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A B S T R A C T   

Collagen fibrils are the basic structural building blocks that provide mechanical properties such as stiffness, 
toughness, and strength to tissues from the nano- to the macroscale. Collagen fibrils are highly hydrated and 
transient deformation mechanisms contribute to their mechanical behavior. One approach to describe and 
quantify the apparent viscoelastic behavior of collagen fibrils is to find rheological models and fit the resulting 
empirical equations to experimental data. In this study, we consider a nonlinear rheological Maxwell model for 
this purpose. The model was fitted to tensile stress-time data from experiments conducted in a previous study on 
hydrated and partially dehydrated individual collagen fibrils via AFM. The derivative tensile modulus, estimated 
from the empirical equation, increased for decreasing hydration of the collagen fibril. The viscosity is only 
marginally affected by hydration but shows a dependency with strain rate, suggesting thixotropic behavior for 
low strain rates.   

1. Introduction 

Collagens comprise a family of at least 28 different types of geneti
cally distinct but closely related proteins (Myllyharju and Kivirikko, 
2001). Constituting about 35% of the total human proteome, collagen, 
as a family, is one of the most abundant proteins in the human body 
(Smejkal and Fitzgerald, 2017). The most ubiquitous collagen, type I, 
self-assembles (copolymerizes with other fibril-forming collagens; II, III, 
V, XI, XXIV and XXVII) into supra-molecular rope-like architectures 
known as collagen fibrils (Sherman et al., 2015; Ottani et al., 2002; 
Kadler et al., 2007). Collagen fibrils are the basic structural building 
blocks of many biological tissues (tendon, ligaments, bone, cartilage, 
eye, etc.) providing structural and mechanical functions. In fact, 
collagen fibrils constitute most of the extracellular matrix (ECM) com
ponents, with which cells mechanically interact. This makes collagen 
fibrils interesting from a mechanobiological perspective and efforts to 
study their mechanical behavior play a pivotal role to gain further un
derstanding of cell mechanotransduction. 

Because of their high aspect ratio (lengths can be up to a few cm 
(Svensson et al., 2017; Craig et al., 1989), diameters range from 10 nm 
up to about 500 nm (Goh et al., 2005, 2008)) and their low flexural 
stiffness (Yang et al., 2007), collagen fibrils predominantly experience 
tensile loads in vivo. Mechanical characterization at the length scale of 

individual and isolated collagen fibrils has been accomplished via tensile 
(Miyazaki and Hayashi, 1999; Van Der Rijt et al., 2006; Gentleman et al., 
2003; Shen et al., 2008, 2011; Pins et al., 1997; Svensson et al., 2011, 
2018; Andriotis et al., 2018; Silver et al., 2001), indentation (Andriotis 
et al., 2014, 2018; Wenger et al., 2007; Heim et al., 2006; Grant et al., 
2008; Strasser et al., 2007) and bending tests (Yang et al., 2007). In 
tensile tests, commonly, a tensile modulus is estimated by derivation of a 
stress-strain curve in a linear region (Miyazaki and Hayashi, 1999; Van 
Der Rijt et al., 2006; Gentleman et al., 2003; Andriotis et al., 2018). For 
tendon fascicles, Svensson et al. derived a tensile modulus through a 
linear fit of the last 20 percent of the stress-strain curve (Svensson et al., 
2011) and in their subsequent work on collagen fibrils calculated the 
first derivative of the stress-strain curve (Svensson et al., 2013, 2018). 
To make experimental data comparable, they proposed the detection of 
the first local maximum of tensile modulus–strain curves as a repre
sentative value (Svensson et al., 2013, 2018). 

he mechanical behavior of hydrated collagen fibrils is far from being 
linear elastic and makes comparisons between studies challenging due 
to its complexity. Furthermore, it would be helpful for data analysis and 
modeling purposes to fit models to experimental data. However, 
collagen fibril mechanics are non-trivial, and several deformation 
mechanisms are often active at the same time. In the low strain regime 
investigated in this study, often classified as phase I (Svensson et al., 
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2013; Depalle et al., 2015), non-covalent interactions between mole
cules (Andriotis et al., 2018), the abundance of intrafibrillar water (both 
bound and unbound), the collagen molecule structure characterized by 
flexible kinks and unfolded regions along its length (Buehler and Wong, 
2007), as well as covalent cross-links (Svensson et al., 2018) are 
responsible for the nonlinear and viscoelastic mechanical behavior of 
collagen fibrils under tension (Silver et al., 2001, 2002; Svensson et al., 
2010; Gachon and Mesquida, 2020). 

