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Kurzfassung

Der vermehrte Einsatz von Black Boxes als Entscheidungssysteme in wichtigen Bereichen
unseres Lebens steht in der Kritik. Black Boxes besitzen die unerwünschte Eigenschaft,
dass deren Entscheidungsgrundlage für einen Menschen nicht nachvollziehbar ist. Interpre-
tierbare Resultate sind jedoch aus verschiedenen Gründen wie rechtlichen, ethischen und
sicherheitstechnischen Aspekten notwendig. Daher wurden unterschiedliche Methoden
entwickelt und vorgestellt, um Erklärungen für die Entscheidungen einer einzelnen Black
Box zu liefern. Der LORE-Ansatz ist eine vielversprechende modell-agnostische Methode,
um die Ergebnisse der Black Box für einen bestimmten Fall verständlich zu erklären.
Modell-agnostische Methoden sind jedoch darauf ausgelegt, die Ergebnisse eines einzelnen
Black Box-Modells zu interpretieren. Wir stellen DiRo2C vor, um die unterschiedlichen
Entscheidungen zweier binärer Black Box Klassifizierer zu erklären.
Unser Ansatz verwendet einen modifizierten genetischen Algorithmus von LORE, um
einen synthetischen ausgewogenen Datensatz generieren zu können. DiRo2C verwendet
diesen generierten Datensatz, um einen Klassifizierer zu trainieren, der die lokalen Unter-
schiede nahe einer bestimmten Instanz zwischen den Black Boxen erkennt. Durch Auswahl
verschieden positionierter Instanzen und Generierung von Datensätzen, kann ein globaler
Explainer trainiert werden. Dazu wird ein erklärbarer, auf einem Entscheidungsbaum-
basierenden Klassifizierer verwendet. Der Klassifizierer kann ebenfalls durch Anwendung
eines beliebigen erklärbaren KI (Künstliche Intelligenz)-Ansatzes interpretiert werden.
DiRo2C unterstützt das Training eines binären Klassifizierer, der unterschiedliche Ergeb-
nisse zwischen den Black Boxen vorhersagt, und einen Multiklassen-Prädiktor, der jede
mögliche Kombination der binären Black Box-Ergebnisse vorhersagt. Der modifizierte
genetische Neighborhood Algorithmus wurde gegen andere Strategien getestet. Unsere
Simulationen und Experimente zeigen, dass der binäre Klassifizierer, der durch unseren
modifizierten genetischen Ansatz trainiert wird, andere implementierte Lösungen in Bezug
auf Genauigkeit und Qualität der erkannten Unterschiede weit übertrifft.
Wir evaluieren die Leistung der Klassifizierer, die auf Basis der verschiedenen Daten-
ansätze für drei verschiedene Datensätze trainiert werden, indem wir eine stratifizierte
10-fach-Kreuzvalidierung anwenden. Darüber hinaus verwenden wir Metriken wie Accu-
racy, F1-Score und Pearson Correlation Coefficient. Wir manipulieren eine Black Box,
indem wir ein bestimmtes Attribut aller Instanzen ändern, um Unterschiede zwischen den
Black Boxen zu erzwingen. Die gefundenen Unterschiede werden ebenfalls auf Korrektheit
überprüft und ob der Klassifikator die tatsächlichen Unterschiede erkennt.
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Abstract

The increased use of black boxes as decision systems, especially in crucial areas of our
lives, is under criticism. Black boxes have the undesirable characteristic that the basis for
making decisions is incomprehensible for a human being. However, interpretable results
are necessary for different reasons like legal, ethical, and safety aspects. Therefore, various
methods have been developed and proposed to provide explanations for the decision of a
single black box. The LORE approach is a promising model-agnostic method to explain
the results of the black box for a particular instance understandably. But, model-agnostic
methods are designed to interpret the results of a single black box model. We propose
DiRo2C to recognize the decision differences between two binary black box classifiers,
which is often necessary for practice.
Our approach uses a modified genetic algorithm from LORE to generate a synthetic
balanced dataset. DiRo2C uses this generated diff-dataset to train a diff-classifier that
recognizes the local differences close to a specific instance between the black boxes.
By selecting different located instances and the generation of the diff-datasets a global
explainer can be trained. It provides an explainable decision tree-based classifier where
the decision tree contains the various decision rules. The decision tree is up to a certain
complexity inherently interpretable. The classifier may further be interpreted by any
Explainable Artificial Intelligence (XAI) approach. DiRo2C supports the training of
a binary diff-classifier that decides if the black boxes predict different results and a
multiclass predictor that predicts every possible combination of the binary black boxes
results. The modified genetic neighborhood algorithm was evaluated against various other
data approaches. Our simulations and experiments show that the binary classifier trained
by our local modified genetic data generation approach outperforms other implemented
solutions regarding accuracy and quality of detected differences.
We evaluate the performance of the classifiers, which are trained based on the various
data approaches for three different datasets by applying stratified 10-fold cross-validation.
In addition, we are using performance metrics like Accuracy, F1-score, and Pearson
Correlation Coefficient. We manipulate one black box by changing a particular feature
of all instances to create differences between the black boxes. The found differences are
also evaluated for correctness and whether the classifier recognizes the actual differences.

xi





Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Black Box Model, Interpretability, and Explanation . . . . . . . . . . . . 1
1.2 Human Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Problem Statement and Motivation . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 11
2.1 Classification Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Interpretable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Properties of an Interpretable Model . . . . . . . . . . . . . . . . . . . 14
2.4 Model-Agnostic Methods . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Global Agnostic Explanators . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Local Agnostic Explanator . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Concept Drift Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Difference Recognition 25
3.1 Data Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Target Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Simplistic Genetic Neighborhood 39
4.1 LORE’s Genetic Instance Generation Approach . . . . . . . . . . . . . 39
4.2 Adaptions for DiRo2C . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xiii



4.3 Illustration of the Generated Datasets . . . . . . . . . . . . . . . . . . 44
4.4 Comparison of the Data Density . . . . . . . . . . . . . . . . . . . . . 47
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Evaluation of the Performance 51
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Performance Evaluation of Classifiers . . . . . . . . . . . . . . . . . . . . 61
5.3 Results and Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Modified Genetic Neighborhood and Performance Evaluation 67
6.1 Modification of the Genetic Neighborhood Approach . . . . . . . . . . 67
6.2 Effects of the Modified Genetic Neighborhood Approach . . . . . . . . 70
6.3 From Local to Global Explanations . . . . . . . . . . . . . . . . . . . . . 81
6.4 Performance Evaluation of the Genetic Neighborhood Approaches . . 83
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Evaluation of the Detected Differences 87
7.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Adult Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3 Summary and Findings . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8 Conclusion and Future Work 121
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

List of Figures 125

List of Tables 129

List of Algorithms 131

Acronyms 133

Bibliography 135



CHAPTER 1
Introduction

Today, Machine Learning (ML) systems make decisions in a wide variety of application
areas. So-called black box models are increasingly used for this purpose, even in sensitive
areas of applications or in areas where sensitive data is processed. The use of such opaque
models is ubiquitous, and the results have, in many cases, crucial implications. This
thesis deals with black box classifiers. For a better understanding, the introduction is
intended to explain important terms, concepts, the problem statement, the research
questions, the research method and methodological approach, the research contributions,
and finally, the structure of the thesis.

1.1 Black Box Model, Interpretability, and Explanation
A black box predictor is a system where the internal logic isn’t visible to the observer
or the logic is known but not interpretable [GMR+19]. There are different definitions
of interpretability regarding ML systems. Miller defines it as “the degree to which
an observer can understand the cause of a decision” [Mil19, p. 14] and Finale Doshi-
Velez and Been Kim as “the ability to explain or to present in understandable terms
to a human” [DVK17, p. 2]. Explanations are a way for a human to obtain a better
understanding [Mil19]. An explanation is, thus, an answer to a why-question [Mil19].
In the sense of scientific understanding, providing explanations leads to the fact that
we gain more knowledge about the specific context [DVK17]. As Miller suggests in his
work, the terms interpretability and explainability will be used interchangeably and the
term explanation will be used for answers why the model made a certain prediction for a
certain instance [Mil19]. An instance is a row, or a data point in a dataset.

1.2 Human Explanations
Miller presents in his work [Mil19] the major findings of human-friendly explanations:

1



1. Introduction

Explanations are contrastive. Humans are interested in counterfactual cases. That
means we want to know why a decision was made instead of another decision.

Explanations are selected. Humans are not interested in explanations that describe
the complete cause of an event. It is sufficient to include one or two reasons for it.

Good explanations are general and probable. Humans are interested in explana-
tions that contain a cause that can explain many other events. Probabilities are necessary
for selecting the best causes but referring to the probability in explanations isn’t effective.

Explanations are social. Explanations are part of a communication between the
explainer and recipient. It is essential to pay attention to the social context and the
knowledge of the participants.

1.3 Problem Statement and Motivation
As already mentioned, in many cases, the predictions of black boxes have profound
consequences on the lives of individuals. Different black box classifiers are trained to
provide predictions for one specific problem. Human experts need more insights into the
differences to decide which classifier is a better fit for solving the underlying problem.
Model-agnostic methods are suitable for getting more insights into why models predict out-
comes for specific instances. Even if there is currently a dispute about whether a “right to
explain” is legally binding or even exists in General Data Protection Regulation (GDPR),
especially about “opening the black box” to make the decision-making process completely
transparent, researching model-agnostic methods and their possibility to interpret the
differences in black box models is all the more important [GF17, Mal19, SP18, WMR18].
It should be mentioned, that it is not always necessary to be able to interpret ML systems.
Because not every system needs ad-hoc interpretability. According to the paper [DVK17]
interpretability is not necessary if unacceptable decisions have no significant impact. It
is also not required if the problem is well studied. That means the application is tried
and tested and we have trust in the results of that decision system. Molnar argues in
his book [Mol20] that e.g. an ML system for optical character recognition that detects
and processes addresses from envelopes is validated and proven that such a model works
correctly.
In contrast, interpretable explanations are for specific reasons necessary due to the incom-
pleteness in the formalization of problems [DVK17]. Doshi-Velez and Kim summarized
the following reasons: scientific understanding, safety, ethics, mismatched objective, and
multi-objective trade-offs [DVK17]. Regarding ethics, discrimination is a serious problem
also in the field of ML. For example, journalists investigated the Correctional Offender
Management Profiling for Alternative Sanctions (COMPAS)1 score, which is calculated

1Article about the investigation: https://www.propublica.org/article/how-we-analyzed-the-compas-
recidivism-algorithm
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1.4. Research Questions

to predict the criminal defendant’s likelihood of becoming a recidivist [GMR+19]. They
found out that the score is highly dependent on race, and as a result, people are severely
disadvantaged because of it.
Due to the technical possibilities such as big data, high performance, and scalable
infrastructures, we risk creating decision systems that are no longer traceable and under-
standable [GMR+19]. That also influences how to deal with accountability [KHB+17]
and industrial liability [Kin18].
Concept (data) drifts represent another problem from a completely different point of
view [Han06, Tsy04, WHC+16]: ML models are in many cases trained with historical
data and optimized for a problem at a certain point in time. But the conditions and
requirements for a model can change, or the measured data correspond no longer to
the distribution and scaling of the initial trained model. The recognition of differences
between various versions of a model supports detecting such concept drifts.
The model-agnostic method LOcal Rule-based Explanations (LORE) [GMR+18] promises
confidence to provide a solution to explain the differences and ultimately make the de-
tected differences interpretable. However, LORE and other model-agnostic methods are
designed to interpret the results of a single black box model. This thesis investigates a
potential solution to recognize differences between two binary black box classifiers and to
enable the interpretation of the recognized differences by model-agnostic methods (see
Figure 1.1).

1.4 Research Questions
This work aims to provide the Difference Recognition of 2 Classifiers (DiRo2C) method
to detect differences between two binary black box classifiers. Therefore a so-called
“diff-classifier” is trained to recognize the differences. One solution is to use a binary
classifier that decides whether the two black box models have predicted a different or the
same result. The other approach is to train a multiclass classifier to detect every possible
outcome combination of two binary classifiers.

RQ 1: “How well can the results of two binary black box classifiers be predicted using
a binary diff-classifier compared to a multiclass diff-classifier to predict every possible
outcome?”

The goal is to find out if a binary black box classifier predicts the differences more
accurately due to low complexity of the decision problem. It is also essential to evaluate
which approach is best for training the diff-classifier. One way is to create the diff-classifier
using a synthetically generic dataset. The other option is to implement it with real data
of the black box models. Since it cannot be assumed that training and test data are
available, the preferred solution is to prepare the diff-classifier using generic data samples.
Therefore, an additional goal is to clarify whether the differences can be recognized more
precisely using synthetic data for training the diff-classifier.

3



1. Introduction

Figure 1.1: Illustration of the problem statement: In this example, two black box
classifiers predict based on specific features the income class of a person, where y is the
target with the possible binary classes: ‘<=50k’ or ‘>50k’. The aim is to find a way to
detect the specific differences between the black boxes and enabling explainability. Source
of the UCI Machine Learning Repository adult dataset for this illustration: [DG17]

RQ 1.1: “To what extent can a classifier trained on synthetic data outperform a classifier
trained using a real and already existing dataset?”

The attempt is to generate more data in the area where the predictions of the two
classifiers differ. There are also different possible approaches to generate the dataset
for the diff-classifier. One attempt is to generate the instances with a local approach,
and the other way is to generate it globally. Local means that increased instances are
generated or provided which are closer to the to be recognized instance.

RQ 1.2: “How well performs a local approach to generate datasets for training the
diff-classifier in contrast to a global one?”

A main objective is to explore which combination of the possible approaches performs
best to predict the results of the black boxes and to what extent differences are detectable.
Therefore, a local synthetic approach should lead to a higher data density in the immedi-
ate area of the instance to be recognized and thus to higher coverage. The differences

4



1.5. Research Method

found are also evaluated for correctness and whether the responsible classifier recognizes
the actual (true) differences.

RQ 2: “To what extent can differences be detected using manipulated datasets?”

For this purpose, data instances are specifically manipulated. Subsequently, the diff-
classifier is checked whether these manipulations are reflected in the decision-making
basis.

1.5 Research Method
There are two basic paradigms in Information System (IS) research: behavioral and
design science. The difference between those two paradigms is that in behavioral science,
theories are developed and then justified. In design science, artifacts are built and then
evaluated to meet the business needs [HMPR04]. Moreover, the goal of design science
is to solve engineering problems (utility) and behavioral science to explain real-world
phenomena (truth) [HMPR04]. An information technology artifact can be a construct, a
model, a method, or an instantiation. This thesis aims to provide a method to recognize
the difference between two binary black box classifiers. Therefore design science is the
first choice research approach. According to Hevner, every design science research consists
of three recognizable cycles: the relevance cycle, the design cycle, and the rigor cycle
(see Figure 1.2) [Hev07].

1.6 Methodological Approach
This section gives an overview of the methodological approach. According to the design
science research method [Hev07] the main two research activities of the methodological
approach are “Development of DiRo2C” and the “Evaluation of DiRo2C”. These two
research activities of the design cycle are performed iteratively to assess and refine the
artifact continuously. Additionally a theoretical analysis and literature review is carried
out. It also explains the coding foundations to develop and evaluate DiRo2C.

1.6.1 Theoretical Analysis and Literature Review:
The analysis provides an understanding of the use of model-agnostic methods and
revealing of the research gap. The review of ML algorithms (e.g., decision tree algorithm)
is necessary for planning and implementing the diff-classifier strategies. LORE and
especially the “Neighborhood Generation” method is a crucial concept to create local
synthetic data instances. We want to use it to predict the local changes precisely.
Therefore, a detailed study of that method and internal components is part of the
theoretical analysis. Additionally, other local and global data generation methods are
under research.
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Foundations

ML algorithms (e.g., Decision
Tree)
Established local outcome model-
agnostic methods (e.g., LORE,
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Data instance generation
methods (e.g., Neighborhood
Generation of LORE)
Python AI and Data Science
packages

Methodologies (cf. with chapter
"Methodological Approach")

Application Domain
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influenced by predictions from
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Researchers in the field of
interpretable ML
Legal experts (concerning GDPR and
right to explain)

Organizations

Research Institutes
Legal associations
Industrial associations

Technology

Influencing the use of model-agnostic
methods to compare black boxes
Extension of model-agnostic methods
Tool to detect data/concept drifts

Problems & Opportunities: cf. with
section "Problem Statement"

Environment

Develop DIRO2C Artifact:

Implementation of binary and
multiclass diff-classifier
Global and local data
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Synthetic data generation
approaches

Evaluate:

Performance measuring of
different difference
recognition approaches
Proof if differences are
recogniced correctly

Design 
Cycle

Design Science Research

Rigor Cycle

Grounding
Additions to KB

Knowledge Base

Relevance Cycle

Requirements
Fields Testing

Figure 1.2: Adapted design science research cycle to summarize the research design for
this thesis. Source: [HMPR04, Hev07]

1.6.2 Development of DiRo2C

The main goal of this activity is the implementation of DiRo2C and the possible approaches
to detect differences. As already mentioned, one solution is to use a binary classifier,
and another way is to use a multiclass classifier. In both cases, we use a decision tree
for implementing the diff-classifier [BFOS84, HTF09]. In general, the training data to
train the diff-classifier is produced using the available black box models. By comparing
the predictions, a diff-dataset builder of DiRo2C determines the target y for the diff-
dataset. We differ between a local and a global approach to generate a dataset for
the diff-classifier. Local means the created data is depending on a particular single
instance. It is comparable with the outcome explanation problem regarding model-
agnostic methods [GMR+19]. The decisive distinction here is that the differences are
computed with the predictions of the black boxes. One promising local approach to
generate the training and test data focuses on the proposed neighborhood generation
of LORE [GMR+18]. We use various implemented functions from LORE as a basis to
adapt it to our problem. Therefore, the deap libary [FDRG+12] is also integrated for
the adapted and modified neighborhood generation methods. DiRo2C uses for the binary
and multiclass diff-classifier, a Classification And Regression Tree (CART) optimized
algorithm2 for implementing the diff-classifiers [HTF09, BFOS84]. We test it against the
local data approach where we use the already existing black box training dataset to train

2Sourcecode of the algorithm: https://github.com/scikit-learn/scikit-learn/blob/
fdbaa58acbead5a254f2e6d597dc1ab3b947f4c6/sklearn/tree/tree.py#L584
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1.6. Methodological Approach

the diff-classifier. The global data generation approach is thus comparable with the model
explanation problem of the “Black Box Explanation Problem” [GMR+19]. It provides
one single dataset independent of a particular instance to detect the differences globally.
For the synthetic global data approach, the data is generated uniformly randomly for a
specific valid range of values. We also test it against another global data approach where
we use the black box training dataset instead.
This phase is divided into three main steps: planning and modeling, implementing, and
testing, which includes validation and verification of the implemented components.

1.6.3 Evaluation of DiRo2C

The chosen method to evaluate the implemented approaches is a lab simulation [CGH09,
HMPR04, VPHB12]. To achieve reproducible results, we use controllable settings to
minimize randomness. One essential objective of this phase is to find the best approach
for providing the diff-classifier to predict the data instances. We measure the classifier’s
performance by considering the confusion matrix and evaluation metrics such as Accuracy,
F1-score, and the Pearson Correlation Coefficient (Pearson CC) [CJ20, Han12, HM15,
TSK06]. In the literature, the PearsonCC metric is also called the Matthews Correlation
Coefficient (MCC). We use the term PearsonCC in this work. The comparison of the
metrics gives an indication of which setup performs best.

We use already existing well-known benchmark UCI Machine Learning Repository
datasets [DG17] and additionally synthetically created datasets for our experiments
and simulations. According to the literature, we apply a stratified k-fold cross-validator
(where k = 10) to split the dataset and evaluate the specific metrics [Koh95, TSK06,
WFH11, Won15, WY17, WY20]: This validator splits the dataset into k successive groups
of samples (evenly divided), called folds. Stratified means that the instances are divided
up equally that each fold preserves approximately the same percentage of each outcome
class as the entire dataset. We test in 10 test runs each time with a different test instance
x. Then we calculate the mean, standard deviation, min, and max for each metric.

Another essential part of the evaluation is creating test cases with synthetic and well-
known benchmark datasets. The black box models are generated with manipulated
datasets to evaluate the correctness. In detail, manipulated values for specific features
lead to different results of the black boxes. These differences must then be recognizable
in the predictions of the diff-classifier. Since we use a Decision Tree Classifier for the
diff-classifier, we can analyze the created decision tree (see Figure 2.1) to evaluate the
correctness. We use the machine learning extension Python library Mlxtend3 to illustrate
our results and findings [Ras18].

