
Automation in Construction 134 (2022) 104041

Available online 8 December 2021
0926-5805/© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Modeling multiple space views for schematic building design using space
ontologies and layout transformation operations

Georg Suter *

Design Computing Group, Faculty of Architecture and Planning, TU Wien, Karlsplatz 13, A-1040 Vienna, Austria

A R T I C L E I N F O

Keywords:
Building information modeling
View definition
Model transformation
Semantic enrichment

A B S T R A C T

Modeling multiple views of spaces involves mapping or transformation between multiple models. Automated
model transformation is challenging as semantic and spatial criteria need to be considered. This paper proposes a
novel method and data processing pipeline to define space views and semi-automatically transform room-based
building data created in BIM authoring systems into multi-view space models. The method is based on space
ontologies and their integration with space layout transformation operations. It is used to define a set of func-
tional views that are relevant to schematic building design. An existing space modeling system is extended with
the method and data processing pipeline. Results from a validation study show that the method can cover specific
semantic and spatial aspects of space views. Both are relevant for consistent model transformation and accurate
analysis. Results further show that it is feasible to fully automate data processing steps, except for space clas-
sification, which is semi-automated.

1. Introduction

Spaces enable indoor activities of users. They also meet needs for
accessibility, physical comfort, security, or safety. Many building de-
signers need to create models of spaces and carry out domain-specific
analysis tasks that rely on space data. In building design, multiple par-
tial models must be maintained that correspond to domain-specific
views while being consistent with each other (see, for example, [1,2]).
Modeling multiple views of spaces is a sub-problem of this general
problem. It typically involves the mapping or transformation of space
data from one domain to another. As an illustrative example, consider
functional zoning, which is a crucial aspect of schematic building design.
Architectural designers tend to group or aggregate connected spaces
with similar functional properties into zones. In residential design, they
may create zones for communal spaces (e.g., living rooms), private
spaces (e.g., bedrooms), and service spaces (e.g., bathrooms) for activity
separation, noise control, or improved access for people or technical
services [3,4]. In current building information modeling (BIM) author-
ing systems, the transformation of a room-based into a zone-based
model is done manually [5,6]. Conceptually, it involves identifying
merge sets of two or more spaces by considering spatial (space con-
nectivity) and semantic (space function) criteria. Spaces that are too
different from their neighbor spaces are not merged. That is, they are

single-space zones. Spatial and semantic aspects must also be considered
when room-based architectural models are transformed to space models
for people circulation, lighting, or air circulation analysis, e.g., by
decomposing or selecting spaces. It is preferable to automate such
complex model transformation tasks in order to minimize manual
modeling effort. It further helps to ensure the consistency of resulting
models and accuracy of analysis efforts. While this problem has been
studied for individual domains, such as building energy or people cir-
culation analysis (e.g., [7,8]), there is a lack of general multi-view space
modeling methods that support model transformation.

In previous work by Suter et al. [9], a method is described to define
space views and transform room-based source space data into corre-
sponding multi-view space models. A space view comprises spaces and
related objects, such as walls, windows, furnishings, or equipment. Ac-
cording to the method, a view is defined by an operation sequence that
transforms a source space layout into a layout that models the view.
Layout transformation operations include selection, aggregation, or
decomposition of spaces in a layout. For example, aggregation can be
used to merge architectural spaces with similar functions into functional
zones automatically. The method has been used to define functional
views that are relevant for schematic building design [10]. These views
include architectural, pedestrian space access, natural lighting, natural
ventilation, functional zoning, and functional unit views.

* Corresponding author.
E-mail address: georg.suter@tuwien.ac.at.

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2021.104041
Received 31 December 2020; Received in revised form 14 October 2021; Accepted 3 November 2021

mailto:georg.suter@tuwien.ac.at
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2021.104041
https://doi.org/10.1016/j.autcon.2021.104041
https://doi.org/10.1016/j.autcon.2021.104041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2021.104041&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Automation in Construction 134 (2022) 104041

2

The existing space view definition method is limited in two ways.
First, filters on spaces and related objects are restricted to a small set of
hard-coded classes that model only the most common space data cate-
gories. These filters are input parameters for layout transformation op-
erations. Second, space data are classified mostly manually.

To address these limitations, the work presented in this paper aims to
enhance the existing space view definition method with:

(i.) specific and extensible space semantics,
(ii.) semi-automated space classification, and

(iii.) integration of i. and ii. in layout transformation operations.

Specific and extensible semantics influence the accuracy and
coverage of the space view definition method. Examples for specific
semantics include the distinction between master bedrooms and regular
bedrooms (architectural view), communal and private spaces (func-
tional zoning view), main and side entrances (pedestrian space access
view), light-transmissive and opaque space enclosing elements (lighting
view), and operable and fixed space enclosing elements (natural venti-
lation view). With extensible semantics, new classes and properties may
be modeled to define additional views or to apply existing view defini-
tions to other building types.

There is a need for automated space classification because manual
classification is time-consuming and error-prone. Classification effort
increases with the size of source space data and the number of views. It is
assumed that perfect classifiers are unattainable. Thus some manual
classification will still be necessary.

Existing layout transformation operations need to be modified to
accept and process filters that are based on specific semantics. Moreover,
operation processing needs to be extended to support manual as well as
automated instance classification.

In order to address these needs, a method and data processing
pipeline are proposed to define space views and semi-automatically
transform room-based space data created in BIM authoring systems
into multi-view space models.

The remainder of this paper is structured as follows. Related work is
reviewed in Section 2. The research methodology is outlined in Section
3. Space ontologies and layout transformation operations are described
in Sections 4 and 5. Definitions for a set of functional views are included
in Section 6. Implementation details are described in Section 7. A vali-
dation study is presented in Section 8. A summary and outlook is given
in Section 9.

2. Related work

2.1. View definition

A view of a building may be defined by a set of functions or func-
tional subsystems and modeled by design objects that provide these
functions [2]. This approach reflects the notion that objects are
multi-functional. For example, a wall may separate spaces visually and
acoustically as well as provide stability. Eastman and Siabiris [11] use
composition and specialization methods to model space views. In da-
tabases, views are query expressions that are defined based on a data-
base schema [12]. Katranuschkow et al. [13] distinguish domain,
ad-hoc, and multi-model views. Domain views are sub-schemas of a
larger schema. Ad-hoc views are defined at the instance level. They are
related to tasks, such as identifying building elements that are part of the
building enclosure. Multi-model views include building model and
additional data, such as energy analysis data.

Several domain views, or model view definitions (MVD), exist for the
Industry Foundation Classes (IFC) data model [14]. An MVD is a subset
of the original IFC schema for specific applications and life-cycle phases
[15]. An information delivery manual (IDM) describes exchange re-
quirements and provides process maps for the development of an MVD
[16]. MVDs that cover IfcSpace and related classes include ‘Reference’,

‘Coordination’, ‘Space Boundary Addon’, ‘Basic FM Handover’, and
‘Architectural Design to Building Energy Analysis’ views [17].

Weise et al. [18] describe a schema for the definition of arbitrary IFC
model views. Objects may be selected from an original model by
user-defined filters. Unnecessary attributes or object references may be
removed from the model based on a static model view. This approach is
elaborated in a filter framework [19]. Filtering is done at schema, class,
instance, and reasoning levels. Except for schema filters, filtering is done
at runtime. Geometry conversion may be required. An example is the
conversion of sweep to Brep geometry representations. A related effort is
mvdXML, which is an XML schema for defining IFC MVDs [20]. It sup-
ports the definition of rules on IFC entities and attributes. Tools can use
such rules to check the quality of IFC models against an MVD or filter
models according to an MVD.

Building model query languages support partial model retrieval at
the instance level. PMQL provides query constructs for traversal of large,
nested object graphs that are common in building models [21]. Exam-
ples include spatial structure hierarchies and space connectivity graphs.
Similarly, BIMQL supports the derivation of implicit relationship net-
works from explicitly modeled relationships [22]. BimSPARQL provides
queries on spatial relationships between instances based on their geo-
metric properties. Such queries are useful to evaluate the data quality of
IFC building models [23]. Declarative rules are implemented as
domain-specific, procedural functions, including spatial topology oper-
ators and other geometric modeling functions.

In summary, MVDs focus on data at the schema level. While they
support model filtering and specific semantics, such as space function
classification properties, they do not address model transformation.
Space model transformation operations, as exemplified by the functional
zoning scenario, can not be specified in MVDs. Instead, required
instance data must be edited in content creation software, such as BIM
authoring systems. For this work, MVDs are relevant insofar as MVD-
based export functions in BIM authoring systems are used to extract
and reuse room-based space data, and to transform them into multi-view
space models [5,6]. Compared with MVDs, BIM query languages support
more granular, instance-level retrieval of partial models. However,
model update functions are low-level and limited to instance deletion or
property value updates. Higher-level model transformation operations
are not supported.

2.2. Model transformation

Model transformation involves, among other things, the insertion,
addition of level of detail, or aggregation of objects [24]. It may be
supported at modeling language [11] or operational levels [24]. Baz-
najac and Kiviniemi [25] distinguish three types of model trans-
formations: data set reduction (e.g., wall geometry simplification), data
translation (e.g., detection of exterior walls), and data interpretation (e.
g., room area calculations). A typical application is the transformation of
a room-based architectural model into a model for another domain, such
as circulation analysis or facility management. A common goal is to
transform semantic, connectivity, and geometry data while minimizing
data loss and errors.

Space transformation is relevant for energy analysis. A thermal zone
is a group of spaces with similar heating and cooling requirements.
Connected spaces with a similar orientation, internal loads, and occu-
pancy schedules are aggregated into thermal zones to transform an
architectural model into an input model for building energy simulation
[26]. Zone volumes are created by merging space volumes. Volumes of
adjacent spaces must touch to ensure that resulting zone volumes are
contiguous. Thermal zoning is a non-trivial task that requires engi-
neering expertise and involves the consideration of semantic as well as
spatial criteria. A common thermal zoning method is the perimeter and
core zoning method [27]. In this method, spaces that are adjacent to the
exterior (that is, perimeter spaces) and interior spaces (that is, core
spaces) are merged into separate zones. Perimeter zones are subdivided

G. Suter

Automation in Construction 134 (2022) 104041

3

according to orientation towards the exterior. The thermal zone model
for a rectangular floor plan typically consists of a core and four perim-
eter zones. Raftery et al. describe a zone typing method that considers
spatial and non-spatial zoning criteria [7]. The latter include space
function, conditioning systems, and available measured data. Compared
with the perimeter and core zoning method, the method results in more
granular thermal zoning and promises more accurate energy use pre-
diction. In functional zoning for architectural design, only space func-
tions are considered. Although it is relevant in architectural design
guidelines (see, for example, [3,4]), the functional zone concept is
currently ill-defined.

In the indoor navigation and building evacuation domains, spaces
are decomposed or subdivided to generate navigation models with
favorable properties, such as paths that avoid obstructions or paths that
model people movement. Common decomposition methods use regular
grid [28] or irregular cells. Examples for the latter include Delaunay
triangulations of space polygons [29], or generalized Voronoi diagrams
of navigable area polygons [30]. Lee et al. [8] propose a rule language
for evacuation code checking that provides high-level constructs to
check building models against people circulation or space requirements.
Visibility-based navigation networks are generated automatically from
door, vertical access, and concave points that lie on buffered space
boundary polygons [31].

