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Claim-augmented argumentation frameworks (CAFs) provide a formal basis to analyze 
conclusion-oriented problems in argumentation by adapting a claim-focused perspective; 
they extend Dung AFs by associating a claim to each argument representing its conclusion. 
This additional layer offers various possibilities to generalize abstract argumentation 
semantics, i.e. the re-interpretation of arguments in terms of their claims can be performed 
at different stages in the evaluation of the framework: One approach is to perform 
the evaluation entirely at argument-level before interpreting arguments by their claims 
(inherited semantics); alternatively, one can perform certain steps in the process (e.g., 
maximization) already in terms of the arguments’ claims (claim-level semantics). The 
inherent difference of these approaches not only potentially results in different outcomes 
but, as we will show in this paper, is also mirrored in terms of computational complexity. 
To this end, we provide a comprehensive complexity analysis of the four main reasoning 
problems with respect to claim-level variants of preferred, naive, stable, semi-stable 
and stage semantics and complete the complexity results of inherited semantics by 
providing corresponding results for semi-stable and stage semantics. Furthermore, we 
provide complexity results for these types of frameworks when restricted to specific graph 
classes and when parameterized by the number of claims within the framework. Moreover, 
we show that deciding, whether for a given framework the two approaches of a semantics 
coincide (concurrence) can be surprisingly hard, ranging up to the third level of the 
polynomial hierarchy.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Argumentation is an increasingly important research area within AI [1]. Among the most prominent approaches to handle 
inconsistent and conflicting statements is abstract argumentation [2] which is nowadays acknowledged as one of the core 
reasoning mechanisms for argumentation. In his seminal paper, Dung has proposed several argumentation semantics which 
have been adopted subsequently in several formalisms [3,4]. Over the past decades, many more semantics entered the stage, 
each of which contributes to the rich and diverse landscape of argumentation semantics [5]. By now, the broad variety of 
semantics for argumentation offers many choices to model argumentative settings as needed. Despite of all differences, 
most of the argumentation semantics have something in common: their high computational complexity. Indeed, it has been 

* Corresponding authors.
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shown that deciding credulous as well as skeptical acceptance of arguments but also the verification of sets of jointly 
acceptable arguments is computationally expensive, ranging up to the second level of the polynomial hierarchy [6].

Although a lot of effort has been invested in exploring the computational complexity of the semantics in terms of 
arguments, only little is known about the complexity of evaluating argumentative settings in terms of the claims of the 
arguments. Generally speaking, the claim of an argument is the statement it intends to justify. Ultimately, an argumentative 
analysis aims to identify justifiable assertions; hence the evaluation of claim acceptance is an essential part of argumentative 
reasoning.

As recently addressed in the literature, there are several ways to transfer argument acceptance to claim acceptance [7,8]. 
Let us outline two intuitive approaches in the general schema to instantiate argumentation frameworks, so called instanti-
ation procedures (see e.g. [9,10,4,11]). This instantiation process starts from a (typically inconsistent) knowledge base, from 
which possible arguments are constructed. An argument consists of a claim and a support, the latter being a subset of the 
knowledge base. The relationship between arguments is then settled, for instance an argument α attacks argument β if the 
claim of α contradicts (parts of) the support of β . As soon as all arguments and attacks between arguments are given, one 
abstracts away from the contents of the arguments. The resulting network is then interpreted as an abstract argumentation 
framework (AF) and semantics for AFs are used to obtain a collection of jointly acceptable sets of arguments, commonly 
referred to as extensions. One of the most famous argumentation semantics are preferred semantics which return maximal 
admissible (i.e., conflict-free and self-defending) sets of arguments. To obtain the preferred set of claims, these extensions 
are then reinterpreted in terms of the claims of the accepted arguments, thus restating the result in the domain of the initial 
setting. We recall two natural choices to obtain our desired preferred claim-sets. When looking for preferred extensions in 
terms of claims, we can either

(a) take the preferred extensions of the AF and replace each argument by its claim, or
(b) take the admissible sets of the AF, replace each argument by its claim, and then select the subset-maximal ones from 

the resulting set of extensions.

Option (a) which we shall call inherited semantics in what follows, is often used implicitly in instantiation-based argu-
mentation and has been explicitly studied in [12]. This approach resembles reasoning methods in rule-based formalisms 
such as ASPIC+ [4]. Option (b) has recently been advocated in [8] as an alternative way to lift concepts behind argumen-
tation semantics to claim-based semantics; we will refer to the latter as claim-level semantics since parts of the semantic 
selection process takes place on the claim- rather than on the argument-level. Hence, these two approaches provide dif-
ferent methods in order to accomplish the final steps in the instantiation process, i.e., evaluating the abstract framework 
and provide the extensions in terms of the accepted claims. Understanding the complexity of this part in the instantiation
is crucial towards the design of advanced argumentation systems. Investigating this final step independently from the en-
tire process has the clear advantage that results are not restricted to a particular formalism (e.g., ASPIC+) and are thus of 
general nature. Furthermore, as discussed in [13], there are logic programming semantics that, in the standard instantiation 
model [14,10], correspond to claim-level semantics and cannot be captured with inherited semantics.

Example 1. Consider the following AF where each node represents an argument and the edges representing their relations, 
i.e., attacks between them. Each argument is labeled with its respective claim, i.e., arguments a1 and a2 are assigned claim 
a, arguments b1 and b2 are assigned claim b and arguments c1 and d1 are assigned claims c and d respectively.

a1

a

b1

b

c1

c d1 d

a2 a

b2 b

Evaluating the AF with respect to the admissible semantics, ignoring the claims, yields ∅, {a1}, {b1}, {b2}, {a1, b2}, {b1, b2},
{a2, b1}, {a1, b2, c1}, and {a2, b1, b2}. To obtain the preferred claim-sets one can now select the subset-maximal sets and 
then replace each argument by its claim (option (a)), yielding {a, b, c}, {a, b}; observe that swapping those steps (option (b)) 
results in the unique claim-set {a, b, c}.

In [12], it has been shown that inherited semantics are in general of higher computational complexity than their 
argument-based counterparts. In particular the verification problem is computationally more expensive. While the com-
putational complexity of inherited semantics has already been investigated for many argumentation semantics, the compu-
tational complexity of claim-level semantics has not been studied so far. As we already observed in the above example, the 
two approaches to evaluate the framework with respect to preferred semantics yield different results. A detailed analysis 
of the differences between these two approaches was provided in [8], also showing that there are some semantics where 
the two approaches coincide when arguments with the same claim attack the same arguments (this property is commonly 
referred to as well-formedness). What remains open is the question whether this difference is mirrored in terms of com-
putational complexity. In that matter, we are in particular interested in deciding whether these approaches yield the same 
2
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result in a given framework. Hence apart from the classical decision problems of deciding credulous and skeptical accep-
tance, verification of acceptance for a given claim set, and deciding whether a non-empty set of acceptable claims exist, 
we furthermore consider the question of how hard it is to decide whether two different approaches of a semantics deliver 
the same result. We call this decision problem concurrence of two frameworks. As sketched above, there are some situa-
tions in which inherited and claim-level semantics yield the same outcome; namely in case the considered argumentation 
framework satisfies well-formedness which is a certain structural restriction that appears naturally in many instantiation 
procedures. Tying into this, as many of the obtained results will conclude intractability, considering specific graph classes or 
parameterized decision problems can be useful. This has been done for AFs [15] and for some inherited semantics [12], but 
is still an open question for some of the other common semantics that output claim-sets as result of their evaluation.

We tackle these three questions via a thorough complexity analysis. To be independent from a particular instantiation 
schema, we consider claim-augmented frameworks (CAFs) [12], which are AFs where each argument is assigned a claim 
(indeed Example 1 provides an example for a CAF).

Our main contributions are as follows:

• We settle the computational complexity of all the claim-level semantics, i.e. stable, naive, preferred, semi-stable, and 
stage semantics, introduced in [8] for the main decision problems of credulous and skeptical acceptance, verification, 
and testing for non-empty extensions. Among our findings is that for naive semantics, the claim-level variant is harder 
than its inherited counterpart, while for preferred semantics, it is the inherited variant that shows higher complexity.

• We also provide complexity results for inherited semi-stable and stage semantics which have not been investigated in 
[12]. As it turns out, for these two semantics the complexity of the inherited and claim-level variants coincides.

• Additionally, we provide complexity results for the main decision problems when restricted to specific graph classes 
and also when parameterized by the number of claims for inherited semi-stable and stage semantics as well as for the 
claim-level variants of the stable, naive, preferred, semi-stable, and stage semantics. As we will see, this will often times 
allow for better bounds than the unrestricted case.

• We determine the complexity of the concurrence problem, i.e. whether for a given CAF and a semantics, the inherited 
and claim-level variant of that semantics coincide. Note that showing this problem to be easy would suggest that there 
are relatively natural classes of CAFs which characterize whether or not the two variants collapse. However, as we will 
see, concurrence can be surprisingly hard, up to the third level of the polynomial hierarchy.

A preliminary version of this paper has been presented at the thirty-fifth AAAI conference on artificial intelligence (AAAI-
21) [16]. Besides providing full proofs and in-depth discussions, this version significantly extends the preceding paper by 
several new complexity results, in particular, we provide a full complexity analysis of the considered reasoning problems 
for specific graph classes.

2. Preliminaries

In the this section we (a) recall abstract argumentation frameworks, claim-augmented argumentation frameworks and 
their semantics, and (b) recall the necessary background and computational complexity.

2.1. Argumentation frameworks and their semantics

We introduce (abstract) argumentation frameworks and their semantics [2,5]. We fix U as countable infinite domain of 
arguments.

Definition 1. An argumentation framework (AF) is a pair F = (A, R) where A ⊆ U is a finite set of arguments and R ⊆ A × A
is the attack relation. E ⊆ A attacks b if (a, b) ∈ R for some a ∈ E; we denote by E+

F = {b ∈ A | ∃a ∈ E : (a, b) ∈ R} the set of 
arguments defeated by E . We call E⊕

F = E ∪ E+
F the range of E in F . An argument a ∈ A is defended (in F ) by E if b ∈ E+

F for 
each b with (b, a) ∈ R .

Semantics for AFs are defined as functions σ which assign to each AF F = (A, R) a set σ(F ) ⊆ 2A of extensions. We 
consider for σ the functions cf , adm, naive, prf , stb, sem and stg which stand for conflict-free, admissible, naive, preferred, 
stable, semi-stable and stage, respectively.

Definition 2. Let F = (A, R) be an AF. A set E ⊆ A is conflict-free (in F ), if there are no a, b ∈ E , such that (a, b) ∈ R . cf (F )

denotes the collection of conflict-free sets in F . For E ∈ cf (F ) we have E ∈ adm(F ) if each a ∈ E is defended by E in F . For 
E ∈ cf (F ), we define

• E ∈ naive(F ), if there is no D ∈ cf (F ) with E ⊂ D;
• E ∈ prf (F ), if E ∈ adm(F ) and �D ∈ adm(F ): E ⊂ D;
• E ∈ stb(F ), if E⊕ = A;
F

3
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• E ∈ sem(F ), if E ∈ adm(F ) and �D ∈ adm(F ): E⊕
F ⊂ D⊕

F ;
• E ∈ stg(F ), if there is no D ∈ cf (F ) with E⊕

F ⊂ D⊕
F .

Next we introduce claim-augmented argumentation frameworks (CAFs) [12], which extend AFs by a function claim that 
assigns claims to argument.

Definition 3. A claim-augmented argumentation framework (CAF) is a triple (A, R, claim) where (A, R) is an AF and claim :
A → C assigns a claim to each argument in A; C is a set of possible claims. The claim-function is extended to sets in the 
natural way, i.e. claim(E) = {claim(a) | a ∈ E}. A set of arguments E ⊆ A is called a realization of a claim-set S ⊆ claim(A) if 
claim(E) = S . A CAF (A, R, claim) is well-formed if {a}+(A,R) = {b}+(A,R) for all a, b ∈ A with claim(a) = claim(b).

Well-formed CAFs naturally appear as result of instantiation procedures where the construction of the attack relation 
depends on the claim of the attacking argument. However, formalisms which handle argument strengths or allow for pref-
erence relations over arguments (assumptions/defeasible rules) typically violate the property of well-formedness [17,18].

Example 2. We consider a knowledge base with atoms {α, β, p, q, r} and defeasible rules r1, r2, and r3:

r1 : p ⇒ α r2 : q ⇒ α r3 : r ⇒ β

We construct the following three arguments A1, A2, and A3:

A1 : [p, p ⇒ α] A2 : [q,q ⇒ α] A3 : [r, r ⇒ β]
Both arguments A1 and A2 conclude the same claim α; the claim of the argument A3 is β . Many rule-based formalisms 
allow for specifying so-called contraries of the atoms to formalize asymmetric negation. We let α be the contrary of r, 
denoted by ∼r = α. This means that the arguments A1 and A2 constructed from premise p (resp. q) and rule r1 (resp. 
r2) both attack argument A3 on premise r. Likewise, we let ∼p = β and obtain an attack from A3 to A1. We furthermore 
assume that the premise r is preferred over premise q. Following typical preference-incorporation techniques in structured 
argumentation (e.g., the weakest link principle in ASPIC+), we obtain that the argument A2 does not successfully defeat 
argument A3.

Below we depict the CAF instantiations CF and CF′ before (left) and after (right) the preference incorporation:

CF: A1

α

A3

β

A2

α

CF′: A1

α

A3

β

A2

α

Note that CF is well-formed while CF′ violates well-formedness. Indeed, the arguments A1 and A2 have different outgoing 
attacks although they have the same claim α.

Semantics for CAFs Here we give a short recap of inherited semantics and claim-level semantics for CAFs. We will first intro-
duce inherited semantics (i-semantics).

Definition 4. For a CAF CF = (A, R, claim) and an AF semantics σ , we define i-σ semantics as σc(CF) = {claim(E) | E ∈
σ((A, R))}. We call E ∈ σ((A, R)) with claim(E) = S a σc-realization of S in CF .

Next we discuss claim-level semantics (cl-semantics) for CAFs. Central for cl-variants of stable, semi-stable and stage 
semantics is the following notion of claim-defeat.

Definition 5. Let CF = (A, R, claim), E ⊆ A and c ∈ claim(A). E defeats c (in CF) if E attacks (in (A, R)) every a ∈ A with 
claim(a) = c.

Example 3. Let us consider again the CAF from Example 1:

a1

a

b1

b

c1

c d1 d

a2 a

b2 b

The argument b1 (or: the set E = {b1}) attacks the arguments a1, c1 but defeats only claim c, because not every occurrence 
of claim a is attacked.
4
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We will next introduce the notion of range for a claim-set S . As different realizations of S might yield different sets of 
defeated claims, the range of S is in general not unique and depends on the particular realization E of S .

Definition 6. For a CAF CF = (A, R, claim), let νCF(E) = {c ∈ claim(A) | E defeats c in CF}. For a claim-set S ⊆ claim(A) and a 
realization E of S in CF , we call S ∪ νCF(E) a range of S in CF . If S ∪ νCF(E) = claim(A) we say E has full claim-range.

Example 4. We consider again the CAF CF from Example 1. First, consider the set of arguments E1 = {b2, c1}. The set attacks 
the arguments d1 and a2. Hence E1 attacks claim d; claim a however is not attacked since E1 does not attack all occurrences 
of a (the argument a1 is unattacked). Thus νCF(E1) = {d} and claim(E1) ∪ νCF(E1) = {b, c, d}. Now, we extend E1 by a1 and 
obtain E2 = {a1, b2, c1}. Again, claim d is the only claim which is attacked by the set; however, E2 has full claim-range since 
it contains claim a.

Observe that in well-formed CAFs, each claim-set possesses a unique range as each realization attacks the same argu-
ments, i.e., for a claim-set S ⊆ claim(A), νCF(E) = νCF(D) for all realizations E, D of S in CF . We will thus write S+

CF to 
denote the unique set of defeated claims νCF (E) of S in CF .

We are now ready to introduce cl-semantics for CAFs.

Definition 7. For a CAF CF = (A, R, claim) and S ⊆ claim(A), we define

• S ∈ cl-prf (CF) if S ∈ admc(CF) and there is no T ∈ admc(CF) with S ⊂ T ;
• S ∈ cl-naive(CF) if S ∈ cf c(CF) and there is no T ∈ cf c(CF) with S ⊂ T ;
• S ∈ cl-stbτ (CF), τ ∈ {cf , adm}, if there exists E ∈ τ ((A, R)) with claim(E) = S and S ∪ νCF(E) = claim(A);
• S ∈ cl-sem(CF) if there exists E ∈ adm((A, R)) with claim(E) = S such that there is no D ∈ adm((A, R)) with S ∪νCF(E) ⊂

claim(D) ∪ νCF(D);
• S ∈ cl-stg(CF) if there exists E ∈ cf ((A, R)) with claim(E) = S such that there is no D ∈ cf ((A, R)) with S ∪ νCF(E) ⊂

claim(D) ∪ νCF(D).

A set of arguments E ⊆ A is a

• cl-prf -realization (cl-naive-realization) of S ⊆ claim(A) in CF if claim(E) = S , E ∈ adm((A, R)) (E ∈ cf ((A, R)), respec-
tively);

• cl-stbτ -realization of S ⊆ claim(A) in CF , τ ∈ {adm, cf }, if claim(E) = S , E ∈ adm((A, R)) (E ∈ cf ((A, R))), and S ∪νCF(E) =
claim(A);

• cl-sem-realization (cl-stg-realization) of S ⊆ claim(A) in CF if claim(E) = S , E ∈ adm((A, R)) (E ∈ cf ((A, R))), and S ∪
νCF(E) is subset-maximal among admissible respectively conflict-free range-sets in CF .

Example 5. Let us consider again our running example CAF CF. As we have observed already in Example 1, the admissible 
sets of the underlying AF are given by ∅, {a1}, {b1}, {b2}, {a1, b2}, {b1, b2}, {a2, b1}, {a1, b2, c1}, and {a2, b1, b2}. Interpreting 
the admissible sets in terms of their claims yields ∅, {a}, {b}, {a, b}, {a, b, c}, thus the unique cl-preferred claim-set is {a, b, c}, 
while the i-preferred claim-sets of CF are given by {a, b, c} and {a, b}.

The set E2 from the above example is cl-stbτ (for τ ∈ {cf , adm}) in CF since it has full claim-range. Observe that E2 is 
also stable on argument-level since it attacks all other arguments.

Let E3 = {b1, a2}. The set is conflict-free, admissible, and attacks the arguments c1 and d1. Hence claim(E3) ∪ νCF(E3) =
claim(A), i.e., E3 has full claim-range and is cl-stbτ for τ ∈ {cf , adm}.

We occasionally make use of the relations between different semantics for CAFs [12,8]. For inherited semantics, the 
relations between the semantics carry over from the corresponding AF counterparts, e.g.,

stbc(CF) ⊆ semc(CF) ⊆ prf c(CF) ⊆ admc(CF)

for any CAF CF . The relations between the different variants for the semantics often depend on the particular CAF class, e.g., 
for general CAFs,

stbc(CF) ⊆ cl-stbadm(CF) ⊆ cl-stbcf (CF).

For well-formed CAFs, on the other hand, all stable variants coincide, i.e., stbc(CF) = cl-stbadm(CF) = cl-stbcf (CF). Fig. 1 pro-
vides an overview over the relations between semantics for general and for well-formed CAFs. We furthermore observe the 
following implications between claim-level stable semantics and semi-stable respectively stage semantics: If cl-stbcf (CF) �= ∅
then cl-stbcf (CF) = cl-stg(CF), likewise, if cl-stbadm(CF) �= ∅ then cl-stbadm(CF) = cl-sem(CF) for each CAF CF [13].
5
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Fig. 1. Relations between semantics for general CAFs (a) and well-formed CAFs (b) as presented in [8]. An arrow from σ to τ indicates that σ(CF) ⊆ τ (CF)

for each CAF CF.

Remark 1. Let us briefly discuss why we do not consider claim-level versions for complete, grounded, and admissible se-
mantics. An appropriate adaption of both semantics requires a notion for claim-defense. As discussed in [19], the natural 
choice of adapting a defense notion to claim-level (a claim c is defended by a set of arguments E iff there exists some oc-
currence of c which is defended by E) results in cl-complete, cl-grounded, and cl-admissible semantics that are equivalent 
to their inherited counter-parts.

2.2. Computational complexity

We assume the reader to be familiar with the basic concepts of computational complexity theory (see, e.g. [20] for 
an introduction), in particular with the complexity classes polynomial time (P) and non-deterministic polynomial time 
(NP). In the following, we briefly recapitulate the concept of oracle machines and related complexity classes relevant for 
this work. To this end, let C denote some complexity class. By a C-oracle machine we mean a (polynomial time) Turing 
machine which can access an oracle that decides a given (sub)-problem in C within one computation step. We denote the 
corresponding complexity classes of such machines as PC if the underlying Turing machine is deterministic; and NPC if the 
underlying Turing machine is nondeterministic. In this work we consider complexity classes from the first three levels of the 
polynomial-time hierarchy. The classes NP and coNP build the first level of the polynomial-time hierarchy. The complexity 
classes on the second level are build by the use of NP-oracles. First, the class ΣP

2 = NPNP denotes the set of problems which 
can be decided by a nondeterministic polynomial time algorithm that has (unrestricted) access to an NP-oracle. The class 
ΠP

2 = coNPNP is defined as the complementary class of ΣP
2 , i.e. ΠP

2 = coΣP
2 . In the same way we can define the third level 

by using ΣP
2 oracles. That is, we define the class ΣP

3 as NPΣP
2 and ΠP

3 = coNPΣP
2 as the complementary class of ΣP

3 .
We have the following relations between these complexity classes:

P ⊆ NP
coNP

⊆ ΣP
2

ΠP
2

⊆ ΣP
3

ΠP
3

We will see that many problems in this paper are indeed of high complexity. A prominent approach to tame the high 
complexity of such problems is parameterized complexity theory (see, e.g., [21]). A key observation of this approach is that 
many hard problems become polynomial-time tractable if some problem parameter is bounded by a fixed constant. If the 
order of the polynomial bound is independent of the parameter1 one speaks of fixed-parameter tractability (FPT).

