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a b s t r a c t

To ensure reliable and efficient operation of fuel cell systems, it is important to monitor them online.
However, placing sensors inside the fuel cell is often challenging, so virtual sensing using an efficient
state observer is used in this study. Detecting local internal phenomena, such as reactants’ starvation,
membrane dryout/flooding, and nitrogen accumulation, requires knowledge of the spatial distribution
of internal states. Lumped-parameter models are not suitable for this, as they use a single variable to
describe parameters such as hydrogen concentration. Instead, a high-order distributed-parameter fuel
cell model is used to predict the spatial profiles of various internal states. An observer algorithm is
employed to correct the predicted quantities using a few measurements taken at the system boundary.
This update step only considers dominant dynamics from a reduced model to adjust all system states
accordingly, making it computationally efficient and robust. The observer algorithm’s performance was
verified against a high-fidelity model through detailed simulations.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The share of hydrogen in the overall energy sector is expected
o increase due to the transition to renewable energy sources.
uel cells play an important role in converting hydrogen back into
ower. The application of fuel cells is envisaged both in transport
cars, trucks, railways, and aviation) and in stationary systems
industry and buildings) (IEA, 2019, 2021).

Polymer electrolyte membrane fuel cells (PEMFC) are an at-
ractive zero-emission power source due to their high efficiency
nd other benefits such as low operating temperature, and fast
tartup (İnci et al., 2021). Fuel cells in automotive applications
re of particular interest, and their development is a challenging
nd wide research area. One of the major topics still not fully
esolved and under investigation is onboard system monitoring
nd diagnostics of fuel cell electric vehicles (FCEV). Evidently,
ood system observation is crucial for safe and efficient operation
nder highly dynamic conditions which are usually present in
CEVs. Measurement signals commonly available on FCEVs such
s system voltage, anode/cathode inlet/outlet pressures and hu-
idity are of course necessary, but not sufficient to detect critical
onditions that may occur inside the system during operation.
nformation about internal states such as species concentrations
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352-4847/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
in gas channels (GC) and gas diffusion layers (GDL), species den-
sities and membrane water content, to name a few, gives more
profound insight necessary for proper system monitoring and
diagnostics. Methods for measuring the internal states of the
system have been developed in the past. For example, neutron
imaging and magnetic resonance imaging have been commonly
used to measure water concentration inside a fuel cell (Wang
et al., 2021; Lee et al., 2021). Furthermore, nitrogen and oxygen
concentrations have been measured using gas chromatography
analysis (Dobrokhotov and Larin, 2019). Temperature at certain
points inside the cell has been determined using distributed fibre
optic sensors (Zaghloul et al., 2021). However, measuring devices
for such quantities are expensive, relatively big, hard to imple-
ment even under laboratory conditions, and outright impossible
in vehicles. These methods have been summarised in Table 1.

A promising alternative, which is explored in this paper, is
virtual sensing using a state observer. The state observer uses a
model and uses available measurement signals to estimate the
internal states of the system. An observer generally works as
follows: a model is used to predict the same signals that are being
measured by the available sensors, called outputs. In doing so,
the internal states are estimated. The states are controlled using
an algorithm to match the measured outputs. When the outputs
are matched and if the system is observable, the internal states
of the model match the unmeasurable reality. It is to be noted
that for this to hold, the plant-model mismatch must be minimal.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

State variables of the fuel cell quasi-2D model

γH2 Hydrogen mole fraction
γN2 Nitrogen mole fraction
γO2 Oxygen mole fraction
λ Membrane water content
ρ Gas density
ξH2 Hydrogen mass fraction
ξN2 Nitrogen mass fraction
ξO2 Oxygen mass fraction
i Local current density
p Gas pressure
V Cell voltage
v Gas velocity

Number of discretisation nodes

Nca Number of discretisation nodes in the
anode channel

Nca Number of slices
Ncc Number of discretisation nodes in the

cathode channel
Nga Number of discretisation nodes in the

anode gas diffusion layer
Ngc Number of discretisation nodes in the

cathode gas diffusion layer
Nmem Number of discretisation nodes in the

membrane

State space model

χ State vector of the whole system
χca State vector of the anode channel
χcc State vector of the cathode channel
χga State vector of the anode gas diffusion

layer
χgc State vector of the cathode gas diffusion

layer
χmem State vector of the membrane
A System matrix
b Right-hand side vector
u Input vector
x State vector of the whole system in-

cluding past states
y Output vector
k Current time step

Observer

Q̃ Reduced order process noise covariance
Q Process noise covariance
R Measurement noise covariance
∆x̂xx State correction
x̂xx− Predicted state vector
ŷyy− Predicted output vector
T Transformation matrix from full state-

space to reduced state-space
yyymeas Measurement vector
ÃAAr Reduced order Jacobian matrix
C̃CC r Reduced order output matrix
K̃KK Kalman gain
2

P̃PP Updated error covariance matrix
P̃PP

−

Predicted error covariance matrix
S̃SS Innovation covariance

Balanced truncation

xs Scaled state vector
T̃ Transformation matrix from physical

state-space to balanced realisation
x̃ State vector in the balanced realisation
ñr Number of modes
x̃e Eliminated states
x̃r State vector in the reduced state-space
nx Number of states

Therefore, before the model can be used as a state observer, it
must first be validated. In this work, however, as it is explained
later on, the simulated reality and the model used as basis for
the observer have the same underlying structure, but different
number of discretisation points. For that reason, the validation of
the model used by the observer is considered to be fulfilled.

Fuel cell models which are appropriate for observer design can
be categorised on the basis of their underlying system dynam-
ics (Hidayat et al., 2011) into:

• Lumped-parameter models, whose dynamics are described
by ordinary differential equations.

