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Heat transfer by large deformable drops in a turbulent flow is a complex and rich-in-physics
system, in which drop deformation, breakage and coalescence influence the transport
of heat. We study this problem by coupling direct numerical simulation (DNS) of
turbulence with a phase-field method for the interface description. Simulations are run at
fixed-shear Reynolds and Weber numbers. To evaluate the influence of microscopic flow
properties, like momentum/thermal diffusivity, on macroscopic flow properties, like mean
temperature or heat transfer rates, we consider four different values of the Prandtl number,
which is the momentum to thermal diffusivity ratio: Pr = 1, Pr = 2, Pr = 4 and Pr = 8.
The drop volume fraction is Φ � 5.4 % for all cases. Drops are initially warmer than the
turbulent carrier fluid and release heat at different rates depending on the value of Pr, but
also on their size and on their own dynamics (topology, breakage, drop–drop interaction).
Computing the time behaviour of the drops and carrier fluid average temperatures, we
clearly show that an increase of Pr slows down the heat transfer process. We explain
our results by a simplified phenomenological model: we show that the time behaviour
of the drop average temperature is self-similar, and a universal behaviour can be found
upon rescaling by t/Pr2/3. Accordingly, the heat transfer coefficient H (respectively its
dimensionless counterpart, the Nusselt number Nu) scales as H ∼ Pr−2/3 (respectively
Nu ∼ Pr1/3) at the beginning of the simulation, and tends to H ∼ Pr−1/2 (respectively
Nu ∼ Pr1/2) at later times. These different scalings can be explained via the boundary
layer theory and are consistent with previous theoretical/numerical predictions.
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1. Introduction

Transport of passive and active scalars in multiphase turbulence is very important in
many industrial processes and natural phenomena, from vaporization of atomized fuel
jets (Gorokhovski & Herrmann 2008; Ashgriz 2011; Gao et al. 2022; Boyd & Ling 2023)
to rain formation and atmosphere–ocean heat/mass exchanges (Duguid & Stampfer 1971;
Deike 2022) or even to the uptake of nutrients and other biochemicals by cells in complex
flows (Aksnes & Egge 1991; Magar & Pedley 2005). While the mixing of active or passive
scalars in turbulent single-phase flows has been extensively analysed using experiments
and simulations (Kim & Moin 1989; Kasagi, Tomita & Kuroda 1992; Antonia & Orlandi
2003; Pirozzoli, Bernardini & Orlandi 2016; Zonta, Marchioli & Soldati 2012a; Zonta,
Onorato & Soldati 2012b; Zonta & Soldati 2014), when multiphase flows are considered,
the situation becomes much more challenging (Gauding et al. 2022; Ni 2024).

One crucial aspect of multiphase turbulence – which makes the analysis of these flows
particularly difficult – is the presence of interfaces that dynamically move and deform
in time and space according to the flow conditions and that clearly alter/mediate heat
and species transport and mixing, as well as phase change phenomena (Deckwer 1980;
Gvozdić et al. 2018; Liu et al. 2022; Pelusi et al. 2023; Roccon, Zonta & Soldati 2023).

In this context, previous works mostly focused on the heat/mass transfer from/to isolated
drops and bubbles using analytical (Boussinesq 1905; Levich 1962; Bird, Stewart &
Lightfoot 2002), numerical (Bothe et al. 2004; Figueroa-Espinoza & Legendre 2010;
Herlina & Wissink 2016; Albernaz et al. 2017; Farsoiya, Popinet & Deike 2021; Farsoiya
et al. 2023) and experimental techniques (Ohta, Shimoyama & Ohigashi 1975; Hiromitsu
& Kawaguchi 1995; Wu et al. 2003; Birouk & Gökalp 2006; Marti et al. 2017).
When swarms of drops/bubbles are considered, the number of available investigations
is more limited. For very small drops/bubbles, numerical investigations usually rely on
the Lagrangian approach, in which drops/bubbles are assumed to have sub-Kolmogorov
size and are treated as material points (Kuerten 2016; Maxey 2017; Chong et al. 2021;
Wang et al. 2021a; Wang, Dalla Barba & Picano 2021b). When larger drops/bubbles are
considered (i.e. larger than the Kolmogorov scale), the problem becomes more complex,
since the interface shape and deformation play a crucial role. Not surprisingly, remarkable
works in this context have appeared only recently, both for the case of passive scalar
transport and for the case of active scalars/phase change (Méès et al. 2020; Dodd et al.
2021; Scapin et al. 2022; Shao, Jin & Luo 2022; Hidman et al. 2023). Relevant to the
present work is the observation done by Dodd et al. (2021) and Scapin et al. (2022), and
also confirmed by the experiments of Méès et al. (2020), where the Sherwood number (i.e.
dimensionless mass transfer coefficient) measured during drop evaporation in turbulence
is larger compared to that obtained from widely used correlations (Frössling 1938; Ranz
1952; Birouk & Gökalp 2002).

In this work, we focus on the numerical simulation of the heat transfer process in
a drop-laden turbulent channel flow, particularly on the role of the Prandtl number Pr,
i.e. the ratio between momentum and thermal diffusivity, in the process. Compared with
single-phase turbulence, where the range of scales that must be resolved to perform a
direct numerical simulation (DNS) is purely dictated by the smallest scales of turbulence
(Kolmogorov scale), when the mixing of scalars in multiphase turbulence is analysed,
two further additional scales come into the picture. The first one is the Batchelor
scale (Batchelor 1959; Batchelor, Howells & Townsend 1959), which determines the
smallest scale of the temperature/concentration field. The second important scale is the
Kolmogorov–Hinze scale (Kolmogorov 1941; Hinze 1955), and is linked to the multiphase
nature of the flow. This scale can be used, perhaps with some limitations (Qi et al. 2022),
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Heat transfer in drop-laden turbulence

to determine the critical size of a drop/bubble that will not undergo breakage in turbulence.
These two scales – and their corresponding ratio to the Kolmogorov scale, i.e. the smallest
length scale of the turbulent flow field – control the system dynamics and define the
minimal grid requirements that must be satisfied to perform a DNS of scalar mixing in
multiphase turbulence (always keeping in mind that performing a simulation that resolves
the interface dynamics down to the molecular scale is, at present, almost unfeasible). In
this context, the major constraint is usually posed by the Batchelor scale, which becomes
smaller than the Kolmogorov length scale when Prandtl numbers larger than unity are
considered. Overall, the wide range of scales involved in the process makes simulations of
scalar mixing in multiphase turbulence a challenging task and limits the space parameters
that can be explored by means of DNS. Our simulations are initialized by injecting a swarm
of large and deformable drops (initially warmer) inside a turbulent channel flow (initially
colder). The system is described by coupling the DNS of turbulent heat transfer with a
phase-field method, employed to describe the drop topology (Zheng et al. 2015; Mirjalili,
Jain & Mani 2022). We simulate realistic values of the Prandtl number up to Pr = 8,
similar to those obtained in liquid–liquid systems. We remark here that simulations of
mass transfer problems in wall-bounded flow configurations, where the typical Schmidt
number Sc (i.e. the mass transfer counterpart of Pr) is O(102 ∼ 103), e.g. Sc � 600 for
CO2 in freshwater (Wanninkhof 1992), are currently out of reach even using the most
advanced computing. Indeed, the resulting Batchelor scale would be at least one order
of magnitude smaller, thus requiring grid resolutions comparable to or larger than those
employed for state-of-the-art single-phase DNS (Lee & Moser 2015; Pirozzoli et al. 2021)
but with a much larger computational cost as the systems of equations to be solved are
more complex and restrictive (also from the temporal discretization point of view).

The present study has three main objectives. First, we want to investigate the
macroscopic dynamic of the drops and of the heat transfer process by analysing the
drop size distribution and the mean temperature behaviour of the two phases over
time. Second, we want to characterize the influence of the Prandtl number, i.e. of the
microscopic flow properties, on the macroscopic flow properties (mean temperature, heat
transfer coefficient) and, building on top of the numerical results, we want to develop a
physical-based model to explain the observed results. Third, we want to study the influence
of the Prandtl number and drop size on the temperature distribution inside the drops, so as
to evaluate the corresponding flow mixing/ homogenization.

The paper is organized as follows. In § 2, the governing equations, the numerical method
and the simulation setup are presented. In § 3, the simulation results, in terms of drop size
distribution and mean temperature of the two phases and heat transfer coefficient, are
carefully characterized and discussed. A simplified model is also developed to explain
the observed results. The temperature distribution inside the drops is then evaluated at
different Prandtl numbers and drop sizes. Finally, conclusions are presented in § 4.