3. Computational problems

We consider the following decision problems with respect to a CAF-semantics σ :

• Credulous Acceptance (CredCAF
σ ): Given a CAF CF = (A, R, claim) and claim c ∈ claim(A), is c contained in some S ∈ σ(CF)?

• Skeptical Acceptance (SkeptCAF
σ ): Given a CAF CF = (A, R, claim) and claim c ∈ claim(A), is c contained in each S ∈ σ(CF)?

• Verification (VerCAF
σ ): Given a CAF CF = (A, R, claim) and a set S ⊆ claim(A), is S ∈ σ(CF)?

• Non-emptiness (NECAF
σ ): Given a CAF CF = (A, R, claim), is there a non-empty set S ⊆ claim(A) such that S ∈ σ(CF)?

We furthermore consider these reasoning problems restricted to well-formed CAFs and denote them by Credwf
σ , Skeptwf

σ , 
Verwf

σ , and NEwf
σ . Moreover, we denote the corresponding decision problems for AFs (which can be obtained by defining 

1 That is, the running time can be stated as O ( f (k) · poly(n)), where f is a computable function, k is the problem parameter under investigation, n is 
the size of the problem instance, and poly(·) is an arbitrary but fixed polynomial.
6
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Table 1
Complexity of AFs.

σ CredAF
σ SkeptAF

σ VerAF
σ NEAF

σ

cf in P trivial in P in P
adm NP-c trivial in P NP-c
stb NP-c coNP-c in P NP-c
naive in P in P in P in P
prf NP-c ΠP

2 -c coNP-c NP-c
sem ΣP

2 -c ΠP
2 -c coNP-c NP-c

stg ΣP
2 -c ΠP

2 -c coNP-c in P

Table 2
Known complexity results for inherited semantics, with � ∈ {CAF, wf }. Results that deviate from the correspond-
ing results for AFs are bold-face.

σ Cred�
σ Skept�σ VerCAF

σ /Verwf
σ NE�

σ

cf c in P trivial NP-c / in P in P
admc NP-c trivial NP-c / in P NP-c
stbc NP-c coNP-c NP-c / in P NP-c
naivec in P coNP-c NP-c / in P in P

prf c NP-c ΠP
2 -c ΣΣΣP

2 -c / coNP-c NP-c
semc ? ? ? / ? ?
stgc ? ? ? / ? ?

claim as the identity function) by CredAF
σ , SkeptAF

σ , VerAF
σ , and NEAF

σ . Finally, we introduce a new decision problem which asks 
whether the two variants of a semantics coincide on a given CAF.

• Concurrence (ConCAF
σ ): Given a CAF CF , does it hold that σc(CF) = cl-σ(CF)?

For stable semantics, we write ConCAF
stbτ

to specify the considered cl-stable variant (τ ∈ {adm, cf }). The concurrence problem 

restricted to well-formed CAFs is denoted Conwf
σ .

Tables 1 & 2 depict known complexity results for AF semantics [22–24,6]; and for inherited CAF semantics [12]. Note 
that Table 2 lacks results for semi-stable and stage semantics which have not been studied yet in terms of complexity. We 
close this gap and complement these results by an analysis of the claim-level variants.

4. Complexity of reasoning problems

The forthcoming analysis yields the following high level picture: Credulous and skeptical reasoning as well as deciding 
existence of a non-empty extension is of the same complexity as in AFs except for the notable difference that skeptical 
reasoning with respect to cl-naive semantics goes up two levels in the polynomial hierarchy and is thus also more complex 
than deciding skeptical acceptance for i-naive semantics which has been shown to be coNP-complete. For well-formed 
CAFs, skeptical reasoning admits the same complexity for both claim-level and inherited naive semantics but remains more 
complex than in AFs.

For general CAFs, the verification problem is more complex than for AFs for all of the considered semantics. Comparing 
claim-level and inherited semantics we observe that the complexity of the verification problem for cl-preferred semantics 
drops while the complexity for cl-naive semantics admits a higher complexity than their inherited counterparts; the claim-
level and inherited variants of stable, semi-stable and stage semantics admit the same complexity. For well-formed CAFs, 
the complexity of the verification problem coincides with the known results for AFs.

4.1. Complexity results for general CAFs

In this section, we provide complexity results for general CAFs for credulous and skeptical acceptance, verification and 
for the non-emptiness problem with respect to both variants of semi-stable and stage semantics as well as claim-level naive, 
preferred and stable semantics. First, we discuss upper bounds in Section 4.1.1 before we present hardness results yielding 
the corresponding lower bounds in Section 4.1.2. An overview of our results is given in Tables 3 & 4.

4.1.1. Membership results
We will first discuss the membership proofs of the considered decision problems. To begin with, we will give 

poly-time respectively coNP procedures for deciding whether a given set of arguments E is a σ -realization for σ ∈
{cl-stbadm, cl-stbcf , cl-sem, cl-stg}. This lemma yields upper bounds for the respective reasoning problems; notice that the 
complexity goes up one level in the polynomial hierarchy since one requires an additional guess for E .
7
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Lemma 1. Given a CAF CF = (A, R, claim) and some E ⊆ A. Deciding whether E realizes (1) a τ -cl-stable claim-set in CF for τ ∈
{adm, cf } is in P; (2) a cl-semi-stable (cl-stage) claim set in CF is in coNP.

Proof. Checking admissibility (conflict-freeness) of E is in P (cf. Table 1); moreover, νCF(E) can be computed in polynomial 
time by looping over all claims c ∈ claim(A) and adding each c to νCF(E) if E attacks each occurrence of c in CF . For τ -cl-
stable semantics, it remains to check whether claim(E) ∪ νCF(E) = claim(A) to verify that E realizes a τ -cl-stable claim-set 
in CF . For cl-semi-stable (cl-stage) semantics, we have to check that each E ′ ⊆ A with claim(E ′) ∪νCF(E ′) ⊃ claim(E) ∪νCF(E)

is not admissible (conflict-free). This can be solved in coNP by a standard guess & check algorithm, i.e. guess a set and 
verify that it is admissible (conflict-free), compute the claims and verify that they are a proper superset of the claims of the 
original set, yielding a coNP algorithm to verify that E realizes a cl-semi-stable (cl-stage) claim-set in CF . �

We use this lemma to show membership results for the verification problems for the claim-based semantics.

Proposition 1. The following membership results hold for the verification problems VerCAF
σ :

1. VerCAF
σ is in NP for σ ∈ {cl-stbadm, cl-stbcf },

2. VerCAF
σ is in ΣP

2 for σ ∈ {cl-sem, cl-stg},
3. VerCAF

σ is in DP for σ ∈ {cl-prf , cl-naive}.

Proof. Consider a CAF CF = (A, R, claim) and a set S ⊆ claim(A) that has to be verified against a semantics σ . 1 & 2) Here 
we can apply a guess and check algorithm. That is, one can verify S ∈ σ(CF) by guessing a set of arguments E ⊆ A with 
claim(E) = S and checking whether E is a σ -realization of S . The latter is in P, respectively coNP by Lemma 1, yielding NP-
and ΣP

2 -procedures for the respective semantics.
3) DP-membership of VerCAF

σ for σ ∈ {cl-prf , cl-naive} is by (a) checking that a given claim-set S is admissible (conflict-
free) and (b) verifying subset-maximality of S . The former has been shown to be NP-complete (cf. Table 2); the latter is in 
coNP: Guess a set of arguments E such that S ⊂ claim(E) and check admissibility (conflict-freeness) of E . Thus VerCAF

σ can 
be represented as the intersection of a NP-complete problem and a problem in coNP and lies therefore in DP. �

Next we consider the verification problem for the inherited semantics semc and stgc .

Proposition 2. VerCAF
σ is in ΣP

2 for σ ∈ {semc, stgc}.

Proof. ΣP
2 -membership of VerCAF

σc
for σ ∈ {sem, stg} is by guessing a set E ⊆ A with claim(E) = S and checking E ∈ σ((A, R)). 

The latter is coNP-complete by known results for AFs (cf. Table 1). �
We next turn the reasoning problems, starting with the skeptical acceptance problem SkeptCAF

σ .

Proposition 3. The following membership results hold for the skeptical acceptance problems SkeptCAF
σ :

1. SkeptCAF
σ is in coNP for σ ∈ {cl-stbadm, cl-stbcf },

2. SkeptCAF
σ is in ΠP

2 for σ ∈ {cl-prf , cl-naive, cl-sem, cl-stg}.

3. SkeptCAF
σ is in ΠP

2 for σ ∈ {semc, stgc}.

Proof. Membership proofs for SkeptCAF
σ are by standard guess-and-check algorithms for the complementary problem: For a 

CAF CF = (A, R, claim) and claim c ∈ claim(A), guess a set E ⊆ A such that c /∈ claim(E) and check claim(E) ∈ σ(CF). 1) For 
σ ∈ {cl-stbτ } the latter can be verified in P by Lemma 1, which yields coNP-membership; 2) By the same lemma, that test 
for sigma ∈ {cl-sem, cl-stg}, is coNP, thus showing ΠP

2 -membership; for σ ∈ {cl-prf , cl-naive}, we use the result for VerCAF
σ , 

i.e., claim(E) ∈ σ(CF) can be verified via two NP-oracle calls, which shows that SkeptCAF
σ is in ΠP

2 ; 3) for σ ∈ {semc, stgc}, it 
suffices to check E ∈ sem((A, R)) or E ∈ stg((A, R))–both are in coNP (cf. Table 1)–to derive the desired upper bound. �
Proposition 4. The following membership results hold for the credulous acceptance problems CredCAF

σ :

1. CredCAF
σ is in P for σ ∈ {cl-naive},

2. CredCAF
σ is in NP for σ ∈ {cl-stbadm, cl-stbcf , cl-prf }.

3. CredCAF
σ is in ΣP

2 for σ ∈ {cl-sem, cl-stg}.

Proof. Membership for CredCAF
σ and σ ∈ {cl-stbτ , cl-sem, cl-stg, semc, stgc} are by standard guess-and-check-algorithms: For 

a CAF CF = (A, R, claim) and claim c ∈ claim(A), guess a set E ⊆ A such that c ∈ claim(E) and check claim(E) ∈ σ(CF). For 
8
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Fig. 2. CAF from the proof of Proposition 6 for the formula ∀yy′∃zϕ , where ϕ is given by the clauses {{y, y′,¬z}, {¬y′, z}, {¬y,¬y′}, {y′, z,¬z}}.

cl-preferred and cl-naive semantics, we exploit the fact a claim c ∈ claim(A) is credulously accepted with respect to cl-
preferred (cl-naive) semantics iff it is contained in some i-admissible (i-conflict-free) claim-set and thus the complexity of 
CredCAF

θ for θ ∈ {cf c, admc} (cf. Table 2) applies. �
Proposition 5. The following membership results hold for the non-empty problems NECAF

σ :

1. NECAF
σ is in P for σ ∈ {cl-naive, cl-stg};

2. NECAF
σ is in NP for σ ∈ {cl-stbadm, cl-stbcf , cl-prf , cl-sem};

3. NECAF
stgc

is in P and NECAF
semc

is in NP.

Proof. NECAF
σ for σ ∈ {semc, stgc, cl-prf , cl-naive, cl-sem, cl-stg} can be reduced to the respective problem for AFs: for cl-

preferred (cl-naive) semantics and both variants of semi-stable (stage) semantics, we have that a CAF has a non-empty 
claim-set iff a non-empty admissible (conflict-free) set of argument exists, i.e., NECAF

σ σ ∈ {cl-prf , cl-sem, semc, cl-naive, cl-stg,

stgc}, coincides with either NEAF
adm or NEAF

cf and we get the complexity directly from Table 1. For σ ∈ {cl-stbadm, cl-stbcf }, NECAF
σ

can be verified by guessing a non-empty set E ⊆ A and utilizing Lemma 1 (1) for checking that claim(E) is a τ -cl-stable 
claim-set of CF . �
4.1.2. Hardness results

We now turn to the hardness results for the considered decision problems. First observe that one can reduce AF decision 
problems to the corresponding problems for CAFs by assigning each argument a unique claim. Thus CAF decision problems 
generalize the corresponding problems for AFs and are therefore at least as hard. It remains to provide hardness proofs 
for the decision problems with higher complexity. By comparing Table 1 with the membership results from above, we 
observe that it remains to show hardness for SkeptCAF

cl-naive and the verification problems VerCAF
σ for all semantics σ under 

consideration.
We will first present a reduction from Q S AT ∀

2 to show ΠP
2 -hardness of SkeptCAF

cl-naive before we address the verification 
problems. In this reduction, starting from a QBF 
 = ∀Y ∃Zϕ(Y , Z) where ϕ is a 3-CNF given by a set of clauses C =
{cl1, . . . , cln} over atoms in X = Y ∪ Z , we construct a CAF as follows (cf. Fig. 2):

• For each clause cli , we introduce three arguments representing the literals contained in cli and assign them claim i;
• moreover, we add arguments representing literals over Y and assign them unique claims;
• furthermore, we add arguments a1, . . . , an with claims 1, . . . , n and an argument ϕ with unique claim ϕ;
• we introduce conflicts between each argument representing a variable x ∈ X and arguments representing its negation; 

moreover, we add symmetric attacks between ϕ and each argument ai .

This reduction is formalized as follows:

Reduction 1. Let 
 = ∀Y ∃Zϕ(Y , Z) be an instance of Q S AT ∀
2 , where ϕ is a 3-CNF given by a set of clauses C = {cl1, . . . , cln}

over atoms in X = Y ∪ Z . We construct a CAF CF = (A, R, claim) as follows (cf. Fig. 2):

A = {xi | x ∈ cli, i ≤ n} ∪ {x̄i | ¬x ∈ cli, i ≤ n} ∪
Y ∪ Ȳ ∪ {a1, . . . ,an,ϕ}

R = {(ai,ϕ), (ϕ,ai) | i ≤ n} ∪ {(xi, x̄ j)(x̄ j, xi), | i, j ≤ n}∪
{(y, ȳi), ( ȳi, y), (yi, ȳ), ( ȳ, yi), (y, ȳ), ( ȳ, y) | y ∈ Y }

where Ȳ = { ȳ | y ∈ Y }, and claim(xi) = claim(x̄i) = claim(ai) = i, claim(y) = y, claim( ȳ) = ȳ, and claim(ϕ) = ϕ .

We will show that 
 is valid iff the claim ϕ is skeptically accepted with respect to cl-naive semantics in CF . The 
main observation is that for every Y ′ ⊆ Y , the set Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {a1, . . . , an} is conflict-free in (A, R) by construction, 
and therefore Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {1, . . . , n} is in cf c(CF). Consequently, ϕ is skeptically accepted with respect to cl-naive 
semantics iff for every Y ′ ⊆ Y , the set Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {1, . . . , n, ϕ} is cl-naive. It suffices to check that for every Y ′ ⊆ Y , 
the set Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {1, . . . , n, ϕ} is cl-naive iff there is Z ′ ⊆ Z such that Y ′ ∪ Z ′ is a model of ϕ . This is addressed in 
the following lemma.
9
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Fig. 3. Reduction 2 for a formula which is given by the clauses {{x1, x3, x4}, {x̄3, x̄4, x̄2)}, {x̄1, x̄3, x2}}.

Lemma 2. For every Y ′ ⊆ Y , Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {1, . . . , n, ϕ} ∈ cl-naive(CF) iff there is Z ′ ⊆ Z such that M = Y ′ ∪ Z ′ is a model of ϕ .

Proof. Let S = Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {1, . . . , n, ϕ}.
First assume S ∈ cl-naive(CF). Consider a cf c-realization E of S . We have ϕ ∈ E because ϕ is the unique argument having 

claim ϕ . Consequently, ai /∈ E and thus each claim i is represented by xi for some x ∈ X ∪ X̄ . Let Z ′ = {z ∈ Z | zi ∈ E}. Then 
M = Y ′ ∪ Z ′ is a model of ϕ: Consider an arbitrary clause cli . Since {1, . . . , n} ⊆ S , there is some argument with claim i in 
E , that is, either ai ∈ E or xi ∈ E or x̄i ∈ E for some x ∈ X (observe that yi ∈ E iff y ∈ E and ȳi ∈ E iff ȳ ∈ E , thus a further 
case distinction for y ∈ Y , ȳ ∈ Ȳ is not required). We have that ai /∈ E since n ∈ S and for each argument b with claim(b) = n
we have (ai, b) ∈ R . Thus there is x ∈ X such that either xi ∈ E or x̄i ∈ E . In the former case, we have x ∈ M and thus M
satisfies cli , in the latter case x /∈ M and thus cli is satisfied. We obtain that M is a model of ϕ .

Now assume there is Z ′ ⊆ Z such that M = Y ′ ∪ Z ′ is a model of ϕ . Let E = Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {xi | x ∈ M} ∪ {x̄i | x /∈
M} ∪ {ϕ}. E is conflict-free since ai /∈ E for all i < n; other conflicts appear only between arguments xi , x̄ j referring to the 
same atom x. Moreover, as M is a model of ϕ , we have that for each clause cli , there is either a positive literal x ∈ cli with 
x ∈ M or a negative literal x̄ ∈ cli with x /∈ M . Thus {1, . . . , n} ⊆ claim(E); moreover, Y ′ ∪ { ȳ | y /∈ Y ′} ⊆ claim(E) and therefore 
claim(E) = S . S is a maximal cl-conflict-free claim-set since S ∪ {c} /∈ cf c(CF) for any c ∈ (Y ∪ Ȳ ) \ S as each realization of 
S ∪ {c} contains y, ȳ for some y ∈ Y . Thus S ∈ cl-naive(CF). �

We are now ready to prove the correctness of the reduction.

Lemma 3. 
 is valid iff the claim n is skeptically accepted with respect to cl-naive semantics in CF.

Proof. Assume 
 is not valid. Then there is Y ′ ⊆ Y such that for all Z ′ ⊆ Z , M = Y ′ ∪ Z ′ does not satisfy ϕ . Let S = Y ′ ∪ { ȳ |
y /∈ Y ′} ∪ {1, . . . , n}. Observe that S is i-conflict-free, witnessed by the cf c-realization Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {a1, . . . , an}. S is 
cl-naive since S ∪ {ϕ} /∈ cf c(CF) by (1) and S ∪ {c} /∈ cf c(CF) for any c ∈ (Y ∪ Ȳ ) \ S as each realization of S ∪ {c} contains y, 
ȳ for some y ∈ Y . Thus ϕ is not skeptically accepted with respect to cl-naive semantics in CF .

Assume ϕ is not skeptically accepted with respect to cl-naive semantics in CF . Then there is a set S ∈ cl-naive(CF) such 
that ϕ /∈ S . Observe that S contains Y ′ ∪ { ȳ | y /∈ Y } for some Y ′ ⊆ Y by construction. Let Y ′ = S ∪ Y . We show that for all 
Z ′ ⊆ Z , Y ′ ∪ Z ′ is not a model of ϕ: Towards a contradiction assume there is Z ′ ⊆ Z such that M = Y ′ ∪ Z ′ is a model of ϕ . 
By (1), T = Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {1, . . . , n, ϕ} ∈ cl-naive(CF). Thus T ⊃ S since ϕ /∈ S , contradiction to S being cl-naive in CF . It 
follows that 
 is not valid. �

By the above lemma and the fact that the reduction can be performed in polynomial time we obtain ΠP
2 -hardness.

Proposition 6. SkeptCAF
cl-naive is ΠP

2 -hard.

Hardness results for verification problems admit a higher complexity compared to AFs for all of the considered se-
mantics. DP-hardness with respect to cl-preferred and cl-naive semantics will be shown by reductions from SAT-UNSAT; 
ΣP

2 - hardness with respect to i-semi-stable and i-stage semantics are by reductions from credulous reasoning for AFs with 
the respective semantics; the remaining hardness results are shown via reductions from appropriate decision problems for 
inherited semantics.

We first recall the standard reduction that provides the basis for DP-hardness of verification with respect to cl-preferred 
semantics and reappears in Section 5.

Reduction 2. Let ϕ be given by a set of clauses C = {cl1, . . . , cln} over atoms in X and let X̄ = {x̄ | x ∈ X}. We construct 
(A, R) with

A = X ∪ X̄ ∪ C ∪ {ϕ}
R = {(x, cl) | cl ∈ C, x ∈ cl} ∪ {(x̄, cl) | cl ∈ C,¬x ∈ cl}∪

{(x, x̄), (x̄, x) | x ∈ X} ∪ {(cli,ϕ) | i ≤ n}

10



W. Dvořák, A. Greßler, A. Rapberger et al. Artificial Intelligence 317 (2023) 103873
Fig. 4. Reduction 3 for formulas (ϕ1,ϕ2) given by the sets of clauses {{x1
1, x1

3, x1
4}, {x̄1

3, x̄1
4, x̄1

2)}, {x̄1
1, x̄1

3, x1
2}} and {{x2

1, x2
2, x2

3}, {x̄2
1, x2

3, x2
4}, {x̄2

2, x̄2
3, x̄2

4}}.

Intuitively, each conflict-free set of literal-arguments that defend the argument ϕ corresponds to a satisfying assignment 
of ϕ . An example of the reduction is given in Fig. 3.

We next present a reduction from SAT-UNSAT to VerCAF
cl-prf which shows DP-hardness. For a SAT-UNSAT instance (ϕ1, ϕ2)

we apply Reduction 2 to both formulas and consider the disjoint union of the two resulting AFs.

Reduction 3. Let (ϕ1, ϕ2) be an instance of SAT-UNSAT, where each of the propositional formulas ϕi (for i = 1, 2) is given 
over a set of clauses Ci = {cli

1, . . . , cli
n} over atoms in Xi . Moreover, we assume X1 ∩ X2 = ∅. Let (Ai, Ri) be the AFs that we 

obtain when applying Reduction 2 to the formulas ϕi and adding attacks {(cl, cl) | cl ∈ Ci}. We construct the CAF CF(ϕ1,ϕ2) =
(A1 ∪ A2, R1 ∪ R2, claim) with claim(x) = claim(x̄) = x for all x ∈ Xi , claim(cl) = d for all cl ∈ Ci and claim(ϕi) = ϕi . See Fig. 4
for an illustrative example.

