
TECHNISCHE 
• • 

UNIVERSITAT 
WIEN 
Vienna I Austria

Dissertation

Model-based Control Strategies applied
to Distribution Grids in Local Energy

Communities

carried out for the purpose of obtaining the degree of Doctor of Technical Science (Dr.techn.)
submitted at Faculty of Mechanical and Industrial Engineering, Vienna University of

Technology

by

Bharath-Varsh Rao
Matr.Nr.: 1652953

Leopoldine-Padaurek-Straße
Floridsdorf, Vienna, Austria

under the supervision of

Ao.Univ.Prof. Dr.techn. Martin Kozek
Institute of Mechanics and Mechatronics

Vienna University of Technology

reviewed by

Univ.Prof. Dr.techn. Stefan Jakubek Univ.Prof. Dr.Ing. Wolfgang Gawlik
Institute of Mechanics and Mechatronics Jade University of Applied Sciences and
Vienna University of Technology Vienna University of Technology
1060 Vienna, Austria 26389 Wilhelmshaven, Germany



I confirm, that going to press of this dissertation needs the confirmation of the exami-
nation committee.

Affidavit

I declare in lieu of oath, that I wrote this thesis and performed the associated research
myself, using only literature cited in this volume. If text passages from sources are used
literally, they are marked as such.
I confirm that this work is original and has not been submitted elsewhere for any
examination, nor is it currently under consideration for a thesis elsewhere.

28. Oktober 2021, Vienna Bharath-Varsh Rao



Acknowledgment ii

Acknowledgment

I want to thank my supervisor Ao.Univ.Prof. Dr.techn. Martin Kozek with the Insti-
tute of Mechanics and Mechatronics, Vienna University of Technology, for steering me
through this Ph.D., with his expert knowledge of the subject, for motivating and sup-
porting me. I wish to extend my gratitude to my mentors at the Austrian Institute of
Technology, Dr. techn. DI. Friederich Kupzog and DI. Matthias Stifter (Presently with
Omnetric) for your continuous support. I likewise want to acknowledge my colleagues,
Paul, Mark, Barbara, Milica, Thomas, David, Regina, Antony, Bernadette, and the rest
of the Electric and Integrated Energy System teams for thought-provoking debates and
encouragement.

This Ph.D. would not have been possible without the support of my parents, Sudha,
Vasudeva, and the rest of my family specifically, Madhava, Saritha, Srinivas, Vinaya,
and my lovely cousins, Nikhil, Nandita, Amulya, and Ananya. Last but not least, I wish
to thank my partner Susie for providing unwavering support during the Ph.D.



Abstract iii

Abstract

This Ph.D. dissertation provides a collection of tools and methods performed since 2017
at the Austrian Institute of Technology, in association with the Institute of Mechan-
ics and Mechatronics, Vienna University of Technology. The research was conducted
within the Blockchain Grid (FFG No. 868656) project funded by the Austrian Research
Promotion Agency. The publications resulted from the cooperation between the Aus-
trian Institute of Technology, Siemens AG Österreich, Energienetze Steiermark, and
Vienna University of Technology.

This Ph.D. presents research on control and optimization of the distribution grid and
integrated energy assets in a local energy community. It also offers a solution to recon-
cile the physical settlement issue that a local energy market faces in a distribution grid
by providing a method to limit the flexibilities to ensure overall grid security preemp-
tively.

For several years, the amount of intermittent distributed energy resources (DER’s) like
photo-voltaic systems, wind generators, and new loads like electric vehicles, electric
and thermal storage, and heat pumps has increased in distribution grids. Power system
tools like load and optimal power flow, designed for transmission grids, are applied
to distribution grids with limited or no modification. Since DER’s and loads directly
depend on weather factors like ambient temperature, irradiation, and other external dis-
turbances, they, in turn, affect the performance of these tools. Therefore, novel optimal
grid control methods are to be developed which are compatible with distribution grids.
This dissertation presents a novel three-phase unbalanced holomorphic embedding load
flow method in conjunction with a non-convex optimization solver. Additionally, a
novel three-phase unbalanced model-based energy management system is presented to
manage the flexibilities that a smart home can offer. A control scheme is introduced
to derive relations between the grid level optimal power flow and individual flexibility
controller consisting of energy management systems. All the methods are demonstrated
at a pilot in Heimschuh, Steiermark, Austria.
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Chapter 1

Overview

Local Energy Communities (LEC) are being widely introduced in Europe, as outlined in
the Renewable Energy and the Electricity Market Directives, part of the Clean Energy
Package from the European Commission [1]. This provides a framework for member
nations to develop their own legislation on LECs. In Austria, the directives are trans-
posed into the Renewable Energies Expansion Act (German: Erneuerbaren Ausbau
Gesetz) and an amendment of the Electricity Industry and Organisation Act (German:
Elektrizitaetswirtschafts und Organisationsgesetz) [2]. The most crucial goal of a LEC
is the local production, consumption, trading of energy, and democratizing the energy
system by empowering the citizens. LECs can incentivize the community members to
install new or increase renewable energy production, conducive to the challenging cli-
mate goals set by the European Green Deal.

This Ph.D. details a series of methods and tools to enable LECs’ optimal and safe
operation and the underlying energy system. It compiles novel methods developed to
control distribution grids, and local flexibilities, allowing a peer-to-peer local energy
market.

Chapter 1 presents the motivation, problem statement, concepts developed, and related
basic research for control of the distribution grid and various flexibilities on the grid
and community member side. Chapter 2 presents the contributions and publications
related to this Ph.D. dissertation.

1.1 Motivation and Problem Statement
In recent years, distributed energy resources (DERs) like photo-voltaic systems, micro-
wind, and a new generation of integrated energy loads like electric, thermal storage,
electric vehicles, heat pumps, and hydrogen electrolyzers, are being increasingly con-
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nected to distribution grids. It is essential to operate and securely control the distribu-
tion grid to ensure the continuity of supply. LECs are expected to exasperate the issue
by further motivating the increase of such devices, and Distribution System Operators
(DSO) are obliged to facilitate the integration.

LECs will enable the creation of Local Energy Markets (LEMs) to trade and accounting
energy within the community. A central limitation of a LEM is the lack of a physical
settlement process. It is to ensure that the bids in a LEM, when executed, will not
cause any grid violations. At a national or European level energy market, physical
settlement is done with the help of a Transmission System Operator. However, due to
the large number of customers and devices involved, it becomes impractical for DSO to
perform the same in the distribution grids.

1.1.1 State-of-the-art review
In paper [3], OPF algorithms were classified into two categories; Class A algorithms use
ordinary load flow methods to generate intermediate solutions, use Jacobian matrix,
and other sensitivity relations to generate optimal solution iteratively. This method
is susceptible to failure since it entirely depends on the accuracy of the load flow. If
load flow converges, the solution already satisfies all the constraints. The optimization
problem is solved using the sensitivity relation from arriving at an optimal one. Class
B algorithms depend on exact optimal conditions, and load flow equations are used as
equality constraints. Detailed formulation of OPF is needed, which includes the entire
search space making it non-convex and is challenging to compute the global optimum.
One of the main challenges is constraint handling. The two classes have various advan-
tages and disadvantages. The performance of Class A depends on the load flow method
used. Newton-Raphson and Gause-Siedel methods are well known in the community.
The above-mentioned methods have certain limitations as detained in [4], leading to a
non-converged state and failure of OPF. Since Class B uses the entire search space and
is non-convex in nature, it is not easy to find a global optimum. Additionally, convex
relaxation is needed or a heuristic optimization method.

A novel Class C method is presented in this work which combines Class A and Class
B. Using a reliable load flow described in Section 2.1 method wrapped around a heuris-
tic optimization method. The load flow generates accurate operable high voltage and
phase angle solution at every iteration and is used as equality constraints. Since the
models used for low voltage distribution networks are derived from transmission grids,
this section presents a novel three-phase unbalanced optimal power flow. A detailed
discussion can be found in Section 2.1.
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Smart home energy management systems (HEMS) have been widely described in the
literature [5–9]. Model predictive control (MPC), with its large popularity in the chem-
ical industry, is increasingly being used in smart buildings and homes to handle the
uncertainties associated with the building models, new intermittent generation, and
loads. Various MPC-based HEMS are available in the literature. In [10], an MPC
technique to optimize the air-conditioning and other energy-intensive appliances are
presented. The objective is to minimize the energy peaks throughout the day. Authors
in [11] have presented a HEMS with a variety of generations and loads with the goal to
increase self-consumption, maximal utilization of PV system, and decrease operational
costs. Work done in [12] presents an MPC method to control electric vehicles, hot-water
tanks, and domestic heating to reduce energy consumption. Forecasting methods are
used to predict the disturbances like uncontrollable loads and solar irradiation. Results
lead to a minimization of energy costs and peak power.
However, most of the research relies only on single-phased electrical models. This can
be observed in [9, 13], where building RES generation and loads are optimized. Addi-
tionally, most of the methods only control active power, and reactive power is elimi-
nated. However, voltage is directly coupled with reactive power, and therefore, reactive
power control is interesting. In this Ph.D., a novel three-phase unbalanced home energy
management system is developed to achieve per-phase control of various flexibilities.
Additionally, both active and reactive power control is presented (see Section 1.3.2).

In power system, stratified control is mainly used in microgrids as presented in [14–16].
However, these methods need detailed information about the flexibilities that they are
controlling to generate the set-points. This is not typically available in a local energy
community with a number of customers, and data privacy does not allow it. Moreover,
in the literature, stratified control methods are designed to operate a specific type of
device or flexibility as presented in [17–19], where electric vehicles are managed. Meth-
ods to include smart buildings are presented in [20, 21]. In this Ph.D., a generalized
stratified control method, which generates set-points at the points of common couplings
of individual flexibilities, is presented. This is device and flexibility independent, re-
sulting in the inclusion of a wide variety of flexibilities into the community.

In the literature, there are numerous methods describing capacity management in dis-
tribution grids. They are either numerically iterative in nature or use mathematical
optimization. The grid capacity, optimal hosting capacity, optimal placement problems
are fundamental, based on optimal power flow (OPF) methods, as described in [3].
Various methods on hosting capacity are presented in [22–24].
Authors in [25], have presented a micro-grid energy and power management system that
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is bi-level in nature. Two levels of control, namely, upper and lower, are implemented
using evolutionary algorithms for power and energy management, respectively. Using
this approach, the global optimum is challenging to achieve, and the flexibilities directly
receive set-points. This is a significant limitation as detailed flexibility models are
needed. In [26], an energy management system to control RES generation from solar,
tidal, and wind is described. It is used for demand response programs, coupled with
storage devices in a micro-grid. Linear multi-objective programming method is used.
However, it does not provide a method for separating load types and provides a method
for including a wide variety of flexibilities without the need for robust data. Authors
in [27] detail a control problem with two approaches, the direct method and the Bellman
principle of dynamic programming, with promising results. However, it does not involve
any flow of energy. This method cannot be extended to a low voltage distribution
network made up of power lines where energy flows must be taken into account. The
term hosting capacity is commonly referred to as RES in distribution grids and can
be used generally to include both generation and loads. In this Ph.D., the available
capacity is dynamically managed among the flexibilities by generating active power
limiting operational profiles at the points of couplings. If the flexibilities operate within
these limits, no grid violations are observed at any part of the grid.

1.1.2 Problem definition
The underlying energy system of a LEC in Austria consists of a low voltage distribution
grid along with multiple grids and community members’ energy assets like community
batteries, smart homes, and buildings. As discussed earlier, the goal of a LEC is to
maximize the local production, consumption, and trading of energy. To do so, the
distribution grid needs to be operated in an optimal fashion to accommodate all the
grid and customer assets without any curtailment. Additionally, optimal power flow
methods, which were developed for transmission grids, cannot be readily applied to
distribution grids. They need to be modified to handle the diversity of flexibility types,
objectives, functions, and constraints, which can be linear, mixed-integer, non-linear,
non-convex. It should also be able to include the intermittency of DERs and the new
generation of loads.

Pertaining to the assets connected at the community member side, the smart homes
and buildings cannot typically accommodate per-phase control of the flexibilities and
do not include both active and reactive power control. There is also a lack of a stratified
control mechanism that can deal with a large number of flexibility types.

LEC will host LEMs in the distribution grid. LEMs currently do not address the grid
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issues during the market mechanism. It is essential to ensure grid security irrespective
of the volume and delivery of power traded on the LEM. There is a lack of a physical
settlement mechanism in the LEMs.

1.2 Goals
The main goal of this Ph.D. is to design, simulate and demonstrate a generalized con-
trol structure for a low voltage distribution grid to optimally manage the power flows
by utilizing the grid and consumer level flexibilities. The objective of such a control
structure is to ensure grid stability by managing the intermittency of DERs and the
new loads. It should also accommodate a variety of objectives and constraints that
a LEC can impose, being technical or economical. Additionally, it should be able to
include a variety of flexibility types with diverse control requirements.

Most distribution grids are three-phase unbalanced due to the uneven loading on each of
the three phases. However, most energy management systems do not consider this detail
and are single-phased. Therefore, a more realistic three-phase energy management
system is needed for per-phase power control. To coordinate the smart buildings and
other grid-level flexibilities like community electric storage, a control mechanism is
required to manage the interactions between the grid and various flexibility controllers.
With the introduction of LEMs in a distribution grid, a method to provide the physical
market settlement is needed to ensure that the bids do not cause grid violation. This is
to maximize the available grid capacity and accommodate all the community members
into the LEM.

1.3 Methodology
In this Ph.D., four main pieces of research work are presented. Firstly, a novel "Class
C" OPF algorithm with a novel three-phase unbalanced Holomorphic Embedding Load
Flow method and genetic algorithm. Secondly, a novel three-phase unbalanced model-
based Energy Management System. Thirdly, a stratified control structure to manage
various flexibilities in a distribution grid. Lastly, an Optimal Capacity Management
tool to enable a LEM by providing a physical settlement mechanism. Only a brief
introduction to various models and methods is presented in this dissertation. Detailed
information with results are recorded in various publications (see Chapter 2).
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1.3.1 Three-phase Unbalanced Optimal Power Flow
Power flow equations associated with low voltage distribution networks are non-linear
and non-convex. In this work, in the context of Class C algorithms, a three-phase un-
balanced holomorphic embedding load flow method with a genetic algorithm is used to
generate optimal set-points. Network models are adopted from [28].

OPF problem can be formulated as follows,

minimize
x

F (x, u)

subject to H(x, u) = 0,

G(x, u) ≤ 0
(1.1)

Where,
x and u are state and input variables.
F (x, u) refers to the OPF objective function. Traditionally, typical objectives are net-
work loss minimization, optimal dispatch, plant cost minimization.
Three-phase voltage unbalances objective minimization function is chosen and is of the
form described in Equation. 1.2.

minimize J =
	
k∈Ω

	
p∈P

(real(V p
k,balanced) − real(V p

k ))2 + (imag(V p
k,balanced) − imag(V p

k ))2

(1.2)
Where Ω refers to all the buses in the network and P ∈ phases(a, b, c), voltages are
represented in a rectangular coordinate system with both magnitude and phase angle
being minimized related to the real and imaginary part of the complex value.
G(x, u) and H(x, u) are equality and inequality constraints, respectively. The three-
phase unbalanced holomorphic embedding load flow method developed is used as equal-
ity constraints.

The three-phase unbalanced holomorphic embedding load flow developed in this work is
based on the method developed in [29]. The load flow equations are modeled as follow,

 Aa
1 Ab

1 Ac
1 Aa

2 Ab
2 Ac

2
Aa

P Q3 Ab
P Q3 Ac

P Q3 Aa
P Q4 Ab

P Q4 Ac
P Q4

Aa
P V3 Ab

P V3 Ac
P V3 Aa

P V4 Ab
P V4 Ac

P V4





Re{V a[n]}
Re{V b[n]}
Re{V c[n]}
Im{V a[n]}
Im{V b[n]}
Im{V c[n]}


=

 r1,n−1
rP Q2,n−1

rP V2,n−1

 (1.3)
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Is of the form,
Ax = b (1.4)

where the matrix A is clarified as,

AP
1ij

= GP
ij + δi, jRe{yP

i }, i, j ∈ Ω, P ∈ a, b, c

AP
2ij

= BP
ij − δi, jIm{yP

i }, i, j ∈ Ω, P ∈ a, b, c

AP
P Q3ij

= BP
ij − δi, jIm{yP

i }, i, j ∈ ΩP Q, P ∈ a, b, c

AP
P V3ij

= 2δi, j, i, j ∈ ΩP V , P ∈ a, b, c

AP
P Q4ij

= GP
ij + δi, jIm{yP

i }, i, j ∈ ΩP Q, P ∈ a, b, c

AP
P V4ij

= 0, i, j ∈ ΩP V , P ∈ a, b, c

(1.5)

where B and G are the susceptance and conductance matrices respectively. δi, j = 1 if
i = j, else 0.
Elements on the right-hand side are defined as follows,

r1,n−1,i = δn,1(Pi − Re{yi}) − Re

�
n−1	
m=1

V ∗
i [m]

	
k∈Ω

	
p∈P

Y p
ikV p

k [n − m]
�

, i ∈ Ω (1.6a)

rP Q2,n−1,i = δn,1(−Qi − Im{yi}) − Im

�
n−1	
m=1

V ∗
i [m]

	
k∈Ω

	
p∈P

Y p
ikV p

k [n − m]
�

, i ∈ ΩP Q

(1.6b)

rP V 2,n−1,i = −
n−1	
m=1

	
p∈P

V ∗
i [m]V p

i [n − m] + (1 + α(Mi − 1)2)[n], i ∈ ΩP V (1.6c)

Where target voltage magnitude for PV bus is described using Mi.
Viskovatov Pade approximant algorithm is applied to learn the power series coefficients
leading to voltages and phase angles results (see [30, 31]).

1.3.2 Three-phase Unbalanced model-based Energy
Management

In this Ph.D., smart home flexibility is utilized to provide services to the grid. To aid
that, a novel three-phase Unbalanced model-based Energy Management is presented in
this section. Since DER’s and loads are extremely sensitive to external parameters like
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weather and solar irradiation, the controller chosen should be robust enough to handle
all of these uncertainties.

r 
s 
t 

Model Predictive Controller

Flexibilities Disturbances

qhouse Weather data: 
Tambien 

Irrediation
(north, south, east, west) 

Twall

n InverterHeat Pump Uncontrollable
Loads

Inverter

Electric Storage PV system

P,Q
profile

P,Q
profile

Controllable
Loads

P,Q setpoints

Troom
gventilation
ginternal

Figure 1.1: Schematic of three-phase HEMS with model predictive controller.
It shows all the interconnections with respect to data exchange.

In this work, a novel three-phase Unbalanced Model Predictive Control is derived from
performing control at smart homes with receding horizon control. Figure 1.1 describes
the MPC and various data exchanges between devices in the smart home.
Smart home thermal models are derived from project iWPP-Flex [32]. They are linear
single zone models developed based on data from real single-family homes in Austria.
Four models are developed by generalizing the data representing major house types.
Various appliance and flexibility models are described in detail in Section 2.2.

In this work, three conflicting objective functions are considered and are as follows,

1. Maximize self consumption: It is economical to maximize self-consumption
in many countries in northern Europe and therefore, Equation (1.7) is considered.
Since active power is only the dependent factor on electricity tariffs, reactive
power is excluded.

Jself consumption =
	

t

	
p∈P

(P p
grid(t))2 (1.7)

Where P p
grid(t) is the per phase active power at the grid connection point.

2. User comfort: User comfort is very important in smart homes and therefore,
Equation 1.8 is included. Temperature limits are defined by the user.

Juser comfort =
	

t

(T reference
room (t) − Troom(t))2 (1.8)
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3. Grid Support: The optimal set-points generated by the grid level controller are
actively tracked by the smart home using the objective in Equation (1.9).

Jgrid support =
	

t

	
p

(P ρ
grid reference(t) − P ρ

grid(t))2 + (Qρ
grid reference(t) − Qρ

grid(t))2

(1.9)

Equation 1.10 describes the complete objective function. User-defined weights S, U ,
and G are introduced using which more importance can be given to the objectives.

minimize J = S Jself consumption + U Juser comfort + G Jgrid support (1.10)

Weights can be changed online and are updated in the following sample time and are the
most significant variables, having much influence on the performance of the controller.
Pbattery, Pheat pump and Pcontrollable load are controllable variables.

1.3.3 Stratified Control Structure
Stratified Control Structure derives control relationships between the low voltage dis-
tribution grid and various flexibilities local energy community.

U
nc

on
tro

lla
bl

e 
bu

se
sBus 00

Bus 01

Flexibility 00
Bus nn

Flexibility 01

Flexibility nn

P, Q 00sm

P, Q 01sm

P, Q nnsm

C
on

tro
lla

bl
e 

bu
se

s

Three
phase

unbalanced
optimal

power flow

P, Q 00
ref

P, Q 01
ref

P, Q nn
ref

+

+

+

P, Q 00
act

P, Q 01
act

P, Q nn
act

Figure 1.2: Schematic of the stratified control scheme with a grid level OPF
controller and four smart homes with MPC controllers.
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It consists of a grid controller and numerous flexibility controllers. The grid controller
hosts a three-phase unbalanced power flow, generating optimal set-points for a certain
number of controllable buses at critical nodes. Smart home controller hosts Model
Predictive Control with various flexibilities, which are single or three-phased. The op-
timal set-points generated by the grid controller are actively tracked by smart homes
connected to it, leading to a system-level optimization. Figure. 1.2 represents a strat-
ified control scheme with a grid controller providing set-points to multiple flexibility
controllers. The set-points from the grid level controller are generated at the points
of common couplings without the need for sensitive building flexibility information to
preserve privacy.

1.3.4 Optimal Capacity Management
Optimal Capacity Management (OCM) involves generating limiting active and reactive
power operational profiles at the buses where flexibilities are connected. OCM is based
on "Type C" Optimal Power Flow, consisting of a reliable flow solver, such as a Holo-
morphic Embedding Load Flow method, wrapped around a non-convex heuristic solver,
such as a genetic algorithm. The flexibilities are required to operate within limits to
ensure no violations are observed in any part of the distribution grid.

External
Grid

UL01

Bus01 Bus02 Bus03 Bus04 Bus05

Line01
MV LV

CBUL02

UL03

Bus09 Bus08 Bus07

UL04CS01 CS02

Bus06

Line02 Line03

Line04

Line07 Line05Line06

Bus10Bus11

Distribution
Transformer

Figure 1.3: General schematic of a LEC in Austria, consisting of a community
battery and two charging stations [33].
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Bus05 Bus07

CS02CB

Figure 1.4: Active power limiting profiles generated at the points of common
couplings of community battery and charging station 02 [33].

OCM is designed to include multiple objectives, like loss minimization, three-phase
unbalance minimizations, maximizing hosting capacity, in addition to generating the
operational limits. It can handle a variety of grid constraints like the voltage, loading of
various elements and assets, active and reactive power flow limits, and thermal limits.
The limiting profiles can be observed in Figure. 1.4. This is related to Figure.1.3, where,
at Bus 05 and Bus 07, the community battery and charging station are connected.

The limiting profiles are generated using the following objective function,

F (x, u) =
	
t∈T

	
c∈C

Pc,t (1.11)

Where, (P min
t , P max

t ) represents the limiting profiles and are generated as follows,

P min
t = minimize

u

F (x, u)
P max

t = −minimize
u

F (x, u)

(1.12)

Active powers at controllable devices are Pc,t, at the time step t. Set of flexibilities are
represented as C and T is the time horizon. By minimizing and maximizing (- minimiz-
ing) Equation 1.11, to generate P min and P max values as represented in Equation 1.12.

