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The strong coupling of quantum emitters to a cavity mode has been of paramount importance in the
development of quantum optics. Recently, also the strong coupling to more than a single mode of an
electromagnetic resonator has drawn considerable interest. We investigate how this multimode strong
coupling regime can be harnessed to coherently control quantum systems. Specifically, we demonstrate that
a Maxwell fish-eye lens can be used to implement a pulsed excitation exchange between two distant
quantum emitters. This periodic exchange is mediated by single-photon pulses and can be extended to a
photon-exchange between two atomic ensembles, for which the coupling strength is enhanced collectively.
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Introduction.—The coherent transfer of an excitation
between different quantum systems is an essential process
in quantum optics, with applications in quantum commu-
nication [1], quantum computation [2], and quantum
networks [3]. At the heart of many implementations lies
the coupling to monochromatic light fields, permitting
Rabi oscillations between the electromagnetic field and
quantum emitters [4].
Going beyond the paradigmatic Jaynes-Cummings

model, the coupling of quantum emitters to more than a
single mode has recently drawn considerable interest. A
strong coupling to several modes is reached when the
emitter-mode coupling strength becomes comparable to
the free spectral range [5]. This multimode strong coupling
regime (also known as the superstrong coupling regime) has
been at the focus of recent theoretical studies [5–10] and
experimental realizations, using photonic [11–18] or pho-
nonic modes [19,20].
The profound impact of single-mode effects on quantum

technology raises the question of whether mechanisms of
similar scope can also be engineered making use of many
modes in a cavity. In contrast to the single-mode case, the
dynamics in multimode cavities are, in general, more
complex as they are dictated by a complex interference
of all involved modes, whose individual properties are
determined by the geometry of the underlying resonator.
This, in turn, suggests that a suitable choice for the cavity
geometry is the key to tame the dynamics and harness it for
the coherent control of quantum systems.

In this Letter, we demonstrate that, with a Maxwell fish-
eye (MFE) lens [21,22] as a resonator, it is possible to
coherently transfer an excitation between two distant
quantum emitters when making use of their strong coupling
to multiple modes. As a gradient index lens, the MFE lens
comprises a radially changing refractive index and comes
with the remarkable property that any point in the lens has a
corresponding focal point mirrored at the lens’s center.
From the viewpoint of geometrical optics, light rays
propagating in the lens form circular arcs, and all rays
emitted from one point converge at the antipodal point after
reflecting from the lens's circular boundary mirror [see
Fig. 1(a)]. The presence of a continuum of pairs of focal
points provides decisive advantages when considering
distributed emitters or emitters that cannot be considered
pointlike. Because of their extraordinary properties, MFE
lenses have been studied, e.g., for imaging [23–27] and

FIG. 1. (a) 2D Maxwell fish-eye lens with two opposing
quantum emitters. Within the lens, all rays emerging from one
atom form circular arcs due to the radial refractive index gradient
and converge at the second atom [23]. All light paths that connect
the two atoms with one reflection at the bounding mirror have the
same optical length. (b) Illustration of relevant coordinates and
parameters in the lens. (c) Radial refractive index gradient within
the lens [cf. Eq. (2)].
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coherent perfect absorption [28], as well as for radiation
emission [29]; also generalizations of theMFE concept have
been proposed [30–33]. In the context of quantum optics,
the MFE lens has recently come into focus for the creation
of entanglement by the dipole-dipole interactions it may
mediate [34]. In contrast, we consider the MFE lens in a
regime, where the light field in the cavity exhibits strong
memory effects.
Within the multimode strong coupling regime, it has been

shown both theoretically and experimentally that a single
excited atom may emit its excitation into the electromag-
netic field and (partially) reabsorb the corresponding single-
photon pulse when it returns to the atom [7,10,16,35].
Hence, when such a pulse is emitted by an excited atom in a
MFE lens, one may expect the pulse to be refocused at the
opposite point. In the following, we consider a second atom
placed at this opposite point and study the dynamics of the
two quantum emitters. Taking into account the quantized
electromagnetic field inside the cavity, we demonstrate
explicitly the emission of a single-photon pulse, its propa-
gation through the cavity, and its refocusing at the second
atom. In the most straightforward implementation, the pulse
does not get fully absorbed by the second atom, which we
attribute to a mismatch in the temporal pulse shape [36–39].
By spectrally engineering the mode-emitter coupling,
we can increase the efficiency of this exchange to a value
near unity, thus implementing a pulsed passive swap
operation [40] that relies on the interaction with many
modes. On that basis, we then show that the dynamics of
two emitters is readily translated to two atomic ensembles,
where the coupling strength is collectively enhanced [12].
Our results demonstrate how concepts from classical
photonics can be translated to the quantum regime when
emitters couple strongly to many modes.
The model.—We model the above system using the

