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A B S T R A C T

We present a new image complexity metric. Existing complexity metrics cannot distinguish meaningful content
from noise, and give a high score to white noise images, which contain no meaningful information. We use
the minimum description length principle to determine the number of clusters and designate certain points
as outliers and, hence, correctly assign white noise a low score. The presented method is a step towards
humans’ ability to detect when data contain a meaningful pattern. It also has similarities to theoretical ideas
for measuring meaningful complexity. We conduct experiments on seven different sets of images, which
show that our method assigns the most accurate scores to all images considered. Additionally, comparing
the different levels of the hierarchy of clusters can reveal how complexity manifests at different scales, from
local detail to global structure. We then present ablation studies showing the contribution of the components
of our method, and that it continues to assign reasonable scores when the inputs are modified in certain
ways, including the addition of Gaussian noise and the lowering of the resolution. Code is available at
https://github.com/Lou1sM/meaningful_image_complexity.
1. Introduction

Pattern recognition and machine learning typically concern the case
where we already know that the given data have some pattern, and
we want a method that can automatically discover what the pattern
is. In this paper, we address the problem of determining whether the
data have any meaningful pattern to begin with, or whether it contains
no or only very simple systematic structure, a problem that might be
called pattern detection. Humans are highly proficient at recognizing
patterns such as words in a speech signal or objects in a video, but
even in the absence of explicit recognition, we can often detect when
there is a pattern there at all. For example, we hear speech in a foreign
language that we do not understand, but can still tell that there is
some meaningful structure that could be recognized, unlike ambient
city noise or white noise on the radio. Similarly, we may see an abstruse
technical diagram and realize that there is something meaningfully
complex there, even if we do not know what it is, unlike an image of a
blank wall. We study this ability to recognize complexity through the
development of a complexity metric. Data with a rich pattern should be
scored as high complexity, whatever that pattern is, and unstructured
or simply structured data should be scored as low complexity.

∗ Corresponding author at: School of Informatics, University of Edinburgh, UK.
E-mail address: oneillml@tcd.ie (L. Mahon).

There is unavoidable subjectivity in measuring complexity quan-
titatively. This is always the case when defining a new metric. We
cannot begin the investigation of a complexity metric by defining what
complexity is, that would be to put the cart before the horse. Inevitably,
the investigation involves exploring what complexity is, not just how
to measure it, that is, the definition of complexity and the specification
of a complexity metric are two sides of the same thing, the latter
is really an instantiation of the former. For example, if one defines
complex images as those in which there is a high variation between
all the pixel values, then it is natural to use the entropy of pixel values
as a complexity metric; or if one defines complex images as those in
which nearby pixel intensities tend to be very different from each other,
then another metric is the obvious choice (grey-level co-occurrence
matrix; see Section 4). This renders unavailable the standard blueprint
for applied machine learning research of showing that a novel method
outperforms existing methods on some quantifiable task or benchmark,
because the field does not have such a benchmark for measuring image
complexity. What we do have is a vague idea of what complexity is,
vague but still powerful and important. The task is to translate this
vague idea into something computable.
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There are several applications that benefit from being able to mea-
sure visual complexity. Remote sensing often gathers large numbers
of images, most of which depict nothing interesting, such as empty
desert or ocean, but occasionally capture important information, such
as the gathering of fauna or sudden change in flora. It is useful to
automatically filter out the simple images before manual inspection [1–
3]. In the field of psychometrics, there is interest in understanding
what humans will find visually interesting or aesthetic, and this often
involves a component modelling complexity, e.g., [4,5]. Relatedly,
complexity perception influences how humans regard digital interfaces
such as graphical websites, and automated complexity measures have
been proposed to guide interface design [6]. Being able to distinguish
signal from noise is especially relevant to remote sensing, where images
often become corrupted by noise due to the sensing equipment or
various post-processing steps [7–9]. Much work has been done to
reduce noise in remote sensing images [10,11] and to improve the
robustness of image processing methods to noise [12,13].

Most existing techniques for quantifying and measuring image com-
plexity (discussed further in Section 2) are based on measuring in-
tricacy, the idea being that the more intricate it is and the more
dissimilar its parts, the more complex it is. This is relatively easy to
measure, but it is incomplete for two reasons. Firstly, and most im-
portantly, it does not distinguish between meaningful intricacy (signal)
and meaningless intricacy (noise). Using intricacy as a measure of
complexity means that a white-noise image, where the pixel values
are chosen independently at random, is measured as highly, perhaps
even maximally, complex, because there is a high degree of difference
between neighbouring pixels. Note that this problem even holds for
Kolmogorov complexity, where a standard result is that most bitstrings
are almost incompressible, and so, with very high probability, a random
bitstring will receive near maximum complexity score. There has been
theoretical work to divide the Kolmogorov complexity into meaningful
information and noise, using, e.g., ‘sophistication’ [14,15] or ‘effective
complexity’ [16,17]. Our applied method can be thought of as an
instantiation of the high-level idea in these theoretical methods. We
return to this comparison in Section 3.3.

A second disadvantage of variation as a complexity measure is that
it cannot capture the fact that images can have a different complexity at
different scales. A blurry photograph of a complex scene, for example,
is locally simple but globally complex, while a finely-detailed but
repetitive pattern is the opposite.

Rather than meaning a high degree of variation, we instead conceive
of complexity as ‘taking a large number of steps to assemble’. An image
can be thought of as being built out of pixels, local groups of pixels
are combined to form patches, groups of neighbouring patches are
combined to form super-patches etc. Quantifying complexity based on
the assembly process is the approach taken in the theory of assembly
pathways [18,19], originally for the purpose of quantifying the com-
plexity of molecules to aid in the search for extraterrestrial life [20,21].
The pathway assembly index of an object is the minimum number of
combinations needed to produce it from simple parts, where repeated
components can be reused without adding to the count. In order to
discretize the structure of the image and allow the assembly index to
be applied, we employ clustering. For the first level of the hierarchy,
we cluster the pixel values and replace them with their cluster index.
For higher levels, we cluster the multisets of cluster indices from the
level below.

Another advantage of discretizing is that we can then easily com-
pute entropy. Taking the entropy of a continuous image is difficult,
we must use some approximation of differential entropy [22,23]. In
our case, however, we are dealing with discrete cluster labels, so we
need only compute the entropy of a categorical distribution, which is
easy. At each scale (i.e., hierarchy level), we compute the entropy of
the multisets of cluster indices across the image to quantify complexity.
The total complexity score is the sum of this entropy at each scale. We
2

can also examine the entropy for individual scales to get an indication
of the local vs. global complexity in the image: low scales (i.e., small
patch sizes) measure local complexity, whereas higher scales capture
more global structure (as shown in Section 4.4).

At each level of the hierarchy, the cluster indices produced, and
hence the complexity score, depend on 𝐾, the number of clusters in
the clustering model. We choose 𝐾 in a theoretically sound way via
the minimum description length (MDL) principle [24]. MDL says that
we should choose the model that can completely represent the given
data in the fewest number of bits. Clustering can be interpreted as
compression, where we encode each point by its cluster index, along
with the residual error of how it differs from the centroid of that cluster.
Treating each cluster as a probability distribution, and employing the
Kraft–McMillan inequality, we see that the residual error for a point
𝑥 under the cluster probability distribution 𝑝 can be represented using
log 𝑝(𝑥) bits. Representing the data under the clustering model takes
∑

𝑥 log 𝑝(𝑥) bits, plus the number of bits to represent the cluster
indices and the model itself. Increasing 𝐾 reduces the average residual
error, but increases the size of the indices and the model itself. By
MDL, we choose 𝐾 so as to minimize the total size. MDL is a key
component in filtering out noise from our complexity measure. In
white noise images, where there is no meaningful or consistent pattern
between different points, MDL finds only one cluster, because the small
reduction in residual error from encoding more is not worth the extra
cost, so the image ends up with a very low complexity score. We both
prove this mathematically and observe it empirically.

There are two important similarities between the computational
method presented here with human visual perception. The first is
hierarchical processing. The visual cortex is divided into five areas,
V1-V5. Each takes as input the integrated information output from the
previous area, and has progressively larger receptive fields [25]. This
allows humans to perceive each element of a visual scene as composed
of smaller elements, e.g., a photograph is composed of man, road,
bicycle; the bicycle is composed of wheels, frame, saddle; the wheels
are composed of spokes, tyre, valve etc. Similarly, our method processes
progressively larger patches of features and passes the output of each
level of the hierarchy to the level above as input. The approach of treat-
ing images as hierarchically structured underpins convolutional neural
networks, and has also been leveraged for image segmentation [26],
face recognition [27], and image inpainting [28].