Therefore, we evaluate the performance of the different data generation (providing)
strategies and the trained diff-classifiers. Furthermore, the detected differences of the
manipulated black boxes get verified by analyzing the resulting decision trees.

3Python library Mlxtend: http://rasbt.github.io/mlxtend/
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1.6.4 Code Repository and Technical Foundations
To ensure reproducible and verifiable results and ultimately scientific rigor, the code and
scripts of DiRo2C and the experiment settings are publicly available in a GitLab4 code
repository. The datasets are integrated into the Python5 scikit-learn6 environment. Data
transformations are carried out with the help of suitable packages such as NumPy7 and
pandas8. In addition, synthetically datasets are generated to evaluate DiRo2C. For that
purpose, the scikit-learn samples generator is used9. We also use the Python scikit-learn
open-source machine learning library for model fitting, predicting, cross-validation, and
performance evaluation. The dataset is prepared to contain information regarding the
differences between the black boxes. In addition, adequate metrics are selected to measure
the performance of the models.

1.7 Research Contributions
Therefore, the main research contribution is the design of a method that allows the
detection of the differences between two black box classifiers to provide explanations. It
includes the following components: Design of two diff-classifier strategies (binary versus
multiclass), local and global data generation strategies, corresponding implementations
to provide datasets to train the diff-classifiers, and a synthetic data generation approach
to create more data in the surrounding area where the predictions of the two black box
classifiers differ. A further contribution is the implementation and evaluation of the
DiRo2C artifact and if the differences are correctly recognized.

1.8 Structure of the Thesis
The thesis is structured as follows:
Chapter 2 introduces the classification terminology and gives an overview of inter-
pretable models and related work that significantly influences our approach. Further,
we explain the properties of an interpretable model. This chapter also explains different
model-agnostic methods. Furthermore, we discuss why they are used and which different
problems they solve. We also explain, in detail, the difference between local and global
explanations and the difference between global and local explanators.
In Chapter 3, we focus on our approach for recognizing differences between binary
black box classifiers and the main concepts of our presented approach. We explain the
difference classification problem and generalize it for any number of classes for the black
box base classifiers. That chapter will also introduce the dataset which we are using as a

4Code-Repository Environment: https://gitlab.com/andsta/diro2c/
5Python programming language: https://www.python.org/
6Python library scikit-learn: https://scikit-learn.org/
7Python package NumPy: https://numpy.org/
8Python package pandas: https://pandas.pydata.org/
9Overview of the scikit-learn sklearn.datasets module: https://scikit-learn.org/stable/

modules/classes.html#module-sklearn.datasets
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1.8. Structure of the Thesis

running example through our work. In addition, we explain the different data approaches
to train the classifier to recognize the differences. Finally, we present the main concepts
and implementations of our approach.
Chapter 4 explains in detail the “Genetic Neighborhood” approach of LORE and how we
adapt this approach for our local genetic neighborhood approach to recognize differences
between two binary black box classifiers. We explain the used fitness functions of LORE
that are an integral part of genetic algorithms. For comparison, we show the datasets of
the different data approaches. We also present the data density plots of each approach
to better explain the differences between the global and local approaches.
Chapter 5 describes how we measure the performance of the trained classifiers by
the various data approaches. We also present the experimental setup. In detail, the
used benchmark datasets, the preprocessing of the datasets, and the black box training
and manipulation to force differences between the black boxes. We also explain which
performance metrics are used for evaluating the performance. Finally, we present the
results and discuss our findings. We also explain why the local genetic neighborhood
approach of DiRo2C may be too simplistic.
In Chapter 6, we focus on presenting our modification of the initial genetic neighborhood
approach. We explain the modified fitness function and implementation of the algorithm.
After that, we show the effects of the modified local genetic neighborhood approach by
using our running example and additionally a Gaussian quantiles dataset. Again, we
also use data density plots to illustrate the differences between the genetic neighborhood
data generation approaches. After all, we discuss how we want to solve the ultimate
goal to explain the global differences between two binary black box classifiers using the
local modified genetic neighborhood approach to generate various diff-datasets. Finally,
we present the measured performance results of the modified approach compared to the
simplistic genetic neighborhood approach and discuss our further findings.
Chapter 7 presents our evaluations if the detected differences are recognized correctly.
Therefore, we use simple two-dimensional synthetic datasets to observe if and how forced
manipulations are recognized. In addition, we want to show how our approach can
handle non-orthogonal decision boundaries. We also use a well-known benchmark dataset
to evaluate the recognized differences for correctness. We present data manipulation
scenarios with various defined hypotheses and how the forced manipulations should affect
the trained classifier to recognize the differences.
Chapter 8 summarizes the main parts, findings, and contribution of this thesis. Fur-
thermore, we summarize the limitations of our work and discuss potential further works.
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CHAPTER 2
Related Work

This chapter introduces the terminology and core concepts in terms of interpretability. It
gives an overview of related topics and work that significantly influences our approach.
According to the literature, we differ between approaches that explain the global and
local behavior of a black box model. We use local data approaches to predict the local
differences between the black boxes. Besides, we implement data approaches for DiRo2C
to explain the global behavior of the black box models and thus to detect not only the
local differences between them. This chapter also focuses on model-agnostic methods
that provide a function f (especially an interpretable model) to explain any black box.
In addition, rule-based approaches and, finally, the concept drift detection are discussed.

2.1 Classification Terminology
According to the work of Guidotti et al., we define the classification problem as fol-
lows [GMR+18, GMR+19]: a classifier (predictor) is a function (see Equation 2.1):

c : X (m) → Y (2.1)

that assigns an instance x to a classification (also called decision, prediction, outcome or
target) y in a target space Y . Where x depends on a feature space X (m) with m features.
A classification y is predicted by c (see Equation 2.2):

c(x) = y (2.2)

and c(X) = Y denotes {c(x) | x ∈ X} = Y , where X is the set of all inputs. An
instance is defined as a set of m attribute-value pairs: (ai , vi), where a denotes the feature
(attribute) and v is a continuous or categorical value. Besides, a predictor can be any
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decision system. In the following, c represents an interpretable classifier (cf. Section 2.2)
and b denotes a black box predictor. Therefore, we will write (see Equation 2.3):

b(x) = y (2.3)

Occasionally we differentiate in our work between the actually assigned outcome class
to train the classifier and the predicted target of the classifier. In that case, y denotes
the actually assigned target and ŷ the predicted target. According to the summary of
Guidotti et al. [GMR+19] the following methods or algorithms are designated black boxes:
Neural Network (NN), Tree Ensemble (e.g. Random Forest), Support Vector Machine
(SVM), Deep Neural Network.

2.2 Interpretable Models
Certain types of ML models have the property that the resulting decisions are inherently
interpretable. Interpretable models are also called white boxes. According to the state
of the art, decision trees, rules, and linear models are such interpretable models [Fre14,
GMR+19, HDM+11, Mol20, RSG16b].

2.2.1 Decision Tree
A decision tree-based system uses a structured graph that is composed of internal
nodes [BFOS84, HTF09, Qui86]: Decision tree model algorithms calculate, several times,
threshold values for the features to divide the data according to the cutoff criteria. A
feature is an attribute or a column of a dataset. Thus, the features are the inputs to
classify an instance. An internal node represents a condition for a feature, and the
corresponding value is tested against it. The leaf nodes represent the class label and
decide the result of the prediction (see Figure 2.1). One path from the root to the leaf
node can be considered as a classification rule and has a defined outcome.

2.2.2 Decision Rule
Therefore, another suitable approach to generate interpretable systems is to use a decision
rule (see Equation 2.4) which consists of one or more conditions and the corresponding
outcome [FGL12, FW98, Mol20]:

IF condition1 ∧ condition2 ∧ ... ∧ conditionn THEN outcome (2.4)

A decision rule can be interpreted as one path from the root to a leaf node of a decision
tree. Thus, a set of rules can be derived from a decision tree [FW98, Qui87a, Qui87b].
The logical conjunction of conditions for specific features in the if-clause is comparable
to a certain path with the corresponding conditions (threshold values) and the outcome
is comparable to the leaf node which represents the class label. In the field of rule-based
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feature 1 < 1000

feature 2 < 27

true false

outcome a

outcome boutcome a

true false

Figure 2.1: Example of a binary decision tree

IF Respiratory-Illness = Yes AND Smoker = Yes AND Age >= 50 THEN Lung Cancer

IF Risk-LungCancer = Yes AND Blood-Pressure >= 0.3 THEN Lung Cancer

IF Risk-Depression = Yes AND Past-Depression = Yes THEN Depression

IF BMI >= 0.3 AND Insurance = None AND Blood-Pressure >= 0.2 THEN Depression

IF Smoker = Yes AND BMI >= 0.2 AND Age >= 60 THEN Diabetes

IF Risk-Diabetes = Yes AND BMI >= 0.4 AND Pro-Infection >= 0.2 THEN Diabetes

IF Doctor-Visits >= 0.4 AND Childhood-Obesity = Yes THEN Diabetes

Figure 2.2: Comprehensible interpretable decision set, which enables applying rules
independently. Source: Lakkaraju et al. [LBL16]

approaches, some interesting concepts have been presented to be able to interpret and
explain the decisions of models. Letham and Rudin proposed in their paper a method
to build predictive models in the form of sparse decision lists that contain “if-then”
statements [LRMM15]. Lakkaraju, Bach, and Leskovec present an approach to describe
the decision boundaries between classes using decision sets (see Figure 2.2) [LBL16].
In conclusion the following papers propose rule-based approaches: [LBL16, LRMM15,
MVED17, WR15].
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Decision trees compared to rule-based systems have decisive advantages and disadvantages
and are discussed controversially in the literature [FGL12, Fre14, Qui87a, Riv87]: Decision
trees can represent the nodes and the included conditions graphically. The hierarchical
structure helps to identify the relative importance of an attribute. The closer the node is
to the root, the more important is the regarding feature for the prediction. In contrast,
decision rules, which represent the basis for decision-making textually, are more compact
and expressive.

2.2.3 Linear Model
Linear model approaches also offer the possibility to interpret the decisions of the trained
ML systems [HMG+14, Mol20, RSG16b]. Equation 2.5 shows how the model predicts
the outcome y for a particular instance x of X [HTF09]:

y = β0 +
m�
i=0

βixi (2.5)

Where xi represents the input for the i-th feature of the instance x and β the regarding
weights or coefficients. With the help of the weights and analysis of the feature importance
(see Figure 2.3), the decisions of a linear model are interpretable [GMR+19, Mol20].
The sign and magnitude for the coefficient reveal the influence the feature has on the
decision [GMR+19, HMG+14].

2.2.4 Interpretability
In conclusion, the more complex the model is (e.g., a too large set of rules or deep
decision tree), the more likely it becomes that it is not humanly understandable any
longer [Fre14, GMR+19, HDM+11]. Lipton stated in his work, that a model is only
interpretable if a human can capture the entire model at once [Lip17]. He even argues
that an interpretable model trained with high dimensional data is in certain circumstances
less transparent than a compact NN.

2.3 Properties of an Interpretable Model
Interpretable models must have the property that the decisions are comprehensible and
explainable. Guidotti et al. summarize in their work the most important and desired
criteria for interpretable models: Interpretability, accuracy and fidelity [GMR+19](cf.
also with [DVK17]).

Interpretability: The decisions of interpretable models must be human-understandable.
As already mentioned in Section 2.2, the complexity of the model is crucial so that the
basis of the decision is understandable [Fre14, HDM+11]. The term interpretability is to
be understood in the same way as the term comprehensibility.
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Figure 2.3: Feature importance of a linear model. Example of a binary classification for
room occupancy, where the targets are 1 for “occupied” and 0 for “not occupied”. Source
of dataset: [CF16]

Accuracy: Interpretable models have to predict unseen data or instances accurately.
High accuracy is the goal if the explanations of the interpretable model are considered for
predictions and not the decisions of the black box model. The model’s performance can
be measured with suitable evaluation metrics such as Accuracy and F1-score [Han12,
HM15, TSK06].

Fidelity: The explanations of the interpretable models must accurately approximate
the prediction of the black box. Fidelity gives information about how well the model
imitates the behavior of the entire black box. The measurement is carried out again via
Accuracy and F1-score, but in regards to the result of the model.

2.4 Model-Agnostic Methods
Model-agnostic methods are suitable approaches to interpret predictions of black box
models and provide solutions for the “Open the Black Box Problem” [GMR+19]. Different
methods help to separate the explanations from the ML model [RSG16a]. That means an
agnostic explanator is not only compatible for one specific type of ML model like NN or
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a SVM [GMR+19]. Desirable characteristics of model-agnosticism are: model flexibility,
explanation flexibility, and representation flexibility [RSG16a].

Model Flexibility: Interpretable models provide not for all problem-solving tasks
sufficient understandable explanations. In the case of a complex task (e.g., predicting
the sentiment of a sentence [RSG16a]), the model and, finally, its decisions would be
no longer understandable by humans [Fre14]. Thus, model flexibility is fulfilled if the
interpretation is independent of the underlying machine learning model. The separation
of interpretability allows using any machine learning model to provide interpretable
explanations.

Explanation Flexibility: Regarding the application and the problem-solving task,
different forms of representation are needed for explaining. For some problem-solving
tasks, a graphical illustration of the feature importance is helpful, in other cases a linear
formula [Mol20]. Ribeiro et al. describe explanation flexibility using the following example:
By explaining why an image is classified into a particular category, it could be sufficient
to know which part of the image is most responsible for the classification [RSG16a].
Therefore, explanation flexibility ensures that a model-agnostic method is no longer bound
to a specific form of explanation. In addition, users with different specialist knowledge
require alternate explanations. Explanation flexibility also concerns the complexity or
granularity of the explanation. For some cases and certain user groups, complex or
multiple decision rules are desirable, and in some cases, simple or few rules are more
suitable. Ribeiro et al. explain that most interpretable models are restricted in providing
flexible explanations [RSG16a]. E.g., the approach of Kim et al. by using prototypes for
the explanations [KRS14], of Letham et al. by providing a set of rules [LRMM15], or of
Caruana et al., which use line graphs [CLG+15].

Representation flexibility: Ribeiro et al. argue in their work that in areas where
ML problems relating to video, image, and text have to be solved, many features are
used, which are not per se human-understandable without changing the representation of
the feature [RSG16a]. E.g., unsupervised learning is used to provide word embeddings
(cf. [MSC+13]). Ribeiro et al. further stated that even if an interpretable model is used to
return explanations for word embeddings, the feature is still non-interpretable. Therefore,
representation flexibility implies that the model-agnostic approach can represent a feature
differently as the model has been trained. That means model-agnostic methods that fulfill
representation flexibility can provide explanations by replacing the non-interpretable
features with interpretable ones.

The “Black Box Explanation Problem” is divided into model explanation, outcome
explanation, and model inspection [GMR+19]:
Model explanation approaches deliver global explanations to interpret the complete
decision-making basis of the classifier (see Figure 2.4). Thus, the provided interpretations
reflect the inner logic of the black box.
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Test Instances Black Box Interpretable Global
Predictor

MODEL EXPLANATION:

R1: IF (condition1 AND condition2)
THEN outcome1
R2: IF (condition3) THEN
outcome2
R3: IF (condition4) AND
(condition5) THEN outcome2
Rx: IF (conditionx) THEN
outcome1 

Figure 2.4: Model explanation problem: Providing an interpretable global predictor for
example in form of decision rules. Source: Guidotti et al. [GMR+19]

Test Instance Black Box Interpretable Local
Predictor

OUTCOME (Local)
EXPLANATION:

R1: IF (condition1 AND condition2)
THEN outcome1

Figure 2.5: Outcome explanation problem: Providing an interpretable local predictor
to explain the prediction for a particular instance. Delivers only those rules which are
responsible for classifying that instance. Source: Guidotti et al. [GMR+19]

The challenge regarding the outcome explanation problem is to provide a local expla-
nation of why the black box predicted the result for a particular instance (see Figure 2.5).
The model inspection problem consists of delivering textual or visual representations
to get an overview of some specific property and why the black box predicts certain
results for particular value ranges.

According to Guidotti et al. and their work [GMR+19], one method to solve the model
inspection problem is Individual Conditional Expectation (ICE) [GKBP15]. It is
equivalent to the Partial Dependency Plot (PDP) method with the significant difference
that ICE explains the effect of changes of single instances.
It should be mentioned that any interpretable model (cf. Section 2.2) can be used for an
agnostic explanator [GMR+19, Mol20].

2.5 Global Agnostic Explanators
Global agnostic explanators provide a solution to the model explanation prob-
lem [GMR+19]. There are different approaches to interpret black boxes globally inde-
pendent of the underlying black box model. The method of Lou et al. [LCG12] was
one of the first to provide an agnostic solution. It returns the feature importance and
additionally the shape function for the explanation. A shape function illustrates the
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characteristics of a function by using a plot. Using the plot, the linear and the non-linear
properties together with its shape linearities can be analyzed. They use and extend
Generalized Additive Models (GAMs) (cf. [Has90]) to interpret splines, regression trees,
or tree ensembles. Guidotti et al. claim in their work [GMR+19] that GAMs are seen
as the first choice (compared to other approaches) for interpretable explanations when
only univariate terms are considered. Another method is called GoldenEye [HPB+14].
GoldenEye implements an iterative algorithm (based on data randomization) to find
features that contribute significantly to the prediction. The Partition Aware Local Model
(PALM) [KW17] method’s objective is to debug the machine learning of the black box
by capturing the structure of the dataset. PALM approximates the behavior of the
black box by using a decision tree as a meta-model. The meta-model is responsible
for partitioning the training data. PALM also uses a set of sub-models to mimic the
behavior for each partition. Thus, a user can interpret the detected rules by tracking
the path and assign problematic test examples to the responsible train data. Guidotti et
al. claim in their work [GMR+19] that PALM has also the property of an explanator
agnostic method. The PDP [Fri01] and the Accumulated Local Effects (ALE) [AZ19]
approaches are used to provide global explanations to be able to show how individual
features affect the prediction of the black box model on average. The main difference
between these two methods is that PDP describes the marginal effect on the predictions
and ALE the average of the changes in the predicted outcomes. Therefore ALE has an
important advantage when the features are correlated.

2.6 Local Agnostic Explanator
Local agnostic explanators provide a solution to the outcome explanation prob-
lem [GMR+19]. There are various local agnostic explanatory approaches. We explain in
this section especially the LORE and Local interpretable model-agnostic explanations
(LIME) method. Similar to those approaches, DiRo2C also uses a surrogate model to
predict the decisions of the black boxes. A surrogate model tries to approximate the
predictions of an existing ML model. These two approaches imitate and further explain
the local behavior for a particular instance.
The LIME method approximates the results of the black box by using local surrogate
models [RSG16b]. Further, LIME provides explanations by using interpretable linear
models (cf. Section 2.2). The calculated feature importance of the linear models represents
the explanation (see Figure 2.3 and 2.6). The method generates random data in the
neighborhood of the to be explained instance to train the linear models. LIME explains
the local behavior of the black box for a particular instance x. Ribeiro et al. further
provide sparse linear models to reduce the weights and thus the features used in the
explanations. When using the so-called “SP-LIME” method, the user has to choose
the length of the explanation. The authors stated that LIME uses a measure L to
determine how faithful the linear model approximates the local behavior of the black
box model. The black box model is explained by LIME locally, which is defined by a
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Figure 2.6: LIME explains in this example the local behavior of an instance by using the
calculated feature importance of the approximated linear models. “income_class” is the
target y. Source of the adult dataset: [DG17]

proximity measure. The term “faithful” corresponds to the term “fidelity” in the context
of [RSG16b]. The authors describe that LIME measures the distance which is a crucial
factor of L between the to be explained instance x and close to x generated instances.
Those synthetic instances are generated close to x uniformly at random. The distance is
measured by applying an exponential kernel defined on a distance function (e.g., cosine
distance for text, L2 distance for image) to determine the locality proximity measure.
Ribeiro et al. claim that to ensure interpretability and local fidelity, LIME minimizes
the L measure plus a complexity measure for different generated explanations. In the
case of linear models, the complexity measure is controlled over the number of non-zero
weights. Figure 2.7 shows the functionality of LIME using a toy example [RSG16b]. The
function of the black box classifier is represented by the blue and pink background (two
different outcome classes). The to be explained instance is marked with a red, bold
cross. The figure also shows the randomly generated instances close to the instance to
be explained. LIME predicts the outcome for the generated instances by applying the
black box classifier and weighs them by using the locality proximity measure. Ribeiro
et al. explain that the dashed line represents the minimized explanation that is locally
faithful. Ribeiro et al. claim that the complex function of the black box classifier cannot
be approximated global adequately by a linear model. Therefore, they also mentioned
that it is not guaranteed that the explanation is globally faithful as presented in the
figure.

