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The paper “Buckling of stretched strips” [1], published in the year 2000, seemed to deal with a rather specific 
problem of buckling of thin structures. Nevertheless, it aroused quite broad interest and prompted a considerable 
series of further treatments. Deeper theoretical considerations and advanced applications have been published. 
Various specific aspects of this type of problem have been addressed in these papers. However, a general and 
systematic consideration of how and to what extent the Poisson’s ratio affects the critical stretch of strips of 
different length to width ratios, 𝐿∕𝐵, was lacking. Accomplishing this task is the focus of this paper. Given 
the increasing use of auxetics, strips made from such materials are also being investigated. In addition, the 
occurrence of previously undiscovered mode transitions is shown. All results are presented in dimensionless 
form, which allows for fairly general usage.
1. Introduction

Strips are geometrically most simple. However, even if the simplest 
material model, i.e., linear elastic, is used, a lot of strange behaviors 
can be observed. Therefore, strips are interesting objects also from the 
viewpoint of theoretical mechanics.

Buckling of thin structures under tensile loading has been consid-

ered already for long. First papers dealing with this phenomenon have 
considered circular plates, stretched along a diameter, such as treated 
as a special case in [2], later on in [3] and recently in more detail in 
[4]. Square plates, stretched along a diagonal have also been consid-

ered long ago, see [5]. In [6] wrinkling of simply supported rectangular 
plates under parabolic distribution of tensile forces at two opposite 
edges is considered. A further class of problems in this context is buck-

ling of thin stretched plates with cracks or holes, see, e.g., [7], [8], [9]

and [10]. An overview of these and much more papers dealing with 
buckling of tensile loaded structures can be found in [11].

Regarding buckling of stretched strips, after the appearance of the 
paper [1] a large number of projects have been started, dealing with 
the problem of instabilities in stretched strips under different aspects. 
Buckling of strips under global tension and residual stresses is consid-

ered in [12]. In 2002 a quite general paper appeared in the Journal 
“Nature”, see [13]. In [14] the buckling problem of stretched strips has 
been treated analytically. Further analytical considerations as well as 
numerical computations regarding this problem area can be found in 
[15], [16], in [17], and in [18]. The fact that small variations in the 
loading conditions of stretched strips have a significant influence on 

the behavior is shown in [19], and in [20] as well as in [21] anisotropic 
strips are considered.

The disappearance of the wrinkles in the deep post-buckling regime 
has been studied theoretically in [22], [23] and experimentally in [24]. 
Flattening out of wrinkles in stretched strips with cracks or holes is 
treated in [11] and for strips made of hyperelastic material this phe-

nomenon has been studied in [25] as well as, for polyethylene strips, 
in [26]. A detailed analysis of the disappearance of the wrinkles has 
been reported in [27]. In that paper it is expected that there exists a 
threshold for positive Poisson’s ratios, below which no wrinkles occur. 
In [28] it is shown how the use of auxetics can reduce the height of the 
wrinkles in the post buckling regime.

Wrinkling of strips during a combination of stretching and twist-

ing has been the topic in [29], [30], and [31]. Buckling phenomena 
in stretched strips consisting of a thin film on an elastic substrate have 
been presented, e.g., in [32], [33], and [34].

As argued in [11], in all the mentioned cases of buckling of thin elas-

tic structures under tensile loading, areas are required, in which at least 
one of the principal in-plane normal stress components is compressive. 
Thus, one should not say buckling under tension, but buckling under 
tensile loading. Since in stretched strips these compressive stresses re-

sult from the Poisson’s-effect suppressed at the clamped edges, it is clear 
that the Poisson’s ratio of the material, the strip is made of, must have a 
significant influence on the critical tensile load. Previous investigations 
of the instability of stretched strips typically concerned strips made 
of materials with positive Poisson’s ratios. However, strips made from 
auxetics are finding increasing use in various engineering and medical 
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Fig. 1. The stretched strip. Both ends are clamped, one end is completely im-

movable, the other end is allowed to move just in direction 𝑥 like a rigid beam.

applications and it has been observed that stretched strips of this mate-

rial are also prone to wrinkling. It therefore seemed obvious to extend 
the investigations to negative Poisson’s numbers.