BIM authoring systems, such as Autodesk Revit or Graphisoft
Archicad, support space-based analysis functions for several domains,
including quantity takeoff, energy analysis, lighting, or route analysis
[5,6]. Zones are defined manually by selecting spaces or drawing zone
contours. In the former case, zone volumes are created by merging space
volumes. BIM data quality assurance systems, such as Solibri Model
Checker, validate IFC building models by evaluating rules [32]. There
are rules to check the containment of spaces in space groups or evacu-
ation routes. Rule execution requires a combination of semantic and
geometry data. For example, maximum evacuation distances or the
number of alternative routes from spaces are defined by their function.
Moreover, door widths, opening directions, and exit doors must be
known.

Several limitations of existing model transformation methods are
identified. Zoning methods for thermal domains are not formalized [26].
For example, it is unclear how the similarity of space functions is
determined. As a result, the creation of zoning models in building energy
simulation tools is a manual task. Similarly, zones are defined manually
in BIM authoring systems. By contrast, several automated methods exist
to decompose architectural spaces for indoor navigation and evacuation
analysis. However, these are domain-specific rather than generic. Model
transformation and analysis typically requires extensive classification
data. These must be edited manually in BIM authoring or data quality
assurance systems.

2.3. Space classification systems

Spaces may be classified by form or function. Examples are atria and
offices, respectively. In OmniClass and Uniclass classification systems,
space classes are organized in multi-level hierarchies and stored in tables
[33,34]. Space objects (instances) created in commercial BIM authoring
systems may be labeled according to these classification systems, e.g., to
support space planning or management. The IFC schema and the buil-
dingSMART data dictionary service [35] support linking of IFC objects
to classification systems.

The application potential of OmniClass and Uniclass space classifi-
cation systems is currently restricted to spaces that are common in
contemporary public or commercial buildings. Moreover, these systems
lack a modular structure, are proprietary, and are not meant to be

modified or extended by their users. Classification systems with a more
flexible structure are preferable. These should be modifiable and
extensible in order to meet more specific or unforeseen space classifi-
cation needs for diverse building types or domains. Current space clas-
sification systems do not support automated reasoning about
classification data. As a result, such data must be edited manually.

2.4. Semantic enrichment

Semantic enrichment methods derive new data from existing build-
ing model data. They are useful to improve data interoperability,
simplify queries, link data across domains, or enable compliance
checking with standards and regulations [36]. A common approach to
semantic enrichment is to process ontology-based building models by a
semantic reasoner in order to classify objects or to derive new relations
between objects [37,38]. Object data (instances) are modeled as asser-
tions (ABox) that are based on a pre-defined vocabulary or terminology
(TBox). Rules (RBox) are based on the same ontology. Rules may be
defined for objectified relationships in building models that are based on
the ifcOWL ontology in order to simplify query access [37,38]. For
example, a rule may state that if two spaces are bounded by a door, then
they are connected by it [38]. A benefit of this approach is that it le-
verages existing ontology and rule languages as well as semantic
reasoning and query engines. Moreover, existing ontologies may be
reused to develop new ontologies.

Semantic enrichment rules may be encoded in different ways. Lee
et al. [39] use OWL class expressions to derive work items from work
conditions for construction cost estimation. Room properties, such as
room usage, room enclosure, and enclosure materials, are examined to
determine wall tiling materials and sizes. De Farias et al. [37] use SWRL
rules to simplify the formulation of SPARQL queries on ifcOWL models.
SWRL is more expressive than OWL regarding rules for relations [40]. A
similar solution is adopted by Pauwels et al. [38] to simplify ifcOWL
model graphs.

Several efforts explore rule languages that meet specific modeling
needs in the building domain. These include the detection of spatial
relations between objects. Staub-French et al. [41] describe an ontology
to classify building object features for cost estimation. Belsky et al. [42]
propose a semantic enrichment engine to infer new facts about objects in
IFC-based building models based on domain-specific rules. The rule
language supports operators on properties, relationships, geometry, and
spatial topology. This approach is extended to object classification with
rules on spatial relationships between objects. It has been validated for
bridge components [43]. Zhang et al. [44] outline an algorithm that
applies a rule set to a building model in order to detect fall hazards and
add fall protection installation. Rules are based on semantic and detailed
geometric object data. For example, there is a rule that identifies un-
protected sides of holes in slabs.

Bloch and Sacks [45] explore the application of rule-based and su-
pervised machine learning (ML) methods to classify space functions for
apartment buildings. Explicit rules are developed based on a set of
apartment models and processed by a semantic enrichment engine [42].
Pairwise and single feature rules are defined. An example of the former
is the comparison of areas for a pair of spaces and for the latter the
minimum number of windows in a space. The classification is done by
identifying unique string patterns in feature matrices.

While ontology-based semantic enrichment methods are promising
because of their openness and reliance on existing technologies that are
part of the semantic web, they are limited regarding spatial reasoning
and geometry processing, which is relevant for building modeling. The
latter is a strength of domain-specific rule languages. However, such
languages are still in the early stages of development.

G. Suter

Automation in Construction 134 (2022) 104041

4

3. Methodology

A novel method is proposed for defining space views using space
ontologies and layout transformation operations. Space view definitions
are used in a data processing pipeline to semi-automatically transform
source building data into a multi-view space model (Fig. 1). The data
processing pipeline is part of a workflow for spatial analysis of building
designs. According to this workflow, a user (e.g., a building designer)
initially creates room-based source building data using a BIM authoring
system and exports these data as an IFC file. The data processing pipeline
transforms the content of the IFC file into a multi-view space model and
returns the model to the user for analysis. The transformation is auto-
mated, except for the instance classification task, which is semi-
automated.

In order to support the envisioned data processing pipeline, previ-
ously developed layout transformation operations [9] are extended with
ontology-based filters that target layout elements or spatial relations
between them. This extension enables more specific semantics. As a
result, the proposed method can support space views and models that
reflect specific spatial and semantic criteria. Moreover, the need for
manual instance classification is reduced as layout elements are classi-
fied automatically by semantic reasoning.

Compared with existing work, the proposed approach has the
following benefits and limitations. In contrast to schema-based view
definition methods, such as the MVD method, the proposed view defi-
nition method addresses instance-level model transformation. That is,
view definitions can be applied to transform room-based source building
data into multi-view space models. Unlike space classification systems,
space ontologies are modular, extensible, and support automated space
classification. Layout operations are generic and may be composed to
define different space views, whereas existing automated space trans-
formation methods are limited to specific views, such as evacuation
analysis. Layout operations are high-level and are processed based on
computational and solid geometry as well as graph search methods. In
this work, they are extended with computational logic methods to
support specific semantics and instance classification. By comparison,
model update operations in BIM query languages are low-level and have
limited geometry processing capabilities. Higher-level model trans-
formation operations make it easier to define views than lower-level
ones as fewer statements are required. On the other hand, layout
transformation operations are restricted to space data, while BIM view
definition methods or query languages cover building data more
generally.

The data processing pipeline transforms source building data into a
multi-view space model in three steps. In the first step, room-based
source space data are extracted from source building data. IFC class
filters are used to extract geometry data for spaces and related objects

from the IFC file. Default class labels are assigned to instances according
to a mapping of IFC to space ontologies classes. Relationship data are not
extracted because layout operations automatically derive them [46].

In the second step, source space data are transformed into a source
space layout based on a source view definition. The transformation in-
volves instance classification, where class labels of layout elements
required by targeted views are labeled automatically or manually. La-
bels are assigned by default according to the IFC to space ontologies
class mapping. Additional labels are inferred by semantic reasoning. In
case of incorrect labels, a user needs to replace them with the correct
ones.

In the third step, the source space layout is transformed into a multi-
view space model. This is done by iterating on definitions of targeted
views. Each view is defined by a layout operation sequence, which
transforms an input layout into an output layout that corresponds to the
view. Instance classification may be necessary again in this step to
ensure the semantic consistency of the resulting space model.

Key classes and properties of space ontologies are presented for a set
of functional views that are relevant for schematic building design and
required to model a worked example (Section 4). The ontologies, which
comprise a space layout as well as element and function ontologies, are
encoded in OWL [47]. Benefits of OWL include expressiveness, semantic
reasoner support, and ontology reuse [48]. Alternatively, classes and
properties may be encoded in RDF/RDFS and queried using SPARQL
[49,50]. OWL is preferred because SPARQL’s inference capabilities are
limited. Functional views cover architectural, pedestrian circulation,
people comfort, and functional zoning domains. Class expression ex-
amples highlight the potential for automated classification of layout
elements by semantic reasoning. The application of other types of
inference rules in OWL or SWRL is left for future work.

Previously developed layout transformation operations are extended
to accept and process ontology-based filters. Operation processing is
extended with an instance classification step supported by an OWL se-
mantic reasoner (Section 5). Layout operation sequences and corre-
sponding input parameters, including ontology-based filters, are
identified for targeted views (Section 6).

Prototypes of space ontologies, definitions of targeted views,
extended layout operations, and the data processing pipeline are
implemented as extensions of an existing space modeling system (SMS)
(Section 7).

The view definition method and data processing pipeline are vali-
dated by using SMS to semi-automatically create multi-view space
models from room-based source building data authored in BIM systems
for targeted views and a sample of floor plans of existing apartment
buildings (Section 8). The system’s capabilities to support specific space
semantics and semi-automatically transform source building data into
multi-view space models are measured and evaluated.

Fig. 1. Data processing pipeline for semi-automated transformation of source building data into multi-view space models.

G. Suter

Automation in Construction 134 (2022) 104041

5

4. Space ontologies

4.1. Overview

Space ontologies are structured as multiple, interrelated ontologies
[51]. Fig. 2 shows ontologies that are used to model targeted views and
the worked example. Each entity name mentioned in the following has a
prefix, which is a shorthand for the entity’s ontology. The ‘Space layout’
ontology (sl: prefix) provides generic entities (classes and properties) for
layout elements and spatial relations between them. Layout elements are
specialized in element ontologies (e-*: prefix), which model spatial,
structural, or material aspects. Functional aspects are covered by func-
tion ontologies (f-*: prefix). These reuse entities from ‘Space layout’ and
element ontologies.

Layout elements are multi-functional. For example, a loft space may
be used for living, dining, cooking, sleeping, and circulation. Likewise, a
glazed door may provide access to a balcony as well as admit natural
light. Thus classes in function ontologies generally overlap, that is, they
are not disjoint. Overviews of ‘Space layout’ and element ontologies are
given next, focusing on entities required to model target functional
views for the worked example. Function ontologies are described
together with functional view definitions in Section 6. Key metrics of
space ontologies are summarized in Table 1.

4.2. ‘Space layout’ ontology

The ‘Space layout’ ontology is based on a data model for network-
based space layouts [46]. Formal definitions of layout elements and
spatial relations, as well as a comparison with the space data model in
IFC, are given in [46]. Key classes and properties of the ontology are
shown in Fig. 3. Compared with the ‘Building topology’ ontology [52,
53], the ‘Space layout’ ontology is more specific regarding subspaces
and spatial relations. However, it currently does not cover nested,

multi-level spatial structures or alignment with related ontologies, such
as ifcOWL.

A space layout consists of layout elements, which are either spaces
(sl:Space) or space elements (sl:SpaceElement). Physical objects that
either partially enclose spaces, such as walls or windows, or are con-
tained in them, such as furniture, are examples for space elements. A
whole space (sl:WholeSpace) is a space that contains zero or more
subspaces sl:SubSpace). The latter are similar to partial spaces in IFC,
which are modeled as instances of the IfcSpace class with attribute value
CompositionType=PARTIAL.

