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Abstract. PLCverif is an actively developed project at CERN, enabling
the formal verification of Programmable Logic Controller (PLC) pro-
grams in critical systems. In this paper, we present our work on improv-
ing the formal requirements specification experience in PLCverif through
the use of natural language. To this end, we integrate NASA’s FRET, a
formal requirement elicitation and authoring tool, into PLCverif. FRET
is used to specify formal requirements in structured natural language,
which automatically translates into temporal logic formulae. FRET’s
output is then directly used by PLCverif for verification purposes. We
discuss practical challenges that PLCverif users face when authoring re-
quirements and the FRET features that help alleviate these problems.
We present the new requirement formalization workflow and report our
experience using it on two critical CERN case studies.
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1 Introduction

Over the past few years, formal verification has become a crucial part in the pro-
cess of software development for critical applications. To this end, CERN’s open-
source tool PLCverif [3] opened the door for the verification of Programmable
Logic Controller (PLC) programs [I3J6/12] and it has successfully been used to
verify several safety-critical applications [7J8I[9].

Given PLC code and a set of requirements formalized in either computation
tree logic (CTL) or future-time linear temporal logic (LTL), PLCverif auto-
matically transforms these to an intermediate mathematical model, i.e., control
flow automata (CFA) [5]. Once the intermediate model is obtained, PLCverif
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supports its translation into the input language of various model checkers for
verification. Finally, analysis results are presented to the user in a convenient
and easy-to-understand format.

The aforementioned process relies on control and safety engineers formalizing
requirements. Prior to this work, PLCverif already supported the use of natural
language templates, which are a set of pre-made templates with “blanks” where
expressions containing variables of the PLC program can be added (e.g., “{ex-
pressionl} is always true at the end of the PLC cycle”). During formalization,
pattern instantiations are translated to LTL or CTL based on the pre-made
templates. However, the expressive power of the existing templates is limited.

In this paper, we present the integration of NASA Ames’ Formal Require-
ments Elicitation Tool (FRET [1]) into PLCverif, which provides a structured
natural requirements language with an underlying temporal logic semantics.
The integration of FRET within PLCverif helps users express and formalize
a greater range of requirements and understand their semantics. The toolchain
was successfully used in two critical CERN case studies: a safety program of a
superconducting magnet test facility and a module of a process control library.

2 Integrating FRET into PLCverif

FRET is an open source project for writing, understanding, formalizing, and
analyzing requirements [IJTO/TT]. FRET’s user interface was designed with us-
ability in mind; engineers with varying levels of experience in formal meth-
ods can express requirements using a restricted natural language plus stan-
dard Boolean/arithmetic expressions, called FRETISH with precise, unambigu-
ous meaning. For a FRETISH requirement, FRET produces textual and dia-
grammatic explanations of its exact meaning and temporal logic formalizations
in LTL. FRET also supports interactive simulation of the generated logical for-
mulae to increase confidence that they capture the intended semantics.

2.1 Limitations of Requirement Formulation in PLCverif
As already anticipated in the introduction, patterns have significant limitations:

1. they offer a limited set of 9 pre-made templates only,
2. they do not offer any tool for validation of complex requirements; i.e., meth-
ods for checking if the created requirement is the same as the intended one.

FRET is able to improve on the current limitations the following ways:

Ezxpressive Power. Users are able to formulate requirements in FRETISH as con-
strained and unambiguous sentences, which are then automatically transformed
to LTL expressions.

Validation. FRET has a built-in simulator, allowing the user to check different
temporal variable valuations. Furthermore, FRET generates a textual and dia-
grammatic description of the requirement to further help precise understanding.
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Fig. 1: Requirement formalization workflow in PLCverif. Features integrated into
PLCverif in this work are shown in bold.

2.2 Realization of the New Workflow with FRET

The bold parts of Figure [[| show how FRET fits into the workflow of PLCverif.
If “Edit in FRET” is chosen, FRET is opened and the user can work in the
requirement editor. Once the requirement is written in FRET1SH and formalized,
it is then sent back to PLCverif.

The External Mode of FRET. The feature set of FRET covers much more than
what PLCverif could currently utilize (e.g., requirement hierarchies). PLCverif
handles each requirement in a separate verification case, thus only the following
features are utilized: the requirement editor, the formalization component and
the requirements simulator. To facilitate integration with external tools including
PLCverif, we developed a Node.js script for running the aforementioned features
as a standalone tool. This new mode also implements the ability to import a
variable glossary into the requirement editor of FRET.