There are many applications of thin, stretched strips in technical 
products or processes and in medical treatments where the strips must 
not wrinkle. Hence knowledge of the critical stretch, limiting the sta-

bility of the flat configuration, is required in such situations. If it can 
be assumed that the behavior of the problem is linear, the dimension-

less representation of the critical stretch as a function of the aspect ratio 
𝐿∕𝐵 and the Poisson’s number of the material from which the strips are 
made enables this critical state to be determined quickly.

Typical fields, in which this approach can be used, are stretched 
strips in general and their stability behavior in particular play an impor-

tant role in flexible electronics, aerospace applications (e.g., deployable 
structures), in the behavior of endless belts for production, transmis-

sion and transport, in medical treatments, in chemistry, and in thin 
sheet production (leveling by stretching), just to mention a few fields of 
application. Some examples are presented below.

Typical situations, in which care must be taken to ensure that 
stretched strips do not wrinkle, occur, for example, when thin sheet 
strip is straightened in stretching lines, see [35]. Undesirable wrin-

kles appearing during conveying in processing lines are treated in [36]. 
Wrinkles in artificial skin are topic in [37]. As an example in the field 
of space structures, the reduction in the accuracy of deployable anten-

nas due to stretch-induced fold formation is given in [38], and stability 
problems of stretched strips in batteries are, for instance, mentioned in 
[39]. In some applications, wrinkling is even a desirable phenomenon. 
An example, taken from cell biology, where this happens, is the ap-

pearance of wrinkles in the thin substrates on which natural cells are 
cultured. There, this wrinkling can be used as indicator of the traction 
forces exerted by cells during locomotion, see [40]. Although wrinkles 
in stretched flexible electronics should be avoided, this kind of insta-

bility can be used for determining the adhesion strength between the 
metallic film and the soft substrate, see [33].

2. Problem description and solution method

7

Consider a strip, made of homogeneous, isotropic, linear elastic ma-

terial with Young’s modulus 𝐸 and Poisson’s ratio 𝜈. Both ends, i.e., the 
short edges are fully clamped, the left end is completely immovable, 
the right one is allowed to move as a “rigid” line in 𝑥-direction only 
and without any rotation. The two long edges are completely free, see 
Fig. 1.

As clearly described in [1] for positive Poisson’s ratios, comparably 
small transversal compressive stresses, i.e., 𝜎𝑦𝑦, appear at some distance 
from the strip ends causing short wavelength buckling (wrinkling) if 
the stretch load is large enough. (By the way, since the transverse com-
2

pressive stresses 𝜎𝑦𝑦 are some orders of magnitudes smaller than the 
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longitudinal stresses 𝜎𝑥𝑥, the principal stress axes in the considered re-

gion are nearly not inclined. Hence, it is acceptable to consider 𝜎𝑦𝑦 as 
the buckling relevant principal normal stress component.)

As mentioned in the Introduction, some attempts have been made to 
obtain at least approximate solutions for the complex stress and stability 
problem. Since the focus of this paper lies on studying some princi-

pal figures of the buckling behavior when the Poisson’s ratio is varied 
rather than on analytical derivations, in the present paper the finite el-

ement method is applied. The research code CARINA [41] is used, and 
the strip is discretized by 16-noded degenerated shell elements. Conver-

gence studies were performed to validate the mesh.

Eigenvalue buckling analysis, based on Euler’s buckling criterion, 
was used to determine the critical load, i.e., bifurcation or buckling 
load. According to Euler’s static buckling criterion, at critical points (bi-

furcation or snap through points) the equilibrium state is not uniquely 
determined. In terms of a discretized system, this means that at a criti-

cal point the equation

𝐊∗𝛿𝐮 = 𝛿𝐅 = 𝟎 (1)

has at least one nontrivial solution

𝛿𝐮 ≠ 𝟎 . (2)

𝐊∗ is the tangent stiffness matrix at buckling load 𝐅∗, including load and 
displacement dependent contributions according to a total Lagrangian 
formulation for geometric nonlinearities, and 𝛿𝐮 represents the nontriv-

ial infinitely small deviation of the equilibrium state(s) in neighborhood 
of the trivial state, given by the displacement vector 𝐮.