Different rheological models have been developed and employed in 
previous studies, to describe the mechanical behavior of collagen fibrils 
and collagen-rich tissues (macroscale). In this context, Shen et al., 
described the rheological behavior of collagen fibrils with a generalized 
Maxwell-Wiechert model in tensile stress relaxation tests employing a 
microelectromechanical system (MEMS) device (Shen et al., 2011). The 
model proposed by Shen et al. consists of two parallel Maxwell layers 
and an elastic spring, also in parallel. Based on this model, Shen et al. 
estimated the moduli of the three springs, including the 
time-independent modulus as well as the relaxation times, τ1,2, for the 
two Maxwell layers (Shen et al., 2011). Under quasistatic tension and at 
low strains (<5%), collagen fibrils show a nonlinear viscoelastic 
behavior (Van Der Rijt et al., 2006; Andriotis et al., 2018; Svensson 
et al., 2010; Yang et al., 2022). At strains less than 5%, stress increases 
exponentially (showing a convex shape similar to a toe region) which 
cannot be described using linear rheological models for viscoelastic 
solids or fluids. Also at higher strains, there is no true linear regime for 
hydrated fibrils (Svensson et al., 2013). Even though the 
Maxwell-Wiechert model described well the stress relaxation presented 
in the work by Shen et al., it was not an adequate choice for describing 
the viscoelastic behavior of collagen fibrils under quasistatic tension at 
low strains. Due to the convex shape of experimental stress-strain 
curves, a nonlinear rheological model may also be used to describe the 
mechanical behavior of collagen fibrils. The quasi-linear viscoelastic 
(QLV) model developed by Fung (1981) has been frequently used to 
describe the viscoelasticity of soft biological tissues (Johnson et al., 
1994; Nekouzadeh et al., 2007; Kohandel et al., 2008). In Fung’s theory 
the immediate non-linear elastic response and the linear viscous 
response, i.e., relaxation, are expressed in a reduced relaxation function. 
The set of parameters for the constitutive equation used in QLV, that 
could be eight or less, are estimated experimentally through a step 
change in strain (Kohandel et al., 2008). Thus, the QLV model and its 
extensions are applicable on strain-controlled experiments (i.e., stress 
relaxation tests) and instrument limitations may pose a barrier to 
applying this model, as is for example in most AFM-based tensile tests of 
individual and isolated collagen fibrils (Andriotis et al., 2023). 

Because of these limitations, we investigated a nonlinear Maxwell 
model and sought out to describe the mechanical response of collagen 

fibrils under continuous tension, as strain-controlled tests were not 
feasible with the instrument used (Andriotis et al., 2018). We tested the 
applicability of the model for describing the nonlinear viscoelastic 
behavior of collagen fibrils at small strains, that is up to about 2.5% 
engineering strain. We fitted the nonlinear Maxwell model on previously 
collected tensile data and compared it to a linear Maxwell model and a 
nonlinear spring. It should be noted, that the data of Andriotis et al. 
(2018) range within the deformation phase 1 ((Fig. 1(a), strains up to 
2.5%) and do not display the 2- or 3-phase behavior of collagen fibrils 
previously reported (Svensson et al., 2013). 

2. Nonlinear maxwell model 

The nonlinear Maxwell model consists of a nonlinear spring (spring 
constant a) and a nonlinear dashpot (viscosity μ) in series (see appen
dix). Under the assumption of a constant strain rate, i.e., ε(t) = kt, the 
solution of the differential equation of the nonlinear Maxwell model 
leads to the equation for the time evolution of stress σ(t): 

σ(t) = k1/n μ
(
1 − e− t/τn)1/n

, (1) 

with time t [s], strain rate k [1/s], nonlinearity n and relaxation time 
τ =

μ
a

[
s1/n

]
. The influence of the exponent n is presented in Fig. 1(a) 

where the time evolution of stress is plotted for a constant strain rate and 
n to be equal to 0.15, 0.3, 0.6 to 1. For n = 1, the stress represents the 
linear Maxwell model as a boundary case. Substituting t = ε/k and 
calculating the first derivative of Eq. 1 with respect to strain gives the 
following simplified expression for the derivative tensile modulus as a 
function of strain: 

Emod(ε)=
σ(ε)

k n τn (e
ε

k τn − 1)− 1 (2) 

A more detailed derivation of the nonlinear Maxwell model is pre
sented in .Appendix A. 