With the help of these limiting profiles, the flexibilities are preemptively controlled to
prevent grid violations in any part of the grid. This constitutes the physical settlement
in a Local Energy Market.
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1.3.5 Demonstration of methods in research projects
This Ph.D. is part of a research project, Blockchain Grid (FFGNo. 868656), funded
by the Austrian Research Promotion Agency. Blockchain Grid project focuses on de-
veloping a peer-to-peer blockchain-based energy accounting system and a grid control
mechanism for the maximal utilization of flexibilities in a low voltage distribution grid.
OCM has been validated successfully in the Heimschuh smart grid pilot.
OCM is currently being applied in several Austrian and European level projects and is
listed in Figure. 1.5. Various methods developed in this Ph.D. are being applied with
limited changes.

Figure 1.5: Methods applied to various Austrian and European Level Projects.

OCM is being deployed in the Austrian City of Gasen, where a LEC will be set up.
This is done in the CLUE project. In the LocalRES project, a version of OCM will be
deployed in the municipality of Ollersdorf in Burgenland in Austria. Similarly, OCM
will be deployed in the islands of La Graciosa in the Canary Islands of Spain and Aran
Islands in Ireland within the REACT project.
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1.4 Summary of Scientific approaches
In Publication A, see section 2.1, a novel "Class C" optimal power flow is presented.
Class C OPF algorithms involve the use of a reliable load flow along with a non-convex
optimization solver. In this paper, a novel three-phase unbalanced Holomorphic Em-
bedding Load Flow method is presented. To check the accuracy of the solution, it is
compared against the Newton-Raphson method in DIgSILENT Power Factory. Volt-
age results from thousand random load flow simulations by varying active and reactive
power at load buses from ± 100kW and ± 8 kVAr. Mann-Whitney U test is apples to the
result and tabulated with other statistical information. It is observed that the means
are statistically insignificant, leading to the acceptance of the null hypothesis. Using
this load flow technique, a non-convex heuristics solver genetic algorithm presents an
optimal power flow scheme. A use case consisting of a real network in Austria is consid-
ered for evaluation. A three-phase voltage unbalance minimization objective function is
used. By running the proposed TOPF, optimal schedules were generated at controllable
buses. Observations regarding the objective function value, voltage profiles, active and
reactive power profiles are made regarding real, forecasted, and optimal schedules.

In Publication B, see section 2.2, a novel three-phase unbalanced home energy man-
agement system is presented. It includes typical distributed generation like photo-
voltaic systems, loads like electric storage, heat pumps, and various smart home models,
constructed using realistic models representing typical homes in Austria. The models
are three-phase linear in nature and model both active and reactive powers. Three
conflicting objective functions with three objective user-defined weights are presented.
The control scheme is described for three-phase with various chronological events. Sim-
ulation results for unbalanced active and reactive power control for three phases are
provided. Multi-objective mixed-integer quadratic programming model predictive con-
trol is presented.

In Publication C, see section 2.3, a stratified control method is presented to derive
control relationships between the distribution grid and various flexibilities in a local
energy community. The communication is facilitated over a Blockchain. The flexi-
bilities used are smart buildings and community-level electric storage. The grid level
controller uses an OPF type C with a three-phase unbalanced optimal power flow,
comprising a three-phase unbalanced holomorphic embedding load flow method and
genetic programming. Optimal schedules are generated at certain controllable buses.
The flexibilities connected at those buses, with their internal controller, try to tract
the schedules generated by the grid controller. The flexibility controller consists of
mixed-integer quadratic programming-based model predictive control. Each flexibility
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controller is unique and depends on the available flexibility in the building premises
or community electric storage. To test the control scheme, a real network and home
controller to four smart houses are used. The objective function is three-phase voltage
unbalance minimization at all the buses in the network.

In Publication D, see section 2.3, an Optimal Capacity Management method, using
OPF Type C is presented. This method reconciles the physical settlement issue affected
by a local energy market. It preemptively calculated the active power operational limits
at a certain number of controllable buses where flexibilities are connected. To observe
these limits, flexibility is required to ensure system-level optimization even before the
bids in a local energy market are executed. OCM comprises a holomorphic embedding
load flow method and genetic programming to generate the operational limits. The
method is demonstrated and validated in a real pilot in Austria.
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1.5 Scientific Contributions of this Work
The methods developed in this Ph.D. can be applied universally. Class C type of OPF
algorithms can be applied to various real distribution networks without limitations on
the size of the network, number of components, and can handle most types of objectives
and constraints (linear, mixed-integer, quadratic, non-linear, and non-convex). How-
ever, communication infrastructure to process control actions for the entire network can
be a bottleneck. Model predictive control Methods developed can be applied to any
smart home or building type with a diverse set of single and three-phase loads and re-
newable energy generators. Grid level controller as part of the stratified control scheme
generates set-points at the points of common couplings of flexibilities. Therefore, the
method does not depend on the type of flexibility connected, leading to the inclusion
of a diverse set of flexibilities and controllable assets. Similarly, the operational limits
generated by the optimal capacity manager are flexibility type independent. However,
the method is limited to a particular feeder (feeder-specific OCM implementation).
The scientific contributions of this work and can be summarized:

• Development of a novel class of optimal power flow algorithms – Class C
– Three-phase unbalanced Holomorphic Embedding Load Flow Method (THELM).
– Benchmarking of THELM against three phase unbalanced Newton-Raphson

method.
– Three phase unbalanced optimal power flow scheme using THELM and Ge-

netic Algorithm.
– Three phase unbalance minimization objective applied to real networks.

• Development of three phase unbalanced home energy management system
– Multi-objective optimization to maximize self consumption, comfort and grid

support.
– Three phase active and reactive power models for flexibilities.
– Mixed-integer quadratic programming Model Predictive Control (MPC).
– Control both active and reactive power.

• Stratified control structure for optimal scheduling of flexibilities in the low voltage
distribution networks

– Control relationships between the grid and various flexibilities in a local
energy community.
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– Stratified control applied to the real network in Austria with a number of
buildings and a community level electric storage.

– Generating the set-points at the points of common couplings leading to a flex-
ibility model or data-independent grid controller, preserving the consumer
privacy.

• Application of Class C OPF in Optimal Capacity Management
– Reconciling the physical settlement issues in a Local Energy Market by pre-

emptively generating limiting operational profiles at the location of flexibil-
ities to ensure grid stability.

– Demonstration of the OCM in a pilot in Heimschuh, Styria, Austria, leading
to technology readiness level 7.
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Abstract: Distribution networks are typically unbalanced due to loads being unevenly distributed
over the three phases and untransposed lines. Additionally, unbalance is further increased with high
penetration of single-phased distributed generators. Load and optimal power flows, when applied to
distribution networks, use models developed for transmission grids with limited modification. The
performance of optimal power flow depends on external factors such as ambient temperature and
irradiation, since they have strong influence on loads and distributed energy resources such as photo
voltaic systems. To help mitigate the issues mentioned above, the authors present a novel class of
optimal power flow algorithm which is applied to low-voltage distribution networks. It involves the
use of a novel three-phase unbalanced holomorphic embedding load flow method in conjunction
with a non-convex optimization method to obtain the optimal set-points based on a suitable objective
function. This novel three-phase load flow method is benchmarked against the well-known power
factory Newton-Raphson algorithm for various test networks. Mann-Whitney U test is performed
for the voltage magnitude data generated by both methods and null hypothesis is accepted. A use
case involving a real network in Austria and a method to generate optimal schedules for various
controllable buses is provided.

Keywords: unbalanced three-phase distribution networks; optimal power flows; genetic algorithm;
holomorphic embedding load flow method; simulation

1. Introduction

In recent years, with the integration of distributed generators, electric storage, electrical vehicles,
and demand response units, the role of distribution systems is changing. Distributed energy units
(DERs) are posing problems mainly in the low-voltage networks with their intermittency and
uncontrollability. New innovative solutions are required to maintain grid security. Management
of low-voltage distribution networks are challenging since they contain large array of devices which
need to be controlled, and monitoring systems are limited. The above DERs along with loads should
be run in a sustainable fashion since it is one of the biggest challenges. Various methods to control the
DERs are presented in [1].

A so-called advanced distribution management system (ADMS) has come into existence, evolving
from the transmission network’s supervisory control and data acquisition systems (SCADA). This is
possible with the increase in smart meters and monitoring devices in the network which provides data
acquisition abilities [2]. ADMS provides functionalities such as load flow analysis, optimal power flow,
monitoring and control capabilities similar to SCADA systems [3]. This must in theory, host advance
functionalities such as adaptive protection leading to self-healing, real-time monitoring, dynamic
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network reconfiguration and control [4–8]. This will provide intelligence to the grid with topology
processor, state estimation, load and generation modeling [3]. The grid needs to be operated optimally
and the power flows should be optimal to reduce losses, increase security, and maximize economic
benefit. Energy balance should be maintained for secure operation of the network to maintain the
frequency and voltage within its limits.

Optimal Power Flow (OPF) is one of the most fundamental functionalities of ADMS. In the
literature, various OPF algorithms can be found. The authors in [9] describe an OPF algorithm to
control active, reactive power, and transformer taps. The objective is to minimize system costs and
losses. This method is based on Newton-Raphson load flow. Feasible power flow is solved, and
the optimum is close to the load flow solution. Therefore, Jacobian information is used to calculate
the optimum in a linear fashion. In [10], a non-linear programming technique is used to provide
solution to OPF problem the objectives being economic dispatch and generation cost minimization.
Same as before, load flow is performed to determine a feasible solution. Fletcher-Powell method
is used to minimize the objective function. A general economic dispatch problem is implemented
in [11]. This approach is similar to that in [9,10]. In [12], an OPF method for power system planning is
provided. It used generalized reduced gradient technique to find the optimum. Hessian Matrix-based
OPF method is illustrated in [13]. It combines non-linear programming, Newton-based methods and
uses Hessian matrix load flow to minimize the quadratic objective. In [14], an OPF algorithm using
Newton’s method with Hessian in place of Jacobian matrix and Lagrangian multipliers is provided.
It provides good convergence when compared to its predecessors. An OPF problem which includes
steady-state security is presented in [15]. It is an extension of [9] which includes exact constraints on
outage contingencies. In [16], a solution to the optimal dispatch problem using Jacobian matrix is
implemented. It provides rapid convergence which can be used in online control. An OPF algorithm
based on reduced gradient method is proposed in [17]. It is used to minimize generator loading and
optimize voltage levels. Load flow equations are represented as equality constraints. The authors
in [18] have described an OPF method using reduced Hessian matrix with systematic constraint
handling. It provides accurate solution, good convergence, and description about acceleration factor is
provided. In [19], modified recursive quadratic programming (MRQP)-based OPF is implemented.
MRQP is based on [11]. An algorithm to solve large OPF problem is presented in [20]. It decomposes
the original large problem into set of subproblems which are constrained linearly using augmented
Lagrangian.

In 1991, a landmark paper [21] classified various OPF techniques into two categories. Class A
describes a series of algorithms which uses ordinary load flow to get an intermediate solution and
this solution is under normal circumstances is close to the optimal load flow solutions. Using Jacobian
matrix and various other sensitivity relations, optimization is performed iteratively. At each iteration,
new load flow is performed. The optimal solution of this class strongly depends on the accuracy of
load flow solution. With a load flow solution, set of voltages, and phase angles, Jacobian matrix and
set of incremental power flow equations are available or can be extended. If a load flow solution exists,
it already satisfies all the constraints. The optimization problem is solved separately by incorporating
the sensitivity relation from before to arrive at an optimal one. In [9] an implementation of Class A
algorithm is provided. Another example of such implementation is provided in parts one and two
in [22] and [23] respectively using linear programming.

Class B refers to the class of algorithms which depend on exact optimal conditions and therefore
use load flow equations as equality constraints. The optimal solution is dependent on detailed
formulation of the OPF problem with the entire search space. This does not need a load flow
solution. However, these kinds of problems are non-convex in nature. Therefore, convex relaxation
or non-convex solvers are needed to compute the optimum which poses its own difficulties. It deals
with the optimality conditions from Lagrangian function and comprises of derivatives of constraints
and objective functions. Since the Hessian matrix is sparse and remains constant, it further increases
the simplicity of this method and ease at which the optimum is achieved. Constraint handling is
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one of the biggest challenges of this class of algorithms. Using a heuristic method, constraints are
handled as penalty terms which requires refactoring at every step and therefore, leads to degradation
of the performance.

The above two classes of algorithms has various advantages and disadvantages. Performance
of Class A directly depends in the performance of load flow techniques such as Newton-Raphson,
Gauss-Seidel and widely used Fast Decoupled Method. It is shown in [24] that the above-mentioned
methods have convergence and robustness issues. This may result in inaccurate load flow solutions. If
the load flow does not result in a so-called high voltage or operable solution, Class A algorithms fails.
In Class B algorithms, getting a global operable solution is challenging since it needs convex relaxation
or heuristic techniques and the operable solution is difficult to achieve by respecting all the constraints.

The authors in this paper present a third class of algorithms, a Class C. This class combines Class
A and Class B. It uses a reliable load flow described in Section 2 method wrapped around a heuristic
to determine the optimal solution. The load flow provides accurate operable voltage and phase angle
solution at every step and the heuristic uses this as equality constraints as described in Class B. Class C
algorithms present various advantages. Operable voltage and phase angle solution is obtained at each
iteration with the help of THELM. THELM always finds a solution, if it exists, irrespective of initial
conditions whereas, Newton-Raphson load flow method leads to a non-convergent solution at very
low or high loading conditions [24]. Since THELM is used in Class C method, the results are high
voltage and operable. Global OPF solution can be obtained with a non-convex solver.

The following contributions and structure of the paper is as follows,

1. Load Flow Solution to three-phase unbalanced distribution network using Holomorphic
Embedding Load Flow Method (HELM) is described in Section 2.

2. Benchmarking of HELM against established Newton-Raphson load flow solver from DIgSILENT
PowerFactory [25] which is a well-known power system simulation and analysis software. This
is discussed in Section 2.

3. OPF using Distributed Genetic Algorithm, a Class C algorithm is described in detail in Section 3
4. Simulation of OPF is performed to generate active and reactive power schedules at controllable

nodes (see Section 5). This algorithm is applied to a real network in Austria.

2. Three-Phase Unbalanced Load Flow Method

A solution to the load flow problem is mostly obtained using numerical iterative methods such
as Gauss-Seidel with its slow convergence and improved Newton-Raphson method, which provides
better convergence [26,27]. Newton-Raphson method is computationally expensive since it must
calculate Jacobean matrix at each iteration step in-spite of using sparse matrix techniques [28]. Various
decoupled methods have been implemented which exploits the weak link between active power
and voltage, in which Jacobian matrix needs to be calculated only once. One such method is Fast
Decoupled Load Flow method which is widely used in the community [29]. The above-mentioned
iterative techniques face similar problems with no guaranteed convergence since it depends on the
initial conditions. This is due to the fact that load flow equations are non-convex in nature with multiple
solutions. It is difficult to control the way these iterative methods converge to an operable solution [24].
In the literature, multiple implementations to improve the convergence of such traditional algorithm
have been illustrated with limited success [30–36].

To use load flow methods in near or real-time applications, the physical models should fully
deterministic and solved with reliability. HELM is one such candidate which can full fill these
requirements [24].
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Three-Phase Holomorphic Embedding Load Flow Method

Power flow equations, for example, the load bus equation described in Equation (1) is inherently
non-analytical. Holomorphic principles can be applied to such equations by means of embedding a
complex variable α such that the resulting problem is analytic in nature.

∑
k∈Ω

YikVk =
S∗

i
V∗

i
, i ∈ ΩPQ (1)

Voltage of the slack bus is assumed to be V0 = 1.0 pu. and Bus 00 (see Appendix A) is always set
to be slack bus.

Holomorphic embedding can be done in various methods. Equation (2) represents the simplest
form. Bus voltages are the functions of the demand scalable complex variable α.

∑
k∈Ω

YikVk(α) =
αS∗

i
V∗

i (α
∗) , i ∈ ΩPQ (2)

The research work in [24] suggests that the operable voltage solution can be obtained by analytic
continuum of Equation (2) at α = 1 using the unique solution which exists when α = 0

∑
k∈Ω

YikVk(α) =
αS∗

i
Vi(α∗)

, i ∈ ΩPQ (3)

∑
k∈Ω

Y∗
ikVk(α) =

αSi
Vi(α)

, i ∈ ΩPQ (4)

Equations (3) and (4), represent a set of polynomial equations and by using the Grobner bases, Vi
and Vi are holomorphic except for finite singularities.

Vi(α) = (Vi(α
∗))∗, i ∈ Ω (5)

According to [24], if Equation (5) holds good, then Equations (3) and (4) can be reduced to
Equation (2). Equation (5) is referred to as reflecting condition.

Since voltages of from Equation (2) for α = 0 as discussed above, it can be extended to power
series described in Equation (6) and (7) at α = 0.

Vi(α) =
∞

∑
n=0

Vi[n]αn, i ∈ Ω (6)

1
Vi(α)

= Wi(α) =
∞

∑
n=0

Wi[n]αn, i ∈ Ω (7)

Equation (9) is obtained by substituting 7 into 2 and power series coefficients can be calculated to
a desired degree.

∑
k∈Ω

Y∗
ik

inf

∑
n=0

Vk[n](αn) = αS∗
i W∗

i [n]α
n (8)

The following steps are involved to calculate voltages.

1. For α = 0, solve Equation (9) to obtain a linear equation where the left-hand side of the equation
represents the slack bus at which V0[α] = 1.

∑
k∈Ω

YikVk[0] = 0, i ∈ ΩPQ (9)
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2. The reduced Y bus matrix is assumed to be non-singular. Equation (10) can be obtained based on
the non-singularity assumption.

Wi[0] =
1

Vi[0]
(10)

3. Remaining power series coefficients can be obtained to the desired nth degree by equating the
coefficients from Equation (11)

∑
k∈Ω

YikVk[0] = S∗
i W∗

i [n − 1], i ∈ ΩPQ n ≥ 1 (11)

Wi[n − 1] are calculated using the lower order coefficients described in Equation (12).

Wi[n − 1] = −∑n−2
m=0 Vi[n − m − 1]Wi[m]

Vi[0]
(12)

4. Pade approximations which are particular kind of rational approximations are used for analytical
continuum to determine the voltages at α = 1.

Based on the fundamentals of HELM discussed above, various research work dealing with
enhancing or improving the method is available. One of the major deficiencies of the HELM described
in [24] is that the PV/Generator bus is not defined. A PV bus model was presented in [37]. Ref. [38]
presents an improved PV bus model and the major contribution of this paper is to provide alternative
models capable of solving general networks. The authors have provided four methods with various
parameters for PV bus. In the literature, three-phase formulation of HELM is lacking. In this paper,
method four developed in [38] is extended to a novel three-phase unbalanced formulation which can
be seen below. Equation (13) represents a general form of three-phase unbalanced HELM. Network
models including various device models such as loads, generators, transformers are derived from the
models developed in [39]. The seed solution, non-singularity of matrix A in Equation (14) and the
reflective conditions of holomorphic functions are taken, as is, from [38]. Three-phase unbalanced
form for a multi-bus system for PQ and PV bus types is presented below.

 Aa
1 Ab

1 Ac
1 Aa

2 Ab
2 Ac

2
Aa

PQ3
Ab

PQ3
Ac

PQ3
Aa

PQ4
Ab

PQ4
Ac

PQ4

Aa
PV3

Ab
PV3

Ac
PV3

Aa
PV4

Ab
PV4

Ac
PV4




Re{Va[n]}
Re{Vb[n]}
Re{Vc[n]}
Im{Va[n]}
Im{Vb[n]}
Im{Vc[n]}


=

 r1,n−1

rPQ2,n−1

rPV2,n−1

 (13)

Is of the form,
Ax = b (14)

where the matrix A can be further clarified as,

AP
1ij

= GP
ij + δi, jRe{yP

i }, i, j ∈ Ω, P ∈ a, b, c

AP
2ij

= BP
ij − δi, jIm{yP

i }, i, j ∈ Ω, P ∈ a, b, c

AP
PQ3ij

= BP
ij − δi, jIm{yP

i }, i, j ∈ ΩPQ, P ∈ a, b, c

AP
PV3ij

= 2δi, j, i, j ∈ ΩPV , P ∈ a, b, c

AP
PQ4ij

= GP
ij + δi, jIm{yP

i }, i, j ∈ ΩPQ, P ∈ a, b, c

AP
PV4ij

= 0, i, j ∈ ΩPV , P ∈ a, b, c

(15)
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where G and B are the conductance and susceptance, respectively. δi, j = 1 if i = j, else 0.
The right-hand side matrix elements are defined as follows,

r1,n−1,i = δn,1(Pi − Re{yi})− Re
� n−1

∑
m=1

V∗
i [m] ∑

k∈Ω
∑
p∈P

YikVk[n − m]

�
, i ∈ Ω (16a)

rPQ2,n−1,i = δn,1(−Qi − Im{yi})− Im
� n−1

∑
m=1

V∗
i [m] ∑

k∈Ω
∑
p∈P

YikVk[n − m]

�
, i ∈ ΩPQ (16b)

rPV2,n−1,i = −
n−1

∑
m=1

∑
p∈P

V∗
i [m]Vi[n − m] + (1 + α(Mi − 1)2)[n], i ∈ ΩPV (16c)

where, Mi is the target voltage magnitude for PV bus.
The power series were calculated for using the above equations and Viskovatov Pade approximant

algorithm is used to determine the voltages and phase angles similar to the ones in [24,37].

3. Optimal Power Flow Model

As described in Section 1, OPF algorithms can be classified under three classes. There have been a
lot of research on OPF and this can be seen in the vast array of work available in the literature.

Type C algorithms requires non-convex solvers to perform optimization problems. Non-convex
solvers have been previously used to solve OPF problems but, they are used in the context of Class B
algorithms. The authors in [40] have provided a method to plan reactive power flows optimally using
generic algorithm as it provides optimum which is a global one. The proposed method is applied
to two 51 and 224 bus networks. An OPF problem is solved using generic algorithm in [41] as a
unified power flow controller to regulate branch voltages with respect to both angle and magnitude.
It minimizes real power losses and security limits of power flows are maintained. Reactive power
planning using hybrid genetic algorithm is presented in [42]. It uses genetic algorithm at the highest
level and linear programming to get the optimum sequentially. This can be considered as a modified
version of Class A. It uses genetic algorithm instead of just load flow to determine the initial converged
solution to the OPF problem.

In [43], a feeder reconfiguration technique is presented. It uses genetic algorithm in the context of
OPF to reduce losses in a distribution system. Switches are opened to determine the initial population.
The authors in [44], have presented a hybrid evolutionary algorithm with multi-objective OPF. It is
used to minimize losses, voltage, and power flow deviations and generator costs. In [45], optimal
placement and sizing of capacitor banks in distributed networks using genetic algorithm is presented.
The objective is to simultaneously improve the power quality and sizing of fixed capacitor banks.

In this paper, the OPF problem is formulated as follows,

minimize
x

F(x, u)

subject to u ∈ U

G(x, u) = 0,

H(x, u) ≤ 0

(17)

where,
x and u represent sets of state and input variables.
F(x, u) is the objective function for the OPF problem. Typical objectives are total generator cost,

loss minimization in network and in this paper, the objective function chosen is the three-phase
unbalance minimization (see Section 4).