• Distributed-parameter models, whose dynamics are descri-
bed by partial differential equations.

The vast majority of fuel cell system observers were developed
with lumped-parameter models with aggregated states. However,
pressure, gas concentration etc. are non-uniformly distributed in-
side the cell. Distributed-parameter models are, therefore, neces-
sary to describe along-the-channel effects and local phenomena.

Literature on observers for distributed states in fuel cells is
scarce, as evident from a recent review on the topic of fuel cell
observers (Yuan et al., 2020). A simplified, 10-element model for
observing the water distribution profile is reported in Sarmiento-
Carnevali et al. (2017). However, the focus of that paper is de-
veloping the controller. Concerning publications with a detailed
description of the observer development, to the best of our
knowledge, only Luna et al. tackled this topic in their work (Luna
et al., 2015, 2016b,a, 2017). Their fuel cell observer employs a
finite volume model and is based on assumed measurements of
species concentration at the system boundary. In their paper, they
only show the time-evolution of the species at the middle point
of the channels.

In their work they use a sliding mode observer, a discontinu-
ous type of observer that uses some input variable as corrective
action. This input variable does not have a clear meaning and it
is not seen in the results section of the paper, making it difficult
to grasp the overall result. The complexity of an observer, such as
the one proposed by Luna et al. naturally increases with the num-
ber of discretisation volumes (system resolution). This problem
is resolved in the present work by using dominant-modes-only
Jacobians for the update step of the observer (explained later on),
resulting in an efficient observer algorithm. The observer is based
on easily attainable measurements at the system boundary such
as the cell voltage as a measured output and other commonly
known quantities, namely the inlet/outlet pressures, the inlet
gas composition, and the current density demand as boundary
conditions. The actual distribution of the internal states of the
system is presented in the figures in Section 6. The time evolution
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Table 1
Measurement techniques for fuel cell internal states.
Ref Measurement Method

Wang et al. (2021), Lee et al. (2021) Water concentration Neutron imaging,
magnetic resonance

Dobrokhotov and Larin (2019) N2 and O2 concentrations Gas chromatography
Zaghloul et al. (2021) Local temperature Distributed fibre optic sensors
Table 2
Existing observers for estimation of the internal states of fuel cell systems.
Ref Observer type Model type Performance object(s)

Yuan et al. (2020) (Review paper) Extended Kalman filter Single phase, 8th order, lumped Oxygen partial pressure
Unscented Kalman filter Single phase, 4th order, lumped Nitrogen partial pressure at anode
Luenberger Two-phase, 6th order, lumped Current density difference
First-order sliding mode Single phase, 6th order, lumped Manifold pressure and mass flow
High order sliding mode Two-phase, 13th order, lumped Hydrogen and oxygen partial pressures

Luna et al. (2015, 2016b,a, 2017) High order sliding mode Single phase, distributed Hydrogen and oxygen partial pressures
along the channel
Table 3
Reduction techniques for Extended Kalman Filters with high-order models as its basis.
Ref Observer purpose Reduction approach

Farrell and Ioannou (2001) Storm track forecasting Balanced truncation
Khodadadi and Jazayeri-Rad (2011) Joint state and parameter estimation Dual EKF

of a continuous stirred tank reactor
Lee et al. (2007) Li-ion battery SOC estimation Equivalent circuit

model simplification
Park et al. (2013) Estimation of internal states Parallel structure of

of permanent magnet synchronous motors simplified models
Pernsteiner et al. (2021) Temperature estimation of Balanced truncation

a latent heat storage
of the whole distribution is shown in the videos found in the
supplementary material. In the present paper, a detailed quasi-
2D fuel cell model from Murschenhofer et al. (2018) is used as
the basis for a newly developed distributed-parameter fuel cell
observer. The representative observer types have been collected
in Table 2.

The observer algorithm chosen in this work is based on the
ell-known extended Kalman filter (EKF) (Jazwinski, 1970; Wish-
er et al., 1969).
When applying an EKF to high-order models, such as the

iscretised quasi-2D fuel cell model, two major problems can
rise: (1) the problem becomes infeasible to be solved in real
ime due to its computational complexity, and (2) the system
ecomes (almost) unobservable when the entire state dimension
s considered. To overcome these challenges, different types of
educed-order EKFs have been investigated, see for example Far-
ell and Ioannou (2001), Khodadadi and Jazayeri-Rad (2011), Lee
t al. (2007), Park et al. (2013), Pernsteiner et al. (2021). Model
eduction methods in observer design can be used to compute
educed-order system Jacobians necessary for the update step in
he EKF, explained in Section 4. In Table 3, different methods of
ealing with the problem of high-dimensionality are shown.
Model reduction approaches are applied to efficiently reduce

he system dynamics’ complexity while maintaining their dom-
nant behaviour. Especially model reduction in linear systems is
ell established, and the research topic has been broadly covered

n literature, see for example the review paper (Benner et al.,
015). An example for linear model reduction is the balanced
runcation introduced by Moore (1981) where the modes of the
ystem showing the smallest Hankel singular values are elim-
nated. For nonlinear systems, data-based approaches such as
he proper orthogonal decomposition (Brunton and Kutz, 2019)
r the dynamic mode decomposition (Schmid, 2010) can be an
ppropriate choice. The main idea behind these approaches is
he empirical investigation of data representative for a relevant
perating range. The data are decomposed into orthonormal basis
3

vectors using singular value decomposition (SVD). Few basis vec-
tors that describe the most characteristic system behaviour can be
extracted, and the system properties can be projected onto these
so-called modes.