2. Methodology

We consider a swarm of large and deformable drops injected in a turbulent channel flow.
The channel has dimensions Lx × Ly × Lz = 4πh × 2πh × 2h along the streamwise (x),
spanwise (y) and wall-normal direction (z). To describe the dynamics of the system, we
couple DNS of the Navier–Stokes and energy equations, used to describe the turbulent
flow, with a phase-field method (PFM), used to describe the interfacial phenomena. The
employed numerical framework is described in more detail in the following.
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2.1. Phase-field method
To describe the dynamics of drops and the corresponding topological changes (e.g.
coalescence and breakage), we employ an energy-based PFM (Jacqmin 1999; Badalassi,
Ceniceros & Banerjee 2003; Roccon et al. 2023), which is based on the introduction of a
scalar quantity, the phase field φ, required to identify the two phases. The phase field φ has
a uniform value in the bulk of each phase (φ = +1 inside the drops; φ = −1 inside the
carrier fluid) and undergoes a smooth change across the thin transition layer that separates
the two phases. The transport of the phase field variable is described by a Cahn–Hilliard
equation, which in dimensionless form reads as

∂φ

∂t
+ u · ∇φ = 1

Pe
∇2μφ + fp, (2.1)

where u = (u, v,w) is the velocity vector, Pe is the Péclet number, μ is the phase field
chemical potential and fp is a penalty-flux term which will be further discussed later. The
Péclet number is

Pe = u∗
τh∗

M∗β∗ , (2.2)

where u∗
τ is the friction velocity (u∗

τ = √
τ ∗

w/ρ
∗, with τ ∗

w the wall-shear stress and
ρ∗ = ρ∗

c = ρ∗
d the density of the fluids), h∗ is the channel half-height, M∗ is the

mobility and β∗ is a positive constant (the superscript ∗ is used to denote dimensional
quantities hereinafter). The chemical potential μ is defined as the variational derivative
of a Ginzburg–Landau free-energy functional, the expression of which is chosen to
represent an immiscible binary mixture of fluids (Soligo, Roccon & Soldati 2019a,b,c).
The functional is the sum of two contributions: the first contribution, f0, accounts for
the tendency of the system to separate into the two pure stable phases, while the second
contribution, fmix, is a mixing term accounting for the energy stored at the interface (i.e.
surface tension). The mathematical expression of the functional in dimensionless form is

F [φ,∇φ] =
∫
Ω

⎛
⎜⎜⎝(φ

2 − 1)2

4︸ ︷︷ ︸
f0

+ Ch2

2
|∇φ|2︸ ︷︷ ︸

fmix

⎞
⎟⎟⎠ dΩ, (2.3)

where Ω is the considered domain and Ch is the Cahn number, which represents the
dimensionless thickness of the thin interfacial layer between the two fluids:

Ch = ξ∗

h∗ , (2.4)

where ξ∗ is clearly the dimensional thickness of the interfacial layer. From (2.3), the
expression of the chemical potential can be derived as the functional derivative with
respect to the order parameter:

μφ = δF [φ∇φ]
δφ

= φ3 − φ − Ch2∇2φ. (2.5)

At equilibrium, the chemical potential is constant throughout all the domain. The
equilibrium profile for a flat interface can thus be obtained by solving ∇μφ = 0, hence,

φeq = tanh
(

s√
2Ch

)
, (2.6)

where s is the coordinate normal to the interface. As anticipated before, the last term in
the right-hand side of the Cahn–Hilliard equation (2.1) is a penalty-flux term employed
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Heat transfer in drop-laden turbulence

in the profile-corrected formulation of the PFM, and is used to overcome some potential
drawbacks of the standard formulation of the method, e.g. mass leakages among the phases
and misrepresentation of the interfacial profile (Yue, Zhou & Feng 2007; Li, Choi & Kim
2016). This penalty flux is defined as

fp = λ

Pe

[
∇2φ − 1√

2Ch
∇ ·

(
(1 − φ2)

∇φ
|∇φ|

)]
, (2.7)

where λ = 0.0625/Ch (Soligo et al. 2019c).

2.2. Hydrodynamics
To describe the hydrodynamics of the multiphase system, the Cahn–Hilliard equation is
coupled with the Navier–Stokes equations. The presence of a deformable interface (and of
the corresponding surface tension forces) is accounted for by introducing an interfacial
term in the Navier–Stokes equations. Recalling that in the present case, we consider
two fluids with the same density (ρ∗ = ρ∗

c = ρ∗
d ) and viscosity (μ∗ = μ∗

c = μ∗
d), the

continuity and Navier–Stokes equations in dimensionless form read as

∇ · u = 0, (2.8)

∂u
∂t

+ u · ∇u = −∇p + 1
Reτ

∇2u + 3√
8

Ch
We

∇ · Tc. (2.9)

Here p is the pressure field, while Tc is the Korteweg tensor (Korteweg 1901) used to
account for the surface tension forces and defined as

Tc = |∇φ|2I − ∇φ ⊗ ∇φ, (2.10)

where I is the identity matrix and ⊗ represents the dyadic product. This approach
is the continuum surface stress approach (Lafaurie et al. 1994; Gueyffier et al. 1999)
applied in the context of the PFM, and is analytically equivalent to the chemical potential
forcing (Mirjalili, Khanwale & Mani 2023). The dimensionless groups appearing in the
Navier–Stokes equations are the shear Reynolds number Reτ (ratio between inertial and
viscous forces) and the Weber number We (ratio between inertial and surface tension
forces), which are defined as

Reτ = ρ∗u∗
τh∗

μ∗ , We = ρ∗u∗
τ

2h∗

σ ∗ , (2.11a,b)

where σ ∗ is the surface tension. Note that, consistently with the employed
adimensionalization, We is defined using the half-channel height (and not the drop
diameter).

2.3. Energy equation
The time evolution of the temperature field is obtained by solving the energy equation
using a one-scalar model approach (Zheng et al. 2015). To avoid the introduction of further
complexity in the system, we consider two fluids with the same thermophysical properties,
i.e. same thermal conductivity λ∗, same specific heat capacity c∗

p and therefore same
thermal diffusivity a∗ = λ∗/ρ∗c∗

p (since the density of the two phases is also the same).
These properties have been evaluated at a reference temperature θ∗

r = (θ∗
d,0 + θ∗

c,0)/2,
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i.e. the average between the initial drop temperature and the carrier fluid temperature, and
are assumed to be constant and uniform. Within these assumptions, the energy equation
written in dimensionless form reads as

∂θ

∂t
+ u · ∇θ = 1

ReτPr
∇2θ, (2.12)

where Pr is the Prandtl number defined as

Pr = μ∗c∗
p

λ∗
= ν∗

a∗ , (2.13)

with ν∗ = μ∗/ρ∗ the kinematic viscosity (i.e. momentum diffusivity). From a physical
viewpoint, Pr represents the momentum-to-thermal diffusivity ratio.

2.4. Numerical discretization
The governing equations (2.1), (2.8), (2.9) and (2.12) are solved using a pseudo-spectral
method, which uses Fourier series along the periodic directions (streamwise and spanwise)
and Chebyshev polynomials along the wall-normal direction. The Navier–Stokes and
continuity equations are solved using a wall-normal velocity-vorticity formulation: (2.9) is
rewritten as a fourth-order equation for the wall-normal component of the velocity w and
a second-order equation for the wall-normal component of the vorticity ωz (Kim, Moin &
Moser 1987; Speziale 1987). The Cahn–Hilliard equation (2.1), which in its original form
is a fourth-order equation and is split into two second-order equations using the splitting
scheme proposed by Badalassi et al. (2003). Using this scheme, the governing equations
are recasted as a coupled system of Helmholtz equations, which can be readily solved.

The governing equations are time-advanced using an implicit-explicit scheme. For the
Navier–Stokes, the linear part is integrated using a Crank–Nicolson implicit scheme, while
the nonlinear part is integrated using an Adams–Bashforth explicit scheme. Similarly, for
the Cahn–Hilliard and energy equations, the linear terms are integrated using an implicit
Euler scheme, while the nonlinear terms are integrated in time using an Adams–Bashforth
scheme. The adoption of the implicit Euler scheme for the Cahn–Hilliard equation helps
to damp unphysical high-frequency oscillations that could arise from the steep gradients
of the phase field.