3. Materials and methods 

3.1. Nanomechanical tensile tests and model fitting 

We employed the nonlinear Maxwell model to a subset of previously 
collected experimental data published by Andriotis et al. (2018). Here, 
the stress vs. tensile tests performed at seven different displacement 
speeds in the range of 0.5–99.2 μm/s and four solutions (phosphate 
buffered saline, 1.0M, 2.6M and 3.5M polyethylene glycol) were used. 
The experimental setup and methods are described by Andriotis et al. 
(2018). In brief, collagen fibrils were collected from a mouse-tail tendon 
and suspended between a cantilever of an atomic force microscope 

Fig. 1. (a) The influence of the exponent n on the resulting stress σ(t). For n = 1, the model, i.e., Eq. 1, takes the form of the linear Maxwell model, resulting in an 
exponential increase of stress (with time or strain) until it plateaus. For n < 1 the resulting stress vs. time (or strain) takes a convex shape, which better describes the 
tensile response of collagen fibrils. (b) Exemplary stress vs. time data for a collagen fibril pulled at a displacement speed of 0.5 μm/s. 
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(AFM) and a glass slide using epoxy glue, similarly to (Svensson et al., 
2010). Suspended collagen fibrils were mechanically tested by driving 
the AFM-cantilever upwards at seven different displacement speeds, 
which results in tensile stretch of the individual collagen fibrils. 
Collagen fibrils were stretched up to a maximum of about 2.5% engi
neering strain, which is well below failure, previously observed to occur 
above 10% Fig. 1(b)). Due to the inherent limitations of the instrument, 
only the displacement speed of the piezo crystal that drives the canti
lever can be controlled. Therefore, experiments with controlled strain 
rate are not possible. However, the difference between displacement 
speed of the piezo and displacement rate of the fibril reaches a maximum 
of 29.4%, which had only a minor influence on the measured results. 
The experiments were conducted on a collagen fibril in different 
aqueous solutions of phosphate buffered saline (PBS) and varying con
centrations of polyethylene glycol (PEG) of 0.1M, 2.6M and 3.5M. PEG 
was used as an agent to partially dehydrate the fibrils resulting into 
stiffening, observable in the recorded force-displacement but also 
calculated stress-strain curves (Andriotis et al., 2018). For these exper
iments one collagen fibril was tested, and in total six repeated tests were 
conducted per displacement speed and solution. 

The recorded force-displacement data was converted into engineer
ing stress and engineering strain (linear strain approximation) respec
tively. Data analysis was implemented in MATLAB R2019b (Version 
9.7.0.1190202, The MathWorks, Inc., Natick, Massachusetts, USA). A 
curve-fit was performed using the least-squares method on the strain vs. 
time data, to determine the average fibril strain rate of the test. For the 
nonlinear models, we assumed a constant strain rate (which was set to 
the average strain rate) and hence the solutions provided in Equation 1 
and 2 ). Subsequently, starting values were identified for the fitting 
parameters μ, τ and n, using an algorithm to randomize 100 different 
values for each fitting parameter and conducting each fit. The resulting 
R2 values for the fits conducted using the randomized starting values 
were compared. The values of μ, τ and n returning the highest R2 were 
considered as appropriate and used for further analysis. Overall, the 
fitting parameters, μ and τ were chosen to lie (0,∞), and the nonlinearity 
n within (0,1). 

3.2. Statistics 

The data, i.e., viscosity, relaxation time and exponent n, was sub
jected to statistical analysis using RStudio Version 2022.02.0. Individual 
value plots were used to visually inspect the data distribution, vari
ability, and outliers. Generalized Least Squares was used to fit a linear 
model. Heteroscedasticity was accounted for in the model by allowing 
different variances per solution and speed. The model assumptions 
(normality, homoscedasticity) were inspected via the residual plots. The 
significance level was defined as p < 0.05, and p-values p > 0.05 but 
<0.07 were considered tendencies. Tukey’s test was used to correct for 

multiplicity adjustment. All comparisons (either per solution or per 
displacement speed) and their p-value are provided as supplementary 
material. 