The second important similarity to human perception is the role
of simplicity. Many authors have argued that human perception looks
for the simplest interpretation of visual data [29–31]. Similarly, our
use of the minimum description length principle allows us to ignore
certain parts of the image and group together other parts in a way
that produces the most parsimonious representation overall. This is not
a feature of CNNs, but there are some existing works that use MDL
clustering for other image processing tasks, such as image segmen-
tation [32], shape modelling [33], or key-frame extraction [34]. As
well being for different tasks, these methods differ from ours in that
they do not exclude certain parts of the image as outliers, and are not
hierarchical in the sense of passing the output from lower levels to
higher levels as input.

The main contributions of this paper are briefly summarized below.

• We propose a novel theoretically sound measure of image com-
plexity and discuss its relationship to ideas in algorithmic infor-
mation theory.

• We test our method empirically on seven image datasets, four
public and three synthetic datasets that we created. We show that
our method performs as desired in distinguishing images from
different datasets. In particular, our method is able to correctly
assign a low complexity to white noise, in contrast to existing
methods, which assign it a high complexity.

• We support these results theoretically by proving that, given
normally distributed clusters, MDL will find just a single cluster
when the clustering model is fit on white noise, and so our

method will assign a low score.
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• We conduct a further set of experiments, showing how our
method can measure complexity at different scales in the image,
how it performs when Gaussian noise is added to the image or
the resolution of the image is reduced, and how it responds to an
increasing fractal dimension of a fractal image.

he rest of this paper is organized as follows. Section 2 gives an
verview of related work. Section 3 describes our method, and Sec-
ion 4 presents our empirical evaluation. Finally, Section 5 summarizes
ur findings and suggests directions for future work.

. Related work

.1. Measuring image complexity

Fractal dimension is a property of curves, which in some sense
easures their complexity. It can be applied to an image by first

inarizing with a threshold, then taking the boundary between white
nd black pixels as a curve and computing its Minkowski–Bouligand
imension. Lam et al. [35] explore the use of fractal dimension to
easure the complexity of satellite images, and Sun et al. [2] consider

he application to remote sensing images more generally. Both also
ontain a detailed account of methods that use fractal dimension for
mage complexity. Forsythe et al. [36] compare fractal dimension
gainst human judgements of the complexity and beauty of visual art.
File compression ratio is the ratio between the size of a com-

ressed file under a chosen compression algorithm, and the size of the
ncompressed original. Marin and Leder [37] measure image complex-
ty using the file compression ratio, under two compression algorithms:
IF, which is lossy, and TIFF, which is lossless. The compression

atio was compared to human judgements of complexity, on the In-
ernational Affective Picture System. It is also used as a complexity
easure in Forsythe et al. [36] and by Machado et al. [38]. The former

nvestigate the ability of JPEG-ratio, GIF-ratio, and a novel ‘perimeter
etection’ method to predict human judgements of complexity in visual
rt. The latter explore various combinations of compression algorithms
ith automated edge detection, and compares the results to human

udgements of complexity. The authors find the best results using Sobel
nd Canny filters, followed by JPEG compression.

Carballal et al. [5] test the accuracy of various supervised ma-
hine learning models of complexity by annotating art and non-art
mages with human judgements of complexity, then regressing these
nnotations using a machine learning algorithm that includes feature
election. This was repeated a number of times, and the accuracy of a
iven feature was taken to be the fraction of times it was selected by
he feature selection algorithm.

An alternative method is to use the gradient of pixel intensities
across the image. This is the approach taken by Redies et al. [39].
The gradient is computed separately for each of the RGB channels,
and the gradient at a pixel is taken to be the maximum across the
three channels. The average gradient across the entire image is then
taken as a measure of complexity. This is again applied to quantifying
aesthetic judgements of visual art, this time as part of the Birkhoff-like
measure [40], which characterizes beauty as the ratio of order and
complexity. A final method to consider is the Fourier transform, as
used by Khan et al. [41]. The idea is that the more high-frequency
components present in the power spectrum, the more complex the
image. The authors investigate using both the mean and the median
of the power spectrum, and find best results for the median. The
application in this case is guiding neural architecture search, the claim
being that one should first measure the complexity of a given image
dataset, and then use the result to inform architecture design.
3

2.2. Relation to other tasks in pattern recognition

Our method for measuring image complexity begins by assigning a
cluster label to each pixel. It can therefore be interpreted as producing
a segmentation of the image, by defining a segment as a contiguous
set of pixels with the same cluster label. There are several common
approaches to image segmentation, such as modified graph-cutting al-
gorithms [42] or component trees [26]. Among these, the segmentation
provided by our method falls into the category that uses only colour and
texture information [43], and also relates closely to those methods that
use the minimum description length principle [44]. We do not directly
explore the segmentation quality of our method, but Fig. 2 gives a
visual indication of the segments produced.

Clustering is a fundamental task in pattern recognition and ma-
hine learning that learns the structure of data in a fully unsupervised
ay. Current research topics in clustering include the use of deep neural
etworks such as CNNs [45,46] or graph neural networks (GNNs) [47],
nd exploring alternatives to the standard centroid-based clustering,
.g., density-based clustering [48,49]. Our method relates especially
o work on reducing the need for hyperparameters such as cluster
umber [50,51].
Compression is of strong theoretical and practical interest to pat-

ern recognition, and has been used specifically to measure data com-
lexity by the works described in Section 2.1. Aside from standard
lgorithms such as JPEG, common approaches to image compression in-
lude deep learning [52,53] and variants of the wavelet transform [54].
y combining clustering with MDL, we treat clustering as a form
f compression (see [55] for a discussion of clustering as compres-
ion) and thus illustrate the connection between compression and data
omplexity.

. Method

This section gives an overview of the minimum description length
rinciple as it is used in our method, then describes our method in de-
ail with the aid of a worked example, and compares our approach, on a
igh level, to existing theoretical work on meaningful data complexity.

.1. Minimum description length patch clustering

Our measure of complexity uses a form of clustering based on
escription length (DL), i.e., the number of bits needed to specify the
iven data. Description length is relative to an encoding scheme, and
ia the Kraft–MacMillan inequality, this corresponds to a probability
istribution. Specifically, the Kraft-MacMillan inequality says that, un-
er the optimal encoding scheme (optimal in the sense of being shortest
n average) of a probability distribution 𝑝(⋅), the description length of
point 𝑥 is − log 𝑝(𝑥). We model the probability distribution with a
aussian mixture model (GMM), because (a) we seek a distribution-
ased clustering model, and a GMM is by far the most commonly used
istribution-based clustering model, (b) choosing a GMM is equivalent
o simply modelling the distribution within each cluster as normal,
nd this has theoretical justifications in the central limit theorem and
aximization of differential entropy [56]. The description length is

herefore relative to the means 𝜇 = (𝜇𝑖)1≤𝑖≤𝐾 and the covariances
= (𝛴𝑖)1≤𝑖≤𝐾 of this GMM. The probability of a point 𝑥 under its

ssigned component of the mixture model (𝜇,𝛴) is given by

(𝑥, 𝜇, 𝛴) = max
1≤𝑘≤𝐾

exp(− 1
2 (𝑥 − 𝜇𝑘)𝛴−1

𝑘 (𝑥 − 𝜇𝑘))
√

(2𝜋)𝑑 |𝛴𝑘|
, (1)

where 𝜇𝑘 and 𝜎𝑘 are, respectively, the mean and covariance of the
th component, and 𝑑 is the dimensionality of the data. Specifying 𝑥

under 𝑝 requires first indexing the cluster to which 𝑥 belongs and then
encoding 𝑥 under the probability distribution of that cluster, which
we refer to as the residual error. The latter was just shown to take
− log 𝑝(𝑥, 𝜇, 𝛴) bits. Similarly, the length of the former depends on
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the encoding scheme for, and equivalently the probability distribution
over, the indices 1,… , 𝐾, which can be taken empirically from the
data. Specifically, the length of encoding which cluster 𝑥 belongs to
is − log 𝑛𝑘∕𝑁 , so the total description length is then

min
1≤𝑘≤𝐾

− log 𝑛𝑘
𝑁 + 1

2 (𝑥 − 𝜇𝑘)𝛴−1
𝑘 (𝑥 − 𝜇𝑘) +

1
2 log (2𝜋)

𝑑
|𝛴𝑘| , (2)

here 𝑘 is the index of the cluster that it belongs to, 𝑛𝑘 is the number of
oints belonging to cluster 𝑘, and 𝑁 is the total number of data points.
s discussed in Section 3.3, we can conceive of the − log 𝑛𝑘∕𝑁 term
s the meaningful portion of this description and the remainder as the
eaningless portion.