G(x, u) and H(x, u) represents the equality and inequality constraints of the OPF problem.
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In the context of type C algorithms, accurate and reliable load flow is used as equality constraints.
In this case, THELM is used.

Typical inequality constraints for a three-phase unbalanced distribution grids are enlisted below,

Limits on active power (kW) of a (generator) PV node: PLowi ≤ PPVi ≤ PHighi

Limits on voltage (V (pu.)) of a PV or PQ node: |VLowi | ≤ |Vi| ≤ |VHighi
|

Limits on tap positions of a transformer: tLowi ≤ ti ≤ tHighi

Limits on phase shift angles of a transformer: θLowi ≤ θi ≤ θHighi

Limits on shunt capacitances or reactances: sLowi ≤ si ≤ sHighi

Limits on reactive power (kVAr) generation of a PV node: QLowi ≤ QPVi ≤ QHighi

Upper limits on active power flow in transmission lines or transformers: Pi,j ≤ PHighi,j

Upper limits on MVA flows in lines or transformers: P2
i,j + Q2

i,j ≤ S2
Highi,j

Upper limits on current magnitudes in lines or transformers: |Ii,j| ≤ |IHighi,j
|

Limits on voltage angles between nodes: ΘLowi ≤ Θi − Θj ≤ ΘHighi

In this paper, the non-convex solver used is a genetic algorithm, to minimize the objective function.
Genetic algorithm is chosen due to its wide use in OPF techniques, ease of parallelizability to handle
large networks and its probabilistic transition rule. The authors have used the method developed
in [46]. Genetic algorithms of the kind, mixed integer non-linear non-convex is used to include all
the constraints mentioned above. To accommodate THELM in genetic algorithm, it is included in the
fitness function and penalty functions are used to include constraints.

4. Three-Phase Unbalance Minimization

As mentioned in Section 1, it is essential to manage the distribution network optimally and in
a balanced fashion. Various methods have been presented in the literature to minimize three-phase
unbalance. In [47], a method to minimize three-phase unbalance is presented. Reactive power
compensation is performed using flexible AC transmission system (FACTS) devices to minimize the
three-phase unbalance. It is applied to a simple study case of four bus system. This method does not
provide optimal scheduling of loads and does not include all the buses in the network. It is applicable
only to local grid where the FACTS devices are located. The authors in [48] have provided a method
to minimizing network unbalance using phase swapping. A genetic and greedy algorithm is used
to optimally swap the phases to generate a convenient solution, leading to a minimum number of
swaps to minimize network unbalance. In [49], plug-in hybrid electric vehicles are used to minimize
local three-phase unbalance. It does not include a grid perspective and is done only on the point of
common coupling.

In this paper, OPF from Section 3 is applied to a real network in Austria. Figure 1 represents a real
low-voltage distribution network. In this use case, the objective function is to minimize three-phase
voltage unbalance which can be seen in Equation (18). This objective can be realized in multiple ways
and in this paper, reference balanced voltages are used.

minimize J = ∑
k∈Ω

∑
p∈P

(real(Vp
k,balanced)− real(Vp

k ))
2 + (imag(Vp

k,balanced)− imag(Vp
k ))

2 (18)

where, P ∈ phases(a, b, c) and B represented all the buses in the network. The voltages are represented
in rectangular coordinate system with real part of voltage being the magnitude and imaginary part
being the phase angle. Both real and imaginary value are considered because both phase and angle of
voltages need to be balanced.
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Figure 1. Topology of a real network in Austria with controllable loads at Bus 07, Bus 15, Bus 18,
Bus 22. It represents a three-phase unbalance low-voltage distribution network with bus voltages rated
at 0.4 kV.

The controllable variables are per phase active (P) and reactive powers (Q) at buses 07, 15, 18, and
22. The single-phase loads are replaced with three-phase loads (see Figure 2).

Uncontrollable
singe phase load

Controllable three
phase load

Controllable single
phase load

Figure 2. Single-phase loads are replaced by three-phase ones which can take both positive and
negative values.

For simplicity of representation, these three-phase loads are represented as single-phase loads
with red coloring. This can be observed in Figure 1. P and Q on individual loads can be modulated by
the OPF algorithm and can take values which are both positive and negative essentially, acting as a
prosumer node.

5. Simulation Results

This section provides simulation results to the concepts presented in the previous sections.
In Section 5.1, THELM described in Section 2 is validated against DIgSILENT PowerFactory
Newton-Raphson algorithm. In Section 5.2, simulation results for three-phase unbalanced optimal
power is presented with the three-phase unbalance minimization objective presented in Section 4.
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5.1. Validation of THELM

THELM is benchmarked against load flow solver in an established power system analysis tool,
DIgSILENT PowerFactory. Various simple networks are drawn with increased level of complexity
(see Appendix A).

Voltages from 1000 random load flows by varying active and reactive power at load buses from
±10 kW and ±0.8 kVAr (which accounts for power factor 0.9) are generated and tabulated below.

Mann-Whitney U test is used to compare the sample means of voltage magnitudes from the two
methods, since the samples are non-parametric in nature. It checks whether to accept or reject the
null hypothesis. Mann-Whitney U test is similar to student’s T test but is suitable for non-parametric
samples. A sample of 100 voltages from both THELM and Power Factory NR methods are used.
Various statistical information and test results are tabulated in Table 1. Columns mean, standard
deviation, min, 25%, 50%, 75%, max are calculated by taking the absolute difference between their
respective voltages. All the data above is calculated by taking the average between various buses and
phases. From the column statistic and p-value, it can be observed that their means are statistically
insignificant, and the null hypothesis is accepted. The results from the test suggests that THELM
produces results which are acceptable for load flow analysis with lower deviations from one another.

Table 1. Benchmarking THELM against Power Factory NR method.

Mean Std Min 25% 50% 75% Max Statistic p Value

Test 00 0.00489 0.00350 1.14 × 10−5 0.00194 0.00430 0.00724 0.01591 2.38719 0.016977
Test 01 0.00572 0.00414 1.01 × 10−5 0.00237 0.00496 0.00846 0.01938 3.23993 0.001195
Test 02 0.00209 0.00027 0.00167 0.00186 0.00205 0.00228 0.00287 5.47075 4.48 × 10−8

Test 03 0.00015 0.00028 9.38 × 10−8 4.57 × 10−5 9.85 × 10−5 0.00018 0.00529 −4.69619 2.65 × 10−6

Test 04 0.00343 0.00246 1.08 × 10−5 0.00144 0.00296 0.00508 0.01125 −5.6259 1.84 × 10−8

Test 05 0.00178 0.00023 0.00142 0.00159 0.00175 0.00195 0.00241 −5.83359 5.42 × 10−9

Test 06 0.05586 0.01114 0.02464 0.04779 0.05540 0.06339 0.09113 5.69187 1.25 × 10−8

5.2. Simulation Results for Three-Phase Unbalanced Optimal Power Flow

Simulation is performed for the real grid detailed in Figure 1 using OPF algorithm described in
Section 3. It is performed for one day from 2018-8-31 00:00:00 to 2018-9-01 00:00:00 with the sampling
time of 15min (96 intervals). Load profiles are from smart-meter data, from real households and are
acquired from all the buses in the network updating a database. Forecasted profiles are inputs to the
OPF algorithm and optimal schedules are generated based on it. Load forecasting is performed for this
time horizon using convolutional neural networks, using data until 2018-8-30 23:45:00. It is performed
for one day (day ahead forecast) and more details able it is not provided since it is out of scope.

Load flow solution is non-causal in nature and to generate an optimal schedule for controllable
buses, it must be run for all 96 intervals. OPF is performed using Class C algorithm presented in
Section 3 for controllable buses described in Section 4. It can also be observed that the optimal schedules
are generated for all the three phases and can take both positive and negative values. Real profile is
recorded during day for uncontrollable loads at the buses.

Forecasted, optimal and real active and reactive power consumption profiles at one of the
controllable buses (Bus 15) can be seen in Figures 3 and 4 respectively. At Bus 15, all the loads
are single phased (connected to phase C).
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Figure 3. Active power of real, forecasted, and optimal profiles at Bus 15. It can be observed that the
real and forecasted data is zero for phases A and B. This is for to the fact that the loads are single phased
and connected only to phase C. During the OPF, they are replaced with three-phase controllable loads.
On the x-axis, data time format is MM-dd HH. Data is from 2018-8-31 00:00:00 to 2018-9-01 00:00:00.
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Figure 4. Reactive Power of real, forecasted, and optimal schedules at Bus 15. On the x-axis, data time
format is MM-dd HH. Data is from 2018-8-31 00:00:00 to 2018-9-01 00:00:00.

Active and reactive power for all the phases can be observed in Figures 3 and 4.
Using the three schedules shown in Figures 3 and 4, load flows are performed using THELM

described in Section 2. Loads flows are performed for all intervals and are represented using box-plots.
Figure 5 describes the averaged objective function values based on Equation (18). It can be

observed that the three-phase unbalance has been reduced from 0.879 for real and forecasted profiles
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to 0.529 for optimal profiles which accounts for 39% unbalance minimization based on the defined
objective function (see Section 4).
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0.52947113

Real Voltage

Figure 5. Average values of optimal power flow objective for real, forecasted, optimal voltage and
phase angles based on Equation (18).

From Figure 6, it can be observed that the voltages are indeed balanced, and the average values
are close to balanced voltages. Additionally, the nature of the objective function used has also caused
the voltages to cluster around 1 pu. since the balanced real part of the balanced voltage is exactly 1 pu.
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Figure 6. Voltage profiles generated from real, forecasted and optimal schedules from Figures 3 and 4.
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6. Conclusions and Outlook

In this paper, a novel class of OPF algorithm is presented. It uses a novel three-phase unbalanced
HELM presented in Section 2. Benchmarks are performed to test the performance of THELM and
DIgSILENT Power Factory Newton-Raphson method described in Section 5.1. These benchmarks
were performed on various test networks. Mann-Whitney U test was performed, and it was concluded
that the results from both load flow methods were statistically indistinguishable and null hypothesis
was accepted. Using THELM, optimal power flow method was developed using genetic algorithm in
Section 3, describing the type C class of algorithms. The novel Class C algorithm provides various
advantages over Class A and B OPF algorithms as discussed in Section 1. A use case with an objective
function to minimize three-phase unbalance was applied to a real network in Austria in Section 5. The
reason for choosing this objective is motivated by the requirements of the network operator and to
handle the unbalance locally. It involves the generation of active and reactive power schedules for
four controllable buses using smart-meter forecasts from other uncontrollable loads in the network
(see Figure 1). Optimal schedules for these buses were generated and used to produce voltages using
THELM and the results were described in Figure 6. It can be observed that the three-phase voltage
unbalance has reduced up to 39% and the optimal average objective function values can be observed
in Figure 5.

In future work, the scalability and replicability of the method needs to be analyzed. The method
needs to be applied to various larger networks with large number of nodes. Simulation time and
code optimization is not considered a priority for this study. To use this method in a real-time or
near-real-time operation, the algorithm needs to be optimized. In this work, only three-phase unbalance
minimization is used. OPF with various other objective functions need to be considered.

Author Contributions: Conceptualization, B.V.R., F.K. and M.K.; Formal analysis, B.V.R. and M.K.; Investigation,
B.V.R.; Methodology, B.V.R., F.K. and M.K.; Supervision, F.K. and M.K.; Validation, B.V.R. and F.K.; Visualization,
B.V.R. and F.K.

Funding: This research received no external funding.
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Appendix A. Test Networks

Various test networks used for the analysis described in Section 5.1.

Bus 01Bus 00

Load 00External Grid

NAYBY ..
Line 00

Figure A1. Test 00.

Bus 02Bus 01Bus 00

Lo
ad

 0
0NAYBY ..

Line 00

Ex
te

rn
al

 G
rid

0.1 MVA..
Trans 00

Figure A2. Test 01.

2.1 Publication A 31



Sustainability 2019, 11, 1774 13 of 16

Bus 03Bus 01 Bus 02Bus 00

Ex
te

rn
al

 G
rid

Lo
ad

 0
0

0.1 MVA 10/0.4 kV DOTE ..
Trans 01

NAYSEY..
Line 0025 MVA ..

Trans 00

Figure A3. Test 02.

Bus 02

Bus 01Bus 00

Ex
te

rn
al

 G
rid

Lo
ad

 0
0

Load 01

NAYBY 3x2..
Line 01

NAYBY 3..
Line 02

NAYBY ..
Line 00

Figure A4. Test 03.

Bus 00

Bus 03

Bus 02Bus 01

Ex
te

rn
al

 G
rid

Lo
ad

 0
0

0.1 MVA 10/0.4 kV DOTE ..
Trans 00

Load 01

NAYBY 3x2..
Line 01

NAYBY 3..
Line 02

NAYBY ..
Line 00

Figure A5. Test 04.

Bus 04

Bus 00

Bus 03

Bus 02Bus 01

Ex
te

rn
al

 G
rid

Load 01

Tr
an

s 
01

0.
1 

M
VA

 1
0/

0.
4 

kV
 D

O
TE

 1
00

/1
0 

 S
G

B

Lo
ad

 0
0

25 MVA 20/10 kV
Trans 00

NAYSEY 3x..
Line 01

NAYSEY ..
Line 02

NAYSE..
Line 00

Figure A6. Test 05.

2.1 Publication A 32



Sustainability 2019, 11, 1774 14 of 16

Bus 07 Bus 05Bus 04

Bus 03Bus 02Bus 06

Bus 01Bus 00

Load 04

Load 05 Load 03Load 02

Load 01

Li
ne

 0
6

N
AY

BY
 4

x2
40

sm
 0

.6
/1

kV

Li
ne

 0
3

N
AY

BY
 4

x2
40

sm
 0

.6
/1

kV
Li

ne
 0

1
N

AY
BY

 4
x2

40
sm

 0
.6

/1
kV

NAYBY 4x240sm 0.6/1kV
Line 04

NAYBY 4x240sm 0.6/1kV
Line 02

Li
ne

 0
5

N
AY

BY
 4

x2
40

sm
 0

.6
/1

kV

Ex
te

rn
al

 G
rid

Lo
ad

 0
0

NAYBY ..
Line 00

Figure A7. Test 06.

References
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Abstract: Most typical distribution networks are unbalanced due to unequal loading on each of the
three phases and untransposed lines. In this paper, models and methods which can handle three-phase
unbalanced scenarios are developed. The authors present a novel three-phase home energy
management system to control both active and reactive power to provide per-phase optimization.
Simplified single-phase algorithms are not sufficient to capture all the complexities a three-phase
unbalance system poses. Distributed generators such as photo-voltaic systems, wind generators,
and loads such as household electric and thermal demand connected to these networks directly
depend on external factors such as weather, ambient temperature, and irradiation. They are also time
dependent, containing daily, weekly, and seasonal cycles. Economic and phase-balanced operation
of such generators and loads is very important to improve energy efficiency and maximize benefit
while respecting consumer needs. Since homes and buildings are expected to consume a large share
of electrical energy of a country, they are the ideal candidate to help solve these issues. The method
developed will include typical distributed generation, loads, and various smart home models which
were constructed using realistic models representing typical homes in Austria. A control scheme
is provided which uses model predictive control with multi-objective mixed-integer quadratic
programming to maximize self-consumption, user comfort and grid support.

Keywords: three-phase unbalance minimization; model predictive control; home energy
management system

1. Introduction

The Energy Efficiency Directive of the European Commission provides great emphasis on the
need to empower and integrate customers by considering them as key entity towards sustainable and
energy efficient future [1]. Evolving systems such as smart meters are on a road map towards increased
market integration. With the help of such devices, ICT aspects such as data mining, management,
processing, and commutation are gaining lots of traction in smart grid [2].

In recent days, with rigorous funding and investment in renewable energy, large number of
distributed energy resources such as photo-voltaic systems, wind generators, and new loads such
as electric mobility and storage systems are gaining importance. They pose lots of challenges to
the network such as voltage violations and line loading. Most of the typical distribution networks
are unbalanced due to unequal loading on each of the three phases and untransposed lines [3].
Additionally, unbalance is further increased with the high penetration of single-phase distributed
generators. Three-phase unbalance imposes various degrees of stresses on different components in
distribution network. Losses on the lines and distribution transformers increase considerably with
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the increase in phase unbalance [3]. Therefore, it is extremely important to consider three-phase
models. They have strong dependencies on external factors such as weather, ambient temperature,
and irradiation which follows daily, weekly, and seasonal cycles. Photo-voltaic systems inject large
amounts of active power into the network, especially when the solar irradiation is high during midday.
Voltage violations may occur due to partial stochastic power input. Therefore, it is important to include
reactive power in models so that it can be used to performed voltage regulation.

Homes and buildings are projects to consume a large share of total energy production. Therefore,
it makes sense to produce strategies to use them to help mitigate the issues discussed above. Most of
the homes today are not capable of providing any kind of support to the grid. Certain upgrades need
to be made so that they can perform demand response. Loads which can be controlled directly or
indirectly to provide demand response is referred to as demand side management (DSM). DSM is
also referred to as flexibility. DSM can be used to provide number of grid support functionalities
such as shifting the peak load to off-peak hours or curtailing the load to reduce the peak demand [4].
Smart building customers are given the opportunity to schedule the devices on their own to maximize
comfort level and based on this initial schedule, the optimizer maximizes economic return which will
result in demand which is more leveled over time [5]. Additionally, the optimizer will either minimize
payment or maximize comfort based on the consumer needs in which, the user comfort is represented
as a group of linear constraints [6].

2. Related Work

To control various devices in smart homes and all the issues associated with it, the authors in
paper have presented a control scheme using Model predictive control, which is an ideal candidate to
handle dynamic systems with evolving disturbances described in the previous section.

Various implementations of model predictive controller (MPC) in buildings are available in the
literature. The core principle or issue being addressed by bodies of research mentioned below is
dynamic scheduling of various flexibilities in building. Most of the authors below have addressed this
issue using various MPC algorithms, problem formulations and objectives.

After analyzing the large body of work in MPC for buildings, three major categories can be
defined. MPC in buildings is mainly used for demand side and flexibility management, building
temperature control and optimal usage of energy.

2.1. Demand Side and Flexibility Management

A multi-scale stochastic MPC is implemented to schedule heating, ventilation, air conditioning
which is referred to as HVAC systems and controllable loads such as electric vehicles and washer/dryers
is implemented in [7]. In [8], the authors have presented an MPC approach to tackle the load shifting
problem in households equipped with controllable appliances and electric storage units. This approach
used time of day tariff to minimize energy consumption. A decision-making framework for real
time control of load serving entity of flexibilities used to provide ancillary services to the market
is presented in [9]. This paper provides a generalized framework which includes wide array of
flexibilities. An example with electric vehicle charging is provided in detail.

The authors in [10] have proposed a scheme which uses time varying real time pricing to schedule
appliances in buildings in smart grid context. Thermal mass of the building is considered with a
comfort indicator and a model associated with it is presented. Thermal mass storage is used to hedge
against varying prices with a goal to minimize energy costs. Control approach for home energy
management system (HEMS) under forecast uncertainty is presented in [11]. The smart home is
controlled as a grid connected micro-grid with PV generation, battery systems, critical and controllable
loads. Objective of MPC is to maximize the use of renewable energy generation and to minimize
operation costs. It includes predictions of PV, load, and market prices. Various scenarios are considered
with different forecasting accuracies.
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The authors in [12] presented an MPC model for HVAC system in medium sized building with
receding horizon control. It is used to provide demand side flexibilities. Objective is to operate the
building economically while respecting the comfort of dwellers. MPC scheme provided is a robust one
to participate in both reserve and spot markets. Sensitivity of the controller towards economic and
technical constraints are evaluated. The National Electricity Market of Singapore (NEMS) is used as a
study case for grid building integration studies.

In [13], a non-intrusive identification of components in smart home is provided with a sampling
frequency of one hertz. These identified models are used to predict flexibilities. These flexibilities are
shifted in time to minimize energy costs. An MPC technique for energy optimization in residential
appliance is proposed in [14]. Home cooling and heating system control is proposed to analyze the
effect of conventional thermostats. In [15], an MPC EMS system for residential micro grids is furnished.
EMS optimally schedules smart appliances, heating systems, PV generators based on consumer
preferences. Weather and demand forecasts are integrated in it. Mixed-integer linear programming
(MILP) is the core of MPC which minimizes the system costs of this residential micro-grid. At each
sample time, the optimization algorithm adjusts itself to account for updated weather dependent PV
systems and heating units in a receding fashion. This method is coupled with accurate simulation of
micro-grid including energy storage and flexible loads. Emulation of real-world grid conditions on
standard network interface is presented. The authors in [16] have provided a method to maximize
the use of renewable energy resources in islanded grids. PV systems are used to provide energy to
home loads and pico hydro power plant. MPC is used to control the flow valve of hydro plant and to
modulate the energy supply to fulfill the deficit during islanded conditions.

An economic MPC is illustrated in [17]. It includes PV combined heat and electrical storage system.
Uncertainties from thermal behaviors of the building are quantified, formulated and MPC’s capability
to handle it is presented in this research work. An MPC scheme to control loads in residential buildings
are presented in [18]. It also presents a novel load aggregation method using MPC for distribution
networks. This method is tested with 342 bus network with 15,000 buildings. In [19], an MPC
controller to perform demand side management is presented. It uses an ON/OFF PID controller and
MPC to control air conditioning in rooms in houses. It also includes PV systems. Weekly expenses are
calculated for each tariff is compared with control methods.

2.2. Temperature Control

The authors in [20], have presented a method to control temperature in building in a cost-effective
manner. It uses linear programming heuristic to minimize the objective function of electricity cost to
run air conditioning system. In [21], authors have presented models for Heat Recovery Ventilators
connected to single zone building, its potential and nonlinear MPC is implemented to optimize
energy consumption. Three distinct time zones are used namely, slow timescale for temperature of
structural elements, fast timescale for air temperature and intermediate dynamics for recovery systems.
A stochastic optimization technique is provided in [22]. This paper introduces several load classes
such as heating, ventilation, air conditioning which is commonly referred to as HVAC systems. A first
order thermal dynamic model is used with a mixed-integer MPC to generate load schedules. Real data
is coupled with numerical solutions. The authors in [23] have proposed an MPC algorithm to control
temperature in single zone building coupled with renewable energy generators such as solar and
wind. MPC objective is to control temperature within certain permissible limits and optimal amount
of power consumption.

In [24], a temperature control scheme with the consideration of occupants with three comfort
indicators namely, strict, mild, loose levels are provided. It also includes window blind position
control, illumination, and ambient temperature. Weather data such as solar irradiation, illumination,
and ambient temperature is forecasted and used in MPC algorithm. Goal of MPC is to minimize
energy consumption and maintain the desired level of comfort for occupants. Paper [25] focuses on
analysis of MPC application to domestic appliances to optimize them. Relationship between MPC
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weight adjustment and minimization of energy consumption is evaluated. In this context, water heater,
room temperature control by air conditioning system and refrigerators are explored.

In [26], a centralized direct control of on/off thermostats is furnished. Device operation temperature,
on/off status, more importantly, temperature ramps are calculated and communicated to the central
controller. It is observed that, same or better performance can be achieved by communication
of temperature ramps which are essential data points. It also reduces the communication needs
significantly. Right information exchange is essential for better performance and data flow reduction is
the concluding argument of this paper.