4. Results 

4.1. Comparison of linear and nonlinear models 

The nonlinearity exponent, n, prominently influences the shape of 
the stress-time function and the quality of the fit. For n = 1, Equation 1 
takes the form of the linear Maxwell model, which is qualitatively 
different to the experimentally determined mechanical behavior of in
dividual collagen fibrils as shown in Fig. 2a. In the linear case, the 
Maxwell model, is not a convex function and therefore the fit for n = 1 
returns a linear elastic response. Decreasing n to 0.6 and below, the 
Equation 1 turns into a convex function (Fig. 1(a)), which is qualita
tively similar to the data obtained from experiments. Fig. 2(a) shows the 
fitting of a linear and nonlinear (n = 0.6) Maxwell model to experi
mental data. Here, the nonlinear model fits the data well whereas the 
linear model essentially returns the response of a linear spring and 
dashpot in series. 

The derivative tensile modulus of the nonlinear Maxwell model is 
strain-dependent. In contrast, the linear Maxwell model yields a con
stant derivative tensile modulus and in this case is not a suitable choice 
for a fit function. Fig. 2(b) shows the derivative tensile modulus deter
mined from the nonlinear Maxwell model (n = 0.6) fitted to the 
experimental data as a function of strain for different PEG 
concentrations. 

4.2. Analysis of the nonlinear maxwell model 

Equation 1 depends on the constants of the non-linear rheological 
elements, i.e., the exponent n and the (constant) strain rate, dε(t)/dt (cf. 
2. Nonlinear Maxwell model). Consequently, the model consists of three 
parameters describing the viscous and elastic properties, and the non- 
linearity. We first analyzed results from fitting all three parameters to 
experimental data obtained from tensile tests of individual collagen fi
brils per displacement speed and per solution. In a second step, we set 
the exponent n to 0.6, as detailed below, to investigate the influence of 
lowering the number of fitting parameters on the results obtained from 
the nonlinear Maxwell model. 

For all analyses the derivative tensile modulus was calculated using 
Equation 2. As shown in table S1.1, the values for the exponent n, when 
used as a free fitting parameter, were around 0.6 (0.56 ± 0.05; mean ±
standard deviation). Thus, we fixed the exponent n to a value of 0.6 for 
further analysis to reduce the number of fitting parameters. In Fig. 2(b), 
the derivative tensile modulus is plotted against strain for increasing 
displacement speeds (with n = 0.6). The derivative tensile modulus of 

Fig. 2. (a) Fitting of the linear (red) and nonlinear 
Maxwell (blue) models to stress vs. time data from a 
tensile experiment on an individual collagen fibril 
measured in phosphate buffered saline (PBS). The 
fitting parameter n was fixed at 0.6 (based on the n 
that resulted to the best R2). The nonlinear Maxwell 
model qualitatively and quantitatively fits the data 
whereas this is not the case for the linear model. (b) 
Derivative tensile modulus vs. strain at different PEG 
concentrations (i.e. water content reduces with 
increasing PEG concentration) obtained from fitting 
the nonlinear Maxwell model ( Equation 2, n = 0.6) 
to the experimental data. The derivative tensile 
modulus rises with increasing PEG concentration. The 
experimental data used were collected at a displace
ment speed of 0.5 μm/s.   
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the hydrated collagen fibril in PBS and at different PEG concentrations 
(Fig. 3) rises with strain and displacement speed. Furthermore, the ab
solute difference in derivative tensile modulus at different displacement 
speed is related to the PEG concentration. That is, the difference in de
rivative tensile modulus at 2.6M or 3M PEG between the lowest and 
highest displacement speeds is larger compared to PBS and 1M PEG. The 
increase of the derivative tensile modulus with strain rate is more 
prominent in the case of exposing the collagen fibril to 2.6M PEG (Fig. 3 
(c)). 

The dataset, presented in Fig. 3, was also analyzed without fixing the 
exponent n, and instead using it as a third fit parameter. Fig. 4 shows the 
influence the displacement speed has on the derivative tensile moduli in 
this case. Similarly in Fig. 3, the absolute spread of the derivative tensile 
moduli at 2.6M and 3.5M PEG concentration (Fig. 4(c)), larger in 
comparison to a PEG concentration of 1.0M or PBS. 

