Q

26 End Function

27 Function correct (z)
28 h ← ObservationModel(x)
29 H ← GetObservationMatrix(x)
30 K ← P · HT · (H · P · HT + R)−1

31 x ← x + K · (normalized(z) − normalized(h))
32 P ← (I − K · H) · P
33 x ← normalized(x)
34 End Function
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6.2.3 Receiving and processing motion capture data in Unity
In order to receive the IMU data from the motion trackers, I implemented a UDP listener
as a Unity component. For that, I used the already existing UdpClient class under
namespace System.Net.Sockets. For the port, I used the same one that was set
in the configuration software and the buffer size of the received data was set 120000.
Using System.AsyncCallback, I defined a function to be called every time IMU data
is received.
The incoming data is separated by whitespaces and stored in an array. By checking
against the length of the array, I can deduct what type of data was sent. If the data
is detected as the already calculated orientation in Euler angels or quaternion, then
the information is passed directly to the assigned body segment of the virtual avatar
depending on the body part index. If the data is the raw IMU data, then the orientation
is first calculated using the Algorithm 6.5 before passed to the assigned body segment.
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CHAPTER 7
Technical Evaluation

In this chapter, I will perform technical evaluations for my implemented calibration
procedure as well as the sensor fusion algorithms I implemented in order to correctly
estimate the orientations of the motion trackers.

7.1 Calibration
There are two aspects of my calibration procedure which I will evaluate in this section.
First, I will present my evaluation results for how many static positions are necessary
to achieve a good estimate for the calibration parameters θacc and θgyro. Then, I will
discuss the effect of the calibration parameters on the collected IMU data.

7.1.1 Parameter estimation
During my implementation, I collected 60 static positions for every IMU in order to
estimate the calibration parameters. For the evaluation, I took a subset of these static
positions and calculated the parameter vectors θacc and θgyro. I started with 10 static
positions and incrementally increased that number by 5 until 60 static positions were
reached. I calculated the relative error between every solution for θacc and θgyro and the
final solution for θacc and θgyro where 60 static positions were used.
The relative error for vectors is defined as

erel = ||x̂ − x||
||x|| [Bin16] (7.1)

where x̂ is an approximation of the true value x. In my case, x represents the calibra-
tion parameters calculated using 60 static positions. To show these relative errors as
percentages every erel is multiplied by 100. I performed this evaluation process for three
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IMU 1
MAE

Before Correction 0.358
After Correction 0.046

IMU 2
MAE

Before Correction 0.207
After Correction 0.0516

IMU 3
MAE

Before Correction 0.378
After Correction 0.062

Table 7.1: Shows the mean absolute error between the magnitude of the vectors obtained
from the accelerometer while in a static position (before and after they were corrected
using θacc) and the real gravity vector magnitude. Each table represents the results for
one IMU.

different IMUs (which I will refer to as IMU 1, IMU 2 and IMU 3) and the results are
presented in Figure 7.1.

Discussion of results

As can be seen in Figure 7.1, it takes a minimum of 30 static position to get a relative
error equal or below 0.25% for the accelerometer calibration parameter vector θacc and a
minimum of 45 static position to get a relative error equal or below 5% for the gyroscope
calibration parameter vector θgyro. Therefore, I conclude that a minimum of 45 static
positions are required to get a good estimate for θacc and θgyro. However, it is clear from
the results that the more static positions are used for the parameter estimation, the more
accurate results will be.

7.1.2 Effectiveness of estimated calibration parameter
Next, I will evaluate the effectiveness of the calibration parameters on the recorded
IMU data. As mentioned in 4.3.1, when an accelerometer is put in a static state, the
magnitude of the outputted acceleration vector should be ideally equal to the magnitude
of the gravity vector which is 9.81. Therefore, in order to evaluate the effectiveness of
the calibration parameters for the accelerometer, I corrected all the acceleration vectors
that were recorded while the IMU was in a static state using θacc and compared their
magnitude to the magnitude of the gravity vector. For the comparison, I calculated the
mean absolute error (MAE) between all the corrected results and 9.81. The MAE can be
calculated by

emae =
N
i=1 ||x̂i − xi||

N
[WL18]. (7.2)