In this work, the model reduction technique applied to obtain
the reduced-order system Jacobians is Balanced truncation. Only
the most dominant modes, whose Hankel singular values exceed
a defined threshold, are chosen to be reflected in the Jacobians,
the others are discarded. Particularly, the system is being suc-
cessively linearised, ensuring the validity of the Jacobian matrix
used in the observer. A simulation study is performed to test the
aforementioned approach. Measurements are taken at the system
boundary with the goal of estimating the unmeasurable internal
states. The full order quasi-2D model is used for prediction and
validation, but these two versions of the model differ in grid
sizes. Despite this model mismatch, the observer algorithm works
well. For the update step of the EKF, the reduced order system
Jacobians are used. The described procedure is depicted in Fig. 1.
All details and results are discussed in Section 6. The identified
research gap is to detect the distributed internal states of a fuel
cell in an efficient way with realistic measurements. The fuel
cell observer proposed for this purpose, which is based on a
high-fidelity model with distributed parameters and a dominant-
modes-only correction, has not yet been reported in the fuel cell
community. In particular, the temporal evolution of the internal
states’ spatial distribution is shown, highlighting the extent of
such an observer’s capabilities.

In summary, this paper shows an internal state estimation
framework using an on-board commonly available measurement
signal, i.e. system voltage. Moreover, the estimated states are not
lumped as in the majority of the literature, but their distribution
is shown. In literature (Luna et al., 2015), crucial simplifying
assumptions were made which were not made in this paper.
These include: no nitrogen crossover, availability of outlet con-
centrations measurements and assuming the fluxes between the
cathode channel and gas diffusion layer to be known.
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Fig. 1. Scheme of the fuel cell observer for estimating the distributed system state.
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The paper is organised as follows. In Section 2 the observa-
ion task is explained in more detail, in Section 3 the quasi-2D
odel is presented, in Section 4 the observer algorithm and
odel reduction technique are shown, in Section 5 the case study
imulation experiment is explained, in Section 6 the results are
hown and discussed and the reader is referred to the videos in
he supplementary material, and the paper is finally concluded in
ection 7.

. Observation task

The observation task is to estimate the unmeasurable internal
tates of the system by means of a model, available measurement
ignals and an appropriate algorithm. The mentioned internal
tates include: local current density, membrane water content
nd species concentrations. The model used in this paper is a
traight channel isothermal distributed parameter fuel cell model,
eveloped and validated against detailed Computational Fluid
ynamics (CFD) simulations in Murschenhofer et al. (2018). The
odel overview is given in Section 3. It is important to empha-
ise that the methodology used in this paper can be applied to
ractically any type of high-dimensional distributed model, not
nly to the one used in this work.
The premise is as follows. A fine-grid version of the model

s used as simulated reality, against which the observer will
e validated. This is necessary as in reality, the validation of
n observer can never fully be done as it is not possible to
easure the internal states. The fine-grid model provides the
easured output signal, in this case, the voltage only. Of course,

he input boundary conditions are also known. These include the
nlet/outlet pressures, the inlet gas composition, and the current
ensity demand. There is no assumption, however, about the
vailability of the species concentrations at the system outlet.
Next, a coarse-grid version of the model is used by the ob-

erver for the prediction of the internal states. The reason for
sing a different granularity for the simulated reality and the ob-
erver’s prediction model is to take into account the plant-model
ismatch which is generally always present.
The observer takes in the measured voltage from the simu-

ated reality fine-grid model and at the same time, predicts the
4

voltage using the coarse-grid model. The difference between the
two signals, called innovation residual is to be minimised. This is
done by correcting the internal states of the system. Once that
has been achieved, if the system is observable, one can conclude
that the internal states computed by the coarse-grid model match
reality provided that the model has been validated beforehand so
the plant-model mismatch is minimal.

However, a problem arises for a system with many (several
hundred or more) states, such as in this case. It is not plausible
that all states can freely be corrected for the observer to match
the measured voltage. For example, the pressure distribution
along the channel should not be in a zig-zag shape just because
the observer ‘‘thinks’’ that would be best for minimising the
innovation residual. In addition, tuning the observer, i.e. choosing
how strongly should each state be available for correction, might
become an impossible task for systems with this many states.

It is not plausible that all individual internal states are ob-
servable with the available information. For that reason, a model
reduction is performed, to detect only the dominant dynamics.
Only a few principal modes of the system are extracted (see
ection 4.2) and the observer makes its correction in the direction
f the modes. As a result, the possibly disproportional update of
ach individual node is avoided. The whole idea described above
s visualised in Fig. 1.

In this work, only the voltage is assumed to be a measured
utput. No additional assumptions of measurements available are
ade, such as the species concentrations at the system bound-
ries. The whole procedure results in the estimation of the distri-
ution of internal states of the system.

. Fuel cell quasi-2D model

This section describes the distributed parameter fuel cell
odel (Murschenhofer et al., 2018) used as basis for the observer
s well as the validation model. The model domain (see Fig. 2)
onsists of five sections:

1. Cathode gas channel
2. Cathode gas diffusion layer
3. Membrane
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Fig. 2. Spatial discretisation of the quasi-2D fuel cell model.

4. Anode gas diffusion layer
5. Anode gas channel

Every section is coupled via the system equations and appropriate
boundary conditions. For modelling details the reader is referred
to Murschenhofer et al. (2018). The model is spatially discretised
in direction x1 along-the-channel, and in direction x2 across the
DL. Therefore, the model is classified as a quasi-2D model.
Some important assumptions are made in the model. First, the

odel is considered to be isothermal, meaning that the temper-
ture is assumed to be controlled and kept at a constant value
f 70 ◦C. Second, the model does not include liquid water states,

but regardless of this fact, membrane dryout/flooding could be
avoided if constraints on the membrane water content would be
imposed in some control application. Therefore, the information
on the membrane water content can be sufficient for practical
applications, even if there is no liquid water present in the model.

