
Load Profile Optimization Using
Electricity Wholesale Market Price Data

for Discrete Manufacturing

Clemens Schwaiger(B), Thomas Trautner, and Friedrich Bleicher

TU Wien, Institute of Production Engineering and Photonic Technologies,
Getreidemarkt 9, Objekt 1, BA - OG 8, Vienna 1060, Austria

schwaiger@ift.at
http://www.ift.at/

Abstract. Several strategies for reducing energy costs can be derived
from the energy procurement cost function for Austrian end users of
electrical energy. Based on short-term energy procurement on the day-
ahead trading floor an optimization problem for cost-optimal scheduling
of the load curve of a single plant has been formulated. A preliminary
study for an annealing furnace is presented and it is found that the
approach can lead to significant savings during periods of volatile prices.
Furthermore, the strategy is applicable to any production process that
provides sufficient flexibility, and therefore, if the trade-off between peak
energy costs is included, can be applied to entire production systems.

Keywords: energy flexibility · demand side management · demand
response · energy price volatility · day-ahead · energy-cost-optimization

1 Introduction

For end-use customers of electrical energy, price volatility is expected to persist
beyond a phase of fluctuating and generally high prices since the end of 2021.
This will be caused by different factors, notably one of them being the rising
share of variable renewable energy (VRE) on the supply side [3]. The associated
uncertainty of energy-costs will and already is affecting more and more industrial
subsectors that are dependant on energy to perform value-adding. The energy-
intensive sector (EIS) is already working on mitigating energy costs and lowering
the environmental impact of the inherent processes for quite some time, driven
by a high share of energy-related costs of unit costs as well as policy measures.

Industry is generally dependent on the availability of energy at reasonable
prices, but when energy prices were sufficiently low, end-use customers out-
side the EIS, whose demand for energy is on a lower level, were not signifi-
cantly affected by the cost. These intermediate energy consumers have not yet
intensively addressed the issue of cost containment in energy procurement and
must now respond. This set of industrial enterprises can be denominated as the
energy-dependant sector (EDS) and encircles a rather specific set of production
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processes [3]. The difference in how energy is consumed by companies within the
EIS and the EDS is significant thus, strategies specifically tailored to the pro-
duction systems within the EDS, that largely coincide with discrete mechanical
manufacturing (DMM) must be found.

2 State of the Art

In order to incentivize sustainability measures in the industrial sector one has
to look at energy-related costs. Considering DMM the most significant energy
carrier in Austria is electric energy [2,3]. The total procurement costs EPC for
electric energy can be described with a procurement cost function, including all
taxes, tariffs, grid and energy costs [3]:

EPC = Cf + cpPp + W (cW,f + c̄W ) (1)

Therein Cf are fixed costs and cp is the cost factor for peak power demand Pp,
i.e. the maximum power uptake within the billing period. The three variables in
Eq. 1 are the peak power demand Pp, the amount of electric energy consumed W
and the wholesale market price, represented as the mean costs per billing period
c̄W . Because of high utilization and a low share of downtime or operational
readiness of plants, lowering W through energy efficiency is the way to go in
the EIS. In the EDS however energy efficiency, i.e. the lowering of energy input
whilst maintaining the same level of product output, is not that easily scalable
[3]. Lowering the overall energy uptake is of the essence within the EDS too,
but unclaimed flexibilities on the demand side considering production systems
of DMM are more easily accessible. Rather than lowering the energy uptake
per se these may be utilized in order to react to the growing share of VRE on
the supply side and thus, to mitigate costs [3,4]. This is in opposition to most
processes within the EIS, where continuous processes cannot be interrupted. In
contrast to discrete production, there is also little or no leeway for postponing
or prioritizing process cycles regarding batch processes.

Schwaiger et al. deduced two basic ways for flexibilizing the demand side with
regards to energy costs, either by pro- or reactive flexibilization [3]. This is based
on the two market floors end-use customers will trade on in order to procure
electric energy short-time. We decidedly neglected long-term trading because of
the increasing short-term volatility of energy prices through VRE and the as of
yet unknown long-term developments caused by the transformation of the energy
system and focused on proactive flexibilization.

2.1 Proactive Flexibilization

Equations defining the incurrence of costs by directly or indirectly trading elec-
tric energy on the short-term wholesale trading floors, be it near real time (intra-
day), or on the day preceding delivery (day-ahead) have been stated by Schwaiger
et al. [3]. The according costs for day-ahead trading are stated in Eq. 2. In the
following the denotations (left superscript) d for the day of delivery, d − 1 for
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Fig. 1. A qualitative example for proactive flexibilization; (a) baseload; (b) potential
bandwith for flexibilization [1]

the day before delivery and d̄ for a reference workday are used as well as the
indices (right subscript) i = 1, ..., 24 for hourly and j = 1, ..., 4 for quarter hourly
products.

d−1C =
24∑

i=1

d̄Wi
d−1ci (2)

Minimizing d−1C is the basic goal for proactive flexibilization, i.e. optimizing the
load curve for the next day by planning accordingly. Basically the load curve
should resemble the vertical reflection of the graph representing hourly price.
More so, optimally the load curve has maxima where prices are lowest and vice
versa. A qualitative example for proactive flexibilization is given in Fig. 1 where
a load curve with a given base load (a) and a flexible bandwidth (b) is fitted
accordingly. In this simple example the discrete prices have been mirrored to the
abscissa, normalized on the interval [0,1] and multiplied with the power flexibility
potential in order to produce the optimized load curve.