Overall, the influence of a free exponent n on the fitting shows a 
similar behavior of the derivative tensile modulus with that for a fixed 
exponent (n = 0.6). The goodness of fit R2, is slightly lower for a fixed 
compared to a free exponent n. Derivative tensile modulus determined 
from the nonlinear Maxwell model with a fixed exponent n show higher 
variation compared to ones obtained from fitting also n. 

Clearly, the implementation of the exponent n as a third fitting 
parameter provides a larger parameter space for the fitting algorithm. 
This also decreases the variation for the derivative tensile moduli. 
Qualitative changes in the shape of the derivative tensile modulus 
functions are seen at 2.6M and 3.5M PEG for the highest displacement 
speeds (cf. Fig. 4(c) and (d)), which is not evident from the derivative 
tensile modulus obtained directly from the data (Andriotis et al., 2018). 
Therefore, we chose to fix n to 0.6. 

Both the viscosity, μ, and relaxation time, τ, (for n = 0.6) decreased 
with increasing displacement speed for all solutions but most notable for 
PBS (cf. Figs. 5a and 6c; p < 0.05). However, differences in the relaxa
tion time, τn [s], between the different solutions where not consistent and 
no clear trend was observed. 

For the results with n as a fitting parameter, the viscosity mearured in 
2.6M PEG and at 0.5 μm/s was statistically significant different (cf. 
Fig. 5b; p < 0.05) to the ones measured at speeds >1.3 μm/s. However, 
there seems to be no trend of the viscosity with displacement speed. At 
lower displacement speeds (0.5 μm/s to 12.4 μm/s), statistically sig
nificant differences are observed in viscosity measured in PBS and 1.0M 
PEG compared to higher PEG concentrations. At higher speeds, the trend 
is not consistent. 

For fitted n (cf. Fig. 6d), the relaxation time measured at PBS and 
1.0M PEG is statistically different to the higher concentrations of PEG 
across all displacement speeds (p < 0.05). 

In contrast to viscosity μ, and relaxation time τn [s], the spring con
stant, a [MPa], increased alongside the PEG concentration (cf. Fig. 6a; p 
< 0.001), while statistically significant differences were observed be
tween lower (<6.2 μm/s) and higher (<12.4 μm/s) displacement speeds 
for n=0.6 (cf. Fig. 6a, p < 0.05). The spring constant obtained with n as a 
fitting parameter, showed a less consistent pattern, except the data ob
tained at 3.5M PEG, where the spring constant obtained at speeds <1.3 
μm/s are statistically different to the ones at displacement speeds >6.2 
μm/s (cf. Fig. 6b; p < 0.001). 

5. Discussion 

We employed a nonlinear Maxwell model to describe the mechanical 

Fig. 3. Derivative tensile modulus vs. strain of a collagen fibril tested in four solutions with decreasing water content and at increasing displacement speeds. The 
derivative modulus was calculated from the nonlinear rheological Maxwell model (Equation (2)) for n = 0.6. The derivative tensile modulus increases nonlinearly 
with strain and is greater at a given strain for all different solutions. Also, the solution steers both of the aforementioned relationships. 
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behavior of a collagen fibril loaded in tension to small strains (<1.5%), 
at different hydration levels and displacement speeds. Using the 
nonlinear Maxwell model, we determined the viscous and elastic prop
erties, such as viscosity, elastic constant, and relaxation time as well as 
the derivative tensile modulus. At small strains (<1.5%) the stress-strain 
curves of collagen fibrils generally show convex behavior. This regime 
differs from fibril to fibril and can extend to 7.5% strain (Svensson et al., 
2013). 

The derivative tensile modulus from the nonlinear Maxwell model 
presented here, reaches values of about 2 GPa which are in agreement 

with results reported previously in studies investigating collagen fibrils 
under tension (Van Der Rijt et al., 2006; Shen et al., 2008; Svensson 
et al., 2018; Andriotis et al., 2018). 