Variable Glossary. PLCverif extracts the list of variable names and types by
parsing the PLC code. Now the resulting variable glossary can also be exported
to a JSON file for FRET to use. This enables features such as autocompletion
of variable names in the FRET requirement editor. It also facilitates the pro-
cess of creating formalized properties that can be directly used by PLCverif for
verification as these requirement variables directly match PLC code variables.

Since variable names used in PLC code may include other characters besides
alphanumeric, we extended the FRET editor to support identifiers with periods,
percents, or double-quoted identifiers that can contain any special character.

The supported data types differ between the two tools (e.g., PLC programs
might use arrays, while FRET only has scalar types). Assigning a data type to
a variable is not mandatory in FRET and in this work it is only utilized by
the simulator to show what possible values a variable can be assigned. Thus
implementing a best-effort mapping proved to be adequate (e.g., sending each
array element as a separate variable).
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Preparing FRET for PLCs. The working principle of a PLC is described by the
so-called PLC Scan Cycle, consisting of three steps: (1) read sensor values, (2)
execute the PLC program and (3) write the actuator values. PLC requirements
must be able to express cycles, e.g. “next cycle” or “at the end of the cycle”.

To enable this, FRET’s formalization algorithm was extended to express
new built-in predicates nextOcc(p,q) and prevOcc(p,q), and FRETISH was
extended with the phrases “at the next/previous occurrence of p, q” meaning:
at the next (previous) time point where p holds (if there is such), q also holds.
These are expanded into the following LTL formulae, where $L$ ($R$) is the
formula that specifies the left (right) endpoint of the scope interval:

— Future for nextOcc
($R$ | (X (((!'p & '$R$) U p) => (('p & '$R$) U (p & 9))))
— Past for prevOcc

($L$ | (Y ((('$L$ & !p) S p) => (('$L$ & !'p) S (p & )

Based on our experience, many PLC program requirements are checked at
the end of PLC cycles. This is the most critical moment since the calculated
values are sent to the actuators of the system. In the FRET PLC requirements,
a variable called PLC_END can be used to express this exact moment.

In addition, FRET allows the creation of templates to help users write com-
mon requirements. For this work, we have created new FRET templates for
PLCverif (e.g., In PLC_END shall always satisfy [RESPONSE]).
For further details on the workflow, we refer readers to our technical report [14].

3 Case studies

The integration has been used in two CERN critical systems. The PLC programs
and the properties are real cases at CERN. The first case study utilizes the
validation capabilities, while the second employs the improved expressiveness.
Only two properties per case study are shown due to a lack of space.

We give a brief description of the FRETISH syntax used in the case stud-
ies. For a complete description please refer to [I1]. A FRETISH requirement is
composed of six sequential fields: scope, , component, shall, timing and
response. The optional field is a Boolean expression preceded by the
word when that triggers the response Boolean expression to be satisfied when
the condition expression becomes true from false. FRETISH provides a variety
of timings. In this case study, we use always and eventually.

3.1 Safety PLC program

The safety PLC program of the SM18 Cluster F, a superconducting magnet
test facility at CERN, is meant to protect the personnel and the equipment
of this installation. The SM18 cluster F' is dedicated to test the new super-
conducting magnet technology for the High Luminosity Large Hadron Collider
(HL-LHC) [2], an upgrade of the existing LHC particle accelerator. Its main
risks are related to the cryogenic system and the powerful power converters up
to 20.000 Amps.
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F_MAIN shall always satisfy if (PLC_END & (!MTBF_WCC_PCLSW20_FSL | !MTBF_WCC_PCLSW20_TSH |

(MTBF1_LSW20_P0S & (!MTBF1_WCC_LSW20_FSL | !MTBF1_WCC_LSW20_TSH)) | (MTBF2_LSW20_POS &
(!MTBF2_WCC_LSW20_FSL | !'MTBF2_WCC_LSW20_TSH)))) then SIFO1_DB.SIFO1_PC20K

(a) Property of SIF01 PC20K in FRETISH.