We now observe that a formula ϕi is satisfiable iff Xi ∪ {ϕi} is a cl-preferred claim-set of (Ai, Ri, claim) which yields the 
correctness of the reduction.

Lemma 4. (ϕ1, ϕ2) is a valid SAT-UNSAT instance iff X1 ∪ X2 ∪ {ϕ1} is a cl-preferred claim-set of CF(ϕ1,ϕ2) .

Proof. We have to show that X1 ∪ X2 ∪ {ϕ1} is cl-preferred in CF(ϕ1,ϕ2) iff ϕ1 is satisfiable and ϕ2 is unsatisfiable. For 
the purpose of this proof we consider the CAF CF(ϕ1,ϕ2) as the disjoint union of the CAFs CF1 = (A1, R1, claim) and CF2 =
(A2, R2, claim).

Since CF1 and CF2 are unconnected and have no common arguments (and thus cl-prf (CF) = {S ∪ T | S ∈ cl-prf (CF1), T ∈
cl-prf (CF2)}), it suffices to show that

(a) ϕi is satisfiable iff Xi ∪ {ϕi} is a cl-preferred claim-set of CFi , and
(b) ϕi is unsatisfiable iff Xi is a cl-preferred claim-set of CFi .

We have that (b) follows from (a) since Xi is i-admissible in CFi independently of the satisfiability of ϕi (for an admc-
realization, consider X ′ ∪ {x̄ | x /∈ X ′} for any X ′ ⊆ Xi ) and no argument cl ∈ Ci can appear in an admissible set. We show ϕi
is satisfiable iff Xi ∪ {ϕi} is a cl-preferred claim-set of CFi :

Assume ϕi is satisfiable and consider a model M of ϕi . Let E = M ∪ {x̄ | x /∈ M}. We show that E ′ = E ∪ {ϕi} is admissible 
in (Ai, R ′

i): First observe that E is admissible since each a ∈ Xi ∪ X̄i defends itself. Since M satisfies ϕi , we have that for 
any clause cl ∈ Ci , there is either x ∈ cl with x ∈ M or x̄ ∈ cl with x /∈ M , thus E attacks each cl ∈ C . Consequently, E defends 
ϕi ; we conclude that E ′ is admissible in (Ai, R ′

i). Moreover, claim(E ′) is a subset-maximal i-admissible claim-set since 
claim(E ′) = Ai \ {d}, that is, claim(E ′) contains every claim c ∈ claim(Ai) which is assigned to non-self-attacking arguments. 
Thus claim(E ′) = Xi ∪ {ϕi} is cl-preferred in CFi .

Now assume Xi ∪ {ϕi} is cl-preferred in CFi . Let E be a admc-realization of Xi ∪ {ϕi} and let M = E ∩ Xi . Consider an 
arbitrary clause cl ∈ Ci . Since ϕi ∈ E is defended by E we have that E attacks cl, thus there is either an argument x ∈ E such 
that (x, cl) ∈ R ′

i or an argument x̄ ∈ E with (x̄, cl) ∈ R ′
i . In the former case, we have x ∈ M and thus M satisfies cl, in the 

latter case x /∈ M and thus cl is satisfied. We obtain that M is a model of ϕi . �
By the above lemma and the fact that the reduction can be performed in polynomial time we obtain DP-hardness.
11
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Fig. 5. Reduction 4 for formulas (ϕ1,ϕ2) given by the sets of clauses {{s, u, v}, {ū, v̄, t̄)}, {s̄, ū, t}} and {{w, x, y}, {w̄, y, z}, {x̄, ȳ, z̄}}.

Proposition 7. VerCAF
cl-prf is DP-hard.

DP-hardness of verification with respect to cl-naive semantics can be shown via a reduction from SAT-UNSAT by com-
bining ideas from the previous propositions. As in Proposition 7, one constructs two independent frameworks CF1, CF2
representing the formulas (3-CNFs) ϕ1, ϕ2 with sets of clauses C1 = {cl1, . . . , clm} respectively C2 = {clm+1, . . . , cln}. The 
construction is similar to the one in Proposition 6, i.e., one introduces an argument with claim i for each literal in a clause 
cli ∈ C j , an argument ϕ j representing the respective formula and adds |C j | arguments with claims 1, . . . , m respectively 
m + 1, . . . , n. One can show that {1, . . . , n, ϕ1} is cl-naive in CF1 ∪ CF2 iff ϕ1 is satisfiable and ϕ2 is unsatisfiable.

Reduction 4. Let (ϕ1, ϕ2) be an instance of SAT-UNSAT, where each of the propositional formulas ϕ j (for j = 1, 2) is given 
over a set of clauses C j over atoms in X j . Moreover, we assume X1 ∩ X2 = ∅, C1 = {cl1, . . . , clm}, C2 = {clm+1, . . . , cln}, and 
define A′

1 = {a1, . . . , am} and A′
2 = {am+1, . . . , an}.

We construct the CAF CF(ϕ1,ϕ2) = (A, R, claim) with

A = {xi | x ∈ cli,1 ≤ i ≤ n} ∪ {x̄i | x̄ ∈ cli,1 ≤ i ≤ n} ∪ A′
1 ∪ A′

2 ∪ {ϕ1,ϕ2}
R = {(xi, x̄ j)(x̄ j, xi), | i, j ≤ n} ∪ {(ai,ϕ1), (ϕ1,ai) | i ≤ m}∪

{(ai,ϕ2), (ϕ2,ai) | m < i ≤ n}
with claim(xi) = claim(x̄i) = claim(ai) = i and claim(ϕi) = ϕi .

Notice that the CAF CF(ϕ1,ϕ2) can be interpreted as the disjoint union of two CAFs, CF1 represents ϕ1 and CF2 represents 
ϕ2. See Fig. 5 example illustrating the reduction.

Lemma 5. (ϕ1, ϕ2) is a valid SAT-UNSAT instance iff
{1, . . . , n, ϕ1} ∈ cl-naive(CF).

Proof. For the purpose of this proof we consider the CAF CF(ϕ1,ϕ2) as disjoint union of two CAFs. To this end let CF1 be the 
projection of CF(ϕ1,ϕ2) on the arguments {xi | x ∈ cli, 1 ≤ i ≤ m} ∪ {x̄i | x̄ ∈ cli, 1 ≤ i ≤ m} ∪ A′

1 ∪ {ϕ1} and CF2 be the projection 
of CF(ϕ1,ϕ2) on the arguments
{xi | x ∈ cli, m + 1 ≤ i ≤ n} ∪ {x̄i | x̄ ∈ cli, m + 1 ≤ i ≤ n} ∪ A′

2 ∪ {ϕ2}. Notice that CF(ϕ1,ϕ2) = CF1 ∪ CF2 and that CF1 and CF2 are 
isomorphic.

We show ϕ1 is satisfiable and ϕ2 is unsatisfiable iff
{1, . . . , n, ϕ1} ∈ cl-naive(CF) by proving

(a) ϕ1 is satisfiable iff {1, . . . , m, ϕ1} ∈ cl-naive(CF1).
(b) ϕ2 is unsatisfiable iff {m + 1, . . . , n} ∈ cl-naive(CF2).

Since CF1, CF2 are unconnected and claim(A1) ∩ claim(A2) = ∅, we have naivec(CF) = {S ∪ T | S ∈ naivec(CF1), T ∈
naivec(CF2)}. Thus ϕ1 is satisfiable and ϕ2 is unsatisfiable iff {1, . . . , n, ϕ1} ∈ cl-naive(CF).

Proof of (a): First assume ϕ1 is satisfiable and consider a model M of ϕ1. Let E = {xi | x ∈ M, i ≤ m} ∪ {x̄i | x /∈ M, i ≤
m} ∪ {ϕ1}. E is conflict-free by construction; moreover, ϕ1 ∈ claim(E) and i ∈ claim(E) for each i ≤ m: For each clause 
cli ∈ C1, there is either x ∈ M ∩ cli or x̄ ∈ cli such that x /∈ M , consequently there is either xi ∈ E with claim(xi) = i or x̄i ∈ E
with claim(x̄i) = i. We have shown that {1, . . . , m, ϕ1} has a conflict-free realization in CF1.

Now assume {1, . . . , m, ϕ1} ∈ cl-naive(CF). Let E be a cf c-realization of {1, . . . , m, ϕ1} and let M = {x | ∃i ≤ m : xi ∈ E}. 
Now, consider an arbitrary clause cli ∈ C1. Then E contains an argument with claim i, that is, either xi ∈ E or x̄i ∈ E . In the 
former case, x ∈ M and thus cli is satisfied. In the latter case, x /∈ M as x̄i is in conflict with all arguments x j and thus cli is 
satisfied. We obtain that M is a model of ϕ1 and thus ϕ1 is satisfiable.
12
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Proof of (b): First notice that claim(A′
2) = {m + 1, . . . , n} is i-conflict-free by construction. By (a), ϕ2 is unsatisfiable iff 

{m + 1, . . . , n, ϕ2} /∈ cl-naive(CF′
2). We thus obtain ϕ2 is unsatisfiable iff {m + 1, . . . , n, ϕ2} /∈ cl-naive(CF2) iff {m + 1, . . . , n} ∈

cl-naive(CF2). �
By the above lemma and the fact that the reduction can be performed in polynomial time we obtain DP-hardness.

Proposition 8. VerCAF
cl-naive is DP-hard.

In the following, we show ΣP
2 -hardness of the verification problem for CAFs with respect to i-semi-stable and i-stage 

semantics, utilizing a reduction from the respective credulous acceptance problem for AFs.

Proposition 9. VerCAF
semc

and VerCAF
stgc

are ΣP
2 -hard.

Proof. We present a proof for VerCAF
semc

, the proof for VerCAF
stgc

is analogous. For an instance (A, R), b ∈ A of CredAF
sem , we 

construct a CAF CF = (A′, R, claim) with A′ = A ∪ {x}, x /∈ A and claim(b) = c1, claim(a) = c2 for all a ∈ A′ \ {b}. Then, as the 
argument x is not involved in any attack, it is contained in every semi-stable extension of (A′, R) and thus, as claim(x) = c2, 
c2 is contained in every i-semi-stable claim-set of CF . Furthermore, as CF contains only two claims, the only candidates for 
i-semi-stable claim-sets are {c1, c2} and {c2}. Moreover, as b is the only argument with claim c1, {c1, c2} is i-semi-stable iff 
b is contained in some semi-stable set of arguments in (A′, R). Thus, b is credulously accepted in (A, R) w.r.t. semi-stable 
semantics iff {c1, c2} is i-semi-stable in CF . ΣP

2 -hardness of VerCAF
semc

thus follows from known results for AFs. �
Finally, we provide hardness results for cl-semi-stable, τ -cl-stable and cl-stage semantics. We will present reductions 

from the verification problem of suitable inherited semantics. To that end, we consider the following translations.

Reduction 5. For a CAF CF = (A, R, claim), we define three translations:

• T r1(CF) = (A′, R ′, claim′) with

A′ =A ∪ {a′ | a ∈ A}
R ′ =R ∪ {(a,a′), (a′,a′) | a ∈ A}

and claim′(a) = claim(a) for a ∈ A, claim(a′) = ca for a′ ∈ {a′ | a ∈ A} with fresh claims ca /∈ claim(A).
• T r2(CF) = (A′, R ′

2, claim′) with

A′ =A ∪ {a′ | a ∈ A}
R ′

2 =R ′ ∪ {(a,b′) | (a,b) ∈ R};
and claim′ as before.

• T r3(C F ) = (A′, R ′
3, claim′) with

A′ =A ∪ {a′ | a ∈ A}
R ′

3 =R ′
2 ∪ {(b,a) | (a,b) ∈ R} ∪ {(a,b) | a ∈ A, (b,b) ∈ R};

and claim′ as before.

See Fig. 6 for an example illustrating the translations. The following lemma states that (a) T r1 maps i-preferred semantics 
to cl-semi-stable semantics, (b) T r2 maps inherited to claim-level stable semantics, and (c) T r3 maps inherited to claim-level 
stage semantics. The proof can be found in the appendix.

Lemma 6. For a CAF CF = (A, R, claim),

prf c(CF) = prf c(T r1(CF)) = cl-sem(T r1(CF)),

stbc(CF) = stbc(T r2(CF)) = cl-stbτ (T r2(CF)) for τ ∈ {adm, cf },
stgc(CF) = stgc(T r3(CF)) = cl-stg(T r3(CF)).
13
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Fig. 6. The translations of Reduction 5 applied to the CAF from Example 1. The red, dashed attacks highlight the changes with respect to the original CAF 
or the previous translation.

Table 3
Complexity of inherited semantics for CAFs, full picture (results for i-semi-stable and i-stage semantics are new). 
Results that deviate from the corresponding AF results are highlighted in bold-face.

σ CredCAF
σ SkeptCAF

σ VerCAF
σ NECAF

σ

cf c in P trivial NP-c in P
admc NP-c trivial NP-c NP-c
stbc NP-c coNP-c NP-c NP-c
naivec in P coNP-c NP-c in P

prf c NP-c ΠP
2 -c ΣΣΣP

2 -c NP-c
semc ΣP

2 -c ΠP
2 -c ΣΣΣP

2 -c NP-c
stgc ΣP

2 -c ΠP
2 -c ΣΣΣP

2 -c in P

Lower bounds for VerCAF
σ , σ ∈ {cl-stbadm, cl-stbcf , cl-sem, cl-stg}, thus follow from the results of the respective inherited 

semantics: For a given CAF CF = (A, R , claim) and a set of claims S ⊆ claim(A), one can check S ∈ σ ′
c(CF), σ ′ ∈ {stb, prf , stg}, 

by applying the respective translation and checking whether S is a σ -realization in the resulting CAF.

Proposition 10. VerCAF
σ is NP-hard for σ ∈ {cl-stbadm, cl-stbcf } and ΣP

2 -hard for σ ∈ {cl-sem, cl-stg}.

Proof. The NP-hardness of VerCAF
σ for σ ∈ {cl-stbadm, cl-stbcf } is by the fact that Verstbc is NP-hard and translation T r2. The 

ΣP
2 -hardness of VerCAF

cl-sem is by the fact that Verprf c
is ΣP

2 -hard and translation T r1. Finally, the ΣP
2 -hardness of VerCAF

cl-stg is by 
the fact that Verstgc is ΣP

2 -hard and translation T r3. �
14
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Table 4
Complexity of claim-based semantics for CAFs. Results that deviate from the corresponding AF results are high-
lighted in bold-face; results that deviate from those w.r.t. inherited semantics are underlined.

σ CredCAF
σ SkeptCAF

σ VerCAF
σ NECAF

σ

cl-stbadm NP-c coNP-c NP-c NP-c
cl-stbcf NP-c coNP-c NP-c NP-c
cl-naive in P ΠΠΠP

2 -c DP-c in P

cl-prf NP-c ΠP
2 -c DP-c NP-c

cl-sem ΣP
2 -c ΠP

2 -c ΣΣΣP
2 -c NP-c

cl-stg ΣP
2 -c ΠP

2 -c ΣΣΣP
2 -c in P

This concludes our complexity analysis of general CAFs. The full complexity landscape is summarized in Tables 3 & 4. 
Table 3 shows the results for inherited semantics (together with the results of [12]) while Table 4 shows the results for 
claim-based semantics.

4.2. Complexity results for well-formed CAFs

We now turn to the complexity of well-formed CAFs. First observe that all upper bounds from the previous section 
carry over since well-formed CAFs are a special case of CAFs. It remains to give improved upper bounds for verification 
with respect to all of the considered semantics as well as for Skeptwf

cl-naive . The latter also requires a genuine hardness proof 
as it remains harder than the corresponding problem for AFs even in the well-formed case. For the remaining semantics, 
we obtain hardness results from the corresponding problems for AFs since they constitute a special case of the respective 
problems for CAFs.

We first discuss improved upper bounds for verification. For preferred as well as for both variants of cl-stable semantics, 
membership is immediate by the corresponding results for inherited semantics as the respective semantics collapse in the 
well-formed case [8].

Proposition 11. Verwf
σ is in P for σ ∈ {cl-stbcf , cl-stbadm} and coNP-complete for σ = cl-prf .

For the remaining semantics, we exploit the following observation [12].

Lemma 7. Let CF = (A, R, claim) be well-formed. For S ⊆ claim(A), let

E0(S) ={a ∈ A | cl(a) ∈ S}
E1(S) =E0(S) \ E0(S)+(A,R)

E2(S) ={a ∈ E1(S) | b ∈ E1(S)+(A,R) for all (b,a) ∈ R}.
Then S ∈ cf c(CF) iff S = claim(E1(S)) and S ∈ admc(CF) iff S = claim(E2(S)).

To check whether a set S ⊆ claim(A) is cl-naive in a given well-formed CAF CF = (A, R, claim), we utilize Lemma 7 to 
test (i) S ∈ cf c(CF) and (ii) S ∪ {c} /∈ cf c(CF) for all c ∈ claim(A) \ S , which yields a poly-time procedure for Verwf

naive .

Proposition 12. Verwf
naive is in P.

For inherited as well as claim-level semi-stable and stage semantics, we first compute E1(S), respectively E2(S) in P (cf. 
Lemma 7). For cl-semi-stable (cl-stage) semantics, utilize Lemma 1 to check in coNP whether E2(S) (E1(S)) realizes a cl-
semi-stable (cl-stage) claim set; similarly, for i-semi-stable (i-stage) semantics, we check that E2(S) ∈ sem((A, R)) (E1(S) ∈
stg((A, R))), which is known to be coNP-complete.

Proposition 13. Verwf
σ is in coNP for σ ∈ {cl-sem, cl-stg, semc, stgc}.

Finally, we will discuss coNP-completeness of skeptical reasoning in well-formed CAFs w.r.t. cl-naive semantics. To show 
hardness, we make use of a small adaption of the standard reduction (cf. Reduction 2) by removing the argument ϕ and all 
associated attacks.

Proposition 14. Skeptwf is coNP-complete.
cl-naive
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Fig. 7. A CAF illustrating the reduction in the proof of Proposition 14 for the formula ϕ with clauses {{x1, x3, x4}, {x̄3, x̄4, x̄2)}, {x̄1, x̄3, x2}}.

Table 5
Complexity of inherited semantics in well-formed CAFs, full picture (results for i-semi-stable and i-stage seman-
tics are new). Results that deviate from general CAFs (cf. Table 3) are highlighted in bold-face.

σ Credwf
σ Skeptwf

σ Verwf
σ NEwf

σ

cf c in P trivial in P in P
admc NP-c trivial in P NP-c
stbc NP-c coNP-c in P NP-c
naivec in P coNP-c in P in P
prf c NP-c ΠP

2 -c coNP-c NP-c
semc ΣP

2 -c ΠP
2 -c coNP-c NP-c

stgc ΣP
2 -c ΠP

2 -c coNP-c in P

Table 6
Complexity of claim-based semantics in well-formed CAFs. Results that deviate from general CAFs (cf. Table 4) 
are highlighted in bold-face.

σ Credwf
σ Skeptwf

σ Verwf
σ NEwf

σ

cl-stbcf NP-c coNP-c in P NP-c
cl-stbadm NP-c coNP-c in P NP-c
cl-naive in P coNP-c in P in P
cl-prf NP-c ΠP

2 -c coNP-c NP-c
cl-sem ΣP

2 -c ΠP
2 -c coNP-c NP-c

cl-stg ΣP
2 -c ΠP

2 -c coNP-c in P

Proof. For a well-formed CAF CF = (A, R, claim), one can verify skeptical acceptance of a claim c ∈ claim(A) by (1) guessing 
a set E ⊆ A such that c /∈ claim(E); (2) checking if claim(E) is a cl-naive claim-set of CF . The latter can be verified in 
polynomial time, yielding a NP-procedure for the complementary problem.

Hardness can be shown via a reduction from UNSAT: For a formula ϕ with clauses C = {cl1, . . . , cln} over the atoms X , 
let (A′, R ′) be as in Reduction 2. We define CF = (A, R, claim) with A = A′ \ {ϕ} and R = R ′ \ {(cli, ϕ) | i ≤ n}, moreover, we 
set claim(x) = x, claim(x̄) = x̄, and claim(cli) = ϕ̄ . See Fig. 7 for an illustrative example of the reduction. Observe that CF is 
well-formed. We show ϕ is satisfiable iff ϕ̄ is not skeptically accepted in CF .

In case ϕ is satisfiable, then there is a model M ⊆ X of ϕ . Consider E = M ∪{x̄ | x /∈ M}, which is conflict-free and cannot 
be extended by any argument cli assigned with claim ϕ̄: Indeed, since each clause cli is satisfied by M , there is either a 
positive literal x ∈ cli with x ∈ M or a negative literal x̄ ∈ cli with x /∈ M , thus cli is attacked by E in (A, R). Moreover, we 
have that for each x ∈ X , either x ∈ E (and thus x ∈ claim(E)) or x̄ ∈ E (and thus x̄ ∈ claim(E)) and (x, ̄x) ∈ R . Consequently, 
claim(E) is maximal among i-conflict-free claim-sets and thus claim(E) ∈ cl-naive(CF). It follows that ϕ̄ is not skeptically 
accepted in CF .

Now assume ϕ̄ is not skeptically accepted in CF , then there is a set S ∈ cl-naive(CF) such that ϕ̄ /∈ S . For a cf c-realization 
E of S , we have M = E ∩ X is a model of ϕ: Consider an arbitrary clause cli . As ϕ̄ /∈ S we have that E attacks cli , thus there 
is either an argument x ∈ E such that (x, cli) ∈ R or an argument x̄ ∈ E with (x̄, cli) ∈ R . In the former case, we have x ∈ M
and thus M satisfies cli , in the latter case x̄ /∈ M and thus cli is satisfied. We obtain that M is a model of ϕ . �

This concludes our complexity analysis of well-formed CAFs. All the results are summarized in Tables 5 & 6.

5. Complexity of concurrence

This section examines the complexity of deciding concurrence of the different variants of the considered semantics and 
studies a claim-based variant of the coherence problem.