An MPC control scheme to provide the best tradeoff between temperature control and energy
cost is described in [27]. It also provides a comparison between PID controller and MPC. The weights
are modified to obtain the best solution to increase quality of various electrical and thermal models.
The authors in [28], have presented an MPC for entire building with a comfort metric to ensure high
priority to user comfort for each of the various zones in the building. Simulation results are provided
for four months showing large percentage of reduction in electrical and thermal energy consumption.

2.3. Optimal Energy Usage

Paper [29] proposes an MPC control strategy in HEMS to optimize energy usage and optimal
operational schedules for input variables. It also provides results which demonstrated revenue from
selling power to the utility. In [30], authors have furnished an MPC approach to obtain savings in
residential households. Impact of local power generation such as roof top PV systems is determined
for off-peak, mid-peak and on-peak periods. Hybrid MPC formulation for buildings is provided
in [31]. It describes the interactions between continuous and discrete systems. It involves a two-level
computation structure. Individual systems are controlled with upper level discrete commands.

In [32], an approach to minimize energy in home and office building is presented with renewable
energy resources such as PV systems. This is done using an MPC technique with mixed-integer
programming to handle switching constraints. This method allows for sufficient performance with
respect to energy regulation and efficiency. It is shown that with various seasons, an annual savings
of about 1.72% can be achieved with this approach. An MPC approach is introduced in [33] which
exploits its capacity to reduce energy consumption and improve efficiency to reduce energy bills.
MPC was trained for two different weight sets which is compared to thermostat control with three
typical household loads.

It is shown that it is necessary to augment control weights to maximize energy cost minimization
potential. In [34], an energy scheduling approach for smart home appliances using stochastic MPC is
presented. It comprises a combination of genetic algorithm and linear programming. It analyzes the
competence of the algorithm proposed with the objective of energy reduction.

An MPC scheme with a sample time of one hour is presented in [35]. It includes hot water
usage, electric vehicle, domestic heating and with an actuator with water tank to use it as heat storage.
Total power and energy cost is minimized. MPC robustness is evaluated using forecasted load profiles
of the household. It is shown that using energy storage, the overall energy consumption of the
household can be minimized.

A comprehensive cost optimal design is presented for a building HVAC system which includes
MPC to generate cost optimal solution is presented in [36] The controller provides an optimal hourly
set point for cooling and heating devices. This method is applied to multi-zone building in Italy. In [37],
a study to minimize the cost of electricity for coordinating houses connected a micro-grid. It uses
multi-objective optimization for micro-grid control which includes a house and an independent local
plant. The control algorithm minimizes losses by power exchanges between the plant and the house.

It can be clearly seen that, three-phase implementation of HEMS is lacking. The papers mentioned
above only use simple single-phase flexibility models and appliances are single phased. Additionally,
reactive power control is not addressed by any of the research work mentioned above. Since three-phase
models are not used, phase unbalance minimization cannot be performed. In this paper, the authors
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present a three-phase unbalanced HEMS in which, three objective functions, maximize user comfort,
self-consumption and grid support is implemented. It also includes control scheme to manage both
active and reactive powers and can handle number of electrical appliances with various configurations.

The contributions in this paper are enlisted below,

1. Various three-phase linear flexibility models are presented in Section 3.
2. Flexibilities are modeled in both active and reactive power.
3. Three objective functions are provided in Section 5 along with three objective weights which are

user defined.
4. Control scheme is described in Section 6 for three-phase HEMS with various chronological events.
5. Simulation results for three-phase unbalanced HEMS with active and reactive power control is

provided in Section 7.

3. System Models

HEMS is a platform which enables monitoring and control of various energy appliances in the
household. It allows the deployment of various control strategies to achieve an objective. Smart home
in this paper refers to a home which is fitted with a HEMS. Using this system, various objectives can
be achieved. For example, keeping the room temperature within certain comfortable limits.

3.1. Overview

Smart home models can be segregated into two categories. Namely, thermal and electrical models
coupled by a heat pump. The main reason to use a thermal model is to characterize indoor temperature
due to the thermal inertia of the house, since consumer comfort is paramount. The controller is
formulated to give complete control to the user, a user-centric approach. The models are linear in nature
so that, simple control strategies can be produced. Figure 1 represents a three-phase HEMS. It contains
both single and three-phase components and therefore, it is unbalanced. In this scenario, the heat pump
is three phased, inverters for battery and PV are three phased, controllable, and uncontrollable loads
are single phased. The control scheme provided in this paper can include variety of configurations such
as single-phase—neutral, phase—phase, three-phase star configuration, three-phase star configuration
with neutral, and three-phase delta configuration. This can be done using the constraint imposed on
the grid connection point described in Section 4.4.

Flexibilities Disturbances

qhouse

Weather data: 
Tambien 
Irrediation

(north, south, east, west) 

Twall

r 
s 
t 
n InverterHeat Pump Uncontrollable

Loads
Inverter

Electric Storage PV system

Controllable
Loads

Troom
gventilation
ginternal

Figure 1. Schematic of three-phase HEMS representing various three-phase interconnections. It can be
observed that, heat pump is the only component which connects thermal and electrical models.

3.2. Smart Home Thermal Model

Various linear single zone models representing single family homes with heat pumps and thermal
parameters of the building are considered. They are based on nonlinear models which were constructed
using data, representing physical behavior of real buildings in Vienna and Salzburg regions in Austria.
Due to consumer privacy, more details about these homes cannot be provided. By generalizing these
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models, four study cases are derived, and their essential distinguishing features are shown in Table 1.
Nonlinear models were created in Dymola [38], which is a modeling and simulation tool, as part
of the project iWPP-Flex [39]. They were linearized using the functions within Dymola and were
mathematically verified.

Table 1. Building study cases which represent typical households in Austria. During the modeling
stage of these houses, they only contained single-phase loads. To perform effective demand response,
they had to be upgraded to include various other flexibilities such as single/three-phase heat pumps,
controllable loads, electric storage, and PV system with three-phase inverters. Some of the important
specifications such as heat demand, control method, and rated capacities which influences the control
scheme are provided in this table.

House Hype Passive House Low-Energy House Existing House Renovated House

Heating demand 15 kWh/(m2a) 45 kWh/(m2a) 100 kWh/(m2a) 75 kWh/(m2a)
Heater Under floor Under floor Radiator Radiator

Heat exchange medium Air-water brine-water brine-water air-water
Power control Variable On/off On/off Variable
Rated capacity 1 kW/ 3 kW 1.2 kW/5 kW 4 kW/12kW 2.7 kW/7 kW(Electrical/thermal)

In the context of smart HEMS, the models of smart homes are recommended to be kept sufficiently
simple to maintain generality, so that many building types can be accommodated. Therefore, first
order models are implemented. Additionally, the focus of this work is not to use realistic building
models but rather the control strategy and to minimize the objective function.

As a result, continuous state space models were generated and are assumed to be ordinary discrete
linear time-invariant and is then discretized with a sampling time step of 15 min which can be observed
in Equation (1).

xroom(t + 1) = Aroom xroom(t) + Broom uroom(t) (1)

The state variables xroom of the building model are the room and wall temperature. The later represents
the temperature of wall, floor, and ceiling of the house. Aroom and Broom are the system matrices.

xroom =

�
Twall
Troom

�
(2)

Limits on room and wall temperatures are given in Equations (3) and (4)

Tmin
wall ≤ Twall(t) ≤ Tmax

wall (3)

Tmin
room ≤ Troom(t) ≤ Tmax

room (4)

The input quantities for the building are heat flow supplied by the heat pump, ambient temperature,
solar irradiation from all directions, internal gains, and ventilation.

uroom =



qroom

Tambient temperature
inorth
ieast

isouth
iwest

ginternal gain
gventilation


(5)
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Limits on heat flows into the building are provided in Equation (6)

0 ≤ qroom(t) ≤ qmax
room (6)

3.3. Heat Pump in Residential Building

Heat pump is used to provide the heat flow into the home which is the only controllable variable
in the home model described in Section 3.2. Heat pump is the only coupling element between electrical
and thermal systems as mentioned above.

Equation (7) describes the relationship between heat pump power and heat flows. The model
represented below is that of a single-phase heat pump since it is in a modest home. This can be easily
extended to three-phase by dividing the right-hand side of Equation (7) by 3 for per-phase balanced
active power. Coefficient of performance (cop) is assumed to be constant with respect to time.

Pheat pump(t) =
qroom(t)

copheat pump
(7)

Where, Pheat pump is the active power and copheat pump is the coefficient of performance. Low-energy
and existing house contains on-off heat pump. To model this, a binary variable Bheat pump with 0 for off
and 1 for on is used.

Pheat pump(t) = Bheat pump Prated
heat pump (8)

The pump in heat pump consists of an induction motor. This motor is assumed to be lossless
and with constant power factor (p fheat pump) as described in Equation (9), using which reactive power
(Qheat pump) is calculated.

Qheat pump(t) = tan(cos−1(p fheat pump))Pheat pump(t) (9)

Since only heating period is considered, Pheat pump and Qheat pump ≥ 0. Constraints on heat pump
active power limits.

0 ≤ Pheat pump(t) ≤ Pmax
heat pump (10)

Constraints on heat pump reactive power limits,

0 ≤ Qheat pump(t) ≤ Qmax
heat pump (11)

where, Pmax
heat pump and Qmax

heat pump are the maximum rated power active and reactive powers of head
pump, respectively.

4. Electrical System Constraints

In recent years, lots of smart electrical appliances are becoming popular. It is possible to control
the behavior of these appliances. In this paper, the authors have decided to use the following
electrical appliances.

4.1. Electric Storage Constraints

For the maximal use of intermittent renewable energy generators and self-consumption, electric
batteries are becoming very important in the recent days. Therefore, it is necessary to model and
include them in the HEMS systems. In this paper, only linear battery models are used. Equation (12)
represents the energy balance of electric storage system, a battery.

soc(t + 1) Cbattery = soc(t) Cbattery + Δt ηbattery Pbattery(t) (12)

2.2 Publication B 43



Energies 2018, 11, 3323 8 of 19

It can be seen in Equation (12) that, Pbattery takes values both positive and negative. This is a form
of linearization because, the battery charging and discharging efficiencies are different and therefore,
nonlinear. This nonlinearity can be tackled by solving it as is, using a nonlinear solver or by splitting
the Pbattery into Pcharging and Pdischarge. The latter is coupled with a binary variable to make it either
charge or discharge, leading to MILP. The authors have chosen to use the linear form and the reasons
for it are provided in Section 4.2.

Constraints on soc limits are given below,

socmin ≤ soc(t) ≤ socmax (13)

Constraints on battery charging and discharging power limits are as follows.

Pmin
battery ≤ Pbattery(t) ≤ Pmax

battery (14)

4.2. Three-Phase Inverter Constraints

The battery described in the previous section is connected to a three-phase inverter. The inverter
can control active and reactive power flows on each of the phases. The relationship between battery
and inverter is described using simple power balance Equation (15).

(Pbattery(t))2 = (Pinverter(t))2 + (Qinverter(t))2 (15)

Equation (15) is nonlinear. If on the precious section, a binary variable is defined and Pbattery is
split into Pcharging and Pdischarge, Equation (15) becomes nonlinear and non-convex. One way to deal
with the nonconvexity is to limit the Qinverter with a constant power factor as shown in Equation (16).
However, this is still nonlinear.

Qρ
inverter(t) = tan(cos−1(p finverter))Pρ

inverter(t) (16)

where, ρ is the phase and ρ ∈ phases(r, s, t). To remedy the nonlinearity, the inverter is only controlled
at unity power factor. In other words, the reactive power is zero. This is represented in Equation (17)

(Pbattery(t))2 = (Pinverter(t))2 (17)

Individual phase powers are represented as follows,

Pinverter(t) = ∑
ρ

Pρ
inverter(t) (18)

4.3. Constraints on Controllable Loads

Simple controllable loads are used with constant power factor operation as described in
Equation (21). Controllable loads have the following constraints. Equations (19) and (20) are the
active and reactive power constraints and Equation (21) is the relationship between them.

0 ≤ Pρ
controllable load(t) ≤ Pmax

controllable load (19)

0 ≤ Qρ
controllable load(t) ≤ Qmax

controllable load (20)

It is assumed that the power factor is constant with time. Typical power factor for household
loads is between 0.90 to 0.95.

Qρ
controllable load(t) = tan(cos−1(p fcontrollable load))Pρ

controllable load(t) (21)
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4.4. Constraints on Grid Connection Point

The grid connection point (point of common coupling) is where the smart home is connected
to the grid. When excess power is fed into the grid, it is referred to as infeed and when power is
drawn, it is referred to as consumption. Since Pgrid takes both positive and negative values due to
battery linearization, both infeed and consumption is represented by Pgrid. It also represents the energy
balance of all the electrical components in the smart home.

Equations (22) and (23) are constraints on limits of active and reactive power at the grid
connection point.

Pρ
grid(t) = Pρ

inverter(t) + Pρ
heat pump(t) + Pρ

controllable load(t) + Pρ
uncontrollable load (22)

Qρ
grid(t) = Qρ

heat pump(t) + Qρ
controllable load(t) + Qρ

uncontrollable load (23)

4.5. Various Disturbances Applied to HEMS

Various electrical and thermal disturbances are applied to HEMS during simulation which can be
seen in Figure 2.
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Figure 2. Profiles of disturbances applied to smart HEMS. On the x-axis, data time format is MM-dd
HH. Data is from 01-01-2018 00:00:00 to 01-02-2018 00:00:00.

Disturbances are forecasted using a convolutional neural network which is not described in this
paper. Uncontrollable loads data is from a smart meter from a real household in Austria. Various
thermal disturbances such as ambient temperature and irradiation data is sourced from weather
stations in Austria, ventilation, and internal gains from the project iWPP-Flex.
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5. Objective Functions

In this paper, three different objectives are considered. These are explained in detail below.

5.1. Improve Self-Consumption

In many countries, with higher share of renewables, it is more economical to self-consume and
therefore, the following objective function in Equation (24) is minimized. Since electricity tariffs only
depend on active power, reactive power is excluded from the objective.

Jsel f consumption = ∑
t

∑
p
(Pρ

grid(t))
2 (24)

On the other hand, in Austria, it is more economical to feed as mush power into the grid as
possible since power sale tariff is higher than consumption tariffs. It can be done easily by maximizing
equation. It is customary to involve a variable price signal along with Pgrid which is the electricity tariff
provided by the energy retailer. However, this is neglected for the sake of clarity.

5.2. Improve User Comfort

Since user comfort is paramount, this objective is introduced. It minimizes the difference between
a reference temperature and actual room temperature in smart home. The limits of these temperature
are defined by the user.

Juser com f ort = ∑
t
(Tre f erence

room (t)− Troom(t))2 (25)

5.3. Improve Grid Support

As mentioned in Section 1, smart homes can provide support to the grid by optimally controlling
its renewable generation and consumption. Therefore, objective in Equation (26) is provided.
It minimizes the difference between reference and actual active, reactive powers at grid connection
point. This reference is generated from a large grid level optimal power flow controller based on a grid
level objective function.

Jgrid support = ∑
t

∑
p
(Pρ

grid re f erence(t)− Pρ
grid(t))

2 + (Qρ
grid re f erence(t)− Qρ

grid(t))
2

(26)

This paper does not include details or methods to generate this reference profile and instead
uses it as is. If the smart home can follow this reference profile, grid level optimization is achieved.
The objective on the grid can be loss minimization, line loading minimization, operational efficiency,
unit dispatch and so on. In this paper, the reference profiles where generated with an objective
to minimize the three-phase unbalance on the grid level. For this to work, multiple buildings
connected at various locations in the network must follow its own reference profile provided by
the grid controller, simultaneously.

5.4. Complete Objective Function

Complete objective function is provided in Equation (27). Weights S , U and G are introduced
with self-consumption, user comfort and grid support, respectively. By varying these weights, more
importance can be given to the objectives.

minimize J = S Jsel f consumption + U Juser com f ort + G Jgrid support (27)

These weights can be varied on-line and the controller updates it in the next simulation step.
There are the most prominent parameters which the user can determine and can have significant
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influence over the controller and ultimately the optimum. Controllable variables are Pbattery, Pheat pump
and Pcontrollable load.

6. Control Scheme

Due to the high intermittency of renewable energy generators, loading in households along with
dependencies on external factors such as weather and solar irradiation, it is extremely important to
choose a controller which makes effective use of available predictions.

Therefore, the authors have chosen to use MPC. MPC control used is receding horizon control.
Figure 3 describes an MPC and data exchange between various devices in smart home. MPC is
responsible to generate optimal set-points to minimize the objective function.

r 
s 
t 

Model Predictive Controller

Flexibilities Disturbances

qhouse Weather data: 
Tambien 

Irrediation
(north, south, east, west) 

Twall

n InverterHeat Pump Uncontrollable
Loads

Inverter

Electric Storage PV system

P,Q
profile

P,Q
profile

Controllable
Loads

P,Q setpoints

Troom
gventilation
ginternal

Figure 3. Schematic of three-phase HEMS with model predictive controller. It shows all the
interconnections with respect to data exchange.

MPC control scheme is illustrated in Figure 4. It describes various functions which need to be
executed within a sample duration.

Sensor data
acquisition

Update sensor
database

Disturbance
forecasting

Receive reference
temperature profile

Receive reference
optimal grid profile

Setup constraints

User defined
Objective weights

Optimal set points
generated

Repeat process

(t)

Run optimization

(t + 1)

Figure 4. Model predictive control scheme for three-phase HEMS. It describes various functions which
are executed for a sample period.

The chronological control functions and events described in Figure 4 are described in detail below.

1. At time t, measure thermal disturbances such as irradiation, ambient temperature, ventilation
losses and internal gains. Additionally, smart meters measures uncontrollable load and
photo-voltaic generation.

2. These sensor data points are acquired by the data acquisition system and sensor database is
updated. Figure 5 illustrates the sensor data acquisition system using in this work.
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3. Disturbances are forecasted for a given prediction horizon using an appropriate forecasting
algorithm. In this paper, using convolutional neural networks.

4. Active and reactive power optimal set-points are received from the grid level controller.
5. Internal temperature reference signals are received.
6. User defined objective weights are received.
7. Objective functions are set up using Equations (24)–(27).
8. Constraints from Equations (1)–(23) are setup.
9. Optimal set-points are generated.

10. The process is repeated for next sample period, (t + 1).

Ambient temperature Irrediation  
(north, south, east, west) 

Ventilation losses 
Internal gains 

Uncontrollable load  
(Active and reactive power)

Photo-voltaic  
(Active and reactive power)

Sensor data acquisition

Figure 5. Schematic of a sensor data acquisition system use in three-phase HEMS.

The optimization problem is solved by a suitable quadratic programming for passive, renovated
house and mixed-integer quadratic programming for low-energy and existing houses as discussed
in Section 3.3.

7. Simulation Results

In this section, simulation setup and results are provided. As mentioned earlier, the objective
weights, S , U and G are defined by the user, it is difficult to analyze the controller performance due to
large number of combinations of these three variables.

To overcome this, only extreme cases of these weights are considered. This can be observed
in Figure 6. The method of choosing weights in such fashion was inspired from [40] in which,
mixed-integer quadratic programming is introduced with multi-objective optimization. The simulation
is performed for the duration of 48 hours with prediction and control horizon of 24 hours.

(1,0,0) (0,1,0) (0,0,1)

(1,0,1) (1,1,0) (0,1,1) (1,1,1)

0

1 1

1

0

1 1

1

0

1 1

1

0

1 1

1

0

1 1

1

0

1 1

1

0

1 1

1

Figure 6. Objective weights, S , U and G for various extreme cases.
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Simulation parameters are provided in Table 2.

Table 2. Simulation parameters.

Variable Value

Simulation parameters
prediction horizon 24 h

control horizon 24 h
simulation duration 48 h

Building model
Tmin

wall 10 C
Tmax

wall 40 C
Tmin

room 18 C
Tmax

room 25 C
Tinitial 18 C

Tre f erence
room 20 C

Controllable load model
Pmax

controllable load 2 kW
p fcontrollable load 0.95

Electric Storage model
socmin 0.3
socmax 0.9
Cbattery 20 kWh
ηbattery 0.95
Pmin

battery –10 kW
Pmax

battery 10 kW

Heat pump model
cop 3

p fheat pump 0.90
Passive house: Pmax

heat pump 1 kW
Low-energy house: Pmax

heat pump 1.2 kW
Existing house: Pmax

heat pump 4 kW
Renovated house: Pmax

heat pump 2.7 kW

7.1. Analysis of Results

Due to the large number of combinations of objective weights and controllable variables, results
are analyzed based on the three objective functions. Four scenarios of objective weights are chosen
for analysis. (S , U , G) = (0, 0, 1), (0, 1, 0), (1, 0, 0) and (1, 1, 1). Additionally, to represent powers,
only phase r is used. The results are plotted using boxplots. More information about it can be seen
in Figure 7.

Interquartile Range 
(IQR) 

Minimum 
Q1 - 1.5 IQR 

Maximum 
Q3 + 1.5 IQR 

Outliers Outliers 

Median 
Q1 

(25th percentile) 
Q3 

(75th percentile) 

0 1 2 3 4 5 -1 -2 -3 -4 -5 6 -6 

Figure 7. Boxplot is a standardized method to display data.

7.1.1. Improve Self-Consumption

Figure 8 describes the results for the objective function to minimize self-consumption
(see, Equation (24)). It illustrates Pgrid for various home types and for given simulation horizon.
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It can be observed that for objective weights (S , U , G) = (1, 0, 0), the controller is trying to get Pgrid
close to zero which can be perceived from the medians which are at zero for all the house types.
Same can be observed with objective weights (S , U , G) = (1, 1, 1). Since all three weights are equal,
the results are not as effective as the one from before and S is not dominating other weights.
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Figure 8. Schematic of Three-Phase HEMS.

7.1.2. Improve User Comfort

Objective terms abs(Tre f erence
room − Troom) is illustrated in Figure 9. Since the objective weight U is

predominant, (S , U , G) = (0, 1, 0), the absolute difference between Tre f erence
room and Troom is the least.

It can be observed that the temperature median is very close to zero. From this, it can be inferred that
the objective function to improve user comfort is maximized. However, since the building models are
first order, the controller is quiet easily able to achieve similar results with (S , U , G) = (1, 1, 1).
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Figure 9. Schematic of Three-Phase HEMS.

7.1.3. Improve Grid Support

Figure 10 illustrates abs(Pgrid re f erence(t)− Pgrid). With the predominant weight in (S , U , G) =

(0, 0, 1) is G. Therefore, similar to previous objectives, it can be observed that the controller is able
to minimize the absolute difference between the target profile and the profile at the grid connection
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point. This is also illustrated in Figures 11 and 12 where, both active and reactive power profiles are
presented for phase r.
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Figure 10. Schematic of Three-Phase HEMS.