In my case, x̂ corresponds to a corrected gravity vector in a static position while x is
equal to the vector [0 0 9.81]. N is the number of gravity vectors that were corrected
using θacc. I again performed this evaluation process for three different IMUs and the
results are presented in Table 7.1, where the MAE is calculated for the original gravity
vectors and the corrected ones using the estimated θacc. The results are further illustrated
in Figure 7.2.
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(a) IMU 1: Results for accelerometer calibra-
tion parameters θacc

(b) IMU 1: Results for gyroscope calibration
parameters θgyro

(c) IMU 2: Results for accelerometer calibra-
tion parameters θacc

(d) IMU 2: Results for gyroscope calibration
parameters θgyro

(e) IMU 3: Results for accelerometer calibra-
tion parameters θacc

(f) IMU 3: Results for gyroscope calibration
parameters θgyro

Figure 7.1: Shows the number of static positions required to achieve a good estimate
for the calibration parameters θacc (left) and θgyro (right). When computing the relative
error, the calibration vector solution calculated from 60 static positions is used as a
ground truth. 83
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(a) IMU 1 (b) IMU 2 (c) IMU 3

Figure 7.2: Accelerometer calibration results for three different IMUs. The green line
is the magnitude of the real gravity vector which is 9.81. The red line represents the
magnitude of the vectors obtained from the accelerometer while in a static position. The
blue line represents the magnitude of the vectors obtained from the accelerometer while
in a static position that were corrected using the calibration parameters θacc.

IMU 1
MAE

Roll 0.163
Pitch 0.121
Yaw 0.106

Roll (corr.) 0.062
Pitch (corr.) 0.056
Yaw (corr.) 0.053

IMU 2
MAE

Roll 0.136
Pitch 0.139
Yaw 0.093

Roll (corr.) 0.062
Pitch (corr.) 0.091
Yaw (corr.) 0.050

IMU 3
MAE

Roll 0.189
Pitch 0.150
Yaw 0.122

Roll (corr.) 0.071
Pitch (corr.) 0.087
Yaw (corr.) 0.070

Table 7.2: Shows the mean absolute error between the estimated static positions calculated
using the gyroscope values and real static positions for each individual axis. The top half
of each table shows the error calculated without the calibration parameters θgyro while
the bottom half of each table shows the error calculated using gyroscope data corrected
with the calibration parameters θgyro. Each table represents the results for one IMU.

In order to evaluate the effectiveness of the calibration parameters for the gyroscope,
I utilized all the averaged static positions that were corrected using θacc and all the
angular velocity vectors that were collected between each static position. For each
corrected gravity vector, I performed angular velocity integration using the fourth-order
Runge-Kutta method and calculated the subsequent static position. This provides me
with an array of values that contains the estimated static positions x̂ which I can then
compare with the original array of values containing the actual static positions x. I again
calculated the MAE using these two arrays and the results are presented in Table 7.2
and Figure 7.3.
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(a) Roll (b) Pitch (c) Yaw

(d) Roll (corr.) (e) Pitch (corr.) (f) Yaw (corr.)

Figure 7.3: Shows the difference between the estimated static positions calculated using
the gyroscope values (blue filled circles) and real static positions (red filled circles). The
values are presented for each individual axes where (a) - (c) show the estimated static
positions for the x, y and z angles before employing the calibration parameters θgyro.
(d) - (f) show the estimated static positions for x, y and z angles using the calibration
parameters θgyro.

Discussion of results

As can be seen by the results, applying the estimated θacc and θgyro to the gravity
vectors and angular velocity vectors, respectively, clearly reduced the error rates. For
the accelerometer, it can be visually seen in Figure 7.2 where the magnitudes of the
corrected gravity vectors (blue curve) are much closer to the actual magnitude of the
gravity vector which is 9.81 (green line) than the original gravity vectors (red curve).
For the gyroscope, it can be seen in Figure 7.3 that the estimated static positions after
the correction using θgyro (blue filled circles) are much closer to the real static positions
(red filled circles) than before the correction. Therefore, I conclude that the estimated
calibration parameters θacc and θgyro using 60 static positions were effective in reducing
the errors of the distorted measurements of an IMU.