Like LIME, the anchors’ approach [RSG18] uses a perturbation-based algorithm to create
randomly so-called anchors with the highest coverage. Instead of using a linear model,
the authors use a decision rule in the form of a “IF-THEN” statement for the explanation.
Anchors are reusable for locally similar instances.

Compared to LIME, there are also other approaches that compute the feature importance
for a particular instance x to provide local explanations. Strumbelj et al. propose an
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Figure 2.7: Toy example to present intuition for LIME. Source: [RSG16b]

approach that explains the prediction by highlighting the contribution of a particular
feature value on the decision of the black box [ŠKŠ09, ŠK10]. The Interactions-based
Method for Explanation (IME) method provides the feature importance of the black
box’s decision for a particular to be explained instance. Further, Strumbelj et al. claim
that they use only the input and output of the black box to calculate the shift of the
black box’s decisions and transform it into contributions (cf. feature importance) of
individual feature value on the decision [ŠK10]. The authors describe that they apply for
computing these contributions known concepts from the coalitional game theory [ŠK10].
A similar approach to LIME is the Model Explanation System (MES) [Tur16] of Turner
et al. providing explanations using a Monte Carlo algorithm. They implement a “pre-
computation” phase and a scoring system to find the best explanation. Turner explains
that for each explanation the method is finding by using a “precomputation” phase the
optimal threshold and its corresponding score [Tur16]. Then all optimized scores for each
explanation are compared to find the highest score. The explanation contains a logical
statement that expresses the reason for the decision of the black box. SHapley Additive
exPlanations (SHAP) [LL17] is in principles proposed to explain individual predictions.
SHAP values describe the influence of each feature on the prediction for a particular
instance. But SHAP, which is derived from the coalitional game theory method Shapley
Values [Sha53], provides also extensions for global interpretation methods.

In contrast, LORE uses logical rules and a set of counterfactuals to provide local
explanations to explain the prediction for particular instances [GMR+18]. Counterfactuals
and logical rules are human-friendly explanation concepts. Miller summarized the
characteristics of human-interpretable explanations in his work [Mil19] (cf. Section 1.2).
A counterfactual describes how the input of certain features must be modified to change
the outcome [WMR18, Mol20]. To create counterfactuals many different approaches
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and implementations are already established to provide explanations. Wachter et al.
propose one method to provide counterfactuals in their work [WMR18]. The extended
implementation of Van Looveren and Janis Klaise uses class prototypes for providing
better interpretability [LK20]. LORE uses a decision tree to approximate the results
of a black box and is user-parameter-free [GMR+18]. User-parameter-free means that
no further inputs are required by the user to create an explanation for a particular
instance. LORE uses a genetic algorithm approach (we explain the LORE method in
detail in Chapter 4). The method generates the neighborhood close to an instance x
to be explained by applying a genetic evolutionary approach, which is described in the
work of Bäck et al. [BFM00]. At first, we want to show how differently the method
generates the neighborhood compared to a random data generation approach. Figure 2.8
illustrates two different neighborhood data generation approaches. The figure is originally
shown in the following work: [GMR+18]. Guidotti et al. explain that the figure shows
an example of a neighborhood generation based on a black box random forest model
with a bi-dimensional feature space. The right figures show the genetic neighborhood
data generation of LORE. The left figures show a uniformly random data generation for
comparison. The bottom figures show additionally the data density around the starred
instance. The starred datapoint highlights the instance x to be explained. The bottom
figures show the data density using a color scale (by a yellow gradient). The genetic
neighborhood approach generates, in contrast, to the uniformly random data generation
approach, increased data around the instance x to be explained. The authors claim that
the data density close to x is a key factor for training local interpretable predictors and
helps create an accurate local explanation of why the black box predicts the specific
outcome. After clarification with Guidotti et al. (authors of [GMR+18]), we also can
explain why the figure shows darker green and purple stripes in some areas. Those darker
stripes indicate areas in which the classifier is more confident of a certain outcome. We
assume that the classifier in the white areas is less confident (compared to other areas)
of a certain outcome.

LORE creates an explanation e (see Equation 2.6) by extracting the used decision tree
as local explainer in the following form [GMR+18]:

e = �r = p → y,Φ� (2.6)

Where r represents a decision rule that describes the reason for predicting: y = c(x). Φ

represents counterfactuals that give information about which changes for the respective
features lead to an opposite prediction. Guidotti et al. provide the following example
to create for a loan request for an customer x (see Equation 2.7) an explanation e (see
Equation 2.8) [GMR+18], whereby x represents a particular to be explained instance:

x = {(age=22), (job=none), (amount=10k), (car=no)} (2.7)
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Figure 2.8: Genetic neighborhood data generation of LORE vs. uniformly random data
generation. Decision boundary of a random forest black box: purple and green outcome.
The starred datapoint highlights the to be explained instance. The left figures show a
uniformly random data generation, and the right figures the genetic neighborhood data
generation of LORE. The bottom Figures show for comparison the data density around
the starred instance. Source: [GMR+18]

e = �r = {age ≤ 25, job = none, amount > 5k} → deny,

Φ = {({age > 25, amount ≤ 5k} → grant),
({job = clerk, car = yes} → grant)�

(2.8)

Guidotti et al. describe in their paper [GMR+18] the limitations of LIME [RSG16b] and
the anchor’s approach [RSG18]: They argue that a random generation of the neighborhood
is not focused on generating increased instances nearby the local environment of the
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instance to be explaining. Thus, this approach is not advantageous to achieve a higher
data density closest possible to the particular instance (see Figure 2.8). Furthermore
they stated, it is not beneficial that a user has to specify: the number of features in
[RSG16b] and the level of precision in [RSG18]. Therefore, we have chosen the genetic
neighborhood generation approach of LORE as the basis for our data generation
approach to recognize the local differences between the black boxes. Furthermore, we
apply the “Genetic Neighborhood” approach of LORE to generate a dataset dependent
on a particular instance to train the diff-classifier. In our approach, we use a decision
tree classifier to predict the differences between black boxes. We modify the genetic
neighborhood approach of the LORE method to generate new instances depending on
the outcome of the black boxes.

2.7 Concept Drift Detection
In the field of concept drift research, some interesting papers present an approach to
detect if drifts are occurring. Most of the literature focuses on detecting a drift rather
than explaining the differences (cf. [DB18, GMCR04, LZL14, WHC+16]. Apart from the
work of Demar and Bosni that proposes a drift detector to recognize concept drift using
model explanation [DB18]. The recognizer is compatible with an arbitrary classification
algorithm. Demar et al. use the IME approach [ŠKŠ09, ŠK10] to recognize redundancies
and interactions of features. Demar et al. claim that IME has the needed characteristics
of being resistant to noise and enables interpretable macro (cf. model explanation problem)
and micro (cf. outcome explanation problem) visualization of concept drifts. This method
highlights the influence of a feature on a particular prediction of the ML model to
interpret the global behavior (cf. Figure 2.3). They argue further that it shows the
contribution of specific feature values for interpretable micro-visualization.
In contrast, our approach provides a diff-classifier that is interpretable by any model-
agnostic method.

2.8 Summary
In this chapter, we have defined the classification terminology, which is used in this
work. We have proposed, according to the literature, accepted interpretable models. We
have discussed concepts in terms of interpretability and different approaches to explain
the decision of black boxes. We also have discussed the differences between local and
global explanations and present approaches as examples. Further, we have presented
global and local agnostic explanators, related topics, and in detail LORE and LIME
that significantly influence our approach. We have explained why we have chosen the
genetic neighborhood data generation of LORE for our purpose and designed DiRo2C
based on it. The next chapter will describe the approach of DiRo2C to detect differences
between the black boxes. We will explain the difference classification problem between
two black boxes and also propose data generation (providing) approaches to train the
diff-classifier. Further, we will explain our approach to train a binary classifier to detect
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whether the two binary black boxes A and B predict the equal outcome or not and a
multiclass classifier that can predict every possible outcome of the two binary black boxes
A and B. We also will generalize the problem to any number of classes.
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CHAPTER 3
Difference Recognition

This chapter focuses on the approach for DiRo2C to detect differences between the
binary black boxes and the main components. The differences between the black boxes
are recognized by training a decision tree-based classifier. According to RQ 1, the aim
is to investigate how a binary classifier performs in contrast to a multiclass classifier.
Therefore, DiRo2C provides a binary and multiclass classifier for recognizing differences.
To illustrate the difference classification problem between two black boxes, we provide
Figure 3.1. The left plot and the middle plot show the two datasets of the black boxes
A and B and the classified instances. Each instance of black box A and B (shown in
the plot as a datapoint) is assigned to a particular class. The positive “1” class of black
box A and B is marked with a red “plus” sign. The negative “0” class of black box A
and B is marked with a blue “minus” sign. The yellow line marks the boundary of class
membership for an instance. The plots show two features x1 and x2. The dataset for
black box A is vertically divided in half. For the dataset of black box A, the x1 feature
decides whether the instance is classified as a positive or negative class. The dataset of
black box B has a more complex class distribution. The plot shows on the x1 axis three
manipulated shifted (staggered) boundary sections. Starting from the bottom up, the
first boundary section is the same as for black box A, the second is shifted to the right
in favor of the positive class and the third is shifted to the left in favor of the negative
class. The plot on the right shows the differences between the datasets of black box
A and B. Further, it shows the resulting possible classes that represent the different
combinations of the outcome classes of black box A and B. The different classes are
marked with “00”, “11”, “10”, and “01”. The class boundaries are again marked with
a yellow line. Class “00” marks the area where the instances of black box A and B are
both assigned to the negative class. Class “11” marks the area where the instances of
black box A and B are both assigned to the positive class. Class “10” marks the area
where the instances of black box A are assigned to the positive class, and the instances
of black box B are assigned to the negative class. Class “01” marks the area where the
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Figure 3.1: Difference recognition illustration of two datasets for black box A and B,
used as a template for our running example. The dataset of black box B shows a more
complex boundary between the negative and positive class. The right figure shows the
differences between black box A and B and the different possible labels.

instances of black box A are assigned to the negative class and the instances of black box
B are assigned to the positive class. In the case of the binary diff-classifier, the classes
“11” and “00” are combined and classified as “no diff” or y=0, and the classes “10” and
“01” are combined and classified as “diff” or y=1. We will use similar two-dimensional
synthetic classification datasets for our running example throughout the work. Figure 3.2
shows another example the so-called “diagonal example” in the following. The dataset of
black box A remains unchanged compared to the example shown in Figure 3.1. But, the
dataset of black box B is now diagonally divided into two classes. The classification of
the instances is dependent on both features x1 and x2. Again, the plot on the right shows
the differences between black box A and B and the resulting possible difference-classes
“11”, “00”, “10”, and “01”. The instances are classified differently in the lower-left corner
and the upper right corner. In the case of the multiclass diff-classifier, each combination
of black box A and B can be classified. We use this second example above all to show
how our decision tree-based diff-classifier can handle non-orthogonal boundaries. We
explain the diagonal example dataset in detail in Chapter 7.

The difference classification problem to recognize possible differences between two black
box classifiers that classify an instance into cn possible classes can be generalized, as
shown in Figure 3.3. The figure shows the difference classification into cn2 difference-
classes. The various difference-classes can be presented by a cn × cn matrix depending
on the corresponding classes of black box A and B. The class labels of black box A
are labeled with “cl_a”, and the class labels of black box B are labeled with “cl_b”
in the figure. The cell values of the matrix denote the various difference-classes. The
yellow marked diagonal indicates classes where the two black boxes predict the equal
outcome class. For DiRo2C, we focus exclusively on the 2 (binary) class problem and
the 4 (multiclass) class problem. The 2 (binary) class differences classifier divides the
classes whether black box A and black box B have predicted the same or a different result.
The 4 (multiclass) class differences classifier divides the classes to predict all possible
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Figure 3.2: Another difference recognition example of two dataset for black box A and B.
The dataset of black box B shows a diagonal boundary between the positive and negative
class. The right figure shows the differences between black box A and B and the different
possible labels.

combinations of the binary black box classifiers.

DiRo2C implements for both cases a CART optimized algorithm to predict the differences.
As already mentioned, a multiclass classifier has the decisive advantage that it can predict
the various possibilities of differences. The hypothesis, however, is that it performs
worse due to its higher complexity. This chapter explains the different components and
processes for both classifier approaches. So that a diff-classifier can be trained at all, the
diff-dataset ZDiff must first be generated or provided, and then the outcome y must
be determined (see Figure 3.4). According to RQ 1.1, we want to test and evaluate if
a classifier trained on synthetic data outperforms a classifier trained using the original
training dataset. That means, in this case, we do not generate a dataset but provide an
already existing dataset. The existing dataset is provided by merging the initially used
datasets to train black box A and B. According to RQ 1.2, we want to find out to what
extent a local approach, to recognize differences, can outperform a global one to generate
the diff-dataset. Therefore, we explain the different data approaches.

DiRo2C can detect differences between black boxes by instantiating various diff-dataset
generation functions. Depending on whether a binary or a multiclass diff-classifier has
to be created, the particular data generation approach generates a diff-dataset without
target y for an instance. The diff-dataset target determiner adds the list Y by comparing
the predictions of the black boxes to the dataset. Finally, DiRo2C trains, using the
resulting diff-dataset ZDiff , either a binary or a multiclass diff-classifier, to predict the
differences.

3.1 Data Approaches
DiRo2C tests different data approaches against each other. In detail, it provides global
and local approaches (cf. Section 2.4 and Chapter 4). One main difference between
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Figure 3.3: Difference classification problem generalized to cn possible classes of the
black boxes.

the two principles is that the global data approaches are not depending on a particular
instance x. We implement two functions to generate global synthetic data and to use
already existing global real data. The local approaches to return the diff-dataset are
the local genetic neighborhood generation function and the local real data function that
depends on a particular instance x. We test against approaches where we use the existing
dataset of the black boxes. For the experiments, the black boxes are trained with well-
known benchmark datasets. The global real data and the local real data approach using
the already existing instances (of the datasets of the black boxes) to provide real data.

3.1.1 Running Example Dataset
For illustrating the different data approaches, we use the synthetic classification dataset
as seen in Figure 3.5 to train black box A. We manipulate this dataset to train black box
B. This dataset example can be compared with the initial difference classification problem
example (see Figure 3.1). The left dataset for black blox A shows a two-dimensional
dataset with the continuous features x1 and x2. It contains 300 instances (datapoints)
with the following properties for feature x1: min = − 293.39, max = 437.35, µ = − 2.92,
and σ = 187.69 and with the following properties for feature x2: min = − 251.96,
max = 316.10, µ = − 3.23, and σ = 101.08. The instances of the datasets are classified
into two classes “0” and “1”. 150 instances of the left dataset are assigned to the class
“0”, and 150 instances are assigned to the class “1”. The instances of the dataset for black
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Figure 3.4: Process and involved components for training the Diff-Classifier

box A are generated by the sklearn “make_classification” function with the following
parameters: make_classification(n_samples = 300, n_features = 2, n_informative = 1,
n_redundant = 0, n_classes = 2, random_state = 2, n_clusters_per_class = 1, class_sep
= 1.8, flip_y = 0, scale = 100). The right dataset is manipulated on the basis of the
dataset of black box A as follows: (x1 <= 0 and x2 <= −100 : y = 0), (x1 > 0
and x2 <= −100 : y = 1), (x1 < 150 and x2 > −100 and x2 < 100 : y = 0),
(x1 >= 150 and x2 > −100 and x2 < 100 : y = 1), (x1 = −200 and x2 >= 100 :
y = 0), and (x1 > −200 and x2 >= 100 : y = 1). 165 instances are now assigned to
the class “0”, and 135 instances are assigned to the class “1”. Thus, we only manipulate
the outcome classes of the instances of the dataset for black box B. The properties for
the feature x1 and x2 remain unchanged. We use the datasets1 for black box A and B in
the following chapters as a running example.

The following data examples are based on the presented datasets of black box A and B
(see Figure 3.5). We show in the next figures the resulting datasets of the different data

1Datasets are available under: https://doi.org/10.5281/zenodo.5325335
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3. Difference Recognition

Figure 3.5: Running example of a synthetic classification dataset for black box A and a
manipulated dataset for black box B. The plot of the dataset of black box B shows the
different shifted boundaries of the class membership.

approaches for training the classifier to recognize differences between the black boxes.
So, each instance is predicted by black box A and B, and after that, the predictions are
compared to assign the instance to the corresponding difference-class (we explain the
target determination in detail in Section 3.2). Therefore, we show the resulting decision
boundaries (indicated by the black drawn lines) of the trained black box A and B in
Figure 3.6. The both plots show how the instances are differently predicted by black box
A and B. In our running example, we split the generated dataset into a training and test
dataset with a ratio of 80 to 20 percent. After that, we train black box A and B using
the training dataset and a decision-tree based CART optimized algorithm. The plot
shows the resulting decision boundaries of black box A and B. The decision boundaries
represent the learned conditions (rules) for the prediction. Black box A classifies the
instances with the following rule: (x1 <= −8.545 : y = 0) and (x1 > −8.545 : y = 1).
The right plot shows the three manipulated, different shifted decision boundaries of the
trained black box classifier B on the x1 axis.

To compare the different basis for decision-making of the two black boxes in detail,
Figure 3.7a shows the decision tree of black box A and Figure 3.7b shows the decision tree
of the manipulated black box B. Figure 3.7b depicts the manipulated decision boundaries
for black box B.
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Figure 3.6: Trained black box classifier A and B with the corresponding decision bound-
aries based on the running example dataset.

3.1.2 Global Synthetic Data

This approach generates the data ZDiff by computing data randomly according to the
feature value spectrum. Figure 3.8b shows the generated instances (data points) for the
binary (see left plot) and the multiclass diff-classifier (see right plot). The values for
the instances are created randomly for a defined number of instances. The approach
computes the data based on the concatenated training and test dataset of black box A
and B. Therefore, the approach covers the entire feature value spectrum of both black
boxes. The datasets for the binary and multiclass classifier are generated independently
of each other, which means the instances of the datasets shown in the plots are not
identical. The dataset for the binary diff-classifier contains 1,300 instances. 990 instances
are assigned to the class “0” (“no diff”), and 310 instances are assigned to the class
“1” (“diff”). The dataset for the multiclass diff-classifier also contains 1,300 instances,
whereby 571 instances are classified into class “00”, 424 instances are classified into
class “11”, 237 instances are classified into class “10”, and 68 instances are classified into
class “01”. Possible values for the discrete features are determined to produce values for
new instances using a random function. In both examples, the continuous features are
computed by calculating µ and σ to get a sample from a Gaussian distribution per feature.
The dataset 3.8a in Figure contains only continuous features created with µ = − 2.92 and
σ = 187.69 for feature x1 and µ = − 3.23, and σ = 101.08 for feature x2. The approach
generates increased instances in those areas instances of the original datasets also occur
more frequently. It is used for the model explanation problem to train an interpretable
global predictor.
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(a) Decision tree of black box classifier A
(b) Decision tree of manipulated black box
classifier B

Figure 3.7: Decision tree of trained binary black box classifier A and manipulated binary
black box classifier B (Figure 3.5 shows the datasets of the black boxes). If the condition
for a particular node is met, the path on the left of the decision tree is chosen.

3.1.3 Global Real Data

The global real data approach uses already existing data. Figure 3.9 illustrates the
approach of returning global real data. The figure shows the generated instances (data
points) for the binary (see left plot) and the multiclass diff-classifier (see right plot). We
are using the concatenated training and test datasets of black box A and B to train
the diff-classifier. The datasets for the binary and multiclass classifier are, in that case,
identical. The unbalanced dataset for the binary diff-classifier contains 600 instances. 502
instances are assigned to the class “0” (“no diff”), and 98 instances are assigned to the
class “1” (“diff”). The also unbalanced dataset for the multiclass diff-classifier contains
again 600 instances, whereby 266 instances are classified into class “00”, 236 instances
are classified into class “11”, 64 instances are classified into class “10”, and 34 instances
are classified into class “01”. Since the approach only uses data from the original datasets
of the black box models, it can happen, as in this example, that the class distribution is
unbalanced. The figures also show that the instances do not cover the entire data space.
Therefore, the coverage of the data space depends on the original data. This approach is
also used for the model explanation problem to train an interpretable global predictor.