Multiple types of spatial relations between layout elements are
modeled in a layout. These form a spatial relation network (SRN). Each
layout element is an SRN node that is located in the layout’s local co-
ordinate system. The location typically corresponds to the centroid of
the layout element’s shape. Spatial relations are edges in the SRN. Fig. 3
includes containment, adjacency, proximity, and partial enclosure re-
lations. Specializations of spatial relations are modeled as subproperties
of object properties. For example, the space adjacency relation (sl:
isAdjacentTo) relation is specialized into an adjacency relation between
whole spaces (sl:isAdjacentTo_WS) and an adjacency relation relation
between subspaces (sl:isAdjacentTo_SS).

4.3. Element ontologies

Entities for spatial, enclosure, pedestrian circulation, and furnishing
elements are defined in element ontologies. A class hierarchy for
element ontologies is shown in Listing 1. Indents indicate sub/super
class relationships and prefixes the ontologies in which classes are
defined (Fig. 2). All classes are sub-classes of either sl:Space or sl:
SpaceElement classes.

Classes that are marked ¶ in Listing 1 are defined by class expres-
sions. That is, membership of instances (individuals) in these classes is
derived from existing data. For example, an internal space (e-sp:Inter-
nalSpace) is equivalent to a space where the sl:isInternal data property is
true. The corresponding class expression in OWL Manchester syntax
[55] is included in Listing 2. An internal space is further a spatial
element (e-sp:SpatialElement). External air spaces (e-sp:ExternalAir-
Space) must be modeled explicitly for people comfort views. Internal
enclosure space elements (e-enc:InternalEnclosureSE) enclose internal
spaces but are not part of the building enclosure. Rooms, halls, floors,
atria, wings, or sections are further e-sp:SpatialElement examples to
model space forms or the spatial organization of buildings. As they are
not essential for the targeted views, these classes are excluded from

Fig. 2. Space ontologies used to model targeted views and the worked example.

Table 1
Space ontologies metrics.

Metric

Class count 184
Class axioms

SubClassOf count 192
EquivalentClasses count 35
DisjointWith count 5

ObjectProperty count 17
DataProperty count 16
DL expressivity ALCHIQ(D)

Fig. 3. VOWL diagram [54] of key classes and object properties in the ‘Space
layout’ ontology. The ontology is based on a data model for network-based
space layouts [46].

G. Suter

Automation in Construction 134 (2022) 104041

6

Listing 1.

Listing 1
Classes in element ontologies that are relevant for definitions of targeted views
and the worked example. Classes marked ¶ are defined by class expression.

Listing 2
Class expression for internal spaces in OWL Manchester syntax [55].

5. Space layout transformation

5.1. Operations

Layout selection, aggregation, decomposition, and update operations
are used to define targeted views. In each operation, a copy of an input
layout (Lin) is modified and returned as an output layout (Lout). An Lout
may be passed as an Lin to a subsequent operation. Operations may thus
be composed into operation sequences.

5.1.1. Filters
Operation input parameters include filters. There are two types of

filters: layout element and SRN filters. A layout element filter targets
layout element properties. Ontology-based layout element filters may
target the classes property, which lists a layout element’s class labels. For
example, filter

FS = {∀s ∈ S |

e − sp : InternalSpace ∈ s.classes}

targets set S of spaces in a layout. A given space s passes FS if the classes
property of s includes the e-sp:InternalSpace class. The formal definition
of e-sp:InternalSpace is encoded in the ‘Spatial element’ ontology and
referenced by FS. An SRN filter defines a subnetwork of a layout’s SRN. It
consists of a node (FN) and an edge (FE) filter. Node filters are analogous
to layout element filters. Edge filters target spatial relation element
properties.

5.1.2. Selection
In the select operation, layout elements are selected from an Lin based

on layout element filters. For example, internal spaces and doors may be
selected from an Lin using filters FS and FSE that target spaces or space
elements where the classes property includes e-sp:InternalSpace or e-
enc:Door, respectively.

5.1.3. Aggregation
In the aggregate operation, spaces in an Lin are merged and replaced

by new spaces. They must belong to the same space group, as defined by
a grouping criterion, and be connected in a subnetwork of the SRN of Lin,
as defined by an SRN filter (FN, FE). For example, spaces in an Lin may be
merged if they are circulation spaces (grouping criterion) and if they are
connected in Lin’s space adjacency network (SRN filter). Each space in
Lout is labeled as a zone (sl:Zone). Space volumes are modeled as solid
boundary representations (Breps). Volumes of adjacent spaces must
touch such that they can be merged into larger volumes by solid union. A
pair of spaces are connected if there is a path between them in the SRN
subnetwork. Moreover, all space nodes in that path must belong to the
same group. Group membership of a space s may be determined based
on its classes property and a given set G = {g1, g2, … gn} of grouping
space classes. That is, s is assigned to the grouping space class g ∈ G with
the greatest grouping weight (sl:weight_grouping) in s . classes ∩ G
(grouping criterion). For example, a living room, which also serves as a
circulation space because it connects a kitchen and a dining room, would
be assigned to the group of living rooms if that group has a greater
weight than the group of circulation spaces.

5.1.4. Decomposition
In the decompose operation, whole spaces in an Lin are divided into

smaller spaces. Optionally, the latter either replace existing whole
spaces or are inserted as new subspaces that are contained in them. Input
parameters include a filter FWSd on whole spaces that are to be decom-
posed as well as a decomposition method. For example, whole spaces in
an Lin may be decomposed into subspaces that are located near doors and
openings by a method that is based on Voronoi cells [46]. In general, a
Voronoi diagram and its dual, the Delaunay triangulation, encode
proximity between given sites [56]. In the above example, positions of
subspaces are used as sites. Suppose they already exist in Lin. In that case,
these subspaces may be targeted explicitly by a filter FSS, or they may be
inserted before decomposition, based on a filter FSi that targets nearby
space elements or other subspaces. Subspace volumes are created by
intersecting corresponding Voronoi cells with the volume of the con-
taining whole space. A further example for a whole space decomposition
method is convex decomposition [57]. According to this method, whole
spaces with concave volumes are decomposed into spaces with convex
volumes.

5.1.5. Update
In the update operation, distances in an SRN subnetwork are derived

based on source, destination, and SRN filters. There are two variants of
the operation. The updatet=distanceNearest operation derives distances in an
SRN subnetwork of Lin based on source node (FNs), destination node
(FNd), and SRN filters (FN, FE). Distance properties of source nodes tar-
geted by FNs are updated. For each source node, the distance is computed
to the nearest node that passes the destination node filter FNd . Shortest
path search is restricted to an SRN subnetwork of Lin, as defined by filters
FN on nodes and FE on edges. Edge directions are not considered in the
search.

The updatet=distanceMustPass operation derives distances in an SRN
subnetwork of Lin based on must-pass node (FNm), source node, desti-
nation node, and SRN filters. Distance properties of must-pass nodes,
which are targeted by filter FNm , are updated. For each must-pass node,

G. Suter

Automation in Construction 134 (2022) 104041

7

the shortest path is computed between its nearest, distinct source and
destination nodes, where paths must pass through that node. The cor-
responding distance is thus referred to as the must-pass distance. Source
and destination nodes are targeted by filters FNs and FNd . Shortest path
search is restricted to an SRN subnetwork defined by filters FN and FE.

5.2. Processing

The processing of a layout transformation operation involves the
insertion, removal, or modification of layout elements in Lout [46].
Spatial inconsistencies in Lout are resolved automatically. For example,
when a pair of adjacent spaces are merged by the aggregate operation,
doors that connect the spaces are excluded from Lout because they are
considered spatially inconsistent. The SRN of Lout is regenerated to
reflect such modifications.

An optional instance classification step may be invoked after an
operation has been processed to semi-automatically edit class labels of
layout elements (instances) in Lout (Fig. 4). An OWL semantic reasoner
supports instance classification. The reasoner accepts as input an
ontology that includes instances as well as facts (ABox) about them
regarding class membership and properties according to space ontol-
ogies (TBox, RBox). The reasoner realizes the ontology. That is, it
computes all instances for named classes [58]. The reasoner exports
inferred classes of instances as a new ontology.

In the instance classification step, class labels may be edited manu-
ally before and after instance classification by the reasoner. For
example, after processing an aggregate operation, users may remove
existing class labels of merged spaces or insert missing labels to ensure
the consistency of reasoner input data. Similarly, after instance classi-
fication by the reasoner, inferred class labels that are inconsistent may
be removed, or missing labels may be inserted. Label edits after classi-
fication by the reasoner may be necessary because class hierarchies,
class expressions, and other rules in space ontologies are not expected to
cover all conceivable cases.

6. View definitions

6.1. Overview

Space ontologies and layout transformation operations extended by
ontology-based filters are used to develop definitions for a set of func-
tional views that are relevant to schematic building design. These views
cover architectural, pedestrian circulation, people comfort, and func-
tional zoning domains. Each view is either directly or indirectly derived
from a source view, which is modeled by a source space layout (Fig. 5).
For example, the ‘Walking network’ view is derived from the ‘Pedestrian
space access’ view, which in turn is derived from the ‘Architectural’
view.

Targeted views are demonstrated with a worked example. Using the
SMS system described in Section 7, room-based source building data for
a regular floor of an existing, freestanding apartment building were
transformed into a space model for the targeted views (Fig. 6, [4]). The
example floor has features that are challenging from a modeling
perspective. Each of the two apartments on the floor has a main and a
side entrance. The latter connects kitchens with a service elevator that is
separated from the stairway and the main elevator. There are two small
spaces with folding doors near the kitchens. These are interpreted as box
rooms, which are private spaces for domestic workers or storage.

6.2. Source view

The source view definition specifies the transformation of source
space data into a source space layout Ls in the second step of the data
processing pipeline (Fig. 1). Source space data lack an SRN and have
only default class labels, which are assigned according to a mapping of
IFC to space ontologies classes (Table 2).

Fig. 4. Flowchart for space layout transformation and semi-automated instance
classification. Lin: input layout, Lout: output layout, c: instance classification flag.

Fig. 5. Dependencies between the source view and targeted views.

Fig. 6. Example floor of an apartment building designed by L. Caccia Domin-
ioni, Milan, 1961.

G. Suter

Automation in Construction 134 (2022) 104041

8

Source space data are semi-automatically transformed into an Ls that
is semantically and spatially consistent to generate space models ac-
cording to definitions of targeted views. The source view is defined as
follows:

Ls ← select(FS , FSE), c (SSD)

where

— SSD are source space data,
— Ls is the source space layout,
— FS = {∀ s ∈ S} is a filter on spaces,
— FSE = {∀ se ∈ SE} is a filter on space elements, and
— c = InstanceClassification is an enumeration type flag.

Sets S of spaces and SE of space elements in source space data are
targeted by layout element filters FS and FSE to create Ls. Instance clas-
sification is invoked for manual editing of layout element class labels
and automated inference of additional labels by semantic reasoning
(Section 5.2, Fig. 4). In general, it is sufficient for users to label only the
most specific child (or leaf) classes in class hierarchies as their parent
classes are inferred. Moreover, certain classes are inferred based on class
expressions.

In order to model specific semantics for Ls for the example floor, it
was necessary to insert 19 new labels and remove 9 default labels. For
example, two e-enc:UnitDoor labels were inserted and two e-enc:Regu-
larDoor labels were removed. The semantic reasoner processed 121
input labels and returned 1,225 labels. That is, label edits are 23% of
input labels, and the reasoner output to input label ratio is approxi-
mately 10:1.

Table 2
Mapping of IFC to space ontologies classes. The latter are assigned as
default class labels to layout elements. Incorrect default labels may be
edited in the instance classification step.