7.2 Attitude Estimation
For the attitude estimation evaluation, I will first focus on the yaw angle accuracy before
comparing my motion tracker to the commercially available HTC Vive tracker. Then, I
will give a qualitative evaluation of my proposed full-body motion capture solution in
Unity.
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7.2.1 Yaw angle accuracy
Since I am not using a magnetometer sensor in my motion capture system, the estimated
yaw angle will suffer the most from sensor errors and drifts. Therefore, during my
evaluation process, I focused first on determining the accuracy of the estimated yaw angle
using my sensor fusion algorithms.
In order to perform the evaluation for the yaw angle estimation, I placed the motion
tracker on an even surface and with its acrylic glass side against a wall and then rotated
it by 360 degrees before placing the tracker on the even surface and against the wall again.
This ensures that the final and end orientation of the motion tracker are identical. Using
these two reference points, I can compare the calculated yaw angle after the full rotation
with its initial yaw angle which ideally should be identical. Since I am only comparing
the last recorded value, I used the absolute error (AE) which is simply eae = |x̂ − x|
[Bin16]. x̂ is the estimated yaw angle and x is the true yaw angle value.
The results can greatly vary for slow and fast rotations and I have, therefore, performed
two sets of experiments:

1. Very slow full rotations about the z-axis that took 17-21 seconds

2. Very fast full rotations about the z-axis that took 2.5-3.5 seconds

I performed these experiments for three different IMUs and, for each IMU, I conducted
three trails for each slow and fast rotation. For each IMU, I have averaged the calculated
absolute errors for all the trails and for each sensor fusion algorithm. The following
sensor fusion methods were used during my experiments:

• KF1 without correcting the IMU data using the calibration parameters

• KF2 without correcting the IMU data using the calibration parameters

• KF1 where only the accelerometer data is corrected using θacc (I will refer to it as
KF1 + Cal(Acc))

• KF1 where both the accelerometer and gyroscope data are corrected using θacc and
θgyro (I will refer to it as KF1 + Cal(Acc/Gyro))

• KF1 where both the accelerometer and gyroscope data are corrected using θacc and
a modified θgyro with its scaling parameters for all axes set to one (I will refer to it
as KF1 + Cal2(Acc/Gyro))

All of these described sensor fusion methods were applied simultaneously on the IMU
data using the motion capture application running on the receiving computer.
For the slow motion tracker rotations, the results are presented in Table 7.3 and Figure
7.4. For the fast motion tracker rotations, the results are presented in Table 7.4 and
Figure 7.5.
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(a) IMU 1

(b) IMU 2

(c) IMU 3

Figure 7.4: Shows the yaw angle changes of a motion tracker while it is being rotated
about its z-axis by 360◦. I rotated the motion tracker by hand very slowly, so that one
full rotation took between 17-21 seconds. Normally, the motion tracker orientation has
a yaw angle of 0◦ when it is in its initial position. However, for better visualization, I
recentered the yaw angels around 180◦. Each plot shows the result for a different IMU
sensor.
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(a) IMU 1

(b) IMU 2

(c) IMU 3

Figure 7.5: Shows the yaw angle changes of a motion tracker while it is being rotated
about its z-axis by 360◦. I rotated the motion tracker by hand very fast, so that one
full rotation took between 2.5-3.5 seconds. Normally, the motion tracker orientation has
a yaw angle of 0◦ when it is in its initial position. However, for better visualization, I
recentered the yaw angles around 180◦. Each plot shows the result for a different IMU
sensor.
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IMU 1
Sensor Fusion Method AE

KF1 4.434
KF2 3.546

KF1 + Cal(Acc) 2.900
KF1 + Cal(Acc/Gyro) 74.226
KF1 + Cal2(Acc/Gyro) 0.8292

IMU 2
Sensor Fusion Method AE

KF1 7.907
KF2 9.068

KF1 + Cal(Acc) 7.776
KF1 + Cal(Acc/Gyro) 80.073
KF1 + Cal2(Acc/Gyro) 6.760

IMU 3
Sensor Fusion Method AE

KF1 2.827
KF2 8.638

KF1 + Cal(Acc) 3.760
KF1 + Cal(Acc/Gyro) 91.497
KF1 + Cal2(Acc/Gyro) 3.720

Table 7.3: Shows the absolute error (measured in degrees) between the final yaw angle
that was recorded after the completion of one full rotation of the motion tracker about its
z-axis and the actual yaw angle value which is equal to the initial yaw angle value. Each
rotation was conducted very slowly (between 17-21 seconds for the full rotation). Each
table shows the results for one IMU where multiple sensor fusion methods are compared.