Glauber-Lewenstein quantization [34,41] where the dynam-
ics is described by the Hamiltonian

H ¼ ℏωa

X

i

jeiiheij þ ℏ
X

lm

ωla
†
lmalm −

X

i

diEðriÞ; ð1Þ

comprising the two-level atoms, the quantized field, and the
coupling between them, respectively. Here, ωa is the atoms’
transition frequency and the excited (ground) state of the ith
emitter is denoted by jeii (jgii). Since we will extend the
discussion from two atoms to two atomic ensembles, we
keep the number of atoms general at this point. The
frequencies of the cavity modes are denoted by ωl and
the modes’ creation and annihilation operators obey the
usual commutation relations. We note that, while the above
interaction Hamiltonian is conventionally used, there has
been an ongoing debate regarding its gauge invariance for
multimode systems [42,43]. The key results of our present
work are, however, left unchanged by this issue.

The radially varying refractive index in the MFE lens is
given by

nðrÞ ¼ 2n0
1þ ðr=RÞ2 ; ð2Þ

where r is the in plane distance from the lens’s center and R
is the radius of the mirror, which forms the circular lens’s
boundary (see Fig. 1). Without loss of generality, we set the
minimal refractive index n0 ¼ 1 throughout the Letter and
assume the transverse thickness b of the lens to be far below
the lens’s radius R. The relevant transverse eigenmodes
f lmðrÞ in this refractive index profile are hence polarized
transversally to the plane and known analytically [34]. The
modes are indexed by l ¼ 1; 2; 3;… with angular index
m ¼ −ðl − 1Þ;−ðl − 3Þ;…; ðl − 1Þ and the modes’ eigen-
frequencies are ωl ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

=ðRn0Þ, i.e., the lth mode
is l-fold degenerate. The emitters couple to the modes via
the transverse electric field,

EðrÞ ¼ EþðrÞ þ E−ðrÞ; E−ðrÞ ¼
h
EþðrÞ

i†
;

EþðrÞ ¼ i
X

lm

ffiffiffiffiffiffiffiffi
ℏωl

2ε0

s

alm f lmðrÞ; ð3Þ

and the dipole moment, di ¼ dðσ†i þ σiÞẑ; σi ¼ jgiiheij, of
the atoms. We assume a Gaussian cutoff in frequency for the
atomic dipole moments d2 ¼ d20 exp½−ðω − ωaÞ2=ð2ω2

cÞ�,
with cutoff frequency ωc [7,35,44]. Further, we employ the
rotating wave approximation, i.e., we neglect non-
excitation-preserving terms aσ, a†σ†. Note that this approxi-
mation is not necessarily guaranteed to be compatible with
the multimode dynamics [45,46], since ultrastrong coupling
effects may eventually become relevant [11,17,35,47–49]
(an explicit justification for the validity of the approximation
for our work will thus be provided at the end of the Letter).
The mode-independent coupling prefactors are summarized
in the constant g ¼ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω3
a=ðε0bc2ℏÞ

p
. While g parametr-

izes the coupling strength between modes and atoms, it does
not represent the couplings’ actual values, which are
reduced by mode specific prefactors [see Eq. (3)]. We
further note that, for coupling strengths far below the free
spectral range, Rabi oscillations between two emitters can
be recovered in accordance with [34].
To study a pulsed excitation transfer, we consider

a single excitation only, i.e., we can represent the wave
function as jψðtÞi ¼ P

i ciðtÞj0…01i0…0iaj0…0iphþP
lm cphlmðtÞj0…0iaj0…01lm0…0iph, comprising atomic

and photonic degrees of freedom, and the dynamics can
be calculated by standard tools (see the Supplemental
Material [50]). Using this wave function, the observable
electric field intensity hE−ðrÞEþðrÞi is directly accessible
and subsequently serves as an observable for the field in
the cavity [51,52].
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Single-photon pulses.—We consider a MFE lens of
radius R ¼ 3λa ¼ 6π=ωa with two emitters placed opposite
to one another at ra ¼ 0.6R (see Fig. 1). The coupling
strength is g ¼ 0.5ωa and the cutoff frequency is set to
ωc ¼ 2ωa; i.e., the cutoff function is flat around the atomic
transition frequency [7], leading to about 105 modes
participating in the dynamics. Figure 2 shows the resulting
excitation probabilities of the two atoms as a function of
time when the left emitter is initially excited. Over some
time, the emitter transfers the excitation to the cavity and
returns to its ground state. Subsequently, the excitation
probability of the right-hand emitter starts to increase when
the time t ¼ lopt=c ¼ Rπn0=c is reached. This time pre-
cisely corresponds to the propagation duration of light from
one emitter to the other one, including one reflection at the
cavity boundary [50].
Here, since we have full access to the quantized photonic