The inherent difference of maximization on argument- respectively claim-level in CAFs has been already discussed by 
[8] who showed that also for well-formed CAFs, claim-level and inherited versions of semi-stable and stage semantics 
potentially yield different claim-sets. In this section, we first consider the complexity of ConCAF

σ and Conwf
σ , that is: Given a 

(well-formed) CAF CF and a semantics σ , how hard is it to decide whether σc(CF) = cl-σ (C F )? Our results are summarized 
16
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Table 7
Complexity of deciding ConCAF

σ and Conwf
σ .

prf naive stbτ sem stg

ConCAF
σ ΠP

2 -c coNP-c ΠP
2 -c ΠP

3 -c ΠP
3 -c

Conwf
σ trivial coNP-c trivial ΠP

2 -c ΠP
2 -c

in Table 7 and show that deciding concurrence is in general computationally hard; observe that for semi-stable and stage 
semantics, the problem is complete for the third level of the polynomial hierarchy. For preferred and stable semantics on 
the other hand, the question becomes trivial for well-formed CAFs as the claim-based versions of this semantics coincide 
with their inherited counter-parts.

We furthermore show that deciding whether cl-stbcf (CF) = cl-stbadm(CF) for a given CAF CF is ΠP
2 -complete and conclude 

the section with a brief discussion of the well-known coherence problem when applied to claim-based semantics. However, 
let us start with the collection of results concerning concurrence which will be proven in the forthcoming two subsections.

Theorem 1. The complexity results depicted in Table 7 hold.

5.1. Concurrence of general CAFs

We start with a rather straight-forward observation for preferred and naive semantics which will be useful for both 
membership and hardness arguments. The distinguishing factor of inherited and claim-level variants of preferred and naive 
semantics is incomparability: a set of sets X = {X1, . . . , Xn} is incomparable iff Xi � X j for all i, j ≤ n. Claim-level variants 
of both semantics return incomparable sets of claim-extensions since maximization is performed on claim-level. We show 
next that the two different variants of preferred and naive semantics coincide iff the inherited variants return incomparable 
sets as well.

Proposition 15. For a CAF CF = (A, R, claim), for σ ∈ {prf , naive}, σc(CF) = cl-σ (CF) if and only if σc(CF) is incomparable.

Proof. Let σ = prf (the proof for σ = naive is analogous). Assume prf c(CF) is incomparable and let S ∈ prf c(CF). Then S ∈
admc(CF). Now assume there is T ∈ admc(CF) with T ⊃ S . Consider a admc-realization E of T in CF and let E ′ ∈ prf ((A, R))

with E ⊆ E ′ . But then claim(E ′) ∈ prf c(CF) and claim(E ′) ⊇ T ⊃ S , contradiction to prf c(CF) being incomparable. �
To get upper bounds for preferred and naive semantics, it thus suffices to verify incomparability of σc(CF). We give a 

ΣP
2 (NP resp.) procedure for the complementary problem: Guess E, G ⊆ A and check (i) E, G ∈ σ((A, R)) and (ii) claim(E) ⊂

claim(G). The former is in coNP for prf (in P for naive) by Table 1.
Membership for the remaining semantics is by the following generic guess and check procedure for the complementary 

problem: To show for a given CAF CF = (A, R, claim) that σc(CF) �= cl-σ (CF) one first guesses a set of claims S ⊆ claim(A)

and checks whether S ∈ σc(CF) and S /∈ cl-σ(CF) or vice versa. The complexity of the procedure thus follows from the 
corresponding results for verification with respect to the considered semantics, i.e. NP-membership for the stable semantics; 
ΣP

2 -membership for semi-stable and stage semantics, cf. Tables 3 and 4.
Before turning to the results for the matching lower bounds in general CAFs, let us point out that for all except naive 

semantics, deciding concurrence admits a lower complexity for well-formed CAFs than for general CAFs. In the preliminary 
version of this paper, we have proven coNP-hardness of deciding concurrence for general CAFs while the complexity of 
this problem for well-formed CAFs has been left open. This gap has been closed recently [25] by showing that coNP-
hardness holds even in the well-formed case. Due to this novel insights, we omit the original hardness proof for general 
CAFs presented in [16] and refer the interested reader to [25].

Proposition 16. ConCAF
prf is ΠP

2 -hard.

Proof. We present a reduction from SkeptAF
prf : Given an instance (A, R), a ∈ A from SkeptAF

prf . W.l.o.g. we can assume that 
the preferred extensions of (A, R) are non-empty (otherwise add an isolated argument). We construct CF = (A′, R ′, claim)

with A′ = A ∪ {i, j}, R ′ = R ∪ {( j, b), (b, j) | b ∈ A}, and claim(a) = claim( j) = c1, claim(b) = c2 for b ∈ (A \ {a}) ∪ {i}. Then 
prf ((A′, R ′)) = {E ∪ {i} | E ∈ prf ((A, R))} ∪ {{i, j}} since the argument i is isolated and thus appears in each extension; 
moreover, j mutually attacks each argument b ∈ A. For all extensions D ∈ prf ((A′, R ′)) with a ∈ D we have claim(D) =
{c1, c2}; for all extensions D ∈ prf ((A′, R ′)), D �= {i, j}, with a /∈ D , we have claim(D) = {c2}; moreover, claim({i, j}) = {c1, c2}
and thus we have {c1, c2} ∈ prf c(CF) independently of the considered instance. Thus a is not skeptically accepted in (A, R)

with respect to preferred semantics iff {c2} ∈ prf c(CF) iff prf c(CF) is not incomparable. Applying Proposition 15 concludes 
the proof. �

Next we present our ΠP-hardness proof for claim-level stable semantics. We will make use of the following reduction.
2

17
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Fig. 8. A CAF illustrating Reduction 6 for the formula 
 = ∀Y ∃Zϕ(Y , Z) where ϕ(Y , Z) is given by the clauses {{y1, z1, z2}, {z̄1, z̄2, ȳ2)}, { ȳ1, z̄1, y2}}.

Reduction 6. Let 
 = ∀Y ∃Zϕ(Y , Z) be an instance of Q S AT ∀
2 , where ϕ is given by a set of clauses C = {cl1, . . . , cln} over 

atoms in X = Y ∪ Z and let (A, R) be as in Reduction 2. We define a CAF (A′, R ′, claim) with

A′ = A \ {ϕ}
R ′ = (R ∪ {(cli, cli) | i ≤ n}) \ {(cli,ϕ) | i ≤ n}

and claim(y) = y, claim( ȳ) = ȳ, claim(v) = claim(cli) = c for i ≤ n and v ∈ Z ∪ Z̄ .

See Fig. 8 for an illustrative example of the reduction.

Proposition 17. ConCAF
stbτ

, τ ∈ {cf , adm} is ΠP
2 -hard.

Proof. We present a reduction from Q S AT ∀
2 . Let 
 = ∀Y ∃Zϕ(Y , Z) be an instance of Q S AT ∀

2 , where ϕ is given by a set of 
clauses C = {cl1, . . . , cln} over atoms in X = Y ∪ Z . Let (A, R) be as in Reduction 6.

We will first show that (a) cl-stbτ = {Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {c} | Y ′ ⊆ Y }: Each τ -cl-stable claim-set S contains either y or ȳ
by construction; moreover, c ∈ S since c is not defeated by any conflict-free set of arguments E ⊆ A, thus each τ -cl-stable 
claim-set is of the form Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {c} for some Y ′ ⊆ Y . Moreover, each such set is stbτ -realizable, since for any 
Y ′ ⊆ Y , z ∈ Z , the set E = Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {z} is admissible (conflict-free) in (A, R ′) and attacks every a ∈ A such that 
claim(a) /∈ claim(E).

We show 
 is valid iff stbc(CF) = cl-stbτ (CF).
Assume 
 is valid. Let Y ′ ⊆ Y . Then there is Z ′ ⊆ Z such that ϕ is satisfied by M = Y ′ ∪ Z ′ . Let E = M ∪ {x̄ | x /∈ M}. 

Since M satisfies each clause cli , there is either x ∈ cli with x ∈ M or there is x̄ ∈ cli with x /∈ M . It follows that each cli , 
i ≤ n, is attacked by E . Since E is also conflict-free we have shown that E is a stable extension of (A, R) and therefore 
Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {c} ∈ stbc(CF). As Y ′ was arbitrary, we have that Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {c} ∈ stbc(CF) for all Y ′ ⊆ Y . We 
conclude that stbc(CF) = cl-stbτ (CF) by (a).

Assume stbc(CF) = cl-stbτ (CF). Let Y ′ ⊆ Y . By (a) we have that S = Y ′ ∪ { ȳ | y /∈ Y ′} ∪{c} ∈ cl-stbτ (CF) = stbc(CF). Consider 
a stbc-realization E of S and let Z ′ = E ∩ Z . Then M = Y ′ ∪ Z ′ satisfies ϕ: Consider an arbitrary clause cli . As E attacks cli
there is either an argument x ∈ E with (x, cli) ∈ R or an argument x̄ ∈ E with (x̄, cli) ∈ R . In the former case, x ∈ cli and 
x ∈ M and thus cli is satisfied; in the latter case, x̄ ∈ cli and x /∈ M and thus cli is satisfied. Thus M is a model of ϕ . We 
have shown that for every Y ′ ⊆ Y , there is Z ′ ⊆ Z such that Y ′ ∪ Z ′ satisfies ϕ . It follows that 
 is valid. �

We finally arrive at the ΠP
3 -hardness proofs for concurrence in the case of semi-stable and stage semantics. We reduce 

from Q S AT ∃
3 . Our formulae are of the form 
 = ∃X∀Y ∃Zϕ(X, Y , Z) for a CNF ϕ over variables in X ∪ Y ∪ Z . The basis 

for our reduction builds the standard reduction (cf. Reduction 2). We will deal with the arguments corresponding to the 
different groups of literals over X , Y , and Z as follows:

• For each argument l ∈ {x, ¬x} corresponding to a literal over atoms in X , we introduce a self-attacking dummy argument 
dl which is attacked by l. Moreover, each argument is assigned its own name; i.e., argument l has claim l.
In this way, we ensure that we can treat different truth assignments for atoms in X separately in the CAF (the dummy 
arguments indicate whether x or ¬x is contained in the extension because only one of them is contained in the range). 
Moreover, each truth assignment gives rise to a distinct claim-extension.

• For arguments corresponding to literals over Y , we proceed similarly and introduce dummy arguments. However, we 
do not distinguish between atoms and their negation. We do so by assigning the argument corresponding to atom y
and the argument corresponding to its negation the same claim y, for each atom y ∈ Y .
Again, we encode the truth assignments for atoms in Y with the dummy arguments. However, now we cannot distin-
guish the truth assignments when looking only at the claim-extensions of the CAF.

• Arguments associated to literals over Z do not distinguish between atoms and their negation. We assign each pair of 
arguments corresponding to an atom z ∈ Z and its negation the same claim z.
For atoms over Z , it does not matter whether we choose the argument corresponding to a given atom or its negation. 
As the arguments are existentially quantified it suffices to consider some satisfying assignment.
18
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Fig. 9. Reduction 7 for the formula ∃X∀Y ∃Zϕ(X, Y , Z) with clauses {{z1, x, y}, {¬x,¬y,¬z2, y}, {¬z1, z2, y}}.

We furthermore extend the basic reduction with attacks on and from the argument corresponding to ϕ . First, we add 
an argument ϕ̄ that symmetrically attacks ϕ . In this way, we ensure that ϕ appears in the (claim-)range of each extension. 
Second, we add two self-attacking arguments d1 and d2 with the same claim d. Here, only one of them (d1) is attacked 
by ϕ . This gadget is crucial to separate claim-level and inherited semantics: On argument-level, it is always better to 
include ϕ instead of ϕ̄ in the extension whenever possible since the argument-based range contains d1 if ϕ is contained 
in the extension. The claim-range of an admissible (conflict-free) set, however, does not distinguish between an extension 
containing ϕ and an extension containing ϕ̄ since not all occurrences of d are attacked.

Below, we state the formal definition.

Reduction 7. Let 
 = ∃X∀Y ∃Zϕ(X, Y , Z) be an instance of Q S AT ∃
3 , where ϕ is given by a set of clauses C = {cl1, . . . , cln}

over atoms in V = X ∪ Y ∪ Z . We can assume that there is a variable y0 ∈ Y with y0 ∈ cli for all i ≤ n (otherwise we can 
add such a y0 without changing the validity of 
). Let (A, R) be the AF constructed from ϕ as in Reduction 2. We define 
CF = (A′, R ′, claim) with

A′ = A ∪ {d1,d2, ϕ̄} ∪ {dv ,dv̄ | v ∈ X ∪ Y }
R ′ = R ∪ {(a,da), (da,da), | a ∈ X ∪ X̄ ∪ Y ∪ Ȳ } ∪

{(ϕ, ϕ̄), (ϕ̄,ϕ), (ϕ,d1)} ∪ {(di,d j) | i, j ≤ 2}
and claim(v) = claim(v̄) = v for v ∈ Y ∪ Z ; claim(cli) = ϕ̄ for i ≤ n; claim(di) = d for i = 1, 2; claim(a) = a otherwise.

An illustrative example of the reduction is given in Fig. 9.
The following lemma deals with the structure of the cl-semi-stable and i-semi-stable claim-sets of the constructed CAF 

CF .

Lemma 8. Let 
 = ∃X∀Y ∃Zϕ(X, Y , Z) be an instance of Q S AT ∃
3 and let CF = (A, R, claim) be as in Reduction 7. Then for all 

E ∈ sem((A, R)),

1. ϕ ∈ E ⇔ ϕ̄ /∈ E;
2. ϕ ∈ E ⇔ E⊕

(A,R) = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d2});
3. ϕ̄ ∈ E ⇔ C ∩ E �= ∅;
4. ϕ̄ ∈ E ⇔ E⊕

(A,R) = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d1, d2}).

Proof. Let F = (A, R) and first observe that (1) is immediate by construction.
For (2), first assume ϕ ∈ E . Then ϕ̄, d1 ∈ E⊕

F since ϕ ∈ E; also, ϕ ∈ E only if E defends ϕ against each cli , i ≤ n, thus each 
cli is attacked by E; moreover, each a ∈ V ∪ V̄ is either contained or attacked by E , otherwise, D = E ∪ {a} is admissible in 
(A, R) with D⊕

F ⊃ E⊕
F , contradiction to E ∈ sem((A, R)). Thus V ∪ V̄ ∈ E⊕

F and da ∈ E⊕
F for a ∈ E ∩ (X ∪ X̄ ∪ Y ∪ Ȳ ). In case 

E⊕
F = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d2}), we have ϕ ∈ E since ϕ is the only argument attacking d1.

To show (3), first assume ϕ̄ ∈ E . Towards a contradiction assume C ∩ E = ∅. Then D = (E ∪ {ϕ}) \ {ϕ̄} is admissible in 
(A, R) and D⊕

F is a proper subset of E⊕
F , contradiction to E being semi-stable in (A, R). It follows that C ∩ E �= ∅. The other 

direction is immediate since C ∩ E �= ∅ implies ϕ /∈ E . By (1) we obtain ϕ̄ ∈ E .
To show (4) let us again assume ϕ̄ ∈ E . Then ϕ ∈ E+

F ; moreover, each a ∈ V ∪ V̄ is either contained in E or attacked 
by E , otherwise, D = (E ∪ {a}) \ {cli | i ≤ n, (a, cli) ∈ R} is admissible in (A, R) and satisfies D⊕

F ⊃ E⊕
F , contradiction to 

E ∈ sem((A, R)). We thus have V ∪ V̄ ∈ E⊕ and da ∈ E⊕ for a ∈ E ∩ (X ∪ X̄ ∪ Y ∪ Ȳ ). Also, each cli is either attacked by E
F F
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or defended by E (by (3), there is at least one i ≤ n such that cli ∈ E). The other direction follows since d1 /∈ E⊕
F and thus 

ϕ /∈ E . �
Next we provide some properties for the reduction making use of the observation that for any instance of Q S AT ∃

3 , each 
i-semi-stable and each cl-semi-stable claim-set in the resulting CAF is of the form S X ′ ∪ {e} where

S X ′ = X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z

for some X ′ ⊆ X and for e ∈ {ϕ, ϕ̄}; in fact, it can be shown that each such set is cl-sem-realizable. Note that this is not the 
case for i-semi-stable semantics (as a counter-example, consider e = ϕ̄ and X = {x} in Fig. 9).

Lemma 9. Let CF = (A, R, claim) be as in Reduction 7 for an instance ∃X∀Y ∃Zϕ(X, Y , Z) of Q S AT ∃
3 . Then,

{S X ′ ∪ {ϕ} | X ′ ⊆ X} ⊆ semc(CF) ⊆ cl-sem(CF) =
{S X ′ ∪ {e} | X ′ ⊆ X, e ∈ {ϕ, ϕ̄}}

Proof. Let F = (A, R). To prove the statement we will first show that (i) each cl-semi-stable and each i-semi-stable claim-
set is of the form S X ′ ∪ {e} for some X ′ ⊆ X and for e ∈ {ϕ, ϕ̄}. As semc(CF) ⊆ prf c(CF) and cl-sem(CF) ⊆ prf c(CF), it suffices 
to prove the statement for each i-preferred claim-set S . First observe that S cannot contain both a, ̄a for a ∈ X ∪ {ϕ} since 
there is no cf c-realization containing both a, ̄a. As each other claim in claim(A) \ (V ∪ V̄ ∪{ϕ, ϕ̄}) is self-attacking, it remains 
to show that S X ′ ∪ {e} ⊆ S for some X ′ ⊆ X , e ∈ {ϕ, ϕ̄}: (a) S contains X ′ ∪ {x̄ | x /∈ X ′} for some X ′ ⊆ X : Assume there is 
x ∈ X such that x, ̄x /∈ S . Consider a prf c-realization E of S and let D = E ∪ {x}. D is conflict-free since x̄, dx /∈ E , moreover, 
cli /∈ E for each clause cli with (x, cli) ∈ R , since cli is not defended against the attack (x, cli). Also, D is admissible since 
E does not contain the only attacker x̄ of x and D ⊃ E , contradiction to E being preferred in (A, R). (b) S contains Y ∪ Z : 
Assume there is v ∈ Y ∪ Z such that v /∈ S . Consider a prf c-realization E of S and let D = E ∪ {v}. D is admissible since 
v̄ /∈ E by assumption v /∈ S and D ⊃ E , contradiction to E being preferred in (A, R). (c) S contains either ϕ or ϕ̄: Towards 
a contradiction, assume ϕ, ϕ̄ /∈ S . Consider a prf c-realization E of S and let D = E ∪ {ϕ̄}. D is admissible since ϕ /∈ E and 
D ⊃ E , contradiction to E being preferred in (A, R). We thus have shown that each inherited as well as each claim-level 
semi-stable claim-set is of the form S X ′ ∪ {e}, e ∈ {ϕ, ϕ̄}, for some set X ′ ⊆ X .

Next we show that each set of the form S X ′ ∪{ϕ} is i-semi-stable in CF . Fix some set X ′ ⊆ X and let E = X ′ ∪ Y ′ ∪ Z ′ ∪{v̄ |
v /∈ X ′ ∪ Y ′ ∪ Z ′} ∪ {ϕ} for some Z ′ ⊆ Z and Y ′ ⊆ Y with y0 ∈ Y ′ . E defends ϕ as y0 ∈ cli for all i ≤ n, thus E is admissible. 
Moreover, E is semi-stable since E⊕

F = V ∪ V̄ ∪{da | a ∈ E ∩ (X ∪ X̄ ∪ Y ∪ Ȳ )} ∪C ∪{ϕ, ϕ̄, d1} is subset-maximal: Assume there 
is D ∈ adm((A, R)) with D⊕

F ⊃ E⊕
F , that is, there is e ∈ {d2} ∪ {da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} such that e ∈ D⊕

F ; in particular, 
e ∈ D+

F because all considered arguments are self-attacking. Observe that d2 /∈ D+
F since its only attacker is self-attacking. In 

case e = da for some a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E we have a ∈ D and ā ∈ D and thus D is conflicting, contradiction to D being 
conflict-free. Thus we have shown that claim(E) = S X ′ ∪ {ϕ} is i-semi-stable.

It remains to prove that each set of the form S X ′ ∪ {e} for some X ′ ⊆ X , e ∈ {ϕ, ϕ̄} is cl-semi-stable in CF . Let X ′ ⊆ X . We 
first show that S X ′ ∪ {ϕ̄} is cl-semi-stable in CF . Consider some Y ′ ⊆ Y , Z ′ ⊆ Z and let C′ ⊆ C denote the set of clauses cli
which are not attacked by X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪ Z ′}. Let E = X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪ Z ′} ∪ C′ ∪ {ϕ̄}. Then E
is admissible, claim(E) = S X ′ ∪ {ϕ̄}, and νCF(E) = {da | a ∈ X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪ Z ′}} ∪ {ϕ}. Thus claim(E) ∪ νCF(E)

is subset-maximal among admissible sets since it contains every claim c ∈ claim(A) which is assigned to non-self-attacking 
arguments; moreover, it contains a maximal set of claims among {dv | v ∈ V ∪ V̄ } since it contains precisely one of dv , dv̄
for each v ∈ V ; furthermore observe that d /∈ νCF(E) for all conflict-free sets E ⊆ A since d2 /∈ E+

F for every E ∈ cf ((A, R)). It 
follows that S X ′ ∪ {ϕ̄} is cl-semi-stable. In a similar way we show that S X ′ ∪ {ϕ} is cl-semi-stable in CF . Let E = X ′ ∪ Y ′ ∪
Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪ Z ′} ∪ {ϕ} for some Z ′ ⊆ Z and Y ′ ⊆ Y with y0 ∈ Y ′ . Then E defends ϕ as y0 ∈ cli for all i ≤ n, thus 
E is admissible. Moreover, claim(E) = S X ′ ∪ {ϕ} and νCF(E) = {da | a ∈ X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪ Z ′}} ∪ {ϕ̄}. Similar as 
before we conclude that claim(E) ∪ νCF(E) is subset-maximal among admissible claim-sets. �

We are now in the position to prove the desired ΠP
3 -hardness result.