Figures 11 and 12 describes all the parameters for passive house with objective weight scenario
(S , U , G) = (0, 0, 1) for both active and reactive power. In Figure 11, since the objective weight scenario
is to minimize abs(Pgrid re f erence(t)− Pgrid) + abs(Qgrid re f erence(t)− Qgrid), it can be observed that the
Pgrid is trying to closely follow the Pgrid re f erence.
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Figure 11. Per-phase active power controllable and disturbance variables for passive house and weight
scenario (S , U , G) = (0, 0, 1)

2.2 Publication B 51



Energies 2018, 11, 3323 16 of 19

It is evident from Equation (23) that, there are no direct reactive power controllable variables
for all the phases. This makes it difficult for the controller to actively tract Qgrid re f erence which can be
observed in Figure 12. In phase r, due to the existing single-phase appliances, better reactive control
tracking is possible unlike phase s and t.
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Figure 12. Per-phase reactive power controllable and disturbance variables for passive house and
weight scenario (S , U , G) = (0, 0, 1)

8. Conclusions and Outlook

In this paper, a novel three-phase balancing HEMS was presented along with control strategies
for both active and reactive power. Four linear building models representing typical households
in Austria were described. Various linear three-phase flexibility models were presented in detail.
Three unique conflicting objective functions with three weights which are user defined is described.
Model predictive control scheme was applied to this smart home for various extreme objective weight
scenarios. Active and reactive power set-points were generated for all electrical controllable variables.
Due to the vast number of combinations of objective weights, four extreme cases were chosen for
analysis, (S , U , G) = (0, 0, 1), (0, 1, 0), (1, 0, 0) and (1, 1, 1). Analysis was done based on three objective
functions. It was shown that the results reflect the chosen objective weights for each of the three
objective functions. In Figures 11 and 12, grid support maximization objective was illustrated for
objective weights (S , U , G) = (0, 0, 1). In these figures, it was shown that Pgrid and Qgrid are indeed
able to track their reference profiles and implications being, the objectives on the grid level controller
(three-phase unbalance minimization) are being met, leading to a grid level optimization.

The models presented in the paper were linear and first order in nature. In reality it makes sense
to use higher order nonlinear models to closely match the real behavior of the smart home. Therefore,
the model needs to be extended to nonlinear ones. Even though the scheme includes reactive power,
it is not given high importance in this paper to keep it linear. Due to high share of renewable generators,
it is interesting to be able to control reactive power in this context. The inverter connected to the
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battery in this paper only works at unity power factor. However, by including reactive power control,
better reactive power tracking can be performed. Additionally, with the power balance equation at the
inverter is non-convex in nature. Therefore, the MPC needs to be extended to be able to solve such
problems using a non-convex solver.
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Abstract: This paper presents control relationships between the low voltage distribution grid and
flexibilities in a peer-to-peer local energy community using a stratified control strategy. With the
increase in a diverse set of distributed energy resources and the next generation of loads such as
electric storage, vehicles and heat pumps, it is paramount to maintain them optimally to guarantee
grid security and supply continuity. Local energy communities are being introduced and gaining
traction in recent years to drive the local production, distribution, consumption and trading of
energy. The control scheme presented in this paper involves a stratified controller with grid and
flexibility layers. The grid controller consists of a three-phase unbalanced optimal power flow using
the holomorphic embedding load flow method wrapped around a genetic algorithm and various
flexibility controllers, using three-phase unbalanced model predictive control. The control scheme
generates active and reactive power set-points at points of common couplings where flexibilities
are connected. The grid controller’s optimal power flow can introduce additional grid support
functionalities to further increase grid stability. Flexibility controllers are recommended to actively
track the obtained set-points from the grid controller, to ensure system-level optimization. Blockchain
enables this control scheme by providing appropriate data exchange between the layers. This scheme
is applied to a real low voltage rural grid in Austria, and the result analysis is presented.

Keywords: local energy communities; Blockchain; stratified control; optimal power flows; holomor-
phic embedding load flow method; model predictive control; smart grids

1. Introduction

In recent years, local energy communities (LECs) are gaining interest in Europe and
the world by introducing new regulations for its formation, operation and control. LECs’
introduction is due to increased distributed renewable energy sources (DERs) and new
loads such as electric vehicles, storage and heat pumps, hereafter referred to as next-
gen loads, in low voltage distribution grids. This is to motivate the local generation,
distribution, consumption and trading of energy. The research presented in this paper is
conducted under the Blockchian Grid project funded by the Climate and Energy Fund
and implemented in the RTI-initiative “Flagship region Energy” of the Austrian Research
Promotion Agency. The most significant limitation of a local energy market associated
within an LEC is the availability of a settlement process. Such processes are in place to
ensure no violation occurs in the grid when the bids, accepted in the market, are executed.
The need is due to the lack of controllability of DERs and next-gen-loads. In this context,
a stratified control system, which manages both the grid and various DERs and flexibilities,
could be one of the approaches.
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In the literature, stratified control for flexibility management is extensively used.
In [1], a stratified control scheme to control voltage and current is presented. It includes the
optimal reconfiguration of various systems in micro-grid based on changing conditions.
The first layer consists of the optimal sharing of load and the second level consists of
dynamic optimization of droop gains. However, this approach is not designed for three
phase systems as size of the problem will start to become large. Additionally, the second
level consists of only droop gains where flexibilities, which offer on/off behavior cannot
be included. The authors of [2] have proposed a hierarchical energy management system,
to interconnect multiple micro-grids. At the higher level, micro-grid coordination opera-
tions are performed based on energy scheduling and generation of power reference values
for other micro-grids.In the lower level, a chance-constrained MPC is applied for local
operation management. The goal to maximize the local utilization of capacities and reduce
the dependence on interconnected grids. A major limitation of this approach is that the
higher level control does not include an optimal power flow based scheduling algorithm,
leading to a sub-optimal solution. In [3], a hybrid stratified control to improve grid security
is presented. In the lower level, the controllers are responsible for coordinating each of
the individual control units. Whereas, in the higher level, continuous dynamic control of
discrete controllers and with individual lower-level controllers is presented. The authors
of [4] have presented a hierarchical iterative control algorithm to balance the grid optimally
and, at the same time, meet consumer demand. The major limitation of the control strate-
gies mentioned above is the need for detailed technical models of lower-level controllers.
Detailed models are often not available or difficult to derive, making them unrealistic
for implementation. Additionally, any change in the devices at the lower level needs to
be recorded and appropriate adjustment in the algorithm needs to be made. However,
in this paper, optimal schedules are generated at the PCC of flexibilities irrespective of
what is connected to it. Moreover, the data exchange between each layer and within each
layer needs to be sufficiently strong enough to handle a large number of variables being
exchanged. Blockchain with a 15s block speed is used in this paper to write data into the
chain, which is available in all other buses in the next sample.

The stratified controller consists of an OPF at the upper level. As discussed in [5],
OPF algorithms can be classified into two types, A and B, respectively. Type A deals with
algorithms that use load flow methods to generate a certain set of intermediate solutions
for voltages and phase angles. Since the optimal solution is close to the load flow solution,
using jacobian and other sensitivity relations, it can be sequentially determined. Various
implementations of class A algorithms are presented in [6–8]. Class B deals with algorithms
that use load flow equations as equality constraints, depending on the exact conditions and
detailed formulation. It utilizes the entire search space. Since power grids are nonlinear
and non-convex in nature, convex relaxation or non-convex solvers are to be used. It uses
optimality conditions using Lagrangian functions with objective and constraint derivatives.
In [9], a novel class C algorithm is presented in which a reliable load flow is coupled with a
heuristic optimization method. This method helps to overcome the challenges presented
by classes A and B, which are used in this paper.

Low voltage rural distribution grids are unbalanced due to untransposed lines and
uneven loading on their three-phases [10]. The unbalance can be heightened with increase
in single-phase DERs and next-gen loads [11,12]. They are dependent on weather pa-
rameters such as temperature and solar irradiation. Moreover, they are periodic, with
hourly, daily, weekly and monthly cycles and are dependent on seasons. Three-phase
unbalance, induces several issues in the grid. Most prominently, it increases losses in lines,
grid devices and transformers. Transformers in the distribution grids are designed for
balanced operation and would lead to uneven temperatures on the three phases, caus-
ing degradation [13]. Induction motors are significantly affected by voltage imbalance,
causing accelerated aging due to high temperatures on winding with the highest loading
and shorten the lifespan [14]. Torque fracturing can lead to permanent damage in motor
winding with the increase in voltage unbalance [15]. Protection systems can be triggered
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falsely due to the presence of negative and zero sequence currents in the lines [16]. Cur-
rently, models describing the low voltage distribution grids are based on the transmission
system’s supervisory control and data acquisition systems at the transmission level. This
host functions like load (LF) and optimal power flow (OPF), using models that are single
phased. They cannot be readily applied to distribution grids without modification to
accommodate the new changes, as discussed above. To overcome this, the LF and OPF
should include three-phase unbalance.

In the literature, various methods have been presented to minimize three-phase
unbalance, which can be consolidated into three types. Namely, phase transposition, feeder
reconfiguration, and power control. In [17], a method to minimize three-phase unbalance
for both star and delta configurations is presented. This is performed by operating various
devices connected to the IEEE 34 and 123 bus test systems. The grid is linearized to convert
non-linearity non-convexity to mixed-integer linear programming. The authors of [18] have
formulated a method to minimize three-phase unbalance by re-phasing and reconfiguration
using optimization techniques and by optimally placing DER units. In [19], re-phasing
and DER sizing are used to achieve three-phase unbalance minimization. A fuzzy multi-
objective phase balancing optimization is used to do so. Various heuristic optimization
techniques for three-phase unbalance minimization is presented in [16,20,21]. Various phase
swapping algorithms are reviewed in [22]. In [23], power balance is used to minimize
unbalance by optimally operating energy storage, and a similar method is presented in [24].
Various methods involving reactive power control for unbalance minimization are available
in the literature. In [25], static variable compensators are used to balance the three phases.
The authors of [26] describe a method to minimize zero and negative sequence current
components in distribution grids. It involves the use of reactive power management using
the online Karush–Kuhn–Tucker optimization method. This method is applied to IEEE
13-node test network. Most of the methods mentioned above are used in the planning
phase. This does not include the dynamic behavior of unbalanced loads and generation.
In this paper, the stratified controller is to minimize the three-phase voltage unbalance
in real-time.

Flexibilities are controlled using model predictive control (MPC) and, in the literature,
various implementations are available. In [27], a multi-time scale and stage optimization
method is proposed to control flexibilities such as air conditioning, heating and ventilation
systems, and plug-in hybrid electric vehicles are presented. It uses a constrained stochastic
optimization algorithm using MPC to minimize costs, peak power and consumer comfort.
Temperature data, thermal dynamics and real-time electricity pricing are included. The
authors of [28] have presented an MPC approach to shifting loads among household
devices and electric storage systems. Energy consumption is minimized by using time
of day tariff and demand-side management (DSM) by optimally scheduling loads and
charging and discharging times of the electric storage system. An appliance scheduling
method in residential buildings using MPC is presented in [29]. It involves the use of
thermal and non-thermal flexibilities by incorporating forecasts and database updates
to minimize electricity costs. It includes a thermal dynamic of the building and is used
as constraints to MPC. In [30], the MPC approach to controlling photo-voltaic combined
heat and electric storage is presented. The operational cost of the combined heat and
power unit is minimized. The authors of [31] have presented a method to control the
air conditioning system in the room, along with the PV system. Demand response is
provided using time of use tariff. Additionally, the controller is used to minimize energy
consumption. In [32], the authors present a three-phase unbalanced model predictive
control based smart building energy management system. It uses three-phase flexibility
models with mixed-integer quadratic programming. In this paper, the smart building
models and control strategies are derived from it.

To overcome the limitations presented in the literature, the authors present a novel
stratified control scheme with grid and flexibility layers. The former consists of three-phase
unbalanced optimal power flow using the holomorphic embedding load flow method
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(HELM) and the latter, three-phase unbalanced model predictive control. Blockchain
handles all exchanges of control variables (see Section 2). The flexibilities are connected at
a certain number of buses which are considered controllable, and the grid level controller
generates three-phase optimal active (P) and reactive power (Q) schedules at their points
of common couplings (PCC). The grid level controller concentrates PQ consumption and
in-feed values from smart meters, from all other uncontrollable loads in the LEC over
the Blockchain for each sample time. Contrary to the methods presented in the literature,
the grid level controller does not contain any information about the devices connected at
the PCC, ensuring individual privacy. The stratified controller uses models that include
three-phase controls for both PQ flows, resulting in per-phase power manipulation. These
schedules are actively tracked by the flexibilities along with their objectives, leading to
a system-level optimization. The grid level controller uses Optimal Power Flow (OPF),
based on a three-phase unbalanced holomorphic embedding load flow method (HELM)
and genetic algorithm with certain advantages over the existing methods (see Section 4).
As discussed above, the DERs and next-gen loads are intermittent, dependent on external
factors and, therefore, model predictive control (MPC) (see Section 5), with its proven
robustness, is used to manage them optimally.

The contributions in this paper are listed below:

1. Stratified control structure for optimal scheduling of grid flexibility in an LEC using
Blockchain (see Sections 3 and 6).

2. Online three-phase unbalance minimization control scheme in low voltage distribu-
tion networks (see Section 4.1.1) in an LEC.

3. Three-phase unbalance optimal power flow with receding horizon formulation
for optimal flexibility placement (see Section 4.1.2) and voltage controllability
(see Sections 4.1.3 and 6).

4. Schedules from the grid controller are generated at the PCC, ensuring privacy. No
device information from the buildings is communicated to the grid controller.

5. Mixed integer quadratic three-phase unbalanced model predictive control hosted
in flexibilities with various electrical connection configurations and thermal
models (see Section 5.1).

6. Optimal scheduling of PQ set-points at critical buses, where smart buildings are
connected and model predictive control results from flexibilities to the reference
optimal schedules from the grid controller (see Section 7).

2. Blockchain System Architecture

The Ethereum client Open Ethereum is the basis for the Blockchain architecture
adopted in this project. Various servers and communication components are seen in
Figure 1. Any node in the network can write data into the Blockchain. In the project,
this is constrained and limited by the LEC platform manager at the infrastructure server.
Additionally, the grid controller is hosted on this server, which generates optimal set-
points for various flexibility controllers in the LEC and facilitates the market processes.
The consensus algorithm on how to agree on new blocks is Proof-of-Authority, in which
only authorized participants, called sealers, are allowed to generate blocks containing
transactions and add them to the Blockchain. Participants can also be dynamically added
or removed by the platform operator.

There are two different types of nodes, full nodes, which also perform the sealing to
add blocks, and nodes located at measurement devices, sensors and actuators. The latter
ones do not perform any sealing and can be configured to run as light clients to lower the
hardware requirements. Light clients do not keep the whole chain data, but can participate
in the network by trusting other nodes.

Every 15 s a new block is added, which is much lower than the 1 min sample time.
This way, it is guaranteed that transactions are processed in time for the next sample. Every
sample, PQ values are fed into the Blockchain at all the buses in the grid. Information for
the Blockchain, smart contracts, the role of participants and access rights are stored in the
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infrastructure server. Real customer data (name, address, customer number) is associated
with an Ethereum account address. This is managed and used by the Distribution System
Operator (DSO) for billing-relevant purposes. The data exchange between the infrastructure
server and the participants takes place via an encrypted connection. To be able to access
the data, each participant receives an access identifier (username and password). This
identifier is linked to the customer data by the infrastructure server.

Community representative 

Pro-/Consumer

Infrastructure

Pro-/Consumer

Smart Home 00

Community Battery

Protected
Control

Protected Control

Regulator, finance
ministry

Node DB

Archive DB
Infrastructure
Customer DB

Node

Client

Figure 1. Blockchain System Architecture implemented in the BlockchainGrid project at the LEC
in Austria.

3. Stratified Control Scheme for Low Voltage Distribution Networks

In this section, the authors present a stratified control scheme for voltage management
in a three-phase low voltage distribution grid, as part of an LEC. They are inherently
unbalanced, as discussed in Section 1, and the unbalance is further increased by DERs and
next-gen loads. It is paramount to minimize it for safe system operation. A methodology
to generate optimal set-points at a certain number of controllable buses at critical nodes
is presented. Flexibilities connected at these buses actively track these set-points using
model predictive control. In this research, smart buildings with various flexibilities, such
as electric storage and heat-pumps, are connected at these critical nodes (see Section 5).The
upper level controller consists of an optimal power flow model using a three-phase unbal-
anced holomorphic embedding load flow method (HELM-OPF), characterized in Section 4
and mixed-integer quadratic programming model predictive control (MiQ-MPC) is de-
scribed in Section 5. Figure 2 describes a general model schematic and Figure 3 describes
the control structure.
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External
Grid
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Bus00 Bus01

Bus02 Bus03 Bus04
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Line05 Line04 Line03
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Figure 2. General schematic of a three-phase unbalanced distribution grid with a medium-
voltage/low-voltage transformer, uncontrollable loads (UL), smart buildings and a community
battery system.
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Figure 3. Structure of the stratified control scheme. Inputs to the grid controller are forecasted profiles
of smart meter active and reactive (Psm

i , Qsm
i ) profiles from loads located at various uncontrollable

buses (Bus 00, Bus 01, . . . , Bus nn). Outputs are optimal Pre f
i and Qre f

i set-points that are calculated
using HELM-OPF and fed into individual flexibility controllers. Using these reference profiles,
the flexibility controller produces optimal set-points for its flexibility portfolio, which are Pact

i and
Qact

i using MiQ-MPC. Based on the available flexibility type and their sizing, the buildings may not
be able to perfectly tract the reference profiles generated by the grid controller.

It is to be noted that the grid level controller does not directly provide set-points to
the individual flexibilities as it does not have any device model information. It instead
generated set-points at the buses where they are connected (at the PCC). This leads to the
preservation of sensitive flexibility information and helps protect consumer privacy.

4. Grid Controller Formulation

Power grids are nonlinear and non-convex and it is strenuous to solve the OPF problem
associated with it. Various methods have been presented to handle such non-linearity
and non-convexity. In this paper, a solution to OPF using the non-convex optimization
method is chosen. This is based on the method developed in [9]. It uses a three-phase
unbalanced holomorphic embedding load flow method (HELM) with a genetic algorithm

2.3 Publication C 62



Energies 2021, 14, 3290 7 of 19

to generate optimal set-points, a HELM-OPF method. The reason for using HELM is due
to its robustness and ability to converge to a high voltage operable solution irrespective of
its initial conditions (very high or low loading conditions) [9]. Using HELM, OPF is given
access to the entire search space.

Three-phase unbalanced low voltage distribution network models are adopted from [33].
OPF is formulated as,

minimize
u

J = F(x, u)

subject to H(x, u) = 0,

G(x, u) ≤ 0,

(1)

where, x and u are state and input variable sets. Input variables are the active and reac-
tive power injections at controllable buses; state variables are voltage and phase angles
(see Figure 3).

F(x, u) is the objective function for the HELM-OPF problem. Typical objectives are
total generator cost and loss minimization in the network.

4.1. Objective Functions

In this paper, three objective functions are used. Objective Section 4.1.1 is used to
minimize three-phase unbalance and is used online. Objective Section 4.1.2 is used to
choose the best number of controllable buses where flexibilities are needed. Objective
Section 4.1.3 is used to determine the voltage controllability.

4.1.1. Three-Phase Unbalance Minimization

The objective function is chosen to minimize three-phase voltage unbalance. There
are various methods to realize the objective and, in this paper, balanced voltages are used
as a reference, which is illustrated in Equation (2).

minimize J = ∑
t∈T

∑
k∈Υ

∑
p∈P

(real(Vp,t
k,balanced)− real(Vp,t

k ))2

+ (imag(Vp,t
k,balanced)− imag(Vp,t

k ))2,
(2)

where Υ represents buses in the network (see Section 4.1.3 for various scenarios), T repre-
sents simulation time and P ∈ phases(a, b, c). The rectangular coordinate system is used to
represent voltages and to balance both magnitudes and phase angle; therefore, both real
and imaginary parts of complex voltages are used. In Section 7, three different forms of the
objective function are defined.

G(x, u) and H(x, u) are the equality and inequality constraints. Three-phase unbal-
anced HELM developed in [9] is used as equality constraints.

Inequality constraints with respect to distribution grids are as follows,

Pp
Lowi

≤ Pp
PVi

≤ Pp
Highi

(3)

|Vp
Lowi

| ≤ |Vp
i | ≤ |Vp

Highi
| (4)

tLowi ≤ ti ≤ tHighi
(5)

θLowi ≤ θi ≤ θHighi
(6)

sLowi ≤ si ≤ sHighi
(7)

Qp
Lowi

≤ Qp
PVi

≤ Qp
Highi

(8)

Pp
i,j ≤ Pp

Highi,j
(9)

Pp2
i,j + Qp2

i,j ≤ Sp2
Highi,j

(10)

|Ip
i,j| ≤ |Ip

Highi,j
| (11)

Θp
Lowi

≤ Θp
i − Θp

j ≤ Θp
Highi

. (12)
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The variables in the equations above are defined in the Table 1.

Table 1. Nomenclature.

Variable Definition

P Active power
Q Reactive power
V Voltage
t Transformer tap position
θ Transformer phase shift angle
s shunt reactances or capacitances
I Branch current magnitudes
Θ Voltage phase angle

4.1.2. Optimal Placement of Flexibilities

It is essential to optimally place the flexibilities in the grid to have the maximum
impact on voltage control. Various methods are used to determine the location where
flexibility is connected.

Most predominantly, they can be broadly classified into two types. Firstly, the voltage
sensitivity method, like the quasi-dynamic simulation, is used similarly to those in [4]. This
method is limited since it only provides information about the buses where most voltage
violations occur for a given period. This method had several limitations since power grids
are nonlinear and non-convex.

Secondly, an optimal heuristic technique uses flexibility models and OPF to determine
the best location using a non-convex solver. Variations of this method are detailed in [34–36].
In this paper, the authors present a method that is based on the heuristic technique but does
not need any flexibility models, which need to be included in the HELM-OPF formulation.
They are determined based on only active and reactive power injections at the buses.
This method applies to any flexibility or DER unit without including any information
about it. Mixed-integer programming, along with the HELM method from the previous
Section, is used, and the associated objective function is presented in Equation (13). This is
a modification of Equation (2), where an additional integer term is added to determine the
best location.

minimize J = ∑
k∈Ω

(DCk + E ∑
p∈P

(real(Vp
k,balanced)− real(Vp

k ))
2

+ (imag(Vp
k,balanced)− imag(Vp

k ))
2),

(13)

where Ck represents the binary variable associated with each bus in the network leading to
a set of optimal controllable buses. D and E are weights associated with the objectives.

4.1.3. Voltage Controllability

During the research, the voltage unbalances minimization at the buses, directly de-
pending on the optimal schedule.

In other words, voltages at all the buses are controlled by PQ powers at flexibilities and
at only certain controllable buses (Case 01). Therefore, using Equation (2), the following
three scenarios are chosen:

Υ =

��
Ω all buses (Case 01)
V voltage violation buses (Case 02)
C optimal controllable buses (Case 03),

(14)

where V represents all the buses where voltage violation was observed. C represents opti-
mal controllable buses from Section 4.1.2. The results of the three scenarios are discussed
in Section 7.
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5. Flexibility Controller Formulation

Flexibilities in this paper are mostly hosted in smart building energy management
systems with the addition of a large community battery.

5.1. Smart Building Thermal Model

Smart building models are derived from [32]. Various smart building models with
varying degrees of complexity are used in this paper. Figure 4 represents a three-phase
unbalanced smart building energy management system with various single and three-
phase loads.

Figure 4. Schematic of three-phase HEMS with various electrical and thermal components. It can be
observed that the electric appliances can have single, two or three-phase connection configurations.

Thermal models of smart buildings are based on typical buildings in Austria and are
derived from [32] and are represented as a discrete state-space system with a sampling
time of 15 min.

xroom(t + 1) = Aroom xroom(t) + Broom uroom(t). (15)

Room and structure temperatures are the state variables in xroom (see Equation (16)).
Tstructure is the temperature of the floor, walls and ceiling. Aroom and Broom are the system
matrices of the building.

xroom =

�
Tstructure

Troom.