3.1. Gas channels

Each node in the gas channels is described with the following
tate variables: gas velocity v, oxygen mass fraction ξO2 (cathode
nly), hydrogen mass fraction ξH2 (anode only), nitrogen mass
raction ξN2 , water vapour mass fraction ξH2O, gas pressure p and
as density ρ. If the number of nodes in the cathode and anode
as channel is Ncc and Nca, respectively, then the corresponding
tate vectors χcc and χca are defined as

cc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
...

vNcc
ξO2,1

...

ξO2,Ncc
ξN2,1

...

ξN2,Ncc
ξH2O,1

...

ξH2O,Ncc
p1
...

pNcc
ρ1
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and χca =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
...

vNca
ξH2,1

...

ξH2,Nca
ξN2,1

...

ξN2,Nca
ξH2O,1

...

ξH2O,Nca
p1
...

pNca
ρ1
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)
ρNcc ρNca

5

.2. Gas diffusion layers

In the GDLs, the nodes are described with the same variables
s in the gas channels. Every internal slice j is described with its
wn state vector. If the number of nodes in each slice is Ngc for
he cathode GDL and Nga for the anode GDL, then the cathode and
node GDL state vectors, χgc,j and χga,j, respectively, are defined
nalogously as in Eq. (1).

.3. Membrane

The membrane is described simply by its membrane water
ontent λ in all nodes for every slice. If the number of nodes
in the membrane is Nmem, then the state vector χmem,j for each
membrane slice j is defined as

χmem,j =

⎡⎢⎣ λ1
...

λNmem

⎤⎥⎦
j

. (2)

3.4. Local current density and voltage

In addition to all the system variables mentioned until this
point, there is the local current density ij computed for every slice
and the cell voltage V , described as an aggregated state.

3.5. State-space system

The full system state vector χk at timestep k is composed
of the individual state vectors of the cathode and anode gas
channels, Nsl slices and the cell voltage. The state vector of every
slice is composed of the state vectors of the GDLs and membrane
as well as the local current density. The complete system state
vector is then

χk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χcc
χca
χgc,1

χmem,1
χga,1
i1
...

χgc,Nsl
χmem,Nsl
χga,Nsl
iNsl
V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

. (3)

The model equations are linearised-in-time (LIT) at every time
step.

The LIT technique is explained in detail in Murschenhofer et al.
(2018), but for practical reasons, the keypoints of the method are
outlined here. The process of discretising the underlying partial
differential equations results in a large system of non-linear equa-
tions required to be solved each time step. To be computationally
efficient, one cannot afford to treat the non-linear terms with
numerically expensive iterations. For that reason, the system is
successively linearised with respect to the previous time step and
only one iteration is necessary to solve the system equations. As
a result, the system evolution, i.e. the state vector at time step k,
is computed as the solution of a linear system of equations

A(χ , χ , χ , u )χ = b(χ , χ , χ , u ) , (4)
k−1 k−2 k−3 k−1 k k−1 k−2 k−3 k−1
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here uk−1 is the system input defined as

k−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iavg
pccin
pccout
pcain
pcaout
ξ cc
O2,in

ξ cc
N2,in

ξ cc
H2O,in
ξ ca
H2,in

ξ ca
N2,in

ξ ca
H2O,in

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

consisting of all the boundary conditions mentioned in Sec-
tion 2. However, only the average current density is dynamically
changed and all the other inputs are kept constant.

The sparsity pattern of matrix A is seen in Fig. 3. The depen-
dence of the matrix A and vector b on the state vector at times
k−1, k−2 and k−3 comes from the necessity of computing the
time derivatives for the LIT approach. For brevity, the matrices
in Eq. (4) will be denoted as Ak and bk. Taking into account the
dependence of the system evolution on not only the current state,
but also on the last and second last ones, all three time instances
(k − 1, k − 2 and k − 3) must be part of the finally complete
state vector xk−1 = [χT

k−1 χT
k−2 χT

k−3]
T . Thus, one obtains the

state-space formulation of the system

xk =

[
χk

χk−1
χk−2

]
=

⎡⎣A−1
k bk

χk−1
χk−2

⎤⎦ . (6)

By defining

f (xk−1, uk−1) ≡

⎡⎣A−1
k bk

χk−1
χk−2

⎤⎦ , (7)

Eq. (6) can be written as

xk = f (xk−1, uk−1) with xk ∈ Rnx×1 . (8)

The output equation is

yk = Cxk with yk ∈ Rny×1. (9)

The entries in the output vector yk are the modelled sensor
signals that can be measured and depend on the setup. In this
particular case, yk = V , the cell voltage. More detail about the
outputs used in this paper are presented in Section 6. Eqs. (8)
and (9) describe a nonlinear discrete time state-space model.

3.6. Mole fraction calculation

In the fuel cell community, instead of using the mass fractions
ξ , it is more common to represent the species concentrations in
mole fractions γ . The oxygen mole fraction is

γO2 =
1

MO2

ξO2
ξO2
MO2

+
ξN2
MN2

+
ξH2O
MH2O

, (10)

where M is the molar mass of each gas. The expression for
calculation of the mole fraction for gases other than oxygen is
analogous to Eq. (10).