IFC class Space ontologies class

IfcSpace sl:WholeSpace,
sl:InternalSpace

IfcDoor e-encl:RegularDoor
IfcWindow e-encl:OperableWindow
IfcStairFlight e-pc:FlightOfStairs
IfcSlab e-pc:Partition
IfcFurnishingElement e-fur:Cabinet
IfcFlowTerminal e-fur:SanitaryElement
IfcSanitaryTerminalType e-fur:SanitaryElement

Table 3
Functional view definitions. Input parameters for update operations are defined in Tables 4 and 5.

View/Layout transformation Input parameters

‘Architectural’ [Fig. 7]: Ls: Source layout
Lar ← select(FS ,FSE), c (Ls) FS = {∀ s ∈ S|f − ar : ArchitecturalSpace ∈ s . classes}: filter on spaces

FSE = {∀ se ∈ SE|f − ar : ArchitecturalSE ∈ se . classes}: filter on space elements
c = NoInstanceClassification: enumeration type flag

‘Pedestrian space access’ [Fig. 8a]: Lar: ‘Architectural’ layout, Lpsa: ‘Pedestrian space access’ layout
Lpsa ← select(FS ,FSE), c (Lar) FS = {∀ s ∈ S|f − pc : PedCircSpace ∈ s . classes}: filter on spaces
Lpsa ← updatet=distanceNearest,... (Lpsa) FSE = {∀ se ∈ SE|f − pc : PedCircSE ∈ se . classes}: filter on space elements

[Table 4]
c = NoInstanceClassification: enumeration type flag

‘Walking network’ [Fig. 8b]: Lpsa: ‘Pedestrian space access’ layout, Lwn: ‘Walking network’ layout
Lwn ← decomposeFWSd , m1 , i, c (Lpsa)Lwn ← decomposeFWSd ,FSi , m2 , i, c (Lwn) FWSd = {∀ws ∈ WS}: filter on whole spaces to be decomposed
Lwn ← updatet=distanceNearest,... (Lwn) FSi = (FSE , FSS): space insertion filters

[Table 4] —FSE = {∀ se ∈ SE}: filter on space elements
—FSS = {∀ ss ∈ SS}: filter on subspaces
m1 = ConvexVolumes, m2 = VoronoiCells,
i = InsertAsSubSpaces, c = NoInstanceClassification: enumeration type flags

‘Natural light access’ [Fig. 8c]: Ls: Source layout, Lnla: ‘Natural light access’ layout
Lnla ← select(FS ,FSE), c (Ls) FS = {∀ s ∈ S|(f − li : NatLightSpace ∈ s . classes) ∧ (f − li : NatLightSpaceException ∕∈ s . classes)}: filter on

spaces
Lnla ← updatet=distanceNearest,... (Lnla)

[Table 5]
FSE = {∀ se ∈ SE|f − li : NatLightSE ∈ se . classes}: filter on space elements
c = NoInstanceClassification: enumeration type flag

‘Passive air circulation’ [Fig. 8d]: Ls: Source layout, Lpac: ‘Passive air circulation’ layout
Lpac ← select(FS ,FSE), c (Ls) FS = {∀ s ∈ S|(f − ac : PassiveAirCircSpace ∈ s . classes) ∧ (f − ac : PassiveAirCircSpaceException ∕∈ s . classes)}:

filter on spaces
Lpac ← updatet=distanceMustPass,... (Lpac)

[Table 5]
FSE = {∀ se ∈ SE|(f − ac : PassiveAirCircSE ∈ se . classes) ∧ (f − ac : PassiveAirCircSEException ∕∈ se . classes)}:
filter on space elements
c = NoInstanceClassification: enumeration type flag

‘Functional units’ [Fig. 8e]: Lpsa: ‘Pedestrian space access’ layout
Lfu ← aggregateFN , FE , g, c(Lpsa) FN = (FS, FSE): SRN node filters

—FS = {∀ s ∈ S|f − pc : PedCircSpace ∈ s . classes} on spaces
—FSE = {∀ se ∈ SE|(f − pc : PedCircSE ∈ se . classes) ∧ (f − pc : FUAccessSE ∕∈ se . classes)} on space elements
FE = {∀ pese,s ∈ PESE,S}: SRN edge filter on the sl : partiallyEncloses relation between space elements and spaces
g = NoGrouping, c = InstanceClassification: enumeration type flags

‘Functional zones’ [Fig. 8f]: Lpsa: ‘Pedestrian space access’ layout
Lfz ← aggregateFN , FE , g, c(Lpsa) FN = {∀ s ∈ S}: SRN node filter on spaces

FE = {∀ as ∈ AS}: SRN edge filter on the sl : isAdjacentTo relation between spaces
g = GroupingByClassesProperty, c = NoInstanceClassification: enumeration type flags

G. Suter

Automation in Construction 134 (2022) 104041

9

Listing 3
Class hierarchy for the ‘Architectural’ view.

6.3. ‘Architectural’ view

Architectural spaces (f-ar:ArchitecturalSpace) and space elements (f-
ar:ArchitecturalSE) are selected from Ls to create a layout Lar that models
the ‘Architectural’ view. The view definition is included in Table 3.
Classes that are required by this view to model the example floor are
included in Listing 3. A visualization of Lar for the floor is shown in
Fig. 7. Spaces and space elements are labeled according to function and
element ontologies, respectively. Each layout element is a member of
multiple classes. For clarity, only primary classes are shown in Fig. 7.
The primary class of a layout element corresponds to the class in its
classes property with the greatest class weight (sl:weight_class).

Architectural spaces and space elements, which are targeted by fil-
ters FS and FSE in the select operation, are inferred from their sub-classes
in the class hierarchy in Listing 3. These inferences are made when
instance classification is invoked to transform source space data into Ls
(Section 6.2). For example, f-ar:ArchitecturalSpace is inferred from f-res:

LivingRoom, whereas f-ar:ArchitecturalSE is inferred from subclasses of
e-enc:EnclosureSE, such as e-enc:Window. Other views similarly rely on
inferring class membership of layout elements from class hierarchies.

6.4. Pedestrian circulation views

6.4.1. ‘Pedestrian space access’ view
Pedestrian circulation spaces (f-pc:PedCircSpace) and space ele-

ments (f-pc:PedCircSE) are selected from Lar to create a layout Lpsa that
models the ‘Pedestrian space access’ view (Table 3, Fig. 8a, Listing 4).
An Lpsa has a space access network, which is a subnetwork of its SRN. Its
nodes are pedestrian circulation spaces or space elements, and its edges
elements of the partial enclosure relation (sl:partiallyEncloses) between
space elements and spaces.

The space access network of the example is colored according to the
distance from each space or space element to the nearest main entrance
(f-pc:MainEntranceSE). The path length is used as a distance measure.
Distances are computed by an update operation of the space access
network. Details about filters and additional parameters used in this
operation are given in Table 4. There are two main entrances in the
example that provide access to residential units. The maximum distance
or depth [59] from the most remote space to the nearest main entrance is
9 (5 spaces). Hallways in each apartment form cycles, which imply
alternative paths between communal, private, and domestic spaces [59].
When distances are computed, side entrances (f-pc:SideEntranceSE) are
considered as inaccessible in order to exclude paths that, for example,
pass from residential through main circulation spaces to reach a main
entrance. Inaccessibility is indicated by the ∞ symbol in Fig. 8a.

Main or side entrances must be labeled explicitly in Ls. On the other
hand, internal access space elements (f-pc:InternalAccessSE) are infer-
red (Listing 5). A door or opening (e-enc:Opening) must meet two
conditions to be classified as an internal access space element. First, it
must be an internal enclosure space element. This excludes doors or
openings that are connected to the exterior. Second, elevations relative
to the spaces connected by an internal access space element must not
exceed a certain threshold.

Listing 4
Class hierarchy for ‘Pedestrian space access’ and ‘Walking network’ views.
Classes marked ¶ are defined by class expression.

Listing 5
Class expression for internal access space elements.

Fig. 7. Space model for targeted views and example floor. Layout Lar models
the ‘Architectural’ view. Sample class labels of spaces and space elements are
shown from function (f-*:) and element (e-*:) ontologies. Lar was generated
using the SMS system (Sections 7 and 8.1).

G. Suter

Automation in Construction 134 (2022) 104041

10

Fig. 8. Space model for targeted views and example floor. (a)-(f): Each layout models a view. Sample class labels of layout elements and spatial relations are shown
from space layout (sl:), element (e-*:), and function (f-*:) ontologies. The model was created in the SMS system by transformation of room-based source building data
of the example floor (Sections 7 and 8.1). (a) ‘Pedestrian space access’ layout Lpac. (b) ‘Walking network’ layout Lwn. (c) ‘Natural light access’ layout Lnla. (d) ‘Passive
air circulation’ layout Lpac. (e) ‘Functional unit zones’ layout Lfuz. (f) ‘Functional zones’ layout Lfz.

G. Suter

Automation in Construction 134 (2022) 104041

11

6.4.2. ‘Walking network’ view
Whole spaces in Lpsa are decomposed to create a layout Lwn that

models the ‘Walking network’ view (Table 3, Fig. 8b). An Lwn has a
walking network, which is a subnetwork of its SRN. Its nodes are
pedestrian circulation subspaces (f-pc:PedCircSpace, sl:SubSpace) or
space elements. Its edges are elements of the proximity relation between
space elements and subspaces (sl:isNear_SS_SE) or the subspace adja-
cency relation (sl:isAdjacentTo_SS). In comparison with a space access

network, a walking network is more detailed, and its edges do not
intersect space boundaries. It thus supports more accurate estimates of
walking distances between locations.

A walking network is generated by two consecutive layout decom-
position operations. In the first decomposition, whole spaces, which are
targeted by filter FWSd , are decomposed by the convex decomposition
method (Section 5.1). A new subspace is inserted for each volume
created by convex decomposition and each existing convex whole space

Table 4
Updates of pedestrian circulation views.

View/Layout update Input parameters

‘Pedestrian space access’ [Fig. 8a]: Lpsa: ‘Pedestrian space access’ layout
Lpsa← t = DistanceNearest: enumeration type flag
updatet, FNs , FNd , FN , FE , c, m (Lpsa) FNs = (FS, FSE1): SRN source node filters

—FS = {∀ s ∈ S}: filter on spaces
—FSE1 = {∀se ∈ SE}: filter on space elements
FNd = {∀se ∈ SE | f − pc : MainEntranceSE ∈ se.classes}: SRN destination node filter on space elements
FN = (FS, FSE2): SRN node filters
—FS = {∀ s ∈ S}: filter on spaces
—FSE2 = {∀se ∈ SE | f − pc : SideEntranceSE ∕∈ se.classes}: filter on space elements
FE = {∀ pese,s ∈ PESE,S}: SRN edge filter on the sl: partiallyEncloses relation between space elements and spaces
c = NoInstanceClassification: enumeration type flag
m = PathLength: enumeration type flag

‘Walking network’ [Fig. 8b]: Lwn: ‘Walking network’ layout
Lwn← t = DistanceNearest: enumeration type flag
updatet, FNs , FNd , FN , FE , c, m (Lwn) FNs = (FSS , FSE1): SRN source node filters

—FSS = {∀ ss ∈ SS}: filter on subspaces
—FSE1 = {∀se ∈ SE}: filter on space elements
FNd = {∀se ∈ SE | f − pc : MainEntranceSE ∈ se.classes}: SRN destination node filter on space elements
FN = (FSS, FSE2): SRN source node filters
—FSS = {∀ ss ∈ SS}: filter on subspaces
—FSE2 = {∀se ∈ SE | f − pc : SideEntranceSE ∕∈ se.classes}: filter on space elements
FE = (FE1 , FE2): SRN edge filters
—FE1 = {∀nss,se ∈ NSS,SE}: filter on the sl : isNear _ SS _ SE relation between subspaces and space elements
—FE2 = {∀ass ∈ ASS | ass.lineOfSight = true}: filter on the sl : isAdjacentTo _ SS relation between subspaces
c = NoInstanceClassification: enumeration type flag
m = PathWeight: enumeration type flag

Table 5
Updates of people comfort views.