As the characteristic length scales of the flow and temperature fields, represented by
the Kolmogorov scale, η+

k , and the Batchelor scale, η+
θ , are different when non-unitary

Prandtl numbers are employed (being these two quantities linked by the following relation
η+
θ = η+

k /
√

Pr), a dual grid approach is employed to reduce the computational cost of
the simulations and, at the same time, to fulfil the DNS requirements. In particular, when
super-unitary Prandtl numbers are simulated, a finer grid is used to resolve the energy
equation. Spectral interpolation is used to upscale/downscale the fields from the coarse
to the refined grid and vice versa when required (e.g. upscaling of the velocity field to
compute the advection terms in the energy equation).

This numerical scheme has been implemented in a parallel Fortran 2003 MPI in-house
proprietary code. The parallelization strategy is based on a 2-D domain decomposition
to divide the workload among all the MPI tasks. The solver execution is accelerated
using openACC directives and CUDA Fortran instructions (solver execution) while the
Nvidia cuFFT libraries are used to accelerate the execution of the Fourier/Chebyshev
transforms. Overall, the computational method adopted allows for the accurate resolution
of all the governing equations and the achievement of an excellent parallel efficiency
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thanks to the fine-grain parallelism offered by the numerical method used. The equivalent
computational cost of the simulations is approximately 25 million CPU hours and the
resulting dataset has a size of approximately 16 TB.

2.5. Boundary conditions
The system of governing equations is complemented by a set of suitable boundary
conditions. For the Navier–Stokes equations, no-slip boundary conditions are enforced
at the top and bottom walls (located at z = ±h):

u(z = ±h) = 0. (2.14)

For the Cahn–Hilliard equation, no-flux boundary conditions are applied at the two walls,
yielding to the following boundary conditions:

∂φ

∂z
(z = ±h) = 0; ∂3φ

∂z3 (z = ±h) = 0. (2.15a,b)

Likewise, for the energy equation, no-flux boundary conditions are applied at the two walls
(i.e. adiabatic walls):

∂θ

∂z
(z = ±h) = 0. (2.16)

Along the streamwise and spanwise directions (x and y), periodic boundary conditions
are imposed for all variables (Fourier discretization). The adoption of these boundary
conditions leads to the conservation of the phase field and temperature fields over time:

∂

∂t

∫
Ω

φ dΩ = 0; ∂

∂t

∫
Ω

θ dΩ = 0, (2.17a,b)

where Ω is the computational domain. Regarding the phase-field, (2.17a,b) enforces mass
conservation of the entire system but does not guarantee the conservation of the mass of
each phase (Yue et al. 2007; Soligo et al. 2019c), as some leakages between the phases may
occur. This drawback is rooted in the PFM and more specifically in the curvature-driven
flux produced by the chemical potential gradients (Kwakkel, Fernandino & Dorao 2020;
Mirjalili & Mani 2021). This issue is successfully mitigated with the adoption of the
profile-corrected formulation that largely reduces this phenomenon. In the present cases,
mass leakage between the phases occurs only in the initial transient when the phase field is
initialized (see the section below for details on the initial condition) and is limited to 2 %
of the initial mass of the drops. After this initial transient, the mass of each phase remains
constant.

2.6. Simulation set-up
The turbulent channel flow, driven by an imposed constant pressure gradient in the
streamwise direction, has a shear Reynolds number Reτ = 300. The computational
domain has dimensions Lx × Ly × Lz = 4πh × 2πh × 2h, which corresponds to L+

x ×
L+

y × L+
z = 3770 × 1885 × 600 wall units. The value of the Weber number is kept

constant and is equal to We = 3.00, so to be representative of liquid/liquid mixtures
(Than et al. 1988). To study the influence of the Prandtl number Pr on the heat transfer
process, we consider four different values of Pr: Pr = 1, Pr = 2, Pr = 4 and Pr = 8.
These values cover a wide range of real-case scenarios: from low-Prandtl-number fluids to
water–toluene mixtures.
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Case Reτ We Pr Nx × Ny × Nz (NS+CH) Nx × Ny × Nz (Energy)

Single phase 300 — — 512 × 256 × 257 —
Drop laden 300 3.0 1.0 1024 × 512 × 513 1024 × 512 × 513
Drop laden 300 3.0 2.0 1024 × 512 × 513 1024 × 512 × 513
Drop laden 300 3.0 4.0 1024 × 512 × 513 2048 × 1024 × 1025
Drop laden 300 3.0 8.0 1024 × 512 × 513 2048 × 1024 × 1025

Table 1. Overview of the simulation parameters. For a fixed shear Reynolds number Reτ = 300 and Weber
number We = 3, we consider a single-phase flow case and four non-isothermal drop-laden flows characterized
by different Prandtl numbers: from Pr = 1 to Pr = 8. The grid resolution is modified accordingly so as to
satisfy DNS requirements.

The grid resolution used to resolve the continuity, Navier–Stokes and Cahn–Hilliard
equations is equal to Nx × Ny × Nz = 1024 × 512 × 513 for all the cases considered in
this work. For the energy equation, the same grid used for the flow field and phase field
is employed at the lower Prandtl numbers (Pr = 1 and Pr = 2), while a more refined
grid, with Nx × Ny × Nz = 2048 × 1024 × 513 points, is used when the larger Prandtl
numbers are considered (Pr = 4 and Pr = 8). The computational grid has uniform spacing
in the homogeneous directions, while Chebyshev–Gauss–Lobatto points are used in the
wall-normal direction. We refer the reader to table 1 for an overview of the main physical
and computational parameters of the simulation. For the employed grid resolution, the
Cahn number is set to Ch = 0.01 while, to achieve convergence to the sharp interface
limit, the corresponding phase field Péclet number is Pe = 1/Ch = 50.

All simulations are initialized by releasing a regular array of 256 spherical drops with
diameter d = 0.4h (corresponding to d+ = 120w.u.) inside a fully developed turbulent
flow field (obtained from a preliminary simulation). To ensure the independence of the
results from the initial flow field condition, each case is initialized with a slightly different
flow field realization. Naturally, the fields are equivalent in terms of statistics as they are
all obtained from a statistically steady turbulent channel flow. The volume fraction of the
drops is Φ = Vd/(Vc + Vd) = 5.4 %, with Vd and Vc the volume of the drops and carrier
fluid, respectively.

The initial condition for the temperature field is such that all drops are initially warm
(initial temperature θd,0 = 1), while the carrier fluid is initially cold (initial temperature
θc,0 = 0). To avoid numerical instabilities that might arise from a discontinuous
temperature field, the transition between drops and carrier fluid is initially smoothed using
a hyperbolic tangent kernel. Figure 1 (which is an instantaneous snapshot captured at
t+ = 1000, for Pr = 1) shows a volume rendering of the temperature field (blue, cold;
red, hot), inside which deformable drops (whose interface, iso-level φ = 0, is shown in
white) are transported.

3. Results

Results obtained from the numerical simulations will be first discussed from a qualitative
viewpoint, by looking at instantaneous flow and drop visualizations, and then analysed
from a more quantitative viewpoint, by looking at the drop size distribution (DSD), and at
the effect of the Prandtl number Pr on the average drops and fluid temperature. To explain
the numerical results, and to offer a possible parametrization of the heat transfer process in
drop-laden flows, we will also develop a simplified phenomenological model of the system.
Finally, we will characterize the temperature distribution inside the drops, elucidating the
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Temperature

0 0.05 0.10 0.15 0.20

Heat flux

Drop section

θ

Figure 1. Rendering of the computational setup employed for the simulations. A swarm of large and
deformable drops is released in a turbulent channel flow. The temperature field is volume-rendered (blue, low;
red, high) and the drop interface is shown in white (iso-level φ = 0). Drops have a temperature higher than the
carrier fluid (close-up view). The snapshot refers to Pr = 1 and t+ = 1000.

effects of Pr and of the drop size on it. Note that, unless differently mentioned, results
are presented using the wall-unit scaling system but for the temperature field, which is
made dimensionless using the initial temperature difference as a reference scale (which is
a natural choice in the present case).

3.1. Qualitative discussion
The complex dynamics of drops immersed in a non-isothermal turbulent flow is visualized
in figure 1, where the drops (identified by iso-contour of φ = 0) are shown together with a
volume-rendered distribution of temperature in the carrier fluid. Also shown in figure 1 is
a close-up view of the temperature distribution inside the drop. We can notice that most of
the drops – because of their deformability – gather at the channel centre, as also observed
in previous studies in similar configurations (Scarbolo, Bianco & Soldati 2016; Soligo,
Roccon & Soldati 2020; Mangani et al. 2022).