3.1.4 Local Genetic Neighborhood Data

The local genetic neighborhood data generation approach is originally based on the work
of Guidotti et al. [GMR+18]. This approach uses a genetic algorithm implementation
with biological evolution-inspired principles. We use this approach to generate depending
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(a) Dataset for training the binary diff-
classifier

(b) Dataset for training the multiclass diff-
classifier

Figure 3.8: Generated global synthetic datasets for training a binary and a multiclass
diff-classifier to detect differences between black box A and B (Figure 3.5 shows the
datasets of the black boxes). The approach generates the data independent of a particular
instance x.

(a) Dataset for training the binary diff-
classifier

(b) Dataset for training the multiclass diff-
classifier

Figure 3.9: Global real datasets for training a binary and a multiclass diff-classifier to
detect differences between black box A and B (Figure 3.5 shows the datasets of the black
boxes).

on a particular instance x, and the predictions of the black box models new instances.
The new instances are generated in the local vicinity of x depending on a fitness function.
According to this function the fittest instances are selected. The aim is to generate
increased instances (data points) locally as close as possible to the instance x to recognize
the differences between the black boxes. Since this data generation method is a crucial
component of DiRo2C, a separate chapter is dedicated to this data approach. In Chapter 4,
the original approach of LORE and the adaptation for DiRo2C are explained in detail.
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3.1.5 Local Real Data

The local real data selecting approach returns ZDiff , which contains a predefined number
l of instances from the concatenated dataset of the black box models (see Figure 3.10).
The figure shows the selected instances (data points) for the binary (see left plot) and
the multiclass diff-classifier (see right plot). We are using the concatenated training
and test datasets of black box A and B to train the diff-classifier. The datasets for the
binary and multiclass classifier are in that case identical. The unbalanced dataset for the
binary diff-classifier contains 200 instances. 179 instances are assigned to the class “0”
(“no diff”), and 21 instances are assigned to the class “1” (“diff”). The also unbalanced
dataset for the multiclass diff-classifier also contains 200 instances, whereby 133 instances
are classified into class “00”, 46 instances are classified into class “11”, 4 instances are
classified into class “10”, and 17 instances are classified into class “01”. This approach
uses the same distance function as the local genetic neighborhood generation approach
for computing the local closest instances compared to the to be recognized instance x
(marked with a yellow circle in the figure and located at: x1 = − 143.91 and x2 = − 4.53).
Depending on the computed distance (see Equation 3.1) the first l instances are selected.
In this example, l is deliberately chosen to be small to show the difference between the
global real data approach (cf. 3.1.3). The distance (SimpleMatch) for the categorical
(discrete) features is determined by counting the matching categorical features. Whereby
h denotes the number of discrete and m − h the number of continuous features (with m
designating the total number of input features). The sum of the matching features is
weighted by the total number of categorical features. The distance for the continuous
features is calculated by using the normalized Euclidean distance (NormEuclid). Finally,
d returns the weighted sum of SimpleMatch and NormEuclid.

d(x, z) = h

m
· SimpleMatch(x, z) + m − h

m
· NormEuclid(x, z) (3.1)

According to that distance function, the local real data approach computes for every
instance the distance to the to be detected instance x. After that, the instances are sorted
by distance, and the first k instances are selected. The approach selects k instances twice.
Once dependent on black box A and once dependent on black box B. The approach
also divides the instances into two different groups. One group contains instances that
are classified into the class with y = 0 by the black box. The other group contains
instances that are classified into the class with y = 1 by the black box. These two groups
are also sorted by distance. Then, the approach checks the already selected instances
whether there is at least a ratio of 70 to 30 percent between the two mentioned groups.
If the condition is not met, the approach tries to select instances from the respective
disadvantaged group instead to establish the desired ratio. The selected instances for
black box A and B are then merged and checked for uniqueness.
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(a) Dataset for training the binary diff-
classifier

(b) Dataset for training the multiclass diff-
classifier

Figure 3.10: Selected local real data for training a binary and a multiclass diff-classifier to
detect differences between black box A and B (Figure 3.5 shows the datasets of the black
boxes). Given on the yellow-marked instance (Seed 1) the local real dataset approach
selects the instances from the concatenated datasets of the black box models.

3.2 Target Determination

The target determining component has to compute the target YDiff to provide a diff-
dataset for training a binary or a multiclass classifier. The BuildDiffDataset Algo-
rithm 3.1 computes the outcomes of XDiff for black box A and B, compares the results
and returns the determined label. Depending on the passed comparing function, a
diff-dataset for a binary (see Algorithm 3.3) or a multiclass (see Algorithm 3.2) diff-
classifier is returned. At first, the Algorithm 3.1 obtains the labels YA from black box A:
bA(XDiff )=YA (see line number 1) and the targets YB for black box B: bB(XDiff )=YB

(see line number 2). After that, in line number 3, the Compare function computes the
label for the diff-dataset YDiff as detailed below. Finally in line number 4, the algorithm
concatenates the resulting YDiff with the XDiff along the horizontal axis to return the
determined diff-dataset with the outcome class for recognizing the differences between
black box A and B in line number 5.
As already mentioned, DiRo2C provides a binary and a multiclass diff-classifier. Algo-
rithm 3.2 shows how the CompareBinary function works to provide YDiff for the binary
diff-classifier. In that case it compares the predicted outcomes of black box A (YA) and
B (YB) and inverts the result so that the diff-classifier predicts the binary class 1 if black
box A and black box B predict different outcomes (see line number 1). Since we are
using metrics like Accuracy and F1-score to measure how accurately the diff-classifier
predicts the differences, we have to dedicate the “diff” outcome class as the positive class
1. Algorithm 3.3 depicts the comparing function to return YDiff to train a multiclass
classifier for predicting every different combination of predictions for black boxes A and
B. Therefore, the algorithm iterates over the predictions of black box A (YA) and B
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Algorithm 3.1: BuildDiffDataset(bA, bB, XDiff , Compare)
Input: bA - black box A, bB - black box B, XDiff - diff-dataset without Y ,

Compare - compare function to determine Y
Output: Y XDiff - determined diff-dataset

1 YA ← bA.predict(XDiff ); // predict Y of black box A
2 YB ← bB.predict(XDiff ); // predict Y of black box B
3 YDiff ← Compare(YA, YB); // determine Y for diff-dataset
4 Y XDiff ← YDiff ⊕ XDiff ; // concatenate YDiff and XDiff

5 return Y XDiff ;

Algorithm 3.2: CompareBinary(YA, YB)
Input: YA - predictions of black box A, YB - predictions of black box B
Output: YDiff - determined target for a binary diff-dataset

1 YDiff ← Invert(YA==YB); // determined YDiff

2 return YDiff ;

(YB) (see line number 3). Then, it compares for every instance the outcome of black
box A (YAi) and B (YBi). If YAi predicts 0 and YBi 0 then, it appends class “a” for
the combination “00” to YDiff (see line number 4 to 6). Similiary, we define for the
combination “11” the class “b” (see line number 7 to 9), for the combination “10” the
class “c” (see line number 10 to 12), and for the combination “01” the class “d” (see
line number 13 to 15). After the iteration in line number 17, the CompareMulticlass
returns YDiff to train the multiclass diff-classifier.

3.3 Summary
In this chapter, we have presented the approach of DiRo2C to detect differences between
binary black box classifiers and the main components. We have explained the difference
explanation problem, which we have generalized to any number of difference-classes, and
the term difference-classes. We also have pointed out that we are focusing exclusively on
designing and implementing a solution for the 2 (binary) and 4 (multiclass) difference-
class problem. We have introduced our running example, which we are using through
our entire work and the different local and global (difference) data approaches. We have
explained in this chapter the global synthetic data, the global real data, and the local
real data approach. In the next chapter, we will explain the local genetic neighborhood
generation approach in detail. It is noteworthy that a general advantage of the synthetic
data generation approaches is that any number of instances can be generated synthetically
by choice. This approach enables independence from the original data and the class
distribution. In addition, the multiclass diff-classifier has the advantage of classifying all
possible different outcome class combinations of two binary black box classifiers.
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Algorithm 3.3: CompareMulticlass(YA, YB)
Input: YA - predictions of black box A, YB - predictions of black box B
Output: YDiff - determined target for a multiclass diff-dataset

1 YDiff ← ([ ]); // init YDiff

2 N ← length(YA); // determine length of list YA

3 for i ← 0 to N − 1 do
// iterate over list YA and YB

4 if YAi == 0 And YBi == 0 then
// append class 'a' for combination '00' to YDiff

5 YDiff ← YDiff + 'a';
6 end
7 if YAi == 1 And YBi == 1 then

// append class 'b' for combination '11' to YDiff

8 YDiff ← YDiff + 'b';
9 end

10 if YAi == 1 And YBi == 0 then
// append class 'c' for combination '10' to YDiff

11 YDiff ← YDiff + 'c';
12 end
13 if YAi == 0 And YBi == 1 then

// append class 'd' for combination '01' to YDiff

14 YDiff ← YDiff + 'd';
15 end
16 end
17 return YDiff ;
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CHAPTER 4
Simplistic Genetic Neighborhood

In this chapter, we focus on the local genetic neighborhood data generation approach.
First, we explain the basic principles of the LORE approach. Then, we describe how we
enable the original approach for our simplistic approach adapted to generate a dataset
depending on an instance x to recognize differences between two black boxes. This
dataset is used to train a local classifier to recognize local differences close to an instance
x between the black box models.

4.1 LORE’s Genetic Instance Generation Approach
The promising approach to generate the dataset to train the diff-classifier for DiRo2C is
the genetic neighborhood generation of LORE [GMR+18]. The approach of Guidotti et
al. is promising because it can generate synthetic instances in the local vicinity close to
the to be explained instance x. That leads to a higher data density close to x, as the
experiments of Guidotti et al. show. By applying the approach, we try to predict the
local differences accurately. The original approach (see Algorithm 4.1) aims to find and
create a set Zx (see line number 4), with feature values and characteristics similar to
the instance x to approximate the local behavior of a black box model. Therefore, the
objective is to create a set of Z that includes instances with both outcome values of the
black box: Z = Z= ∪Z �= (see line numbers 2 to 4). Whereby, the instances z ∈ Z= have to
meet the condition b(z) = b(x), and the instances z ∈ Z�= the condition b(z) �= b(x) (i.e.,
instances where the black boxes return the same predicted outcomes as for the instance to
be explained, and instances where the predicted outcomes differ). The great advantage of
the LORE approach is that the instance generation is independent of an available training
dataset. That means it is not necessary to rely on the dataset of the black box. Guidotti
et al. describe in their work [GMR+18] that their approach for the instance selection is
similar to active learning [FZL12] and also contains evolutionary approaches [DGH10].
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Algorithm 4.1: LORE(x, b, N), Source: [GMR+18]
Input: x - instance to explain, b - black box, N - # of neighbors
Output: e - explanation of x

1 G ← 10; pc ← 0.5; pm ← 0.2; // init parameters
2 Z= ← GeneticNeigh(x, fitnessx

=, b, N/2, G, pc, pm); // generate neigh
3 Z�= ← GeneticNeigh(x, fitnessx

�=, b, N/2, G, pc, pm); // generate neigh

4 Z ← Z= ∪ Z�=; // merge neighborhoods
5 c ← BuildTree(Z); // build decision tree
6 r = (p → y) ← ExtractRule(c, x); // extract decision rule
7 Φ ← ExtractCounterfactuals(c, r, x); // extract counterfactuals
8 return e = � r,Φ �;

LORE creates the balanced instances z ∈ Z= ∪ Z �= by adapting a genetic algorithm
approach and maximizing the following fitness functions (see Equation 4.1 and 4.2):

fitnessx
=(z) = Ib(x)=b(z) + (1 − d(x, z)) − Ix=z (4.1)

fitnessx
�=(z) = Ib(x)�=b(z) + (1 − d(x, z)) − Ix=z (4.2)

where d is a distance function (see Equation 3.1): d : X (m) → [0, 1] and I = 1, if the
condition is true, else I = 0. In both cases, the fitness functions search for instances
where the feature characteristics are close to x: (1 − d(x, z)) but not equal to x (see term
Ix=z). The fitness function defined in Equation 4.1 looks especially for instances where
the black box b returns for a potential instance z0 the same outcome as for x. In contrast,
the function defined in Equation 4.2 guarantees the generation of instances for which b
predicts a different outcome. Thus, the function fitnessx

=(z0) for an instance z0 where
b(x) �= b(z0) and x �= z0 leads to a result smaller than 1. Instead, b(x) = b(z0) leads to
a result greater or equal than 1. For the instance x itself it returns 1, fitnessx

=(x) = 1.
Therefore, the function guarantees the generation of instances that are different from
x and are as close as possible to x. Another crucial element is the already explained
distance function (see Equation 3.1) of the fitness function. Both fitness functions are
passed to Algorithm 4.2 to generate the neighbors.

The LORE method generates the neighbor instances of x through an instance of the
evolutionary approach (see Algorithm 4.2, which is described in the work of Bäck et
al. [BFM00]). Figure 2.8 shows an example of the genetic neighborhood generation for
an instance x (cf. Section 2.6). It is a particular instantiation of generational genetic
algorithms for evolutionary prototype generation [DGH10], whereby prototypes are
generally an optimized subset of a dataset. But in the context of LORE, the generation
approach is adapted to generate new instances. Guidotti et al. mention that the following
works: [Bal94, CHL05, Esh91, WO06] propose an approach to use genetic algorithms
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Algorithm 4.2: GeneticNeigh(x, fitness, b, N, G, pc, pm), Source: [GMR+18]
Input: x - instance to explain, b - black box, fitness - fitness function, N -

population size, G - # of generations, pc - crossover probability, pm -
mutation probability

Output: Z - neighbors of x
1 P0 ← {x|∀1...N}; i ← 0; // population init
2 evaluate(P0, fitness, b); // evaluate population
3 while i < G do
4 Pi+1 ← select(Pi); // select sub-population
5 P 'i+1 ← crossover(Pi+1, pc); // mix records
6 P ''i+1 ← mutate(P 'i+1, pm); // perform mutations
7 evaluate(P ''i+1, fitness, b); // evaluate population
8 Pi+1=P ''i+1; // update population
9 i ← i + 1;

10 end
11 Z ← Pi;
12 return Z;

by integrating classifiers decisions within the fitness function. Genetic algorithms were
proposed by J. H. Holland and D. E. Goldberg and are based on the biological evolution
process [Gol89, Hol92]. Besides, natural selection, the concept of survival of the fittest,
and genetics inspire those algorithms. Genetics algorithms have the following three
essential elements in common [Gol89, GMR+18, Hol92, KCK20]: genetic representations,
fitness selection, and biological inspired operators.
The genetic representations, which are generally called chromosomes, are depending on
the solution domain to solve a particular problem. In the specific case of LORE, the
chromosomes correspond to instances in the feature space X (m), which supports variation
and selection operations.
The fitness function identifies the best chromosomes regarding the specific case (cf. 4.1
and 4.2). The fittest chromosomes are more likely to survive and reproduce. These,
therefore, have an enormous influence on the next generation and their properties.
The genetic neighborhood generation approach uses crossover (also called mating) and
mutation operators to define the next generation of chromosomes. It includes a stopping
criterion that delivers the fittest generation as a result.
Algorithm 4.2 starts by creating N copies of the to be explained instance x (see line
number 1) and initially evaluates the first population P0 using the fitness functions
fitnessx

=(z) (see Equation 4.1) and fitnessx
�=(z) (see Equation 4.2), and the black box b

(see line number 2). Then the evolution loop (see line number 3) begins to select the
Pi+1 population (see line number 4). The method select (see line number 4) selects a
sub-population depending on the computed fitness score for each generated instance
(instances with a higher calculated fitness score are more likely to survive). Thus, the
select method returns a sub-population with the highest fitness score. We want to
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mention that the first time the evolution loop is run, all instances of the population would
be identical, and thus all instances would have the same fitness score. Guidotti et al. use
the “eaSimple” algorithm of the deap library [FDRG+12] to generate genetic instances.
In the documentation1 of the deap algorithms the following is stated: “[...] First, it
evaluates the individuals with an invalid fitness. Second, it enters the generational loop
where the selection procedure is applied to entirely replace the parental population. The
1:1 replacement ratio of this algorithm requires the selection procedure to be stochastic
and to select multiple times the same individual [...]”. Therefore, we assume that the
parental population is exchanged through a stochastic process before the first evaluation
is processed. Thereafter, the crossover operator (to mix the instances) is carried out and
places the updated population in P �

i+1 (see line number 5). Then, the mutation operator
is carried out, and the again updated population is placed in P ��

i+1 (see line number 6). A
“crossover-probability” pc and a “mutation-probability” pm control the proportion of how
many instances are affected by the operations. LORE uses a two-point crossover that
randomly picks two crossover features from two selected parents’ chromosomes. After
that, the crossover features of the parents are swapped (see Figure 4.1a). LORE also
applies the mutation operator that randomly replaces the value of a particular feature
by using the empirical distribution in case of a continuous feature and by choosing a
possible value in case of a discrete feature (see Figure 4.1b). Therefore LORE uses the
test dataset of the black box to determine the feature values. Guidotti et al. claim that
they use the test dataset of the black box to derive the distribution for experimental
purposes [GMR+18]. The resulting population P ��

i+1 is then evaluated by applying the
fitness function and the predictions of the black box (see line number 8). The evaluation
method provides the fittest individuals, and the loop continues. The goal of the evolution
loop is to create the best fitting individuals by terminating after G generations (see line
number 3) and to return the population PG as Z (see line number 10). The algorithm 4.2
runs, as already mentioned, for both fitness functions: fitnessx

= and fitnessx
�= to create

the set Z = Z= ∪ Z �=.

4.2 Adaptions for DiRo2C
For DiRo2C, we adapt the LORE Algorithm 4.1. As in the original approach, the
algorithm generates a neighborhood depending on the instance x to explain. Algorithm 4.3
shows our adaption. In this approach, we use the unchanged genetic algorithm of LORE
(see Algorithm 4.2) to create Z. The difference, however, is that we create Z for both
black boxes A and B (see line numbers 2 to 6). Then, we merge the created instances
ZA and ZB: Z = ZA ∪ ZB (see line number 7). Z and the instances it contains are
checked for uniqueness and the redundant instances are removed. After that, we use Z
and black box A and B to determine the target Y (cf. Section 3.2) for the diff-dataset
(see line number 8). DiRo2C uses the already presented BuildDiffDataset function (see
Algorithm 3.1) for building the diff-dataset (see line number 8). After that, the method

1The documentation of the deap algorithms is available under: https://deap.readthedocs.io/
en/master/api/algo.html
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25 clerk 10k yes

30 other 5k no

25 other 5k yes

30 clerk 10k no

parent 1

parent 2

children 1

children 2

(a) Example of a crossover operation

25 clerk 10k yes

27 other 7k yes

parent

children

(b) Example of a mutation operation

Figure 4.1: Examples of a crossover and a mutation operation. Examples used from:
[GMR+18]

Algorithm 4.3: DiRo2C_GN(x, bA, bB, N), Adapted from: [GMR+18]
Input: x - instance to explain, bA - black box A, bB - black box B, N - # of

neighbors
Output: dc - diff-classifier, ZDiff - merged neighborhood of black box A and B

and determined target Y
1 G ← 10; pc ← 0.5; pm ← 0.2; // init parameters
// generate neighbors for black box A

2 ZA= ← GeneticNeigh(x, fitnessx
=, bA, N/2, G, pc, pm);

3 ZA �= ← GeneticNeigh(x, fitnessx
�=, bA, N/2, G, pc, pm);

4 ZA ← ZA= ∪ ZA �=; // merge neighborhoods
// generate neighbors for black box B

5 ZB= ← GeneticNeigh(x, fitnessx
=, bB, N/2, G, pc, pm);

6 ZB �= ← GeneticNeigh(x, fitnessx
�=, bB, N/2, G, pc, pm);

7 ZB ← ZB= ∪ ZB �=; // merge neighborhoods
8 Z ← ZA ∪ ZB; // merge neighborhoods
9 ZDiff ← BuildDiffDataset(bA, bB, Z); // determine target Y

10 dc ← TrainDecisionTreeClassifier(ZDiff ); // train diff-classifier
11 return dc, ZDiff ;

trains the diff-classifier based on the diff-dataset ZDiff (see line number 9). Finally, it
returns the dataset ZDiff and the decision tree classifier to detect the differences between
black boxes A and B. We want to mention, that for determining the feature value ranges
to compute new feature values, we use the concatenated test dataset of black box A and
B.
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4.3 Illustration of the Generated Datasets

Now, we show generated neighborhood datasets based on the running dataset example
that depends on different located instances (seeds).