Hydration is well-known to affect the mechanical properties, i.e. 
stiffness, of individual collagen fibrils (Andriotis et al., 2015, 2018; 
Grant et al., 2008). The trend of increasing apparent tensile modulus of 
partially dehydrated collagen fibrils with increasing PEG concentration 
was also observed when we analyzed our experimental data with the 
nonlinear Maxwell model. This finding is in accordance with 
stress-strain data presented by Svensson et al. in an earlier study 

Fig. 4. Derivative tensile modulus vs. strain calculated from the nonlinear rheological Maxwell model (Equation (2)) using the exponent n as a fitting parameter. The 
derivative modulus increases similarly with displacement speed and solution (decreasing water content with increasing PEG concentration) is similar to the 
calculated derivative modulus with n = 0.6. 

Fig. 5. Mean viscosity (± standard error of mean) vs. 
displacement speed for different soluitions. Note that 
displacement speed data (x-axis) are not numerical 
but ordinal, hence the actual scale of the x-axis is not 
represented. (a) The viscosity for n = 0.6 decreased 
with increasing displacement speed. Here statistical 
significance was observed in viscosity measured (in 
PBS) at 0.5 μm/s, 1.3 μm/s, and 6.2 μm/s compared 
to displacement speeds above 12.4 μm/s (p < 0.05). 
(b) For n-fitted, theviscosity mearured in 2.6M PEG 
and at 0.5 μm/s was statistically significant different 
(p < 0.05) to the ones measured at speeds >1.3 μm/s, 
there seems to be no trend of the viscosity with 
displacement speed. However, at lower displacement 
speeds (0.5 μm/s to 12.4 μm/s), statistically signifi
cant differences are observed in viscosity measured in 
PBS and 1.0M PEG compared to higher PEG concen
trations. At higher speeds, the trend is not consistent.   
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(Svensson et al., 2010). We further find that the parameters of the 
rheological model are not constant but change either with displacement 
speed (i.e., fibril strain rate) or PEG concentration (i.e., hydration level). 
Interestingly, the elastic constant of the nonlinear spring, a, is pre
dominantly affected by changes in PEG concentration, with higher 
stiffness for lower hydration levels. This reflects earlier interpretation 
(Andriotis et al., 2018), that the elastic behavior is in this case largely 
driven by the predominantly non-covalent interactions between the 
collagen molecules within the collagen fibril. With decreasing hydra
tion, the content of intermolecular unbound water is reduced. Therefore, 
the interaction between neighboring molecules becomes stronger and 
leads to an increase in stiffness. In contrast, the viscosity is affected 
predominantly by the displacement speed, i.e., fibril strain rate. Viscous 
behavior of collagen fibrils has been previously linked to deformation 
mechanisms such as rupturing and forming of intramolecular hydrogen 
bonds (Gautieri et al., 2009, 2012). Intramolecular (i.e., 
collagen-collagen) hydrogen bonds, that stabilize the tropocollagen 
triple helix, rupture upon unwinding and straightening of the collagen 
triple helix while collagen-water hydrogen bonds are forming (Gautieri 
et al., 2009, 2011, 2012; Buehler, 2008). Bell formulated a simple theory 
on the formation and rupture of bonds between cells (Bell, 1978). Some 
of the concepts in Bell’s theory could explain the origin of rate depen
dent mechanical properties in collagen fibrils. Bell showed that the 
applied force influences the rate at which hydrogen bonds rupture (Bell, 
1978). According to Bell’s model, if a steady and low force is applied 
hydrogen bonds rupture and reform reaching a new equilibrium. But if a 
larger force is applied at higher rate, hydrogen bonds will rupture 
rapidly (Bell, 1978). 

Our data show that the applied force shifts to higher values while 
loading the collagen fibril at higher fibril strain rates at a given 

concentration of PEG. Thus, loading at higher fibril strain rates allows 
less time for hydrogen bonds to reform and restabilize the collagen triple 
helix. This may explain the decreasing and plateauing viscosity in 
collagen fibrils with increasing strain rate. Our interpretation for this 
behavior is that when collagen-collagen hydrogen bonds rupture, 
collagen-water hydrogen bonds are forming. Driving the strain rate up, a 
point is reached where no more collagen-collagen and only collagen- 
water hydrogen bonds can form. This could explain the plateau region 
strarting at a displacement speed of about 12 μm/s, corresponding to a 
strain rate of about 0.122 s− 1. 