View/Layout update Input parameters

‘Natural light access’ [Fig. 8c]: Lnla: ‘Natural light access’ layout
Lnla← t = DistanceNearest: enumeration type flag
updatet, FNs , FNd , FN , FE , c, m (Lnla) FNs = {∀s ∈ S}: SRN source node filter on spaces

FNd = {∀s ∈ S | e − sp : ExternalAirSpace ∈ s.classes}: SRN destination node filter on spaces
FN = (FS, FSE): SRN node filters
—FS = {∀ s ∈ S}: filter on spaces
—FSE = {∀ se ∈ SE}: filter on space elements
FE = {∀ pese,s ∈ PESE,S}: SRN edge filter on the sl : partiallyEncloses relation between space elements and spaces
c = InstanceClassification: enumeration type flag
m = PathLength: enumeration type flag

‘Passive air circulation’ [Fig. 8d]: Lpac: ‘Passive air circulation’ layout
Lpac← t = DistanceMustPass: enumeration type flag
updatet, FNm , FNs , FNd , FN , FE , c, m (Lpac) FNm = {∀s ∈ S | e − sp : InternalSpace ∈ s.classes}: SRN must-pass node filter on spaces

FNs = {∀s ∈ S | e − sp : ExternalAirSpace ∈ s.classes}: SRN source node filter on spaces
FNd = FNs

FN = (FS, FSE): SRN node filters
—FS = {∀ s ∈ S}: filter on spaces
—FSE = {∀ se ∈ SE}: filter on space elements
FE = {∀ pese,s ∈ PESE,S}: SRN edge filter on the sl : partiallyEncloses relation between space elements and spaces
c = InstanceClassification: enumeration type flag
m = PathLength: enumeration type flag

G. Suter

Automation in Construction 134 (2022) 104041

12

(i = InsertAsSubSpaces). The second decomposition uses the Voronoi cell
decomposition method (Section 5.1). New spaces are inserted as sub-
spaces (i = InsertAsSubSpaces) according to space insertion filter FSi .
Subspaces are inserted near space elements, which are targeted by filter
FSE. They are inserted based on space element types [46]. These are
templates for recurring space elements and include locations of nearby
spaces. For example, door types have spaces near their fronts and backs.
Similarly, subspaces are inserted near flights of stairs and landings.
Moreover, subspaces that were created by the preceding convex
decomposition are targeted by filter FSS to insert new subspaces at lo-
cations where volumes of targeted subspaces touch. The latter must be
contained in the same whole space. Resulting subspace volumes are not
shown in Fig. 8b to avoid visual clutter.

The walking network of the example is colored according to the
distance from each subspace or space element to its nearest main
entrance. Path weight is used as a distance measure, where weights
correspond to edge lengths or the Euclidean distance between nodes
related by an edge. Distances are computed by an update operation of the
walking network (Table 4). Side entrances are considered inaccessible.
The maximum distance from the most remote subspace to the nearest
main entrance is 12.97 m.

6.5. People comfort views

6.5.1. ‘Natural light access’ view
Natural light spaces (f-li:NatLightSpace) and space elements (f-li:

NatLightSE), as well as external air spaces are selected from Ls to create a
layout Lnla that models the ‘Natural light access’ view (Table 3, Fig. 8c,
Listing 6). An Lnla has a natural light access network, which is a sub-
network of its SRN. Its nodes are natural light spaces or space elements,
or external air spaces. Its edges are elements of the partial enclosure
relation between space elements and spaces.

The natural light access network of the example is colored according
to the distance from each natural light space to its nearest external air
space. Path length is used as a distance measure. Distances are computed
by an update operation of the natural light access network (Table 5).
Access to natural light is classified based on these distances by instance
classification, which is invoked after the update operation. A natural
light space with distance d = 2 has direct access to natural light (f-li:
DirectNatLightSpace, Listing 7), whereas one with d > 2 has indirect
access (f-li:IndirectNatLightSpace). If it is disconnected from external air
spaces in the natural light access network, then it has no access to nat-
ural light (f-li:NoNatLightSpace). This is indicated by the ∞ symbol in
Fig. 8c. Most hallways as well as the stairway lack access to natural light.

Certain enclosure space elements, such as glazed doors, transmit
light, but they are neither windows nor openings. The class expression in
Listing 8 covers space elements with a light-transmissive material (f-li:
LightTransmissiveMaterial). In the example, folding doors of box rooms
and kitchens are interpreted as being transparent. As a result, two
hallways at the core of the floor, accessed through these doors, are
classified as having indirect access to natural light.

Assessment of natural light access may not be relevant for elevators.
In order to capture this situation, the f-pc:Elevator class is defined as a
subclass of f-li:NatLightSpaceException. Thus elevators are not selected
from Ls. The corresponding logical negation is encoded in a more
straightforward manner in layout operation filters than in space ontol-
ogies, as is discussed in Section 6.7.

Listing 6
Class hierarchy for the ‘Natural light access’ view. Classes marked ¶ are defined
by class expression.

Listing 7
Class expression for spaces with direct access to natural light.

Listing 8
Class expression for light transmissive space elements.

6.5.2. ‘Passive air circulation’ view
Passive air circulation spaces (f-ac:PassiveAirCircSpace) and space

elements (f-ac:PassiveAirCircSE), as well as external air spaces are
selected from Ls to create a layout Lpac that models the ‘Passive air cir-
culation’ view (Table 3, Fig. 8d, Listing 9). Since they are subclasses of
corresponding exception classes, elevators and entrances are excluded
from this view. An Lpac has a passive air circulation network, which is a
subnetwork of its SRN. Its nodes are passive air circulation spaces or
space elements, or external air spaces. Its edges are elements of the
partial enclosure relation between space elements and spaces.

The passive air circulation network of the example is colored ac-
cording to the must-pass distance dmp of each internal space. Values for
dmp correspond to the length of the shortest path between the two
nearest external air spaces that passes through an internal space. These
are computed by an update operation of the passive air circulation
network (Table 5). The first and last edge in a path is ignored to

G. Suter

Automation in Construction 134 (2022) 104041

13

determine dmp because each is related to an external air space. Short
paths are considered as having a greater potential to support passive air
circulation than long ones. Passive air circulation potential of spaces is
classified by instance classification, which is invoked after the update
operation. Spaces with dmp = 2, 4 < = dmp < = 6, and dmp > = 8 are
classified as having high (f-ac:HighPotPassiveAirCircSpace, Listing 10),
medium (f-ac:MediumPotPassiveAirCircSpace Space), and low (f-ac:
LowPotPassiveAirCircSpace) potential for passive air circulation,
respectively. Obstructing elements and opening properties, such as size,
orientation, or cracks, which are relevant for detailed analysis, are not
considered by this classification. In the example, a living room and a
bedroom have high passive air circulation potential due to windows that
are located diagonally from each other. There are four spaces with
medium and 19 spaces with low passive air circulation potential. The
stairway is disconnected from external air spaces. This is indicated by
the ∞ symbol in Fig. 8d.

Listing 9
Class hierarchy for the ‘Passive air circulation’ view. Classes marked ¶ are
defined by class expression.

Listing 10
Class expression for spaces with high passive air circulation potential.

6.6. Functional zoning views

6.6.1. ‘Functional units’ view
Layout Lpsa is aggregated to create a layout Lfu that models the

‘Functional units’ view (Table 3, Fig. 8e, Listing 11). Each space in Lfu is
labeled as a zone (Section 5.1). Aggregation is based on Lpsa’s space
access network without entrances. An entrance is equivalent to a func-
tional unit (FU) access space element (f-fu:FUAccessSE). There is no
grouping based on space properties. FU access space element nodes
typically form a node cut set that partitions a space access network into

multiple components. Spaces in each component are merged into an FU
(f-fu:FunctionalUnit). Instance classification is invoked to infer specific
FU classes.

In the example there are four FUs, including two residential units (f-
res:ResidentialUnit) and two pedestrian circulation units (f-pc:PedCir-
cUnit). One pedestrian circulation unit is a single-space zone which
contains the service elevator. Functions of FUs are determined based on
the sl:contains relationship between zones (sl:Zone) and spaces. For
example, a pedestrian circulation unit is defined as a zone that contains a
pedestrian circulation space, such as a stairway (Listing 12). Similarly, if
a zone contains a kitchen, then it is classified as a residential unit.

Listing 11
Class hierarchy for the ‘Functional units’ view. Classes marked ¶ are defined by
class expression.

Listing 12
Class expression for pedestrian circulation units.

6.6.2. ‘Functional zones’ view
Layout Lar is aggregated to create a layout Lfz that models the

‘Functional zones’ view (Table 3, Fig. 8f). Each space in Lfz is labeled as a
zone. Aggregation is based on the space adjacency network of Lar, and
grouping on the classes property. Instance classification is not required
for this view. Classes that are marked ¶ in Listing 13 are in grouping class
set G to determine group membership of spaces (Section 5.1). Grouping
weights of marked classes decrease from top to bottom of Listing 13.
Primary and secondary pedestrian circulation spaces (f-pc:Primary-
PedCircSpace and f-pc:SecondaryPedCircSpace) are assigned to
different groups. An example for the former are stairways, and for the
latter hallways in residential units (f-res:Hallway).

In the example, two adjacent living rooms in Lar are merged into a
communal space (f-res:CommunalSpace) zone in Lfz. The zone is labeled
as a living room because it is more specific than a communal space.
Similarly, seven internal hallways from both residential units form a
contiguous secondary pedestrian circulation space zone. There is a pri-
vate space (f-res:PrivateSpace) zone that contains a bedroom and a box
room. Three single-space bedroom zones are adjacent to single-space
bathroom zones. On average, a functional zone contains 1.8 architec-
tural spaces.

G. Suter

Automation in Construction 134 (2022) 104041

14

Listing 13
Class hierarchy for the ‘Functional zones’ view. Classes marked ¶ are included in
set G to group spaces.

6.7. Discussion

As shown above, semantic and spatial aspects of space views may be
defined using space ontologies and layout transformation operations. At
most, three layout operations are required to define each targeted view.
All filters are simple Boolean expressions, as, for the most part, specific
semantics are captured by space ontologies. However, statements that
involve negation, such as ’all spaces that are not elevators’ (Section 6.5.1)
are difficult to encode in OWL. This is because of the open-world
assumption that underlies OWL. As layout operations assume a closed
world, it was decided to encode negations in filters instead. Another
challenge was the encoding of grouping logic for the aggregate operation
(Section 5.1). Grouping corresponds to a classification of spaces con-
cerning a set of disjoint classes. However, this is inconsistent with the
notion of overlapping classes in order to model multiple functions of
layout elements (Section 4.1). Thus it was decided to implement
grouping logic as part of aggregate operation processing based on
grouping weights defined in space ontologies. Primary functions of
layout elements are similarly determined based on class weights (Sec-
tion 6.3).