degrees of freedom, we can directly access the dynamics
inside the cavity between the initial emission and the
following absorption. The insets in Fig. 2 show the expect-
ation value of the intensity at different times. During the
initial emission, a radially symmetric pulse emerges. This
single-photon pulse propagates and is reflected wherever it
strikes the cavity boundary. Notably, due to the refractive
index gradient, the wavefront deforms during propagation.
Since the emitters’ positions constitute a pair of focal points,
the pulse eventually refocuses on the second emitter and is
partly absorbed. Note that the spot size of the focused pulse
may be smaller than the atomic wavelength λa since the
emitter also interacts with high frequency modes and acts as
a drain for the light field [53,54]. Before the absorption by
the right emitter, both emitters are close to their ground

state. The absorption thus witnesses significant memory
effects in the light field that would not be compatible with a
Born-Markov approximation [34].
While the pulse emitted by the left atom is successfully

refocused on the right atom, the excitation is not fully
transferred there. This can be understood by considering
that the absorption process is the time reverse of the
emission process, which has been studied in detail in
free-space setups [36–39]. Since the emission from the
left atom is of an exponential-like shape, the resulting pulse
has an extended decaying tail. For perfect absorption,
however, the time-reversed pulse, i.e., an increasing tail
followed by the wavefront peak, would need to arrive at the
right emitter. For the dynamics in Fig. 2, the mismatch in
the temporal pulse shape results in an overlay between the
absorption and the reemission dynamics for the right atom;
i.e., when the excitation probability of the right atom
reaches its peak, a new pulse is already propagating toward
the left atom (see rightmost inset in Fig. 2). This process
leads to a fast degradation of the pulsed excitation exchange
between the two atoms.
Coherent exchange by spectral engineering.—Previous

work suggests that a viable path to overcome the restrictions
of the pulse shape is to artificially modify the pulse emission
and absorption [36–39,55]. In the following, we show that
in our setup we can achieve a nearly coherent transfer of the
excitation by spectrally engineering the coupling strength
between the emitters and the modes of the resonator.
Specifically, we modify the couplings such that the atoms
couple to a reduced number of about 200 modes (amounting
to about 15 frequencies with degeneracies) close to the
resonance frequency ωa. Such an engineered coupling
strength may be reached, e.g., by off resonantly driving
Raman transitions with higher lying states [55,56].
Alternatively, by employing Bragg mirrors [57–59], the
coupling may effectively be reduced to modes lying in the
band gap, thus realizing the coupling to the restricted range
of modes.
We parametrize the engineered coupling strength

by reducing the cutoff frequency to ωc ¼ 0.1ωa [see
Fig. 3(b)], which results in a symmetrically distributed
Gaussian coupling. In Fig. 3(a), we consider the corre-
sponding dynamics for the left emitter initially excited. We
now find that, after the propagation, the excitation is
almost completely reabsorbed by the second emitter. This
greatly enhanced absorption efficiency can be understood
when considering the shape of the emitted pulse shown in
the intensity distributions in Fig. 3(a). Because of the
spectral engineering, the emitted pulse is now symmetric
around its peak and, therefore, time-reversal symmetric.
Consequently, the pulse is absorbed as efficiently by the
right emitter as it was emitted by the left emitter. Without
the spectral engineering, the coupling constants showed a
pronounced asymmetry, since, first, the relevant modes’
frequencies were bounded by zero from below, but

FIG. 2. Atom and multimode dynamics in a Maxwell fish-eye
lens. The excited state populations of the two emitters are shown
as a function of time. The insets display the intensity expectation
value of the quantized electric field hE−ðrÞEþðrÞi for five
different times, as indicated by the links to the curves. Note that
peaks of exceeding height were clipped in the insets. A video
illustrating the dynamics is provided in the Supplemental
Material [50].
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extended far beyond the atomic transition frequency, and,
second, the coupling constants obeyed their natural fre-
quency dependence ∼ ffiffiffiffiffi