3 Energy-Cost Optimization for DMM through Proactive
Flexibilization

Given the aforementioned situation on the supply side from the viewpoint of
an end-use consumer corresponding to DMM the following problem arises: The
usually rather volatile load profile has to be matched with different blocks of
energy procured on the wholesale market at least a day in advance.

Schwaiger et al. introduced proactive flexibilization as a price-driven strategy
to procure electric energy on the day-ahead trading floor [3]. It is formulated as
an optimization problem for the convolution of the two functions d−1c(t) for the
day-ahead prices and Pplant(t) for the power uptake of a single plant:

(d−1c ∗ Pplant)(t) =
∫ τ2

τ1

d−1c(τ)Pplant(t − τ) dτ (3)
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The result of Eq. 3 is the time-dependant cost function for a single cycle of the
plant where d−1c(t) and Pplant(t) are functions continuous in time. The power
uptake of the plant may in fact be represented by a time-continuous function,
e.g. when it’s load curve can be defined analytically depending on the process
parameters, or empirically by learning from past cycles. In an early stage of
implementing proactive flexibilization Pplant will rather be represented by the
measurement of the plants power uptake during a typical production cycle, thus
being discrete in time. Day-ahead prices will be set for products with a maturity
of 60min and thus also are discrete in time, i.e. ci = c1, c2, c3, ..., c24. Either way
the problem stated in Eq. 3 has to be solved numerically. If the plant’s power
uptake is continuous in time it has to be discretizised to Pi = P1, P2, P3, ..., P24.
The numerical convolution is defined as

(ci ∗ Pplant,i)(n) = Pplant
−→c (4)

where −→c is the vector of hourly day-ahead prices and Pplant is the convolution
matrix.

−→c =

⎡

⎢⎢⎢⎣

c1
c2
...

c24

⎤

⎥⎥⎥⎦ , Pplant =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−→
P plant 0 0 . . . 0

0
−→
P plant 0 . . . 0

... 0
−→
P plant . . . 0

...
...

...
. . .

...
0 0 0 . . .

−→
P plant

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(5)

The minimum of the convolution will yield the most energy-cost effective point
in time to start the process cycle:

min(P�p) → tstart (6)

4 Prestudy of Proactive Flexibilization

A practical implementation of proactive flexibilization has been evaluated for the
annealing of machine parts. The corresponding plant is an air convection oven
equipped with electrical heating. Thus, the plants power consumption mainly
stems from the operation of the heating resistors with a small portion of the
overall uptake caused by the electric motors driving fans. The technical specifi-
cations of the plant are stated in Table 1.

Cycle duration and power uptake over time are mainly influenced by the
mass of steel to be treated, the dimension of the parts and the holding temper-
ature. The plant will always be loaded up to the maximum and processes other
than annealing with a far lower energy demand may be conducted, but are the
exception. Thus, a representative annealing process cycle, i.e. the plants power
uptake over time, has been monitored, see Fig. 2. This process-specific load curve
was averaged to 60min intervals and used as input

−→
P plant for the optimization

problem stated in Eq. 6. For proactive flexibilization the goal is to best match



512 C. Schwaiger et al.

Table 1. Technical data of the annealing convection oven

Unit

Nominal power of the heating resistors 450 kW
Maximum load of steel parts 30 t
Annealing target temperature 600 ◦C
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Fig. 2. Uptake of electrical power; annealing oven; (a) phase with active heating resis-
tors (heating up, maintaining temperature and controlled cooling down); (b) cooldown
phase where only fans are active

load to the day-ahead prices, where only maturities of 60min can be traded at
the moment. Therefore the characteristics of the load curve during the hour are
not of interest. Only the cumulative electric energy consumed during the period
is of importance.

The other input of Eq. 6, i.e. the hourly prices on the day-ahead trading
floor −→c , has been derived from historic wholesale price data from EPEX Spot
[1]. Week long time frames ranging from the first quarter of 2021 to the sec-
ond quarter of 2022 have been selected for evaluation. The length of the time
frame stems from the fact that the annealing process’ duration is well over 24 h.
Therefore it can not be scheduled on a daily basis but weekly. Thus, the energy-
cost optimal starting point within a week for the given reference cycle has been
calculated.