Since space ontologies are structured as multiple, interrelated on-
tologies, they may be extended more readily when compared with a
single ontology. For example, to make targeted views applicable to of-
fice buildings, a function ontology for office spaces and an element
ontology for office furniture may be added without requiring modifi-
cations of existing ontologies or view definitions. View definitions are
currently hard-coded in the SMS system. Thus the definition of new
views requires changes in source code. Instead, a space modeling lan-
guage is favored that supports view definitions independent of the
source code.

7. Implementation

The existing SMS system was extended to support the proposed view
definition method and the data processing pipeline (Fig. 1). Extensions
include the extraction of space data from IFC files and the integration of
space ontologies in space layout transformation operations. The data
processing pipeline was implemented as a collection of Windows 10 OS
batch files that are executed sequentially. They invoke SMS system
components and third-party applications to transform given IFC-based
source building data into a multi-view space model.

7.1. SMS components

SMS consists of a kernel and a viewer component. The SMS kernel
component reads source space data and creates the source space layout

Ls as well as the multi-view space model in the space layout trans-
formation steps of the data processing pipeline. The SMS kernel is
written in C++ and implements a schema for network-based space
layouts [46]. It uses the CGAL computational geometry library, the Acis
solid modeler, and the BGL graph library to process layout operations
[60–62,9]. The SMS viewer component converts between required ge-
ometry data formats and supports the visualization of space model data.
It is implemented as a custom ObjectARX plug-in for Autocad Core
Console [63,64]. The latter is a command-line version of Autocad for
automated processing of geometry and drawing data.

7.2. Space data extraction

Users create room-based source building data in Revit or Archicad
BIM authoring systems. These data are exported to an IFC file according
to IFC Reference or Coordination MVDs [65]. The IfcConvert applica-
tion, which is part of the IfcOpenShell IFC toolkit [66], is used to extract
space data based on IFC class filters and the IFC to space ontologies class
mapping (Table 2). Extracted geometry data are saved in the STEP
format for each selected IFC class. The SMS viewer was extended to
convert STEP to SAT data. SAT is the native file format for the Acis
modeler. The SMS viewer was further extended to simplify space
element geometries. This minimizes model size and reduces clutter in
space model visualizations.

7.3. Integration of space ontologies

Ontology-based layout element filters were implemented in the SMS
kernel. The HermiT OWL semantic reasoner was chosen to support
automated instance classification (Section 5.2, [67]). The SMS kernel
accesses the reasoner’s API through a wrapper application that was
written in Java. A parser was developed for the SMS kernel to load space
ontologies and instantiate ontology-based filters. The parser further
reads and writes instance data that are exchanged with the reasoner.

A label editor was developed to support manual label edits for the
instance classification step. The editor is based on HTML and scalable
vector graphics (SVG, [68]). Space classification data are embedded in
SVG-based space model visualizations as custom data attributes that a
user may search and modify. The SMS viewer generates content and
scripts for the label editor from space model data.

Definitions of targeted views were implemented as routines in the
SMS kernel. Each routine executes a layout operation sequence that
corresponds to its view definition. Ontology-based filters are used as
input parameters for layout operations. Intermediate output layouts are
passed as input layouts to subsequent operations.

8. Validation

8.1. Sample models

The capabilities of the SMS system to support specific space se-
mantics and semi-automatically transform room-based source building
data into multi-view space models are evaluated for the targeted views
and a sample of 22 regular floors of existing apartment buildings in

Table 6
Data summary for sample models and selected metrics (n=22).

Metric Min. Med. Max. Sum

Source data
Space count7 10 44.0 239 1,134
Space element count 34 88.0 394 2,593

Label edit count 17 56.5 481 1,878
Semantic reasoner

Input label count 64 165.5 642 4,407
Output label count 560 1,576.0 8,033 44,125

Space merge count 3 16.5 97 430

G. Suter

Automation in Construction 134 (2022) 104041

15

Europe (19), Mexico (2), and United States (1). Twenty floors in the
sample were selected and modeled by 14 Master of Architecture students
at TU Wien for a course project. Floors of two buildings, including the
example floor, were selected and modeled by the author. Following the
data processing pipeline (Fig. 1), room-based source building data were
prepared in Archicad 24 (10 floors) or Revit 2021 (12 floors) [6,5]. IFC
files were exported according to ‘IFC 2x3 Reference View 1.2’ (Archicad)
or ‘IFC 2x3 Coordination View 2.0’ (Revit) MVDs. The SMS label editor
was used to edit default labels (Table 2). Where necessary, the author
resolved inconsistencies in source space data (e.g., missing doors) or
labeling (e.g., missing unit door labels or mislabeling). The semantic and
spatial consistency of generated models was verified by visual inspection
and label search supported by the label editor.

8.2. Metrics

Sample models are analyzed according to the following metrics.
’Source data space count’ and ’Source data space element count’ refer to the
size of source space data. The former includes internal as well as external
spaces. ’Label edit count’ measures manual labeling. A label edit is
defined as the manual insertion of a new label or the removal of an
existing, default label. ’Input label count’ is defined as the number of
labels (OWL types) that are passed to the semantic reasoner as input. It
includes labels that are inserted manually as well as unmodified default
labels. ’Output label count’ is defined as the number of labels that the
reasoner returns. ’Space merge count’ is related to automated space
layout transformation. It is defined as the number aggregate operations
that are executed by the SMS system to merge two or more connected

spaces from Lar and Lpsa into zones in layouts Lfz and Lfu, respectively
(Table 3).

8.3. Results

Room-based source building data for the sample floors were trans-
formed by SMS into space models for the targeted views (Figs. 7 and 8,
Tables 3–5). Resulting models were spatially and semantically consis-
tent. Whereas instance classification was semi-automated, the three
steps in the data processing pipeline were fully automated (Fig. 1).

Data collected from resulting models for the selected metrics are
summarized in Table 6. Label edits to reasoner input label percentage
varies between 11.2% and 101.3% (median: 33.8%). Reasoner output to
input label ratio varies between 7.9:1 and 12.5:1 (median: 9.5:1).

From space ontologies and the IFC to space ontologies class mapping
(Table 2), it follows that labels for external spaces, living rooms, bed-
rooms, and unit doors need to be inserted manually for each model. For
the sample models, 672 such labels (35.8% of all label edits) were
inserted. Labels were inserted in certain models to model specific se-
mantics. For example, five f-pc:SideEntranceSE labels (0.3%) were
inserted in three models, including the model of the example floor, for
space access analysis. Similarly, 162 f-li:LightTransmissiveSE labels
(8.6%) were inserted in ten models to model glass doors for daylight
access analysis, and 36 e-enc:FixedWindow labels (1.9%) in three
models for assessment of natural ventilation potential of spaces.

Label edit and space merge counts are plotted relative to source
space counts in Fig. 9. There are two exceptionally large models in the
sample with source space counts of 126 and 239, respectively. These are
considered outliers and excluded from Fig. 9 and regression analysis.
Space merge counts equal 37% of space counts (R2 = 0.94). The corre-
lation between space counts and label edits is weak (R2 = 0.12). The
relationship between reasoner input and output label counts is shown in
Fig. 10. The ratio of output to input labels is 9.22 (R2 = 0.96).

8.4. Discussion

Results from sample models confirm the feasibility of the proposed
multi-view space modeling method. It supports specific space semantics
as well as the integration of semantic and spatial aspects of space views.
At the same time, it is feasible to automate the main steps in the data
processing pipeline fully and instance classification partially.

Consistent space data were extracted from source building data
authored in Archicad or Revit based on IFC MVDs. A difference between
these systems concerns the creation of space volumes. Revit supports the
automated generation of space volumes that meet at wall centers. In
Archicad, it is necessary to manually adjust generated space volumes to
meet at wall centers.

Since they account for 35.8% of label edits for sample models,
extending space ontologies to automatically classify external spaces,
living rooms, bedrooms, and unit doors could significantly reduce the
need for manual label edits. These appear to be high overall but varied
considerably among sample models (Fig. 9). There are two explanations
for this observation. First, certain models have more specific semantics
than others, such as side entrances, glass doors, or fixed windows. Sec-
ond, some source space data included detailed furnishing elements,
whereas other included none. In the former case, it was necessary to
replace default labels with labels for chairs, tables, and so on. When
considering label insertions and removals, the label edits to reasoner
input label percentage was 101.3% in one exceptional instance (median:
33.8%). Improved reuse of IFC semantic data, e.g., by more granular IFC
class mappings or processing of property data, could reduce the need for
such edits.

A reasoner input to output label ratio of approximately 1:9 for
sample models suggests substantial automation of the instance classifi-
cation step by semantic reasoning. Higher output to input label ratios
and improved automated labeling is feasible by extending space

Fig. 9. Space merge (left) and label edit (right) counts relative to source data
space count (n=20).

Fig. 10. Reasoner input and output label counts (n=20).

G. Suter

Automation in Construction 134 (2022) 104041

16

ontologies with additional logic. Rules that rely on rich spatial relations
in space layouts were not explored in this study.

A high correlation between space merge and space counts in Fig. 9
reflects the use of functional zoning strategies and the repetitive layout
of similarly sized FUs in the design of apartment buildings. Space merge
operations were invoked 430 times to generate zone views for the
sample models. Automation of such complex and frequently used layout
transformation operations is likely to result in significant user produc-
tivity improvements and fewer modeling errors. However, this valida-
tion study did not measure manual modeling effort and quality without
automated transformation operations.

9. Conclusion

A method and a data processing pipeline have been introduced to
define space views with specific semantics and semi-automatically
transform room-based source building data into corresponding multi-
view space models. The presented work highlights the potential of
automated model enrichment approaches that combine computational
logic with computational geometry and graph search methods to sup-
port the creation and analysis of richly structured building models.

Future work is envisioned in two directions. First, as a part of BIM
requirements engineering methodologies, such as IDM [16], the
described space views definition method and space ontologies could be
validated, revised, and extended further in order to meet specific space
modeling needs of building design practitioners. For example, thermal
zoning views could be developed in this manner. Second, there is a need
to reduce the need for manual space classification further. Towards this
end, the application of ML methods to space classification could be
explored. As results from a related study suggest [45], the use of ma-
chine learning in the instance classification step may be more effective
than rule-based methods. Automated, shape-based classification of
space elements could be helpful to minimize related label edits [69].
More accurate classification of space elements may also enable
improved classifiers for spaces. Supervised ML methods require large
training data sets. To address this need, the SMS system is used in an
ongoing effort at TU Wien to develop a data set for space models with
richly structured semantic and spatial content and high data quality.

Declaration of Competing Interest

The author declares that he has no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

The author gratefully acknowledges Mihael Barada and participants
in ‘259.428-2021S Architectural Morphology’ at the Faculty of Archi-
tecture and Planning, TU Wien for their contributions to the validation
study. He thanks Pieter De Wilde and the anonymous reviewers for their
comments and suggestions.

References

[1] G. van Nederveen, F. Tolman, Modelling multiple views on buildings, autom.
construct. 1 (1992) 215–224, https://doi.org/10.1016/0926-5805(92)90014-B.

[2] M. Rosenman, J. Gero, Modelling multiple views of design objects in a
collaborative environment, Comput. -Aided Des. 28 (1996) 193–205, https://doi.
org/10.1016/0010-4485(96)86822-9.

[3] W. Stamm-Jeske, K. Fischer, T. Haag, Raumpilot Wohnen, Karl Krämer, Stuttgart,
Germany and Zurich, Switzerland, 2012. ISBN: 978-3-7828-1554-3.

[4] O. Heckmann, F. Schneider, Grundrissatlas Wohnungsbau, Birkhäuser, Basel, 2017.
ISBN: 3035611424.