Proposition 18. ConCAF
sem is ΠP

3 -hard.

Proof. Let CF = (A, R, claim) be the CAF generated by Reduction 7 from the given Q S AT ∃
3 instance 
 = ∃X∀Y ∃Zϕ(X, Y , Z)

and let F = (A, R). We show that 
 is valid iff semc(CF) �= cl-sem(CF). Since semc(CF) ⊆ cl-sem(CF) by Lemma 9, the latter 
reduces to showing that semc(CF) is a proper subset of cl-sem(CF), that is, we show that 
 is valid iff there is some X ′ ⊆ X
such that S X ′ ∪ {ϕ̄} is not semc-realizable in CF .

Let us first assume that 
 is valid, that is, there is X ′ ⊆ X such that for all Y ′ ⊆ Y , there is Z ′ ⊆ Z such that X ′ ∪ Y ′ ∪ Z ′
is a model of ϕ . We show S X ′ ∪ {ϕ̄} /∈ semc(CF). Towards a contradiction, assume there is E ∈ sem((A, R)) with claim(E) =
S X ′ ∪{ϕ̄}. Then ϕ̄ ∈ E . By Lemma 8, we have E⊕

F = A \({da | a ∈ (X ∪ X̄ ∪Y ∪ Ȳ ) \ E} ∪{d1, d2}). Let Y ′ = E ∩Y . By assumption 

is valid, there is Z ′ ⊆ Z such that M = X ′ ∪Y ′ ∪ Z ′ is a model of ϕ . Let D = M ∪{v̄ | v /∈ M} ∪{ϕ}. D is conflict-free; moreover, 
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D attacks every cli , i ≤ n, using that M is a model of ϕ: For each clause cli , there is v ∈ V such that either v ∈ cli ∩ M (in 
that case, v ∈ D and (v, cli) ∈ R) or v̄ ∈ cli and v /∈ M (in that case, v̄ ∈ D and (v̄, cli) ∈ R). It follows that D is admissible 
as ϕ is defended against each attack of clause-arguments cli . Next we show that D⊕

F is a proper superset of E⊕
F : Clearly, 

V ∪ V̄ ⊆ D⊕
F ; also, C ⊆ D⊕

F as shown above; moreover, ϕ̄, d1 ∈ D⊕
F since ϕ ∈ D . As D and E contain the same arguments 

a ∈ X ∪ X̄ ∪ Y ∪ Ȳ by construction, we furthermore have {da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} = {da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ D}. It follows 
that D⊕

F = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d2}). Thus D is admissible and D⊕
F ⊃ E⊕

F , contradiction to our assumption E
is semi-stable in (A, R).

Next assume 
 is not valid. We show that for all X ′ ⊆ X , S X ′ ∪ {ϕ̄} ∈ semc(CF). Fix X ′ ⊆ X . Since 
 is not valid, there 
is Y ′ ⊆ Y such that for all Z ′ ⊆ Z , X ′ ∪ Y ′ ∪ Z ′ is not a model of ϕ . Fix Z ′ ⊆ Z and let E = X ′ ∪ Y ′ ∪ Z ′ ∪ {v̄ | v /∈ X ′ ∪ Y ′ ∪
Z ′} ∪ C′ ∪ {ϕ̄}, where C′ ⊆ C contains all clauses cli which are not attacked by X ′ ∪ Y ′ ∪ Z ′ ∪ {ā | a /∈ X ′ ∪ Y ′ ∪ Z ′}. Then E is 
admissible and E⊕

F = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d1, d2}). We show that E is semi-stable in (A, R): Assume there is 
D ⊆ A with D⊕

F ⊃ E⊕
F . First observe that D attacks the same arguments da , a ∈ X ∪ X̄ ∪ Y ∪ Ȳ , as E and thus X ′ ∪ Y ′ ⊆ D . 

By Lemma 8 and since D⊕
F is strictly bigger than E⊕

F , we have that D⊕
F = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ D} ∪ {d2}). It 

follows that ϕ ∈ D . Let Z ′′ = D ∩ Z . Then M = X ′ ∪ Y ′ ∪ Z ′′ is a model of ϕ: As each cli , i ≤ n, is attacked by D , there is a 
literal l ∈ D with l ∈ cli ; now, if l is a positive literal, we have l ∈ M , in case l is a negative literal, we have l /∈ M . Thus ϕ
is satisfied by M , contradiction to our initial assumption 
 is not valid. It follows that S X ′ ∪ {ϕ̄} ∈ semc(CF) for all X ′ ⊆ X . 
Thus semc(CF) = cl-sem(CF) by Lemma 9. �

ΠP
3 -hardness of ConCAF

stg also uses Reduction 7 since stgc(CF) = semc(CF) and cl-stg(CF) = cl-sem(CF) for all CAFs CF gen-
erated via the reduction. The proof proceeds similar as the proof of Lemma 9 and can be found in the appendix.

Lemma 10. Let 
 = ∃X∀Y ∃Zϕ(X, Y , Z) be an instance of Q S AT ∃
3 and let CF = (A, R, claim) be as in Reduction 7. Then

1. cl-sem(CF) = cl-stg(CF); and
2. semc(CF) = stgc(CF).

ΠP
3 -hardness of ConCAF

stg thus follows from the above lemma and from Proposition 18.

Proposition 19. ConCAF
stg is ΠP

3 -hard.

5.2. Concurrence of well-formed CAFs

For well-formed CAFs, cl-preferred and i-preferred as well as all considered variants of stable semantics coincide [8] thus 
the respective problems become trivial. Since for semi-stable and stage semantics, the complexity for verification drops for 
both variants, we get the ΠP

2 -membership results, by using the same generic membership argument as for general CAFs.
As coNP-hardness of deciding concurrence for naive semantics has been proven in [25] it remains to show matching 

hardness results for semi-stable and stage concurrence. This is by a reduction from Q S AT ∀
2 with some appropriate adapta-

tions of Reduction 2.

Reduction 8. Let 
 = ∀Y ∃Zϕ(Y , Z) be an instance of Q S AT ∀
2 , where ϕ is given by a set of clauses C = {cl1, . . . , cln} over 

atoms in X = Y ∪ Z . Let (A, R) be the AF constructed from ϕ as in Reduction 2. We define CF = (A′, R ′, claim) with

A′ = A ∪ {e,d1,d2, ϕ̄1, ϕ̄2}
R ′ = R ∪ {(a,da)(da,da) | a ∈ Y ∪ Ȳ } ∪ {(di,d j) | i, j = 1,2} ∪

{(a,b) | a,b ∈ {ϕ, ϕ̄1, ϕ̄2},a �= b} ∪ {(ϕ, e), (e, e), (ϕ,d1), (ϕ̄1,d1)}
and claim(d1) = claim(d2) = d and claim(v) = v otherwise.

An example to illustrate the reduction is given in Fig. 10. We observe that conflict-free claim-sets admit a close corre-
spondence to their realizations in the underlying AF since all arguments except the self-attacking arguments d1 and d2 have 
been assigned unique claims. The following observations are easy to verify.

Lemma 11. Let 
 = ∀Y ∃Zϕ(Y , Z) be an instance of Q S AT ∀
2 , let σ ∈ {sem, stg} and let CF = (A, R, claim) be as in Reduction 8. Then

1. for all E ∈ cf ((A, R)), (claim(E))+CF = E+
(A,R) \ {d1};

2. every S ∈ cf c(CF) admits a unique realization in (A, R);
3. for all S ∈ σc(CF) ∪ cl-σ (CF), either ϕ ∈ S or ϕ1 ∈ S or ϕ2 ∈ S.
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Fig. 10. Reduction 8 for the formula ∀Y ∃Zϕ(Y , Z) where ϕ(Y , Z) is given by the clauses {{z1, y1, y2}, { ȳ1, ̄y2, ̄z2)}, {z̄1, ̄y1, z2}}. Since claim(a) = a for all 
arguments a ∈ A \ {d1, d2}, we omit all claims that coincide with the arguments name.

The following two lemmas will be useful to prove ΠP
2 -hardness of Conwf

σ for semi-stable and stage semantics. First, we 
will show that each inherited semi-stable (i-stage) claim-set is cl-semi-stable (cl-stage).

Lemma 12. Let 
 = ∀Y ∃Zϕ(Y , Z) be an instance of Q S AT ∀
2 , let σ ∈ {sem, stg} and let CF = (A, R, claim) be as in Reduction 8. Then 

σc(CF) ⊆ cl-σ (CF).

Proof. Let F = (A, R) and consider S ∈ σc(CF) and let E denote the unique σc -realization of S in (A, R). As E ∈ σ((A, R)), 
we have that E ∪ E+

F is subset-maximal among admissible (conflict-free) extensions. We will show that S ∪ S+
CF is subset-

maximal among i-admissible (i-conflict-free) claim-sets. Towards a contradiction, assume S ∪ S+
CF is not subset-maximal 

among i-admissible (i-conflict-free) claim-sets, that is, there is T ∈ admc(CF) (T ∈ cf c(CF)) with T ∪ T +
CF ⊃ S ∪ S+

CF . Consider 
the unique cf c-realization D of T in (A, R), then D ∪ D+

F \{d1} = T ∪T +
CF ⊃ S ∪ S+

CF = E ∪ E+
F \{d1}. If either d1 ∈ D+

F or d1 /∈ E+
F

we are done since in this case, we have D ∪ D+
F ⊃ E ∪ E+

F , contradiction to E being semi-stable (stage) in (A, R). Thus we 
assume d1 ∈ E+

F but d1 /∈ D+
F . By Lemma 11, we have ϕ2 ∈ D since ϕ2 does not attack d1; also, ϕ1 ∈ E or ϕ ∈ E . In case ϕ ∈ E , 

we have e ∈ E+
F , e /∈ D+

F thus e ∈ S ∪ S+
CF but e /∈ T ∪ T +

CF , contradiction to the assumption T ∪ T +
CF ⊃ S ∪ S+

CF . In case ϕ2 ∈ D
and ϕ1 ∈ E , consider D ′ = (D ∪ {ϕ1}) \ {ϕ2}. D ′ is admissible (conflict-free) as D is admissible (conflict-free) and exchanging 
ϕ2 with ϕ1 does neither add conflicts nor undefended arguments. Moreover, d1 ∈ (D ′)+F and D ∪ D+

F = D ′ ∪ (D ′)+F \ {d1}. 
Therefore D ′ ∪ (D ′)+F ⊃ E ∪ E+

F , contradiction to E being semi-stable (stage) in (A, R). �
Next we will prove that each semi-stable (stage) claim-set that contains ϕ is both inherited and claim-level semi-stable 

(stage).

Lemma 13. Let 
 = ∀Y ∃Zϕ(Y , Z) be an instance of Q S AT ∀
2 , let σ ∈ {sem, stg} and let CF = (A, R, claim) be as in Reduction 8. Then 

for all S ∈ σc(CF) ∪ cl-σ(CF), ϕ ∈ S implies S ∈ σc(CF) ∩ cl-σ (CF).

Proof. Let F = (A, R). By Lemma 12, σc(CF) ⊆ cl-σ(CF) thus it suffices to prove the statement for S ∈ cl-σ(CF). Let E
denote the unique cf c-realization of S in (A, R). We will show E ∈ σ((A, R)). Towards a contradiction, assume there is 
D ∈ adm((A, R)) (D ∈ cf ((A, R))) with D ∪ D+

F ⊃ E ∪ E+
F . As ϕ ∈ E we have d1 ∈ E+

F and thus D ∪ D+
F \ {d1} ⊃ E ∪ E+

F \ {d1}. 
By Lemma 11, claim(D) ∪ claim(D)+F = D ∪ D+

F \ {d1} ⊃ E ∪ E+
F \ {d1} = S ∪ S+

CF , contradiction to S being cl-semi-stable 
(cl-stage) in CF . �
Proposition 20. Conwf

σ , σ ∈ {sem, stg}, is ΠP
2 -hard.

Proof. Let 
 = ∀Y ∃Zϕ(Y , Z) be an instance of Q S AT ∀
2 and let CF = (A, R, claim) be as in Reduction 8. Moreover, let 

F = (A, R).
We will show 
 is valid iff σc(CF) = cl-σ(CF).
First assume 
 is valid. We show that in this case, ϕ ∈ S for all S ∈ σc(CF) ∪ cl-σ (CF). By Lemma 13, this implies 

S ∈ σc(CF) ∩ cl-σ (CF) and thus σc(CF) = cl-σ (CF).
By Lemma 12, it suffices to prove the statement for every S ∈ cl-σ (CF). Towards a contradiction, assume there is S ∈

cl-σ (CF) such that ϕ /∈ S . Then e /∈ S ∪ S+
CF . Let Y ′ = S ∩ Y . Since 
 is valid, there is Z ′ ⊆ Z such that Y ′ ∪ Z ′ is a model of ϕ . 

Let E = Y ′ ∪ Z ′ ∪{x̄ | x /∈ Y ′ ∪ Z ′} ∪{ϕ}. Then S ′ = claim(E) is i-admissible (i-conflict-free) and S ′ ∪(S ′)+ = claim(A) \({d} ∪{dy |
CF
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y /∈ E} ∪{dȳ | ȳ /∈ E}). We can conclude that S ′ ∪(S ′)+CF ⊃ S ∪ S+
CF since e /∈ S ∪ S+

CF and {d} ∪{dy | y /∈ E} ∪{dȳ | ȳ /∈ E} � S ∪ S+
CF , 

contradiction to our initial assumption S is cl-semi-stable (cl-stage). It follows that ϕ ∈ S for every S ∈ cl-σ (CF).
Now assume 
 is not valid, i.e., there is Y ′ ⊆ Y such that for all Z ′ ⊆ Z , Y ′ ∪ Z ′ is not a model of ϕ . We will show that 

σc(CF) ⊂ cl-σ(CF). Fix Z ′ ⊆ Z and let E = Y ′ ∪ Z ′ ∪ {x̄ | x /∈ Y ′ ∪ Z ′}. Moreover, let E1 = E ∪ C′ ∪ {ϕ1} and E2 = E ∪ C′ ∪ {ϕ2}
where C′ ⊆ C contains all clauses cli such that E ∩ cli = ∅. Clearly, E1, E2 ∈ adm((A, R)) (E1, E2 ∈ cf ((A, R))) and thus 
E1 = claim(E1), E2 = claim(E2) ∈ admc(CF) (E1 = claim(E1), E2 = claim(E2) ∈ cf c(CF)). Observe that (E2)

⊕
F ⊂ (E1)

⊕
F since d1

is attacked by ϕ1 ∈ E1 but there is no a ∈ E2 such that (a, d1) ∈ R . It follows that E2 = claim(E2) /∈ σc(CF). We show that 
E2 ∈ cl-σ (CF) for σ ∈ {sem, stg}, that is, we show that claim(E2) ∪ (E2)

+
CF = claim(A) \ ({e, d} ∪ {dy | y /∈ E} ∪ {dȳ | ȳ /∈ E}) is 

maximal among admissible (conflict-free) claim-sets: Towards a contradiction, assume there is T ∈ admc(CF) (T ∈ cf c(CF)) 
such that T ∪ T +

CF ⊃ claim(E2) ∪ (E2)
+
CF . As {dy | y ∈ Y ′} ∪ {dȳ | y /∈ Y ′} ⊆ T +

CF we have Y ′ ∪ { ȳ | y /∈ Y ′} ⊆ T and T +
CF does not 

contain any claim in {dy | y /∈ E} ∪ {dȳ | ȳ /∈ E} since for every y ∈ Y , there is no conflict-free set attacking both dy and dȳ . 
Moreover, d /∈ T +

CF for every T ∈ cf c(CF) since d1 and d2 are the only attackers of d2 and d1 is self-attacking. It follows that 
e ∈ T +

CF and thus ϕ ∈ T . Consider the unique cf c-realization D of T . Since ϕ ∈ D we have cli /∈ D for every i ≤ n and thus 
each cli is attacked by D . Let M = D ∩ X and consider an arbitrary clause cli . As each cli is attacked by D , there is either 
x ∈ D with x ∈ cli or x̄ ∈ D with x̄ ∈ cli . In the former case, we have x ∈ M and thus cli is satisfied, in the latter case, x /∈ M
and thus cli is satisfied. Thus M is a model of ϕ and Y ′ ⊆ M , contradiction to our initial assumption Y ′ ∪ Z ′′ is not a model 
of ϕ for every Z ′′ ⊆ Z . �
5.3. Coherence and concurrence of stable variants

We conclude this section by analyzing two related problems. First, we ask ourselves how hard it is to decided whether 
the two variants of the claim-based stable semantics coincide. Bearing in mind the complexity of the verification problem 
of the two semantics, the problem has to be contained in ΠP

2 ; however, as we show next, it is also hard for this class for 
general CAFs. For well-formed CAFs recall that the two variants collapse anyway making this problem trivial for well-formed 
CAFs.

Proposition 21. Given a CAF CF = (A, R, claim), deciding whether
cl-stbcf (CF) = cl-stbadm(CF) is ΠP

2 -complete.

Proof. We present a ΣP
2 -procedure for the complementary problem.

(1) Guess a set S ⊆ claim(A);
(2) check S ∈ cl-stbcf (CF) and S /∈ cl-stbadm(CF).

The latter can be checked in NP, respectively, coNP.
We present a reduction from Q S AT ∀

2 . Let 
 = ∀Y ∃Zϕ(Y , Z) be an instance of Q S AT ∀
2 , where ϕ is given by a set of 

clauses C = {cl1, . . . , cln} over atoms in X = Y ∪ Z . We construct a CAF CF = (A, R, claim) given by

• A = X ∪ X̄ ∪ C ∪ {ϕ, ϕ̄};
• R = {(x, cli) | x ∈ cli} ∪ {(x̄, cli | x̄ ∈ cli} ∪ {(cli, cli), (cli, ϕ) | i ≤ n} ∪ {(x, ̄x), (x̄, x) | x ∈ X} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ̄)} ∪ {(ϕ̄, z) | z ∈

Z} ∪ {(ϕ̄, ̄z) | z̄ ∈ Z̄};
• claim(y) = y, claim( ȳ) = ȳ for y ∈ Y , ȳ ∈ Ȳ , claim(z) = claim(z̄) = claim(cli) = claim(ϕ) = claim(ϕ̄) = c for i ≤ n, z ∈ Z , 

z̄ ∈ Z̄ .

See Fig. 11 for an illustrative example. We show

(a) for all Y ′ ⊆ Y , Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {c} ∈ cl-stbcf (CF). Moreover, there is no other cf -cl-stable claim-set in CF .
Let Y ′ ⊆ Y be arbitrary, let z ∈ Z and let E = Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {z}. Clearly, E is conflict-free in (A, R); moreover, E
attacks every a ∈ A such that claim(a) /∈ claim(E). It follows that claim(E) = Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {c} ∈ cf c(CF). Moreover, 
claim(E) is maximal among all conflict-free claim-sets: Assume there is T ∈ cf c(CF) such that T ⊃ claim(E) for some 
Y ′ ⊆ Y . Then there is y ∈ Y such that y ∈ T and ȳ ∈ T , contradiction to cf -realizability of T since for every y ∈ Y , y
and ȳ mutually attack each other. We can furthermore conclude that no other cl-stable claim-set exists since for every 
y ∈ Y , y and ȳ mutually attack each other. Thus each cf -cl-stable claim-set is of the form Y ′ ∪ { ȳ | y /∈ Y ′} ∪{c} for some 
Y ′ ⊆ Y .

(b) 
 is valid iff cl-stbadm(CF) = cl-stbcf (CF).
Assume 
 is valid. We show that stbc(CF) = cl-stbcf (CF), cl-stbadm(CF) = cl-stbcf (CF) then follows since stbc(CF) ⊆
cl-stbadm(CF) ⊆ cl-stbcf (CF). Let Y ′ ⊆ Y . Then there is Z ′ ⊆ Z such that ϕ is satisfied by M = Y ′ ∪ Z ′ . Let E = M ∪ {x̄ | x /∈
M} ∪ {ϕ}. Since M satisfies each clause cli , there is either x ∈ cli with x ∈ M or there is x̄ ∈ cli with x /∈ M . It follows 
that each cli , i ≤ n, is attacked by E; moreover, E attacks ϕ̄ since ϕ ∈ E . Since E is also conflict-free we have shown 
that E is a stable extension of (A, R) and therefore Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {c} ∈ stbc(CF). As Y ′ was arbitrary, we have that 
Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {c} ∈ stbc(CF) for all Y ′ ⊆ Y . We conclude that stbc(CF) = cl-stbadm(CF) = cl-stbcf (CF) by (a).
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Fig. 11. CAF from the proof of Proposition 21 for the QBF ∀{y1, y2}∃{z3, z4} : {{y1, y2, z3}, { ȳ2, z̄3, z̄4)}, { ȳ1, ȳ2, z4}}.

Assume cl-stbadm(CF) = cl-stbcf (CF). Let Y ′ ⊆ Y . By (a) we have that S = Y ′ ∪ { ȳ | y /∈ Y ′} ∪ {c} ∈ cl-stbadm(CF) =
cl-stbcf (CF). Consider an adm-realization E of S and let Z ′ = E ∩ Z . Then M = Y ′ ∪ Z ′ satisfies ϕ: First observe that 
ϕ ∈ E: Since c ∈ S , there is some a ∈ A with claim(a) = c such that a ∈ E . Moreover, a ∈ Z ∪ Z̄ ∪ {ϕ} since every other 
claim assigned with c is self-attacking. In case a = ϕ , we are done; in case a = z or a = z̄ for some z ∈ Z we have ϕ ∈ E
since E defends a against ϕ̄ . Since ϕ ∈ E , we furthermore have that E attacks each clause cli since ϕ is defended by 
E against cli . Now, consider an arbitrary clause cli . As E attacks cli there is either an argument x ∈ E with (x, cli) ∈ R
or an argument x̄ ∈ E with (x̄, cli) ∈ R . In the former case, x ∈ cli and x ∈ M and thus cli is satisfied; in the latter case, 
x̄ ∈ cli and x /∈ M and thus cli is satisfied. Thus M is a model of ϕ . We have shown that for every Y ′ ⊆ Y , there is Z ′ ⊆ Z
such that Y ′ ∪ Z ′ satisfies ϕ . It follows that 
 is valid. �

The second problem we would like to discuss here is the well-known coherence problems, which asks whether for a 
given AF its preferred and stable extensions coincide, shown ΠP

2 -complete in [23]. The problem was studied for inherited 
semantics in [12] showing that complexity remains on the second level. The forthcoming result shows that, although the 
complexity of the verification task increases for claim-based preferred semantics, testing coherence for CAFs in terms of 
cl-semantics is of the same complexity as in the AF setting, as well.