Figure 3 shows an exemplary result for calendar week 8 in 2021. In the upper
graph the hourly prices on the day-ahead trading floor are shown on the primary
axis, as well as the energy-cost-optimized annealing cycle starting at tstart and
its counterpart resulting in the cost maximum indicated by the power uptake
over time on the secondary axis. As the cycle duration is around 27 h it must
be started on Saturday at the latest. The lower graph represents the overall
costs for electrical energy per annealing cycle, i.e. the solution of the numerical
convolution as stated in Eq. 4. By being able to freely shift the cycle in time
over a whole week a maximum difference in costs ΔC of €72 could be achieved
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Fig. 3. Weekly proactive flexibilization of an annealing cycle for calendar week 8 in
2021
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Fig. 4. Maximum weekly potential savings by shifting the annealing cycle in time [1]

between the best and worst timed cycles. This result has been generated within a
time frame with stable wholesale energy market prices, represented by a typical
daily pattern of high prices during mid day and low prices during the night,
as well as differences over the span of the week where prices on weekends are
generally moderate.

Results of weekly energy-cost optimization of the annealing cycle are stated
in Fig. 4 and have been generated from calendar week 2 in 2021 to calendar
week 16 in 2022. Looking at the top graph the rise of energy prices to the end
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of 2021 can be seen. Furthermore, the aforementioned familiar pattern in price
fluctuation over the week has been more and more disrupted by the end of 2021,
resulting in the uncertainty of even short-term predictions. A typical outcome of
energy-cost-optimization for the ca. 27 h long annealing cycle in times of stable
and thus, predictable market prices, is that it will be shifted to the weekend.
On extending the time frame for optimization to two weeks, the phases of high
power demand (i.e. the phase of heating up) thus, would be shifted to the night
from Saturday to Sunday.

In calendar week 10 of 2022 the energy-cost-optimal cycle costs differ as much
as €1.877 from the worst placed cycle, representing the maximum theoretical
savings over the whole period analyzed. In conclusion the shifting in time of the
presented annealing cycle only results in significant savings when the usual price
pattern during a week does not hold up and especially when the spread of high
and low prices during a week is high.

5 Conclusion and Outlook

Two strategies for energy-cost optimization have been deduced from the energy
procurement cost function, being pro- and reactive flexibilization. It has been
emphasized on the latter, which focuses on load scheduling typically at least a
day ahead and has been formulated as a numerical convolution of hourly prices
on the day-ahead trading floor and the time-discrete load curve of a single plant.
The minimum of the function resulting from the convolution gives the cost-
optimal starting point of the process cycle in time.

A prestudy of proactive flexibilization has been conducted, using historical
day-ahead market data and the time series of a representative process cycle of
an air convection annealing oven. It could be shown that in weeks where prices
are following a usual pattern, even if they are relatively high, potential savings
are moderate. In times of high volatility and a high price level, savings for this
particular application range from several hundred to several thousand Euros.
The typical outcome is to shift the cycle to the weekend because of the 27 h
duration and long time slots of lower prices then. The prestudy was performed
ignoring further limitations caused by production planning that may not allow
for the energy-cost-optimized process cycle placement and thus, practicable sav-
ings may be much lower. The duration of the process cycles, the times in between
needed for loading and unloading and the two shift rotation restrict flexibiliza-
tion greatly. In practice operation of the given plant also needs to adhere to a
given schedule because of a high workload.

The following conclusions can be derived, which lead to steps for expanding
the approach of proactive flexibilization and increase practicability:

– As a basic assessment unclaimed flexibility of production processes within
a factory has to be assessed to choose the right production processes for
flexibilization. An indicator for quantifying the potential regarding flexibility
is lacking.
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– Given high enough energy costs it may even be practical to increase flexi-
bility by changing given procedures, but costs due to the increased effort in
production planning must be weighed against the savings in energy costs.

– Limits given by production planning have to be introduced to proactive flexi-
bilization, i.e. the time frame available for energy-cost optimization has to be
adjusted accordingly.

– Given additional restrictions min(P�p) will have to be solved repeatedly, whilst
after each iteration the time frame has to be trimmed.

– Since proactive flexibilization is plant or process specific, multiple computa-
tions must be performed in parallel to cover an entire facility and the proce-
dure must be extended to calculate the expected trade-off due to peak power
costs.

– The numerical convolution is easily scalable which is beneficial for practical
implementation, especially given the necessity of multiple parallel calculations
with potentially many iterations each, when applied to a production system
or even a factory.

Assuming that current developments within the (electrical) energy system will
lead to persistent volatility and given the fact that investment costs for imple-
menting proactive flexibilization are low, it can provide enough of a monetary
incentive in order to be applicable in practice. In addition, the application is not
process-specific in terms of production technology and can therefore be used on
a larger scale, provided sufficient flexibility is offered. We assume that a high
potential of unclaimed flexibilities exists in DMM in general, as well as a high
potential for actively expanding flexibilities for the purpose of energy-cost opti-
mization.
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source, provide a link to the Creative Commons license and indicate if changes were
made.
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