Assuming proportional loading, i.e., 𝐅 = 𝜆𝐅𝑟𝑒𝑓 , with the reference 
loading 𝐅𝑟𝑒𝑓 , for linear buckling analyses the following eigenvalue prob-

lem can be derived from Eq. (1):

(𝐊0 + 𝜂𝑖𝐊𝑙𝑖𝑛(𝜆 = 1))𝜙𝑖 = 𝟎 , (3)

where 𝐊0 is the stiffness matrix corresponding to the unloaded config-

uration, and

𝐊𝑙𝑖𝑛 =𝐊𝑙𝑖𝑛,𝑢 +𝐊𝑙𝑖𝑛,𝑔 (4)

is the sum of the linearized initial displacement and initial stress stiff-

ness matrices, determined with the displacement state calculated from 
𝐊0𝐮 = 𝐅𝑟𝑒𝑓 .

For linear buckling analyses of thin structures, such as slender 
beams, thin plates and strips, for which the prebuckling deformations 
definitely play no role, 𝐊𝑙𝑖𝑛,𝑢 can be neglected, leading to the classical 
eigenvalue problem

(𝐊0 + 𝜂𝑖𝐊𝑙𝑖𝑛,𝑔(𝜆 = 1))𝜙𝑖 = 𝟎 . (5)

The eigenvalues 𝜂𝑖, 𝑖 = 1, 2, 3, .. lead to the critical loads 𝐅∗
𝑖
= 𝜂𝑖𝐅𝑟𝑒𝑓 . 

Hence, the buckling load 𝐅∗ = 𝐅∗
1 = 𝜆

∗𝐅𝑟𝑒𝑓 with 𝜆∗ = 𝜂1. The eigenvec-

tors 𝜙𝑖, in conjunction with the elements’ shape functions, render the 
buckling modes.

The eigenvalue solver used in CARINA determines the eigenvalues 
in the sequence |𝜂1| ≤ |𝜂2| ≤ |𝜂3| . .. In most buckling problems for tensile 
loaded structures, the critical load intensities are much larger than those 
for the corresponding compression loading. This means that in such 
situations many negative eigenvalues (corresponding to compressive 
loading) with absolute values smaller than for tensile loading would be 
calculated before the first positive eigenvalue (for tensile loading) ap-

peared. In order to avoid computing at first the negative eigenvalues, a 
modification of the formulation of the eigenvalue problem is performed.

The eigenvalue 𝜂𝑖 is split into a prescribed portion 𝜅 and an un-

known portion 𝛾𝑖. Thus, Eq. (3) reads now

(𝐊0 + (𝜅 + 𝛾𝑖)𝐊𝑙𝑖𝑛(𝜆 = 1))𝜙𝑖 = 𝟎 , (6)
leading to the eigenvalue problem
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Fig. 2. Dependence of the buckling factor 𝑘 on the 𝐿∕𝐵-ratio. As an example, 
the Poisson’s ratio is chosen as 𝜈 = 0.3.

(�̃�+ 𝛾𝑖𝐊𝑙𝑖𝑛(𝜆 = 1))𝜙𝑖 = 𝟎 , with �̃� =𝐊0 + 𝜅𝐊𝑙𝑖𝑛(𝜆 = 1) . (7)

This way, the critical loads are given by

𝐅∗
𝑖
= (𝜅 + 𝛾𝑖)𝐅𝑟𝑒𝑓 . (8)

Finally, the buckling load is given by

𝐅∗ = �̃�∗𝐅𝑟𝑒𝑓 , with �̃�∗ = 𝜅 + 𝛾1 . (9)

The positive factor 𝜅, which shifts the eigenvalues, must be cho-

sen appropriately. There are some risks involved: If 𝜅 is too small, one 
gets negative eigenvalues, and if it is too large, the calculated smallest 
eigenvalue will lead to higher order buckling load, i.e., the fundamen-

tal buckling load is overlooked. Thus, the choice of proper values for 𝜅
requires careful checks.