Once injected into the flow, each drop starts interacting with the flow and with the
neighbouring drops. The result of the drop–turbulence and drop–drop interactions is
the occurrence of breakage and coalescence events. A breakage event happens when
the flow vigorously stretches the drop, leading to the formation of a thin ligament that
breaks and generates two child drops. Upon separation, surface tension forces tend to
retract the broken filaments and restore the drop spherical shape. A coalescence event
is observed when two drops come close to each other. The small liquid film that separates
the drops starts to drain, and a coalescence bridge is formed. Later, surface tension
forces enter the picture, reshaping the drop and completing the coalescence process.
The dynamic competition between breakage and coalescence events, and their interaction
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d+
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t+ = 1590 t+ = 1605 t+ = 1620 t+ = 1635 t+ = 1650

t+ = 1515 t+ = 1530 t+ = 1545 t+ = 1560 t+ = 1575

t+ = 600 t+ = 645 t+ = 660 t+ = 675 t+ = 690(a) (b) (c)

Breakage

Coalescence

(d ) (e)

( f ) (g) (h) (i) ( j)

(k) (l) (m) (n) (o)

Figure 2. Influence of topology changes on heat transfer: time sequence (a–e) of a breakage event and ( f –o)
of a coalescence event. During a breakage event, heat is transferred from the drops to carrier fluid thanks to
the high surface/volume ratio of the pinch-off region. In the middle and bottom rows, the mixing between
parcels of fluid with different temperatures can be appreciated. The two sequences refer to the case Pr = 1 and
snapshots are separated by Δt+ = 15. As a reference, the Kolmogorov–Hinze scale, d+

H , is also reported.

with the turbulent flow, determines the number of drops, their size distribution, and their
shape/morphology (i.e. curvature, interfacial area, etc.).

In the present case, drops not only exchange momentum with the flow and with the
other drops but also heat. Starting from an initial condition characterized by warm drops
(with uniform temperature) and cold carrier fluid, and because of the imposed adiabatic
boundary conditions, the system evolves towards an equilibrium isothermal state. During
the transient to attain this thermal equilibrium state, heat is transported by diffusion
and advection inside each of the two phases, and across the interface of the drops (see
the temperature field inside and outside the drops, figure 1). The picture is then further
complicated by the occurrence of breakage and coalescence events. This is represented in
figure 2. When breakage occurs (figure 2a–e), a thin filament is generated (figure 2a–c),
which then leads to the formation of a smaller satellite drop (figure 2d,e). The filament and
the satellite drop, given the large surface-to-volume ratio, exchange heat very efficiently
and rapidly become colder. In contrast, when a coalescence occurs (figure 2f –o), two drops
having different temperatures merge together. This induces an efficient mixing process,
during which cold parcels of one drop become warmer and vice versa, warm parcels of the
other drops become colder. Overall, breakup and coalescence events induce heat transfer
modifications that are, in general, hard to predict a priori, since they do depend on the
relative size of the involved parents/child drops.
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Heat transfer in drop-laden turbulence

Naturally, the problem of heat transfer in drop-laden turbulence is strongly influenced by
the Prandtl number of the flow. This can be appreciated by looking at figure 3, where we
show the instantaneous temperature field, together with the shape of the drops, at a certain
instant in time (t+ = 1500) and at different Prandtl numbers: (a) Pr = 1; (b) Pr = 2;
(c) Pr = 4 and (d) Pr = 8. In each panel, the temperature field is shown on a wall-parallel
x+-y+ plane located at the channel centre (z+ = 0) and is visualized with a blue-red scale
(blue, low; red, high). We observe that the temperature field changes significantly with
Pr. In particular, we notice an increase in the drop-to-fluid temperature difference for
increasing Pr, going from Pr = 1 (figure 3a) where this difference is small, to Pr = 8
(figure 3d) where this difference is large. The heat transfer from the drops to the carrier
fluid becomes slower as Pr increases, consistent with a physical situation in which the
Pr number is increased by reducing the thermal diffusivity of the fluid while keeping
the momentum diffusivity constant (i.e. constant kinematic viscosity, and hence shear
Reynolds number). Also, the temperature structures, both inside and outside the drop,
become thinner and more complicated at higher Pr, since their characteristic length scale,
the Batchelor scale η+

θ ∝ Pr−1/2, becomes smaller for increasing Pr (Batchelor 1959;
Batchelor et al. 1959). In addition, smaller drops have, on average, a lower temperature
compared to larger drops, regardless of the value of Pr. All these aspects will be discussed
in more detail in the next sections.

3.2. Drop size distribution
To characterize the collective dynamics of the drops, we compute the DSD at steady-state
conditions, averaging over a time window Δt+ = 3000, from t+ = 3000 to 6000. The
achievement of steady-state conditions is here evaluated by monitoring global flow
properties, like flow rate and wall stress, and drop properties, like the number of drops
and the overall drop surface. It is worth mentioning that a quasi-equilibrium DSD, very
close to the steady one, is already achieved at t+ � 750, and only minor changes occur to
the DSD afterwards.

Figure 4 shows the DSD obtained for the different cases considered here: Pr = 1 (dark
violet), Pr = 2 (violet), Pr = 4 (pink) and Pr = 8 (light pink). Drop size distribution
profiles are statistically the same. Small differences are due to the initial turbulence
field, which is different for each simulation (see § 2.6). The DSDs have been computed
considering, for each drop, the diameter of the equivalent sphere computed as

d+
eq =

(
6V+

π

)1/3

, (3.1)

where V+ is the volume of the drop. Also reported in figure 4 is the Kolmogorov–Hinze
scale, d+

H , which can be computed as (Perlekar, Biferale & Sbragaglia 2012; Roccon et al.
2017; Soligo et al. 2019a)

d+
H = 0.725

(
We
Reτ

)−3/5

|εc|−2/5, (3.2)

where εc is the turbulent dissipation, here evaluated at the channel centre where most of
the drops collect because of their deformability (Lu & Tryggvason 2007; Soligo et al.
2020; Mangani et al. 2022). Although recently challenged (Qi et al. 2022; Vela-Martín
& Avila 2022; Ni 2024), the Kolmogorov–Hinze scale (Kolmogorov 1941; Hinze 1955)
still represents a convenient estimate to evaluate the critical diameter below which drop
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Figure 3. Instantaneous visualization of the temperature field (red, hot; blue, cold) on a x+ − y+ plane located
at the channel centre for t+ = 1500. Drop interfaces (iso-level φ = 0) are reported using white lines. Each
panel refers to a different Prandtl number. By increasing the Prandtl number (from top to bottom), the heat
transfer becomes slower.
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Figure 4. Steady-state DSD obtained for: Pr = 1 (dark violet, circles), Pr = 2 (violet, squares), Pr = 4 (pink,
diamonds) and Pr = 8 (light pink, triangles). The Kolmogorov–Hinze (KH) scale d+

H is reported with a vertical
dashed line while the two analytical scaling laws, d+

eq
−3/2 for the coalescence-dominated regime (small drops,

grey region) and d+
eq

−10/3 for the breakage-dominated regime (larger drops, white region), are reported with
dash-dotted lines.

breakage is unlikely to occur. Based on the Kolmogorov–Hinze scale, we can identify
two different regimes (Garrett, Li & Farmer 2000; Deane & Stokes 2002; Deike 2022).
For drops smaller than the Kolmogorov–Hinze scale, we find the coalescence-dominated
regime (left, grey area), in which drops that are smaller than the critical scale are generally
not prone to break (although violent breakages can happen also for smaller drops).
For drops larger than the Kolmogorov–Hinze scale, we find the breakage-dominated
regime (right, white area) in which drop breakage is more likely to happen. Each regime
is characterized by a specific scaling law, which describes the behaviour of the drop
number density as a function of the drop size (Garrett et al. 2000; Deane & Stokes
2002; Chan, Johnson & Moin 2021): probability density function (PDF) ∼ d+

eq
−3/2 below

Kolmogorov–Hinze scale and PDF ∼ d+
eq

−10/3 above it. The two scalings are represented
by dot-dashed lines in figure 4.