(16)

Equations (17) and (18) are the lower and upper limits of the temperatures in
Equation (16).

Tmin
structure ≤ Tstructure(t) ≤ Tmax

structure (17)

Tmin
room ≤ Troom(t) ≤ Tmax

room. (18)
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uroom describes the input vector of the state–space system. The only controllable
variable is qroom, which is the heat flowing into the room.

uroom =



qroom
Tambient temperature

inorth
ieast

isouth
iwest

ginternal gain
gventilation losses,


(19)

where Tambient temperature is the outdoor temperature, solar irradiation from all directions
is inorth, east, south, west and ginternal gain, ventilation losses are the internal gains and ventilation
losses, respectively.

Equation (20) represents the limits on qroom. In this paper, only heating is assumed
and therefore, qroom is greater than zero.

0 ≤ qroom(t) ≤ qmax
room. (20)

5.2. Constraints on Heat-Pump

Equations (21) and (22) are the single and three-phase powers of the heart pump, respec-
tively. Coefficient of performance (copheat pump) is assumed to be time-invariant and constant.

Pheat pump(t) =
qroom(t)

copheat pump
(21)

Pp
heat pump(t) =

qroom(t)
3 copheat pump

, (22)

where Pheat pump is the active power and copheat pump is the coefficient of performance.
p ∈ phases(a, b, c). In order to model the on-off heat-pump model of certain house models,
a binary variable Bheat pump is used. This can be observed in Equation (23).

Pheat pump(t) = Bheat pump Prated
heat pump. (23)

The pump in the heat pump consists of an induction motor and is assumed to be
lossless. Additionally, it is assumed to be operating at constant power factor (p fheat pump)
as described in Equation (24), using which, the reactive power (Qheat pump) is calculated.

Qheat pump(t) = tan(cos−1(p fheat pump))

Pheat pump(t).
(24)

Pheat pump and Qheat pump ≥ 0, since the heating period is considered, are described in
Equations (25) and (26)

0 ≤ Pheat pump(t) ≤ Pmax
heat pump (25)

Constraints on heat pump reactive power limits,

0 ≤ Qheat pump(t) ≤ Qmax
heat pump, (26)

where Pmax
heat pump and Qmax

heat pump are rated active and reactive powers, respectively.

5.3. Constraints on Electric Storage

Distributed energy resources are inherently intermittent and it is essential to use their
productions to the fullest extent. Therefore, electric storage is gaining importance in recent
years. In this paper, the authors have used linear models for electric storage and inverters.
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This model is also used to represent the community battery along with the inverter model
in Section 5.4. The state of charge (SOC) is described in Equation (27), represents the energy
balance in electric storage.

soc(t + 1) Cbattery = soc(t) Cbattery

+ Δt ηbattery Pbattery(t).
(27)

SOC, battery charging and discharging power limits are as follows,

socmin ≤ soc(t) ≤ socmax (28)

Pmin
battery ≤ Pbattery(t) ≤ Pmax

battery. (29)

5.4. Constraints on Inverter

The electric storage described in Section 5.3 is connected to a three-phase inverter. Due
to the non-linearity and non-convexity of the three-phase inverter with both active and
reactive control along with binary control variable from Section 5.2. In order to maintain
the linearity, only active power control is chosen, described in Equations (30) and (31).

(Pbattery(t))2 = (Pinverter(t))2. (30)

Per phase inverter is modeled as follows,

Pinverter(t) = ∑
p

Pp
inverter(t). (31)

5.5. Constraints on Controllable Loads

Controllable loads are defined as simple dump loads, which are both single and three-
phased. This is done due to the lack of data related to the presence of controllable loads in
the field. In the future, this is to be replaced with realistic controllable load models. The con-
straints on limits of active and reactive powers are defined in Equations (32) and (33). They
work with constant power factor (p fcontrollable load), described in Equation (34).

0 ≤ Pp
controllable load(t) ≤ Pmax

controllable load (32)

0 ≤ Qp
controllable load(t) ≤ Qmax

controllable load (33)

Qp
controllable load(t) = tan(cos−1(p fcontrollable load))

Pp
controllable load(t).

(34)

Real smart meter profiles from the Blockchain are used for uncontrollable loads and
PV systems for each sample.

5.6. Constraints at Grid Connection Point

The bus at which a smart building is connected is referred to as a grid connection
point. Pp

grid and Qp
grid takes both positive and negative values. Constraints on active and

reactive powers are constrained in Equations (35) and (36).

Pp
grid(t) = Pp

inverter(t) + Pp
heat pump(t)

+ Pp
controllable load(t) + Pp

uncontrollable load

(35)

Qp
grid(t) = Qp

heat pump(t) + Qp
controllable load(t)

+ Qp
uncontrollable load.

(36)
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Forecasting of disturbances is carried out using neural networks [37,38]. This method
is not described in the paper since it is not the focus. Weather data, such as temperature,
are sourced from weather stations in Austria. Irradiation, ventilation losses and internal
gains are collected from local sensors and sourced from the iWPP-Flex project. Forecast-
ing uncertainties lead to an issue with the optimal set-points. However, for the sake of
simplicity, these conditions are ignored in this paper.

5.7. Objective Function

The objective function used in the smart building is to provide grid support. The three-
phase optimal power flow formulation from Section 4 produces optimal active and reactive
power schedules, based on an objective function, for various controllable buses. Each smart
building can support the grid by tracking the optimal schedules and by controlling various
flexibilities, as described in Equation (37).

Jgrid support = ∑
t

∑
p
(Pp

grid optimal schedule(t)− Pp
grid(t))

2

+ (Qp
grid optimal schedule(t)− Qp

grid(t))
2 + .

(37)

Equation (38) represents the objective function of a smart building, Jgrid support, the in-
dividual flexibility objective function, G and F are the respective weight. For the sake
of simplicity, Jgrid support is to maximize comfort for all smart buildings (Keeping Troom
at 22 °C).

minimize J = G Jgrid support +F J f lexibility objective. (38)

Variables Pheat pump, Pbattery and Pcontrollable load are controllable. Grid support is maxi-
mized while maintaining comfort with respect to temperature and load demands are being
completely met.

6. Control Strategy

The smart buildings that are described in Section 5.1 are controlled hierarchically [32].
Inputs to the stratified controller are the smart meter active and reactive power forecasts
(Psm

i , Qsm
i ). The forecasting method is based on convolutional neural networks, and details

about it are not presented in this paper. Three-phase unbalanced optimal power flow
from Section 4.1.1 generates optimal active and reactive power set-points to controllable
buses. The locations of these buses are chosen based on Section 4.1.2 and Equation (13).
Since DERs are intermittent in nature, follow daily, weekly and seasonal cycles, these
changes are reflected in the optimal set-points. The flexibility controller must be robust
enough to accommodate these changes. The authors have chosen a model predictive
control to schedule them optimally. MiQ-MPC receives set-points and is used as reference
input signals.

Chronological control functions at grid and house level are presented below.

6.1. Grid Control

Grid control performs HELM-OPF described in Section 4 and broadcasts the optimal
set-points to various smart buildings in the network. The chronological control events are
presented in Algorithm 1.

6.2. Flexibility Control

Quadratic programming with mixed-integer is used with continuous and on/off
heat-pumps, respectively (see Section 5.2). The chronological control events are presented
in Algorithm 2.
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Algorithm 1: Control actions performed at grid level controller
Result: Generate optimal schedules and transmit to flexibility controllers
while time t = end time do

At time t, various smart meters in the grid write active and reactive power values into the Blockchain.
Communication channels are assumed to be functioning ideally with no losses and is validated with a
state estimator;
PQ are forecasted are generated for an appropriate prediction horizon using the updated data from the
flockchain for (t/t + tgrid prediction horizon) ;
Setup constraints based on Equations (3) to (12) (see Section 4.1.1).
Setup objective function using Equation (2) (see Section 4.1.1).
OPF is run and optimal PQ set-points are generated at certain critical buses where smart buildings are connected;
These optimal set-points are written into the blockchain;

end

Algorithm 2: Control actions performed at flexibility level controller
Result: Generate optimal schedules by tracking references from grid level controller.
while time t = end time do

At time t, smart meter data written into the Blockchain ;
Acquire ambient temperature, irradiation and ventilation data from various sensors in smart buildings
along with PQ data from smart meter;
Update the database with these new data points;
Perform forecasts for various disturbances for a given prediction horizon and using an appropriate
algorithm such as convolutional neural networks forecasts (t/t + t f lexibility prediction horizon) ;
Apply user defined weights and reference temperature profiles;
Setup constraints and objectives described in Section 5.1;
Get optimal PQ set-points at that particular bus from the blockchain.
MPC generates various set-points for controllable variables;
The process is repeated for the next sample period, (t + 1);

end

7. Simulation and Results

The grid selected for the analysis is a 264 bus three-unbalanced low voltage distribu-
tion network (three-phase four-wire) in Austria, represented in Figure 5. It contains single
and three-phased loads along with DER units. The network is simplified by summing all
the loads and generations at each bus to obtain one load per bus. Loads are active and
reactive power profiles from real smart meters in the grid. For the sake of privacy, the data
are not visualized or presented in this paper.

A simulation is performed to determine the optimal buses at which flexibilities are to
be placed as mentioned in Section 4.1.2 and by using the objective function in Equation (13).
The optimal buses are presented in Table 2 and are represented in Figure 5. At these buses,
simple single-phase uncontrollable loads are replaced with three-phase flexibilities, smart
building or a community battery. Having determined the optimal buses where flexibilities
are to be placed, the simulation is performed based on the three cases mentioned in
Section 4.1.2. These simulations are benchmarked against real smart meter active and
reactive power profiles at the controllable buses where flexibilities are to be placed, and
their forecasts and optimal schedules are to be produced by the grid level controller. The
simulation is performed for two days between 2019-04-01 00:00:00 and 2019-04-02 23:45:00
with 29 smart buildings and one large community storage (Bus 077). Smart buildings are
comprised of single and three-phased flexibilities as described in Section 5 and in Figure 4.
Table 2 presents various limits on certain controllable variables for optimal buses.
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Figure 5. Topology of a real network in Austria with various smart buildings and a community battery.

Figure 6 presents the voltage magnitude results for three scenarios and benchmarks. It
can be observed that under and over-voltages (0.95 pu. < voltage < 1.05 pu.) are observed
for real and forecasted profiles. The optimal profiles from the grid-level controller have
resulted in no voltage violation. The same can be observed for case 01 and 03, as flexibilities
are tracking the optimal profiles. The reason for Case 02 to observe over-voltage is because
voltage controllability is limited to only controllable buses, as described in Section 4.1.3.
In case 01, since all the buses are included, the optimizer is able to mitigate violations.
In case 03, since the voltage controllability is the optimal controllable buses, under voltage
violation was observed. This is due to the fact that not all the buses are included in the
voltage controllability. This enforces that the voltage is a local effect due to power flows
in multiple directions. To mitigate voltage violations in all buses, voltage controllability
should extend to all buses.

Figure 6. Voltage magnitude distributions for benchmarks, optimal and three cases with under and over voltages for each
of the cases.
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Table 2. Simulation parameter limits for optimal buses.

Optimal Buses Bus 020 Bus 031 Bus 038 Bus 042 Bus 045 Bus 055 Bus 058 Bus 067 Bus 069 Bus 077

Pmax
heat−pump (kW) 5 9 8 9 5 9 5 6 9 -

Pheat−pump phase (kW) 1P 1P 3P 1P 3P 1P 1P 1P 1P -
Pmax

battery (kW) 20 20 27 24 26 27 21 20 22 30
Cbattery (kWh) 42 31 32 29 36 49 39 34 41 120
Pmax

controllable load (kW) 19 16 10 6 15 10 9 16 13 -
Pcontrollable load phase (kW) 1P 3P 3P 1P 3P 1P 3P 3P 1P -

Optimal Buses Bus 081 Bus 091 Bus 092 Bus 094 Bus 099 Bus 112 Bus 117 Bus 118 Bus 140 Bus 148

Pmax
heat−pump (kW) 6 6 5 5 8 8 7 8 7 8

Pheat−pump phase (kW) 3P 1P 1P 1P 1P 1P 3P 1P 3P 1P
Pmax

battery (kW) 24 22 27 26 26 23 20 27 26 21
Cbattery (kWh) 28 32 26 29 41 30 43 44 31 31
Pmax

controllable load (kW) 13 8 9 9 16 5 11 5 15 9
Pcontrollable load phase (kW) 3P 3P 3P 1P 3P 3P 1P 1P 1P 1P

Optimal Buses Bus 168 Bus 169 Bus 171 Bus 184 Bus 207 Bus 217 Bus 225 Bus 234 Bus 238 Bus 241

Pmax
heat−pump (kW) 8 9 5 7 5 5 7 8 8 6

Pheat−pump phase (kW) 3P 3P 3P 1P 3P 3P 1P 3P 1P 1P
Pmax

battery (kW) 22 28 23 27 21 29 27 23 20 24
Cbattery (kWh) 35 31 26 26 33 38 42 40 27 28
Pmax

controllable load (kW) 16 16 6 11 14 13 12 7 5 11
Pcontrollable load phase (kW) 1P 1P 3P 3P 1P 3P 1P 3P 1P 3P

The performance of the flexibilities directly depends on how well they can track
the optimal grid schedules. In Figure 7 Pgrid, Pgrid optimal and their absolute difference is
presented for a smart building connected at Bus 020. Similarly, Qgrid, Qgrid optimal and their
absolute difference is presented in Figure 8. It can be observed that the smart building can
track the optimal grid schedule. This depends on the flexibility composition available in the
smart building. Therefore, due to this reason, the global optimum cannot be guaranteed.
However, from Figure 9, it can be observed that the results are close to the global optimum.

Figure 9 presents the function values for all the scenarios based on the objective in
Equation (2). As discussed earlier, it can be observed that the unbalance is minimized for
each case when compared to the benchmarks. There is an 85.92%, 64.27%, and 77.02%
reduction in three-phase unbalance for Cases 01, 02, and 03, respectively (the imbalances are
in Voltage (p.u.) values). Stratified controllers are written in Python, including three-phase
unbalanced optimal power flow and model predictive control.
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Figure 7. Per phase active powers at point of common coupling, grid optimal schedule and absolute
difference between them at Bus 020.
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Figure 8. Per phase reactive powers at the point of common coupling, optimal grid schedule and the
absolute difference between them at Bus 020. Due to the lack of reactive power control in flexibility
models and devices working at a fixed power factor, reference profiles are not being followed when
compared to active power tracking in Figure 7. This is done for the sake of simplicity, to maintain the
linearity of flexibility models and their controllers.
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Figure 9. Objective function values for the three scenarios (see Section 4.1.3). Objective function values from Equation (2)
are reduced to voltage (p.u.) for better understanding of results.

8. Conclusions and Outlook

In this paper, the authors present a stratified control scheme in a peer-to-peer local
energy community (see Section 3). It uses a three-phase unbalanced optimal power flow
based on holomorphic embedding load flow method and receding horizon control as
described in Section 4. Blockchain acts as an enabler by making the data available at
all the buses in the grid. Three-phase optimal active and reactive power set-points are
generated for controllable buses, which are found using the objective function in Equa-
tion (13) in Section 4.1.2. Mixed integer quadratic model predictive control is hosted in
flexibility controllers with various electrical connection configurations and thermal models
(see Section 5).
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An objective function to minimize three-phase voltage unbalance with three use cases
is presented in Section 6. Voltage magnitudes for the simulation duration for all the scenar-
ios are presented. It is observed that cases 01 and 03 have completely mitigated the voltage
violations. Is observed that there is an 85.92%, 64.27%, and 77.02% reduction of phase
unbalance for the three cases. In the context of local energy communities, such a system can
provide services to the distribution system operator. Additionally, the objectives defined
by the community operator can be included in the grid level control. One other advantage
is the ability of individual flexibilities to have their own objectives and simultaneously
support the grid. One of the limitations is the intense communication needs as all the
measurement devices and the controllers are to be connected to the blockchain to send and
receive data.

In future work, the stratified control structure needs to be integrated with the peer-to-
peer energy market and modified accordingly to perform the market settlement process.
Additionally, a control scheme should be tested with various other real networks for
stability and replication analysis. The smart building models used in this paper are linear.
More realistic, nonlinear models are to be used to obtain a better optimal profile tracking
along with appropriate sizing of various flexibilities. Additionally, reactive power control
is limited in flexibility models. By implementing them, better tracking of set-points is
possible, leading to a solution being closer to a global optimum.
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A B S T R A C T   

This paper presents a methodology to optimally share the available grid capacity among customer assets con-
nected within a low voltage distribution grid. Distributed energy resources (DERs) and a new generation of loads 
such as heat pumps, thermal, hydrogen, electric storages, and vehicles are increasingly being connected to 
distribution grids. These DERs and loads are intermittent and it is essential to optimally control them for the safe 
operation of the grid. Additionally, there is increased interest in the local generation, production, trading, and 
consumption of energy. New regulations to establish local energy communities (LEC) have come to fruition 
among member nations across Europe. This is to provide a control, market, and legal framework for managing 
such distributed generators and flexibilities in low and medium-voltage distribution grids and conclusively 
empower end-users to democratize the energy system. Within a LEC, a local energy market (LEM) is to be 
implemented. A significant constraint of a LEM or energy accounting system is the grid settlement process. The 
grid should remain in a steady state when the bids in the market are executed. The methodology discussed in this 
paper will preemptively stabilize the grid and generate limiting profiles at various locations for individual 
flexibilities that are part of the local energy market. This is achieved by using an Optimal Capacity Management 
system which generates limiting profiles at the points of common couplings of various controllable devices in the 
grid. The controllable devices are required to maintain their active power injection and consumption within the 
generated limiting profiles to ensure optimum grid level. This will ensure that grid limits are maintained, which 
are simulated on a test feeder and also applied to a real network model from the Heimschuh pilot site in Styria, 
Austria.   

1. Introduction 

Clean energy for all Europeans, as part of the Clean Energy Package 
from the European Commission, for the first time, recognizes the for-
mation of energy communities [1]. Energy communities can induce both 
challenges and opportunities in the energy ecosystem. They can 
encourage the community members to increase renewable energy pro-
duction and provide flexibility services to the network operators. Load 
aggregation can lead to communities offering flexibility services such as 
grid congestion management, peak load shaving, and improve power 
quality. However, although energy management within the community 

may decrease costs locally, overall system costs may increase due to 
individual loads and renewable energy generators’ coordination. 

Blockchain Grid project funded by the Austrian Research Promotion 
Agency [2], demonstrates a blockchain-based peer-to-peer local energy 
community (LEC). The project does not consider how to deal with excess 
renewable energy production but rather how to use remaining free grid 
resources (time-varying power and voltage bands) in the community’s 
merit. Such a system is possible due to the utilization of a high level of 
trusted automation provided by Blockchain technology. The method is 
to implement a Blockchain-based application that allows prosumers to 
share free grid resources for their surplus generation and load. The 
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distribution system operator (DSO) acts as a facilitator. Technical and 
organizational requirements are analyzed for a distributed solution in 
which grid customers can share excess grid capacities for their flexible 
loads. One of the focuses is on potential regulatory designs and the 
challenge to design equity among grid participants, given that users are 
physically different depending on their localization within the grid. 

In Austria, LEC will facilitate the creation of a local energy market 
(LEM), located in a low or medium voltage distribution grid. Community 
members can trade the energy, locally. With the roll-out of a large 
number of smart meters and measurement devices, distribution grids are 
becoming more observable. Simultaneously, with a large number of 
smart devices connected with the distributed renewable energy sources 
and a new generation of loads like heat-pumps, thermal, electric, 
hydrogen storage, and vehicles, increasing the controllability. However, 
LEMs have a significant limitation. The bids in the market need to be 
managed and therefore, a settlement mechanism is needs to be imple-
mented to ensure grid security, when the bids agreed in the market are 
executed. This is discussed further in Section 2.1. 

In the literature, various methods related to capacity management 
are presented. Most of the methods are based on either numerical iter-
ation or optimization. Optimal hosting capacity, grid capacity, and 
optimal placement problems are fundamental variations of optimal 
power flow (OPF) described in [3]. Hosting capacity is commonly used 
in the context of distributed renewable energy (DER) generators (photo- 
voltaic (PV), micro-wind, micro-hydro…) connected to distribution 
grids [4–6]. However, this term can be extended to loads such as heat 
pumps, thermal, hydrogen, electric storage, and electric vehicles (EV), 
or any other kind of controllable and uncontrollable loads. Nevertheless, 
the term grid capacity is used mostly for loads. 

Authors in [7] have developed a methodology to provide power 
regulation services to the DSO using aggregated EV. This method can be 
used to calculate the regulation of power in the upward and downward 
direction of the EV fleet, providing voltage services to the grid. 
Futhermore, the research work does not present the impact on the grid 
when these services are active, and since they are aggregated, insuffi-
cient control is provided to a single customer or a charging station. 
Additionally, more intensive control mechanisms are required within a 
local energy market (LEM) for concluding settlement procedures. In [8], 
authors present a probabilistic hosting capacity method with the in-
clusion of uncertainties related to RES and loads. The method is mostly 
used for planning purposes and is bench-marked using a network model. 
However, the method cannot provide schedules or control set-points to 
individual generators or loads and cannot be included in a LEC without 
major modifications. In [9], a stochastic optimization method is pre-
sented. Similar to [8], it cannot be used for set-point generation meant 
for individual flexibility or RES units connected at a particular bus in the 
grid. A methodology to optimally control EVs within a region (region- 
based) is provided in [10]. This is used to generate an EV chargeable 
region and an EV charging upper limit for active power for each bus. 
This method can be compatible with the local peer-to-peer energy 
market but is limited only to electric vehicles and does not consider 
other types of loads or RES generation. In the research work presented in 
[11], an electric storage system is used to provide voltage regulation 
services to the grid and to increase PV hosting capacity. However, the 
method is designed for instantaneous control and does not focus on 
scheduling flexibilities. Authors in [12] postulate a deterministic and 
probabilistic control scheme for EV control to improve power quality in 
a distribution grid. This paper, similar to [8], does not focus on control 
of individual EVs. Authors in [13], have presented a scalable optimi-
zation problem to optimally configure the RES placement to maximize 
the hosting capacity. The optimization approach looks promising as it 
can deliver global optimum, the method is not suitable for real time 
operation but rather for planning purpose. Research work described in 
[14], presents a novel energy management system to manage inter-
connected micro-grid. It involves the creation of a step-wise demand 
response strategy to manage various assets in the micro-grids with two 

levels of control. A major limitation of this approach is the not being able 
to reach a global optimum due to multi-level control. Very detailed in-
formation about the assets are needed. In [15], a bi-level power and 
energy management system for a micro-grid is presented. It consists of a 
upper level which is responsible for power management and lower level 
for energy, using evolutionary algorithms. This approach has similar 
disadvantages as [14]. A global optimum is difficult to achieve. More-
over, the set-points are directly transmitted to the flexibilities, where as, 
in this paper, a band of limiting profiles are generated. Authors in [16] 
presented a stochastic energy management system to manage RES units 
like solar, wind and tidal sources in the presence of the demand response 
program and storage devices, in a micro-grid. It uses a linear multi- 
objective programming method. It does not however, include a 
method to segregate the load types and provide a method to include 
multiple variety of flexibilities without the need for comprehensive data. 
In [17], the authors describe an optimal control problem using two 
approaches, direct method and Bellman’s Dynamic Programming Prin-
ciple, respectively and the method looks promising. However, it does not 
include the power flow. This method cannot be extended to a low 
voltage distribution grid consisting of power lines, where power flows 
need to be taken into consideration. An energy management strategies is 
presented in [18], which uses deep reinforcement learning, within an 
energy internet. The approach is similar to OPF type C, as presented in 
[19], where a load flow solver is used in congention with an OPF solver 
for power flow related information and OCM is based on OPF Type C 
(see Section 2, for more information). 