It can easily be shown that the shift factor 𝜅 must fulfill the following 
inequality:

�̃�∗ − |𝜆−1 |
2

≤ 𝜅 ≤
�̃�∗ + 𝜅 + 𝛾2

2
(10)

The use of the inequality Eq. (10) is not quite straightforward. In 
most cases the critical intensity for the corresponding compression load-

ing, i.e., |𝜆−1 | can be calculated by known formulas or, if not, it can be 
simply determined by using Eq. (3), i.e., without any 𝜅. However, 𝛾2 is 
not known in advance.

Since it is the absolute intention of this paper to present all results 
in dimensionless form, linearity has been assumed. On this basis, the 
PI-Theorem can be applied and for a given value of 𝜈 the dimensionless 
parameter

𝑘 = 𝐹 ∗𝐵

𝐸𝑡3
, (11)

is found, which is a function of 𝐿∕𝐵 only. This parameter is frequently 
called “buckling factor”.

3. Reconsideration and extensions - new observations

Using the above described procedure, parametric analyses (𝐿∕𝐵 is 
varied, 𝜈 is kept constant with 𝜈 = 0.3) have led to results as presented 
in Fig. 2.

Fig. 2 corresponds quite well with the results presented in [1]. For 
large values of 𝐿∕𝐵, the here presented results are somewhat smaller 
than those in [1]. Furthermore, in [1] it is stated that for long strips 
(𝐿∕𝐵 > 4.5) the buckling factor becomes independent of its length. This 
statement will be reconsidered, too, and some unexpected results will 
be presented in the following chapters.

As mentioned above, the compressive stresses causing buckling of 
stretched strips results from hindering the Poisson’s effect due to the 
boundary conditions. Thus, it is obvious that the value of the Poisson’s 
ratio, 𝜈, of the material, the strip is made of, must have a significant in-

fluence on the critical stretch force. It seems natural that an increasing 𝜈
3

leads to a decrease of the buckling force and, consequently, decreasing 
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Fig. 3. Dependence of the buckling factor 𝑘 on 𝜈. The aspect ratio of the strip is 
chosen as 𝐿∕𝐵 = 2 , 7 as an example.

Fig. 4. Buckling mode before (left) and after (right) mode transformation, re-

spectively. (Just a quarter of the strip is shown in detail.)

𝜈 will increase this critical force. Against this background, the ques-

tion arises as to whether buckling due to stretching of strips made of 
materials with a negative Poisson’s ratio, i.e. auxetics, is even possible.

3.1. Variation of positive Poisson’s ratios

As done in [1], let us distinguish between “short” and “long” strips. 
For instance, a strip with 𝐿∕𝐵 = 2 is “short”, and a strip with a ratio 
𝐿∕𝐵 = 7 or larger is typically “long”.

From Fig. 2 one might expect that short strips behave principally 
different from long strips. Thus, the influence of the Poisson’s ratio has 
been studied for strips with 𝐿∕𝐵 = 2 and 𝐿∕𝐵 = 7, respectively. The 
results of parametric studies are presented in Fig. 3 in terms of 𝑘(𝜈).

At first glance, nothing unexpected can be observed. However, when 
denoting the slight discontinuity of derivative of the function graph 𝑘(𝜈)
for 𝐿∕𝐵 = 7 in the range 𝜈 ≈ 0.22 one should ask for the reason of this.

A closer look at the buckling modes in this range of 𝜈 reveals that 
there appears a sudden, fundamental transition from modes with wrin-

kles in the area along the long axis (for 𝜈 > 0, 22) to modes showing 
uplifted strip edges (for 𝜈 < 0, 22), see Fig. 4.

Let us now consider if there is a significant difference in the charac-

ter of 𝑘(𝐿∕𝐵) if the Poisson’s ratio is varied, for instance, if 𝜈 is changed 
from 0.3 (as used in [1]) to 0.2.

Again, Fig. 5 shows nothing unexpected, and the above mentioned 
statement in [1], according to which for long strips 𝑘(𝐿∕𝐵) remains 
constant, seems to be valid. However, the above described observation 
of mode transition (see Fig. 4) makes clear: Caution is advised! And 
indeed, studying the behavior of the function 𝑘(𝐿∕𝐵) for 𝜈 = 0.2 in more 
detail in the range 𝐿∕𝐵 = 7 reveals a mode transition at 𝐿∕𝐵 ≈ 6.6, 
accompanied by a decline of the buckling factor with further increased 
𝐿∕𝐵-ratios.