.1.1. Differential description length
Because the multivariate normal distributions composing the GMM

re continuous probability density functions (pdf), instead of probabil-
ty mass functions as in the discrete case, it is possible that 𝑝(𝑥, 𝜇, 𝛴) >
. Note that this is always a possibility for pdfs, e.g., the univariate
ormal distribution

(𝜇, 1
5
√

2𝜋
)

has the value 5 at 𝑥 = 𝜇. In these cases, the Kraft-MacMillan inequality
ould seem to suggest that the corresponding encoding scheme can

epresent 𝑥 with a strictly negative number of bits, which of course is
ot possible. The apparent contradiction is resolved by making explicit
he precision with which 𝑥 is to be encoded. Completely specifying any
eal number is not possible with a finite number of bits, instead one
an only specify an extended region 𝐷𝑥 ⊂ R𝑛, which contains 𝑥. The

number of required bits is then determined by the probability mass
inside 𝐷𝑥, which is given by

𝑝𝑚(𝐷𝑥, 𝜇, 𝛴) = ∫𝐷𝑥

𝑝(𝑧, 𝜇, 𝛴)𝑑𝑧 . (3)

Let 𝜖 be the coordinate-wise precision for specifying 𝑥, i.e., set 𝐷𝑥 to
be a hypercube of side-length 𝜖. The probability mass in 𝐷𝑥 is then
approximated as 𝑝(𝑥, 𝜇, 𝛴)𝜖𝑑 , giving the description length

− 𝑑 log 𝜖 − log 𝑝(𝑥, 𝜇, 𝛴) − log 𝑛𝑘∕𝑁 . (4)

The additional term −𝑑 log 𝜖 will be higher for smaller 𝜖, and will
lways increase the total description length to be positive even if
log(𝑝(𝑥, 𝜇, 𝛴)) < 0. That it will be large enough to counterbalance
log(𝑝(𝑥, 𝜇, 𝛴)) is clear from observing that the probability mass in

3) is never greater than 1. Note that the additional −𝑑 log 𝜖 term
is independent of the pdf itself. Thus, it can be ignored when using
MDL and comparing different pdfs (which correspond to different fit
clustering models). That is, when invoking the MDL principle, it is
sufficient to look only at the term remaining after the −𝑑 log 𝜖 term
has been removed:

− log(𝑝(𝑥, 𝜇, 𝛴)) − log 𝑛𝑘∕𝑁 . (5)

We refer to this remaining quantity as the differential description
length. We define the differential description length (DDL) to be the
negative logarithm of the probability density. It is the continuous
analogue of the description length, just as differential entropy is the
continuous analogue of entropy. Similarly to differential entropy, DDL
can be negative. This happens precisely when the probability density is
greater than 1, as just discussed. DDL is related to the description length
as follows: for a point 𝑥 with DDL 𝐷, the number of bits required to
specify it to a precision 𝜖 is max({0,−𝐷− 𝑑 log 𝜖}). The max is required
to account for the case where the region specified by the precision 𝜖 is
arger than the interval in which we already know 𝑥 to lie. For example,
f we assume a priori that 𝑥 is uniformly distributed on [0, 1], in which
ase all points have DDL 0 under the prior distribution, and then we
ry to specify to precision 2, we will end up with

𝐷 − 𝑑 log 𝜖 = 0 − log 2 = −1.

aking the maximum with zero means that, in such cases, we obtain
he correct result of 0.
4

t

3.1.2. Determining outliers
As well as choosing the number of clusters (see Section 3.1.3), we

can use the minimum description length (MDL) principle to determine
which points are outliers with respect to the given model. An outlier
can be defined as one that takes more bits to specify under the model
than it does to specify directly, independently of the model. We can
always specify (up to finite precision 𝜖) any point directly using the
same discretizing reasoning as above. First, restrict attention to some
bounded region of R𝑛, which is large enough so that we can assume
that it will contain all values the data could have.1 Once this bounded
region is specified, partition it into a set of small regions–hypercubes
with side-length 𝜖–and then specify a point 𝑥 by indexing the unique
region that contains 𝑥. The number of possible regions is
(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛

𝜖

)𝑑
,

where 𝑑 is the dimensionality of the data, and 𝑎𝑚𝑎𝑥 and 𝑎𝑚𝑖𝑛 are the
maximum and minimum values, respectively, that appear anywhere in
the image. The number of bits to specify a point directly is then

log
(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛

𝜖

)𝑑
= −𝑑 log 𝜖 + 𝑑 log(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛) . (6)

Again, we can ignore the precision value 𝜖, because it will appear
equally in both description length under the model and the description
length from indexing the hypercube. Instead, we can use the differential
description length. The indexing of the 𝜖 hypercube in (6) is equivalent,
when using the differential description length, to using a uniform prior
on [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥]𝑑 . Under such a distribution, the DDL of any point is
log(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛). Comparing to the DDL under the model, as in (5),
point is an outlier iff

log(𝑝(𝑥, 𝜇, 𝛴)) − log
𝑛𝑘
𝑁

> 𝑑 log(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛) ⟺ (7)

⟺ 𝑝(𝑥, 𝜇, 𝛴)
𝑛𝑘
𝐾

< (𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛)−𝑑 , (8)

where, as above, 𝑛𝑘 is the number of points assigned to the same cluster
as 𝑥. We can then define the total DDL of 𝑥, where 𝑥 can be specified
either directly or using the encoding scheme from the model, as

𝐷(𝑥, 𝜇, 𝛴) = min
(

𝑑 log(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛),− log(𝑝(𝑥, 𝜇, 𝛴)) − log
𝑛𝑘
𝑁

)

. (9)

3.1.3. Determining the number of clusters
For a given set of independent points, 𝑋 = (𝑥𝑖)1≤𝑖≤𝑁 , we have

− log 𝑝(𝑋) = − log
𝑁
∏

𝑖=1
𝑝(𝑥𝑖) −

𝑁
∑

𝑖=1
log 𝑝(𝑥𝑖) , (10)

so the description length of the entire set is the sum of the description
lengths of all its points, and the same for the DDL. The description
length of 𝑋 under the GMM depends on the number of clusters in the
GMM, and using the MDL principle, we can determine the optimum
number of clusters by regarding ‘optimum’ as meaning ‘produces the
smallest DDL’.

Let 𝜇(𝑋,𝐾), 𝛴(𝑋,𝐾) denote the values of 𝜇 and 𝛴 with 𝐾 compo-
ents, which maximize the probability of 𝑋:

(𝑋,𝐾), 𝜎(𝑋,𝐾) = argmax
𝜇,𝛴

∏

𝑥∈𝑋
𝑝(𝑥, 𝜇, 𝛴) . (11)

inding these optimal parameters means fitting the GMM to the dataset
, and can be performed with the usual expectation–maximization

1 There are several reasonable choices for such a bounded set: the range of
alues that can be specified using a standard 32-bit float or the hyperrectangle
hose sides are the coordinate-wise ranges across the dataset of patches. We

ind that the exact choice does not affect results. In our implementation, we
hoose the hypercube whose sides, in each dimension, run from the minimum

o the maximum values across all dimensions in the dataset.
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algorithm. Denote by 𝐷(𝑋,𝐾) the DDL of 𝑋 under the optimal encoding
orresponding to this fit GMM. Using 𝐷(⋅) from (9), we have

(𝑋,𝐾) =
∑

𝑥∈𝑃 (𝑋)
𝑑(𝑥, 𝜇(𝑋,𝐾), 𝜎(𝑋,𝐾)) . (12)

The value of 𝐷(𝑋,𝐾) is the description length of the model itself plus
he DDL of 𝑋 under the model. The former, i.e., the description length
f a GMM with 𝐾 parameters, is, for precision 𝜖, given by

𝐷(𝐾) = 𝐾𝑑 log
(

𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛
)

+𝐾𝑑2 log
(

𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛
)

. (13)

Then, the optimal number of clusters 𝐾∗ is that which minimizes the
total description length:

𝐾∗ = argmin
1≤𝐾≤|𝑋|

𝐷(𝑋,𝐾) +𝐷(𝐾) . (14)

Note that one only needs to consider values of 𝐾 up to the size of the
dataset, as adding more clusters beyond that point can only increase
the total description length. In practice, we test only values up to 8,
s fitting GMMs with many clusters becomes expensive and, in our
xperiments, does not change results.

heorem 1. When clustering white noise in [0, 1]𝑚, using a GMM with
components, the expected DDL of a point is a monotonically increasing
unction of 𝑘.

See the appendix for a proof. This means that, for white noise,
e should expect MDL to select the model with just a single cluster,

n which case every point will receive the same cluster label and the
esulting entropy will be zero.

Determining the outliers and the number of clusters is relevant to
easuring complexity, because it will affect the cluster model that is

earnt, and so affect the cluster labels that are assigned and, ultimately,
ur complexity score.