From the literature, it can be established that currently a method-
ology does not exist that can generate active power set-points (operation 
band or limits) by calculating the hosting or grid capacity at each node 
in the low voltage distribution grid, including multiple RES and load 
types. Additionally, methods cited above are not readily compatible 
with a LEM to provide settlement services for grid stability. A holistic 
methodology that can accommodate all flexibility types coupled with 
DERs is missing or needs improvement. Moreover, such a system should 
be able to run online with a short reaction or sampling time to counter 
stochastic RES and loads. 

Therefore, this paper presents the following contributions which are 
beyond the state-of-the-art,  

1. A holistic methodology, which includes multiple flexibilities and 
load types, entitled Optimal Capacity Management (OCM) control 
scheme to manage available grid capacity in low voltage distribution 
grid (see Section 2.2).  

2. A real-time local peer-to-peer energy market settlement process 
alongside its relation to OCM (see Section 2.1).  

3. OCM methodology which is based on holomorphic embedding load 
flow method (HELM) and genetic algorithm (GA) with various ob-
jectives and constraints for test and real grid scenarios (see Sections 
2, 2.2.2 and 2.2.3) to generate the limiting profiles for market set-
tlement process, in a peer-to-peer LEC.  

4. Validation of the methodology using test (see Section 3) and a real 
feeder (see Section 4) located in Austria with real measurements. 

This paper is structured as follows; the OCM methodology is pre-
sented in Section 2, the introduction to the relationship between OCM 
and a local peer-to-peer energy market is presented in Section 2.1. OCM 
formulation, objectives, inequality and HELM used as equality con-
straints are presented in Sections 2.2, 2.2.2 and 2.2.3, respectively. 
Results based on a test feeder and Heimschuh pilot site is presented in 
Sections 3 and 4, respectively. Finally, conclusions and outlooks are 
presented in Section 5. Table 1 is a list of abbreviations used in the 
paper. 

2. Methodology 

Local energy communities are generally located in a low or medium 
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voltage distribution grid, as represented by a general schematic shown 
in Fig. 1, comprising a low voltage distribution feeder connected to a 
certain number of uncontrollable loads (UL01, UL02, …) and flexibil-
ities like a community battery (CB), connected at Bus05 and electric 
vehicle charging stations (CS01 and CS02) at Buses 07 and 09, respec-
tively. Customers connected to the distribution grid have the opportu-
nity to either opt-in (agree) or opt-out (decline) when participating as 
part of the LEC. Flexibilities either on the customer premises or at the 
grid level can be part of the community [20]. They can support the grid 
and the community, either directly or through a local ancillary services 
market. In the Heimschuh pilot site, a large community battery and two 
charging stations were provided as available flexibilities and are part of 
the community (see Section 4). 

The DSO is required to maintain the grid security at the distribution 
level and this role is to be continued after the formulation of a LEC [20]. 
Since LEMs are located at the distribution grid level they should contain 
a settlement mechanism that ensures high power quality and supply 
continuity. This is to make sure that the bids agreed upon in the market, 
when executed, will not cause grid instability. OCM is presented in this 
paper to enable the DSOs to enforce power quality. OCM will be 
deployed at the DSO control center or the LEC authority premises. At the 
Heimschuh pilot site, the OCM is deployed at the location of the com-
munity battery. 

OCM involves the generation of limiting active power profiles (Pmin
t 

and Pmax
t ) at the buses where flexibilities are connected (see Fig. 2). This 

is pertaining to Fig. 1. Similar limits are generated at all the flexibilities 
in the grid. This is based on the method presented in [21], where 
limiting profiles are generated at the bus where controllable loads are 
located. However, in this paper, the limiting profiles are generated 
directly for the flexibility itself. This enables multiple flexibilities at the 

same bus to participate in the LEM. Additionally, in [21], poor reactive 
power control is observed due to the lack of reactive power controllable 
devices in the grid. Therefore, reactive power limits (Qmin

t and Qmax
t ) are 

omitted. Moreover, reactive power is irrelevant in a LEM. Compared to 
[21], this paper presents additional explanation and validation of the 
OCM and relation to LEM, along with a detailed explanation based on 
two experimental setups. 

Limiting profiles can be observed in Fig. 10 (adapted from the figure 
presented in [21]). Subsequently, this can also be observed in Fig. 3 
which represents the Pmin

t and Pmax
t profiles for a particular flexibility. 

Such profiles are generated for all the flexibilities participating in the 
LEM. The active power consumed by the flexibility during market 
operation is required to be in-between the Pmin

t and Pmax
t limits to 

maintain the grid within its prescribed limits. The limiting profiles can 
take both positive (power consumption) and negative (power injection) 
values. This is applicable to the community battery, which can either 
charge and discharge. The load flow analysis of a power grid suggests 
that, for a particular grid loading condition, the grid capacity is constant 
i.e. the power that can be fed-into or consumed for a particular feeder is 
fixed. This is due to the non-causal nature of the load flow solution. This 
is also affected by the distance from the transformer and voltage drop 
along the lines. These specific limiting profiles are sharing the available 
grid capacity among the flexibilities depending on the objective function 
and constraints. This is observed in a simple example presented in 
Section 3 and Fig. 6. 

The flexibilities are required to remain within the operation range 
provided by the OCM while participating in the LEM. Doing so will 
ensure that no limits are violated at any of the buses in the distribution 
grid. 

2.1. Relevance to local peer-to-peer energy markets 

Traditionally, in national or European level energy markets, the 
physical settlement process is done by the transmission system operator 
(TSO) who is responsible for maintaining transmission grid security. 
This is possible due to the fact that transmission grids are over observed 
and controllable. However, such a market structure, cannot be readily 
transposed to a distribution grid, which is neither controllable nor 
observable. 

Table 1 
Abbreviations.  

OCM Optimal Capacity Management 
DER Distributed Energy Resources 
DSO Distribution System Operator 
TSO Transmission System Operator 
RES Renewable Energy Sources 
OPF Optimal Power Flow 
LEC Local Energy Community 
LEM Local Energy Market 
EV Electric Vehicles 
PV Photo Voltaic 
HELM Holomorphic Embedding Load flow Method 
GA Genetic Algorithm 
CS Charging Station 
CB Community Battery 
UL Uncontrollable Load  

Fig. 1. General schematic of a LEC.  

Fig. 2. Limiting active power profiles (Pmin
t and Pmax

t ) generated at Buses 05 and 
07, respectively, where the community battery and charging station 
are connected. 

Fig. 3. Representation of limiting profiles of a flexibility in a LEC.  
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In recent years, distribution grids are moving towards increased 
controllability and observability, with the help of smart meters and a 
new generation of loads and distributed generators. Contrary to TSO, a 
DSO cannot be responsible for managing the settlement process due to 
the large number of distributed loads and generators. Therefore, a 
control mechanism is needed to preemptively controlled the flexibilities 
even before the market bidding begins. OCM generates the limiting 
profiles and if the flexibilities operate within the limits, the physical 
settlement has occured. This will ensure that the bids in the LEM, when 
enacted, will not lead to grid violations or power quality issues. The 
Blockchain Grid project addresses this issue by coupling the LEM with 
the OCM system. 

In this publication, the LEM structure is not presented, as it is out of 
the scope of this study. Rather, the linkage between the OCM and the 
market is provided. There are multiple blockchain based energy markets 
approached available in the literature [22–24]. The system architecture 
of the Blockchain Grid project is presented in Fig. 4. A permissioned 
public Blockchain, based on Parity Ethereum is used in the project. The 
consensus algorithm used is ”proof of authority” procedure. Each 
authorized participants (so-called ”sealers”), can generate blocks with 
transactions into the Blockchain. The platform can dynamically add or 
remove participants. This feature is essential as sealers in the ”proof of 
authority” mechanism generate blocks in a well defined sequence and 
the block is only generated by the next sealer, if one sealer fails. 

There are two smart contracts considered, the first focusing on 
enabling peer-to-peer trading in the energy market and, second, the 
managing of the grid capacities. Customers in the pilot can own a certain 
amount of battery capacity in the community battery and be part of the 
market. Additionally, charging stations are connected to the blockchain 
to provide flexibility services. Measurement devices in the field record 
the active and reactive powers, voltage and phase angle (P,Q,V,Θ) at all 
the customers in the low voltage grid. This data is directly written into 
the blockchain and is available at all other nodes in the system in the 
next sample. The sampling rate of the system is 1 min. 

Active powers are used in the market smart contract for market ac-
tion, which will lead the generation of battery power (PCB) values 
(charging or discharging). This is dependent on the market mechanism. 

OCM will receive the P,Q,V,Θ to generate Pmin and Pmax values and is 
acquired by the capacity smart-contract. Flexibilities are required to 
operate within the provided limits and community battery limits are 
considered in the market mechanism, which calculates the battery 
power. 

2.2. Optimal capacity management 

As discussed in Section 1, OCM is based on OPF. OPF problems are 
non-linear and non-convex in nature [3]. In [3], OPF methods are 
classified into two classes. Class A set of algorithms is based on an in-
termediate load flow solution. As the optimal solution is close to those 
generated by a complete load flow, it is assumed to be operable, and the 
optimum is determined iteratively using Jacobian and sensitivity re-
lationships. Class B involves using the entire search space by using a 
solver that can handle non-linearity and non-convexity or by convex 
relaxation methods. In [19], authors present Class C type of algorithms 
which combines class A and B. OCM is based on the OPF Class C pre-
sented in [19]. However, in [19], the objective is to minimize the three 
phase voltage unbalance in contrast to OCM, which has the objective to 
generate limiting profiles and integrating it into a LEM. It uses a non- 
linear non-convex solver wrapped around a reliable load flow method 
like HELM to generate a global optimum. 

OCM is defined as an optimization problem as, 
minimize

u
F(x, u)

subject to H(x, u) = 0,
G(x, u)⩽0

(1)  

where, F(x, u) is the objective function of OCM. H(x, u) and G(x, u) are 
the equality and inequality constraints respectively. 

x, u are the state and input variables. For a low voltage distribution 
grid containing only load buses, in the context of load flow, input var-
iables are active and reactive power injection or consumption at loads, 
while the state variables are voltages, phase angles and reactive powers 
at all the buses. 

Active power limiting profiles are to be generated at all the 
controllable buses in grid, as discussed in Section 2. 

2.2.1. Objective function 
As presented in Figs. 2 and 3, limiting profiles are generated by 

defining the objective function as, 
F(x, u) =

∑
t∈T

∑
c∈C

Pc,t (2)  

Limiting profiles (Pmin
t ,Pmax

t ) are generated as follows, 
Pmin

t = minimize
u

F(x, u)
Pmax

t = −minimize
u

F(x, u) (3) 

Fig. 4. System architecture of the Blockchain Grid project at the Heimschuh pilot site.  
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where Pc,t are the active powers at the controllable devices and at the 
time step t. C, represents the set of controllable devices/flexibilities. T is 
the optimization time horizon. Eq. 2 is minimized and maximized (- 
minimized) to generate Pmin and Pmax values as represented in Eq. 3. 

2.2.2. Inequality constraints 
Set of inequality constraints G(x, u) in Eq. 1, are described as follows, 
Limits on active power of controllable devices, c ∈ C, set of 

controllable devices and t ∈ T, time horizon, 
Plow

c,t ⩽Pc,t⩽Phigh
c,t (4) 

Limits on voltage, ω ∈ Ω represents all the buses in the grid, 
|V low

ω,t |⩽|Vω,t|⩽|Vhigh
ω,t (5) 

Phase shift angles limits, 
θlow

ω ⩽θω⩽θhigh
ω (6) 

Limits on shunt reactances or capacitances, 
slow

ω,t ⩽sω⩽shigh
ω (7) 

Upper limits on active power flow in distribution transformer or 
lines, between ω’th and l’th nodes, 
Pω,l,t⩽Phigh

ω,l,t (8) 
Limits on voltage angles between ω’th and l’th nodes, 

Θlow
ω,t ⩽Θω,t −Θl,t⩽Θhigh

ω,t (9)  

P,Q,V and θ are active power, reactive power, voltage and phase shift 
angle respectively. s is the shunt reactances or capacitances. Θ is the 
voltage phase angle. (See Fig. 5) 

2.2.3. Equality constraints 
Load flow results are used as equality constraints H(x,u), as described 

in the type C class of OPF algorithms. Load flow methods based on nu-
merical techniques are capable of solving a system of nonlinear equa-
tions [25]. Convergence of such methods cannot be ensured as the 
operable solution is directly dependent on the assumed initial seed 
(starting point or initial condition). If the system has multiple solutions, 
it becomes difficult to determine whether the converged solution is 
operable. Therefore, to overcome the limitations of iterative numerical 
solutions, HELM is used in this research work. The distribution grid is 
modeled based on the methodology developed in [26]. 

HELM, described in [25], involves a non-iterative load flow approach 
which guarantees an operable solution if it exists. Eq. 10 refers to the 
power balance in the load bus. Inherently, it is non-holomorphic (non- 
analytical) in nature. A function is said to be holomorphic if it satisfies 
the Cauchy-Riemann condition. ∑

l
YωlVl(α) = αS*

ω

V*
ω(α*)−αYω,shuntVω(α), ω ∈ ΩPQ (10)  

where Yω,l is the ω’th and l’th element of the series bus admittance 
matrix. Vl is the voltage at bus ω. Similarly, Yω,shunt refers to the shunt 
admittance matrix. ΩPQ is the set of PQ buses. S represents the apparent 
power. 

By the process of embedding a complex variable α,V becomes a 
function of this new complex variable. This new function is holomorphic 

Fig. 5. Topology of the Heimschuh low voltage test feeder.  
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in nature. If α = 0, there is an exact mathematical solution to the 
problem, but it is not the desired solution. α = 1 provides the desired 
solution. It can be expressed as a power series, specifically as a Taylor or 
Maclaurin series represented in Eqs. 11 and 12 and which, in-turn, is a 
function of bus active and reactive power injections. By calculating the 
coefficients of series, bus voltages can be approximated. This eliminates 
the use of the computationally expensive Jacobian matrix. For α = 0,
S = 0, Eq. 10 becomes linear and the solution is mathematically exact. 
In order to use the linear solution, the admittance matrix is split into 
series and shunt elements. 

The term αS is varied to determine the voltage function from α = 0 to 
α = 1 and thus, embedding is essential. 

Vω(α) =
∑∞

n=0
Vω[n]αn, ω ∈ Ω (11)  

V*
ω(α) =

∑∞

n=0
V*

ω[n]αn, ω ∈ Ω (12) 

The coefficients of Maclauren series are determined using Pade 
approximation. The Pade approximation gives the rational approxima-
tion of a function. It accelerates the convergence with more accurate 
results with less coefficients. The approximation is valid for over a small 
domain. In this case, the domain α = [0,1]. 
H(x, u) = Vω = fHELM(Pω), ω ∈ Ω (13) 

Generalized equality constraint is presented in Eq. 13. Pω is the active 
power injections at all the PQ (Load) buses. 

3. Experimental setup I: Low voltage test feeder 

OCM is applied to a low voltage test feeder to demonstrate its 
effectiveness. The test network consists of five buses. Two uncontrolla-
ble loads and two charging stations are connected to it. The topology of 
the test feeder is presented in Fig. 6. The test feeder consists of only one 
branch to produce logical and understandable results. Moreover, only 
loads are included in the feeder to eliminate multi-directional power 
flows, also leading to an understandable solution. 

To validate the generated limiting profiles as described in Section 
2.2, the results from the OCM are fed back into the load flow from 
Section 2.2.3 and Eq. 13, to get the voltage values along with other state 
and unknown variables. For the sake of simplicity and with a focus on 
voltage management, the right-hand side of the Eq. 14 (for a low voltage 
distribution grid with PQ buses) only contains bus voltage magnitudes 
while voltage angles are not considered. 
Vω = fHELM(PUL01,PCS01,PCS02,PUL02) (14)  

where ω ∈ Ω represents all the buses in the grid. 
Fig. 7.a. represents the limiting profiles (Pmin

CS01, Pmax
CS01) and (Pmin

CS02,
Pmax

CS02), for the two charging stations, respectively. The limits on the two 
charging stations are, 0kW⩽PCS01⩽22kW and 0kW⩽PCS02⩽22kW. It also 

shows the active power profiles for the two uncontrollable loads (PUL01,
PUL02). It can be observed that the total maximum available capacity is 
Pmax

CS01 + Pmax
CS02 as the voltages are very close to 0.95 pu in Fig. 7.b. This 

shows that the OCM shares the available capacity between the two 
charging stations. Since CS01 is closer to the transformer, more capacity 
is assigned to it. It is also influenced by the two uncontrollable loads and 
voltage drops across the lines. The flexibility closest to the transformer is 
naturally able to accommodate more loads and generation and therefore 
leads to an unfair scenario for the flexibilities at the end of the feeder. 
The objective function can be modified to make the problem more fair. 
This is however not included in this paper as the authors are interested 
in presenting a pure power system solution, without the social factors. 

Fig. 7.b is generated using Eq. 14, where PCS01 = Pmax
CS01 and PCS02 =

Pmax
CS02, and Vmin is obtained. This represents the worst case scenario with 

maximum loading. It can be observed that all the voltage values are 
above Vlow (0.95pu), as described in Section 2.2.2. 

However, in the highlighted region, Vmin goes below Vlow, indicating 
an under-voltage violation. Only Vmin (under-voltage violation) is pro-
vided since there is no in-feed considered in this test scenario, which 
could lead to a over voltage violation. 

This is caused due to high loading on PUL01 (an uncontrollable load). 
OCM reduces the Pmax

CS01 and Pmax
CS02 values to 0 to counter the increased 

loading. Since the charging station values cannot go below 0 (start 
injecting), voltage violations will sustain. This can be rectified with 
electric storage, which can take both positive and negative values. 

Recalling from Section 2, as long as Pmin
CS01⩽PCS01⩽Pmax

CS01 and Pmin
CS02⩽ 

PCS02⩽Pmax
CS02 holds, no voltage violations can occur. 

In Fig. 8.d, Vω values are obtained by considering random values for 
PCS01 (see Fig. 8.a) and PCS02(see Fig. 8.b) while maintaining Pmin

CS01⩽ 
PCS01⩽Pmax

CS01 and Pmin
CS02⩽PCS02⩽Pmax

CS02, respectively. 
It can be observed that as long as the limiting profiles are considered 

by the flexibility, no voltage violations occur. Similarly, as previously 
explained, in the highlighted region, under-voltage violations are 
observed. 

4. Experimental setup II: Heimschuh pilot site feeder 

Heimschuh is a town in the federal state of Styria, Austria, with the 
largest concentration of PV installations (200 kWp installed generation 
capacity) in the grid owned by the Energienetze Steiermark GmbH, a 
DSO responsible for management of the Styrian distribution grid. The 
power generation is mostly concentrated on one low voltage feeder. The Fig. 6. Topology of the low voltage test feeder.  

Fig. 7. Limiting profiles generated for the charging stations.  
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generated PV power is straining the grid and it is at its capacity limit. 
Therefore, the additional 50 kWp of PV installations and a micro-CHP 
cannot be connected to the grid without grid reinforcement or a smart 
grid solution with active generation load management. 

There is a large utility sized battery on site with 100 kWh of com-
munity electric storage (see Fig. 9). A number of buildings/households 
are involved in the project demonstration. Twenty-one single or multi- 
family home customers are participating, all of which are fitted with 
controllers and measurement devices. Other customers are involved 
passively with measurements collected from smart meters for modeling 
and validation. OCM algorithm is running on an industrial computer 
installed inside the container where community electric storage is 
located (see Fig. 9). 

For the Heimschuh pilot site, the OCM objective presented in Section 

2.2 is modified into a two step optimization problem. As the community 
battery is part of the LEC and community members own a share of the 
battery capacity as part of LEM, priority is first given to the community 
battery above any other flexibility participating in the community. OCM 
is connected to the blockchain network and receives measurements from 
customers who part of the pilot and transformer located at the secondary 
substation. 

The modified two step OCM is presented in Eqs. 15 and 16. 
FCB(x, u) =

∑
t∈T

(PCB,t) (15)  

where FCB(x, u) is the community battery objective function. PCB,t is the 
active power of the community battery. (Pmin

CB,t ,Pmax
CB,t) is generated using 

the Eq. 3. 
FCS(x, u) =

∑
t∈T

∑
CS∈C

(PCS,t) (16)  

where FCS(x, u) is the charging station objective function. CS,t is the 
active power of the two charging stations. CS ∈ C represents the set of 
flexibilities (two charging stations). (Pmin

CS,t , Pmax
CS,t ) is generated using the 

Eq. 3. 
Similarly to the low voltage test feeder in Section 3, limiting profiles 

are generated for the three flexibilities in the pilot site for each sample 
time of 1 min. This can be observed in Fig. 11.a. and.b. Vmin is generated 
when PCS01 = Pmax

CS01 and PCS02 = Pmax
CS02 and PCB = Pmax

CB and can be 
observed in Fig. 11.d. As expected, Vmin are located around Vlow 
(0.95pu). Vmax is generated when PCS01 = Pmin

CS01 and PCS02 = Pmin
CS02 and 

PCB = Pmin
CB . This is the least loading or power injection condition. It can 

be observed that there is capacity left over to accommodate more power 

Fig. 8. Random values for PCS01 and PCS02 while observing the limiting profiles 
and the corresponding Vω boxplots for each time step based on Eq. 14. 

Fig. 9. Community battery located at the Heimschuh pilot site in Sty-
ria, Austria. 

Fig. 10. Limiting profiles for the community battery and the two charging 
stations, similar to Fig. 7. 
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injection into the grid. However, to accomplish this, in the highlighted 
region in Fig. 11.a, the community battery had to momentarily 
discharge. This is attributed to high loading conditions observed in the 
feeder Psum

UL , which is the sum of all uncontrollable loads. With the 
necessary discharge, and having both PCS01 and PCS02, close to zero kW, 
the voltages in Fig. 11.c are clustered around the 0.95 pu. limit. 
Therefore, by actively managing the low voltage distribution grid with a 
community battery, more PV or generators can be hosted. 

Similar to Fig. 8, Vω values are calculated by considering random 
values for PCB (see Fig. 11.a), PCS01 (see Fig. 11.b) and PCS02 (see Fig. 11. 
c). Vω values are in-between the prescribed limits as mentioned in Sec-
tion 2.2.2. Vω⩽1pu because, there are no power injections in the feeder. 

5. Conclusion 

In order to facilitate the market settlement process, OCM was pre-
sented. OCM is used to generate limiting profiles (Pmin

t and Pmax
t ) values 

at all the flexibilities in a LEC, participating in the LEM. The flexibilities 
are required to operate within these limits to avoid voltage violations. 