The decrease of viscosity before reaching a plateau is about two or
ders of magnitude. This magnitude is in agreement with the study by 
Silver et al., who also reported a decrease of viscosity with strain-rate in 
tensile tests of self-assembled collagen fiber (Silver et al., 2002). But, the 
tests by Silver et al. were conducted on larger collagen fibers with di
ameters ranging between 38 μm 70 μm, whereas we extracted and tested 
individual collagen fibrils (Silver et al., 2002). Therefore, it is possible 
that some of the effects seen by Silver et al. stem from interactions of a 
collection of collagen fibrils composing a collagen fiber, rather than 
from individual collagen fibrils. In our study, the relaxation time, τn, 
decreases with increasing displacement speed, since τn is the ratio of the 
viscosity and the elastic constant of the nonlinear spring. To our 
knowledge only Shen et al. published values of the relaxation times 
using a Maxwell-Wiechert model (Shen et al., 2011). In the work by 
Shen et al., stress relaxation tests over a time span of about 100 s were 
conducted. A model with two viscosities was used, one for fast (tenths of 
seconds) and one for slow (hundreds of seconds) relaxation times (Shen 
et al., 2011). In contrast, we used a nonlinear Maxwell model, consisting 
of one nonlinear viscous element (and therefore relaxation time) to 
describe quasistatic tensile data. Regardless of the different model used, 

Fig. 6. (a, b) Mean spring constant and standard 
error of the mean plotted against the displacement 
speed for different PEG concentrations. The spring 
constant increases with PEG concentration, but the 
increase was significant only between lower (<6.2 
μm/s) and higher (<12.4 μm/s) displacement speeds 
(p < 0.05). (c, d) Mean relaxation time τn[s] and 
standard error of the mean plotted against the 
displacement speed for different PEG concentrations. 
(c) For n=0.6, the relaxation time decreases with 
increasing displacement speed, but no clear trend was 
observed with PEG concentration. (d) For n-fitted, the 
relaxation time measured at PBS and 1.0M PEG is 
statistically different to the higher concentrations of 
PEG across all displacement speeds (p < 0.05).   
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we present relaxation times in the range of 0.2–500 s (lower values 
mostly represent the response of the collagen fibril at higher PEG con
centration, while higher values correspond to lower PEG concentration 
or just PBS), of similar order of magnitude presented by Shen et al. (7 ±
2 s and 102 ± 5 s). However, there are also two fundamental differences 
between our tests and the ones reported by Shen et al. that need to be 
considered (Shen et al., 2011). These are a) the environment, in which 
the tests were carried out and b) the different loading protocols. We used 
data from tests of a collagen fibril fully submerged in aqueous solutions, 
while Shen et al. tested air-dried collagen fibrils. And, while we used 
data from monotonic tensile tests, Shen et al. carried out stress relaxa
tion tests. 

In summary, the nonlinear Maxwell model suggests that collagen 
fibrils viewed as a highly viscous fluid exhibiting thixotropic behavior, i. 
e., decreasing viscosity with strain-rate up to a certain plateau. Because 
of the high viscosity, the tensile response of collagen fibrils is largely 
dominated by their elastic response. This suggests that a nonlinear 
spring might be a simpler and suitable model that could fit the data. For 
the sake of completeness, we also tried this approach. However, the 
nonlinear spring could only successfully be fitted to the data collected 
from tests conducted in PBS only. The derivative tensile modulus esti
mated from the nonlinear spring followed a similar trend with the one 
estimated from the nonlinear Maxwell model (Figure S1.2). Therefore, 
the nonlinear Maxwell model seems to be a sufficient extension of the 
nonlinear spring to fit the data and especially also account for the 
transient effect during tensile loading of the partially dehydrated 
collagen fibril. 

Yang et al. recently (Yang et al., 2022) showed that the adaptive QLV 
(in contrast to the QLV of Fung (1981)) model adequately describes the 
nonlinear viscoelasticity of collagen fibrils. Lack of experimental capa
bilities to perform stress relaxation and creep experiments (Fung, 1981; 
Kohandel et al., 2008) in our setup did not facilitate a similar analysis as 
performed by Yang et al. (2022). Hence, our aim here was to employ a 
model that does not require stepwise tests (i.e., stress relaxation or creep 
tests), and has a low number of fitting parameters. 