G ((PLC_END and ((((!
MTBF_WCC_PCLSW20_FSL) or
(! MTBF_WCC_PCLSW20_TSH))
or (MTBF1_LSW20_POS and
((! MTBF1_WCC_LSW20_FSL)
or (! MTBF1_WCC_LSW20_TSH)
))) or (MTBF2_LSW20_POS and
((!MTBF2_WCC_LSW20_FSL) or (!
MTBF2_WCC_LSW20_TSH)))))
-> SIF01_DB.SIF01_PC20K)

(b) Generated LTL property by
FRET. (c¢) Future LTL simulation

Fig. 2: Property of the SIF01 PC20K safety function.

Error Property. The property of this case study corresponds to the expected
logic of one of the safety functions (SIF0!_ PC20K):
if at the end of the PLC cycle (PLC__END) the flow (* FSL) or thermo (* TSH)
switches monitoring the cooling system detect a low flow or a high temperature, and
the power converter (PC20k) is connected to the magnet (* LSW20 POS), then
the safety function should shut down the power converter (SIFO1_PC20K).
Figure [2] shows how the property is expressed in FRETISH and in LTL.

Validation. Before verifying this property with PLCverif, the user should make
sure that the formalized property behaves as expected. The main challenge is
the number of operators and parentheses, making manual validation difficult.
FRET’s simulator aids by allowing the user to check any temporal valuation
and whether it satisfies the property or not as shown in Figure

3.2 Standard PLC program

This case study is concerned with UNICOS [4], a CERN framework for the devel-
opment of hundreds of industrial control systems. The selected program library
is called the OnOff object. Its purpose is to control physical equipment driven by
digital signals, which can be composed of different types of devices. This makes
its PLC program highly configurable and its associated logic complex.

Error Property. The property presented here is related to the transitions between
two operation modes shown in Figure (1) Auto mode, where the OnOff object
is driven by the control logic of a higher object of the hierarchy of the program,
and (2) Manual mode, where the operator drives the object.
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The property extracted from ST
the specification is: When the ,AN”D//_\ Manmal Mode ) TG
. P - , MMoSt N
OnOff object is in Manual mode AuduMolt MMoR

OR
MAuMoR

OR AulhFoMo
AulhMMo AND
MFoMoR

(MMoSt) and the control logic re-
quests to move to Auto mode
(AuAuMoR) at any point in the
PLC cycle, the OnOff object should

move to the Auto mode (AuMoSt). D
Figure [] shows the property in Mrottor
FRET1sH and the LTL formula.

Auto Mode
AuMoSt
(default mode)

MAuMoR
OR
AulhFoMo

Forced Mode
FMoSt

Fig. 3: OnOff operation modes specification.
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(G ((('(MMoSt and AuAuMoR)) and (X (MMoSt
the and AuAuMoR))) -> (X(F(AuMoSt and
CPC_FB_On0ff shall eventually PLC_END))))) and ((MMoSt and
satisfy AuMoSt & PLC_END AuAuMoR) -> (F(AuMoSt and PLC_END)))
(a) Property expressed in FRETISH. (b) Generated LTL property by FRET

Fig. 4: PLCverif property for the OnOff object.
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the CPC_FB_OnOff shall always satisfy
if (MMoSt & AuAulMoR & !PLC_END) G (((MMoSt and AuAuMoR) and (! PLC_END)) ->
then at the next occurrence of (X ((((! PLC_END) ) U PLC_END) ->
PLC_END, AuMoSt (((! PLC_END)) U (PLC_END and AuMoSt)))))
(a) Property expressed in FRETISH. (b) Generated LTL property by FRET

Fig. 5: PLCverif property for the OnOff object using the nextOcc predicate

Thanks to the new "at the next occurrence of" phrase, we can verify that
this property is satisfied at the end of the current cycle (which is more precise
and strict), as shown in Figure

These properties can not be expressed with the current PLCverif patterns,
but they are expressible with the restricted natural language of FRET. Now
PLCverif users can express a large variety of requirements in a natural language
and validate these in the simulator.

4 Conclusion

The creation of requirements in FRET fits well into the verification workflow
and improves both usability and expressiveness, as shown by the case studies.
PLCverif [3] and FRET [1] are both open source.

Plans for improvements include the support of verification of time properties
in PLCverif and the support for different type widths in the FRET simulator
(e.g. 16/32 bit integers).

To the best of our knowledge, this is the first attempt to specify formal
requirements using a structured natural language for PLC program verification.
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