Seed 1: Figure 4.2a and 4.2b illustrate an example of the neighborhood generation
adapted to the problem to recognize local differences close to an instance x between two
binary black boxes. For this example, we use the already presented running example
classification datasets of black box A and black box B (Figure 3.5 shows the datasets of the
black box classifiers). The datasets for the binary and multiclass classifier are generated
independently of each other, which means the instances (data points) of the datasets
shown in the plots are not identical. The unbalanced dataset for the binary diff-classifier
contains 2,246 instances. 1,769 instances are assigned to the class “0” (“no diff”), and 477
instances are assigned to the class “1” (“diff”). The unbalanced dataset for the multiclass
diff-classifier contains 2,004 instances, whereby 815 instances are classified into class “00”,
615 instances are classified into class “11”, 196 instances are classified into class “10”,
and 378 instances are classified into class “01”. Each dataset is generated based on the
instance x highlighted in yellow and both are located at: x1 = − 143.91 and x2 = − 4.53.
Based on x, synthetic instances for both black boxes are generated independently. By
applying the genetic algorithm to generate a neighborhood for black box A and B, the
aim is to generate increased instances close to the yellow marked instance x to recognize
the local boundaries where the instances are classified into different difference-classes.
Using Figure 4.2a, we want to explain in which areas more instances and in which areas
fewer instances are generated to train a binary diff-classifier. The marked rectangles show
areas where the instances are assigned into the corresponding binary difference-class and
the changes of the classification. In all marked areas (except in the bottom blue and
dark grey area), which are close to x, increased instances are generated. The increased
instances in that areas help to differentiate between the various difference-class areas. But
it is noticeable that the dark gray contains no instances. It can also be seen that fewer
instances are generated in the areas that are further away from x. Due to the distance
function (see Equation 3.1), which is part of the fitness function, instances that are far
away are rated worse and therefore have a lower probability of being selected based on
the genetic algorithm. In contrast, using Figure 4.2b, we want to explain in which areas
more instances and in which areas fewer instances are generated to train a multiclass
diff-classifier. The marked rectangles show areas where the instances are differently
classified into the multiclass difference-classes. Again, in all marked areas (except in the
bottom orange area and the bottom red area), which are close to x, increased instances
are generated. It is noticeable that the bottom red area contains only one instance. We
want to explain why more instances are generated in the mentioned areas: Black Box
A and B generate new instances independently of each other. Because of both black
boxes the approach generates increased instances close to x (see area close to the yellow
marked instance) due to the fitness function fitnessx

=. The approach generates in this
area also increased instances because both black boxes A and B predict the same result
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(a) Dataset for training the binary diff-
classifier

(b) Dataset for training the multiclass diff-
classifier

Figure 4.2: Generated neighborhood datasets with the initial located instance to be
recognized (Seed 1) for training a binary and a multiclass diff-classifier to detect local
differences close to instance x between black box A and B (Figure 3.5 shows the datasets
of the black boxes). Depending on the yellow-marked instance, the proposed approach
(see Algorithm 4.3) of DiRo2C generates the shown dataset.

in this area close to x. Due to the fitness function fitnessx
�=, and because of black box

B, the approach generates increased instances in the upper green (see binary dataset,
Figure 4.2a) and upper red area (see multiclass dataset, Figure 4.2b). Due to the fitness
function fitnessx

�=, and because of both black boxes, the approach generates increased
instances in the upper blue (see binary dataset) and upper green area (see multiclass
dataset). Due to the fitness function fitnessx

�=, and because of black box A, the approach
generates increased instances in the lower green (see binary dataset) and orange area
(see multiclass dataset). Because of both black boxes and due to the fitness function
fitnessx

�= it also generates instances in the lower blue (see binary dataset) and lower
green area (see multiclass) but with noticeably fewer generated instances. The dark grey
(see binary dataset) and the lower red area (see multiclass dataset) are only influenced
by black box B and those areas are neglected by the genetic data generation approach.
As explained, due to the distance function, those areas further away from instance x are
more disadvantaged.

Seed 2: Now, we show a second example, where we choose the to be recognized instance
x differently. The datasets shown in Figure 4.3 are based on the yellow marked instances
x. Both instances are located at: x1 = 203.73 and x2 = − 182.83. The datasets for the
binary and multiclass classifier are generated independently of each other, which means
the instances (data points) of the datasets shown in the plots are not identical. The
unbalanced dataset for the binary diff-classifier contains 1,951 instances. 1.611 instances
are assigned to the class “0” (“no diff”), and 340 instances are assigned to the class “1”
(“diff”). The unbalanced dataset for the multiclass diff-classifier contains 1,825 instances,
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(a) Dataset for training the binary diff-
classifier

(b) Dataset for training the multiclass diff-
classifier

Figure 4.3: Generated neighborhood datasets with the instance to be recognized in the
right bottom corner (Seed 2) for training a binary and a multiclass diff-classifier to detect
local differences close to instance x between black box A and B (Figure 3.5 shows the
datasets of the black boxes). Depending on the yellow-marked instance, the proposed
approach (see Algorithm 4.3) of DiRo2C generates the shown dataset.

whereby 543 instances are classified into class “00”, 968 instances are classified into
class “11”, 220 instances are classified into class “10”, and 94 instances are classified into
class “01”. Using Figure 4.3a, we want to explain in which areas more instances and in
which areas fewer instances are generated to train a binary diff-classifier. Again we use
rectangles to mark areas where the instances are assigned into the corresponding binary
difference-class and the changes of the classification. In all marked areas, which are close
to x, increased instances are generated. In that case, the data generation approach covers
locally close to x all various difference-classes with increased generated instances. But it
is noticeable that significantly fewer instances are existing in the upper area of the plot.
Figure 4.3b shows that the data generation approach again generates increased instances
in all marked areas. But it is also noticeable that significantly fewer instances are existing
in the upper area of the plot. Also, that relatively few instances are generated in the
area of the lower center (binary setting: between class “1” and “0” and multiclass setting:
between class “10” and “11”).

Seed 3: The datasets of the third example shown in Figure 4.4 are based on the yellow
marked instances x. Both are located at: x1 = 55.61 and x2 = − 24.24. The datasets
for the binary and multiclass classifier are generated independently of each other. That
means the instances (data points) of the datasets shown in the plots are not identical.
The unbalanced dataset for the binary diff-classifier contains 2,674 instances. 1,733
instances are assigned to the class “0” (“no diff”), and 901 instances are assigned to
the class “1” (“diff”). The unbalanced dataset for the multiclass diff-classifier contains
2,833 instances, whereby 827 instances are classified into class “00”, 1,164 instances are
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(a) Dataset for training the binary diff-
classifier

(b) Dataset for training the multiclass diff-
classifier

Figure 4.4: Generated neighborhood dataset with the instance to be recognized in
the center (Seed 3) for training a binary and a multiclass diff-classifier to detect local
differences close to that instance between black box A and B (Figure 3.5 shows the
datasets of the black boxes). Depending on the yellow-marked instance, the proposed
approach (see Algorithm 4.3) of DiRo2C generates the shown dataset.

classified into class “11”, 804 instances are classified into class “10”, and 38 instances
are classified into class “01”. Figure 4.4a again shows that in the various difference-class
areas (except in the top “diff”-class area), close to instance x increased instances are
generated. Figure 4.4b also shows that the data generation approach generates increased
instances in various difference-class areas (except in the top “01”-class area). But it is
also noticeable that significantly fewer instances are existing in the upper area of the
plot.

4.4 Comparison of the Data Density
This section focuses on the comparison of the data density between the various data
approaches. Therefore, we compare the already presented datasets of the different
approaches in Figure 4.5. The instance x to be recognized of the local approaches is
highlighted by the black circle. We use for the data density plots bins to group the
instances on the axes. For the x1-axis, we use 80 bins, and for the x2-axis, we use 60 bins.
The data density is scaled from 0 to 100 and represents the counts of instances per bin.
The white areas show bins where no instances exist. The dataset of the global synthetic
data approach shows increased data density in areas around the center. It grounds
on the fact that the continuous features in this approach are generated by a Gaussian
distribution with the following values for the parameters: µ = − 2.92 and σ = 187.69
for feature x1 and µ = − 3.23, and σ = 101.08 for feature x2. (cf. Section 3.1.2). We
want to mention that the real data approaches that use the original dataset from the
black box models do not generate an increased data density. The global real approach
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(a) Density of global synthetic data (b) Density of global real data

(c) Density of the local genetic neighborhood (d) Density of local real data

Figure 4.5: Data density of the different local and global data approaches (Seed 1)
(Figure 3.5 shows the datasets of the black boxes). In the case of the local approaches,
the to be recognized instance x is marked with a black circle.

does not cover the entire feature value space, and the local real approach delivers too
few instances in the vicinity of the instance x to be detected. In contrast, we can show
that the local genetic neighborhood approach generates increased instances locally close
to x. This increased instances should help to train a diff-classifier that can predict the
local difference-classes accurately. The approach generates increased instances, especially
in areas influenced by both black box models due to the fitness function fitnessx

= and
fitnessx

�= (see dark and dark gray marked areas in Figure 4.5c). Those more influenced
areas have, therefore, a higher data density.

Finally, we show the data density plots of the generated local genetic neighborhood
datasets (shown in Figure 4.3 and 4.4) in Figure 4.6a and 4.6b.
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(a) Density of the local genetic neighborhood
second dataset example

(b) Density of the local genetic neighborhood
third dataset example

Figure 4.6: Data density of the local genetic neighborhood data approach examples
(Figure 4.3b shows the datasets of the second dataset example (Seed 2) and Figure 4.4b
shows the datasets of the third dataset example (Seed 3)). The to be recognized instances
x are marked with a black circle.

4.5 Summary
In this chapter, we have explained in detail the approach of LORE to generate a genetic
neighborhood close to an instance x. We also have presented how we adapt the approach
of Guidotti et al. [GMR+18] to generate genetic instances to recognize differences between
black box classifiers locally close to an instance x. We have shown different plots of
created genetic neighborhood datasets with different located instances to be recognized.
We have also compared the already presented datasets of the different data approaches to
show how the genetic neighborhood approach can generate increased instances close to x.
However, we have seen that the local genetic neighborhood approach generates unbalanced
datasets and does not generate increased instances in the adjacent difference-class areas
in all cases. The next chapter will show that the adapted genetic approach may be too
simplistic, as evaluations will show.
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CHAPTER 5
Evaluation of the Performance

In this chapter, the results are shown to find mainly answers for RQ 1 and its sub-questions.
Therefore, we evaluate the performance of the various trained diff-classifiers and the
already proposed different data approaches. Furthermore, we explain the simulation
setting that enables the measurement of the performance in detail.

5.1 Experimental Setup
For measuring the performance of the diff-classifier, the adult, bank marketing, and credit
approval UCI Machine Learning Repository datasets1 are used [DG17]. The datasets used
are available in the Gitlab-Repository2. The experiments are performed on Windows
20H2, 64 bit, 16 GB RAM, 2.60GHz Intel(R) Core(TM) i7-4510U and Python version
3.8.10 (64 bit). Furthermore, this section describes the preprocessing of the datasets and
the manipulation of the datasets for the training of Black box B.

5.1.1 Presentation of the Used Datasets
The used adult multivariate classification dataset contains 32,561 instances. It includes 14
continuous and discrete features. The dataset contains the following continuous features:
“age”, “fnlwgt”, “education-num”, “capital-gain”, “capital-loss”, and “hours-per-week”.
The dataset contains the following discrete features: “workclass”, “edcuation”, “marital-
status”, “occupation”, “relationship”, “race”, “sex”, and “native-country”.
The feature “workclass” contains the following different values: “Private”, “Self-emp-
not-inc”, “Self-emp-inc”, “Federal-gov”, “Local-gov”, “State-gov”, “Without-pay”, and

1Sources of the datasets: adult: https://archive.ics.uci.edu/ml/datasets/adult, bank
marketing: https://archive.ics.uci.edu/ml/datasets/bank+marketing, and credit approval:
https://archive.ics.uci.edu/ml/datasets/Credit+Approval

2Available under: https://gitlab.com/andsta/diro2c
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“Never-worked”. The feature “education” contains the following different values: “Bach-
elors”, “Some-college”, “11th”, “HS-grad”, “Prof-school”, “Assoc-acdm”, “Assoc-voc”,
“9th”, “7th-8th”, “12th”, “Masters”, “1st-4th”, “10th”, “Doctorate”, “5th-6th”, and
“Preschool”.
The feature “marital-status” contains the following different values: “Married-civ-spouse”,
“Divorced”, “Never-married”, “Separated”, “Widowed”, “Married-spouse-absent”, and
“Married-AF-spouse”.
The feature “occupation” contains the following different values: “Tech-support”, “Craft-
repair”, “Other-service”, “Sales”, “Exec-managerial”, “Prof-specialty”, “Handlers-cleaners”,
“Machine-op-inspct”, “Adm-clerical”, “Farming-fishing”, “Transport-moving”, “Priv-
house-serv”, “Protective-serv”, and “Armed-Forces”.
The feature “relationship” contains the following different values: “Wife”, “Own-child”,
“Husband”, “Not-in-family”, “Other-relative”, and “Unmarried”.
The feature “race” contains the following different values: “White”, “Asian-Pac-Islander”,
“Amer-Indian-Eskimo”, “Other”, and “Black”.
The feature “native-country” contains the following different values: “United-States”,
“Cambodia”, “England”, “Puerto-Rico”, “Canada”, “Germany”, “Outlying-US(Guam-
USVI-etc)”, “India”, “Japan”, “Greece”, “South”, “China”, “Cuba”, “Iran”, “Honduras”,
“Philippines”, “Italy”, “Poland”, “Jamaica”, “Vietnam”, “Mexico”, “Portugal”, “Ireland”,
“France”, “Dominican-Republic”, “Laos”, “Ecuador”, “Taiwan”, “Haiti”, “Columbia”,
“Hungary”, “Guatemala”, “Nicaragua”, “Scotland”, “Thailand”, “Yugoslavia”, “El-
Salvador”, “Trinadad&Tobago”, “Peru”, “Hong”, and “Holand-Netherlands”.
Table 5.1 shows for each continuous feature µ, σ, the min-value, the max-value, the 25
percentile, the median, and the 75 percentile. Table 5.2 shows for each discrete feature
the unique values, the top (most common) value, and the frequency of the most common
value (how often occur the most common value). Depending on the income, the instance
is assigned to the respective outcome class. The binary targets are “<= 50K” (0 class)
and “> 50K” (1 class). The target class distribution is as follows: 24,720 instances are
classified to class “<= 50K” and 7,841 instances are classified to class “> 50K”. The
dataset contains missing values which are marked with a “?” sign. There are a total of
4,262 missing values in the dataset. For our experiments, we are following the preprocess
steps as explained below in detail. For the adult dataset, additionally, we are following
the preprocess steps of Guidotti et al. in [GMR+18] and remove the following features:
“fnlwgt” and “education-num”. Guidotti et al. argue (comment) in their source code of
LORE that the features are unnecessary.

The bank marketing dataset [MCR14] is also a multivariate classification dataset that
contains 45,211 instances that are related to direct marketing campaigns of a Portuguese
banking institute. It includes 16 continuous and discrete features. The dataset contains
the following continuous features: “age”, “balance”, “duration” (description according to
the source: “last contact duration, in seconds”), “campaign” (description according to the
source: “number of contacts performed during this campaign and for this client”), “pdays”
(description according to the source: “number of days that passed by after the client was
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last contacted from a previous campaign”), and “previous” (description according to the
source: “number of contacts performed before this campaign and for this client”). The
dataset contains the following discrete features: “job”, “marital”, “education”, “default”
(description according to the source: “has credit in default”), “housing” (description
according to the source: “has housing loan”), “loan”, “contact”, “month” (description
according to the source: “ last contact month of year”), “day_of_week” (description
according to the source: “last contact day of the week”), and “poutcome” (description
according to the source: “outcome of the previous marketing campaign”).
The feature “job” contains the following different values: “admin.”, “blue-collar”, “en-
trepreneur”, “housemaid”, “management”, “retired”, “self-employed”, “services”, “stu-
dent”, “technician”, “unemployed”, and “unknown”.
The feature “marital” contains the following different values: “divorced”, “married”,
“single”, “unknown”, and “divorced”. The feature “education” contains the following
different values: “basic.4y”, “basic.6y”, “basic.9y”, “high.school”, “illiterate”, “profes-
sional.course”, “university.degree”, and “unknown”. The feature “default” contains the
following different values: “no”, “yes”, and “unknown”.
The feature “housing” contains the following different values: “no”, “yes”, and “unknown”.
The feature “loan” contains the following different values: “no”, “yes”, and “unknown”.
The feature “contact” contains the following different values: “cellular”, and “telephone”.
The feature “month” contains the following different values: “jan”, “feb”, “mar”, “apr”,
“may”, “jun”, “jul”, “aug”, “sep”, “oct”, “nov”, and “dec”.
The feature “day_of_week” contains the following different values: “mon”, “tue”, “wed”,
“thu”, and “fri”.
The feature “poutcome” contains the following different values: “failure”, “nonexistent”,
and “success”.
Table 5.3 again shows for each continuous feature µ, σ, the min-value, the max-value, the
25 percentile, the median, and the 75 percentile. Talbe 5.4 shows for each discrete feature
the unique values, the top (most common) value, and the frequency of the most common
value (how often occur the most common value). The outcome class indicates if a client
subscribed to a term deposit (bank product). Thus, there are two binary targets: “no”
(0 class) and “yes” (1 class). The target class distribution is as follows: 39,922 instances
are classified to class “no” and 5,289 instances are classified to class “yes”. The dataset
contains no missing values.

The credit approval dataset has the property that all attribute names are altered to not
assignable designations to protect confidentiality. The authors of the dataset claim, it
contains a good mix of continuous and discrete features with small and larger values.
The 690 instances are classified into class “+” and “-”, which means credit approved or
credit not approved. It includes 15 continuous and discrete features. The continuous
features are: “A2”, “A3”, “A8”, “A11”, “A14”, and “A15”. The discrete features are
“A1”, “A4”, “A5”, “A6”, “A7”, “A9”, “A10”, “A12”, and “A13”.
The feature “A1” contains the following different values: “b” and “a”.
The feature “A4” contains the following different values: “u”, “y”, “l”, and “t”.
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feature count µ σ min 25% 50% 75% max
age 32561.00 38.58 13.64 17.00 28.00 37.00 48.00 90.00

capital-gain 32561.00 1077.65 7385.29 0.00 0.00 0.00 0.00 99999.00
capital-loss 32561.00 87.30 402.96 0.00 0.00 0.00 0.00 4356.00

hours-per-week 32561.00 40.44 12.35 1.00 40.00 40.00 45.00 99.00

Table 5.1: Continuous feature information of the adult dataset.

feature count unique top freq
workclass 32561 8 Private 24532
education 32561 16 HS-grad 10501

marital-status 32561 7 Married-civ-spouse 14976
occupation 32561 14 Prof-specialty 5983

realationship 32561 6 Husband 13193
race 32561 5 White 27816
sex 32561 2 Male 21790

native-country 32561 41 United-States 29753
income_class 32561 2 <=50K 24720

Table 5.2: Discrete feature information of the adult dataset.