By doing so, the bids in the market are preemptively grid secure and, 
when executed, will not lead to power quality issues. OCM and its 
relation to blockchain LEM was presented along with the system ar-
chitecture. OCM is based on OPF type C using a non-linear non-convex 
solver, GA, wrapped around a reliable load flow, HELM. This method 
was tested using a low voltage test feeder, and a detailed explanation of 
the results was provided. It was proved in both experimental setups that 
when the the limiting profiles are applied and the flexibilities are 
operated within its limits, voltages at all the buses will remain within the 
prescribed (+5, −5%) pu. voltage. This is observed in Figs. 8 and 11. 
However, if the flexibilities are not able to respect the limits, the voltage 
constraints cannot be fulfilled and is observed in Fig. 7. Based on the test 
feeder’s learning, the method was applied to a real pilot feeder from 
Heimschuh, Austria. It was proven in Fig. 11, that no voltage violations 
will be observed as long as the limits were observed. 

5.1. Future research 

In this paper, only voltage violations are mitigated. In the future, the 
algorithm will be adapted to include line loading constraints. Since the 
OCM uses a non-linear, non-convex optimization solver, it is numeri-
cally expensive to calculate the global optimum. Therefore, for field 
deployment, machine learning models will be trained to behave like the 
OCM based on real and simulated data from the field and simulations, 
respectively. The machine learning model will be deployed in the field to 
cope with the low sampling time. 

CRediT authorship contribution statement 

Bharath Varsh Rao: Conceptualization, Methodology, Software, 
Validation, Formal analysis, Investigation, Data curation, Writing - 
original draft, Writing - review & editing, Visualization. Mark Stefan:: 
Methodology, Validation, Formal analysis, Writing - original draft, 
Writing - review & editing, Project administration. Thomas 
Brunnhofer: Methodology, Software, Writing - review & editing. 
Roman Schwalbe: Methodology, Software, Writing - review & editing. 
Roman Karl: Methodology, Software, Writing - review & editing. 
Friederich Kupzog: Conceptualization, Validation, Investigation, 
Writing - review & editing. Gregor Taljan: Methodology, Validation, 
Data curation, Writing - review & editing, Project administration. Franz 
Zeilinger: Methodology, Validation, Writing - review & editing. Peter 
Stern: Methodology, Validation, Data curation, Writing - review & 
editing. Martin Kozek: Conceptualization, Validation, Investigation, 
Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

The authors acknowledge the Power Systems Digitalisation team at 
Austrian Institute of Technology for their support to the Blockchain Grid 
project and this research work. Additionally, the authors thank the 
Blockchain Grid project partners, Siemens AG sterreich, Energie Bur-
genland, and Energienetze Steiermark, for their contribute to the project 
and support. Finally, the authors thank the Heimschuh pilot site end- 
users for agreeing to be part of the project and providing consumption 
data and controllable devices. This research work is funded by Austrian 
Research Promotion Agency. 

Fig. 11. Random values for PCB, PCS01 and PCS02 while observing the limiting 
profiles and the corresponding Vmin boxplots for each time step based on Eq. 14. 
Voltage reference at the transformer is at 1.01 pu. 

B.V. Rao et al.                                                                                                                                                                                                                                   

2.4 Publication D 84



International Journal of Electrical Power and Energy Systems 134 (2022) 107355

9

References 
[1] P.O. o. t. E. Union. Clean energy for all Europeans; July 2019. http://op.europa.eu 

/en/publication-detail/-/publication/b4e46873-7528-11e9-9f05-01aa75ed71a 
1/language-en. 

[2] Blockchain Grid. https://projekte.ffg.at/projekt/3089755. 
[3] Glavitsch H, Bacher R. Optimal Power Flow Algorithms. Contr Dyn Syst 1991;41: 

135–205. 
[4] Niederhuemer W, Schwalbe R. Increasing PV hosting capacity in LV grids with a 

probabilistic planning approach. In: 2015 International Symposium on Smart 
Electric Distribution Systems and Technologies (EDST); 2015. p. 537–40. 

[5] Navarro BB, Navarro MM. A comprehensive solar PV hosting capacity in MV and 
LV radial distribution networks. In: 2017 IEEE PES Innovative Smart Grid 
Technologies Conference Europe (ISGT-Europe); 2017. p. 1–6. 

[6] Wardana FT, Riady T. Hosting Capacity Analysis for Rooftop PV in Indonesia: A 
Case Study in Gayo Lues District, Aceh. In: 2020 International Conference on 
Technology and Policy in Energy and Electric Power (ICT-PEP); 2020. p. 12–5. 

[7] Lam AYS, Leung Ka-Cheong, Li VOK. Capacity management of vehicle-to-grid 
system for power regulation services. In: 2012 IEEE Third International Conference 
on Smart Grid Communications (SmartGridComm); 2012. p. 442–7. 

[8] Al-Saadi H, Zivanovic R, Al-Sarawi SF. Probabilistic Hosting Capacity for Active 
Distribution Networks. IEEE Trans Industr Inf 2017;13(5):2519–32. 

[9] Jothibasu S, Santoso S, Dubey A. Optimization Methods for Evaluating PV Hosting 
Capacity of Distribution Circuits. In: 2019 IEEE 46th Photovoltaic Specialists 
Conference (PVSC); 2019. p. 0887–91. 

[10] Zhao J, Wang J, Xu Z, Wang C, Wan C, Chen C. Distribution Network Electric 
Vehicle Hosting Capacity Maximization: A Chargeable Region Optimization Model. 
IEEE Trans Power Syst 2017;32(5):4119–30. 

[11] Hashemi S, Østergaard J. Efficient Control of Energy Storage for Increasing the PV 
Hosting Capacity of LV Grids. IEEE Trans Smart Grid 2018;9(3):2295–303. 

[12] Lamedica R, Geri A, Gatta FM, Sangiovanni S, Maccioni M, Ruvio A. Integrating 
Electric Vehicles in Microgrids: Overview on Hosting Capacity and New Controls. 
IEEE Trans Ind Appl 2019;55(6):7338–46. 

[13] Takenobu Y, Yasuda N, Minato S-I, Hayashi Y. Scalable enumeration approach for 
maximizing hosting capacity of distributed generation, vol. 105. p. 867–76. 
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S014206151 
8309347. 

[14] Ahmadi SE, Rezaei N. A new isolated renewable based multi microgrid optimal 
energy management system considering uncertainty and demand response, vol. 
118. p. 105760. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii 
/S0142061519331497. 

[15] Parol M, Wjtowicz T, Ksi-yk K, Wenge C, Balischewski S, Arendarski B. Optimum 
management of power and energy in low voltage microgrids using evolutionary 
algorithms and energy storage, vol. 119. p. 105886. [Online]. Available: https://li 
nkinghub.elsevier.com/retrieve/pii/S0142061519314449. 

[16] Hajiamoosha P, Rastgou A, Bahramara S, Bagher Sadati SM. Stochastic energy 
management in a renewable energy-based microgrid considering demand response 
program, vol. 129. p. 106791. [Online]. Available: https://linkinghub.elsevier. 
com/retrieve/pii/S0142061521000314. 

[17] Heymann B, Bonnans JF, Martinon P, Silva FJ, Lanas F, Jimnez-Estvez G. 
Continuous optimal control approaches to microgrid energy management, vol. 9, 
no. 1. p. 59–77. [Online]. Available: http://link.springer.com/10.1007/s12667-0 
16-0228-2. 

[18] Hua H, Qin Y, Hao C, Cao J. Optimal energy management strategies for energy 
Internet via deep reinforcement learning approach, vol. 239. p. 598–609. [Online]. 
Available: https://linkinghub.elsevier.com/retrieve/pii/S0306261919301746. 

[19] Rao BV, Kupzog F, Kozek M. Three-Phase Unbalanced Optimal Power Flow Using 
Holomorphic Embedding Load Flow Method. Sustainability 2019;11(6):1774. 

[20] Lowitzsch J, Hoicka CE, van Tulder FJ. Renewable energy communities under the 
2019 European Clean Energy Package – Governance model for the energy clusters 
of the future? Renew Sustain Energy Rev 2020:13. 

[21] Rao BV, Stefan M, Schwalbe R, Zeilinger F, Schenk A, Frischenschlager A, et al. 
Grid Capacity Management for peer-to-peer Local Energy Communities. In: 2020 
IEEE Power & Energy Society General Meeting (PESGM). Montreal, QC: IEEE; 
2020. p. 1–5. 

[22] Thomas L, Zhou Y, Long C, Wu J, Jenkins N. A general form of smart contract for 
decentralized energy systems management, vol. 4, no. 2. pp. 140–9. [Online]. 
Available: https://www.nature.com/articles/s41560-018-0317-7. 

[23] Kavousi-Fard A, Almutairi A, Al-Sumaiti A, Farughian A, Alyami S. An effective 
secured peer-to-peer energy market based on blockchain architecture for the 
interconnected microgrid and smart grid, vol. 132. p. 107171. [Online]. Available: 
https://linkinghub.elsevier.com/retrieve/pii/S0142061521004105. 

[24] Al-Obaidi A, Khani H, Farag HE, Mohamed M. Bidirectional smart charging of 
electric vehicles considering user preferences, peer to peer energy trade, and 
provision of grid ancillary services, vol. 124. p. 106353. [Online]. Available: htt 
ps://linkinghub.elsevier.com/retrieve/pii/S0142061520307468. 

[25] Trias A. The Holomorphic Embedding Load Flow method, in: 2012 IEEE Power and 
Energy Society General Meeting; 2012. p. 1–8. 

[26] Bazrafshan M, Gatsis N. Comprehensive Modeling of Three-Phase Distribution 
Systems via the Bus Admittance Matrix. IEEE Trans Power Syst 2018;33(2): 
2015–29. 

B.V. Rao et al.                                                                                                                                                                                                                                   

2.4 Publication D 85



Bibliography

[1] Publications Office of the European Union. Clean energy for all Europeans.

[2] Bernadette Fina and Hubert Fechner. Transposition of European Guidelines for
Energy Communities into Austrian Law: A Comparison and Discussion of Issues
and Positive Aspects. 14(13):3922.

[3] Hans Glavitsch and Rainer Bacher. Optimal Power Flow Algorithms. In Control
and Dynamic Systems, volume 41, pages 135–205. Elsevier, 1991.

[4] A. Trias. The Holomorphic Embedding Load Flow method. In 2012 IEEE Power
and Energy Society General Meeting, pages 1–8.

[5] L. Jia, Z. Yu, M. C. Murphy-Hoye, A. Pratt, E. G. Piccioli, and L. Tong. Multi-scale
stochastic optimization for Home Energy Management. In 2011 4th IEEE Interna-
tional Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), pages 113–116.

[6] C. Chen, J. Wang, Y. Heo, and S. Kishore. MPC-Based Appliance Scheduling for
Residential Building Energy Management Controller. 4(3):1401–1410.

[7] C. R. Touretzky and M. Baldea. Model reduction and nonlinear MPC for energy
management in buildings. In 2013 American Control Conference, pages 461–466.

[8] Z. Yu, L. Jia, M. C. Murphy-Hoye, A. Pratt, and L. Tong. Modeling and Stochastic
Control for Home Energy Management. 4(4):2244–2255.

[9] J. A. Momoh, F. Zhang, and W. Gao. Optimizing renewable energy control for
building using model predictive control. In 2014 North American Power Sympo-
sium (NAPS), pages 1–6.

[10] K. X. Perez, M. Baldea, and T. F. Edgar. Integrated smart appliance schedul-
ing and HVAC control for peak residential load management. In 2016 American
Control Conference (ACC), pages 1458–1463.



Bibliography 87

[11] M. Rahmani-andebili and H. Shen. Energy Scheduling for a Smart Home Applying
Stochastic Model Predictive Control. In 2016 25th International Conference on
Computer Communication and Networks (ICCCN), pages 1–6.

[12] C. Sundström, D. Jung, and A. Blom. Analysis of optimal energy management
in smart homes using MPC. In 2016 European Control Conference (ECC), pages
2066–2071.

[13] O. Alrumayh and K. Bhattacharya. Model predictive control based home energy
management system in smart grid. In 2015 IEEE Electrical Power and Energy
Conference (EPEC), pages 152–157.

[14] Chun-Xia Dou and Bin Liu. Multi-Agent Based Hierarchical Hybrid Control for
Smart Microgrid. 4(2):8.

[15] Adam Milczarek, Mariusz Malinowski, and Josep M. Guerrero. Reactive Power
Management in Islanded Microgrid—Proportional Power Sharing in Hierarchical
Droop Control. 6(4):1631–1638.

[16] Liang Che, Mohammad Shahidehpour, Ahmed Alabdulwahab, and Yusuf Al-Turki.
Hierarchical Coordination of a Community Microgrid With AC and DC Microgrids.
6(6):3042–3051.

[17] Dhananjay M. Anand, Rupert Tull de Salis., Yijie Cheng, James Moyne, and
Dawn M. Tilbury. A Hierarchical Incentive Arbitration Scheme for Coordinated
PEV Charging Stations. 6(4):1775–1784.

[18] Chengcheng Shao and Chao Du. Hierarchical Charge Control of Large Populations
of EVs. 7(2):9.

[19] Zhiwei Xu, Yonghua Song, and Hongcai Zhang. A Hierarchical Framework for
Coordinated Charging of Plug-In Electric Vehicles in China. 7(1):11.

[20] Markus Brandstetter, Alexander Schirrer, Maja Miletic, Sawsan Henein, Martin
Kozek, and Friederich Kupzog. Hierarchical Predictive Load Control in Smart
Grids. 8(1):10.

[21] Meysam Razmara, Guna R Bharati, Mahdi Shahbakhti, Sumit Paudyal, and
Rush D Robinett. Bilevel Optimization Framework for Smart Building-to-Grid
Systems. 9(2):12.

[22] A. Y. Saber, T. Khandelwal, and A. K. Srivastava. Fast Feeder PV Hosting Ca-
pacity using Swarm Based Intelligent Distribution Node Selection. In 2019 IEEE
Power Energy Society General Meeting (PESGM), pages 1–5.



Bibliography 88

[23] Haochen Hua, Yuchao Qin, Chuantong Hao, and Junwei Cao. Optimal energy man-
agement strategies for energy Internet via deep reinforcement learning approach.
239:598–609.

[24] F. T. Wardana and T. Riady. Hosting Capacity Analysis for Rooftop PV in Indone-
sia: A Case Study in Gayo Lues District, Aceh. In 2020 International Conference
on Technology and Policy in Energy and Electric Power (ICT-PEP), pages 12–15.

[25] Mirosław Parol, Tomasz Wójtowicz, Krzysztof Księżyk, Christoph Wenge, Stephan
Balischewski, and Bartlomiej Arendarski. Optimum management of power and
energy in low voltage microgrids using evolutionary algorithms and energy storage.
119:105886.

[26] Pouria Hajiamoosha, Abdollah Rastgou, Salah Bahramara, and S. Muhammad
Bagher Sadati. Stochastic energy management in a renewable energy-based micro-
grid considering demand response program. 129:106791.

[27] Benjamin Heymann, J. Frédéric Bonnans, Pierre Martinon, Francisco J. Silva,
Fernando Lanas, and Guillermo Jiménez-Estévez. Continuous optimal control ap-
proaches to microgrid energy management. 9(1):59–77.

[28] M. Bazrafshan and N. Gatsis. Comprehensive Modeling of Three-Phase Distribu-
tion Systems via the Bus Admittance Matrix. 33(2):2015–2029.

[29] I. Wallace, D. Roberts, A. Grothey, and K. I. M. McKinnon. Alternative PV Bus
Modelling with the Holomorphic Embedding Load Flow Method. arXiv:1607.00163
[math], July 2016.

[30] A. Trias. The Holomorphic Embedding Load Flow method. In 2012 IEEE Power
and Energy Society General Meeting, pages 1–8, July 2012.

[31] M. K. Subramanian, Y. Feng, and D. Tylavsky. PV bus modeling in a holo-
morphically embedded power-flow formulation. In 2013 North American Power
Symposium (NAPS), pages 1–6, September 2013.

[32] Tara Esterl. iWPP-Flex Projekt Endbericht. Österreichisches Forschungsprojekt
(FFG-Nummer 848894). (Siehe S. 3, 9, 12–14, 27–32, 65).

[33] Bharath Varsh Rao, Mark Stefan, Thomas Brunnhofer, Roman Schwalbe, Roman
Karl, Friederich Kupzog, Gregor Taljan, Franz Zeilinger, Peter Stern, and Martin
Kozek. Optimal capacity management applied to a low voltage distribution grid
in a local peer-to-peer energy community. 134:107355.



Curriculum vitae



BHARATH VARSH RAO
Scientist, AIT Austrian Institute of Technology
� bharath-varsh.rao@ait.ac.at � Vienna, Austria � linkedin.com/in/bharathvarshrao

STRENGTHS
Hard-working Eye for detail

Motivator & Leader

Flexibility and Adaptability

Creating a positive work environment

Python Matlab

DIgSILENT PowerFactory

Power System Engineering and Design

Control System for Distribution Networks

LANGUAGES
English ○ ○ ○ ○ ○

German ○ ○ ○ ○ ○

EDUCATION
Doctor of Technical Science (Dr.
techn.)
Technische Universität Wien
� January 2017 – Ongoing

Thesis title: Model-based Control Strategies
applied to Distribution Grids in Local Energy
Communities.

Master of Science in Engineering
(M.Sc.Eng)
École nationale supérieure de l’énergie,
l’eau et l’environnement
� September 2014 – August 2016

Bachelor of Engineering (B.Eng.)
Visvesvaraya Technological University
� Sept 2010 – August 2014

EXPERIENCE
Scientist and Project Manager
AIT - Austrian Institute of Technology
� May 2019 – Ongoing � Vienna, Austria

• Numerous Austrian and European level projects on smart grids, local
energy communities, control aspects in distribution grids, machine
learning and data analysis in integrated energy systems and peer-to-
peer energy markets. Blockchain Grid (FFG), PoSyCo (FFG), Integrid
(H2020), REACT (H2020), LocalRES (H2020) and many more.

• Manager of ERA-Net funded project, CLUE.

Doctoral Fellow
AIT - Austrian Institute of Technology
� Jan 2017 – Apr 2019 � Vienna, Austria

• Doctoral dissertation on advanced concepts in stratified smart grid
and building control strategies in local energy communities, as part of
Blockchain Grid project.

• Novel three phase unbalanced load and optimal power flow method
development coupled with three phase unbalanced home and build-
ing energy management system with active and reactive power con-
trol.

• Nonlinear non-convex optimization methods applied to grids and
mixed integer nonlinear model predictive control applied to various
building models. Online stratified control with system level optimiza-
tion.

Research Fellow
AIT - Austrian Institute of Technology
� Feb 2016 – Dec 2016 � Vienna, Austria

• Project - iNIS - Integrated Network Information System Data-based
load modeling by incorporating voltage, frequency and power depen-
dencies by including consumer loads, distributed generation, identi-
fication and analysis of load characteristics based on the meter and
sensor data.

• Forecasting models aggregated from LV networks to MV nodes, up
to HV interconnection points.

Engineering Intern
Grenoble Génie Electrique Lab
� Jun 2015 - Sep 2015 � Grenoble, France

• Development of methodologies and tools for new and evolving DSO
roles for efficient Distributed Renewable Energy Sources integration
in distribution networks. Production of trial decisions for evolvDSO-
WP4 with survey for the DSO partners and report deliverable.



REFEREES
Dipl.-Ing. Dr.Techn. Friederich Kupzog
� Head of Competence Unit Electric En-

ergy Systems, AIT Austrian Institute of
Technology

� friederich.kupzog@ait.ac.at
Giefinggasse 4, 1210 Vienna, Austria

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Martin
Kozek
� Head of Research Group for

Regelungsmethoden-Energiesysteme,
Faculty of Mechanical and Industrial En-
gineering, Vienna University of Technol-
ogy

� martin.kozek@tuwien.ac.at
Getreidemarkt 9, 1060 Vienna, Austria

PUBLICATIONS
1. B. V. Rao et al., “Optimal capacity management applied to a low volt-

age distribution grid in a local peer-to-peer energy community,” In-
ternational Journal of Electrical Power Energy Systems, vol. 134, p.
107355, Jan. 2022, doi: 10.1016/j.ijepes.2021.107355.

2. S. Potenciano Menci et al., “Functional Scalability and Replicability
Analysis for Smart Grid Functions: The InteGrid Project Approach,”
Energies, vol. 14, no. 18, Art. no. 18, Jan. 2021, doi: 10.3390/en14185685.

3. Rao, B.V.; Stefan, M.; Schwalbe, R.; Karl, R.; Kupzog, F.; Kozek, M.
Stratified Control Applied to a Three-Phase Unbalanced Low Voltage
Distribution Grid in a Local Peer-to-Peer Energy Community. Ener-
gies 2021, 14, 3290. https://doi.org/10.3390/en14113290

4. B. V. Rao et al., "Grid Capacity Management for peer-to-peer Local
Energy Communities," 2020 IEEE Power Energy Society General
Meeting (PESGM), 2020, pp. 1-5,
doi: 10.1109/PESGM41954.2020.9281969.

5. Rao, B.V.; Kupzog, F.; Kozek, M. Three-Phase Unbalanced Optimal
Power Flow Using Holomorphic Embedding Load Flow Method. Sus-
tainability 2019, 11, 1774. https://doi.org/10.3390/su11061774

6. Rao, B.V.; Kupzog, F.; Kozek, M. Phase Balancing Home Energy Man-
agement System Using Model Predictive Control. Energies 2018, 11,
3323. https://doi.org/10.3390/en11123323

7. Zehetbauer, P., Stifter, M. Rao, B.V. Phase preserving profile genera-
tion from measurement data by clustering and performance analysis:
a tool for network planning and operation. Comput Sci Res Dev 33,
145–155 (2018). https://doi.org/10.1007/s00450-017-0381-4

8. S Kloibhofer, M Stifter, F Leimgruber, BV Rao. Comparing and im-
proving residential demand forecast by disaggregation of load and
PV generation. CIRED-Open Access Proceedings Journal 2017 (1),
1638-1641

9. P. Zehetbauer, S. Kloibhofer, M. Stifter, B. V. M. Vasudevarao, F.
Leimgruber. Identification and reconstruction of photovoltaic mea-
surement gaps based on temporal correlation and spatial distance.
6th International Workshop in Integration of Solar Power into Power
Systems (SIW 2016), 276-282

10. B. V. M. Vasudevarao, M. Stifter and P. Zehetbauer, "Methodology
for creating composite standard load profiles based on real load pro-
file analysis," 2016 IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), 2016, pp. 1-6, doi: 10.1109/ISG-
TEurope.2016.7856300.

11. M. Stefan, B.-V. Rao, P. Zehetbauer, G. Taljan, P. Stern, and A. Schenk,
“Blockchain-enabled flexibility activation for distribution grid man-
agement (Blockchain Grid),” p. 11, 2021.

12. Rao, B.V.; Kupzog, F.; Kozek. Three-phase Active and Reactive Power
Control in Home Energy Management System. Hybrid Power Sys-
tems Workshop 2019.

13. P. Zehetbauer, M. Stifter, and B. V. Rao, “Phase preserving profile
generation from measurement data by clustering and performance
analysis: a tool for network planning and operation,” Comput Sci Res
Dev, vol. 33, no. 1–2, pp. 145–155, Feb. 2018, doi: 10.1007/s00450-
017-0381-4.


	Overview
	Motivation and Problem Statement
	State-of-the-art review
	Problem definition

	Goals
	Methodology
	Three-phase Unbalanced Optimal Power Flow
	Three-phase Unbalanced model-based Energy Management
	Stratified Control Structure
	Optimal Capacity Management
	Demonstration of methods in research projects

	Summary of Scientific approaches
	Scientific Contributions of this Work

	Publications
	Publication A
	Publication B
	Publication C
	Publication D

	Bibliography
	Curriculum vitae