[5] Autodesk, Inc., Revit 2021 User’s Guide, 2021. https://knowledge.autodesk.
com/support/revit-products [Accessed 6 July 2021].

[6] Graphisoft, Inc., Archicad 14 User’s Guide, 2021. https://helpcenter.graphisoft.
com/user-guide-chapter/85451/ [Accessed 6 July 2021].

[7] P. Raftery, M. Keane, J. O’Donnell, Calibrating whole building energy models: an
evidence-based methodology, Energy Build. 43 (2011) 2356–2364, https://doi.
org/10.1016/j.enbuild.2011.05.020.

[8] J.-K. Lee, C. Eastman, Y. Lee, Implementation of a BIM domain-specific language
for the building environment rule and analysis, J. Intell. Robot. Sys.: Theory Appl.
79 (2015) 507–522, https://doi.org/10.1007/s10846-014-0117-7.

[9] G. Suter, F. Petrushevski, M. Sipetic, Operations on network-based space layouts
for modeling multiple space views of buildings, Adv. Eng. Inf. 28 (2014) 395–411,
https://doi.org/10.1016/j.aei.2014.06.004.

[10] G. Suter, Definition of views to generate, visualize, and evaluate multi-view space
models of schematic building designs, in: J. Beetz, L. van Berlo, T. Hartmann (Eds.),
22nd International Workshop: Intelligent Computing in Engineering, EG-ICE,
Eindhoven, The Netherlands, 2015. ISBN: 9781510809567.

[11] C. Eastman, A. Siabiris, A generic building product model incorporating building
type information, autom.construct. 3 (1) (1995) 283–304, https://doi.org/
10.1016/0926-5805(94)00028-L.

[12] A. Silberschatz, H. Korth, S. Sudarshan, Database System Concepts, McGraw-Hill,
New York, NY, USA, 2006. ISBN: 0073523321.

[13] P. Katranuschkov, M. Weise, R. Windisch, S. Fuchs, R.J. Scherer, BIM-based
generation of multi-model views, in: W. Thabet (Ed.), 27th CIB W78 - Information
Technology for Construction, CIB, Cairo, Egypt, 2010.

[14] BuildingSmart, Industry Foundation Classes IFC 4, 2020. https://standards.
buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/ [Accessed 5 December
2020].

[15] BuildingSmart, Model View Definition (MVD) - an Introduction, 2020. https
://technical.buildingsmart.org/standards/ifc/mvd/ [Accessed 5 December 2020].

[16] BuildingSmart, An Integrated Process for Delivering IFC Based Data Exchange,
2012, in: https://standards.buildingsmart.org/documents/IDM/IDM_guide-Integr
atedProcess-2012_09.pdf [Accessed 13 July 2021].

[17] BuildingSmart, MVD Database, 2012. https://technical.buildingsmart.org/sta
ndards/ifc/mvd/mvd-database/?sfw=pass1626187175 [Accessed 13 July 2021].

[18] M. Weise, P. Katranuschkov, R. Scherer, Generalised model subset definition
schema, in: R. Amor (Ed.), 20th CIB W78 - Information Technology for
Construction, CIB, Auckland, New Zealand, 2003. ISBN: 0-908689-71-3.

[19] R. Windisch, P. Katranuschkov, R. Scherer, A generic filter framework for
consistent generation of BIM-based model views, in: A. Borrmann, P. Geyer (Eds.),
19th International Workshop: Intelligent Computing in Engineering, EG-ICE,
Munich, Germany, 2012. ISBN: 9781634395489.

[20] T. Chipman, T. Liebich, M. Weise, Specification of a Standardized Format to Define
and Exchange Model View Definitions with Exchange Requirements and Validation
Rules, 2016. https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-
1/mvdXML_V1-1-Final.pdf [Accessed 13 July 2021].

[21] Y. Adachi, Overview of partial model query language, in: Proceedings of the 10th
International Conference on Concurrent Engineering, 2003, pp. 549–555. ISBN:
9789058096234.

[22] W. Mazairac, J. Beetz, BIMQL - an open query language for building information
models, Adv. Eng. Inf. 27 (2013) 444–456, https://doi.org/10.1016/j.
aei.2013.06.001.

[23] W. Solihin, C. Eastman, Y.-C. Lee, Toward robust and quantifiable automated ifc
quality validation, Adv. Eng. Inf. 29 (2015) 739–756, https://doi.org/10.1016/j.
aei.2015.07.006.

[24] M. Fischer, F. Aalami, R. Akbas, Formalizing product model transformations: case
examples and applications, in: I. Smith (Ed.), Artificial Intelligence in Structural
Engineering, Information Technology for Design, Collaboration, Maintenance, and
Monitoring, 1998, pp. 113–132, https://doi.org/10.1007/BFb0030438. ISBN: 978-
3-540-64806-2.

[25] V. Bazjanac, A. Kiviniemi, Reduction, simplification, translation and interpretation
in the exchange of model data, in: D. Rebolj (Ed.), 24th CIB W78 - Information
Technology for Construction, CIB, Maribor, Slovenia, 2007.

[26] M. Shin, J.S. Haberl, Thermal zoning for building HVAC design and energy
simulation: a literature review, Energy Build. 203 (2019) 109429, https://doi.org/
10.1016/j.enbuild.2019.109429.

[27] ASHRAE, Standard 90.1-2016. energy standard for buildings except low-rise
residential buildings, Am. Soc. Heat., Refrig. Air-Cond. Eng. 278 (2016). https://
www.ashrae.org/technical-resources/bookstore/standard-90-1 [Accessed 13
October 2021].

[28] Y.-H. Lin, Y.-S. Liu, G. Gao, X.-G. Han, C.-Y. Lai, M. Gu, The IFC-based path
planning for 3D indoor spaces, Adv. Eng. Inf. 27 (2013) 189–205, https://doi.org/
10.1016/j.aei.2012.10.001.

[29] W.Y. Lin, P.H. Lin, Intelligent generation of indoor topology (i-GIT) for human
indoor pathfinding based on IFC models and 3D GIS technology, autom.construct.
94 (2018) 340–359, https://doi.org/10.1016/j.autcon.2018.07.016.

[30] J.O. Wallgr“un, Autonomous construction of hierarchical voronoi-based
route graph representations, in: C. Freksa, M. Knauff, B. Krieg-Br”uckner,
B. Nebel, T. Barkowsky (Eds.), Spatial Cognition IV. Reasoning, Action, Interaction,
Berlin, Heidelberg, 2005, pp. 413–433, https://doi.org/10.1007/978-3-540-
32255-9_23.

[31] J.-K. Lee, C. Eastman, J. Lee, M. Kannala, Y. Jeong, Computing walking distances
within buildings using the universal circulation network, Environ. Plann. B 37
(2010) 628–645, https://doi.org/10.1068/b35124.

[32] Solibri, Inc., Solibri Model Checker, 2021. https://help.solibri.com/hc/en-us/cate
gories/1500000260302-Using-Solibri [Accessed 6 July 2021].

[33] CSI, OmniClass Construction Classification System (OCCS), Table 13: Spaces by
Function, 2010. https://www.csiresources.org/standards/omniclass/standards
-omniclass-about [Accessed 5 December 2020].

G. Suter

https://doi.org/10.1016/0926-5805(92)90014-B
https://doi.org/10.1016/0010-4485(96)86822-9
https://doi.org/10.1016/0010-4485(96)86822-9
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0015
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0015
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0020
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0020
https://knowledge.autodesk.com/support/revit-products
https://knowledge.autodesk.com/support/revit-products
https://helpcenter.graphisoft.com/user-guide-chapter/85451/
https://helpcenter.graphisoft.com/user-guide-chapter/85451/
https://doi.org/10.1016/j.enbuild.2011.05.020
https://doi.org/10.1016/j.enbuild.2011.05.020
https://doi.org/10.1007/s10846-014-0117-7
https://doi.org/10.1016/j.aei.2014.06.004
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0050
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0050
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0050
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0050
https://doi.org/10.1016/0926-5805(94)00028-L
https://doi.org/10.1016/0926-5805(94)00028-L
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0060
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0060
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0065
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0065
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0065
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/
https://technical.buildingsmart.org/standards/ifc/mvd/
https://technical.buildingsmart.org/standards/ifc/mvd/
https://standards.buildingsmart.org/documents/IDM/IDM_guide-IntegratedProcess-2012_09.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-IntegratedProcess-2012_09.pdf
https://technical.buildingsmart.org/standards/ifc/mvd/mvd-database/?sfw=pass1626187175
https://technical.buildingsmart.org/standards/ifc/mvd/mvd-database/?sfw=pass1626187175
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0090
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0090
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0090
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0095
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0095
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0095
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0095
https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-1/mvdXML_V1-1-Final.pdf
https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-1/mvdXML_V1-1-Final.pdf
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0105
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0105
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0105
https://doi.org/10.1016/j.aei.2013.06.001
https://doi.org/10.1016/j.aei.2013.06.001
https://doi.org/10.1016/j.aei.2015.07.006
https://doi.org/10.1016/j.aei.2015.07.006
https://doi.org/10.1007/BFb0030438
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0125
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0125
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0125
https://doi.org/10.1016/j.enbuild.2019.109429
https://doi.org/10.1016/j.enbuild.2019.109429
https://www.ashrae.org/technical-resources/bookstore/standard-90-1
https://www.ashrae.org/technical-resources/bookstore/standard-90-1
https://doi.org/10.1016/j.aei.2012.10.001
https://doi.org/10.1016/j.aei.2012.10.001
https://doi.org/10.1016/j.autcon.2018.07.016
https://doi.org/10.1007/978-3-540-32255-9_23
https://doi.org/10.1007/978-3-540-32255-9_23
https://doi.org/10.1068/b35124
https://help.solibri.com/hc/en-us/categories/1500000260302-Using-Solibri
https://help.solibri.com/hc/en-us/categories/1500000260302-Using-Solibri
https://www.csiresources.org/standards/omniclass/standards-omniclass-about
https://www.csiresources.org/standards/omniclass/standards-omniclass-about

Automation in Construction 134 (2022) 104041

17

[34] NBS, UniClass, Table SL - Spaces/locations, 2020. https://www.thenbs.com/
-/media/uk/files/xls/uniclass/2020-10/uniclass2015_sl_v1_18.xlsx?la=en
[Accessed 5 December 2020].

[35] BuildingSmart, BuildingSMART Data Dictionary 4.4.1, 2020. https://www.buildi
ngsmart.org/users/services/buildingsmart-data-dictionary/ [Accessed 5 December
2020].

[36] P. Pauwels, S. Zhang, Y.-C. Lee, Semantic web technologies in AEC industry: a
literature overview, autom.construct. 73 (2017) 145–165, https://doi.org/
10.1016/j.autcon.2016.10.003.

[37] T.M. Farias, A. Roxin, C. Nicolle, A rule based system for semantical enrichment of
building information exchange, in: CEUR Proceedings of RuleML (4th Doctoral
Consortium), 2014, pp. 2–9. http://ceur-ws.org/Vol-1211/paper2.pdf [Accessed
13 October 2021].

[38] P. Pauwels, T.M. de Farias, C. Zhang, A. Roxin, J. Beetz, J.D. Roo, C. Nicolle,
A performance benchmark over semantic rule checking approaches in construction
industry, Adv. Eng. Inf. 33 (2017) 68–88, https://doi.org/10.1016/j.
aei.2017.05.001.

[39] S.-K. Lee, K.-R. Kim, J.-H. Yu, BIM and ontology-based approach for building cost
estimation, autom.construct. 41 (2014) 96–105, https://doi.org/10.1016/j.
autcon.2013.10.020.