.2. Hierarchical patch entropy

The method described in this section is depicted graphically in
ig. 1. At each level of the hierarchy, we begin with a 3d tensor 𝑋
f shape (𝐻,𝑊 ,𝐶) and will cluster the vectors of the last dimension;
n the first level, this means clustering 3d vectors specifying the colour
ntensities for each of the three colour channels at each point. Before
lustering, the model computes 𝐾∗ as in (14), then clusters the last-
imension vectors of 𝑋 using a mixture model with 𝐾∗ components.
rom this clustering, we can form the 2d tensor 𝐴, of shape (𝐻,𝑊 )
hose (𝑖, 𝑗)th entry is the cluster index of the (𝑖, 𝑗)th pixel in 𝑋, and 𝐵,

he 3d tensor of shape (𝐻 −𝑚+ 1,𝑊 −𝑚+ 1, 𝐾∗) whose (𝑖, 𝑗, 𝑘)th entry
is the count of how many times the 𝑘th cluster appears in the 𝑚 × 𝑚
atch beginning at (𝑖, 𝑗) in 𝐴.

The patch size 𝑚 is a user-set parameter. We refer to the vector at
ocation 𝑖, 𝑗 in 𝐵 as the signature of the (𝑖, 𝑗)th patch. Our measure of

entropy at this level is the entropy of the categorical distribution of all
signatures that appear in 𝐵.

As an example of how a patch signature in 𝐵 is formed from
the corresponding patch of cluster indices in 𝐴, consider the top-left
coloured patch in 𝐴, at the bottom-right of Fig. 1. This patch, coloured
in dark red, contains three copies of index 2, one copy of index 3, five
opies of index 4, and no copies of any other index. Thus, the patch
ignature is the vector [0, 0, 3, 1, 5, 0, 0, 0, 0, 0]. At the bottom-left of Fig. 1

we see this patch signature is then stored at the corresponding location
in 𝐵, also in dark red; note the first channel showing 0, the first element
in the patch signature.

To measure complexity at a larger scale, we repeat the above
procedure, this time beginning with 𝐵 instead of 𝑋. Let subscripts
denote the level of the hierarchy, so that 𝐴𝑖 and 𝐵𝑖 are the tensors
formed, as just described, on the 𝑖th level of the hierarchy. Then, we can
5

say that 𝐵𝑖 contains the signatures (i.e., counts vectors) of the patches
in 𝐴𝑖, and 𝐴𝑖 contains the MDL-cluster indices of the last-dimension
ectors in 𝐵𝑖−1. To begin the iteration, 𝐵0 is set to 𝑋, the input image.

The present implementation computes up to 𝐵4, and uses larger
patch sizes for each level: 4, 8, 16, and 32. Note, however, that this
s not the same as simply clustering larger patches of an image. What
s clustered at each level is the cluster indices from the level below, so
s quite different from the input image. The full method is described in
lgorithm 1.

Algorithm 1 Algorithm for computing the complexity of an image.

function MDL_Cluster(D)
𝑏𝑒𝑠𝑡_𝐷𝐿 ← ∞
𝐴 ← cluster indices of MDL of 𝐷, initialized randomly
for 𝐾 ∈ {1,… , 𝐾_𝑚𝑎𝑥} do

fit a GMM with 𝐾 components to 𝐷
𝐷𝐿 ← differential description length of 𝐷 under this fit GMM,

as per (13)
if DL < best_DL then

𝐴 ← cluster indices of 𝐷 under this fit GMM
𝑏𝑒𝑠𝑡_𝐷𝐿 ← 𝐷𝐿

end if
end for
return 𝐴

end function
function Signatures_Entropy(S)

𝑏𝑖𝑛_𝑐𝑜𝑢𝑛𝑡𝑠 ← hash table whose keys are the unique elements in 𝑆,
and whose values are the number of times that element occurs in 𝑆

return -∑𝑏∈𝑏𝑖𝑛_𝑐𝑜𝑢𝑛𝑡𝑠
𝑏𝑖𝑛_𝑐𝑜𝑢𝑛𝑡𝑠[𝑥]

|𝑆| log 𝑏𝑖𝑛_𝑐𝑜𝑢𝑛𝑡𝑠[𝑥]
|𝑆|

end function
function Compute_Patch_Signatures(X,m)

𝐴 ← MDL_Cluster(𝑋)
𝐵 ← multisets of cluster indices appearing in all 𝑚×𝑚 patches of

𝐴 (including overlapping)
return 𝐵

end function
function Complexity(X,scales)

𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ← 0
for 𝑚 ∈ 𝑠𝑐𝑎𝑙𝑒𝑠 do

𝑋 ← Compute_Patch_Signatures(𝑋,𝑚)
𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ← 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦+ Signatures_Entropy(𝑋)

end for
return 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

end function

The method begins with the function MDL_Cluster, which returns
the cluster indices of the MDL clustering of each location in the input.
The right-hand-side of Fig. 2 shows an example of the output of this
function when applied to the image from the left-hand-side of Fig. 2.

3.3. Comparison with theoretical measures of meaningful complexity

As mentioned in Section 1, previous works have explored, theoret-
ically, how one might divide the algorithmic information of an object
into a meaningful portion and a meaningless portion via sophistica-
tion [14,15] and effective complexity [16,17]. The applied method that
we present in this paper shares the same high-level approach to these
theoretical ideas, namely, to select the description for our data that has
shortest overall length, and then, within that shortest description, select
the size of the meaningful portion as a measure of the data complexity.

We assume that we have some way of distinguishing meaning-
ful vs. meaningless descriptions. In our case, meaningful descriptions
correspond to assignments of cluster labels to different parts of the
image, and have length given by the first term in (2); the meaningless
descriptions correspond to the residual error in specifying a point
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Fig. 1. Method for computing the entropy of patch signatures as a measure of complexity. Each patch signature is the multiset of MDL cluster indices that appear there.
exactly given its cluster label, as per the second two terms in (2) along
with the specification of outliers as per (6). Sophistication and effective
complexity, on the other hand, characterize the meaningful portion as
a description of a set of which the given data is a typical member, and
the meaningless portion corresponds to selecting the given data from
within that set. Let  and  denote, respectively, the sets of all possible
meaningful and meaningless descriptions. Given data 𝑋, we write

𝐷0,… , 𝐷𝑛 ⊢ 𝑋, where 𝐷𝑖 ∈  ∪ ,∀1 ≤ 𝑖 ≤ 𝑛 (15)

to mean that descriptions 𝐷0,… , 𝐷𝑛 together perfectly describe 𝑋. We
might try to characterize the meaningful complexity in 𝑋 as the length
of its shortest meaningful description:

min
𝑆∈

{𝑙(𝑆)|𝑆 ⊢ 𝑋} , (16)

where 𝑙(⋅) denotes the length of a description. However, this naive
approach returns us to the problem of measuring random noise as
highly complex, because if we are restricted only to meaningful de-
scriptions, then we would need a very long one to completely describe
a piece of noise. Instead, the approach taken both by our work, and
by sophistication and effective complexity on the theoretical side, is to
make use of the non-meaningful portion, not to count directly towards
the complexity score, but in selecting the shortest description. The
amount of meaningful complexity in 𝑋 is measured as

𝑙(𝐷∗), where (𝐷∗, 𝐸∗) = min
(𝐷,𝐸)∈×

{𝑙(𝐷) + 𝑙(𝐸)|𝐷,𝐸 ⊢ 𝑋} . (17)

This leads to random noise getting a high value of 𝑙(𝑅), but a low
value of 𝑙(𝑆), so even though its overall description length, 𝑙(𝑆) + 𝑙(𝑅),
might be high, the resulting complexity score is low. In our case in
particular, as shown by Theorem 1, the total description length tends
to be minimized by having a single cluster, which means that the
6

meaningful description is essentially of zero length and the entirety of
the data is specified directly as outliers via (6).

There are important differences between our method and these
theoretical works as well: in order to capture local spatial informa-
tion, we measure the entropy of cluster labels within patches, not of
individual points; and we repeat our method recursively at different
levels, to capture compositionality, as described in Section 1. However,
to the problem of correctly measuring the complexity of noise, our
method uses, on a high level, the same solution as that explored in the
theoretical concepts of sophistication and effective complexity.