ωl
p

[see Eq. (3)]. Even with the
spectral engineering, we see that the excitation probability
at the right atom peaks slightly below unity, which can be
shown to be due to an imperfect time-reversal symmetry
of the emitted pulse. This remaining infidelity can be
reduced by optimizing the coupling, the cutoff and the
geometrical parameters, together with the details of the
coupling constants’ frequency dependence (see the
Supplemental Material [50]).
Note that, while the spectral engineering reduced the

number of modes, the multimode nature of the dynamics
remains apparent by the pulsed emission and absorption.
Further, the emitter-cavity system remains strongly non-
Markovian, as in between the emission and absorption both
emitters reach their ground state and the complete excita-
tion is reversibly stored in the electromagnetic field.
Since both atoms emit pulses that can be absorbed

efficiently, an autonomous periodic excitation swapping
is established. Remarkably, since any point is a focal point
in the MFE lens, the pulses between the emitters do not
suffer from dispersion during propagation. The mechanism
studied in Fig. 3 further works universally also for MFE
lenses with larger diameters.
Collective excitation exchange.—Experimentally, it may

be hard to reach the multimode strong coupling regime with
single emitters. It is thus worthwhile to point out that this
regime has recently been reached through collective
enhancement of the coupling between an ensemble of
atoms and a cavity [12].

To showcase that the pulsed excitation exchange by
means of dielectric cavities also applies to collective
multimode strong coupling, we replace each emitter by a
cloud of atoms. As for the single emitters, we place the
centers of the ensembles opposite to one another in the
MFE lens. Within each ensemble, the atoms are normal
distributed around the ensemble center [see Fig. 4(a)].
In Fig. 4, we consider N ¼ 100 atoms per ensemble and

reduce the coupling strength by a factor of
ffiffiffiffiffiffiffiffi
100

p
as

compared to Fig. 3. When the left ensemble is initially
prepared in a symmetric Dicke state, jψð0Þi ¼P

N
i¼1 j0…01i0…0ia;leftj0…0ia;rightj0…0iph=

ffiffiffiffi
N

p
, we can

clearly observe a pulsed excitation swapping between
the two ensembles comparable to Fig. 3. This shows that
the exchange mechanism is robust when a distributed
ensemble is considered. Even when the distribution of
the atoms is further broadened, the pulsed dynamics
remains intact, although with reduced efficiency. On the
other hand, the dynamics in Fig. 4(b) can be brought
arbitrarily close to the one in Fig. 3(a) by narrowing the
ensemble distribution.
Rotating wave approximation.—Since the relevant mode

frequencies may deviate significantly from the atomic
transition frequency ωa, it is not a priori clear whether
counterrotating terms can be neglected in the interaction
between atoms and modes. In the following, we therefore
explicitly verify the applicability of the rotating wave
approximation to the setup of Fig. 3, which represents
the principal result of our Letter. In first order, the counter-
rotating terms couple the single-excitation subspace to the
three-excitation subspace. Hence, we take into account in
our simulation all states that contain at most three excita-
tions and monitor the cumulative population Pðj3iÞ of the
states with exactly three excitations as a function of time.

FIG. 4. Collective excitation exchange between two atomic
ensembles in a Maxwell fish-eye lens. (a) Spatial distribution of
the emitters in the lens. The two ensembles opposing each other
consist of N ¼ 100 atoms each. The atoms are normal distrib-
uted with a standard deviation of σ ¼ 0.02R around the two
centers at ra ¼ 0.6R at opposite positions in the cavity. (b) Col-
lective excitation probabilities of the ensembles jCleftðrightÞj2 ¼P

i jci;leftðrightÞj2 as a function of time. Initially, the excitation is
distributed among the left ensemble as a symmetric Dicke state.
The individual coupling strength of each atom of the ensemble is
g ¼ 0.05ωa, while the other parameters are analogous to Fig. 3.

FIG. 3. Coherent excitation exchange in the Maxwell fish-eye
lens. (a) Structured in analogy to Fig. 2. All parameters but the
cutoff frequency ωc ¼ 0.1ωa are left unchanged as compared to
Fig. 2. Because of the narrower range of modes participating in
the dynamics, a high exchange efficiency is achieved. (b) Illus-
tration of the spectral engineering (ωc ¼ 0.1ωa) in comparison
with the cutoff used in Fig. 2. A video illustrating the dynamics is
provided in the Supplemental Material [50].
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Figure 5 shows that Pðj3iÞ remains around 5 × 10−3; i.e.,
the dynamics is largely unaffected by counterrotating
terms.
Conclusions.—We demonstrated that a Maxwell fish-eye

lens can be used to transfer an excitation between distant
quantum emitters in the multimode strong coupling regime.
Our analysis shows that this exchange relies on the emission
of single-photon pulses and can be highly efficient with the
application of judicious spectral engineering of the atom-
cavity coupling. In the absence of quantum emitters, the
Maxwell fish-eye lens is well understood in classical
photonics; our study shows that, in the multimode strong
coupling regime, this intuition also applies to the resonator’s
quantum properties, thus providing a promising platform for
multimode quantum physics. Interesting extensions to more
than two emitters could be implemented with generaliza-
tions of the traditional MFE lens [30–33].
The following numerical packages have been employed

in this work: [60,61].
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