This phenomenon must be expected for all other 𝜈-values with 0 <
𝜈 ≤ 0.5, too. Fig. 7 represents a mode map, from which for given values 
of 𝜈 and 𝐿∕𝐵 information can be obtained as to whether the stretched 
strip buckles with wrinkles parallel to the long axis or with uplifted 
edges.

Of course, when dealing with the problem of buckling of stretched 

strips, assuming only modes with folds parallel and close to the long 
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Fig. 5. Dependence of the buckling factor 𝑘 on 𝐿∕𝐵 for 𝜈 = 0.2 , 0.3. Both curves 
show principally the same character of the dependence of 𝑘 on 𝜈. The shaded 
box is considered in detail in Fig. 6.

Fig. 6. Detail of Fig. 5 showing clearly the mode transition, which for strips 
with 𝜈 = 0.2 appears at 𝐿∕𝐵 ≈ 6.6. For strips with other 𝜈 see Fig. 7.

Fig. 7. Mode map, allowing the prediction of the buckling mode to be expected 
for given parameter combinations (𝐿∕𝐵 , 𝜈) for 𝜈 > 0. For (𝐿∕𝐵, 𝜈) combinations 
lying above the border curve, the buckling mode shows up or down bent long 
edges. Otherwise, wrinkles appear parallel to the long axis in the inner region 
of the strip.

axis of the strip (as mentioned in the Introduction), this mode transi-

tion cannot be found. Thus, results from such considerations should be 
considered with care, especially if long strips, made of materials with 
small, but still positive Poisson’s ratios are concerned.

3.2. Extension to auxetics

Auxetic materials have negative Poisson’s ratios. They are increas-

ingly being used in technical, medical and sporting applications. In 
specific applications, their property of shrinking normal to the direction 
of a compressive load gives them some advantages over conventional 
materials, i.e., those with positive values of 𝜈. A comprehensive de-

scription of auxetics can be found, e.g., in [42] or in [43]. Improving 
the buckling capacity of plates under compression by using auxetics is 
discussed in [44]. Medical applications are discussed in [45], and [46]

as well as [47] provide insight into how auxetic materials are used in 
sports.

In [1] the appearance of transversal compressive stresses caused by 
4

the hindering of the Poisson’s effect is clearly described for strips made 
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Fig. 8. Regions with transversal compressive stresses (shaded areas) and cor-

responding buckling modes, respectively, for stretched strips with 𝜈 > 0. With 
the exception of the areas at the ends of the strip, the entire strip is subject to 
transverse compression, which of course varies in intensity.

Fig. 9. Regions with transversal compressive stresses (shaded areas) for strips 
made of auxetics, i.e., 𝜈 < 0. There, only the areas at the ends of the strip are 
subject to transverse compression, and the remaining portion is under transver-

sal tensile stresses. Correspondingly, the wrinkles are concentrated in the end 
areas.

of material with 𝜈 > 0. Fig. 8 shows for short and long strips the regions, 
in which these transversal compressive stresses appear (shaded areas).

As it is also shown in this figure, the regions and the distribution of 
the wrinkles correspond quite well with the location and distribution of 
the regions with transversal compressive stresses, at least as long as the 
wrinkle mode is concerned.

For auxetics, i.e., if the Poisson’s ratio gets negative, the above 
described regions of transversal compressive stresses disappear, and in-

stead transversal compressive stresses appear in regions directly at the 
ends of the strip, see Fig. 9. Correspondingly, if the stretch is strong 
enough to produce buckling, the buckling mode shows buckles also in 
the regions close to the strip ends only.

Parametric studies reveal that the dimensionless buckling factor 𝑘 of 
strips made of auxetics is by two orders of magnitude smaller than for 
comparable strips made of material with positive Poisson’s ratios, see 
Fig. 10 and the above Fig. 3. Because of the fact that for 𝜈 < 0 the areas 
of transversal stresses are, in contrast to strips with 𝜈 > 0, located near 
the short edges of the strip only, it is not surprising, that the dependency 
𝑘(𝜈) is independent of 𝐿∕𝐵 as long as 𝐿∕𝐵 > 2, see Fig. 11. This is the 
reason, why in Fig. 10 just one curve is shown. However, as Fig. 11

shows, a strong decrease of 𝑘 with decreasing 𝐿∕𝐵 can be observed if 
𝐿∕𝐵 gets smaller than 2.