3.4. Worked example

This section contains a worked example on a randomly chosen
image from ImageNet, shown in Fig. 2. The steps of our method are
enumerated for each of the four levels of the hierarchy. This shows
how the final complexity score is obtained. At each level 𝑖, the model

1. performs MDL clustering on the set of array elements 𝐵𝑖−1, and
assigns each a cluster label, to form 𝐴𝑖 (initially, 𝐵0 is an image
array of pixels, and then 𝐴1 contains a cluster label for each pixel
in 𝐵0)

2. forms 𝐵𝑖 out of patch signatures of multisets of labels in each
patch of 𝐴𝑖

Layer 1: 50246 points to cluster (pixels)
Number of components found by MDL, as per (14): 7
Assign each pixel a label from 0,… , 6, and form patch signatures as

multisets of labels inside all 4 × 4 patches, which gives 48450 patches,
of 1411 different unique values.
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Fig. 2. Left: Example of a relatively high-resolution real-world image from ImageNet. ID: n03445777_10762. Right: The matrix 𝐴 formed by MDL clustering each point in the
input image, i.e., by applying the function MDL_Cluster from Algorithm 1; different cluster indices are shown in different colours. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Entropy of resulting categorical distribution of patch signatures:
7.995

Layer 2: 48450 points to cluster (pixels)
Number of components found by MDL, as per (14): 8
Assign each point a label from 0,… , 7, and form patch signatures as

multisets of labels inside all 8 × 8 patches, which gives 44954 patches,
of 3677 different unique values.

Entropy of resulting categorical distribution of patch signatures:
10.194

Layer 3: 44954 points to cluster (pixels)
Number of components found by MDL, as per (14): 8
Assign each point a label from 0,… , 7, and form patch signatures

as multisets of labels inside all 16 × 16 patches, which gives 38346
patches, of 7341 different unique values.

Entropy of resulting categorical distribution of patch signatures:
12.772

Layer 4: 38346 points to cluster (pixels)
Number of components found by MDL, as per (14): 7
Assign each point a label from 0,… , 6, and form patch signatures as

multisets of labels inside all size 32 × 32 patches, which gives 26666
patches, of 5666 different unique values.

Entropy of resulting categorical distribution of patch signatures:
12.353

Total complexity: 7.995 + 10.194 + 12.772 + 12.753 = 𝟒𝟑.𝟑𝟏𝟒

4. Experimental evaluation

It is difficult to assess the performance of an image complexity
measure empirically. Some works gather human subjective judgements
on a particular distribution of images (e.g., European renaissance paint-
ings) and report accuracy/correlation, often also training a supervised
model on these human judgements [38,57]. Aside from the practical
difficulties of running these psychological studies, evaluating a model
on a single distribution does not give a rounded indication of its
accuracy, it is unclear how such models will perform when presented
with a more diverse set of images. Additionally, collecting human
judgments of complexity in this way may not be reliable: they are
influenced by the presentation of the image as well as cognitive factors
such as visual working memory [58], and show high inter-subject
variability [59]. There is also EEG evidence suggesting that humans use
different cognitive processes to judge an image’s complexity depending
on its degree of naturalness/familiarity [60]. We instead evaluate this
method with a number of different experiments that, together, show
that it assigns complexity scores in a coherent and consistent way, and
that it accords with our intuitive understanding of complexity.
7

Firstly, we present the scores produced by our method for a diverse
set of images of different types, taken from different datasets, both
public and synthetic datasets that we create, and compare these scores
to those produced by existing complexity metrics. Comparing sets/types
of images, rather than individual images, has the advantage of reducing
subjectivity. One can say with reasonable objectivity that ImageNet
images are more complex than MNIST images, whereas there is more
subjectivity in trying to compare the complexity of two different Re-
naissance paintings, or even two different ImageNet images. The scores
produced by our method match our intuitive notion of complexity on
this diverse set of images much more closely than do the scores of
existing complexity metrics.

Then, after presenting ablation studies, we investigate the distribu-
tion of complexity across different levels of the hierarchy, and show
that these agree with the different scales of complexity in the different
types of images, e.g., fine-detailed repetitive textures receive high
scores on the low levels of the hierarchy but lower scores on the higher
levels, compared to globally structured images such as natural scenes
from ImageNet.

Next, we show the effect of adding Gaussian noise and of lowering
the resolution of images. A small amount of noise or reduction in
resolution does not change the content of the image and so should not
have a significant effect on the complexity score. For larger reductions
in image quality, we would expect a gradual decline in complexity as
the information in the image becomes increasingly obscured. This is
exactly the case for our method. Its scores are largely unchanged by
small quality degradations (addition of noise or reduction in resolu-
tion), and then show a steady decline with increasing degradation. As
our method so effectively assigns low complexity to white noise images,
it is particularly notable that it remains robust to a small/moderate
amount of Gaussian noise.

Finally, we present the scores produced by our method on a fractal
image, as the fractal dimension is varied. Again, the results are in line
with our intuition about the type of complexity expressed by fractal
dimension: higher fractal dimensions get a higher complexity score, but
this is largely concentrated on the lower, more local levels.

4.1. Datasets

We present the average score of our method on seven different sets
of images, four popular image datasets and three synthetic datasets that
we created:

1. ImageNet is a dataset with high complexity, depicting real-
world objects in context.
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Fig. 3. Examples of images from the synthetic datasets we create. Left: Rand dataset; Middle: Stripes dataset; Right: Halves dataset.
2. CIFAR also shows real-world objects in context but of a much
lower resolution, 32 × 32 vs. approximately 224 × 224 for
ImageNet.

3. MNIST depicts low-resolution greyscale digits. Its images are
simple in that they can be represented exactly with a small
number of bits, but still have meaningful semantic content.

4. DTD2 is a dataset that we created by manually searching through
the Describable Textures Dataset [61] for all images of fine-
detailed repeating textures.

5. Stripes is a synthetic dataset that we created of greyscale images
of stripes of varying thickness and orientation. The thickness of
the lines, in pixels, is sampled uniformly at random from [3, 10],
and the slope of the lines is sampled uniformly at random from
[−0.5,−1.5]. It is sufficient to consider negative slopes only as
our method, and all methods that we compare to, are invariant
to reflections, so the striped images with slope in [0.5, 1.5] would
receive identical scores to those in [−0.5,−1.5]. Note that our
method is not necessarily invariant to rotations, because it is
based on square, axis-aligned patches of pixels. The same is
true of the fractal dimension computed with the Minkowski–
Bouligand dimension (i.e., the fractal dimension), as it uses a
box-counting method. An example of an image from Stripes
images is shown in Fig. 3.

6. Halves is a synthetic dataset that we created of greyscale images
of half-black and half-white. These images have one half entirely
black and the other entirely white, with the dividing line at
various angles. As with Stripes, the slope of this dividing line
is sampled uniformly at random from [−0.5,−1.5]. An example
of an image from Halves is shown in Fig. 3.

7. Rand is a synthetic dataset that we created of white noise
images, i.e., images with independent random pixel values. Their
values are sampled uniformly at random from [0, 1], indepen-
dently for each location and each of three colour channels. Fig. 3
shows an example image.

For DTD2, we find 341 suitable images. For all other datasets, we use
1500 randomly sampled images and report the average for each image
type. All images are resized to 224 × 224. The GMMs used for clustering
are initialized with k-means, use diagonal covariance matrices, have
tolerance 1𝑒 − 3, and are capped at 100 iterations.

4.2. Comparison with existing methods

Table 1 compares our method to seven others: ‘khan2021’ [41],
‘machado2015’ [38], and ‘redies2012’ [39] are as described in Sec-
tion 2; ‘entropy’ converts the image to greyscale, discretizes the values
into 256 bins, and then computes the Shannon entropy of the bin
counts; ‘fractal dim.’ converts the image to greyscale, then binarizes it
to 0 or 1, and computes the fractal dimension of the resulting shape
using the box-counting method; ‘jpg-ratio’ measures the ratio of the
JPEG-compressed file size to that of the original; and ‘GLCM’ computes
the average entropy of the grey-level co-occurrence matrix, at offsets
1, 4, 8, 16, and 32 (see Sebastian V. et al. [62] for an account of GLCM
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in image complexity). All methods are normalized so their maximum
score is 1.

The most striking result is that our method assigns zero complexity
to white-noise images, while every other method assigns them high
complexity, with many assigning maximum complexity. White noise
images are not at all meaningful or interesting to humans, and it is a
significant finding that our method is the first to reflect this. It suggests
that, while existing methods are based only on the variation across
the image, our method is able to measure the degree of meaningful
variation, i.e., it is able to distinguish signal from noise.