Discussion of results

When looking at the results for the slow motion tracker rotations, it is clear that after one
full rotation there is a noticeable drifting error when looking at the final yaw angle. In
two out of three cases, KF1 performs better than KF2 and also KF1 + Cal2(Acc/Gyro)
performs better than KF1. The difference between KF1, KF1 + Cal(Acc) and KF1
+ Cal2(Acc/Gyro) are, however, minimal as they range between ±2 degrees. A clear
outlier are the results for KF1 + Cal(Acc/Gyro) where the AE can range between 74
and 92 degrees. This means that the estimated scaling parameters for the gyroscope are
decreasing the accuracy of the estimated yaw angle. My theory is that during the data
collection process of the calibration procedure, the Mini-Robot changes the orientation of
its arm in fast and abrupt movements which is reflected in the collected angular velocities.

89



7. Technical Evaluation

IMU 1
Sensor Fusion Method AE

KF1 99.377
KF2 100.892

KF1 + Cal(Acc) 99.642
KF1 + Cal(Acc/Gyro) 47.435
KF1 + Cal2(Acc/Gyro) 100.508

IMU 2
Sensor Fusion Method AE

KF1 77.309
KF2 76.707

KF1 + Cal(Acc) 77.416
KF1 + Cal(Acc/Gyro) 20.720
KF1 + Cal2(Acc/Gyro) 77.865

IMU 3
Sensor Fusion Method AE

KF1 99.577
KF2 95.030

KF1 + Cal(Acc) 99.481
KF1 + Cal(Acc/Gyro) 37.311
KF1 + Cal2(Acc/Gyro) 100.899

Table 7.4: Shows the absolute error (measured in degrees) between the final yaw angle
that was recorded after the completion of one full rotation of the motion tracker about
its z-axis and the actual yaw angle value which is equal to the initial yaw angle. Each
rotation was conducted very fast (between 2.5-3.5 seconds for the full rotation). Each
table shows the results for one IMU where multiple sensor fusion methods are compared.

This would make the estimated scaling parameters for the gyroscope only suitable for
similarly fast rotations. This theory is confirmed when looking at the results for the fast
motion tracker rotations. Without exceptions, KF1 + Cal(Acc/Gyro) performs better
than the all the other methods. However, the AE ranges between 20 and 48 degrees and
is, therefore, still a noticeable drifting error.

7.2.2 HTC Vive tracker comparison
Here, I will compare the attitude estimation results of my motion tracker to the commer-
cially available HTC Vive tracker. The HTC Vive virtual reality system consists of a
head-mounted display, controllers and laser emitters which are called lighthouses. This
system uses the inside-out principle which does not rely on external cameras. Instead,
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the lighthouses send out alternating vertical and horizontal laser sweeps which hit the
photodiodes on the surface of the headset, controller and trackers. Based on the time
difference at which the diodes are hit by the laser sweeps, the orientation and position of
the tracked object can be calculated [NLL17].
I attached the HTC Vive tracker to my motion controller using tape as can be seen
in Figure 7.6. In order to ensure that both the motion tracker and the Vive tracker
have the first initial orientation, I save the initial quaternion gathered after the first
orientation calculation for both the trackers and then apply the Equation 4.23. Similar
to the previously described yaw angle evaluation, I performed two sets of experiments:

1. One very slow random rotation about the x-, y- and z-axes that took approximately
60 seconds

2. One very fast full rotation about the x-, y- and z-axes that took approximately 35
seconds

I conducted these experiments for two different IMUs and I calculated for each one
the AE between the last recorded Euler angle values as well as the MAE using all the
recorded Euler angle values of both trackers where the Vive tracker orientation values
serve as the ground truth. I calculated these errors for multiple sensor fusion methods as
described in 7.2.1 which were applied simultaneously on the IMU data using the motion
capture application running on the receiving computer. For the slow motion tracker and
Vive tracker rotations, the results are presented in Table 7.5 and Figure 7.7. For the fast
motion tracker and Vive tracker rotations, the results are presented in Table 7.6 and
Figure 7.8.