Additionally, the application of the nonlinear model presented here 
to stress relaxation and/or creep tests could also be considered. Such 
studies warrant a further extension or choice of a different configura
tion, but this is beyond the scope of this study. 

Clearly a potential limitation of the approach presented here is the 
sensitivity on the starting values for the fitting parameters. Different 
starting values may force the model to convergence to local minima and 
therefore underestimate or overestimate the model parameters. To avoid 
such effects, we initially tried to find those starting values (as described 
in the materials and methods) that yielded the highest R2. In addition, 
we acknowledge that, the sample size of six force curves per strain rate 
and PEG concentration is small. Nevertheless, given the complex nature 
of tensile tests on individual and isolated collagen fibrils most experi
ments published to date suffer from low throughput. A positive fact is 
that the experiments we rely on here were performed on the same 
collagen fibril, i.e., different PEG concentrations, different displacement 
speeds. While this does not increase the number of samples it limits 
variability. We expect that collagen fibrils from the same source will 
behave similarly and therefore show the same effects presented albeit 

considerable sample to sample variation. 
In this context new development of dedicated instruments for testing 

individual collagen fibrils (Svensson et al., 2018; Nalbach et al., 2022) 
may aid in increasing the sample size in the future. 

6. Conclusion 

An empirical equation based on a nonlinear Maxwell model was 
derived to describe the apparent tensile elastic and viscous response of a 
collagen fibril tested in varying hydration levels and displacement 
speeds. The apparent tensile modulus (or derivative modulus) increases 
with decreasing hydration and with increasing displacement speed (for a 
given hydration level). On the other hand, viscosity and relaxation time 
seem to be independent of the hydration level, but both decrease with 
increasing displacement speed, reaching a plateau starting at about 12 
μm/s displacement speed. The latter suggests a thixotropic behavior for 
the tested collagen fibril. A possible underlying mechanism that can 
explain these observations is the influence of available intermolecular 
unbound water. The amount of intermolecular unbound water may steer 
the strength of intermolecular non-covalent interactions, while rupture 
and formation of collagen-collagen and collagen-water hydrogen bonds 
may explain the changes in viscosity due to increasing displacement 
speed. 
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Supplementary data to this article can be found online at https://doi.org/10.1016/j.jmbbm.2023.105991. 

Appendix A 

Nonlinear Maxwell model 

Similar to the classical linear Maxwell model, the nonlinear Maxwell model consists of two elements, a dashpot, and a spring. The stress of the 
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spring and the dashpot in the nonlinear Maxwell model is a power law function, with exponent n, of the strain and strain rate, respectively (σS(εS) =

aεm
S ,σD(εD) = μdεD(t)

dt
1/n

, where a [Pa] the spring constant and μ [Pa • s1/n] the viscosity). As shown in Fig. 1a, the exponent n influences how the stress 
increases with time or strain. 

The nonlinear Maxwell model is described by the resulting differential equation (Khokhlov, 2016, 2019; Kobelev, 2014) by assuming m = 1/n. 

dε(t)
dt

=
n
anσ(t)n− 1dσ(t)

dt
+

(
σ(t)

μ

)n

, (A1) 

with strain rate (constant in our case), k = dε(t)/dt, assuming the initial condition ε(t = 0) = 0, stress σ(t= 0) = 0 and writing the relaxation time 

τ = μ /a
[
s1

n

]
, the solution for equation (A1) is: 

σ(t) = k1/n • μ •
(
1 − e− t/τn

)1/n
, (A2) 

Equation (A2) represents the evolution of stress vs. time, but we can also rewrite this equation as a function of strain (by substituting t = ε
k [s], where 

ε the strain), and then calculate a derivative tensile modulus as a function of strain: 

σ(ε) = k1/n • μ • (1 − e
− ε/(k τn) )

1/n 

The derivative tensile modulus is: 

Emod(ε)=
dσ(ε)

dε =

=
k− 1+1

n • μ • e − ε
kτn (1 − e − ε

kτn )
− 1+1

n

n•τn =

=
k− 1 • k1

n • μ • (1 − e− ε
kτn )

1
n

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
σ(ε)

•e− ε
kτn•(1 − e− ε

kτn )
− 1

n•τn 

Finally, the derivative tensile modulus takes the simplified form: 

Emod(ε)=
σ(ε)

k • n • τn(e
ε

kτn − 1)− 1
, (A3)  
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