4. Methods

In this section, the observer design as well as the methods for
obtaining the reduced-order system Jacobians are presented. All
the equations are written in general form and are then applied
6

Fig. 3. Sparsity pattern of matrix A showing the interdependency of the model
domains. Every block on the diagonal represents the coupling of the states of
one domain. Blue: cathode and anode gas channels; Red: internal slices, every
slice is constituted of two GDLs and the membrane in between. The off-diagonal
green entries represent the coupling between the slices and gas channels. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

to the model described in the previous section. This shows the
modularity of the algorithm, as it can be used with any high-
order nonlinear state-space model. This reduced-dimensionality
observer algorithm is visualised in Fig. 4.

4.1. Observer design

An efficient observer design is required to estimate the dis-
tributed internal fuel cell states in a robust fashion and in real
time, see Fig. 1. In the observer design, the high-order quasi-
2D fuel cell model (Section 3) predicts/simulates the distributed
system states one time step ahead. Measurements are taken
from the simulated reality and compared to the predicted model
outputs. If a residual arises, the states of the quasi-2D fuel cell
model are updated by an observer algorithm, in this work the
proposed reduced-order EKF. The update is computed on the
basis of system information given by the sensitivities of the
states, the so-called Jacobians. To enhance efficiency, robustness,
and convergence of the fuel cell observer algorithm, only the
dominant system behaviour is to be considered in the update
step.

To do so, the system is transformed from a state-space repre-
sentation to a modal space (modes x̃xx), and only the high-energy
modes are retained, referred to as x̃xxr. The reduced-order system
Jacobians that capture the main behaviour in modal space will be
denoted as ÃAAr. The matrix C̃CC r maps the dominant modes x̃xxr to the
model outputs.

In the following section, the formulation of the EKF from Si-
mon (2006) is briefly recapitulated and applied to the present
fuel cell problem. A special focus lies on the computation of the
update step in modal space.

4.1.1. Background
The Kalman filter is an optimal estimator for linear systems

with additive white Gaussian noise and minimises the mean
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quare errors of the parameters to be estimated. The EKF is
ne nonlinear extension of it, but the optimality is no longer
uaranteed. The discrete-time nonlinear model of the fuel cell
8)–(9) with process noise wwwp,k and measurement noise wwwm,k has
he form

xxk = fff (xxxk−1,uuuk−1) + wwwp,k , (11)

k = CCCxxxk + wwwm,k . (12)

t is assumed that the zero-mean, Gaussian uncorrelated and
hite noises,

p,k ∼ N (000,QQQ ) and wwwm,k ∼ N (000,RRR) , (13)

ave the known covariance matrices QQQ and RRR, respectively.
The EKF for estimating the true system states consists of two

teps, the prediction step and the update step. The idea of the EKF
mplementation in this work is to compute the prediction step
sing the coarse-grid model, and the update step in the modal
pace using the reduced order Jacobians (ÃAAr and C̃CC r).

.1.2. Prediction step
In the prediction step of the EKF, the predicted state vector,

utput vector and the error covariance matrix are determined
priori. The predicted state vector x̂xx−

k and the predicted output
ector ŷyy−

k result from evolving the coarse-grid model (8)–(9). The
redicted error covariance matrix

˜
−

= ÃAA P̃PP ÃAA
T

+ Q̃QQ (14)
k r k−1 r

7

s obtained in the modal space with the corresponding covariance
atrix Q̃QQ . The difference between the predicted output and the
easurements yyymeas yields the innovation residual,

k = yyymeas,k − ŷyy−

k , (15)

nd initiates the update step.

.1.3. Update step
The update step of the EKF is carried out in the reduced modal

pace. The estimated (corrected) state vector and error covari-
nce matrix are computed a posteriori based on the innovation
esidual.

First, the innovation covariance and the Kalman correction
ain are determined,

S̃SSk = C̃CC rP̃PP
−

k C̃CC
T
r + RRR , (16)

K̃ k = P̃PP
−

k C̃CC
T
r S̃SS

−1
k , (17)

respectively. Then, the state correction of the fuel cell model

∆x̂xxk = T K̃KK keeek (18)

is computed based on the corrective action given by K̃KK keeek and
the transformation from the reduced modal space to the original
state-space of the fuel cell model T .

The obtained state correction is applied to the states pre-
dicted by the quasi-2D fuel cell model, resulting in the updated
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ˆk = x̂xx−

k + ∆x̂xxk . (19)

The estimation error covariance matrix is updated for the next
time step,

P̃k =

(
III − K̃KK kC̃CC r

)
P̃PP

−

k , (20)

wherein III is the identity matrix of appropriate size.
The observer’s corrective measures are based on the reduced-

order system Jacobians (dominant modes only). The high accu-
racy of the estimated states is achieved through the interaction
between the forward simulation of the quasi-2D fuel cell model
and the careful measurement-based correction by the observer.

4.2. Reduced-order system Jacobians

The reduced-order system Jacobians capture the main be-
haviour of the quasi-2D fuel cell model and can be obtained in
different ways, one of them being the balanced truncation, which
is presented and used in this paper.

4.2.1. Balanced truncation: Background
The balanced truncation is an approach in which the least

controllable and observable modes of the system are removed
(truncated) and only the dominant behaviour is kept (Moore,
1981). First, the system represented with Eq. (8) is successively
linearised around the current point (xwp, uwp). Then, the lin-
arised system is transformed to a balanced realisation, where
he controllability and observability Gramians are equal and di-
gonal (Besselink et al., 2013). Since the diagonal entries of the
ramian reflect the controllability and obervability of the modes,
hose modes with a small Gramian entry can be truncated. Finally,
he truncation step is performed, yielding a reduced order model
ith the most observable modes only.