Discussion of results

As can be seen by the results and looking at the AE , the roll and pitch angles for
both slow and fast rotations are very close to the estimated orientation of the Vive
tracker. As observed in the evaluation for the yaw angle estimation, the results for
KF2 are less accurate than KF1 and the yaw angles suffer from the same drifting issues.
By looking at the calculate MAE , the convergence rate of the estimated orientation
towards the true orientation (convergence rate of the Kalman filter) is conveyed. For slow
rotations, the convergence rate of my implemented sensor fusion methods are acceptable
which is reflected in the relatively low MAE . However, by looking at the results for
the fast rotations, the MAE is higher which is expected as the convergence rate is not
high enough. This means that, for fast rotations, there can be a visible delay until the
estimated orientation of my motion tracker reaches its desired result.

7.2.3 Full-body motion capture quality
Finally, I will qualitatively evaluate the performance of my full-body motion capture suit.
I conducted two experiments where, during the first one, the capture subject made slow
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Figure 7.6: Shows the motion tracker attached to an HTC Vive tracker via tape.

movements for approximately 60 seconds and, during the second one, the capture subject
made fast movements for approximately 25 seconds. I used the sensor fusion method
KF1 + Cal2(Acc/Gyro). The result showing side-by-side comparisons between the
capture subject and the virtual humanoid 3D character in Unity at different timestamps
can be seen in Figure 7.9 and 7.10.

Discussion of results

For slow body movements, my motion capture solution provides acceptable results.
However, after a 360 degree full-body rotation by the capture subject (see Figure 7.9f-h),
the yaw angle drifts are noticeably increased as can be seen by the slightly twisted right
leg and pelvis.
For fast body movements, my motion capture solution also provides acceptable results in
the beginning but again shows a decline in accuracy for the estimated yaw angles after
the 360 degree full-body rotation by the capture subject (see Figure 7.10f-g). This time,
the yaw angle drift is even more pronounced when looking at the legs, pelvis and head
(see Figure 7.10g-h).
I also observed other weaknesses during the evaluation. If the capture subject moves into
a crouching position or performs motions such as walking or jumping, these movements
are not accurately reflected in the virtual environment. This is due to the lack of 3D
position tracking in my implemented motion capture solution.
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(a) Roll

(b) Pitch

(c) Yaw

Figure 7.7: Shows the roll, pitch and yaw angle changes of a motion tracker while it is
being randomly rotated about all its axes. I rotated the motion tracker by hand slowly
for 60 seconds.
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(a) Roll

(b) Pitch

(c) Yaw

Figure 7.8: Shows the roll, pitch and yaw angle changes of a motion tracker while it is
being randomly rotated about all its axes. I rotated the motion tracker by hand very
fast for 35 seconds.
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(a) Initial pose (b) Pose after 20 seconds

(c) Pose after 24 seconds (d) Pose after 28 seconds

(e) Pose after 36 seconds (f) Pose after 48 seconds

(g) Pose after 52 seconds (h) Pose after 56 seconds

Figure 7.9: Shows a capture subject making slow body movements for 60 seconds as he is
wearing my inertial motion capture suit. The real capture subject is shown on the right
and the virtual humanoid 3D character in Unity is shown on the left side of the images.
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(a) Initial pose (b) Pose after one second

(c) Pose after 7 seconds (d) Pose after 10 seconds

(e) Pose after 12 seconds (f) Pose after 17 seconds

(g) Pose after 19 seconds (h) Pose after 23 seconds

Figure 7.10: Shows a capture subject making fast body movements for 25 seconds as he is
wearing my inertial motion capture suit. The real capture subject is shown on the right
and the virtual humanoid 3D character in Unity is shown on the left side of the images.
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IMU 1
AE (final rot.) MAE (all rot.)

Sensor Fusion Method Pitch Yaw Roll Pitch Yaw Roll
KF1 1.066 22.904 3.076 7.044 14.662 16.637
KF2 1.334 18.665 4.627 5.973 12.178 14.161

KF1 + Cal(Acc/Gyro) 0.246 3.210 1.575 8.648 17.844 16.771
KF1 + Cal2(Acc/Gyro) 0.8702 21.939 3.151 6.856 14.935 15.809

IMU 2
AE (final rot.) MAE (all rot.)