The only two existing methods not to measure white noise as
maximally complex are ‘machado2015’ and ‘redies2012’, though they
still give it a high score. Instead, they give their max score to Stripes.
This is also undesirable, because the simple repeating black and white
stripes are not intuitively complex or meaningful either. These methods
are both based on gradients (see Section 2), and the stripes produce a
sharp gradient at every transition from black to white, which is likely
the reason for these high scores. Stripes is also given a high score by
the fractal dimension and JPEG-ratio methods, both assigning it only
slightly less than white noise and significantly more than any other
dataset, including ImageNet. The method of [41] (denoted ‘khan2021’)
is difficult to interpret at all, because it assigns such a high score to
the white noise that, after normalizing, all other datasets end up close
to zero, with three being equal to zero. Recall that this method takes
the median of the Fourier transform coefficients, so equals zero if over
half of the coefficients are zero. Perhaps surprisingly, the relatively
simple methods of entropy and GLCM entropy do a reasonable job
of distinguishing real-world images from synthetic images and MNIST,
compared to the more bespoke methods. However, they cannot detect
a significant difference between ImageNet, CIFAR, and DTD, assigning
all three very similar scores. In contrast, our method agrees much more
closely with the intuitive notion of complexity: it assigns the highest
complexity to ImageNet; it puts CIFAR ahead of DTD2 even though the
latter is of higher resolution and has a complex texture, which shows
that it recognizes CIFAR to have more semantically meaningful content;
and it assigns MNIST a reasonably high complexity, despite it being
the smallest in terms of file size, again showing that it can recognize
global structure. Even aside from the white noise, no method but ours
correctly places the remaining six datasets in order of complexity (left-
to-right, as they appear in Table 1). This highlights the superior ability
of our method to capture meaningful complexity across a variety of
image types.

4.3. Ablation studies

Table 2 shows the effect of removing two key components of our
method. In ‘no mdl’, rather than selecting the number of clusters 𝐾
using the minimum description length principle, we fix 𝐾 = 5 for all
images. This results in the same problem that existing methods suffer
from: white noise is mistaken for high complexity and receives the
maximum score. Also, ‘no mdl’ scores DTD2 too highly, showing that
the method is not responding to global structure. In ‘no patch’, we
take the entropy not of patch signatures, but of individual points in
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Table 1
Comparison of our method with existing methods. The figures for each dataset are the mean across all images from that dataset, with std. dev.
from batches of 25 in parentheses. All methods are normalized, so the maximum score that they assign is 1. Ours is the only method that does
not assign white noise images high complexity, and gives the most reasonable results on all other datasets.

Dataset

ImageNet CIFAR DTD2 MNIST Stripes Halves White-noise

Ours 0.80 (.10) 0.74 (.06) 0.62 (.29) 0.50 (.08) 0.36 (.11) 0.26 (.01) 0.00 (.00)
khan2021 0.09 (.05) 0.01 (.01) 0.07 (.06) 0.00 (.00) 0.00 (.00) 0.00 (.00) 0.99 (.00)
machado2015 0.23 (.08) 0.15 (.02) 0.38 (.08) 0.21 (.01) 0.53 (.02) 0.06 (.00) 0.87 (.00)
redies2012 0.13 (.05) 0.04 (.01) 0.21 (.11) 0.00 (.00) 0.66 (.34) 0.01 (.00) 0.59 (.00)
Entropy 0.89 (.10) 0.89 (.07) 0.83 (.13) 0.30 (.06) 0.13 (.00) 0.13 (.00) 0.96 (.00)
Fractal dim. 0.74 (.09) 0.61 (.08) 0.86 (.16) 0.45 (.06) 0.98 (.02) 0.44 (.02) 1.00 (.00)
jpg-ratio 0.22 (.08) 0.09 (.0) 0.29 (.09) 0.06 (.01) 0.57 (.01) 0.06 (.00) 0.57 (.00)
GLCM 0.84 (.11) 0.80 (.08) 0.83 (.14) 0.27 (.05) 0.11 (.02) 0.08 (.00) 0.98 (.00)
Table 2
Effect of removing two main components of our method. In ‘no mdl’, clustering is performed without MDL, instead simply fixing the number of
clusters to 5 for all images and all scales. In ‘no patch’, we compute the entropy of the clusters themselves rather than of the patch signatures.

Dataset

ImageNet CIFAR DTD2 MNIST Stripes Halves White-noise

Main 0.80 (.10) 0.74 (.06) 0.62 (.29) 0.50 (.08) 0.36 (.11) 0.26 (.01) 0.00 (.00)
No mdl 0.73 (.09) 0.66 (.06) 0.90 (.11) 0.40 (.07) 0.35 (.13) 0.27 (.01) 0.98 (.00)
No patch 0.92 (.09) 94 (.04) 0.62 (.28) 0.61 (.1) 0.74 (.09) 0.50 (.01) 0.00 (.00)
Fig. 4. Our complexity measure for different scales. The 𝑥-axis depicts patch size, on a log scale. Plots show mean score for all images of that type. Shaded regions are std dev
from batches of 25 images.
the array, i.e., of 𝐴 rather than 𝐵 in the terminology of Section 3.2.
(Patch signatures are still used for the iteration step.) This setting still
performs reasonably well, but it gives too high a score to Stripes and a
higher score to CIFAR than to ImageNet.

4.4. Complexity at different scales

The results from Section 4.2 suggest that, unlike existing methods,
which focus only on detailed textures, ours is able to recognize com-
plexity at a global level. Fig. 4 provides further support for this claim by
showing the breakdown of our complexity measure at the four different
scales (that is, four different levels of the hierarchy; see Section 3.2).
Smaller scales respond to local complexity, and as the process is iterated
to larger scales, global structure can be detected.

The first plot shows MNIST and the synthetic images. While MNIST
has a similar local complexity score to Stripes, it has a much higher
global complexity score, indicating that the more meaningful global
structure in MNIST images can be detected. Halves, which is almost
uniform locally but shows some variation globally, is given a very
low local complexity but a small amount of global complexity. The
second plot compares real-world images. CIFAR has the lowest local
complexity, because it is low resolution, because it was resized from
32 × 32, so neighbouring pixels are all similar, but this does not affect
9

its global complexity, which is as high as that of ImageNet. DTD2, on
the other hand, has the highest local complexity, because it depicts
detailed textures, but the lowest global complexity, because the textures
are uniform across different regions of the images.

4.5. Effect of adding Gaussian noise

As our method so consistently assigns zero complexity to white
noise, one may wonder whether it just searches for randomness in the
image, and assigns zero if it finds any. To check this, we progressively
add Gaussian noise to the three real-world datasets. The results are
shown in Fig. 5. Noise is sampled independently from a standard nor-
mal distribution for each pixel, and a fraction of this noise is added to
the image. Up until 10%, the scores are largely unchanged (DTD drops
slightly), and then the scores for all three datasets steadily decrease
with further noise. If the method was simply assigning low complexity
in response to any randomness in the image, then we would see a sharp
decline as soon as a small amount of noise is added. The results suggest
that the method is instead responding to the amount of meaningful
content in the image. A gradual decline in complexity is precisely what
we would expect as the image quality deteriorates.
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Fig. 5. Our complexity measure with different amounts of Gaussian noise added. Shaded regions are std from batches of 25 images. That is, we randomly sample 25 images and
compute the mean complexity score, then repeat this for a total of 300 images and report the (unbiased) sample std dev.
Table 3
Comparison, on the scores produced by our method, of downsampling ImageNet to 32 × 32. Taken from 300 randomly
sampled images of the 1500 used for the main results in Table 1.

Level 1 Level 2 Level 3 Level 4 Total

Full resolution 7.70 (1.75) 9.71 (1.99) 11.93 (1.75) 12.43 (1.98) 41.77 (5.78)
Low resolution 5.60 (0.73) 9.07 (1.43) 11.92 (1.14) 12.72 (0.58) 39.03 (3.40)
4.6. Effect of changing resolution

To investigate how much our method is affected by the resolution of
the input image, we apply it to a downsampled ImageNet. We randomly
select 300 of the 1500 ImageNet images used for our main experiment
and convert them to resolution 32 × 32. Table 3 shows the results of our
method on these downsampled images and compares to the full-sized
ImageNet images, which are roughly 256 × 256. There is a slight drop
on the lower levels of the hierarchy, which corresponds to the greater
uniformity at the local scale in the blurry, low-resolution images. The
scores at the higher levels are essentially identical, and overall the
scores are almost the same for the downsampled images as for the full-
resolution images. This shows our method to be robust to changes in
resolution, responding more to the contents of the image than to the
resolution it is depicted at.

4.7. Scores for varying fractal dimension

Fractal dimension can roughly be defined as the detail in a shape
or curve expressed as an exponent of its scale. (See [63] for discussion
of different options for a precise definition.) In this section, we test
the scores produced by our complexity metric on images of varying
fractal dimension, from the dataset ‘‘Color Fractal Images with Inde-
pendent RGB Color Components’’ [64]. This is a small dataset of nine
high-resolution colour images, which are essentially the same except
that they differ in fractal dimension. The images are generated using
the midpoint displacement algorithm, which iteratively increases the
fractal dimension of a piecewise-linear curve (i.e., a joined sequence of
straight line segments), by slightly moving the midpoint of each piece.
The dataset begins with a straight line and iterates until the fractal
dimension is a certain value. The values for the different images range
from 1.1 to 1.9 in increments of 0.1. This is repeated independently for
10
each of the three colour channels. The resulting images are shown in
Fig. 6.