We note that for equivalent diameters above the Hinze scale, our results follow quite
well the theoretical scaling law and match the size distributions of the drops/bubbles
obtained in the literature considering similar flow instances (Deike, Melville & Popinet
2016; Soligo, Roccon & Soldati 2021; Deike 2022; Di Giorgio, Pirozzoli & Iafrati
2022; Crialesi-Esposito, Chibbaro & Brandt 2023). Below the Hinze scale, for equivalent
diameters in the range 25 < d+

eq < d+
H , our results match reasonably well the theoretical

scaling law. For equivalent diameters d+
eq < 25 w.u., we observe an underestimation of

the DSD compared with the proposed scaling. This is linked to the grid resolution, and in
particular to the problem in describing very small drops (Soligo et al. 2021; Roccon et al.
2023).
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Figure 5. Time evolution of the mean temperature of drops (violet to pink colours, different symbols) and
carrier fluid (blue to cyan colours, different symbols) for the different Prandtl numbers considered. DNS results
are reported with full circles while the predictions obtained from the model are reported with continuous lines.
The equilibrium temperature of the system, θeq, is reported with a horizontal dashed line.

3.3. Mean temperature of drops and carrier fluid
We now focus on the average temperature of the drops and of the carrier fluid. We consider
the ensemble of all drops as one phase and the carrier fluid as the other phase (using the
value of the phase field as a phase discriminator), and we compute the average temperature
for each phase. The evolution in time of the drops and carrier fluid temperature, θ̄d and
θ̄c, respectively, is shown in figure 5 for the different values of Pr. Together with the
results obtained by current DNS, filled symbols in figure 5, we also show the predictions
obtained by a simplified phenomenological model (solid lines), the details of which will
be described and discussed later (see § 3.4). We start considering the DNS results only. As
expected, we observe that the average temperature of the drops (violet to pink symbols)
decreases in time, while the average temperature of the carrier fluid (blue to cyan symbols)
increases in time, until the thermodynamic equilibrium, at which both phases have the
same temperature, is asymptotically reached. For this reason, simulations have been run
long enough for the average temperature of both phases to be sufficiently close to the
equilibrium temperature. In particular, we stopped the simulations at t+ � 6000, when the
condition

(θ̄d − θeq)

(θd,0 − θeq)
≤ 0.05, (3.3)

with θd,0 the initial temperature of the drops, is satisfied by all simulations. The
equilibrium temperature, θeq, can be easily estimated a priori: since the two walls are
adiabatic and the homogeneous directions are periodic, the energy of the system is
conserved over time. After some algebra and recalling the definition of volume fraction,
Φ = Vd/(Vd + Vc), we obtain the equilibrium temperature:

θeq = θc,0(1 −Φ)+ θd,0Φ, (3.4)

which is represented by the horizontal dashed line in figure 5.
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Heat transfer in drop-laden turbulence

Figure 5 also provides a clear indication that a higher Prandtl number results in a longer
time required for the system to reach the equilibrium temperature, θeq. The trend can be
observed for both the drops and carrier fluid, as the two phases are mutually coupled (the
heat released from the drops is adsorbed by the carrier fluid). This result confirms our
previous qualitative observations, see figure 3 and discussion therein, where a large Pr
(small thermal diffusivity) reduces the heat released by the drops. It is also interesting to
observe that the behaviour of the mean temperature of the two phases appears self-similar
at the different Pr.

3.4. A phenomenological model for heat transfer rates in droplet laden flows
In an effort to provide a possible interpretation of the previous results – and in particular
to explain the average temperature behaviour shown in figure 5 – we develop a simple
physically sound model of the heat transfer in drop-laden turbulence. We start by
considering the heat transfer mechanisms from a single drop of diameter d∗ to the
surrounding fluid:

m∗
dc∗

p
∂θ∗

d
∂t∗

= H∗A∗
d(θ

∗
c − θ∗

d ), (3.5)

where m∗
d, A∗

d and c∗
p are the mass, external surface and specific heat of the drop, H∗ is the

heat transfer coefficient, while θ∗
d and θ∗

c are the drop and carrier fluid temperature. The
heat transfer coefficient can be estimated as the ratio between the thermal conductivity
of the external fluid, λ∗, and a reference length scale, here represented by the thermal
boundary layer thickness δ∗t :

H∗ ∼ λ∗/δ∗t . (3.6)

With this assumption, and recalling that ρ∗ = ρ∗
c = ρ∗

d , (3.5) becomes

∂θ∗
d

∂t∗
= 6

Pr
ν∗

d∗δ∗t
(θ∗

c − θ∗
d ). (3.7)

Reportedly (Schlichting & Gersten 2016, p. 218), the thermal boundary layer thickness, δ∗t ,
can be expressed as δ∗t = δ∗Pr−α , where δ∗ is the momentum boundary layer thickness
and α is an exponent that depends on the flow condition in the proximity of the boundary
where the boundary layer evolves. In particular, the exponent α ranges from α = 1/3
for no-slip conditions, usually assumed for solid particles, to α = 1/2, usually assumed
for clean gas bubbles. For an in-depth discussion on the topic, we refer the reader to
Appendix A. As a consequence, the heat transfer rate observed from drops/bubbles is
expected to be larger than that observed from solid particles, since the no-slip boundary
condition generally weakens the flow motion near the interface (Levich 1962; Bird et al.
2002; Herlina & Wissink 2016). We can now rewrite the equation of the model in
dimensionless form, using the initial drop-to-carrier fluid temperature difference Δθ∗ =
θ∗

d,0 − θ∗
c,0 as reference temperature, and ν∗/u∗2

τ as reference time:

∂θd

∂t+
= 6Re−1

δ Pr−1+α(d+)−1(θc − θd), (3.8)

where d+ is the drop diameter in wall units, while Reδ = u∗
τ δ

∗/ν∗ is the Reynolds
number based on the boundary layer thickness (which can be assumed constant among the
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different cases). Equation (3.8) can be rewritten as

∂θd

∂t+
= CPr−1+α(d+)−1(θc − θd), (3.9)

where C is a constant whose value depends only on the flow structure, i.e. on Reδ . Equation
(3.9) describes the heat released by a single drop of dimensionless diameter d+. Assuming
now that the turbulent flow is laden with drops of different diameters, the general equation
describing the heat released by the ith drop of diameter d+

i becomes

∂θd,i

∂t+
= CPr−1+α(d+

i )
−1(θc − θd) = Fi, (3.10)

where Fi is the lumped-parameters representation of the right-hand side of the temperature
evolution equation for the ith drop. As widely observed in the literature (Deane & Stokes
2002; Soligo et al. 2019c), and also confirmed by the present study (figure 4), we can
hypothesize an equilibrium DSD by which the number density of drops scales as d+−3/2

in the sub-Hinze range of diameters (10 < d+ < 110), and as d+−10/3 in the super-Hinze
range of diameters (110 < d+ < 240). With this approximation, and considering seven
classes of drop diameter for the sub-Hinze range and four classes for the super-Hinze
range, we can integrate (3.10) to obtain the time evolution of the temperature of each drop
in time:

θn+1
d,i = θn

d,i + Δt+Fi. (3.11)

From a weighted average of the temperature (based on the number of drops in each class,
as per the theoretical DSD), we obtain the average temperature of the drops, θ̄d.

To obtain the mean temperature of the carrier fluid, we consider that (adiabatic condition
at the walls) the heat released by the drops is entirely absorbed by the carrier fluid. The
heat released by the drops with a certain diameter d∗

i can be computed as

Q∗
i = m∗

dc∗
p
∂θd

∂t+
N∗

d (i), (3.12)

where N∗
d (i) is the number of drops for that specific diameter (as per the DSD). The overall

heat released by all drops can be calculated as the summation over all different classes of
diameters:

Q∗
tot =

Nc∑
i=1

Q∗
i , (3.13)

where Nc is the employed number of classes. Finally, the mean temperature of the carrier
fluid is

θ̄∗,n+1
c = θ∗,n

c + Δt+
Q∗

tot

m∗
cc∗

p
. (3.14)

In dimensionless form (dividing by the initial drop-to-carrier fluid temperature Δθ∗),
(3.14) becomes

θ̄n+1
c = θn

c + Δt+Qtot. (3.15)

The results of the model are shown in figure 5. Interestingly, under the simplified
hypothesis of the model (chiefly, the spherical shape of the drops, constant DSD evaluated
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Figure 6. Time evolution of the mean temperature of drops (violet to pink colours) and carrier fluid (blue
to cyan colours) for the different Prandtl numbers considered obtained from DNS and reported against
the dimensionless time t̃+ = t+/Pr2/3. The equilibrium temperature of the system, θeq, is reported with a
horizontal dashed line. The DNS results reported over the new dimensionless time nicely collapse on top of
each other, highlighting the self-similarity of the θ̄c,d profiles.