The feature “A5” contains the following different values: “g”, “p”, and “gg”.
The feature “A6” contains the following different values: “c”, d”, “cc”, “i”, “j”, “k”, “m”,
“r”, “q”, “w”, “x”, “e”, “aa”, and “ff”.
The feature “A7” contains the following different values: “v”, “h”, “bb”, “j”, “n”, “z”,
“dd”, “ff”, and “o”.
The feature “A9” contains the following different values: “t” and “f”.
The feature “A10” contains the following different values: “t” and “f”.
The feature “A12” contains the following different values: “t” and “f”.
The feature “A13” contains the following different values: “g”, “p”, and “s”.
Table 5.5 again shows for each continuous feature µ, σ, the min-value, the max-value, the
25 percentile, the median, and the 75 percentile. Talbe 5.6 shows for each discrete feature
the unique values, the top (most common) value, and the frequency of the most common
value (how often occur the most common value). The outcome class indicates if a client
subscribed to a term deposit (bank product). Thus, there are two binary targets: “+”
(0 class) and “-” (1 class). The target class distribution is as follows: 307 instances are
classified to class “+” and 383 instances are classified to class “-”. The dataset contains
missing values which are marked with a “?” sign. There are a total of 67 missing values
in the dataset.
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feature count µ σ min 25% 50% 75% max
age 45211.00 40.94 10.62 18.00 33.00 39.00 48.00 95.00

balance 45211.00 1362.27 3044.77 -8019.00 72.00 448.00 1428.00 102127.00
day 45211.00 15.81 8.32 1.00 8.00 16.00 21.00 31.00

duration 45211.00 258.16 257.53 0.00 103.00 180.00 319.00 4918.00
campaign 45211.00 2.76 3.10 1.00 1.00 2.00 3.00 63.00

pdays 45211.00 40.20 100.13 -1.00 -1.00 -1.00 -1.00 871.00
previous 45211.00 0.58 2.30 0.00 0.00 0.00 0.00 275.00

Table 5.3: Continuous feature information of the bank marketing dataset.

feature count unique top freq
job 45211 12 blue-collar 9732

marital 45211 3 married 27214
education 45211 4 secondary 23202

default 45211 2 no 44396
housing 45211 2 yes 25130

loan 45211 2 no 37967
contact 45211 3 cellular 29285
month 45211 12 may 13766

poutcome 45211 4 unknown 36959
y 45211 2 no 39922

Table 5.4: Discrete feature information of the bank marketing dataset.

5.1.2 Preprocessing of the Datasets

Each dataset is preprocessed by the following steps. The dataset, which is stored as
a Comma-Separated Values (CSV) file, is read into a pandas dataframe. Besides, the
pandas function to read a CSV dataset, marks the missing values to replace them in a
later step. Afterward, we prepare the dataframe as follows: We detect for all features
the data types. Finally, we assign all features to one of those data types: integer, double
or string features. Then, we store for each feature the information whether the feature is
continuous or discrete. This distinction is e.g. important when calculating the distance,
since the distance for continuous and discrete features are calculated differently. In a
next step, we prepare the dataframe and replace the marked, missing values for the
continuous features by the mean and the discrete ones by calculating the mode. The
discrete features are transformed by the sklearn class “LabelEncoder” that encodes the
various possible discrete feature values by a integer value between 0 and the number of
unique values of the particular discrete feature minus 1.
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feature count µ σ min 25% 50% 75% max
A2 690.00 31.51 11.86 13.75 22.67 28.46 37.71 80.25
A3 690.00 4.76 4.98 0.00 1.00 2.75 7.21 28.00
A8 690.00 2.22 3.35 0.00 0.17 1.00 2.63 28.50
A11 690.00 2.40 4.86 0.00 0.00 0.00 3.00 67.00
A14 690.00 183.56 172.19 0.00 80.00 160.00 272.00 2000.00
A15 690.00 1017.39 5210.10 0.00 0.00 5.00 395.50 100000.00

Table 5.5: Continuous feature information of the credit approval dataset.

feature count unique top freq
A1 690 2 b 480
A4 690 3 u 525
A5 690 3 g 525
A6 690 14 c 146
A7 690 9 v 408
A9 690 2 t 361
A10 690 2 f 395
A12 690 2 f 374
A13 690 3 g 625
A16 690 2 - 383

Table 5.6: Discrete feature information of the credit approval dataset.

5.1.3 Black Box Training and Manipulation

For each dataset, we train two decision tree-based classifiers using the Python scikit-learn
library for imitating two binary black box classifiers A and B. We also use for both black
box classifiers CART optimized algorithm3 [HTF09, BFOS84]. We split the original
and not modified dataset into a training and test dataset (with a ratio of 80 to 20
percent) with a configured random seed/state value. Black box A is trained with the
original training dataset. After that, we manipulate the original dataset. We mainly
have analyzed the resulting decision tree of black box A to detect for each dataset an
influential feature. Besides, we also use the LIME method to double check the influence
for each selected to be recognized instance. After that, we manipulate the values of the
identified feature. The feature is manipulated by changing each value of the feature by a
particular factor. We manipulate the datasets as follows:

3Sourcecode of the algorithm: \https://github.com/scikit-learn/scikit-learn/blob/
fdbaa58acbead5a254f2e6d597dc1ab3b947f4c6/sklearn/tree/tree.py#L584
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• adult: xcapital−gain = xcapital−gain + 7000 ∀x ∈ X. We adding the value 7,000 to
Feature “capital-gain” for each instance x of X.

• bank marketing: xpdays = xpdays + 4 ∀x ∈ X. We adding the value 4 to Feature
“pdays” for each instance x of X.

• credit approval: xA10 = (xA10 + 1) mod 2 ∀x ∈ X. The discrete Feature “A10”
contains 2 values “t” and “f”, which are encoded as “0” and “1”. To shift the value
of the Feature “A10” by one for each x, xA10 plus 1 and then modulo the number
of the possible values of xA10 is performed. Therefore, we shift the label encoded
values 0 to 1 and the values 1 to 0.

In the case of the adult dataset, we want to explain in detail why we have chosen
the described manipulation. We have selected some instances that are used for the
simulations and investigated the most influential attribute with the aid of LIME and
analysis of the resulting decision tree of the diff-classifier. In most cases, the feature
“capital-gain” is the most influential attribute for the investigated instances. Subsequently,
the dataset of black box B is manipulated by adding the value 7,000 to each instance of
feature “capital-gain”. After that, we have trained the decision tree-based diff-classifier
by applying the simplistic genetic neighborhood approach to generate the diff-dataset.
Then again, we split the manipulated dataset for black box B into a training and test
dataset (with a ratio of 80 to 20 percent) with a configured random seed/state value.
Black box B is trained by using the manipulated training dataset. Both test datasets of
black box A and B are merged and passed to the DiRo2C method. This merged dataset
is mainly used to calculate the value ranges for all features. In addition, the original, not
manipulated entire dataset is passed to the DiRo2C method, which is used by the real
data approaches. For each dataset, we randomly (with a defined random seed) pick 10
different instances of the test dataset of black box A.

Selection of the Test-Instances

We select the following indices of the adult test dataset of black box A: [2732, 2607, 1653,
3264, 4931, 4859, 5827, 1033, 4373, 5874]. The instances have the following feature values
and outcome classes:

• Features of XT est: [‘age’, ‘workclass’, ‘education’, ‘marital-status’, ‘occupation’,
‘relationship’, ‘race’, ‘sex’, ‘capital-gain’, ‘capital-loss’, ‘hours-per-week’, ‘native-
country’]

• XT est[2732] : [25, 3, 2, 2, 4, 0, 3, 1, 0, 0, 60, 25], YT est[2732] : [0]

• XT est[2607] : [23, 5, 11, 4, 13, 3, 4, 1, 0, 0, 40, 38], YT est[2607] : [0]

• XT est[1653] : [42, 5, 7, 0, 2, 3, 0, 1, 0, 0, 35, 38], YT est[1653] : [0]
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• XT est[3264] : [53, 3, 11, 2, 2, 0, 4, 1, 0, 0, 40, 38], YT est[3264] : [1]

• XT est[4931] : [35, 3, 11, 0, 13, 1, 4, 1, 0, 0, 60, 38], YT est[4931] : [0]

• XT est[4859] : [37, 3, 9, 2, 11, 0, 4, 1, 0, 1902, 40, 38], YT est[4859] : [1]

• XT est[5827] : [40, 4, 11, 2, 3, 0, 4, 1, 0, 0, 40, 38], YT est[5827] : [0]

• XT est[1033] : [38, 3, 15, 0, 3, 4, 4, 0, 0, 0, 40, 38], YT est[1033] : [0]

• XT est[4373] : [21, 3, 6, 4, 6, 1, 4, 1, 0, 0, 48, 25], YT est[4373] : [0]

• XT est[5874] : [60, 3, 7, 2, 11, 0, 4, 1, 0, 0, 30, 38], YT est[5874] : [0]

The discrete features and target of the adult dataset are encoded as follows:

• feature “workclass”: [0:8]: [‘Federal-gov’, ‘Local-gov’, ‘Never-worked’, ‘Private’,
‘Self-emp-inc’, ‘Self-emp-not-inc’, ‘State-gov’, ‘Without-pay’]

• feature “education”: [0:16]: [‘10th’, ‘11th’, ‘12th’, ‘1st-4th’, ‘5th-6th’, ‘7th-8th’,
‘9th’, ‘Assoc-acdm’, ‘Assoc-voc’, ‘Bachelors’, ‘Doctorate’, ‘HS-grad’, ‘Masters’,
‘Preschool’, ‘Prof-school’, ‘Some-college’]

• feature “marital-status”: [0:7]: [‘Divorced’, ‘Married-AF-spouse’, ‘Married-civ-
spouse’, ‘Married-spouse-absent’, ‘Never-married’, ‘Separated’, ‘Widowed’]

• feature “occupation”: [0:14]: [‘Adm-clerical’, ‘Armed-Forces’, ‘Craft-repair’, ‘Exec-
managerial’, ‘Farming-fishing’, ‘Handlers-cleaners’, ‘Machine-op-inspct’, ‘Other-
service’, ‘Priv-house-serv’, ‘Prof-specialty’, ‘Protective-serv’, ‘Sales’, ‘Tech-support’,
‘Transport-moving’]

• feature “relationship”: [0:6]: [‘Husband’, ‘Not-in-family’, ‘Other-relative’, ‘Own-
child’, ‘Unmarried’, ‘Wife’]

• feature “races”: [0:5]: [‘Amer-Indian-Eskimo’, ‘Asian-Pac-Islander’, ‘Black’, ‘Other’,
‘White’]

• feature “sex”: [0:2]: [‘Female’, ‘Male’]

• feature “native-country”: 00:‘Cambodia’, 01:‘Canada’, 02:‘China’, 03:‘Columbia’,
04:‘Cuba’, 05:‘Dominican-Republic’, 06:‘Ecuador’, 07:‘El-Salvador’, 08:‘England’,
09:‘France’, 10:‘Germany’, 11:‘Greece’, 12:‘Guatemala’, 13:‘Haiti’, 14:‘Holand-
Netherlands’, 15:‘Honduras’, 16:‘Hong’, 17:‘Hungary’, 18:‘India’, 19:‘Iran’, 20:‘Ire-
land’, 24:‘Laos’, 25:‘Mexico’, 26:‘Nicaragua’, 27:‘Outlying-US(Guam-USVI-etc)’,
28:‘Peru’, 29:‘Philippines’, 30:‘Poland’, 31:‘Portugal’, 32:‘Puerto-Rico’, 33:‘Scot-
land’, 34:‘South’, 35:‘Taiwan’, 36:‘Thailand’

• target “income_class”: [0:2]: [‘<=50K’, ‘>50K’]
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We select the following indices of the bank marketing test dataset of black box A: [2732,
3264, 4859, 7891, 4373, 5874, 6744, 3468, 705, 2599]. The instances have the following
feature values and outcome classes:

• Features of XT est: [‘age’, ‘job’, ‘marital’, ‘education’, ‘default’, ‘balance’, ‘hous-
ing’, ‘loan’, ‘contact’, ‘day’, ‘month’, ‘duration’, ‘campaign’, ‘pdays’, ‘previous’,
‘poutcome’]

• XT est[2732] : [25, 1, 2, 0, 0, 4599, 0, 0, 1, 13, 0, 120, 6, −1, 0, 3], YT est[2732] : [0]

• XT est[3264] : [29, 2, 1, 1, 0, 291, 1, 0, 2, 2, 6, 205, 3, −1, 0, 3], YT est[3264] : [0]

• XT est[4859] : [45, 1, 1, 0, 0, 1297, 1, 0, 2, 6, 8, 233, 2, −1, 0, 3], YT est[4859] : [0]

• XT est[7891] : [50, 4, 1, 2, 0, 15442, 0, 0, 2, 5, 6, 91, 1, −1, 0, 3], YT est[7891] : [0]

• XT est[4373] : [40, 1, 2, 1, 0, 677, 1, 0, 017, 9, 619, 1, 171, 5, 1], YT est[4373] : [0]

• XT est[5874] : [51, 7, 1, 1, 0, 272, 0, 1, 0, 8, 5217, 1, −1, 0, 3], YT est[5874] : [0]

• XT est[6744] : [58, 4, 1, 2, 0, 16264, 0, 0, 1, 17, 9, 215, 3, −1, 0, 3], YT est[3468] : [0]

• XT est[3468] : [47, 0, 1, 1, 0, 310, 1, 1, 1, 14, 1, 128, 6, −1, 0, 3], YT est[1033] : [0]

• XT est[705] : [36, 4, 2, 2, 0, 188, 0, 0, 0, 29, 4, 55, 2, −1, 0, 3], YT est[705] : [0]

• XT est[2599] : [50, 9, 1, 1, 0, 4, 0, 0, 0, 10, 5, 200, 5, −1, 0, 3], YT est[2599] : [0]

The discrete features and target of the bank marketing dataset are encoded as follows:

• feature “job”: [0:12]: [‘admin.’, ‘blue-collar’, ‘entrepreneur’, ‘housemaid’, ‘manage-
ment’, ‘retired’, ‘self-employed’, ‘services’, ‘student’, ‘technician’, ‘unemployed’,
‘unknown’]

• feature “marital”: [0:3]: [‘divorced’, ‘married’, ‘single’]

• feature “education”: [0:4]: [‘primary’, ‘secondary’, ‘tertiary’, ‘unknown’]

• feature “default”: [0:2]: [‘no’, ‘yes’]

• feature “housing”: [0:2]: [‘no’, ‘yes’]

• feature “loan”: [0:2]: [‘no’, ‘yes’]

• feature “contact”: [0:3]: [‘cellular’, ‘telephone’, ‘unknown’]

• feature “month”: [0:12]: [‘apr’, ‘aug’, ‘dec’, ‘feb’, ‘jan’, ‘jul’, ‘jun’, ‘mar’, ‘may’,
‘nov’, ‘oct’, ‘sep’]
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• feature “outcome”: [0:4]: [‘failure’, ‘other’, ‘success’, ‘unknown’]

• target “y”: [0:2]: [‘no’, ‘yes’]

We select the following indices of the credit approval test dataset of black box A: [47,
117, 67, 103, 9, 21, 36, 87, 70, 88]. The instances have the following feature values and
outcome classes:

• Features of XT est: [‘A1’, ‘A2’, ‘A3’, ‘A4’, ‘A5’, ‘A6’, ‘A7’, ‘A8’, ‘A9’, ‘A10’, ‘A11’,
‘A12’, ‘A13’, ‘A14’, ‘A15’]

• XT est[47] : [1, 40.58, 1.5, 1, 0, 6, 0, 0, 0, 0, 0, 0, 2, 300, 0], YT est[47] : [1]

• XT est[117] : [1, 23.5, 2.75, 1, 0, 5, 2, 4.5, 0, 0, 0, 0, 0, 160, 25], YT est[117] : [1]

• XT est[67] : [1, 22.83, 3, 1, 0, 9, 7, 1.29, 1, 1, 1, 0, 0, 260, 800], YT est[67] : [0]

• XT est[103] : [1, 43.17, 2.25, 1, 0, 6, 0, 0.75, 1, 0, 0, 0, 0, 560, 0], YT est[103] : [1]

• XT est[9] : [0, 22.67, 0.79, 1, 0, 6, 7, 085, 0, 0, 0, 0, 0, 144, 0], YT est[9] : [1]

• XT est[21] : [1, 178, 3.29, 1, 0, 6, 7, 0.335, 0, 0, 0, 1, 0, 140, 2], YT est[21] : [1]

• XT est[36] : [1, 19.5, 9.585, 1, 0, 0, 7, 0.79, 0, 0, 0, 0, 0, 80, 350], YT est[36] : [1]

• XT est[87] : [1, 348, 6.5, 1, 0, 0, 7, 0.125, 1, 0, 0, 1, 0, 443, 0], YT est[87] : [1]

• XT est[70] : [1, 36.67, 2, 1, 0, 6, 7, 0.25, 0, 0, 0, 1, 0, 221, 0], YT est[70] : [1]

• XT est[88] : [1, 26.67, 4.25, 1, 0, 2, 7, 4.29, 1, 1, 1, 1, 0, 120, 0], YT est[88] : [0]

The discrete features and target of the credit approval dataset are encoded as follows:

• feature “A1”: [0:2]: [‘a’, ‘b’]

• feature “A4”: [0:3]: [‘l’, ‘u’, ‘y’]

• feature “A5”: [0:3]: [‘g’, ‘gg’, ‘p’]

• feature “A6”: [0:14]: [‘aa’, ‘c’, ‘cc’, ‘d’, ‘e’, ‘ff’, ‘i’, ‘j’, ‘k’, ‘m’, ‘q’, ‘r’, ‘w’, ‘x’]

• feature “A9”: [0:9]: [‘bb’, ‘dd’, ‘ff’, ‘h’, ‘j’, ‘n’, ‘o’, ‘v’, ‘z’]

• feature “A10”: [0:2]: [‘f’, ‘t’]

• feature “A11”: [0:2]: [‘f’, ‘t’]

• feature “A13”: [0:3]: [‘g’, ‘p’, ‘s’]
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• target “A16”: [0:2]: [‘+’, ‘-’]

Therefore, we have to test three datasets, and each dataset instantiates the four various
data approaches. These are in turn applied to the two binary and multiclass diff-classifier
methods. For each test run, the diff-dataset is created. Next, we present in detail the
performance evaluation of the trained diff-classifiers.

5.2 Performance Evaluation of Classifiers
For measuring the performance of the diff-classifier, we use the following setting: Random
seed/state values are applied to prevent randomness as much as possible and to enable
reproducibility and scientific rigor. DiRo2C trains depending on the data approach the
diff-classifier. We evaluate the trained diff-classifier by applying a stratified k-fold cross-
validator (where k = 10) to split the diff-dataset and calculate the specific performance
metrics. Finally, we compute the mean and standard deviation over all 10 test runs.
Since, stratified means that the instances are divided up equally that each fold preserve
approximately the same percentage of each outcome class as the entire dataset, we check
for every testrun the target list Ytest of the diff-dataset. If a outcome class is assigned to
fewer than 10 instances, k is reduced to this number. Both outcome classes must appear
in the list at least twice that the test-run is counted. Otherwise the test-run is unrated.

The following metrics and measures are mainly considered: Accuracy, F1-score, and
PearsonCC. The measured metrics are defined as follows [CJ20, HM15, Rij79, Pow08].
The Accuracy metric (see Equation 5.1) calculation of sklearn is defined as:

ACC(y, ŷ) = 1
nsamples

nsamples−1�
i=0

1(ŷi = yi) (5.1)

Whereby y denotes the real (actual) values and ŷ the predicted value of the classifier.
Thus, it calculates the portion of correct predicted results over nsamples (ninstances).
As already described in Section 3.2, the difference detections of the binary diff-classifier
are dedicated to the positive 1 outcome class. That is particularly important in the
case of the binary diff-classifier method, since F1-score for binary classification (see
Equation 5.2) is defined as the weighted harmonic mean of the precision and recall metric:

F1-score =
2 · TP

2 · TP + FP + FN
=

2 · Prec · Rec

Prec + Rec
(5.2)

Whereby TP denotes the true positive, FP the false positive, and FN the false negative
predicted results. Prec is the precision, and Rec the recall value. In the case of the
multiclass diff-classifier, we calculate the macro F1-score, which calculates the value for
each outcome class and determines their unweighted mean. Since the F1-score is highly
dependent on the TP , we can evaluate how accurately the diff-classifier can predict the
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differences. Finally, to confirm the results we measure the PearsonCC metric, which in
sklearn for the binary case (see Equation 5.3) is defined as follows:

MCC =
TP · TN − FP · FN�

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.3)

The PearsonCC is a balanced measure and returns reliable results even if the datasets
are unbalanced. A correlation coefficient value of 1 means a perfect predicted result. The
PearsonCC for the multiclass case (see Equation 5.4) is defined by sklearn for K classes
as follows:

MCC =
c · s − �K

k pk · tk�
(s2 − �K

k ·p2
k) · (s2 − �K

k t2
k)

(5.4)

Where tk =
�K

i Cik and determines how often the class k is actually assigned, pk =
�K

i Cki

which is the number how often the class k is predicted, c denotes how often instances
are correctly predicted: c =

�K
k Ckk, and s =

�K
i

�K
j Cij denotes the total number of

instances.