Sensor Fusion Method Pitch Yaw Roll Pitch Yaw Roll
KF1 3.160 23.508 1.012 8.212 24.627 33.1589
KF2 3.591 6.441 5.753 10.753 28.822 35.982

KF1 + Cal(Acc/Gyro) 5.202 53.732 7.206 9.070 31.211 32.590
KF1 + Cal2(Acc/Gyro) 3.870 9.765 4.379 9.158 21.344 32.497

Table 7.5: Shows the absolute error (measured in degrees) between the motion tracker’s
last recorded Euler angels and the Vive tracker’s last recorded Euler angels after a slow
60 second random rotation. Additionally, the mean absolute error (measured in degrees)
between all the recorded rotations between the two trackers for each of their axes are
also shown. Each table presents the results for one IMU where multiple sensor fusion
methods are compared.
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IMU 1
AE (final pos.) MAE (curve)

Sensor Fusion Method Pitch Yaw Roll Pitch Yaw Roll
KF1 5.026 37.726 7.775 13.733 31.638 27.746
KF2 7.792 39.734 14.118 21.086 66.407 43.891

KF1 + Cal(Acc/Gyro) 4.851 89.709 0.404 13.554 43.639 40.965
KF1 + Cal2(Acc/Gyro) 4.423 34.067 8.131 13.512 30.790 27.376

IMU 2
AE (final pos.) MAE (curve)

Sensor Fusion Method Pitch Yaw Roll Pitch Yaw Roll
KF1 0.502 91.928 11.457 19.216 56.980 39.451
KF2 0.605 126.882 11.186 24.700 90.930 78.417

KF1 + Cal(Acc/Gyro) 0.2817 18.086 12.722 14.172 31.300 29.128
KF1 + Cal2(Acc/Gyro) 0.174 90.788 11.439 18.519 55.175 38.332

Table 7.6: Shows the absolute error (measured in degrees) between the motion tracker’s
last recorded Euler angels and the Vive tracker’s last recorded Euler angels after a fast
35 second random rotation. Additionally, the mean absolute error (measured in degrees)
between all the recorded rotations between the two trackers for each of their axes are
also shown. Each table presents the results for one IMU where multiple sensor fusion
methods are compared.
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CHAPTER 8
Conclusion

In this chapter, I will give a short summary of my project and then discuss the limitations
of my inertial motion capture system. Finally, I will discuss some future work with
possible improvements that could increase the accuracy and usability of my system.

8.1 Summary
In this thesis, I proposed a low-cost and easy-to-use inertial motion capture system. I
designed and assembled 11 motion trackers that are attached to the capture subject’s
head, left upper arm, left lower arm, right upper arm, right lower arm, chest, tailbone,
left upper leg, left lower leg, right upper leg and right lower leg. The principal parts of
each motion tracker are the ESP32 microcontroller, the 6 DoF IMU sensor MPU-6050
and a 3.7V 1100mAh rechargeable lithium battery enclosed in a 3D printed chassis. In
order to assemble the motion trackers in a compact way, I designed and ordered custom
PCBs. Furthermore, I introduced a certain degree of modularity to each motion tracker
where the IMU and the battery can be detached and replaced if necessary.
Additionally, I designed and assembled a robot that can rotate its arm around the roll,
pitch and yaw axes which is a crucial part of my implemented robot-assisted calibration
procedure for each individual IMU. The goal of this calibration method is to minimize
the errors of the accelerometer and gyroscope measurements in order to increase the
accuracy of the estimated attitude of the motion tracker.
In order to correctly estimate the orientation of each motion tracker in 3D space, I imple-
mented a sensor fusion method in the form of an Extended Kalman filter (KF1 ) which
takes the angular velocities from the gyroscope as external input and the accelerometer
data as measurements. I also implemented a second variation of the Kalman filter (KF2 )
based on my own experiments. Both Kalman filters are quaternion-based to avoid the
singularities typically found in Euler angles parameterizations. In my evaluation, I found
that KF1 provides more accurate and more stable results than KF2.
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I developed a configuration software for the motion tracker as a way to reprogram the
tracker according to the user’s needs. Possible configurations include the ability to change
the network credentials, the assigned body part, the type of data being sent (Euler angles,
quaternions or raw IMU data) or overriding the calibration parameters of the motion
trackers.
The motion trackers send the IMU data via Wi-Fi using UDP to a receiving computer
with a running motion capture application. I developed this motion capture application
using Unity and it includes a humanoid, fully rigged 3D character mirroring the move-
ments of the capture subject. Additionally, the motion tracker orientation data can also
be retargeted to any 3D object in the virtual scene.