at the equilibrium), we observe that the behaviour of the mean temperature is very well
captured by the model (represented by the solid lines in figure 5):

∂θd

∂t+
= CPr−2/3(d+)−1(θc − θd), (3.16)

i.e. when α = 1/3 – typical of boundary layers around solid objects (i.e. solid particles).
Reasons for this behaviour might be traced back to the weakening of convective
phenomena induced by the interface of the drops (Scarbolo & Soldati 2013). This effect is
more pronounced at the beginning of the simulation when large drops are not yet present.
In addition, it must be also noticed that drops are strongly advected by the mean flow, and
the flow condition at the drop surface can be different from the slip one and is, in general,
not of simple evaluation. Given the relationship ∂θd/∂t ∼ Pr−2/3 postulated by the model
in (3.16), which provides results in very good agreement with the numerical ones, it seems
reasonable to rescale the time variable as

t̃+ = t+

Pr(1−α) = t+

Pr(2/3)
. (3.17)

A representation of the DNS results in terms of the rescaled time, (3.17), is shown in
figure 6. We observe a nice collapse of the two sets of curves – drops and carrier fluid
(red and blue) – for the different values of Pr, which clearly demonstrates the self-similar
behaviour of θ̄ . For this reason, the rescaling of time t̃+ = t+/Pr2/3 will be also used in
the following.
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3.5. Heat transfer from particles and drops/bubbles
It is now important to discuss the behaviour of the heat transfer coefficient (and its
dimensionless counterpart, the Nusselt number Nu) also in the context of available
literature results. Naturally, similar considerations can be made to evaluate the mass
transfer coefficient, in particular at liquid/gas interfaces (Levich 1962; Bird et al. 2002).

For solid particles, a balance between the convective time scale near the surface and
the diffusion time scale gives a heat transfer coefficient (Krishnamurthy & Subramanian
2018),

H∗ ∝ Pr−2/3, (3.18)

and the corresponding Nusselt number,

Nu ∝ ReβPr1/3, (3.19)

where β is an exponent that depends on the flow conditions and links the boundary layer
thickness to the particle Reynolds number. Usually, β = 1/3 for small Reynolds numbers
(Krishnamurthy & Subramanian 2018), while β = 1/2 for large Reynolds numbers (Ranz
1952; Whitaker 1972; Michaelides 2003).

Using similar arguments (balance between convective and diffusion time scales), but
considering now that at the surface of a drop/bubble, a slip velocity, and therefore a certain
degree of advection, can be observed (Levich 1962; Bird et al. 2002; Herlina & Wissink
2016), the heat transfer coefficient is found to scale as

H∗ ∝ Pr−1/2, (3.20)

and the corresponding Nusselt number as

Nu ∝ ReβPr1/2, (3.21)

where also in this case, the exponent β does depend on the considered Reynolds
number. Two regimes are usually defined (Theofanous, Houze & Brumfield 1976): a
low-Reynolds-number regime, for which β = 1/2, and a high-Reynolds-number regime,
for which β = 3/4. An alternative approach, which gives similar predictions, is to use the
penetration theory of Higbie (1935), in which turbulent fluctuations are invoked to estimate
a flow exposure (or contact) time to compute the heat/mass transfer coefficient. Such an
approach has been widely used in bubble-laden flows (Colombet et al. 2011; Herlina &
Wissink 2014, 2016; Farsoiya et al. 2021).

We can now evaluate the heat transfer coefficient from our DNS at different Pr, and
compare it to the proposed scaling laws. Note that the heat transfer coefficient is obtained
as

H = (θ̄n+1
d − θ̄n

d )

AΔt(θ̄n+1/2
d − θ̄

n+1/2
c )

, (3.22)

where the numerator represents the temperature difference of the drops between the time
steps n and n + 1, while the denominator represents the temperature difference between
the drop and the carrier fluid evaluated halfway in time between step n and n + 1 (i.e.
at n + 1/2). The quantity A is the total interfacial area between drops and carrier fluid,
while Δt is the time step used to evaluate the heat transfer. Here, we have evaluated the
heat transfer coefficient taking the heat released by the drops as a reference; an equivalent
result, but with the opposite sign, can be obtained using the heat absorbed by the carrier
fluid as a reference, and taking into account the different volume fraction of the two phases.
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Figure 7. Time behaviour of the dimensionless heat transfer coefficient for the different Prandtl numbers
considered. The results are compared for different values of the newly defined dimensionless time t̃+ =
t+/Pr2/3. Heat transfer coefficients are reported normalized by the value of the heat transfer coefficient
obtained for Pr = 1 (at the same time instant t̃+). In this way, results obtained at different time instants can be
conveniently compared. The two scaling laws that refer to α = 2/3 and α = 1/2 are also reported as references.

The dimensionless heat transfer coefficient, (3.22), is shown as a function of Pr, and
at different time instants (based on the dimensionless time t̃+, (3.17)), in figure 7. Further
details on the time evolution of H are given in Appendix B. For a better comparison, the
results are normalized by the value of the heat transfer coefficient for Pr = 1. The two
reference scaling laws, H ∼ Pr−2/3 obtained for α = 1/3 and H ∼ Pr−1/2 obtained for
α = 1/2, are also shown by a dotted and a dashed line. We note that at the beginning
of the simulations (see for example t̃+ = 250), the heat transfer coefficient is close to
H ∼ Pr−2/3, while at later times, it tends towards H ∼ Pr−1/2, hence approaching the
scaling law proposed for heat/mass transfer in gas–liquid flows (Levich 1962; Magnaudet
& Eames 2000; Bird et al. 2002; Herlina & Wissink 2014, 2016; Colombet et al. 2018;
Farsoiya et al. 2021).

A possible explanation is that, as time advances, the shape of the drops becomes
complex and coalescence/breakups more frequent, thus inducing a higher degree of
internal mixing that is associated with a heat transfer increase. This is reflected in a heat
transfer process that is slower at the beginning, H∗ ∼ Pr−2/3, and faster at later times,
H∗ ∼ Pr−1/2.

3.6. Influence of the drop size on the average drop temperature
In the previous sections, we have studied the behaviour of the mean temperature field of the
drops and of the carrier fluid considered as single entities. However, while this description
is perfectly reasonable for the carrier fluid – which can be considered a continuum – it can
be questionable for the drops, which are not a continuum phase by nature. We now take the
dispersed nature of the drops into account and we evaluate, for each drop, the equivalent
diameter and the corresponding mean temperature.

This is sketched in figure 8, where the average temperature of each drop (represented by
a dot) is shown as a function of its equivalent diameter, at different time instants (between
t+ = 1050 and t+ = 2400). Each panel refers to a different Prandtl number. Note that at
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Figure 8. Scatter plot of the drop equivalent diameter d+
eq against the drop average temperature, θ̄d,i. Each

dot represents a different drop while its colour (black to grey colour map) identifies different times, from
t+ = 1050 (black) up to t+ = 2400 (grey). Each panel refers to a different Prandtl number. A sketch showing
drops of different equivalent diameters is reported in the upper part of (a).

t+ = 2400, the case Pr = 1 has almost reached the thermodynamic equilibrium (figure 5).
It is clearly visible that regardless of the considered time, small drops have an average
temperature close to the equilibrium one. This is particularly visible at smaller Prandtl
numbers, i.e. when heat transport is faster, but it can be observed also at larger Pr. In
contrast, the average temperature of larger drops is larger. Hence, the average temperature
of the drops seems directly proportional to the drop size, as can be argued considering
that the heat released by the drop, and hence its temperature reduction, is ∂θd/∂t ∝ d−1

(3.14). It is therefore not surprising that the scatter plot at a given time instant is
characterized by dots distributing in a stripes-like fashion, with a slope that decreases
with time. This behaviour is observed at all Pr, although the range of drops temperature
(y axis) at small Pr is definitely narrower (because of their larger heat loss) compared
to that at large Pr. It is also interesting to note – in particular, at Pr = 4 and Pr = 8 in
panels (c,d) – the presence of drops with a temperature smaller than the equilibrium one
(dots falling below the horizontal line that marks the equilibrium temperature). We can link
this behaviour to the small relaxation time of small drops that therefore adapt quickly to
the local temperature of the carrier fluid, which can be smaller than the equilibrium one for
two main reasons. First, at the early stages of the simulations and at high Prandtl numbers,
the temperature of the carrier fluid is lower than the equilibrium one. Second, temperature
fluctuations (of both negative and positive signs) are present also in the carrier fluid.
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Figure 9. The PDF of the temperature fluctuations, θ ′
d = θd − θ̄d inside the drops. Each case is reported with

a different color (violet to light pink) depending on the Prandtl number. The PDFs obtained at two different
time instants: (a) t+ = 600 and (b) t+ = 1500. The PDFs obtained at two rescaled time instants: (c) t̃+ = 600
and (d) t̃+ = 1500, where the rescaled time is computed as t̃+ = t+/Pr2/3. For (c,d), the corresponding t+ is
reported between brackets.