.2.2. Successive linearisation and system scaling
The Extended Kalman Filter approach uses the Jacobians of the

onlinear system defined in Eq. (8). To have a valid correction al-
orithm in place at all times, the system is successively linearised
long the state and input trajectory. The successively linearised
odel is of the form

k = Awpxk−1 + Bwpuk−1 + K x,wp, (21)

here

Awp =
∂f (xk−1, uk−1)

∂x xwp,uwp , (22)

Bwp =
∂f (xk−1, uk−1)

∂u xwp,uwp , (23)

K x,wp = f (xwp, uwp) − Awpxwp − Bwpuwp . (24)

In order to compute the Gramians and transform the system to
its balanced realisation, it is necessary to prescale the system. The
scaled state vector xs is then defined as xs = X−1

s x, where X s is
a diagonal square matrix. The same procedure is applied to the
input and output vectors: us = U−1

s u and ys = Y−1
s y, respectively.

The index ‘‘s’’ stands for ‘‘scaled’’.

.2.3. Balanced realisation
Using the scaled system, the balanced realisation can be com-

uted. To cope with the off-equilibrium term Kx,wp,s, it is lumped
ogether with the input matrix in the following way,

s,k = As,wpxs,k−1 +
[
Bs,wp K x,wp,s

] [
us,k−1

]
, (25)
1

8

formulating the system in a suitable way for the MATLAB com-
mand balreal, used to compute the balanced realisation.

The state transformation

x̃ = T̃ xs (26)

is used to convert system (25) into its balanced realisation, in
which the controllability and observability Gramians are equal
and diagonal. In Eq. (26), x̃ ∈ Rnx×1 and T̃ ∈ Rnx×nx .

The balanced state vector x̃ is partitioned into two parts: the
one that is going to be retained x̃r for the reduced-order system
and the other, which is going to be eliminated x̃e,

x̃ =

[
x̃r
x̃e

]
, (27)

where x̃r ∈ Rñr×1 and x̃e ∈ Rñe×1, with ñr + ñe = nx, the
total number of states. The truncation value ñr is chosen upon
analysing the Gramian of the system. Following this notation,
the state transformation matrix T̃ and its inverse T̃ i = T̃

−1

are also partitioned into the part which maps the true states
to the reduced order ones and the part which maps them to
the eliminated ones. Inserting Eq. (27) into (26) and performing
the partition of the transformation matrices, the direct mapping
between the reduced and eliminated states, and the true states,
is obtained,[
x̃r
x̃e

]
=

[
T̃ r

T̃ e

]
xs, (28)

as well as its inverse

xs =
[
T̃ i,r T̃ i,e

] [
x̃r
x̃e

]
, (29)

where T̃ r ∈ Rñr×nx , T̃ e ∈ Rñe×nx , T̃ i,r ∈ Rnx×ñr and T̃ i,e ∈ Rnx×ñe .

4.2.4. Truncation
Since they contribute much less to the system behaviour, the

states x̃e are simply deleted and the system is described with
x̃r only, yielding the following transformation for the reduced
states,

x̃r = T̃ rxs. (30)

Inverting Eq. (30) and inserting it into Eq. (25) and then left mul-
tiplying the whole expression with T̃ r, one obtains the reduced-
order system

x̃r, k = T̃ rAs,wpT̃ i,r  
Ãr

x̃r, k-1 + T̃ r
[
Bs, wp K x,wp,s

] [
us,k−1
1

]
. (31)

Finally, the Jacobian Ãr = T̃ rAs,wp ˜T i,r is obtained, with Ãr ∈ Rñr×ñr .
Also, the new output equation is

ys,k = C̃ rx̃r,k with C̃ r ∈ Rny×ñr , (32)

where C̃ r = C s,wpT̃ i,r.
The Jacobian Ãr is used in the update step of the EKF to

correct the dominant modes. To obtain the correction in the
original states, the modes are projected onto the states using
the transformation matrix T from Eq. (18). For the approach
described above, T is defined as:

T = X sT̃ i,r. (33)

4.3. Observability analysis

The observability of the system is approached from two differ-
ent angles. One is the observability of the modes and the other is
the observability of the states. In Table 4, the different model sizes
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Table 4
Different model sizes.
Model Ncc Ngc Nmem Nga Nca Nsl ∆t/ms

Fine 30 8 5 8 30 10 2
Coarse 6 4 5 4 6 4 6.25

of the fine-grid and coarse-grid model are shown. Using this data
and the state vector structure from Eqs. (1)–(3), one can compute
the total number of states nx in each model:

x = 3
(
6Ncc + 6NslNgc + NslNmem + Nsl + 6NslNga + 6Nca + 1

)
.

(34)

he factor 3 comes from the fact that three time instances, k− 1,
−2 and k−3 are included in the state vector for the LIT approach,
s explained in Section 3. The number of states of the fine-grid
odel is 4143 and for the coarse-grid model the number of states

s 867. However, observability is analysed only for the first third
f the state vector and only for the coarse-grid model since the
ine-grid model serves the role of simulated reality. Therefore,
here are 289 states in the first third of the state vector of the
oarse-grid model. The number of modes ñr obtained by balanced
runcation is chosen to be 5.

.3.1. Observability of the modes
The observability of the modes is computed by checking the

ank of the observability matrix Qob at any operating point de-
ined as:

ob =

⎡⎢⎢⎢⎢⎢⎢⎣
C̃ r

C̃ rÃr

C̃ rÃ
2
r

...

C̃ rÃ
ñr−1
r

⎤⎥⎥⎥⎥⎥⎥⎦ (35)

he observability matrix Qob is shown to have full rank for any
tested operating point meaning that the principal modes of the
system are observable.