Proposition 22. Given a CAF CF = (A, R, claim), σ ∈ {cf , adm} deciding whether cl-stbσ (CF) = cl-prf (CF) is ΠP
2 -complete; hardness 

holds even for well-formed CAFs.

Proof. We present a ΣP
2 -procedure for the complementary problem.

(1) Guess a set S ⊆ claim(A);
(2) check S ∈ (cl-stbσ (CF) \ cl-prf (CF)) ∪ (cl-prf (CF) \ cl-stbσ (CF)).

Verifying that S is cl-preferred is DP-complete, verifying that S is cl-stable is NP-complete, yielding a ΣP
2 -algorithm.

Hardness follows from the corresponding result for AFs, i.e., deciding coherence for AFs is ΠP
2 -complete. �

6. Tractable fragments

While most of the decision problems considered in Section 4 are intractable, some of them become tractable when 
restricted to specific graph classes or when parameterized by some criterion characterizing the structure of the frame-
work. Thus, in what follows, we will revisit those decision problems and investigate their complexities when restricted 
to such graph classes or when parameterized by the number of claims within the framework. This is in the line of sim-
ilar investigations for AFs where tractable graph classes have been considered [26,6] as well as fixed-parameter tractable 
algorithms [27–29].

6.1. Graph classes

We will consider five graph classes that have proven themselves promising for acquiring improved bounds for Dung 
AFs [26,6]. Based on their graph structure, we will consider CAFs CF = (A, R, claim) that fall into one of these five classes:

• Acyclic CAFs, if there is no directed cycle in (A, R).
• Noeven CAFs, if there is no directed cycle of even length in (A, R).
• Symmetric CAFs, if the attack relation R is symmetric, i.e. whenever (a, b) ∈ R then also (b, a) ∈ R .
• Symmetric irreflexive CAFs, if CF is symmetric and contains so self-attacks, i.e. (a, a) /∈ R for all a ∈ A.
• Bipartite CAFs, if (A, R) is a bipartite graph, i.e. does not contain an undirected cycle of even length.
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We recall that on well-formed CAFs, the inherited and claim-level variants coincide for preferred and stable seman-
tics. Thus for cl-preferred and cl-stable semantics in well-formed CAFs, the complexity results for credulous and skeptical 
reasoning as well as verification carry over from the respective inherited counterparts [12].

6.1.1. Acyclic CAFs
For acyclic CAFs, we obtain tractability for most of the considered problems since all considered admissible-based as 

well as all range-based semantics coincide with grounded semantics. This is an immediate consequence of the respective 
property for acyclic AFs where grd(F ) = prf (F ) = stb(F ) = sem(F ) = stg(F ) for each acyclic AF F [15].

Proposition 23. For acyclic CAFs, for � ∈ {CAF, wf }, Cred�
σ , Skept�σ , and Ver�σ is in P for σ ∈ {cl-prf , cl-stbcf , cl-stbadm, cl-sem, semc,

cl-stg, stgc}.

For cl-naive semantics, on the other hand, the restriction to acyclic graphs does not yield any computational advantages. 
To obtain ΠP

2 -hardness for skeptical acceptance and DP-hardness for verification in the general case, we adapt Reduction 1
by taking unidirectional instead of bidirectional edges; acyclicity can be easily guaranteed if e.g., each argument which 
corresponds to a positive atom has only outgoing attacks and each argument corresponding to a negated atom has only 
incoming attacks; additionally, we remove all attacks from the argument ϕ . For coNP-hardness of skeptical acceptance for 
cl-naive semantics for well-formed CAFs, we adapt the reduction from the proof of Proposition 14 accordingly, e.g., by 
removing all attacks from arguments representing positive literals. We thus obtain the following result.

Proposition 24. For acyclic CAFs, Cred�
cl-naive, � ∈ {CAF, wf }, and Verwf

cl-naive is in P; SkeptCAF
cl-naive is ΠP

2 -complete; Skeptwf
cl-naive is coNP-

complete; and VerCAF
cl-naive is DP-complete.

We note that NE�
σ , � ∈ {CAF, w f } is trivial for all considered semantics σ since the grounded extension is non-empty 

(assuming A �= ∅).

6.1.2. Noeven CAFs
We first recall that grounded, preferred, and semi-stable semantics coincide for each noeven AF F = (A, R), and 

grd(F ) = stb(F ) if grd(F ) �= {∅} [30,15]. We thus obtain that grdc(CF) = cl-sem(CF) = semc(CF) = prf c(CF), moreover, 
stbc(CF) = cl-stbadm(CF) since the underlying AF has a unique preferred extension that serves as candidate set for realiz-
ing a stable claim-set. Since the grounded extension can be computed in P we obtain the following results.

Proposition 25. For noeven CAFs, for � ∈ {CAF, w f }, Cred�
σ , Skept�σ , Ver�σ , and NE�

σ is in P for σ ∈ {cl-prf , cl-stbadm, cl-sem, semc}.

Proposition 24 also applies in the noeven case.

Proposition 26. For noeven CAFs, Cred�
cl-naive, � ∈ {CAF, w f },

and Verwf
cl-naive is in P; SkeptCAF

cl-naive is ΠP
2 -complete; Skeptwf

cl-naive is coNP-complete; and VerCAF
cl-naive is DP-complete.

However, for the cl-stbcf semantics, the problems remain hard. Towards this, we introduce the following reduction

Reduction 9. Let ϕ be an instance of 3-SAT, with ϕ given as a set of clauses C = {c1, . . . , cn} over atoms in X , where negated 
atoms are denoted by x̄. We construct C A Fϕ = (A, R, claim) with

A = X ∪ X̄ ∪ C

R = {(x, x̄) | x ∈ X} ∪ {(l, c) | c ∈ C, l ∈ c} ∪ {(c, c) | c ∈ C}
with claim(x) = claim(x̄) = ψ for all x ∈ X and claim(c) = c for all c ∈ C . An illustrative example of the reduction is given 
in Fig. 12. Note, that the only directed cycles contained in C A Fϕ are the self-attacks of the arguments in C , thus C A Fϕ is 
noeven.

Proposition 27. For noeven CAFs, CredCAF
cl-stbcf

, VerCAF
cl-stbcf

, and NECAF
cl-stbcf

are NP-complete; SkeptCAF
cl-stbcf

is coNP-complete.

Proof. Upper bounds are obtained via the case for general CAFs, cf. Table 4. For the lower bounds, we start with the 
NP-complete problems.

For a given instance of 3-SAT ϕ , we construct a C A Fϕ as in Reduction 9. Note, that the arguments c ∈ C are all self-
attacking and thus can never be part of any conflict-free set of arguments of the Dung AF underlying C A Fϕ . Therefore, their 
25
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Fig. 12. Reduction 9 for the formula ϕ given by the clauses {{x1, x2, x3}, {x̄1, x3, x4}, {x̄2, x̄3, x̄4}}.

claims cannot be part of any cl-stbcf extension of C A Fϕ . Furthermore, trivially, ∅ cannot be a cl-stbcf extension of C A Fϕ ei-
ther. Thus, the only candidate cl-stbcf extension of C A Fϕ is {ψ} and therefore, CredCAF

cl-stbcf
(C A Fϕ, ψ) = VerCAF

cl-stbcf
(C A Fϕ, {ψ}) =

NECAF
cl-stbcf

(C A Fϕ). We will show that ϕ is satisfiable iff VerCAF
cl-stbcf

(C A Fϕ, {ψ}).

First, assume that ϕ is satisfiable and let M be a model of ϕ . Then, the set E = M ∪ X \ M is conflict-free in the underlying 
Dung AF of C A Fϕ by the construction of C A Fϕ . Furthermore, as all c ∈ C are satisfied by M , there must be some l ∈ E such 
that (l, c) ∈ R for all c ∈ C . Thus, E attacks all arguments c ∈ C and therefore claim(E) ∪ νC A Fϕ (E) = {ψ} ∪ {C} = claim(A), 
making {ψ} a cl-stbcf extension of C A Fϕ .

Now, assume that ϕ is unsatisfiable. Then, for every conflict-free set of arguments E ⊆ X ∪ X̄ in the underlying Dung AF 
of C A Fϕ , there exists some c ∈ C such that (l, c) /∈ R for all l ∈ E , as otherwise E ∩ X would be a model of ϕ by construction. 
Therefore, c /∈ νC A Fϕ (E) for some c ∈ C and thus {ψ} is not a cl-stbcf extension of C A Fϕ .

The result for the SkeptCAF
cl-stbcf

problem can be proven similarly by reducing from 3-UNSAT while using the same con-
struction C A Fϕ as before, but with claim(c) = γ for all c ∈ C and without the self-attacks of the arguments in C . If ϕ is 
satisfiable, then {ψ} is a cl-stbcf extension of C A Fϕ by an analogous argument as before and thus, γ is not skeptically 
accepted in C A Fϕ w.r.t. the cl-stbcf semantics. However, if ϕ is unsatisfiable, as before, {ψ} cannot be a cl-stbcf extension of 
C A Fϕ , as otherwise ϕ would be satisfiable and thus, γ is skeptically accepted in C A Fϕ w.r.t. the cl-stbcf semantics, as ∅ is 
trivially not a cl-stbcf extension of C A Fϕ and all other possible extension contain γ . �

Next, we look at the semantics based on the stage and semi-stable semantics.

Proposition 28. For noeven CAFs, for � ∈ {CAF, w f }, Cred�
σ is ΣP

2 -complete and Skept�σ is ΠP
2 -complete for σ ∈ {stgc, cl-stg}.

Proof. We obtain upper bounds from the corresponding problems for general CAFs. Lower bounds can be obtained via the 
respective results for noeven Dung AFs [15], which carry over to CAFs by assigning every argument a unique claim. �

Next we turn to the verification problem for noeven well-formed CAFs with respect to stage semantics. We obtain coNP-
membership from well-formed CAFs (cf. Table 6). For hardness, we show that this problem is already intractable for noeven 
Dung AFs.

We make use of the following reduction.

Reduction 10. Let ϕ be an instance of 3-UNSAT, with ϕ given as a set of clauses C = {c1, . . . , cn} over atoms in X , where 
negated atoms are denoted by x̄. We construct A Fϕ = (A, R) with

A = X ∪ X̄ ∪ C ∪ {y}
R = {(x, x̄) | x ∈ X} ∪ {(l, c) | c ∈ C, l ∈ c} ∪ {(c, c) | c ∈ C}∪

{(x, y), (x̄, y) | x ∈ X} ∪ {(y, c) | c ∈ C}
for a fresh atom y. An illustrative example of the reduction is given in Fig. 13. Note that the only directed cycles contained 
in A Fϕ are the self-attacks of the arguments in C , thus A Fϕ is noeven.

Proposition 29. VerF
stg is coNP-complete for noeven Dung AFs.

Proof. The upper bound can be obtained from the case for Dung AFs in general [15]. We show the lower bound via 
reduction from 3-UNSAT. Let ϕ be an instance of 3-UNSAT and A Fϕ = (A, R) be as in Reduction 10. We show that {y} is a 
stage extension of A Fϕ iff ϕ is unsatisfiable. To increase readability, we will omit the ϕ in the subscript for the remainder 
of this proof and just write A F instead of A Fϕ . Note that the argument y is conflicting with every other argument, as y
attacks all arguments c ∈ C and is attacked by all arguments x, ̄x ∈ X . Thus, the only candidate stage extension containing y
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Fig. 13. Reduction 10 for the formula ϕ given by the clauses {{x1, x2, x3}, {x̄1, x3, x4}, {x̄2, x̄3, x̄4}}.

is the one containing only y, which has range {y}+A F = C ∪ {y}.
First, assume that ϕ is satisfiable and let M be a model of ϕ . Then, the set E = M ∪ X \ M is conflict-free in A F by the 
construction of A F . Furthermore, as all c ∈ C are satisfied by M , there must be some l ∈ E such that (l, c) ∈ R for all c ∈ C . 
Thus E+

A F = M ∪ X \ M ∪ C ∪ {y} ⊃ C ∪ {y} = {y}+A F and therefore {y} is not a stage extension of A F .
Now, assume that ϕ is unsatisfiable. Then, for every conflict-free set of arguments E ⊂ X ∪ X̄ , c /∈ E+

A F for some c ∈ C , as 
otherwise E ∩ X would be a model of ϕ . Therefore, {y}+A F = C ∪ {y} is maximal (with regard to ⊆) in A F and thus {y} is a 
stage extension of A F . �

As a consequence, we obtain coNP-completeness for the respective problem for noeven well-formed CAFs.

Proposition 30. For noeven well-formed CAFs, Verwf
σ is coNP-complete for σ ∈ {stgc, cl-stg}.

Proof. Upper bounds are obtained from the case for CAFs in general [31]. Lower bounds generalize from the case for Dung 
AFs, cf. Proposition 29, which carry over to well-formed CAFs by assigning every argument an unique claim. �
Proposition 31. VerCAF

σ is ΣP
2 -complete for σ ∈ {stgc, cl-stg} for noeven CAFs.

Proof. We present the proof for σ = stgc , the proof for σ = cl-stg is analogous. Upper bound via the general case for 
CAFs, lower bound via a reduction from the Credstg problem for noeven Dung AFs. The Credstg problem for noeven Dung 
AFs is known to be ΣP

2 -c [15]. To decide the problem for an argument b in an noeven Dung A F = (A, R), construct a 
C A F = (A′ = A ∪ {x}, R, claim) with a new argument x /∈ A and claim(b) = c1 and claim(a) = c2 for all a ∈ A′ \ {b}. Then, 
argument b is credulously accepted in A F with regard to the stage semantics iff {c1, c2} is a i-stage extension of C A F . �
Proposition 32. For noeven CAFs, NE�

σ , � ∈ {CAF, w f } is in P for σ ∈ {cl-naive, cl-prf , cl-stbadm, cl-sem, semc, cl-stg, stgc}.

Proof. In order to decide non-emptiness for σ ∈ {cl-prf , cl-stbadm, cl-sem} it suffices to check whether there exists some 
unattacked argument. For cl-naive, i-naive, cl-stage, and i-stage semantics, it suffices to check whether there is some argu-
ment a ∈ A that does not attack itself. �
6.1.3. Symmetric CAFs

For symmetric AFs, each conflict-free set defends itself, i.e., cf (F ) = adm(F ) for each symmetric AF F . As an immediate 
consequence we obtain that each admissible-based semantics coincide with their conflict-free-based counterpart.

Lemma 14. For each symmetric CAF CF, cl-prf (CF) = cl-naive(CF),
stbcf (CF) = cl-stbadm(CF), cl-sem(CF) = cl-stg(CF).

Hardness results for cl-naive semantics correspond to the results for the general case since Reduction 1 is indeed 
symmetric; the reduction from the proof of Proposition 14 can be adapted by adding the required attacks between the 
clause-arguments and the literal-arguments. By the above observation we moreover obtain the respective results for cl-
preferred semantics.
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Proposition 33. For symmetric CAFs, Cred�
σ , � ∈ {CAF, w f }, Skeptw f

σ and Verw f
σ is in P; SkeptCAF

σ is ΠP
2 -complete; and VerCAF

σ is 
DP-complete for σ ∈ {cl-naive, cl-prf }.

As shown in [12], deciding credulous acceptance w.r.t. stable semantics remains NP-hard for symmetric AFs; likewise, 
deciding skeptical acceptance w.r.t. stable semantics remains coNP-hard for symmetric AFs. By assigning each argument 
a unique claim, we thus obtain the respective results for cl-stable semantics. Moreover, we obtain NP-completeness of 
verifying cl-stable claim-sets for symmetric CAFs by appropriate adaption of Translation T r2. Note that for well-formed 
CAFs, verification is solvable in polynomial time (cf. Table 6).

Proposition 34. For symmetric CAFs, for � ∈ {CAF, w f }, Cred�
σ is NP-complete and Skept�σ is coNP-complete; moreover, VerCAF

σ is 
NP-complete and Verw f

σ is in P for σ ∈ {cl-stbcf , cl-stbadm}.

Proof. To prove NP-completeness of verifying cl-stable claim-sets for symmetric CAFs, we first observe that membership 
for VerCAF

σ is by the corresponding result for general CAFs. For hardness, we provide a reduction from VerCAF
stbc

for symmetric 
CAFs: We adapt Translation T r2 by setting T r′

2(CF) = (A′, R ′ ∪ {(b, a) | (a, b) ∈ R ′}, claim′) for T r2(CF) = (A′, R ′, claim′), i.e., 
we make all attacks symmetric. We obtain stbc(CF) = stbc(T r′

2(CF)) = cl-stbτ (T r′
2(CF)) for τ ∈ {cf , adm} for any symmetric 

CAF CF . Thus, for an instance, i.e., a CAF CF and a claim-set S of VerCAF
stbc

for symmetric CAFs, it suffices to check whether 
T r′

2(CF) is cl-stable. �
For most of the considered decision problems, both versions of semi-stable and stage semantics for symmetric (well-

formed) CAFs admit the same complexity as the respective problems for AFs (cf. [15]; the lower bound for verification is 
obtained by translating standard Dung AFs to symmetric Dung AFs in a way such that stage extensions are preserved [15, 
Lemma 14]), with the notable exception of verification for general CAFs which remains as hard as in the general case.

Proposition 35. For symmetric CAFs, for � ∈ {CAF, w f }, Cred�
σ is ΣP

2 -complete; Skept�σ is ΠP
2 -complete; VerCAF

σ is ΣP
2 -complete and 

Verwf
σ is coNP-complete for σ ∈ {cl-sem, semc, cl-stg, stgc}.

Proof. For Cred�
σ , Skept�σ , and Verwf

σ , lower bounds are by the corresponding results for AFs [15]; upper bounds are by the 
respective results for general CAFs (cf. Tables 4 and 6).

To show hardness of VerCAF
σ we reduce from CredF

σ for symmetric AFs (ΣP
2 -complete): Given an AF F = (A, R) and an 

argument b ∈ A, we assign the claims claim(b) = c1, claim(a) = c2, a ∈ A \ {b}. It can be shown that the argument b is 
credulously accepted iff the set of claims {c1, c2} is cl-semi-stable (cl-stage) in the corresponding CAF (A, R, claim). �

For σ ∈ {cl-naive, cl-prf , cl-sem, semc, cl-stg, stgc}, to decide NE�
σ , � ∈ {CAF, w f }, it suffices to check whether CF contains 

an argument that does not attack itself. For stable semantics, the problem remains NP-hard already for Dung AFs.

Proposition 36. NEA F
stb is NP-complete for symmetric AFs.

Proof. Membership is by the corresponding result for general AFs. Hardness is by the following reduction from SAT: Given 
a CNF ϕ with clauses C over atoms in X . We denote ¬x by x̄. We construct F = (A, R) with

A = X ∪ X̄ ∪ C

R = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(l, c), (c, l) | c ∈ C, l ∈ c} ∪ {(c, c) | c ∈ C}
We show that stb(F ) �= ∅ iff ϕ is satisfiable. First, let stb(F ) �= ∅ and let E ∈ stb(F ). Clearly, M = E ∩ X is a model of ϕ since 
each clause is satisfied: Let c ∈ C , then there is l ∈ E st l attacks c. In case l is a positive literal l is contained in M , in case l
is a negative literal, we have l is not contained in M and thus c is satisfied in both cases. For the other direction, assume ϕ
has a model M . Then E = M ∪ {x̄ | x /∈ M} is a stable extension of F since each clause argument is attacked: As all c ∈ C are 
satisfied by M , there must be some l ∈ E such that (l, c) ∈ R for all c ∈ C by construction. �

We thus obtain the following result.

Proposition 37. For symmetric CAFs, for � ∈ {CAF, wf }, NE�
σ is in P for σ ∈ {cl-naive, cl-prf , cl-sem, semc, cl-stg, stgc} and NP-

complete for σ ∈ {cl-stbcf , cl-stbadm}.
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6.1.4. Symmetric irreflexive CAFs
Each symmetric irreflexive AF is coherent [32], i.e., naive(F ) = prf (F ) = stb(F ) = sem(F ) = stg(F ) for every symmetric 

irreflexive AF F . An immediate consequence is that the Nonemptiness-problem becomes trivial for all considered semantics; 
moreover, all range-based semantics that we consider in this paper collapse in this case.

Lemma 15. For each symmetric irreflexive CAF CF,

stbc(CF) = cl-stbcf (CF) = cl-stbadm(CF)

= cl-sem(CF) = semc(CF) = cl-stg(CF) = stgc(CF).

Proof. First observe that stbc(CF) �= ∅ using prf (F ) = stb(F ) for F being the underlying AF of CF . We thus obtain 
cl-stbcf (CF) �= ∅ and cl-stbadm(CF) �= ∅. Consequently, cl-stbcf (CF) = cl-stg(CF) and cl-stbadm(CF) = cl-sem(CF). It remains to 
show that stbc(CF) = cl-stbadm(CF). Assume that there is S ∈ cl-stbadm(CF) that is not i-stable. Let E be a cl-stbadm-realization 
of S . Since E is not stable in F , there is an argument a ∈ A that is not attacked by E . We have claim(a) ∈ S (otherwise, S is 
not cl-adm-stable in CF). By symmetry we have a does not attack E , i.e., E ∪ {a} is conflict-free. Moreover, E ∪ {a} is admis-
sible since, in symmetric CAFs, each argument defends itself. Consequently, we can add all arguments that are unattacked 
by E to obtain a i-stable realization of S , contradiction to our initial assumption S /∈ stbc(CF). �

We thus obtain the following complexity results as an immediate consequence from Lemma 15 and [12].