These fluctuations, in the form of hot/cold striations, are more likely observed at large
Pr (see the striation-like structures at Pr = 8 in figure 3d).

3.7. Temperature fluctuations inside the drops
In many applications, in particular, to evaluate mixing efficiency and flow homogeneity,
not only is the average temperature of drops important, but also its space and time
distribution inside the drops. To understand it, we now look at the PDF of the temperature
fluctuations inside the drops,

θ ′
d = θd − θd, (3.23)

where θd is the local temperature inside the drop and θ̄d is the average temperature of all
drops at a certain time (as per figure 5). Results are shown in figure 9. Figure 9(a,b) shows
the PDF of θ ′

d at different Pr, and at two different time instants: (a) t+ = 600 and (b)
t+ = 1500. Figure 9(c,d) shows the PDFs obtained at two different rescaled time instants,
t̃+ = t+/Pr2/3: (c) t̃+ = 600 and (d) t̃+ = 1500.
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Considering first figure 9(a) (t+ = 600), we notice that all PDFs have a rather regular
shape, characterized by the presence of both positive and negative fluctuations (with
respect to the average temperature), with a slight asymmetry towards the positive ones
(positive fluctuations are more likely observed). A comparison between the curves
obtained at different Pr shows that the range of temperature fluctuations is wider at larger
Pr. This is due to the small thermal diffusivity at large Pr, which allows temperature
fluctuations in the drop to survive much longer before they are damped and spread
by diffusion. Naturally, at later times (figure 9b, t+ = 1500), the range of temperature
fluctuations reduces. Indeed, as heat is transferred from the drops to the carrier fluid, the
maximum temperature of drops reduces and so does the range of temperature fluctuations
inside the drop. This trend is more pronounced for negative fluctuations, as the minimum
temperature inside the drops is somehow bounded by the temperature of the carrier fluid
(which increases only a little, from θ̄c,0 = 0 to θeq = 0.054, during the simulation). This
latter observation is visible in the shape of the PDFs at Pr = 1, 2 and 4, since the system is
closer to the thermal equilibrium at this time instant (the thermal equilibrium is identified
in panel b by a vertical dashed line and marked with a label, θPr

eq ): a sharp drop of
the PDF, which does not significantly trespass the θPr

eq limit, is observed. In contrast,
positive temperature fluctuations are subject to relatively weaker constraints (they are
only bounded by the maximum initial temperature of the drops). This results in a PDF
that gets asymmetric, positively skewed. It is also interesting to observe the development
of a pronounced peak about the equilibrium temperature θPr

eq , which corresponds to
the presence of small drops (generated by breakages events) that – given their small
thermal relaxation time and heat capacity – almost immediately adapt to the equilibrium
temperature (see also figure 2d, f ).

However, a discussion on the temperature fluctuations, captured from flows at different
Pr and after the same time t+ from the initial condition, could be misleading because it
puts in contrast flows at different thermal states (i.e. different average temperatures and
different temperature gradients, see figure 5). To filter out this effect, we compute the
PDFs of the temperature fluctuations at the same rescaled time instants t̃+ = t+/Pr2/3. By
doing this, all cases can be considered at similar thermal conditions (see also figure 6).
The resulting PDFs, at t̃+ = 600 and t̃+ = 1500, are shown in figure 9(c,d). Note that
for the sake of clarity, the corresponding t+, which is different from case to case, is
reported between brackets in the legend. In the rescaled time units, the collapse between
the different curves is quite nice. The slight difference between the curves is due to the
fact that, although the system is at the same thermal state (same t̃+), it is at a different flow
state (different t+), i.e. the instantaneous DSDs are different. This gives the slightly larger
negative fluctuations at larger Pr (which, being at a later stage, is characterized by the
presence of smaller and colder drops), and slightly larger positive fluctuations at smaller
Pr (which, being at an earlier flow state, is characterized by the presence of larger and
warmer drops).

From a closer look at figure 9(d) (t̃+ = 1500), we note very clearly the constraint set
by the thermal equilibrium condition: the PDF cannot significantly trespass the limit
represented by θeq (vertical dashed line), which is very similar for all Pr, given the similar
thermal state. Also visible is the peak, already discussed in figure 9(b), which emerges
very close to the equilibrium temperature θeq and that is due to the presence of small drops
that adapt quickly to the local temperature of the carrier fluid. As previously noticed in
figure 9(c), the higher probability of finding small drops at lower Pr is also responsible for
the narrowing of the PDF (reduction of positive temperature fluctuations).
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4. Conclusions

In this work, we studied heat transfer in a turbulent channel flow laden with large
and deformable drops. The drops are initially warmer than the carrier fluid and as the
simulations advance, heat is transferred from the drops to the carrier fluid. Simulations
considered a fixed value of the Reynolds number, Reτ = 300, and Weber number, We = 3,
and analysed different Prandtl number values, from Pr = 1 to Pr = 8. The Prandtl number
is changed by changing the thermal diffusivity. The investigation is based on the DNS of
turbulent heat transfer, coupled with a PFM used to describe interfacial phenomena. First,
we focused on the drop dynamics, observing that after an initial transient (up to t+ =
1000), the DSD reaches a quasi-equilibrium condition where it follows the scaling d+

eq
−3/2

in the coalescence-dominated regime and d+
eq

−10/3 in the breakage-dominated regime.
The threshold between the coalescence-dominated and the breakage-dominate regimes
is represented by the Kolmogorov–Hinze scale. Then, we characterize the behaviour of
the average temperature of the drops and of the carrier fluid: as expected, the average
temperature of drops decreases in time, while the average temperature of the carrier
fluid increases in time, until reaching the equilibrium condition of uniform temperature
in the whole system. We clearly observed that a higher Prandtl number results in a
longer time required for the system to reach the equilibrium temperature. Interestingly, the
time behaviour of the temperature profiles of both drops and carrier fluid is self-similar.
Building on top of these numerical results, we developed a phenomenological model
that can accurately reproduce the time evolution of the mean temperatures at all Prandtl
numbers considered here. This model gave us the opportunity to introduce a new
self-similarity variable (time, t̃+) that accounts for the Prandtl number effect, and by
which all results collapse on a single curve. In addition, we also computed the heat transfer
coefficient H (and its dimensionless counterpart, the Nusselt number Nu) and showed that
it scales as H ∼ Pr−2/3 (which corresponds to a Nusselt number scaling Nu ∼ Pr1/3) at
the beginning of the simulation, and tends to H ∼ Pr−1/2 (or alternatively, Nu ∼ Pr1/2)
at later times. These different scalings are consistent with previous literature predictions
and can be explained via the boundary layer theory (Appendix A). The effects of the
Prandtl number on the temperature distribution inside the drops have been investigated.
We observe that by increasing the Prandtl number, the PDFs become wider and thus large
temperature fluctuations are more likely to be observed. Interestingly, when the PDFs are
compared at the same rescaled time t̃+ (i.e. accounting for the Prandtl number effect),
all curves collapse on top of each other, with only minor differences possibly due to
the different instantaneous DSD. The effect of the drop size was also discussed: small
drops adapt faster to the equilibrium temperature, thanks to their small heat capacity,
compared to larger drops. Finally, it must be pointed out that since the different phases
of a multiphase flow can have different thermophysical properties, Prandtl numbers can be
also different from phase to phase. This aspect, which was not considered in the present
work, will be the topic of a future study. In addition, in the present work, we have assumed
a constant and uniform surface tension. However, in many circumstances, surface tension
does depend on temperature, therefore inducing thermocapillary effects. This will also be
the subject of a future investigation.
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Appendix A. Effects of slip condition on the velocity and thermal boundary layer
evolution

In this section, we derive and solve the equations that describe the evolution of the
boundary layer on a heated flat plate that is parallel to a constant unidirectional flow.