4. Discussion of the results and explanation of the new 
observations

In general, most of the results presented above appear as expected 
and their significance lies primarily in the dimensionless quantification 
of the critical states w.r.t. buckling. However, there are some phenom-
ena which require a deeper consideration and explanation.
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Fig. 10. Dependence of the buckling factor 𝑘 on 𝜈 for stretched strips made 
of auxetic materials. For 𝐿∕𝐵 > 1.5, this behavior is independent of the aspect 
ratio 𝐿∕𝐵. Thus, in contrast to Fig. 3, only one curve appears.

Fig. 11. Dependence of the buckling factor 𝑘 on 𝐿∕𝐵 for 𝜈 = −0.2 , −0.3, i.e., 
stretched strips made of auxetic materials. Note that for 𝐿∕𝐵 > 1.5 the buckling 
factor 𝑘 is independent of the aspect ratio of the strip.

4.1. Different reasons for the effect of the Poisson’s ratio on 𝑘

In the Figs. 3 and 10 the dependency of 𝑘 on 𝜈 is shown. Of course, 
the predominant reason for this strong dependency is the effect of hin-

dered Poisson’s deformations at the strip ends. The intensity of the 
transversal compressive stresses, caused by these boundary conditions, 
is directly proportional to 𝜈. However, one might argue that also the 
bending stiffness 𝐾 appearing in the Foeppl-v.Karman plate equation 
for pure in-plane loading

𝐾ΔΔ𝑤− 𝑡(𝜎𝑥𝑥
𝜕2𝑤

𝜕𝑥2
+ 𝜎𝑦𝑦

𝜕2𝑤

𝜕𝑦2
+ 𝜎𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
) = 0 , 𝐾 = 𝐸𝑡3

12(1 − 𝜈2)
, (12)

with

𝐾 = 𝐸𝑡3

12(1 − 𝜈2)
, (13)

depends on the Poisson’s ratio. By this way 𝜈 influences the buckling 
problem, too.

With Eq. (12), in classical configurations of plate buckling, i.e., with 
homogeneous stress fields, the dependence of the buckling factors on 𝜈
corresponds simply with the dependence of the plate’s bending stiffness 
𝐾 on 𝜈, leading to

𝑘(𝜈1)
𝑘(𝜈2)

=
1 − 𝜈22
1 − 𝜈21

, (14)

where here 𝑘(𝜈𝑗 ) is the buckling factor of the plate made of material 
with 𝜈 = 𝜈𝑗 . Thus, for the mentioned simple classical cases (homo-

geneous tress fields) it is obvious that for 𝜈 > 0 the buckling factor 
increases with increasing Poisson’s ratio, and - since 𝜈 appears as 𝜈2
in Eq. (14) - the same happens for increasing absolute values of 𝜈 if 
𝜈 < 0.

In order to quantify and compare these two kinds of influences, i.e., 
5

hindered Poisson’s deformations and varied bending stiffness, respec-
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Fig. 12. Dependence of relative difference Δ(𝜈) - see Eq. (15) - of the buckling 
factor 𝑘 between those for the given value of 𝜈 and those for 𝜈 = ±0.3. The con-

tribution to Δ due to the influence of 𝜈 on the bending stiffness - see dotted line 
- is very weak compared to that caused by the influence of 𝜈 on the transverse 
compressive stresses responsible for wrinkle formation.

Fig. 13. Buckling factors for rectangular plates under homogeneously dis-

tributed edge loads. Plates with different boundary conditions are considered. 
𝑘-values are valid for 𝜈 = 0.3. Note that in the abscissa 𝐵∕𝐿 but not 𝐿∕𝐵 is 
varied. (Picture is taken from [48] with Wiley’s permission.)

tively, let us calculate the difference between 𝑘(𝜈𝑗 ) and 𝑘±0.3 in relation 
to 𝑘±0.3:

Δ(𝜈) =
𝑘(𝜈) − 𝑘±0.3
𝑘±0.3

. (15)

In Eq. (15) the sign “+” stands for 𝜈 > 0 and “−” for 𝜈 < 0. This rel-

ative difference Δ is presented in Fig. 12. The dotted lines very close 
to the abscissa in the diagram represent the influence of the Poisson’s 
ratio on 𝑘 via the bending stiffness 𝐾 . One clearly sees that this contri-

bution is - in contrast to other configurations of stretched structures, as 
e.g. treated in [4] - negligibly small.