5.3 Results and Findings
Before we present our results, we want to list all unrated test-runs per dataset. In the
following test-runs, the approaches generate a diff-dataset that contains too few instances
for a particular outcome class. As a result, those test-runs can not be included in the
performance measurement. The following test-runs with the respective indices of the to
be recognized instances are unrated:

• adult dataset:

– binary local genetic neighborhood: 1653, 4931, 1033
– binary local real data: 2732, 2607, 3264, 4931, 4859, 5827, 1033, 4373, 5874
– multiclass local genetic neighborhood: 1653, 4931
– multiclass local real data: 2732, 2607, 1653, 3264, 4931, 5827, 1033, 4373, 5874

• bank marketing dataset:

– binary local genetic neighborhood: 2732, 7891, 4373, 6744, 2599
– binary local real data: 2732, 3264, 4859, 7891, 5874, 6744, 3468, 705, 2599
– multiclass local genetic neighborhood: 2732, 4373, 3468, 705, 2599
– multiclass local real data: 2732, 3264, 4859, 7891, 4373, 5874, 6744, 3468, 2599
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• credit approval dataset:

– binary local genetic neighborhood: 67

Also, the genetic neighborhood approach generates in some cases too few instances for a
particular outcome class. In the case of the binary setting, mostly too few instances for
the “diff” difference-class are generated. Also, in the case of the multiclass setting, too
few instances for the “10” or/and “01” difference-classes are generated. But it is not the
only approach that generates (provides) a dataset with a poor class distribution. We can
observe that only local data approaches are involved in all unrated test-runs. Therefore,
the datasets of the local data approaches contain not in every case enough instances
which are predicted differently by the black boxes. The fact that some test-runs are not
included in the calculation of the performance metrics must be considered by interpreting
the results.

Now, we present in Table 5.7 the measured metrics.

According to RQ 1 and our hypothesis, the Accuracy of the binary diff-classifiers is,
in all cases, as expected, higher than for the multiclass diff-classifiers. The F1-score
does not confirm this. In some cases, the F1-score of the multiclass classifier is better
here. It is noticeable that the genetic neighborhood approach performs, according to the
F1-score, relatively poorly for the adult and bank marketing datasets compared to the
credit approval dataset. We can also see that the multiclass local genetic neighborhood
approach, at least in the case of the adult and bank marketing dataset, performs better
than the binary local genetic neighborhood approach in terms of the Pearson CC-score.
Therefore, in that case, the Pearson CC-score cannot confirm that the binary approach
recognizes the differences more precisely. But, according to RQ 1.1, we can confirm that
a classifier trained on synthetic data can outperform a classifier trained using real data,
especially in the case of the local genetic neighborhood approach. According to RQ 1.2,
we can also confirm that a local approach, especially in the case of the local genetic
neighborhood approach, performs overall better to predict the difference-classes compared
to the global approaches. It should also be mentioned that the local real datasets lead,
in most cases, to unrated test-runs. Therefore, the comparability of the metrics for this
approach, especially for the adult and bank marketing datasets, should be interpreted
with caution. However, this shows us this approach can generate, in most cases, too few
instances that are predicted differently by black box A and B.
Furthermore, one main finding is, that the local genetic neighborhood approach does
not always generate instances that are predicted differently by black box A and B. A
closer analysis of the adult dataset reveals some reasons why the performance for the
adult and bank marketing dataset is worse than expected. Figure 5.1 shows the resulting
decision tree of the diff-classifier of one particular case. Interestingly, the predictor
classifies 1,977 instances of the overall 2,191 instances as “no diff” at the first branch.
Overall, the outcome class distribution is as follows: 2,159 instances are identified as
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Dataset DCM DA ACC F1-score P CC

adult

binary

gn .984 ± .006 .703 ± .055 .695 ± .073
lr .999 ± .000 .833 ± .000 .853 ± .000
gs .977 ± .000 .583 ± .006 .574 ± .005
gr .981 ± .000 .551 ± .007 .540 ± .007

multiclass

gn .906 ± .045 .667 ± .039 .814 ± .089
lr .779 ± .000 .389 ± .000 .557 ± .000
gs .825 ± .001 .625 ± .005 .547 ± .002
gr .858 ± .001 .633 ± .006 .610 ± .001

bank marketing

binary

gn .996 ± .003 .711 ± .357 .717 ± .361
lr .982 ± .000 .240 ± .000 .196 ± .000
gs .990 ± .000 .147 ± .010 .139 ± .009
gr .991 ± .000 .144 ± .008 .137 ± .011

multiclass

gn .931 ± .015 .759 ± .126 .814 ± .089
lr .853 ± .000 .317 ± .000 .254 ± .000
gs .874 ± .001 .453 ± .006 .432 ± .003
gr .878 ± .001 .441 ± .003 .437 ± .003

credit approval

binary

gn .983 ± .009 .911 ± .058 .900 ± .044
lr .873 ± .005 .575 ± .022 .499 ± .025
gs .880 ± .001 .521 ± .007 .459 ± .007
gr .849 ± .002 .519 ± .020 .441 ± .015

multiclass

gn .979 ± .012 .897 ± .050 .966 ± .015
lr .769 ± .004 .629 ± .009 .643 ± .006
gs .841 ± .002 .685 ± .007 .737 ± .005
gr .764 ± .005 .629 ± .008 .634 ± .010

Table 5.7: Diff-classifier performance results. The following abbreviations are used: DCM
(Diff-Classifier Method), DA (Data Approach), ACC (Accuracy), PCC (Pearson CC)
and the abbrevations for the data approaches: gn (local genetic neighborhood), lr (local
real data), gs (global synthetic data), and gr (global real data). The cells with a red
background mark the poor performance of the genetic neighborhood approach.

“no diff” and only 32 instances as “diff”. The F1-score of the diff-classifier trained for a
particular test-instance x is 0.655 (the average of 10 test runs is: 0.703), which is also
significantly less compared to other test runs applied to other datasets. The problem is
that the original local genetic neighborhood approach is applied for black box A and B
independently. Therefore the method does not find enough differences since there is no
explicit lookup whether black box A and B are predicting different results. The to be
examined instance x has for the feature “capital-gain” the value 0. However, the local
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Figure 5.1: Decision tree of the diff-classifier for identifying the weak spot of the genetic
neighborhood approach for DiRo2C

simplistic genetic neighborhood approach generates too few instances for black box A
and B with a value greater than 4,565 for the attribute “capital-gain”. Thus, it generates
too few instances for which black box A and B predict different results. That means
this approach provides the dataset ZDiff for one black box (independent of the other)
with 50 percent instances where the black box predicts the target y = 0 and 50 percent
instances where y = 1. As a result, too few instances are generated where the black boxes
return different results: yA <> yB.

5.4 Summary
In general, the already presented data approaches do not guarantee datasets with a
balanced difference-class distribution. We also can confirm it in our analyzes. Furthermore,
another problem is that the genetic neighborhood approach generates the instances for
black boxes A and B independently. In general, we find out that the local data approaches
provide, in many cases, datasets that contain too few instances that are predicted by
black box A and B differently. Thus, it is not guaranteed that the approach generates
instances where black box A and B predict different outcomes. So, we will introduce a
modified genetic neighborhood approach in the next chapter and present an approach to
the described problem of unbalanced diff-datasets, especially in the case of the binary
difference classification problem and the independent instance generation.
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CHAPTER 6
Modified Genetic Neighborhood

and Performance Evaluation

This chapter describes an improved genetic neighborhood approach to generate a balanced
diff-dataset ZDiff to learn the differences more accurately. As already described in
Chapter 4, LORE creates balanced instances z ∈ Z= ∪ Z �= by using a particular genetic
algorithm approach and maximizing the original fitness function. But the problem-solving
method is only aimed at one black box to create a neighborhood to explain the predictions
of the black box for a particular instance x.

6.1 Modification of the Genetic Neighborhood Approach
Next, we show how we modified the original fitness function that the instances are
generated for black box A and B dependent on each other. Therefore, we modify the
original fitness functions of LORE (cf. Equation 4.1 and 4.2) . In Equation 6.1 and 6.2
we present the modified fitness functions:

modifiedF itnessx
=(z) = IbA(z)=bB(z) + (1 − d(x, z)) − Ix=z (6.1)

modifiedF itnessx
�=(z) = IbA(z) �=bB(z) + (1 − d(x, z)) − Ix=z (6.2)

where d is again a distance function: d : X (m) → [0, 1] and I = 1, if the condition
is true, else I = 0. In both cases, the fitness functions search for instances where the
feature characteristics are close to x: (1 − d(x, z)) but not equal to x (see term Ix=z).
The fitness function defined in Equation 6.1 looks especially for instances where the black
box A bA returns for a potential instance z0 the same outcome as the black box B bB . In
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contrast, the function defined in Equation 6.2 guarantees the generation of instances for
which bA predicts a different outcome than bB . Thus, the function modifiedF itnessx

=(z0)
for an instance z0 where bA(z0) �= bB(z0) and x �= z0 leads to a result smaller than
1. Instead, bA(z0) = bB(z0) leads to a result greater or equal than 1. For the to be
recognized instance x itself modifiedF itnessx

=(x) returns either 0 (if black box A and
B predict a different outcome) or 1 (if black box A and B predict the same outcome).
Therefore, the function guarantees again the generation of instances that are different
from x and are as close as possible to x. The crucial difference to the original fitness
function of LORE is, that the modifiedF itness function is depending on black box A
and B. Thus, in the case of the binary difference classification, it is also guaranteed that
the genetic generation algorithm creates balanced sets with an approximate proportion
of 50 percent instances where the black boxes predict different outcomes and 50 percent
instances where the black boxes return the same outcomes. The generation of balanced
sets is impossible if the black boxes are identical because no instances would be predicted
differently. In the case of the multiclass difference classification, balanced sets in relation
to the various multiclass difference-classes would also be desirable. But first, it is not
guaranteed because a particular multiclass difference-class does not always have to occur.
Second, the modified genetic neighborhood approach does not guarantee the balanced
generation of all possible multiclass difference-classes generally, although all multiclass
difference-classes would occur. The reason for this is that the fitness functions only
ensure that roughly the same number of instances are generated that are either predicted
equally by the black boxes or are predicted differently by the black boxes.

We also change the initial adapted Algorithm 4.3, which creates a neighborhood ZA for
black box A and one ZB for black box B independently, as presented in Algorithm 6.1.
The modified approach (as the original approach of LORE) aims to find and create a set
of Z, with feature values and characteristics similar to the to be recognized instance x to
approximate the local behavior of the black boxes. We use the “ModifiedGeneticNeigh”
function proposed in Algorithm 6.2 to generate the set Z= (see line number 2) that
includes instances where the black boxes predict the same results and the set Z �= (see line
number 3) that includes instances where the black boxes returns a different outcome. The
generation of the neighborhood is now dependent on both black boxes A and B. Whereby,
the instances z ∈ Z= have to meet the condition bA(z) = bB(z) and the instances z ∈ Z �=
the following condition bA(z) �= bB(z). After that, we merge the created instances Z= and
Z �=: Z = Z= ∪ Z �= (see line number 4). Z and the instances it contains are finally checked
for uniqueness and the redundant instances are removed. Thus, the cleaned Z no longer
guarantees a balanced dataset in all cases. Then, we use the set Z to determine the target
Y (cf. Section 3.2) for the diff-dataset (see line number 5). For building the diff-dataset
the modified approach calls again the already presented BuildDiffDataset function (cf.
Algorithm 3.1). After that, it trains the diff-classifier based on the diff-dataset ZDiff

(see line number 6). Finally, it returns the dataset ZDiff and the decision tree classifier
to detect the differences between black box A and B (see line number 7).
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Algorithm 6.1: DiRo2C_MGN(x, bA, bB, N), Modified from: [GMR+18]
Input: x - instance to explain, bA - black box A, bB - black box B, N - # of

neighbors
Output: dc - diff-classifier, ZDiff - generated neighborhood depending on the

black boxes and determined target Y
1 G ← 10; pc ← 0.5; pm ← 0.2; // init parameters
// generate neighbors depending on black box A and B

2 Z= ← ModifiedGeneticNeigh(x, modifiedF itnessx
=, bA, bB, N/2, G, pc, pm);

3 Z �= ← ModifiedGeneticNeigh(x, modifiedF itnessx
�=, bA, bB, N/2, G, pc, pm);

4 Z ← Z= ∪ Z �=; // merge neighborhoods
5 ZDiff ← BuildDiffDataset(bA, bB, Z); // determine target Y
6 dc ← TrainDecisionTreeClassifier(ZDiff ); // train diff-classifier
7 return dc, ZDiff ;

Algorithm 6.2: ModifiedGeneticNeigh(x, modifiedF itness, bA, bB, N, G, pc, pm),
Adapted from: [GMR+18]

Input: x - instance to explain, bA - black box A, bB - black box B,
modifiedF itness - modified fitness function, N - population size, G - #
of generations, pc - crossover probability, pm - mutation probability

Output: Z - neighbors of x
1 P0 ← {x|∀1...N}; i ← 0; // population init
2 evaluate(P0, modifiedF itness, bA, bB); // evaluate population
3 while i < G do
4 Pi+1 ← select(Pi); // select sub-population
5 P 'i+1 ← crossover(Pi+1, pc); // mix records
6 P ''i+1 ← mutate(P 'i+1, pm); // perform mutations
7 evaluate(P ''i+1, modifiedF itness, bA, bB); // evaluate population
8 Pi+1=P ''i+1; i ← i + 1; // update population

9 end
10 Z ← Pi;
11 return Z;

As already mentioned, we implement and modify the genetic algorithm of LORE to
generate a balanced genetic neighborhood (see Algorithm 6.2). The main difference to
the original approach is that the modifiedF itness function and the two black boxes are
now passed to the evaluate function (see line number 2 and 7). Thus a balanced dataset
Z can be created (see line number 10). Otherwise, we continue to use the biologically
inspired original implemented crossover (see line number 5) and mutation (see line
number 6) operations of LORE.

The following section shows how differently the modified approach generates the synthetic
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diff-dataset ZDiff .

6.2 Effects of the Modified Genetic Neighborhood
Approach

Now, we present the effects of the modified genetic neighborhood approach. We first
use our running example, the two-dimensional datasets presented in Chapter 3, to show
the effects. Then, we present two different parametrized Gaussian quantiles datasets for
black box A and B to show the effects from a different perspective. We also show the diff-
datasets generated by the modified genetic neighborhood approach and the diff-datasets
from the initial genetic neighborhood approach for comparison. After each presented
generated datasets, we show the data density plots of the two genetic neighborhood
approaches. In this section, we again use for the data density plots bins to group the
instances on the axes. For the x1-axis, we use 80 bins, and for the x2-axis, we use 60
bins. The data density is scaled from 0 to 100 and represents the counts of instances per
bin. The white areas show bins where no instances exist and to be recognized instance x
is marked with a black circle.

6.2.1 Running Example Dataset

At first, we present the effects of the modified approach by again using our running
example.

Seed 1: Figures 6.1a and 6.1b illustrate the datasets generated by the modified genetic
neighborhood approach to recognize local differences close to an instance x between two
binary black boxes. For this example, we use the already presented running example
classification datasets of black box A and black box B (Figure 3.5 shows the datasets
of the black box classifiers). The datasets for the binary and multiclass classifier are
generated independently of each other, which means the instances (data points) of the
datasets shown in the plots are not identical. For comparison, we also show the generated
datasets of the initial genetic neighborhood approach in Figures 6.1c and 6.1d. The now
balanced dataset for the binary diff-classifier (see Figure 6.1a) contains 818 instances.
413 instances are assigned to the class “0” (“no diff”), and 405 instances are assigned
to the class “1” (“diff”). The dataset for the multiclass diff-classifier (see Figure 6.1b)
contains 864 instances, whereby 384 instances are classified into class “00”, 35 instances
are classified into class “11”, 10 instances are classified into class “10”, and 435 instances
are classified into class “01”. Whereby, the combined instances of the class “00” and “11”
compared to the combined instances of class “10” and “01” are balanced. Each dataset is
generated based on the instance x highlighted in yellow, and both instances are located
at: x1 = − 143.91 and x2 = − 4.53. Based on x, synthetic instances for both black boxes
are now generated dependent on each other. By applying the modified genetic algorithm
to generate a neighborhood for black box A and B, the aim again is to generate increased
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(a) Modified genetic neighborhood dataset
for training the binary diff-classifier

(b) Modified genetic neighborhood dataset
for training the multiclass diff-classifier

(c) Genetic neighborhood dataset for train-
ing the binary diff-classifier

(d) Genetic neighborhood dataset for train-
ing the multiclass diff-classifier

Figure 6.1: Running example: Datasets generated by the genetic neighborhood approaches
with the initial to be recognized located instance (Seed 1) for training a binary and a
multiclass diff-classifier to recognize local differences close to instance x between black
box A and B (Figure 3.5 shows the datasets of the black boxes). Depending on the yellow-
marked instance, the local modified genetic neighborhood approach (see Algorithm 6.1)
of DiRo2C generates the shown dataset.

instances close to the yellow marked instance x to recognize the local boundaries where
the instances are classified into different difference-classes.

Figure 6.1a and 6.1b, shows that the modified genetic neighborhood approach compared
to the genetic neighborhood approach generates increased instances as close as possible
to the to be recognized instance x. The approach generates increased instances close to
x where the black boxes predict the same outcome and increased instances close to x
where the black boxes predict a different outcome. That also means that in some areas,
few or no instances are generated. Figure 6.1a shows the dataset for the binary difference
classification. It shows that in the upper left area too few instances are generated to
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differentiate between class “no diff” and “diff”. That is also recognizable in the middle
area of the plot, where generated instances would be classified into class “diff”. In all
of those more distant areas, few or no instances are generated. Figure 6.1a shows the
dataset for the multiclass difference classification. Again increased instances are generated
to recognize the boundary between outcome class “00” and “11”. For all other areas,
too few or no instances are generated. That leads to an unbalanced dataset with few
generated instances which are assigned to the opposite outcome classes “10” and “01”. For
comparing the genetic neighborhood approaches we show again in Figures 6.1c and 6.1d
the datasets generated by the genetic neighborhood approach.
Figure 6.2 shows the data density plots of the generated datasets of both approaches.
Both approaches generate increased instances which are predicted by black box A and B
with the same result and which are locally around instance x. In contrast to the initial
genetic neighborhood approach, the modified approach generates increased instances
which are predicted by black box A and B differently and locally close to instance x.

(a) Density of the local modified genetic
neighborhood (Seed 1)

(b) Density of the local genetic neighborhood
(Seed 1)

Figure 6.2: Data density of both local genetic neighborhood approaches. Figure 6.1
shows the generated datasets of the modified approach for Seed 1. The to be recognized
instances x are marked with a black circle.

Seed 2: Now, we show in our second example, a dataset based on our running example
but generated with a different seed, where we choose the to be recognized instance x
differently. The datasets, shown in Figures 6.3a and 6.3b, are based on the yellow marked
instances x and both are located at: x1 = 203.73 and x2 = − 182.83. The datasets for the
binary and multiclass classifier are generated independently of each other, which means
the instances (data points) of the datasets shown in the plots are not identical. For
comparison, we show the generated datasets of the initial genetic neighborhood approach
in Figures 6.3c and 6.3d. The balanced dataset for the binary diff-classifier contains 1,046
instances. 542 instances are assigned to the class “0” (“no diff”), and 504 instances are
assigned to the class “1” (“diff”). The dataset for the multiclass diff-classifier contains
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1,145 instances, whereby 36 instances are classified into class “00”, 415 instances are
classified into class “11”, 685 instances are classified into class “10”, and only 9 instances
are classified into class “01”. Figure 6.3a shows the binary diff-dataset. We can observe
that the approach generates, depending on instance x, very few instances classified into
class “no diff” near the closer boundary to the class “diff”. That can also be observed
in the multiclass example shown in Figure 6.3b. In that case, very few instances with
the class “11” are generated near the decision boundary to the class “11”. In summary,
increased instances are generated around the boundary to the adjacent classes in the
middle area of the plot (as in the binary as well as in the multiclass setting). That should
help to recognize the differences in that area. Again, in all of the more distant areas
compared to instance x, few or no instances are generated. For comparing the genetic
neighborhood approaches we show again in Figures 6.3c and 6.3d the datasets generated
by the genetic neighborhood approach.