8.2 Limitations and future work
My proposed inertial motion capture solution has several limitations that could be
improved in future iterations of this project.
As already discussed during the evaluation, my proposed calibration procedure could be
improved my reprogramming the robot arm to decrease its rotation speed. Because the
calibration parameters were estimated using data that was collected with a very high
rotation speed of the robot arm, the corrected measurements became only suitable for
fast rotation of the IMUs (reflected in the scaling values of the gyroscope calibration
parameters). This led to a significant decrease in accuracy especially when estimating the
yaw angles of the motion trackers during slow rotations. Therefore, I suggest improving
the data collection process, by running multiple iterations of the recording process where
the orientation changes are captured at multiple speed levels. For each of these iterations
with a specified speed level, the calibration parameters are estimated. This way a lookup
table with multiple scaling parameters assigned to different angular velocity magnitudes
could be created where the scaling parameters for the gyroscope data could change at
runtime based on the current magnitude of the angular velocity vector. That way the
yaw angle estimations could become more accurate for both slow and fast rotations and
higher convergence rate for all the angles could also be achieved.
A simpler approach for improving the estimated yaw angle accuracy is incorporating a
magnetometer sensor in each motion tracker. However, this would lead to an increased
cost of the tracking solution and also make it more susceptible to magnetic interferences.
A more difficult approach could be combining my inertial motion capture solution with
a markerless optical motion capture solution, where a minimum of two webcams are
added to the setup and record the pose of the capture subject using existing libraries
such as OpenPose [CHS+19]. However, this would make my motion capture solution very
computationally expensive which would require additional expensive hardware.
The most important improvement to the overall motion capture quality would be the
addition of a kinematic model. As already explained in chapter 3, several existing inertial
motion capture solutions rely on these kinematic models to improve the motion capture
accuracy. Also adding rotation constrains to the rigged 3D character could prevent
unnatural or unrealistic poses caused by possible sensor errors. I found that 11 motion
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trackers are the minimum to achieve a good approximation of the entire body movements.
Adding more motion trackers could improve the results but increase the overall cost of
my proposed solution and additionally make the motion capture suit more uncomfortable
due to the increased number of trackers attached to the capture subject’s body.
A possible way to decrease the number of motion trackers is to use a virtual reality
system with included finger tracking such as the Meta Quest [met] or VIVE Focus
3 [viv]. Not only can finger tracking be added to the motion capture application, the
motion trackers attached to the lower arms can be eliminated and approximated using
the optically tracked hand wrists and the motion trackers attached to the upper arms.
Also, the motion tracker attached to the head would be eliminated and replaced with
the virtual reality headset. The downside of this approach is that the hand must al-
ways be in view of the headset cameras which would limit certain possible movements of
the capture subject. Another disadvantage is the added price for the virtual reality system.

Other limitations and possible future improvements include:

• In my implemented motion capture application, there is no correspondence between
the size of the capture subject and the virtual 3D character. Introducing another
calibration step before the starting the motion capture process where the user can
set the height of the virtual character can be useful for adding additional realism
and better correspondence between the tracked human and the animated character.

• Right now, I can reset the estimated angles if the sensor fusion algorithm is running
on the receiving computer which can be helpful if the accumulated drifting errors
in the estimated yaw angles become too noticeable. This is not possible when the
sensor fusion algorithm is running on the microcontroller instead since I do not
have a way to communicate and send messages to the ESP32. By implementing
a bidirectional communication between the ESP32 and the receiving computer, I
should be able to reset the motion trackers from the motion capture application.

• The chassis of the motion tracker attached to the capture subject’s head can be
improved. Due to its flat surface, it becomes uncomfortable to wear after a certain
period of time. Designing a slightly more curved bottom surface for the chassis of
the head tracker could make it more comfortable when it is strapped to the user’s
head.

• The design of the chassis could be improved in order to have a mechanism that
would better hold the electronics inside of the chassis and prevent them from moving
when they are subjected to fast movements. My current solution is to tape the
battery and PCB to the ground of the chassis.
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