4.2. Dependence of 𝑘 on 𝐿∕𝐵 - positive 𝜈-values

As Figs. 2 and 5 show, the buckling factor 𝑘 depends for 𝜈 > 0
strongly on 𝐿∕𝐵. Its minimum value is, within the considered range, 
at 𝐿∕𝐵 ≈ 2. It grows rapidly for smaller 𝐿∕𝐵-values. The increase of 
𝑘 for small 𝐿∕𝐵-values has two reasons. First, even for a homoge-

neous transversal compressive stress field the buckling factor increases 
strongly if 𝐿∕𝐵 approaches 1, see Fig. 13. The second reason is that 
the region of transversal compressive stresses gets narrower if 𝐿∕𝐵
gets smaller. This region is neighbored on both sides by regions of 
comparably strong transversal tensile stresses, which act like clamped 

boundaries.
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For 𝐿∕𝐵-values growing from 𝐿∕𝐵 = 2 further on, initially the buck-

ling factor increases moderately. This is because the region of concen-

trated transversal compressive stresses becomes elongated and concen-

trated narrow. Thus, again, a narrower region of compressive stresses 
leads to an increase of 𝑘.

It seems that for 𝐿∕𝐵 > 6 the buckling factor becomes constant. 
However, as already mentioned above, the impression of a constant 
𝑘 is deceptive. At a certain 𝐿∕𝐵-ratio, which depends on 𝜈, a sudden 
mode transition happens from wrinkles in the area along the long axis 
to a buckling mode with uplifted (or down bent) long edges of the strip, 
accompanied by a reduction of the buckling factor when 𝐿∕𝐵 is in-

creased. This mode is caused by the fact, that for a long plate with a 
free edge the critical compressive stresses are very small compared to 
that for a long plate with both long edges clamped of simply supported, 
see Fig. 13. Looking at Fig. 8, one can see that the area of transverse 
compressive stresses continues - although with much smaller values -
from the area of concentration stresses. Obviously, the effect of the free 
longitudinal edges outweighs the fact that the compressive stresses are 
larger in the concentration area.

Practical consequences of the appearance this (so far not detected) 
mode transition is that one must take into account that buckling in 
this mode appears at lower stretches than expected by the solutions 
assuming long wrinkles in the area long the mid axis of the strip, and 
measures for stiffening strips in order to avoid tensile buckling should 
take the possibility of such modes into account, too.

4.3. Dependence of 𝑘 on 𝐿∕𝐵 - negative 𝜈-values

For strips made of auxetic material, buckling under longitudinal 
buckling is caused by transversal compressive stresses in the areas di-

rectly at the clamped short edges. Because these compressive stresses 
are much stronger than those occurring in the compressive stress con-

centration areas in strips made of material with positive 𝜈, the buckling 
factors are much smaller, roughly by two orders of magnitude.

As Fig. 11 shows for 𝐿∕𝐵 > 2, the bucking factor 𝑘 is definitely con-

stant. This is, why for these 𝐿∕𝐵-values the regions and values of the 
transversal compressive stresses and, thus, the deformation mode in the 
buckled areas remain all the same. Furthermore, since, except for the 
areas near the short edges, there is no other area of transversal com-

pressive stresses (see Fig. 9), no mode transition is to be expected.

4.4. Finally, a note of caution

The considerations and results presented are based on the assump-

tion of linearity. This means that small pre-buckling displacements (and 
rotations) and linear elastic (isotropic and homogeneous) material were 
assumed. In practical applications, the fulfillment of these assumptions 
should be carefully checked.