It is generally thought that a higher fractal dimension indicates
greater complexity, and so it is interesting to see whether our method
is able to reflect this. Table 4 shows the scores produced by our
method for each of the nine images in ‘‘Color Fractal Images with
Independent RGB Color Components’’, averaged over five runs, with
the clustering at each level using 10 different GMM initializations and
keeping the one with the highest data likelihood. The table shows the
total complexity score, and the complexity score for each level. Looking
at the total scores, there is a clear trend of increasing complexity scores
for increasing fractal dimension, showing that the method can detect
the sort of complexity expressed in fractal dimension. Looking at the
breakdown of this total across the four levels of the hierarchy, we see
that the effect of increased fractal dimension is greater for lower levels.
Level 1 increases from 3.79 for fractal dimension 1.1 to 10.75 for fractal
dimension 1.9, whereas Level 4 shows no systematic increase at all.
The same information is shown graphically in Fig. 7. This reflects the
similarity of the images in Fig. 6 at a more global level, e.g., they
all have a patch of pink/red in the top-right corner and a patch of
purple/blue in the bottom-right corner. It is within each patch, that
is at a smaller scale, that the images differ.

This shows that our method is not only able to reliably detect an
increase in fractal dimension by assigning a higher complexity score, it
also distributes the increase with fractal dimension over the four levels
of the hierarchy in the correct way. There is a significant increase at the
most local level and progressively smaller increases at higher levels.

5. Discussion

5.1. Limitations and future work

One drawback of the current version of our method is the time
complexity. Most existing image complexity metrics run in < 0.1𝑠 per
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Fig. 6. The nine images from the ‘‘Color Fractal Images with Independent RGB Color Components’’ dataset. Top-left images is 1.9, decreases in increments of 0.1 to bottom-right.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 4
Scores for increasing fractal dimension. For each fractal dimension, we run our method five times on the single image of that
fractal dimension, and compute the (unbiased) sample standard deviation.

Total Level 1 Level 2 Level 3 Level 4

Fract-dim 1.1 32.96 (0.15) 3.79 (0.21) 6.21 (0.27) 10.42 (0.46) 12.54 (0.16)
Fract-dim 1.2 34.39 (0.67) 4.02 (0.23) 6.73 (0.33) 11.22 (0.16) 12.41 (0.24)
Fract-dim 1.3 34.95 (0.19) 4.24 (0.02) 6.95 (0.21) 11.06 (0.05) 12.70 (0.00)
Fract-dim 1.4 36.02 (0.46) 4.60 (0.06) 7.60 (0.55) 11.58 (0.39) 12.24 (0.31)
Fract-dim 1.5 37.67 (0.48) 5.31 (0.05) 8.34 (0.39) 11.63 (0.15) 12.39 (0.24)
Fract-dim 1.6 39.64 (0.37) 6.27 (0.18) 9.36 (0.27) 11.56 (0.34) 12.44 (0.14)
Fract-dim 1.7 41.45 (0.30) 7.35 (0.04) 9.61 (0.18) 12.10 (0.27) 12.38 (0.14)
Fract-dim 1.8 44.94 (0.20) 8.96 (0.02) 10.81 (0.15) 12.59 (0.13) 12.58 (0.05)
Fract-dim 1.9 47.75 (0.14) 10.75 (0.07) 11.84 (0.25) 12.75 (0.25) 12.42 (0.29)
image, whereas ours takes between 2𝑠 and 8𝑠 on average (the simple
datasets are faster, ImageNet and CIFAR are the slowest). This can be
roughly halved by reducing the range of 𝐾 explored from 8 to 5, with
essentially no change in results. The run time is mostly due to the
clustering step on the relatively large number of image patches. One
future extension that could significantly improve runtime is, rather than
considering all overlapping patches, to determine or approximate an
optimal partition of the image into non-overlapping patches. This could
11
draw on work in visual tiling [65]. Another future extension is to apply
a similar method to other data domains, such as videos, audio, or text.

5.2. Conclusion

This paper presented a method for measuring image complexity.
This task is inspired by the fact that humans cannot only explicitly
recognize patterns in data, but can also detect whether the data contain
a complex pattern at all. Our method can assign a complexity score to
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Fig. 7. Trend of increasing complexity score for increasing fractal dimension, broken down by level of the hierarchy. Shaded regions are (unbiased) sample std dev, as in Table 4.
data, specifically to images, which quantifies how complex a pattern or
structure they contain. Unlike existing ways of quantifying complexity,
it is able to capture the amount of meaningful complexity, and does
not judge random noise to be complex. It uses clustering to analyse an
image as being built out of a hierarchy of patches, with each patch com-
posed of the cluster indices of its sub-patches. Clustering is performed
with the minimum description length principle to distinguish signal
from noise. We gave a detailed derivation of our method, and then
presented an experimental evaluation showing that it performs better
than existing measures of image complexity. Most strikingly, it assigns
a very low score to white noise, in contrast to existing methods, which
all measure white noise as highly complex. This result is also supported
theoretically with a proof that white noise contains only one cluster, as
judged by MDL, which immediately implies that our method assigns it
very low complexity. We then presented ablation studies and a further
set of experiments showing that it can accurately capture complexity
at different scales, that it is robust to small/moderate degradations in
quality, either from the addition of Gaussian noise or from a reduc-
tion in resolution, and that it can accurately reflect increasing fractal
dimension in fractal images.
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Appendix. Proof of correctness on white noise

Lemma 2. When clustering white noise on [0, 1]𝑚, with a 𝑘-component

GMM, the radius 𝑟 of each cluster is approximated by 1
√

3 𝑚√𝑘

(

2
√

3

)1∕𝑚
.

Proof. For balls of radius 𝑟, the distance along each coordinate axis
between their centres is 2𝑟 for one of the dimensions and 2𝑟

√

3
2 for all

other dimensions. This is because the centres of each 3 touching balls
form the vertices of an equilateral triangle with side length 2𝑟, which
then have height 2𝑟

√

3
2 . Thus, the number of balls of radius 𝑟 that can

fit inside each axis is 1
2𝑟 for the first axis and ≈ 1

2𝑟
2
√

3
for all other axes.

Remark 3. The approximation is for two reasons. Firstly, the this
allows fractions of balls which extend partially, outside the hyperbox,
and this is not possible in practice. Secondly, the packing of balls along
one axis might interfere with the packing along another axis, e.g., if we
pack the balls along axis 1 so that the distance between their centres
is 2𝑟

√

3
2 , then try to do the same along axis 2, we may find that they

hit into the balls along axis 1. This would reduce the overall density
that could be achieved. Both of these points lead to an overestimation
of the number of balls (and hence an underestimation of the radius),
but the proof turns out to be simplified by treating the expression in
this lemma as an approximation, which we argue is accurate for large
box size anyway.

The total number of balls that can fit inside [0, 1]𝑚 is, therefore
upper-bounded by

1
(2𝑟)𝑚

(

2
√

3

)𝑚−1

.

Conversely, given that the GMM will have 𝑘 clusters, we can lower-
bound the radius of each cluster using

1
𝑚

(

2
√

)𝑚−1

≥ 𝑘 ⟺ 𝑟 ≥ 1
√

𝑚
√

(
√

3
)1∕𝑚

. □

(2𝑟) 3 3 𝑘 2
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Proposition 1. For uniformly distributed points in an 𝑚-dimensional
hyperball of radius 𝑟, the pdf of the distance of a point from the centre
is given by 𝑝(𝑥) = 𝑚 𝑥𝑚−1

𝑟𝑚 .

Proof. The pdf is clearly proportional to 𝑥𝑚−1. The normalizing con-
stant 𝑐 can be found by:

𝑐 ∫

𝑟

0
𝑥𝑚−1𝑑𝑥 = 1 ⟺ 𝑐 = 𝑚

𝑟𝑚
. □

Lemma 4. When clustering white noise in [0, 1]𝑚 dimensions, with a 𝑘-
component GMM, the expected squared distance of a point from the centroid
of its cluster, denoted 𝑎, is given by

𝑎 = 𝑚
3(𝑚 + 2)

(
√

3
2

)2∕𝑚
1

𝑘2∕𝑚
, (18)

Proof. Using Proposition 1, the expected squared distance from the
centroid can be calculated directly from the pdf as

𝑎 = 𝑚
𝑟𝑚 ∫

𝑟

0
𝑥𝑚+1𝑑𝑥 ⟺ 𝑎 = 𝑟2 𝑚

𝑚 + 2
.

ubstituting 𝑟 from Lemma 2, we get 𝑎 ≥ 𝑚
3(𝑚+2)

(

√

3
2

)2∕𝑚
1

𝑘2∕𝑚
as

desired. □

Lemma 5. When clustering white noise in [0, 1]𝑚 dimensions, with a 𝑘-
component GMM, the fit covariance matrix 𝛴 is approximated by 𝛴 = 𝜎𝐼 ,
where

𝜎 ≥ 1
3(𝑚 + 2)

(
√

3
2

)2∕𝑚
1

𝑘2∕𝑚
.