Proposition 38. For symmetric irreflexive CAFs, Cred�
σ , � ∈ {CAF, w f }, Skeptwf

σ , and Verwf
σ is in P; SkeptCAF

σ is coNP-complete; and 
VerCAF

σ is NP-complete for σ ∈ {cl-stbcf , cl-stbadm, cl-sem, semc, cl-stg, stgc}.

We note that inherited and claim-level preferred (naive) semantics do not necessarily coincide: As a counter-example 
consider the CAF CF = ({a1, a2, b}, {(b, a1), (a1, b)}, claim) with claim(ai) = a, claim(b) = b, then prf c(CF) = {{a}, {a, b}} �=
{{a, b}} = cl-prf (CF). The respective decision problems are as hard as in the general case, using the fact that cl-naive(CF) =
cl-prf (CF) for every symmetric CAF (cf. Lemma 14) and the observation that the corresponding reductions for symmetric 
CAFs are indeed irreflexive.

Proposition 39. For symmetric irreflexive CAFs, Cred�
σ , � ∈ {CAF, w f }, Skeptw f

σ and Verw f
σ is in P; SkeptCAF

σ is ΠP
2 -complete; and 

VerCAF
σ is DP-complete for σ ∈ {cl-naive, cl-prf }.

6.1.5. Bipartite CAFs
Finally, we consider bipartite CAFs. First recall that in bipartite AFs, prf (F ) = stb(F ) = sem(F ) = stg(F ). We thus obtain 

the following result.

Lemma 16. For each bipartite CAF CF,

prf c(CF) = stbc(CF) = cl-stbadm(CF) = cl-sem(CF) = semc(CF) = stgc(CF).

Proof. Let S ∈ cl-stbadm(CF). Let E be a cl-stbadm-realization of S . By monotonicity of the claim-range we can assume E ∈
prf (F ). Thus S = claim(E) ∈ stbc(CF). By cl-stbc(CF) �= ∅, we have cl-stbadm(CF) = cl-sem(CF). �

By the respective problems for Dung AFs [15] and by [12], we thus obtain the following results for σ ∈ {cl-stbadm, cl-sem,

semc, stgc}.

Proposition 40. For bipartite CAFs, for � ∈ {CAF, w f }, for σ ∈ {cl-stbadm, cl-sem, semc, stgc}, Cred�
σ is in P and Skept�σ is coNP-

complete; moreover, VerCAF
σ is NP-complete and Verwf

σ is in P.

Observe that cl-stbcf (CF) �= cl-stbadm(CF) (as a counter-example, consider the CAF CF = ({a1, a2, b}, {(a1, b)}, claim) with 
claim(ai) = a, claim(b) = b).

By Lemma 16 we obtain that stbc(CF) �= ∅ (using prf c(CF) = stbc(CF) and prf c(CF) �= ∅ for all CAFs CF). Since each stable 
extension is non-empty, we obtain that each preferred extension is non-empty. Also, bipartite CAFs do not contain self-
attacking arguments. Thus, for � ∈ {CAF, wf }, NE�

σ is a trivial yes-instance for all considered semantics σ .
By stbc(CF) �= ∅, we have cl-stbcf (CF) = cl-stg(CF). For well-formed CAFs, we have stbc(CF) = cl-stbcf (CF) = cl-stg(CF) and 

cl-prf (CF) = prf c(CF) for each well-formed CAF CF . By known results for i-stable semantics we thus obtain the following 
results for the respective reasoning problems; for cl-naive semantics, we obtain coNP-hardness for skeptical acceptance by 
a reduction from monotone 3-SAT via an appropriate adaption of the reduction from the proof of Proposition 14.
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Proposition 41. For bipartite CAFs, for σ ∈ {cl-stbcf , cl-stg, cl-prf , cl-naive}, Credwf
σ and Verwf

σ is in P, and Skeptwf
σ is coNP-complete.

Proof. coNP-hardness for skeptical acceptance of cl-naive semantics is proven analogous to [12, Proposition 17]. �
Turning now to cl-naive and cl-preferred semantics for general bipartite CAFs, we observe that (1) the Reduction 1

is bipartite (this yields the hardness-results for cl-naive semantics) and (2) the constructed CAF in Reduction 1 satisfies 
cl-naive(CF) = cl-prf (C F ). We furthermore show DP-hardness by a reduction from SAT-UNSAT.

Proposition 42. For bipartite CAFs, CredCAF
σ is in P, SkeptCAF

σ is ΠP
2 -complete, and VerCAF

σ is DP-complete for σ ∈ {cl-prf , cl-naive}.

Proof. To show DP-hardness of VerCAF
σ , we present the following reduction from SAT-UNSAT. Consider an instance (ϕ1, ϕ2) 

where ϕi is a 3-CNF given by clauses Ci (we enumerate the clauses as follows: C1 = {c1, . . . , cm}, C2 = {cm+1, . . . , cn}) over 
atoms in Xi . We use the following construction for both ϕ1 and ϕ2, i.e., we construct two CAFs CF1, CF2 as follows: Given 
a CNF ψ with clauses C = {c1, . . . , cn} over atoms in X . We denote ¬x by x̄. Let V = {vi | v ∈ ci, i ≤ n}. We construct 
CF = (A, R, claim) with

A = V ∪ C ∪ {ψ}
R = {(xi, x̄ j), (x̄ j, xi) | xi, x̄ j ∈ V } ∪ {(ci,ψ), (ψ, ci) | i ≤ n}

with claims claim(vi) = claim(ci) = i, claim(ψ) = ψ . For CF, we have (1) cl-prf (CF) = cl-naive(C F ), (2) ψ is satisfiable iff 
{1, . . . , n, ψ} is cl-preferred, and (3) ψ is unsatisfiable iff {1, . . . , n} is cl-preferred. We obtain ϕ1 is satisfiable and ϕ2 is 
unsatisfiable iff {1, . . . , n, ϕ1} is cl-preferred in CF1 ∪ CF2. �

For cl-cf -stable and cl-stage semantics, we obtain the following results.

Proposition 43. For bipartite CAFs, for σ ∈ {cl-stbcf , cl-stg}, CredCAF
σ and VerCAF

σ is NP-complete, and SkeptCAF
σ is coNP-complete.

Proof. Membership results follow from the respective problems for cl-cf -stable semantics for general CAFs (cf. Table 4).
For hardness, we first observe that stbc(CF) = cl-stbcf (CF) in the proof of [12, Proposition 2] which yields NP-

completeness of VerCAF
σ ; moreover, we can adapt the proof from [12, Proposition 17] to show coNP-hardness for SkeptCAF

σ .
To show NP-hardness of CredCAF

σ , we present a reduction from SAT: Given a CNF ϕ with clauses C = {c1, . . . , cn} over 
atoms in X . We denote ¬x by x̄. Let V = {vi | v ∈ ci, i ≤ n}. We construct CF = (A, R, claim) with

A = V ∪ C ∪ {ϕ}
R = {(xi, x̄ j), (x̄ j, xi) | xi, x̄ j ∈ V } ∪ {(ci,ϕ) | i ≤ n}

with claim(vi) = i, claim(ci) = i, and claim(ϕ) = ϕ . We show that ϕ is credulously acceptable iff ϕ is satisfiable.
First assume ϕ is satisfiable. Then there is a model M that satisfies each clause ci . Let E = {xi ∈ V | x ∈ M} ∪ {x̄i ∈ V | x /∈

M} ∪{ϕ}. Clearly, E is conflict-free, moreover, claim(E) = {1, . . . , n, ϕ} = claim(A) thus we have found a cl-cf -stable extension 
containing ϕ .

In case ϕ is credulously acceptable, let S denote the cl-cf -stable extension and E its realization in the underlying AF. 
First, C � E because ϕ is the unique argument with claim ϕ . Thus, for each ci ∈ C , there is an argument xi or x̄i that is 
contained in E . Consider the set M = {x ∈ X | ∃ j : x j ∈ E}. It can be shown that M is indeed a model of ϕ . �

This concludes our complexity analysis for graph classes. Table 8 and Table 9 summarize our results for CAFs respec-
tively well-formed CAFs when restricted to the considered graph classes. Recall that the non-emptiness is trivial for acyclic, 
symmetric & irreflexive as well as for bipartite CAFs. For the remaining graph classes, i.e., for noeven and symmetric CAFs, 
the non-emptiness problem is tractable for all semantics except for cl-stable variants.

When comparing the different graph classes, it is not surprising that acyclic CAFs are computationally-wise the best 
choice for computing standard reasoning tasks; here, all considered reasoning problems for all except naive semantics are 
tractable. When restricted to well-formed CAFs, symmetric & irreflexive CAFs are even easier to handle; here, all considered 
problems are in P. In symmetric CAFs, on the other hand, almost all semantics retain their full complexity, the only excep-
tion is preferred semantics for which verification drops one level in the polynomial hierarchy (as it corresponds to verifying 
naive extensions in symmetric CAFs). Noeven CAFs turn out to be beneficial for computing admissible-based semantics – in 
this graph class, all admissible-based semantics are tractable. In symmetric & irreflexive CAFs, credulous reasoning becomes 
tractable; also, both variants of semi-stable and stage semantics drop one level in the polynomial hierarchy. We observe 
a similar behavior for bipartite CAFs, here, credulous reasoning for cl-cf -semantics and cl-stage semantics remains harder. 
Considering bipartite well-formed CAFs, skeptical reasoning for all considered semantics is coNP-complete while credulous 
reasoning and verification become tractable.
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Table 8
Complexity of CAFs with special graph structure.

graph class task semc stgc cl-naive cl-prf cl-stbcf cl-stbadm cl-sem cl-stg

acyclic CredCAF
σ in P in P in P in P in P in P in P in P

SkeptCAF
σ in P in P ΠP

2 -c in P in P in P in P in P
VerCAF

σ in P in P DP-c in P in P in P in P in P
NECAF

σ trivial for all considered semantics

noeven CredCAF
σ in P ΣP

2 -c in P in P NP-c in P in P ΣP
2 -c

SkeptCAF
σ in P ΠP

2 -c ΠP
2 -c in P coNP-c in P in P ΠP

2 -c
VerCAF

σ in P ΣP
2 -c DP-c in P NP-c in P in P ΣP

2 -c
NECAF

σ in P in P in P in P NP-c in P in P in P

symmetric & irreflexive CredCAF
σ in P in P in P in P in P in P in P in P

SkeptCAF
σ coNP-c coNP-c ΠP

2 -c ΠP
2 -c coNP-c coNP-c coNP-c coNP-c

VerCAF
σ NP-c NP-c DP-c DP-c NP-c NP-c NP-c NP-c

NECAF
σ trivial for all considered semantics

symmetric CredCAF
σ ΣP

2 -c ΣP
2 -c in P in P NP-c NP-c ΣP

2 -c ΣP
2 -c

SkeptCAF
σ ΠP

2 -c ΠP
2 -c ΠP

2 -c ΠP
2 -c coNP-c coNP-c ΠP

2 -c ΠP
2 -c

VerCAF
σ ΣP

2 -c ΣP
2 -c DP-c DP-c NP-c NP-c ΣP

2 -c ΣP
2 -c

NECAF
σ in P in P in P in P NP-c NP-c in P in P

bipartite CredCAF
σ in P in P in P in P NP-c in P in P NP-c

SkeptCAF
σ coNP-c coNP-c ΠP

2 -c ΠP
2 -c coNP-c coNP-c coNP-c coNP-c

VerCAF
σ NP-c NP-c DP-c DP-c NP-c NP-c NP-c NP-c

NECAF
σ trivial for all considered semantics

Table 9
Complexity of well-formed CAFs with special graph structure.

graph class task semc stgc cl-naive cl-prf cl-stbcf cl-stbadm cl-sem cl-stg

acyclic Credw f
σ in P in P in P in P in P in P in P in P

Skeptw f
σ in P in P coNP-c in P in P in P in P in P

Verw f
σ in P in P in P in P in P in P in P in P

NECAF
σ trivial for all considered semantics

noeven Credw f
σ in P ΣP

2 -c in P in P in P in P in P ΣP
2 -c

Skeptw f
σ in P ΠP

2 -c coNP-c in P in P in P in P ΠP
2 -c

Verw f
σ in P coNP-c in P in P in P in P in P coNP-c

NECAF
σ in P in P in P in P in P in P in P in P

symmetric & irreflexive Credw f
σ in P in P in P in P in P in P in P in P

Skeptw f
σ in P in P in P in P in P in P in P in P

Verw f
σ in P in P in P in P in P in P in P in P

NECAF
σ trivial for all considered semantics

symmetric Credw f
σ ΣP

2 -c ΣP
2 -c in P in P NP-c NP-c ΣP

2 -c ΣP
2 -c

Skeptw f
σ ΠP

2 -c ΠP
2 -c in P in P coNP-c coNP-c ΠP

2 -c ΠP
2 -c

Verw f
σ coNP-c coNP-c in P in P in P in P coNP-c coNP-c

NECAF
σ in P in P in P in P NP-c NP-c in P in P

bipartite Credw f
σ in P in P in P in P in P in P in P in P

Skeptw f
σ coNP-c coNP-c coNP-c coNP-c coNP-c coNP-c coNP-c coNP-c

Verw f
σ in P in P in P in P in P in P in P in P

NECAF
σ trivial for all considered semantics

6.2. Fixed-parameter tractability w.r.t. the number of claims

Here we investigate well-formed CAFs with a relatively small number of claims when compared to the number of 
arguments. For the standard inherited semantics it has been shown that reasoning in well-formed CAFs is fixed-parameter 
tractable w.r.t. the number of claims used in the CAF [12]. That is, the complexity of reasoning mainly depends on the 
number of claims rather than the total size of the CAF. In following we

(a) extend these results to inherited semi-stable and stage semantics as well as claim-based semantics and
(b) complement existing negative results in that direction for general CAFs.
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Table 10
Parameterized complexity of well-formed CAFs C A F = (A, R, claim) with respect to k = |claim(A)| (FPT denotes the class of fixed-parameter tractable 
problems).

task semc stgc cl-naive cl-prf cl-stbcf cl-stbadm cl-sem cl-stg

Credw f
σ in FPT in FPT in P in FPT in FPT in FPT in FPT in FPT

Skeptw f
σ in FPT in FPT in FPT in FPT in FPT in FPT in FPT in FPT

Verw f
σ in FPT in FPT in P in FPT in P in P in FPT in FPT

NECAF
σ in FPT in P in P in FPT in FPT in FPT in FPT in P

First recall that on well-formed CAFs we have that cl-prf = prf c and cl-stbcf = cl-stbadm = stb. It thus suffices to consider 
cl-naive, stgc , cl-stg, semc , cl-sem semantics in this section.

First, we consider the non-emptiness problem NEwf
σ . The problem is already tractable for most of the considered seman-

tics and it thus only remains to consider σ ∈ {semc, cl-sem}.

Proposition 44. For σ ∈ {semc, cl-sem, cl-prf }, the NEwf
σ problem can be solved in time O(2k · poly(n)) (where poly(·) is a fixed 

polynomial and n the size of the instance) for a well-formed C A F = (A, R, claim) with |claim(A)| ≤ k.

Proof. We iterate over all sets C ⊆ claim(A) and compute the corresponding candidates for an admissible set E ⊆ A with 
claim(E) = C . If one of these sets is indeed admissible we return yes otherwise false. For each C this procedures is in P
(cf. Lemma 7). �

We next present an enumeration algorithm for the extensions to show the upper bounds for the credulous and skeptical 
reasoning tasks as well as the verification problem.

Proposition 45. For σ ∈ {cl-naive, stgc, cl-stg, semc, cl-sem}, the Credwf
σ ,

Skeptwf
σ and Verwf

σ problems can be solved in time O(4k · poly(n)) (where poly(·) is a fixed polynomial and n the size of the instance) 
for a well-formed C A F = (A, R, claim) with |claim(A)| ≤ k.

Proof. We iterate over all sets C ⊆ claim(A) and compute the corresponding maximal conflict-free (resp. admissible) set 
E ⊆ A in P (cf. Lemma 7) and filter out sets C that do not have a corresponding conflict-free (resp. admissible) set. We end 
up with at most 2k many sets. Next, depending on the semantics σ we proceed as follows:

• For cl-naive we compare the remaining sets C pairwise and filter out sets that are not ⊆-maximal.
• For stgc and semc we compute the range for the extensions by adding all attacked arguments to E . Finally, we eliminate 

all pairs for which the range is not ⊆ - maximal.
• For cl-stg and cl-sem we compute the claim-range for the extensions by adding all defeated claims to C . Finally, we 

eliminate all pairs for which the claim-range is not ⊆- maximal

In all three cases we end up with the set of extensions and can now easily decide the credulous and skeptical acceptance 
of arguments as well as the validity of a given extension. �

These fixed-parameter tractability results are summarized in Table 10. We next show that for general CAFs and σ ∈
{semc, stgc} these problems are not fixed-parameter tractable w.r.t. number of claims but maintain their full complexity 
even when there are only two claims.

Proposition 46. For σ ∈ {semc, stgc},

• CredCAF
σ , SkeptCAF

σ , VerCAF
σ maintain their full complexity even for CAFs with only two claims, and

• NECAF
semc

maintains its full complexity even for CAFs with only one claim.

Proof. First consider the following translation for a given C A F = (A, R, claim) with an arbitrary number of claims and a 
given claim c. Construct C A F ′ = (A, R, claim′) with claim′(a) = c iff claim(a) = c and claim′(a) = d otherwise. Then claim c
is credulously (resp. skeptically) accepted in C A F iff c is credulously (resp. skeptically) accepted in C A F ′ . We obtain that 
CredCAF

σ , SkeptCAF
σ maintain their full complexity.

The lower bound for VerCAF
σ can be obtained similar as in the proof of Proposition 31 via a reduction from the ΣP

2 -
complete Credσ problem for Dung AFs. To decide the problem for an argument b in a Dung A F = (A, R), construct a 
C A F = (A′ = A ∪ {x}, R, claim) with a new argument x /∈ A and claim(b) = c1 and claim(a) = c2 for all a ∈ A′ \ {b}. Then, 
argument b is credulously accepted in A F with regard to σ iff {c1, c2} is a i-σ extension of C A F .
32
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NECAF
semc

: For a given C A F = (A, R, claim) with an arbitrary number of claims, create C A F ′ = (A, R, claim′) with claim′(a) =
c for all a ∈ A. Then NECAF

sem(C A F ) = NECAF
sem(C A F ′). �

That is, for all consider inherited semantics, the problems retain their full complexity for general CAFs with only two 
claims. The picture for claim-based semantics is a more subtle. For instance consider cl-prf (respectively cl-naive) with just 
two claims {c1, c2}. In order to test whether c1 is skeptically accepted it is sufficient to test whether ∅ and {c2} are not 
cl-prf which is in DP. That is, a small number of claims can lower the complexity of claim-based semantics. While a full 
investigation of this matter is beyond the scope of this paper, we observe that claim-based semantics remain NP/coNP-hard.

Proposition 47. For CAFs with only two claims,

• VerCAF
σ is NP-hard for σ ∈ {cl-stbcf , cl-stbadm, cl-prf },

• VerCAF
σ is coNP-hard for σ ∈ {cl-stg, cl-sem}, and

• NECAF
σ is NP-complete σ ∈ {cl-stbcf , cl-stbadm, cl-prf , cl-stg, cl-sem}.

That is, for all semantics, except cl-naive, the parametrized approach discussed here does not lead to tractability results. 
Finally let us consider the case of cl-naive. VerCAF

cl-naive for CAFs with only two claims can be solved in polynomial time by 
considering all pairs of arguments where the first argument has claim 1 and the second argument has claim 2 and check 
whether one of those pairs is conflict-free. Indeed this can be generalized to an O (nk · poly(n)) algorithm for k claims. 
However, this algorithm does not fall in the class of FPT but a class of higher complexity, i.e., the class XP which contains 
the parameterized problems with runtime O (n f (k)) for some computable function f .

7. Discussion

In this work we studied the computational complexity of the different semantics for claim-augmented argumentation 
frameworks. That is, we complemented existing complexity results for inherited semantics [12] and provided a full complex-
ity analysis of claim-level semantics. We want to highlight three observations here: (a) for both approaches the verification 
problem is harder than in the AF setting, which is in particular relevant when it comes to the enumeration of extensions; 
(b) however, when restricted to well-formed CAFs the complexity of verification drops to the complexity of AFs; and (c) the 
complexity of inherited and claim-level semantics differs for naive and preferred semantics.

Moreover, given the high complexity of the considered semantics we investigated tractable fragments in terms of certain 
graph classes (that are known to be tractable when neglecting claims) as well as a parameterized algorithm for enumerating 
extensions in well-formed CAFs. The full complexity classification of the semantics together with the first tractable fragments 
paves the way for complexity-adequate reduction-based implementations [33–35] of the considered semantics which is an 
emerging topic for future work.

Besides studying the standard reasoning tasks we also settled the complexity of the concurrence problem, i.e., deciding 
whether two variants of a semantics coincide on a CAF. The concurrence problem is in the tradition of the well-known co-
herence problem [23], which (a) for AFs is ΠP

2 -complete; (b) remains ΠP
2 -complete for inherited semantics [12]; and (c) also 

for claim-based semantics, despite the complexity increase for reasoning problems, remains ΠP
2 -complete (Proposition 22). 

However, the complexity for the novel concurrence problem turns out to be surprisingly hard, ranging up to the third level 
of the polynomial hierarchy.