4.3.2. Observability of the states
The observability of the states cannot be easily computed via

the observability matrix as in the case for the modes due to
the large number of states. One would have to compute high
powers of the Jacobian matrix Awp which becomes numerically
unreliable. Instead, the observability of the states is analysed by
using the transformation matrix T̃ r. This matrix maps the states to
the modes and by analysing the rows of this matrix, one can see in
which direction in the state space all the dominant modes point
to. In Fig. 5, one can see the entries of the rows of this matrix
from top to bottom, starting with the most dominant mode on
the top. Any location on the x-axis corresponds to a certain state
and the value on the y-axis is the absolute value of the entry
of each row of the matrix T̃ r. Upon analysing the rows of this
atrix, one can see that the modes of the system point in the
irection of all domains, but only for the anode channel it is
ery weak, indicating that all domains except the anode channel
re observable. The modes do not point in the direction of all
tates, but there is neither the need for it, as per the strong
oupling between the adjacent states, the profiles will follow
he observer’s corrective action. To remedy the anode channel
bservability problem, it must be pointed out that the analysis
f the transformation matrix entries must be supplemented with
nformation about the known boundary conditions. Namely, for

he anode channel, the inlet gas composition and pressure as well p

9

as the outlet pressure are known which gives enough information
for the system to be fully observable, as confirmed by the results
in Section 6. To elaborate further, these values at the boundary are
also part of the state vector, but the time evolution of these states
is not computed, but imposed as an input, and that is the reason
why in the transformation matrix entries, they do not show up
since the observer will not correct them, but they are, of course,
known, providing good observability.

5. Simulation experiment

In this section, the simulation scenario of the case study men-
tioned in the introduction is explained in detail. The performance
of the observer is demonstrated using a more detailed simulation,
considered as reality, to evaluate the convergence of all states
inside the fuel cell. An evaluation of the observer based on real
measurements is currently impossible, as no sensors are available
to detect the distributed state inside the fuel cell.

5.1. Setup

The goal of the observer is to estimate all states of the fuel
cell given in Eq. (3). In this work, special attention is paid to the
along-the-channel spatial distribution of the following quantities:

• Current density i
• Membrane water content λ
• Species mole fractions in the cathode and anode gas chan-

nels γj, where j ∈ {O2,N2,H2O} for the cathode and j ∈

{H2,N2,H2O} for the anode

t is assumed that only a few inexpensive sensors are available to
he observer for measurements, namely cell voltage and pressure
t the system boundaries. In this experiment, the system is con-
idered pressure-driven, therefore, the pressures at the system
oundaries are set as boundary conditions, as seen in Eq. (5). The
utput of the system, available to the observer as measurement is
he cell voltage ymeas = V . If the fuel cell would be operated in a
ass-driven mode, then the pressures at the system boundaries
ould also constitute the output vector. The measurements are
ubject to Gaussian noise with a standard deviation of 1% of
he corresponding quantity. The system is excited with a time-
arying input, the average current density, whose signal is seen
n Fig. 6.

.2. Simulation models and their resolution

Three simulation runs are performed:

• Measurement generation using a fine-grid model, referred
to as Actual

• Reference simulation using a coarse-grid model without the
observer, referred to as Simulation

• Estimation using a coarse-grid model with observer, re-
ferred to as Observer

he number of discretisation points, illustrated in Fig. 2, deter-
ine the resolution of the model. In the following simulation
tudy, models of different sizes are used. First, a fine-grid model
s used to generate the simulated reality that the observer will
ry to estimate, i.e. the Actual states distribution. The information
n the internal states of this first simulation run is by no means
nown to the observer, which receives only information about
he system outputs. The model used by the observer is a coarse-
rid model, meaning that it has less discretisation points than
he reality model, introducing a model error. The models’ grid
izes and the time step size ∆t are given in Table 4. To show the

erformance of the observer, it is always interesting to see what
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Fig. 5. Entries of the rows of the transformation matrix T̃ r . The top plot shows the entries for the first dominant mode, and so on until the bottom. The entries
how the direction in which the observer corrects the system. The red lines separate the domains in the state vector. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
ould happen in a pure simulation, in which the observer is not
ctive. In this Simulation run, the system is initialised differently

than in the first run, as it is not possible to know the initial state
conditions in reality. Also, the observer is not active. If the system
is asymptotically stable, as it is the case for this model, the system
will eventually converge towards the true state, regardless of
the wrong initialisation. However, if the observer is active, it is
aware of the error between simulation and reality and tries to
match the states accordingly. In this third Observer simulation
un with wrong initialisation, the system converges towards the
rue state faster, which is crucial for diagnostics and/or fault
etection, especially if the initial error is large or if slow dynamics
re present in the system. In Fig. 7, the voltage behaviour in all
hree simulation runs is shown as demonstration of the explained
rocedure.

. Results and discussion

The results of the simulation are presented both in the form
f figures in this paper as well as two videos which can be found
n the supplementary material. The system is excited with the
verage current density demand as shown in Fig. 6. The vertical
agenta lines in Figs. 6 and 7 mark the times for which the
napshots, i.e., Figs. 8 to 10 are plotted. In these figures, the top
10
Fig. 6. Excitation signal. The solid black line is the input (average current
density) trajectory and the magenta lines indicate the times where snapshots
shown in Section 6 are taken. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

plot is the system snapshot at the initial time t = 0 s, the middle
plot shows the system at time t = 1 s and the bottom plot shows
the system at time t = 6 s. The purpose of the figures is to give
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Fig. 7. Cell voltage. The observer (red line) converges towards the true value
(blue line) faster than the uncorrected simulation (green line). The magenta
lines indicate the times where snapshots shown in Section 6 are taken. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. Local current density distribution along the channel at different times.
The reality model has 10 and the simulation model has 4 nodes. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

the opportunity to visualise the procedure at a glance and to point
out some interesting details, but the whole richness of the results
is found in Videos 1 and 2.