Proof. It is clear that 𝛴 is of the form 𝜎𝐼 for some 𝜎, as the clusters
re all identical hyperballs by symmetry (up to approximation at the
oundary of the hyperbox, but this is small for more than a few
lusters).

Next, observe that the expected squared distance of a point from the
entroid of its cluster is, by linearity of expectation, equal to the sum of
he expected squared distances in each coordinate, i.e., 𝑚𝜎. The result

then follows by Lemma 4. □

Proposition 2. The DDL of a point depends only on its distance from the
centroid of its cluster.

Proof. The probability density of a point 𝑧 under a cluster with
centroid 𝜇 is

𝑝(𝑧) = 1
√

2𝜋|𝛴|

exp
(−1

2
(𝑧 − 𝜇)𝑇𝛴−1(𝑧 − 𝜇)

)

= 1
√

2𝜋|𝛴|

exp
(

−|(𝑧 − 𝜇)|2

2𝜎

)

.

Thus, the DDL under the cluster distribution, which we denote �̄�, is
iven by

ln

(

1
√

2𝜋|𝛴|

exp
(

−|(𝑧 − 𝜇)|2

2𝜎

)

)

= 1
2
ln (2𝜋|𝛴|) +

|(𝑧 − 𝜇)|2

2𝜎
.

In what follows, we use the function 𝑓 (𝑥) to denote the DDL under
the cluster distribution of a point a distance 𝑥 from its centroid, where
𝑓 (𝑥) = (1∕2) ln (2𝜋|𝛴|) + (𝑥2)∕(2𝜎). □

Definition 6. Denote as outliers, those points with greater DDL under
their cluster than under the prior.

Lemma 7. When clustering white noise, so that the prior distribution is
[0, 1]𝑚, a point is an outlier if and only if it is greater than a distance 𝑑 from
is centroid, where 𝑑 =

√

𝜎 ln 1 .
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2𝜋|𝛴|
Proof. The DDL of a point treated as an outlier on the uniform 𝑚-
ox [0, 1]𝑚 is 0, because treating as an outlier means using the prior

distribution, which is uniform 𝑝(𝑥) = 1, giving DDL of ln 1 = 0. Thus, a
point a distance 𝑥 from its centroid is not an outlier if and only if its
DDL under the distribution of its cluster is strictly negative:

1
2
ln (2𝜋|𝛴|) + 𝑥2

2𝜎
< 0

⟺ 𝑥 <
√

𝜎 ln 1
2𝜋|𝛴|

.

We refer to this distance 𝑑 as the inlier radius. □

Lemma 8. When clustering white noise in 𝑚 dimensions using a GMM with
𝑘 components, some points are classed as outliers if and only if 𝑘 satisfies

<
2𝑒
√

𝜋
√

3

(

𝑒
3(𝑚 + 2)

)𝑚∕2

roof. A point is an outlier if and only if it is within the cluster,
.e., with a distance 𝑟 from its centroid, but outside the inlier radius
. This is possible if

< 𝑟 ⟺ 𝜎 ln 1
2𝜋|𝛴|

< 1
3𝑘2∕𝑚

(
√

3
2

)2∕𝑚

.

As 𝛴 = 𝜎𝐼 , we can sub in |𝛴| = 𝜎𝑚, and also sub in 𝜎 from Lemma 5:

1
3(𝑚 + 2)

(
√

3
2

)2∕𝑚
1

𝑘2∕𝑚
ln 1

2𝜋𝜎𝑚
< 1

3𝑘2∕𝑚

(
√

3
2

)2∕𝑚

⟺ 𝑘 <
𝑒
√

3𝜋
2

(

𝑒
3(𝑚 + 2)

)𝑚∕2
. □

emma 9. For a 𝑘-component GMM fit on 𝑚-dimensional white noise, the
xpected DDL of a point is

𝑚
𝑟𝑚 ∫

𝑥

0
𝑥𝑚−1 min({0, 𝑓 (𝑥)})𝑑𝑥 + ln 𝑘.

ith 𝑓 (𝑥) defined as in Proposition 2.

roof. The DDL of a point can be decomposed as the number of bits
eeded to specify which cluster the point belongs to, plus the DDL of
he point under that cluster. The former is equal to ln 𝑘, because each
luster is, by symmetry, equally sized. The latter, denoted �̄�, is given
y ∫ 𝑟

0 𝑝(𝑥) min({0, 𝑓 (𝑥)}), where 𝑝(𝑟) is the probability density function
f the distance of a point from its centroid, and 𝑓 (𝑥) specifies the DDL
f a point in terms of the distance from its centroid.

Substituting for 𝑝(𝑥) from Proposition 1 gives the result. □

emma 10. When clustering white noise on [0, 1]𝑚 with a 𝑘-component
MM, for 𝑘 ≤ 𝑑, the expected DDL is an increasing function of 𝑘.

roof. When some points are outliers, we have, using Lemma 9 and
ubstituting 𝑓 (𝑥) from Proposition 2:

̄ = 𝑚
𝑟𝑚 ∫

𝑟

0
𝑥𝑚−1 min({0, 𝑓 (𝑥)})𝑑𝑥

= 𝑚
𝑟𝑚 ∫{𝑥∈[0,𝑟]|𝑓 (𝑥)<0}

𝑥𝑚−1𝑓 (𝑥)𝑑𝑥 = 𝑚
𝑟𝑚 ∫

𝑑

0
𝑥𝑚−1𝑓 (𝑥)𝑑𝑥.

ntegrating, and using the results from the Lemmas 7, 5, 2 and 5, then
implifies to:

̄ = −3

(𝑚 + 2)
𝑚
2 +2

(

𝑚 ln (3𝑚 + 6) + 2 ln 𝑘 + ln 2
3𝜋

)
𝑚
2 +1 .

We want to show the derivative of this expression, with respect to 𝑘, is
positive:

𝑑
(

−3
𝑚+2

(𝑚 ln (3𝑚 + 6) + ln 2
3𝜋 + 2 ln 𝑘)

𝑚
2 +1 + ln 𝑘

)

> 0

𝑑𝑘 (𝑚 + 2) 2
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A
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𝐷

P
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R

⟺
−3

𝑘(𝑚 + 2)
𝑚
2 +1

𝑚
2 +2 (𝑚 ln (3𝑚 + 6) + ln 2

3𝜋 + 2 ln 𝑘
)𝑚∕2

+ 1
𝑘
> 0

⟺
3

(𝑚 + 2)
𝑚
2 +1

(

𝑚 ln (3𝑚 + 6) + ln 2
3𝜋 + 2 ln 𝑘

)𝑚∕2
< 1 .

s, by assumption, some points are outliers, we can use Lemma 8 to
ound the above LHS:

≤ 3

(𝑚 + 2)
𝑚
2 +1

(

𝑚 ln (3𝑚 + 6) + ln 2
3𝜋 + ln

(

4𝜋𝑒2
3

(

𝑒
3(𝑚 + 2)

)𝑚))𝑚∕2

= 3

(𝑚 + 2)
𝑚
2 +1

(

2 + ln 2
3𝜋 + ln 4𝜋

3 + 𝑚
)𝑚∕2

< 3

(𝑚 + 2)
𝑚
2 +1

(𝑚 + 2)𝑚∕2

= 3
𝑚 + 2

≤ 1 . □

Lemma 11. When clustering white noise on [0, 1]𝑚 with a 𝑘-component
GMM, for 𝑘 > 𝑑, the expected DDL is independent of 𝑘.

Proof. When no points are outliers, 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥, so, using
Lemma 9,

�̄� = 𝑚
𝑟𝑚 ∫

𝑟

0
𝑥𝑚−1𝑓 (𝑥)𝑑𝑥 = 𝑚

𝑟𝑚

(

𝑟𝑚

2𝑚
ln (2𝜋|𝛴|) + 𝑟𝑚+2

2𝜎(𝑚 + 2)

)

= 1
2
ln (2𝜋|𝛴|) + 𝑟2𝑚

𝜎(𝑚 + 2)
.

ubstituting from Lemmas 2 and 5, the full DDL is then

̄ + ln 𝑘 = 1
2

(

ln 4𝜋
√

3
+ 𝑚 ln

(

1 + 1
3𝑚 + 6

)

− 2 ln 𝑘 + 𝑚

)

+ ln 𝑘

= 1
2

(

ln 4𝜋
√

3
+ 𝑚 ln

(

1 + 1
3𝑚 + 6

)

+ 𝑚

)

. □

roof. By Lemma 8, the expected DDL is strictly increasing in k up to
= d. By Lemma 9, the expected DDL is constant in k for k > d. □
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