Concerning future work we identify the following directions. In this work we considered two different families of 
claim-based argumentation semantics that both followed the CAF approach of using extensions of arguments, map them 
to extensions of claims and then reason about the acceptance of claims. This a common approach in structured argumenta-
tion and there are more ways of lifting argument semantics to the claim-level, as recently discussed in [7]. Investigating the 
computational properties of these approaches is a promising direction for future research. Moreover, given the complexity 
of the fundamental problems for the semantics under our considerations one can reach for more advanced computational 
tasks, e.g., dealing with incomplete information on the arguments and attacks [36,37], the problem of counting the number 
of extensions [38,39], or enforcing the acceptance of a statement or an extension [40,41]. In this regard, we mention in 
particular the incorporation of preferences in the argumentation procedure. Preferences in argumentation are either used 
to (i) refine the attack relation or (ii) refine the outcome of the framework [42]. Recent research shows that (i) does not in 
general increase the computational complexity of the reasoning problems w.r.t. inherited semantics for CAFs [18] while (ii) 
increases the complexity even on AF level [43]. It would be interesting to study the computational complexity of semantics 
based on extension selection for CAFs. Moreover, also the computational complexity of the commonly used preference re-
ductions (cf. [17]) for claim-based semantics needs yet to be settled. More generally, we believe that the relation between 
claims and preferences in terms of e.g., expressiveness is yet not fully explored and deserves further attention.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.
33
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Appendix A. Translations between semantics (Proof of Lemma 6)

Lemma 6. For a CAF CF = (A, R, claim),

prf c(CF) = prf c(T r1(CF)) = cl-sem(T r1(CF)),

stbc(CF) = stbc(T r2(CF)) = cl-stbτ (T r2(CF)) for τ ∈ {adm, cf },
stgc(CF) = stgc(T r3(CF)) = cl-stg(T r3(CF)).

The statement is proven in the following Lemmata 17, 18, and 19.

Lemma 17. For a CAF CF = (A, R, claim), prf c(CF) = prf c(T r1(CF)) = cl-sem(T r1(CF)).

Proof. Let T r1(CF) = CF′ = (A′, R ′, claim′). The proof proceeds in three steps:
(i) We first show that C ∈ cf c(CF) if and only if C ∈ cf c(CF′) and further that prf c(CF) = prf c(CF′).

⇒: Let E be a cf c-realization of C in (A, R). As E ⊆ A, it cannot contain any a′ . Thus, E ∈ cf ((A′, R ′)), as all additional 
attacks contain at least one argument a′ , which are not contained in E and therefore C ∈ cf c(CF′).
⇐: Let E be a cf c-realization of C in (A′, R ′). As all arguments a′ are self-attacking, E ∩ A′ = ∅. Therefore, as R ⊆ R ′ , 
E ∈ cf ((A, R)) and thus C ∈ cf c(CF).

Moreover, also E ∈ adm((A, R)) if and only if E ∈ adm((A′, R ′)), as E ∩ A′ = ∅. Now, as preferred extensions are subset 
maximal admissible sets, we further obtain that E ∈ prf ((A, R)) if and only if E ∈ prf ((A′, R ′)) and thus, prf c(CF) = prf c(CF′).

(ii) Next, to show that prf c(CF′) ⊆ cl-sem(CF′), let C ∈ prf c(CF′) and E be a prf c-realization of C in (A′, R ′). Furthermore, 
towards a contradiction, let F ∈ adm((A′, R ′)) and C ∪ νCF′ (E) ⊂ claim′(F ) ∪ νCF′ (F ). As E ∈ prf ((A′, R ′)), there must be some 
a ∈ E \ F . Furthermore, as all arguments b′ ∈ A′ \ A are self-attacking, it must hold that a ∈ A and thus, by the construction 
of T r1, there must be some argument a′ such that a is the only argument attacking a′ and a′ is the only argument with 
claim claim′(a′). Therefore, claim′(a′) ∈ νCF′ (E) but claim(a′) /∈ claim′(F ) ∪νCF′ (F ), contradicting that C ∪νCF′ (E) ⊂ claim′(F ) ∪
νCF′ (F ). Thus, such a set F cannot exist and therefore, prf c(CF′) ⊆ cl-sem(CF′).

(iii) Finally, to show that cl-sem(CF′) ⊆ prf c(CF′), let C ∈ cl-sem(CF′) and E ⊆ A′ be a admissible set witnessing C . Towards 
a contradiction, let F ⊆ prf ((A′, R ′)) such that E ⊂ F . Then, C ∪ νCF′ (E) ⊆ claim′(F ) ∪ νCF′ (F ). Furthermore, as E ⊂ F , there 
must be some a ∈ F \ E and thus some a′ ∈ A′ attacked by a. As, by the construction of T r1, a′ is the only argument with 
claim claim′(a′) and is only attacked by a (except for itself), claim′(a′) ∈ claim′(F ) ∪ νCF′ (F ) and claim′(a′) /∈ C ∪ νCF′ (E) and 
thus C ∪ νCF′ (E) ⊂ claim′(F ) ∪ νCF′ (F ), contradicting that C ∈ cl-sem(CF′). Thus, such a set F cannot exist and therefore, 
cl-sem(CF′) ⊆ prf c(CF′). �
Lemma 18. For a CAF CF = (A, R, claim), stbc(CF) = stbc(T r2(CF)) = cl-stbτ (T r2(CF)) for τ ∈ {adm, cf }.

Proof. Let T r2(CF) = CF′ = (A′, R ′, claim′). Since stbc(CF) ⊆ cl-stbadm(CF) ⊆ cl-stbcf (CF) holds for any CAF CF , it suffices to 
show that (i) stbc(CF) ⊆ stbc(CF′) and (ii) cl-stbcf (CF′) ⊆ stbc(CF).

First observe that (a) for every set of arguments E ⊆ A, E attacks the argument a′ in CF′ iff a ∈ E ∪ E+
(A,R) . Indeed, E

attacks an argument a′ iff either a ∈ E or if there is b ∈ E such that (b, a) ∈ R .
(i) Let S ∈ stbc(CF) and consider a stbc-realization E ⊆ A. We show that E is stable in CF′: First notice that E is conflict-

free since we introduced no attacks between existing arguments in CF ′ . Moreover, E attacks every argument a ∈ A′ \ E: 
Clearly, E attacks every argument a ∈ A \ E; moreover, E attacks every a′ ∈ {a′ | a ∈ A} by (a) since E ∪ E+

(A,R)
= A.

(ii) Let S ∈ cl-stbcf (CF′), then there is a set E ∈ A′ such that E ∈ cf ((A′, R ′)) and claim(E) ∪ νCF′ (E) = claim(A′). We show 
that E ∈ stb((A, R)). First observe that E ⊆ A since each argument a′ ∈ {a′ | a ∈ A} is self-attacking; moreover, E is conflict-
free in (A, R). We show that E attacks every argument a ∈ A \ E: We have {ca | a ∈ A} ⊆ νC F ′ (E) since claim(E) ∪ νCF′ (E) =
claim(A′). Thus E attacks each argument a′ in CF′ . We conclude by (a) that a ∈ E ∪ E+

(A,R) for every argument a ∈ A. We 
have shown that E ∈ stb((A, R)) and, consequently, S ∈ stbc(CF). �
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Lemma 19. For a CAF CF = (A, R, claim),
stgc(CF) = stgc(T r3(CF)) = cl-stg(T r3(CF)).

Proof. Let T r3(CF) = CF′ = (A′, R ′, claim′). The proof proceeds in three steps:
(i) First, observe that cf ((A, R)) = cf ((A′, R ′)) as all added arguments are self-attacking and we only add attacks be-

tween arguments {a, b} ⊆ A if there was already one in at least one direction or the attacked argument was self-attacking. 
Moreover, {∅} ∈ stgc(CF) if and only if all arguments are self-attacking which is the case if and only if {∅} ∈ cl-stg(CF).

(ii) Regarding stgc(CF) = stgc(CF′): For every maximal (with regard to ⊆) E ∈ cf (A′, R ′), A ⊆ E ∪ E+
(A′,R ′) , as all arguments 

in A are either contained or, due to the fact that E is maximal, are attacked by E . Thus, such sets E , due to the fact 
that all arguments a′ are self-attacking, are the only witnessing candidates for the extensions in stgc(CF) and stgc(C F ′). 
Furthermore, by construction of T r3, E ∪ E+

(A′,R ′) = A ∪ {a′ ∈ A′ | a ∈ E ∪ E+
(A,R)} and thus E ∪ E+

(A,R) will be maximal if and 
only if E ∪ E+

(A′,R ′) is maximal.
(iii) Finally, stgc(CF′) = cl-stg(CF′) follows by observing that the claims of all arguments in A′ are unique. �

Appendix B. Concurrence for stage semantics (Proof of Lemma 10)

Below we prove the correspondence of semi-stable and stage semantics for CAFs generated from Reduction 7. This lemma 
is the main part for proving ΠP

3 -hardness for ConCAF
stg .

Lemma 10. Let 
 = ∃X∀Y ∃Zϕ(X, Y , Z) be an instance of Q S AT ∃
3 and let CF = (A, R, claim) be as in Reduction 7. Then

1. cl-sem(CF) = cl-stg(CF); and
2. semc(CF) = stgc(CF).

Proof. To prove the statements we will first show that (i) each cl-stage and each i-stage claim-set is of the form X ′ ∪ {x̄ |
x /∈ X ′} ∪ Y ∪ Z ∪ {e} for some X ′ ⊆ X and for e ∈ {ϕ, ϕ̄}: Let S ∈ stgc(CF) ∪ cl-stg(CF), V = X ∪ Y ∪ Z . First notice that S ⊆
X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪{e} for some X ′ ⊆ X , for e ∈ {ϕ, ϕ̄}: S cannot contain both a, ̄a for a ∈ X ∪{ϕ} since there is no cf c-
realization E containing both b, ̄b, for b ∈ X , nor ϕ, b for b ∈ {ϕ̄} ∪C . It remains to show that X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪{e} ⊆ S
for some X ′ ⊆ X , for e ∈ {ϕ, ϕ̄}.

Let S ∈ stgc(CF) and consider a stgc-realization E of S . E contains V ′ ∪ {v̄ | v /∈ V ′} for some V ′ ⊆ V : Assume there is 
v ∈ V such that v, ̄v /∈ E and let D = (E \ {cli | (v, cli) ∈ R}) ∪ {v}. D is conflict-free since v̄, dv /∈ E and since cli /∈ E for 
each clause cli with (v, cli) ∈ R . Moreover, each such cli is attacked by D and thus D⊕

(A,R) ⊃ E⊕
(A,R) , contradiction to E being 

stage in (A, R). Moreover, E contains either ϕ or ϕ̄: Towards a contradiction, assume ϕ, ϕ̄ /∈ E and let D = E ∪ {ϕ̄}. D is 
conflict-free since ϕ /∈ E and D⊕

(A,R) ⊃ E⊕
(A,R) , contradiction to E being stage in (A, R).

Let S ∈ cl-stg(CF). We will first show that S contains either ϕ or ϕ̄: Towards a contradiction, assume ϕ, ϕ̄ /∈ S . As S
is cl-stage, there is an cf c-realization E of S such that claim(E) ∪ νCF(E) is maximal among conflict-free claim-sets. Let 
D = E ∪ {ϕ̄}. D is conflict-free since ϕ /∈ E and thus claim(D) ∪ νCF(D) = claim(E) ∪ νCF(E) ∪ {ϕ, ϕ̄} ⊃ claim(E) ∪ νCF(E), 
contradiction to S being cl-stage. S contains X ′ ∪ {x̄ | x /∈ X ′} and Y ∪ Z ⊆ S: Assume there is x ∈ X such that x, ̄x /∈ S . 
As S is cl-stage, there is an cf c-realization E of S such that claim(E) ∪ νCF(E) is maximal among conflict-free claim-sets. 
In case ϕ ∈ S , then ϕ ∈ E and ϕ̄ /∈ E , cli /∈ E , i ≤ n, since they are in conflict with ϕ . Then D = E ∪ {x} is conflict-free 
and properly extends E , thus claim(D) ∪ νCF(D) ⊃ claim(E) ∪ νCF(E), contradiction to S being cl-stage. In case ϕ̄ ∈ E , let 
D = (E \ {cli | (x, cli) ∈ R}) ∪ {x, ϕ̄}. D is conflict-free since x̄, dx /∈ E , cli /∈ E for each clause cli with (v, cli) ∈ R and ϕ /∈ E by 
assumption ϕ̄ ∈ S . claim(D) = claim(E) ∪ {x} since the only arguments which have been removed from D are labeled with 
claim ϕ̄ and D contains ϕ̄; moreover, νCF(E) ⊆ νCF(D) since ϕ is the only attacked argument of each cli and (ϕ̄, ϕ) ∈ R . 
Consequently, claim(D) ∪νCF(D) ⊃ claim(E) ∪νCF(E), contradiction to S being cl-stage. Y ∪ Z ⊆ S: Assume there is v ∈ Y ∪ Z
such that v /∈ S . As S is cl-stage, there is an cf c-realization E of S such that claim(E) ∪ νCF(E) is maximal among conflict-
free claim-sets and E does not contain v, ̄v by assumption. Analogous to above, one can extend E appropriately to derive a 
contradiction to S being cl-stage.

(1) Analogous to Lemma 9, one can show that cl-stg(CF) = {X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {e} | X ′ ⊆ X, e ∈ {ϕ, ϕ̄}}.
(2) We will show (a) stgc(CF) ⊆ semc(CF); and (b) semc(CF) ⊆ stgc(CF).
To show (a), let S ∈ stgc(CF). By (i), either ϕ ∈ S or ϕ̄ ∈ S . In case ϕ ∈ S , we have S = X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {ϕ} for 

some X ′ ⊆ X , thus S ∈ semc(CF) by Lemma 9. In case ϕ̄ ∈ S , we consider a stgc-realization E of S . E is admissible: Each 
a ∈ V ∪ V̄ ∪ {ϕ̄} defends itself; also, ϕ /∈ E by (i); moreover, each cli ∈ E is defended by E , otherwise there is cli ∈ E which 
is not defended by E against some argument a ∈ V ∪ V̄ , thus ā /∈ E , that is, there is v ∈ V such that v, ̄v /∈ E , contradiction 
to (i). Thus E is semi-stable, otherwise there is some set D ∈ adm((A, R)) ⊆ cf ((A, R)) with D⊕

(A,R) ⊃ E⊕
(A,R) , contradiction to 

E being stage in (A, R).
To show (b), let S ∈ semc(CF) and consider a semc-realization E of S . Clearly, E is conflict-free. We show that E ∈

stg((A, R)). Towards a contradiction, assume that there is D ∈ cf ((A, R)) with D⊕
(A,R)

⊃ E⊕
(A,R)

. Let a ∈ D⊕
(A,R)

\ E⊕
(A,R)

. By 
Lemma 8, either E⊕ = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d2}) (in case ϕ ∈ E) or E⊕ = A \ ({da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \
(A,R) (A,R)
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Fig. C.14. Construction from the proof of Proposition 47 for the formula ϕ given by the clauses {{x1, x2, x3}, {x̄1, x3, x4}, {x̄2, x̄3, x̄4}}.

E} ∪ {d1, d2}) (in case ϕ̄ ∈ E); that is, a ∈ {da | a ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E} ∪ {d1, d2}. Also, for all v ∈ V , either dv ∈ E⊕
(A,R) or 

dv̄ ∈ E⊕
(A,R)

, otherwise v, ̄v /∈ E; let E ′ = E ∪ {v}, then (E ′)⊕
(A,R)

⊃ E⊕
(A,R)

, contradiction to E being semi-stable. In case a = db

for some b ∈ (X ∪ X̄ ∪ Y ∪ Ȳ ) \ E}, we have db, db̄ ∈ D⊕
(A,R) and thus b, ̄b ∈ D , contradiction to D being conflict-free. Moreover, 

a �= d2 since the only attacker d1 of d2 is self-attacking. Consider the case a = d1, then ϕ ∈ D since ϕ is the only attacker 
of d1. Thus cli /∈ D for all i ≤ n by conflict-freeness of D; we conclude that D attacks each cli , i ≤ n since cli ∈ E⊕

(A,R)
for all 

i ≤ n and D⊕
(A,R) ⊃ E⊕

(A,R) . Therefore D is admissible and D⊕
(A,R) ⊃ E⊕

(A,R) , contradiction to E being semi-stable. �
Appendix C. Bounding the number of claims (Proof of Proposition 47)

Proposition 47. For CAFs with only two claims,

• VerCAF
σ is NP-hard for σ ∈ {cl-stbcf , cl-stbadm, cl-prf },

• VerCAF
σ is coNP-hard for σ ∈ {cl-stg, cl-sem}, and

• NECAF
σ is NP-complete σ ∈ {cl-stbcf , cl-stbadm, cl-prf , cl-stg, cl-sem}.

Proof. The hardness proofs for VerCAF
σ are by three variants of the standard reduction:

σ ∈ {cl-stbcf , cl-stbadm}: Let ϕ be an instance of 3-SAT, with ϕ given as a set of clauses C = {c1, . . . , cn} over atoms in X , 
where negated atoms are denoted by x̄. We construct C A Fϕ = (A, R, claim) with

A = X ∪ X̄ ∪ C

R = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(l, c) | c ∈ C, l ∈ c} ∪ {(c, c) | c ∈ C}
with claim(x) = claim(x̄) = c for all x ∈ X and claim(ci) = d for all ci ∈ C . An illustrative example of the reduction is given 
in Fig. C.14. First notice that because of the specific use of symmetric attacks and the self attacks conflict-free sets and 
admissible sets coincide. Thus, also cl-stbcf and cl-stbadm coincide and it suffices to consider cl-stbcf in the following. By 
construction the formula ϕ is satisfiable iff there is a conflict-free set that attacks all arguments ci ∈ C iff there is a cl-stbcf

extension iff {c} is a cl-stbcf extension. We obtain that VerCAF
σ is NP-hard.

σ ∈ {cl-prf }: Let ϕ be an instance of 3-SAT, with ϕ given as a set of clauses C = {c1, . . . , cn} over atoms in X , where 
negated atoms are denoted by x̄. We construct C A Fϕ = (A, R, claim) with

A = X ∪ X̄ ∪ C ∪ {ϕ}
R = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(l, c) | c ∈ C, l ∈ c} ∪ {(c, c), (c,ϕ) | c ∈ C}

with claim(x) = claim(x̄) = c for all x ∈ X ∪ C and claim(ϕ) = d. An illustrative example of the reduction is given in Fig. C.15. 
By construction the formula ϕ is satisfiable iff there is a conflict-free set that attacks all arguments ci ∈ C iff there is an 
admissible set containing ϕ iff {c, d} is a cl-prf extension. We obtain that VerCAF

cl-prf is NP-hard.
σ ∈ {cl-stg, cl-sem}: Let ϕ be an instance of 3-SAT, with ϕ given as a set of clauses C = {c1, . . . , cn} over atoms in X , 

where negated atoms are denoted by x̄. We construct C A Fϕ = (A, R, claim) with

A = X ∪ X̄ ∪ C ∪ {y, z}
R = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(l, c) | c ∈ C, l ∈ c} ∪ {(c, c) | c ∈ C} ∪

{(x, y), (x̄, y), (y, x), (y, x̄) | x ∈ X} ∪ {(z, z)}
with claim(x) = claim(x̄) = c for all x ∈ X ∪ {z}, claim(ci) = d for all ci ∈ C and claim(y) = d. An illustrative example of the 
reduction is given in Fig. C.16. First notice that because of the specific use of symmetric attacks and the self attacks conflict-
free sets and admissible sets coincide. Thus, also cl-stg and cl-sem coincide and it suffices to consider cl-stg in the following. 
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Fig. C.15. Construction from the proof of Proposition 47 for the formula ϕ given by the clauses {{x1, x2, x3}, {x̄1, x3, x4}, {x̄2, x̄3, x̄4}}.

Fig. C.16. Construction from the proof of Proposition 47 for the formula ϕ given by the clauses {{x1, x2, x3}, {x̄1, x3, x4}, {x̄2, x̄3, x̄4}}.

By construction the formula ϕ is satisfiable iff there is a conflict-free set that attacks all arguments ci ∈ C iff there is a 
cl-stage extension with range {c, d} iff {d} is not a cl-stage extension. We obtain that VerCAF

σ is NP-hard.
Now consider the non-empty problems NECAF

σ . First, for the NP-hardness with σ ∈ {cl-stbcf , cl-stbadm} consider the first 
reduction of this proof. By construction {c} is the only candidate for being an extension and we already know that {c} is 
an extension iff φ is satisfiable. Thus we obtain that there is a non-empty extension iff φ is satisfiable which shows NP-
hardness.
For σ ∈ {cl-prf , cl-stg, cl-sem} we reuse the following construction from the proof of Proposition 46: For a given C A F =
(A, R, claim) with an arbitrary number of claims, create C A F ′ = (A, R, claim′) with claim′(a) = c for all a ∈ A. Then 
NECAF

σ (C A F ) = NECAF
σ (C A F ′). �

References

[1] K. Atkinson, P. Baroni, M. Giacomin, A. Hunter, H. Prakken, C. Reed, G.R. Simari, M. Thimm, S. Villata, Towards artificial argumentation, AI Mag. 38 (3) 
(2017) 25–36, https://doi .org /10 .1609 /aimag .v38i3 .2704.

[2] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artif. 
Intell. 77 (2) (1995) 321–358, https://doi .org /10 .1016 /0004 -3702(94 )00041 -X.

[3] A. Bondarenko, P.M. Dung, R.A. Kowalski, F. Toni, An abstract, argumentation-theoretic approach to default reasoning, Artif. Intell. 93 (1997) 63–101, 
https://doi .org /10 .1016 /S0004 -3702(97 )00015 -5.

[4] S. Modgil, H. Prakken, Abstract rule-based argumentation, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.), Handbook of Formal Argumen-
tation, College Publications, 2018, pp. 287–364, Ch. 6, also appears in IfCoLog Journal of Logics and their Applications 4(8):2319–2406.

[5] P. Baroni, M. Caminada, M. Giacomin, Abstract argumentation frameworks and their semantics, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre 
(Eds.), Handbook of Formal Argumentation, College Publications, 2018, pp. 159–236, Ch. 4.
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[12] W. Dvořák, S. Woltran, Complexity of abstract argumentation under a claim-centric view, Artif. Intell. 285 (2020) 103290, https://doi .org /10 .1016 /j .
artint .2020 .103290.

[13] A. Rapberger, Defining argumentation semantics under a claim-centric view, in: S. Rudolph, G. Marreiros (Eds.), Proceedings of the 9th European 
Starting AI Researchers’ Symposium 2020, in: CEUR Workshop Proceedings, vol. 2655, CEUR-WS.org, 2020, http://ceur-ws .org /Vol -2655 /paper2 .pdf.
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