[40] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, SWRL: A
Semantic Web Rule Language Combining OWL and RuleML, 2004. http://www.
w3.org/Submission/SWRL/ [Accessed 5 December 2020].

[41] S. Staub-French, M. Fischer, J. Kunz, K. Ishii, B. Paulson, A feature ontology to
support construction cost estimating, Artif. Intell. Eng. Des. Anal. Manufact. 17
(2003) 133–154, https://doi.org/10.1017/S0890060403172034.

[42] M. Belsky, R. Sacks, I. Brilakis, Semantic enrichment for building information
modeling, Comput. -Aided Civ. Infrastruct. Eng. 31 (2016) 261–274, https://doi.
org/10.1111/mice.12128.

[43] R. Sacks, L. Ma, R. Yosef, A. Borrmann, S. Daum, U. Kattel, Semantic enrichment
for building information modeling: procedure for compiling inference rules and
operators for complex geometry, J. Comput. Civ. Eng. 31 (2017) 04017062,
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000705.

[44] S. Zhang, J. Teizer, J.-K. Lee, C.M. Eastman, M. Venugopal, Building information
modeling (BIM) and safety: automatic safety checking of construction models and
schedules, autom.construct. 29 (2013) 183–195, https://doi.org/10.1016/j.
autcon.2012.05.006.

[45] T. Bloch, R. Sacks, Comparing machine learning and rule-based inferencing for
semantic enrichment of BIM models, autom.construct. 91 (2018) 256–272, https://
doi.org/10.1016/j.autcon.2018.03.018.

[46] G. Suter, Structure and spatial consistency of network-based space layouts for
building and product design, Comput. -Aided Des. 45 (2013) 1108–1127, https://
doi.org/10.1016/j.cad.2013.04.004.

[47] World Wide Web Consortium, OWL 2 Web Ontology Language, 2012. https:
//www.w3.org/TR/owl2-overview [Accessed 5 December 2020].

[48] P. Hitzler, M. Krötzsch, B. Parsia, P.F. Patel-Schneider, S. Rudolph, OWL 2 Web
Ontology Language Primer, Second Edition, 2012. https://www.w3.org/TR/ow
l2-primer [Accessed 5 December 2020].

[49] A. Schreiber, Y. Raimond, RDF 1.1 Primer, W3C Working Group Note, World-Wide
Web Consortium, 2014. https://www.w3.org/TR/rdf11-primer/ [Accessed 6
December 2020].

[50] World Wide Web Consortium, SPARQL 1.1 Query Language, 2013. https://www.
w3.org/TR/2013/REC-sparql11-query-20130321/ [Accessed 18 July 2021].

[51] G. Suter, Space ontologies, 2021. http://spacepatterns.com/ontologies/space_onto
logies_002_a_in_c_20/_ontology_directory.htm [Accessed 6 July 2021].

[52] M. Rasmussen, P. Pauwels, M. Lefrançois, G. Schneider, Building Topology
Ontology, 2020. https://w3c-lbd-cg.github.io/bot/ [Accessed 5 December 2020].

[53] M. Rasmussen, M. Lefrançois, G. Schneider, P. Pauwels, BOT: the building topology
ontology of the W3C linked building data group, Semant. Web J. 12 (2021)
143–161, https://doi.org/10.3233/SW-200385.

[54] S. Lohmann, S. Negru, F. Haag, T. Ertl, VOWL 2: user-oriented visualization of
ontologies, in: K. Janowicz, S. Schlobach, P. Lambrix, E. Hyvönen (Eds.),
Knowledge Engineering and Knowledge Management 2014, volume 8876,
Linköping, Sweden, 2014, pp. 266–281, https://doi.org/10.1007/978-3-319-
13704-9_21.

[55] M. Horridge, P. Patel-Schneider, OWL 2 Web Ontology Language. Manchester
Syntax, Second Edition, 2012. http://www.w3.org/TR/owl2-manchester-syntax/
[Accessed 5 December 2020].

[56] F. Aurenhammer, R. Klein, Chapter 5 - voronoi diagrams, in: J.-R. Sack, J. Urrutia
(Eds.), Handbook of Computational Geometry, North-Holland, Amsterdam, 2000,
pp. 201–290, https://doi.org/10.1016/B978-044482537-7/50006-1. ISBN: 978-0-
444-82537-7.

[57] A. Eftekharian, M. Campbell, Convex decomposition of 3D solid models for
automated manufacturing process planning applications, in: ASME Design
Engineering Technical Conference, volume 2, Chicago, IL, USA, 2012,
pp. 727–735, https://doi.org/10.1115/DETC2012-70278.

[58] B. Parsia, N. Matentzoglu, R.S. Gonçalves, B. Glimm, A. Steigmiller, The OWL
reasoner evaluation (ORE) 2015 competition report, J. Autom. Reason. 59 (2017)
455–482, https://doi.org/10.1007/s10817-017-9406-8.

[59] B. Hillier, J. Hanson, The Social Logic of Space, Cambridge University Press,
Cambridge, UK, 1989. ISBN: 9780521367844.

[60] CGAL, Open Source Project, Computational Geometry Algorithms Library 4.12,
2018. https://doc.cgal.org/4.12 [Accessed 5 December 2020].

[61] Spatial Technologies, Inc., 3d ACIS Modeler 2019.1.0.2, 2019. http://doc.spatial.
com [Accessed 5 December 2020].

[62] Boost, Boost Library 1.59, 2015. https://www.boost.org/doc/libs/1_59_0
[Accessed 5 December 2020].

[63] Autodesk, Inc., AutoCAD 2019 Object Modeling Framework, 2019. https://www.
autodesk.com/developer-network/platform-technologies/autocad/objectarx
[Accessed 5 December 2020].

[64] Autodesk, Inc., AutoCAD 2019 User’s Guide, 2019. http://help.autodesk.com/
view/ACD/2019/ENU/ [Accessed 5 December 2020].

[65] BuildingSmart, Reference view, 2019. https://standards.buildingsmart.org/M
VD/RELEASE/IFC4/ADD2_TC1/RV1_2/HTML/schema/views/reference-view/i
ndex.htm [Accessed 5 December 2020].

[66] T. Krijnen, IfcOpenShell, 2021. http://ifcopenshell.org/ [Accessed 6 July 2021].
[67] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang, HermiT: an OWL 2 reasoner,

J. Autom. Reason. 53 (2014) 245–269, https://doi.org/10.1007/s10817-014-
9305-1.

[68] World Wide Web Consortium, Scalable Vector Graphics (SVG) 1.1, Second Edition,
2002. https://www.w3.org/TR/SVG11/ [Accessed 5 December 2020].

[69] C. Emunds, N. Pauen, V. Richter, J. Frisch, C. van Treeck, IFCNet: a benchmark
dataset for IFC entity classification, in: J. Abualdenien, A. Borrmann, L.-
C. Ungureanu, T. Hartmann (Eds.), 28th International Workshop: Intelligent
Computing in Engineering, EG-ICE, Berlin, Germany, 2021. ISBN: 978-3-7983-
3211-9.

G. Suter

https://www.thenbs.com/-/media/uk/files/xls/uniclass/2020-10/uniclass2015_sl_v1_18.xlsx?la=en
https://www.thenbs.com/-/media/uk/files/xls/uniclass/2020-10/uniclass2015_sl_v1_18.xlsx?la=en
https://www.buildingsmart.org/users/services/buildingsmart-data-dictionary/
https://www.buildingsmart.org/users/services/buildingsmart-data-dictionary/
https://doi.org/10.1016/j.autcon.2016.10.003
https://doi.org/10.1016/j.autcon.2016.10.003
http://ceur-ws.org/Vol-1211/paper2.pdf
https://doi.org/10.1016/j.aei.2017.05.001
https://doi.org/10.1016/j.aei.2017.05.001
https://doi.org/10.1016/j.autcon.2013.10.020
https://doi.org/10.1016/j.autcon.2013.10.020
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
https://doi.org/10.1017/S0890060403172034
https://doi.org/10.1111/mice.12128
https://doi.org/10.1111/mice.12128
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000705
https://doi.org/10.1016/j.autcon.2012.05.006
https://doi.org/10.1016/j.autcon.2012.05.006
https://doi.org/10.1016/j.autcon.2018.03.018
https://doi.org/10.1016/j.autcon.2018.03.018
https://doi.org/10.1016/j.cad.2013.04.004
https://doi.org/10.1016/j.cad.2013.04.004
https://www.w3.org/TR/owl2-overview
https://www.w3.org/TR/owl2-overview
https://www.w3.org/TR/owl2-primer
https://www.w3.org/TR/owl2-primer
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://spacepatterns.com/ontologies/space_ontologies_002_a_in_c_20/_ontology_directory.htm
http://spacepatterns.com/ontologies/space_ontologies_002_a_in_c_20/_ontology_directory.htm
https://w3c-lbd-cg.github.io/bot/
https://doi.org/10.3233/SW-200385
https://doi.org/10.1007/978-3-319-13704-9_21
https://doi.org/10.1007/978-3-319-13704-9_21
http://www.w3.org/TR/owl2-manchester-syntax/
https://doi.org/10.1016/B978-044482537-7/50006-1
https://doi.org/10.1115/DETC2012-70278
https://doi.org/10.1007/s10817-017-9406-8
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0295
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0295
https://doc.cgal.org/4.12
http://doc.spatial.com
http://doc.spatial.com
https://www.boost.org/doc/libs/1_59_0
https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx
https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx
http://help.autodesk.com/view/ACD/2019/ENU/
http://help.autodesk.com/view/ACD/2019/ENU/
https://standards.buildingsmart.org/MVD/RELEASE/IFC4/ADD2_TC1/RV1_2/HTML/schema/views/reference-view/index.htm
https://standards.buildingsmart.org/MVD/RELEASE/IFC4/ADD2_TC1/RV1_2/HTML/schema/views/reference-view/index.htm
https://standards.buildingsmart.org/MVD/RELEASE/IFC4/ADD2_TC1/RV1_2/HTML/schema/views/reference-view/index.htm
http://ifcopenshell.org/
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1
https://www.w3.org/TR/SVG11/
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0345
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0345
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0345
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0345
http://refhub.elsevier.com/S0926-5805(21)00492-1/sbref0345

	Modeling multiple space views for schematic building design using space ontologies and layout transformation operations
	1 Introduction
	2 Related work
	2.1 View definition
	2.2 Model transformation
	2.3 Space classification systems
	2.4 Semantic enrichment

	3 Methodology
	4 Space ontologies
	4.1 Overview
	4.2 ‘Space layout’ ontology
	4.3 Element ontologies

	5 Space layout transformation
	5.1 Operations
	5.1.1 Filters
	5.1.2 Selection
	5.1.3 Aggregation
	5.1.4 Decomposition
	5.1.5 Update

	5.2 Processing

	6 View definitions
	6.1 Overview
	6.2 Source view
	6.3 ‘Architectural’ view
	6.4 Pedestrian circulation views
	6.4.1 ‘Pedestrian space access’ view
	6.4.2 ‘Walking network’ view

	6.5 People comfort views
	6.5.1 ‘Natural light access’ view
	6.5.2 ‘Passive air circulation’ view

	6.6 Functional zoning views
	6.6.1 ‘Functional units’ view
	6.6.2 ‘Functional zones’ view

	6.7 Discussion

	7 Implementation
	7.1 SMS components
	7.2 Space data extraction
	7.3 Integration of space ontologies

	8 Validation
	8.1 Sample models
	8.2 Metrics
	8.3 Results
	8.4 Discussion

	9 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References