In addition to the standard description of the boundary layer, where no-slip conditions
on the plate are considered (Prandtl 1905; Blasius 1908), here we consider also the effect
of a slip velocity on the velocity and thermal boundary layers (Martin & Boyd 2006;
Bhattacharyya, Mukhopadhyay & Layek 2011; Aziz, Siddique & Aziz 2014). Following
the standard approach (Schlichting & Gersten 2016), the continuity, Navier–Stokes and
energy equations in 2-D are

∂u
∂x

+ ∂v

∂y
= 0, (A1)

u
∂u
∂x

+ v
∂u
∂y

= − 1
ρ

∂p
∂x

+ ν
∂2u
∂y2 , (A2)

u
∂T
∂x

+ v
∂T
∂y

= a
∂2T
∂y2 , (A3)

where x is the direction parallel to the wall and y the direction normal to the wall, see
figure 10. The boundary conditions, accounting also for the slip velocity, read as

u(x, y = 0) = k
∂u
∂y
(x, y = 0), (A4)

v(x, y = 0) = 0, (A5)

u(x, y → +∞) = u∞, (A6)

T(x, y = 0) = Tw, (A7)

T(x, y → +∞) = T∞, (A8)

where k is a parameter that controls the amount of slip at the wall (no-slip for k = 0,
up to free-slip for k → +∞), u∞ and T∞ are the free stream velocity and temperature,
and Tw is the constant temperature of the flat plate. To solve the system of equations,
we use the method of similarity transformation. First, we consider the continuity and
Navier–Stokes equations. Following Blasius (1908), we introduce the following similarity

978 A12-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-7777-6665
https://orcid.org/0000-0001-7777-6665
https://orcid.org/0000-0001-7618-7797
https://orcid.org/0000-0001-7618-7797
https://orcid.org/0000-0002-3849-315X
https://orcid.org/0000-0002-3849-315X
https://orcid.org/0000-0002-7515-7147
https://orcid.org/0000-0002-7515-7147
https://doi.org/10.1017/jfm.2023.1002


Heat transfer in drop-laden turbulence

transformation:

η = y
√

u∞
νx
. (A9)

We can define a dimensionless stream function, f (η), which depends only on the variable
η, as

f (η) = ψ(x, y)√
u∞νx

, (A10)

from which we can express the two dimensionless velocity components:

u
u∞

= f ′; v

u∞
= 1

2

√
u∞ν

x
(ηf ′ − f ), (A11a,b)

where f ′ denotes the first derivative with respect to η (the same notation is used for
higher-order derivatives). Upon substitution of these variables in the continuity and
Navier–Stokes equations, we obtain the governing equation for the dimensionless stream
function f (η):

f ′′′ + 1
2 ff ′′ = 0, (A12)

together with the boundary conditions

f ′(η = 0) = kf ′′(η = 0), (A13)

f (η = 0) = 0, (A14)

f ′(η → +∞) = 0. (A15)

Considering now the energy equation for the dimensionless temperature θ ,

θ = T − T∞
Tw − T∞

, (A16)

and using the similarity transformation, the governing equation for the dimensionless
temperature becomes

θ ′′ + 1
2 Prf θ ′ = 0, (A17)

where Pr = ν/α is the Prandtl number, and the following boundary conditions are applied:

θ(η = 0) = 1, (A18)

θ(η → +∞) = 0. (A19)

The governing equations (A12) and (A17), which constitute a boundary value problem, are
solved numerically via a shooting method which, avoiding the imposition of the boundary
condition (A6), stabilizes the computation over a wider range of η. The equations are
solved for different values of k, from k = 0 (no-slip) up to k = 5, at which the velocity
at the wall (η = 0) is � 70 % of the free stream velocity. The resulting velocity profiles
(rotated by 90◦ to be consistent with the sketch of figure 10) are shown in figure 11 for
different values of k. Panel (a) shows the effect of k on the streamwise component of
the velocity, while panel (b) shows the effect of k on the temperature profile. All the
results refer to Pr = 1, for which the temperature solution can be obtained as θ = 1 − f ′.
For the no-slip case (k = 0), the Blasius solution (velocity and temperature, shown by
the red circles) is recovered. As expected, by increasing k, the amount of slip at the plate
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Slip boundary u( y = 0) > 0
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Figure 10. Sketch of the momentum and thermal boundary layer dynamics on a flat plate characterized by a
uniform temperature, Tw, larger than the free stream temperature, T∞. In (a), no-slip conditions are enforced
at the wall (corresponding to a slip parameter k = 0), while in (b), partial slip is allowed at the wall. The
qualitative behaviour of the momentum and thermal boundary layer thickness is also shown for the two cases.
Both panels refer to a super-unitary Prandtl number.

5
(a) (b)

4

3

Blasius solution
No-slip (k = 0)
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η

Figure 11. (a) Streamwise velocity and (b) temperature profiles obtained for different values of the slip
parameter k = 0. Results are reported rotated by 90◦ for the sake of better interpretation and are obtained
considering Pr = 1. For the no-slip case (k = 0), the classical Blasius solution available in archival literature
for the velocity, f ′, and temperature, θ = 1 − f ′, is reported with red dots. By increasing the slip parameter k,
the velocity at the wall location η = 0 increases and larger temperature gradients are observed.

increases. As a consequence, the temperature profiles are also modified, generating larger
temperature gradients at the plate. This corresponds to a heat transfer increase, as also
observed in previous studies (Martin & Boyd 2006; Aziz et al. 2014).

Of specific importance, in the context of the model developed in the present paper, is
the evaluation, as a function of the slip parameter k and for different values of Pr, of the
ratio between the velocity and the thermal boundary layer thickness, respectively defined
as (Martin & Boyd 2006)

δ =
∫ +∞

0
(1 − f ′) dη and δt =

∫ +∞

0
θ dη. (A20a,b)

The ratio δt/δ is shown in figure 12 as a function of Pr and for different values of the
slip parameter k (different symbols). We notice that when the no-slip condition is enforced
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Figure 12. Ratio between the thermal and momentum boundary layer thickness as a function of the Prandtl
number and the slip parameter k. The scaling laws Pr−1/3 and Pr−1/2 are reported as reference. Moving from
k = 0 (no-slip) to k = 5 (slip), for a given value of the Prandtl number, the thermal boundary layer becomes
thinner thus leading to an increase of the heat transferred from the wall.

(k = 0), the ratio δt/δ ∼ Pr−1/3, in agreement with the thermal boundary layer theory on
flat plates (Schlichting & Gersten 2016). However, when a slip condition is introduced at
the wall (k > 0), the ratio δt/δ relaxes onto the scaling δt/δ ∼ Pr−1/2. This indicates that
at a given Pr, the thermal boundary layer for the slip case becomes thinner compared to the
no-slip case, and the heat transfer increases. In other words, heat transfer coefficients for
drops/bubbles (slip surfaces) can be higher compared to the corresponding values for solid
particles (no-slip surfaces) (Herlina & Wissink 2016). In particular, based on the previous
observations and on the model developed in § 3.4, we can obtain the following scalings for
the heat transfer coefficients:

H∗ ∝ Pr−2/3 for no-slip, (A21)

H∗ ∝ Pr−1/2 for free-slip. (A22)

Appendix B. Time evolution of the heat transfer coefficient

In this section, we report the time evolution of the heat transfer coefficient H, evaluated as
per (3.22), for the different values of the Prandtl number Pr considered here. Results are
shown in figure 13 as a function of the dimensionless time t̃+ = t+/Pr2/3.

Considering figure 13(a), we can observe that the heat transfer coefficient exhibits a
self-similar behaviour, and after an initial transient (after t̃ > 1000), it attains a steady-state
condition for all the different cases. Upon rescaling of the heat transfer coefficient H
by the factor Pr2/3, we observe a fair collapse of all curves on top of each other. Some
minor differences are perhaps observed at high Prandtl numbers. Note indeed that at high
Prandtl numbers, the curves become a bit more noisy, as the rescaling factor amplifies the
fluctuations of the heat transfer coefficient.
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Figure 13. Time evolution of the heat transfer coefficient as a function of the dimensionless time t̃+ =
t+/Pr2/3 for the different Prandtl numbers considered. In (a), the heat transfer is shown as per (3.22), while in
(b), it is rescaled by the factor Pr2/3.
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