6.1. Local current density and membrane water content

The current density distribution along the channel is shown
in Video 1 (top plot) as well as in Fig. 8. The number of plotted
nodes for the simulated reality fine-grid model is 10, equal to the
number of slices (blue line). The simulation without the observer
is plotted in green and the simulation where the observer is active
is plotted in red. The number of nodes in the green and red lines
is 4, equal to the number of slices of the coarse-grid model. The
profile of all the states is interpolated with a Piecewise Cubic
Hermite Interpolating Polynomial using the MATLAB pchip com-
mand. The current density distribution in the simulation model is
11
Fig. 9. Membrane water content distribution along the channel at different
times. The observer converges towards the true state much faster than the
uncorrected simulation.

initialised differently from reality, as it is not realistic to assume
the initial distribution in reality to be known. In Video 1, the
initialisation can be seen at time t = 0 s as well as in the top
plot of Fig. 8. At time t = 1 s, in the middle plot of Fig. 8, one
can see that the local current density distribution estimated by
the observer already almost matches the true state. Furthermore,
it is to be noted that the whole profile of the local current
density distribution matches reality even though the coarse-grid
model has fewer nodes and the nodes position is not equal to
the ones in the fine-grid model. This highlights the robustness of
the algorithm. At time t = 6 s, seen in the bottom plot of Fig. 8
both the simulation and the observer have converged towards the
true state completely. The membrane water content is shown in
Video 1 (middle plot) and Fig. 9. As with the current density, in
the simulation, it is initialised differently than reality, as seen in
Video 1 at time t = 0 s as well as in the top plot of Fig. 9. The main
reason for the big voltage offset seen in Fig. 7 at the beginning
of the simulation is exactly the membrane water content. The
membrane is assumed to be too humid at this point and the
observer corrects the error by dehumidifying the membrane quite
fast, whereas the pure simulation takes long to dehumidify the
membrane due to the slow water transport dynamics. This can be
clearly seen in the middle and bottom plot of Fig. 9. In the figures,
however, the transition from the initial value to the true state
cannot be captured, but in Video 1, the transient can be clearly
seen.

6.2. Species mole fractions

The second group of results are the species mole fractions
shown in Fig. 10 and in Video 2. Unlike the local current density
and membrane water content, the species mole fractions are ini-
tialised the same way in the fine-grid and coarse-grid models, but
as already stated, the main effect for the voltage deviation is the
error in the membrane water content. Since the membrane starts
with a significantly higher water content in the simulation and
observer than in the fine-grid model, the water is driven towards
the channel at different rates because the concentration gradient
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Fig. 10. The distribution of the species mole fractions along the cathode (a, c, e) and anode (b, d, f) channels. The actual distributions, denoted in blue, are generated
by a high-fidelity fine-grid model. The green lines denote simulations of a coarse-grid model with no feedback from sensor data. The red lines indicate the distribution
estimates generated by the proposed observer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
is different. In addition, the difference between simulation and
observer comes from the corrective action of the observer. Very
quickly, though, the observer corrects the mole fractions, visible
in the middle and bottom plots of the state triplets in Fig. 10.
There are 30 nodes in the gas channels for the reality model
12
and only 6 for the simulation model. An interesting detail can be
observed in this experiment. For example, in the middle plot of
Fig. 10(c), the water mole fraction in the cathode is seen. If the
mole fraction at the end of the channel could be measured, and
no observer existed, one would see that the simulation deviates
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t that point by some value, but the actual error is larger than
hat — a significant portion of the whole profile is wrong. One
ould be ignorant to this fact from measuring the mole fraction
t the outlet only. On the other hand, with an observer in place,
ne can estimate the distribution better, since by its very nature,
he observer pushes the system towards reality.

. Conclusion

Monitoring the internal states of a fuel cell is challenging
ut crucial for its safe and lasting operation. While measuring
hem is almost impossible or only realisable with highly expen-
ive equipment, observers offer a good alternative to estimate
he distributed states on the basis of models and a few simple
easurements. However, realistic modelling of fuel cells leads

o complex high-order systems described by partial differential
quations. The implementation of such models in observers is not
traightforward when keeping real-time feasibility and robust-
ess in mind. In this work, we have developed an observer that
ses a full fuel cell model to predict future states and reduced
ystem Jacobians (dominant modes only) to update the predicted
tates based on measurements. The method has advantages in
erms of good observability and computational efficiency, as only
he dominant behaviour is considered in the correction of the
redicted states, resulting in well-converging state estimates.
The developed method is tested using a high-fidelity simu-

ated reality to best evaluate the convergence of the distributed
ystem states. A model with wrong initialisation and model errors
coarser discretisation in space and time) is used as a reference
imulation and serves as the basis for the observer. Only a few
ealistic and inexpensive sensors at the inlet and outlet of the
uel cell provide the observer with measurements. It turns out
hat the observer updates the simulation model correctly and
uickly drives all states to their true values. The estimates of the
istributed internal states converge well, allowing monitoring of
ritical states in the fuel cell. A pure simulation without observer
orrection leads to slow convergence and is not useful to improve
he operation of a fuel cell.

The novel fuel cell observer is ready to be implemented in
eal-world applications, such as the automotive industry, where
ritical conditions may occur due to transient and dynamic opera-
ions and highly expensive laboratory measurement equipment is
ot available. Currently, the observer algorithm is being extended
o include parameter estimation in addition to state estimation.
his means that an imperfect model will correct itself, relaxing
he need for perfect initial parametrisation, which would require
xpensive experimental tests. In future work, the observer can
e extended with additional functionalities, e.g. estimation of
hanging parameters due to ageing processes.
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