A conservative upper bound can be derived for the ratio 𝑡∕𝐵 up to 
which a linear stability analysis is permissible. The derivation of this up-

per limit uses the fact that the transverse stresses caused by the stretch-

ing the strip are much smaller than longitudinal stresses, 𝜎𝑥𝑥. (Apart 
from the strip ends they are even orders of magnitude smaller.) Thus, 
for the following consideration a uniaxial stress state can be assumed. 
Let’s also assume as an approximation that 𝜎𝑥𝑥 is homogeneously dis-

tributed over the width of the strip.

Based on the above assumptions, Eq. (11) leads to the critical value 
of the longitudinal stress

𝜎∗ = 𝐹 ∗

𝐵 𝑡
= 𝑘𝐸

(
𝑡

𝐵

)2
. (16)

With the above approximate assumptions the critical stretch is 𝜀∗ =
𝜎∗

𝐸
= 𝑘( 𝑡

𝐵
)2. Let’s accept that linear buckling analysis is permitted under 

the conditions that the pre-buckling strains must not be larger than an 
appropriately chosen value 𝜀𝑚𝑎𝑥. Thus, the condition 𝜀∗ < 𝜀𝑚𝑎𝑥 leads to 
the upper bound for ( 𝑡

𝐵
)𝑙𝑖𝑚, which limits the ratio 𝑡∕𝐵, for which linear 
6

stability analysis can be applied:
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Fig. 14. Upper bounds for 𝑡∕𝐵 up to which linear stability analysis is acceptable 
from a geometric point of view, i.e., prebuckling strains are smaller than, e.g., 
𝜀𝑚𝑎𝑥 = 0.05, (a) for strips of material with positive Poisson ratios, 𝜈 = 0.2, 0.3, 
(b) for strips of auxetic material, 𝜈 = −0.2, −0.3. Note that for strips made of 
auxetics thicknesses are permitted, which are two orders of magnitude larger 
than those permitted for strips made of materials with positive values of 𝜈.

(
𝑡

𝐵

)
𝑙𝑖𝑚

=
√
𝜀𝑚𝑎𝑥

𝑘
. (17)

Note that this upper limit is independent of the Young’s modulus of 
the material the strip is made of. However, since 𝑘 is a function of 𝐿∕𝐵
and of 𝜈 this bound depends on the Poisson’s ratio and the aspect ratio 
of the strip. As an example, such upper limits are shown in Fig. 14 when 
𝜀𝑚𝑎𝑥 is chosen as 0.05.

Of course, in addition to checking the applicability of the linear sta-

bility analysis, it must also be proven whether the stress state in the 
strip is in the range of linear elastic material behavior. As is usual in 
global structural analysis, the very local theoretical stress singularities 
in the corners at the strip ends need not be taken into account.

5. Conclusions

This paper adds another small stone to the colorful mosaic that rep-

resents the wide field of instabilities of structures under tensile loading. 
Since the transverse compressive stresses that are the cause of the buck-

ling of the stretched strips result from the hindered Poisson effect, it is 
clear that the value of the Poisson’s ratio of the material from which 
the strips are made has a significant influence on the critical stretch. 
This is studied systematically for strips, i.e., aspect ratios 𝐿∕𝐵 > 1.0 and 
for Poisson’s ratios in the range −0.5 ≤ 𝜈 ≥ 0.5. Hence, strips of auxetic 
material are also being investigated. Furthermore, it is shown that for 
long strips with 𝜈 > 0 there is a transition of the buckling mode from 
folds in the interior of the strip parallel to the long axis to a mode that 
shows upward or downward curved length edges. The aspect ratio of 
the strip at which this mode transition occurs depends strongly on the 
value of 𝜈, and no such transition has been found for strips made of 
auxetic materials.

All results are presented in dimensionless form. Therefore, as long 
as a linear elastic, isotropic material and the applicability of a linear 
buckling analysis can be assumed, the results can be used independently 
of actual geometric and material parameters. A simple check for the 

applicability of linear buckling analysis is provided, too.
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Of course, there are still open questions in this area of structural me-

chanics, and it is evident that the above mentioned mosaic contains a 
number of areas waiting to be filled. In particular, the study of cukling 
of strips of auxetic materials should be intensified and more compre-

hensive analyses and tests with detailed discussion of the results should 
be carried out in the near future.
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