Figure 6.4 shows the data density plots of the generated datasets of both approaches. This
example with a different seed shows that both approaches generate increased instances
which are predicted by black box A and B with the same result and which are locally
around instance x. But, as already mentioned, we can observe that both approaches
generate, depending on the instance x, very few instances classified into class “no diff”
near the closer boundary to the class “diff”. In contrast to the initial genetic neighborhood
approach, the modified approach generates increased instances which are predicted by
black box A and B differently and which are locally close to instance x. In this example,
it is recognizable that the initial genetic neighborhood approach generates increased
instances also for the more distant boundary areas.

Seed 3: The datasets of the third example based on our running example, shown in
Figure 6.5a and 6.5b, are generated depending on the differently located yellow marked
instances x. Both instances are located at: x1 = 55.61 and x2 = − 24.24. The datasets
for the binary and multiclass classifier are generated independently of each other. That
means the instances (data points) of the datasets shown in the plots are not identical. For
comparison, we show the generated datasets of the initial genetic neighborhood approach
in Figures 6.5c and 6.5d. The dataset for the binary diff-classifier contains 1,712 instances.
1,177 instances are assigned to the class “0” (“no diff”), and 535 instances are assigned
to the class “1” (“diff”). In this example, the approach does not generate a balanced
dataset. As explained before, the final set Z and the instances it contains are checked
for uniqueness. In this case, the genetic algorithm approach generates more redundant
instances for class “1” (“diff”). But, those redundant instances are deleted. This shows
that even the modified approach cannot guarantee to generate a balanced dataset in all
cases. But, before the generated instances are checked for uniqueness and cleaned up,
the instance generation (in the case of the binary difference classification) is balanced.
The unbalanced dataset for the multiclass diff-classifier contains 1,589 instances, whereby
688 instances are classified into class “00”, 471 instances are classified into class “11”,
406 instances are classified into class “10”, and 24 instances are classified into class “01”.
Figure 6.5a shows that around the center and close to x increased instances are generated.
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(a) Dataset for training the binary diff-
classifier

(b) Dataset for training the multiclass diff-
classifier

(c) Dataset for training the binary diff-
classifier

(d) Dataset for training the multiclass diff-
classifier

Figure 6.3: Running example: Datasets generated by the genetic neighborhood approaches
with instance to be recognized in the right bottom corner (Seed 2) for training a binary
and a multiclass diff-classifier to detect local differences close to instance x between
black box A and B (Figure 3.5 shows the datasets of the black boxes). Depending
on the yellow-marked instance, the local modified genetic neighborhood approach (see
Algorithm 6.1) of DiRo2C generates the shown dataset.

Thus, increased instances are created around the boundaries to distinguish the adjacent
classes (areas) in the center. Figure 6.5b also shows that the modified approach generates
increased instances close to instance x. In this way, more instances of the respective
adjacent outcome classes are generated close to x. But again it is also noticeable that
significantly fewer instances are existing in the more distant areas. Thus, few or no
instances are generated for the more distant classes (areas). For comparing the genetic
neighborhood approaches we show again in Figures 6.5c and 6.5d the datasets generated
by the genetic neighborhood approach.

Figure 6.6 shows the data density plots of the generated datasets of both approaches.
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(a) Density of the local modified genetic
neighborhood (Seed 2)

(b) Density of the local genetic neighborhood
(Seed 2)

Figure 6.4: Data density of both local genetic neighborhood approaches. Figure 6.3
shows the generated datasets of the modified approach for Seed 2. The to be recognized
instances x are marked with a black circle.

Again, we can observe the same effect of the modified genetic neighborhood approach.
Both approaches generate increased instances which are predicted by black box A and B
with the same result and which are locally around instance x. In contrast to the initial
genetic neighborhood approach, the modified approach generates increased instances
which are predicted by black box A and B differently and which are locally close to
instance x. In this example, it is recognizable that the initial genetic neighborhood
approach generates increased instances also for the more distant boundary areas.

We can observe that too few instances are generated in the more distant areas that the
training of the diff-classifier would support to determine the boundaries more precisely.
A key difference between both neighborhood approaches is that the initial neighborhood
approach cannot guarantee to create increased instances which are predicted by the
black boxes differently and which are as close as possible to x. The modified genetic
neighborhood approach is implemented to recognize the local differences as close as
possible to x. One advantage of the modified approach is the generation of a more
balanced dataset in most case of the binary difference classification. After checking for
uniqueness of the set Z, however, the diff-dataset may be no longer balanced.

6.2.2 Gaussian Quantiles Dataset

Now, we present another dataset example. We use two-dimensional Gaussian quantiles
classification datasets1 (see Figure 6.7) to show how the two genetic neighborhood
approaches generate differently the diff-dataset to recognize the differences of black box A
and B. For black box A the dataset is created with µ = 0 and σ2 = 0.8. The left dataset

1The datasets are available under: https://doi.org/10.5281/zenodo.5362220

75

https://doi.org/10.5281/zenodo.5362220


6. Modified Genetic Neighborhood and Performance Evaluation

(a) Dataset for training the binary diff-
classifier

(b) Dataset for training the multiclass diff-
classifier

(c) Dataset for training the binary diff-
classifier

(d) Dataset for training the multiclass diff-
classifier

Figure 6.5: Running example: Datasets generated by the genetic neighborhood approaches
with instance to be recognized in the center (Seed 3) for training a binary and a multiclass
diff-classifier to detect local differences close to instance x between black box A and B
(Figure 3.5 shows the datasets of the black boxes). Depending on the yellow-marked
instance, the local modified genetic neighborhood approach (see Algorithm 6.1) of DiRo2C
generates the shown dataset.

for black box A shows a two-dimensional dataset with the continuous features x1 and
x2. It contains 300 instances (data points) with the following properties for feature x1:
min = −275.71, max = 255.90, µ = 0.04, and σ = 88.54 and with the following properties
for feature x2: min = − 252.57, max = 201.03, µ = − 9.44, and σ = 86.20. The instances
of the datasets are classified into two classes, “0” and “1”. 150 instances of the left dataset
are assigned to the class “0”, and 150 instances are assigned to the class “1”. The instances
of the dataset for black box A are generated by the sklearn “make_gaussian_quantiles”
function with the following parameters: make_gaussian_quantiles(n_samples = 300,
n_classes = 2, shuffle = False, cov = 0.8, random_state = 7). Afterward, we scale the
instances by the factor of 100. The manipulated dataset for black box B is generated

76



6.2. Effects of the Modified Genetic Neighborhood Approach

(a) Density of the local modified genetic
neighborhood (Seed 3)

(b) Density of the local genetic neighborhood
(Seed 3)

Figure 6.6: Data density of both local genetic neighborhood approaches. Figure 6.5
shows the generated datasets of the modified approach for Seed 3. The to be recognized
instances x are marked with a black circle.

with µ = 0 and σ2 = 1.3. The right dataset for black box B shows a two-dimensional
dataset with the continuous features x1 and x2. It contains 300 instances (data points)
with the following properties for feature x1: min = − 351.46, max = 326.21, µ = 0.04,
and σ = 112.87 and with the following properties for feature x2: min = − 321.97,
max = 256.27, µ = − 12.04, and σ = 109.89. The instances of the datasets are classified
into two classes, “0” and “1”. 150 instances of the right dataset are assigned to the class
“0”, and 150 instances are assigned to the class “1”. The instances for black box B are
also generated by the sklearn function but with the parameter: cov = 1.3.

The following data generation examples are based on the presented Gaussian datasets
of black box A and B (see Figure 6.7). We show in the upcoming figures the resulting
datasets of the various data approaches for training the classifier to recognize differences
between the black boxes. So, each instance is predicted by black box A and B, and after
that, the predictions are compared to assign it to the corresponding difference class. Thus,
we show the resulting decision boundaries (indicated by the black drawn lines) of the
trained black box A and B in Figure 3.6. Both plots show how the instances are differently
predicted by black box A and B. In that example, we split the generated dataset into
a training and test dataset with a ratio of 20 to 80 percent. After that, we train black
box A and B using the training dataset and an SVM algorithm. In detail, we use the
C-Support Vector Classification implementation of the sklearn class “sklearn.svm.SVC”2

which is based on libsvm3. The plot shows the resulting decision boundaries of black box
A and B. The decision boundaries represent the learned classification of the SVM model.
The decision boundary runs in a circle around the center, whereby with black box B the

2For further details see: https://scikit-learn.org/stable/modules/generated/
sklearn.svm.SVC.html#sklearn.svm.SVC

3For further details see: https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
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Figure 6.7: Example of a random Gaussian quantiles classification dataset for black box
A and a manipulated dataset for black box B.

circle is shifted outwards. In this area enclosed by both circles (of black box A and B),
the instances of the diff-dataset are classified differently.

Seed 1: For the generated diff-datasets ZDiff in Figure 6.9, we set x the instance
responsible for recognizing the differences as close as possible to the center (marked
with a yellow circle in the figures). The instances are located at: x1 = − 1.09 and
x2 = − 6.77. Figure 6.9a shows the balanced binary difference-dataset generated by the
modified genetic neighborhood approach: 431 instances with y = 0 (“no diff”) and 495
instances with y = 1 (“diff”). For comparison, Figure 6.9c shows the unbalanced binary
difference-dataset generated by the initial genetic neighborhood approach: 2,439 instances
with y = 0 (“no diff”) and 366 instances with y = 1 (“diff”). Figure 6.9b shows the
unbalanced multiclass difference-dataset generated by the modified genetic neighborhood
approach which contains 822 instances, whereby 386 instances are classified into class
“00”, 40 instances are classified into class “11”, 396 instances are classified into class “10”,
and 0 instances are classified into class “01”. Figure 6.9d shows the unbalanced multiclass
difference-dataset generated by the initial genetic neighborhood approach which contains
3,050 instances, whereby 813 instances are classified into class “00”, 1,983 instances are
classified into class “11”, 254 instances are classified into class “10”, and 0 instances are
classified into class “01”. Figure 6.10 shows the data density plots of both approaches for
comparison. Again, we can observe that the modified approach generates, in the case
of the binary classification, a balanced difference-dataset. We can also observe that the
modified approach generates increased instances in the lower-left area of the “difference
circle” to recognize the local differences as close as possible to instance x. In contrast,
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6.2. Effects of the Modified Genetic Neighborhood Approach

Figure 6.8: Trained SVM black box classifier A and B based on the Gaussian quantiles
dataset with the corresponding decision boundaries.

the initial genetic neighborhood approach also generates increased instances outside the
“difference-circle”. As we can observe in the data density plots, in this example, the initial
genetic neighborhood approach generates instances in almost all areas to recognize the
differences globally.

Seed 2: In the second example (see Figure 6.11) based on the Gaussian quantiles
dataset, we set x the instance responsible for recognizing the differences as close as
possible to the “diff” boundary in the upper-left area (marked with a yellow circle in the
figures). The instances are located at: x1 = −101.71 and x2 = −28.34. Figure 6.11a shows
the balanced binary difference-dataset generated by the modified genetic neighborhood
approach: 439 instances with y = 0 (“no diff”) and 400 instances with y = 1 (“diff”). For
comparison, Figure 6.11c shows the unbalanced binary difference-dataset generated by
the initial genetic neighborhood approach: 1,956 instances with y = 0 (“no diff”) and 318
instances with y = 1 (“diff”). Figure 6.9b shows the unbalanced multiclass difference-
dataset generated by the modified genetic neighborhood approach which contains 838
instances, whereby 371 instances are classified into class “00”, 66 instances are classified
into class “11”, 401 instances are classified into class “10”, and 0 instances are classified
into class “01”. Figure 6.9d shows the unbalanced multiclass difference-dataset generated
by the initial genetic neighborhood approach which contains 2,136 instances, whereby 792
instances are classified into class “00”, 1,135 instances are classified into class “11”, 236
instances are classified into class “10”, and 0 instances are classified into class “01”. In
that example, we can observe that the modified approach specifically generates increased
instances in the lower-left “different-circle” area close to instance x. In contrast, the initial
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6. Modified Genetic Neighborhood and Performance Evaluation

(a) Dataset for training the binary diff-
classifier

(b) Dataset for training the multiclass diff-
classifier

(c) Dataset for training the binary diff-
classifier

(d) Dataset for training the multiclass diff-
classifier

Figure 6.9: Gaussian example: Datasets generated by the genetic neighborhood ap-
proaches with instance to be recognized in the center (Seed 1) for training a binary
and a multiclass diff-classifier to detect local differences close to instance x between
black box A and B (Figure 6.7 shows the datasets of the black boxes). Depending
on the yellow-marked instance, the local modified genetic neighborhood approach (see
Algorithm 6.1) of DiRo2C generates the shown dataset.

genetic neighborhood approach generates a lot more instances which are assigned to class
“no diff” (in the multiclass setting: class “00” and “11”). However, the approach does
not generate evenly distributed instances within the entire “difference-circle” which are
assigned to class “diff” (in the multiclass setting: class “10”). Both approaches generate
increased instances within the “no diff” (in the multiclass setting: class “00” and “11”)
area. The main difference of the modified approach compared to the initial approach
is that the modified approach focuses on one particular “diff” area and generates there
increased instances close to x. The initial approach generates in all corner areas increased
instances, especially for the “no diff” class(es). Figure 6.12 shows the data density plots
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6.3. From Local to Global Explanations

(a) Density of the local modified genetic
neighborhood (Seed 1)

(b) Density of the local genetic neighborhood
(Seed 1)

Figure 6.10: Data density of both local genetic neighborhood approaches. Figure 6.9
shows the generated datasets of the modified approach for Seed 1. The to be recognized
instances x are marked with a black circle.

of both approaches for comparison.

6.3 From Local to Global Explanations
By presenting the different data generation examples in the previous section, we could
observe that the modified approach does not generate enough instances to detect differ-
ences in more distant areas for one particular to be recognized instance x. Thus, we can
only recognize the local differences close to that particular instance x. To show the effects
of the modified genetic neighborhood approach, we select different seeds for instance x
manually and show only the generated dataset for one particular x. But our ultimate
goal is to recognize the differences between two binary black box classifiers globally.
Therefore, we already test an approach to generate various diff-datasets for differently
located to be recognized instances (seeds) using the modified genetic neighborhood
approach. The approach generates a defined number of to be recognized instances using
a Gaussian distribution over the feature value space. After that, we concatenate the
generated diff-datasets to one global diff-dataset that contains all generated instances.
That global diff-dataset can be used to train a global diff-classifier that can recognize the
differences between the black boxes globally. The problem is, that the current approach
needs approximately 1 minute to generate one diff-dataset for one particular instance x.
Assumed, we have a dataset that contains 1,000 instances and we select 10 percent of
all instances and generate for each selected instance a modified genetic neighborhood.
So, the generation of all genetic neighborhoods would take approximately 100 minutes.
Thus, optimization of the runtime and the selection of the instances to be recognized is
necessary to use our method in an efficient way. But, optimizing this process is no longer
part of this thesis.
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6. Modified Genetic Neighborhood and Performance Evaluation

(a) Dataset for training the binary diff-
classifier

(b) Dataset for training the multiclass diff-
classifier

(c) Dataset for training the binary diff-
classifier

(d) Dataset for training the multiclass diff-
classifier

Figure 6.11: Gaussian example: Datasets generated by the genetic neighborhood ap-
proaches with instance to be recognized in the corner (Seed 2) for training a binary
and a multiclass diff-classifier to detect local differences close to instance x between
black box A and B (Figure 6.7 shows the datasets of the black boxes). Depending
on the yellow-marked instance, the local modified genetic neighborhood approach (see
Algorithm 6.1) of DiRo2C generates the shown dataset.

However, we demonstrate a global diff-dataset using our running example dataset and the
modified genetic neighborhood approach for different seeds. We use the already presented
seeds plus one additional seed to generate the various diff-datasets and concatenate them
to one global diff-dataset. The additional to be recognized instance (Seed 4) is located
at: x1 = − 243.21 and x2 = 191.26. We select that additional seed to generate increased
instances in the upper left corner to recognize the differences between black box A and B
in this area. Figure 6.13 shows the global diff-dataset for the binary and the multiclass
diff-classifier. The dataset for the binary diff-classifier contains 4,245 instances. 2,412
instances are assigned to the class “0” (“no diff”), and 1,833 instances are assigned to
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6.4. Performance Evaluation of the Genetic Neighborhood Approaches

(a) Density of the local modified genetic
neighborhood Seed 2)

(b) Density of the local genetic neighborhood
(Seed 2)

Figure 6.12: Data density of both local genetic neighborhood approaches. Figure 6.11
shows the generated datasets of the modified approach for Seed 2. The to be recognized
instances x are marked with a black circle.

the class “1” (“diff”). The different used seeds are marked with yellow circles. The
figure shows that, now, in each area where black box A and B predict different outcomes
increased instances are generated close to the boundaries. Figure 6.14 shows the data
density plot of the global diff-dataset. The various to be recognized instances x are
marked with a black circle. We can observe that now close to that to be recognized
instances increased synthetic instances are generated. So, adding various seeds that are
located close to difference class boundaries helps to create a global diff-dataset that
accurately covers the entire differences between black box A and B.

We will return later to the “from local to global explanations” problem in Chapter 8
to discuss potential solutions, needed optimizations, among others regarding instance
selection and future work.

The following section presents how accurately the classifier, trained by using the modified
approach, recognizes local differences depending on a particular instance x and why we
think our approach is promising to train, finally, a diff-classifier that is able to provide
global explanations.

6.4 Performance Evaluation of the Genetic Neighborhood
Approaches

In this section, the final results are shown to mainly evaluate which local genetic neigh-
borhood approach performs better to detect differences between two black box classifiers.
Therefore, we again measure the already described performance metrics and present both
different genetic neighborhood approaches for generating the dataset Zdiff to train a
diff-classifier. Finally, we also discuss our major findings. To measure the performance of
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6. Modified Genetic Neighborhood and Performance Evaluation

(a) Global dataset for training the binary
diff-classifier

(b) Global dataset for training the multiclass
diff-classifier

Figure 6.13: Running example: Binary and multiclass global diff-dataset generated by
using the modified genetic neighborhood approach and various instances to be recognized
for training a binary and a multiclass diff-classifier to recognize the global differences
between black box A and B (Figure 3.5 shows the datasets of the black boxes). Depending
on the yellow-marked instances, the local modified genetic neighborhood approach (see
Algorithm 6.1) of DiRo2C generates the diff-datasets and concatenate it to the shown
dataset.

the modified approach, we again use the experimental setup presented in Chapter 5.

In Table 6.1, we present the measured metrics. Regarding RQ 1 and our hypothesis, the
Accuracy results of the binary diff-classifiers are, as expected, again closer to 1 compared
to the multiclass diff-classifiers measures. Furthermore, the Accuracy compared to the
two genetic neighborhood approaches also does not differ significantly. But the F1-score in
the modified approach is consistently approximately 1 across all data sets and is, therefore,
better than compared to the initial genetic neighborhood approach. In addition, the
F1-scores of the modified genetic neighborhood trained binary diff-classifiers are higher
across all datasets than the F1-scores of the multiclass diff-classifiers. The PearsonCC
once again confirms the performance results. The results shown in Table 5.7 and 6.1 can
be used to state the following. Concerning RQ 1.1 and 1.2, the measures show that a
diff-classifier trained on synthetic data can outperform a classifier created using a real
and already existing dataset. They also show that the diff-classifiers trained by datasets
generated by the local modified genetic neighborhood approach perform better than the
proposed global strategies. We have shown in this chapter how the modified genetic
neighborhood solution generates increased data in the area where the predictions of the
two black box classifiers differ. That modification finally leads to a higher data density
in the immediate area close to a specific instance x and thus to higher coverage.
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6.5. Summary

Figure 6.14: Data density of the global modified genetic neighborhood dataset based on
the running example. Figure 6.13 shows the generated global datasets using the modified
approach and various instances. The to be recognized instances x are marked with a
black circle.

6.5 Summary
In summary, the decisive change of the modified approach is the modification of the
fitness functions by comparing the outcome of black box A and B. Therefore, the modified
approach should generate, finally, a more balanced diff-dataset Zdiff by considering that
the check for uniqueness can lead to a dataset that is no longer being balanced. We also
have explained that we have presented manually picked seeds and show the effect of the
local modified genetic neighborhood approach for one particular instance x. Furthermore,
we have explained the “from local to global explanation” problem. Our evaluations have
shown that the classifiers trained by the dataset generated with the modified approach
outperform the classifiers based on the initial genetic neighborhood approach. In the
following chapter, we will evaluate the detected differences for correctness. Therefore, we
will show the resulting decision tree of trained diff-classifiers to analyze the trained decision
rules. We will also show how our approach tackles non-orthogonal class boundaries and
whether the resulting decision rules are interpretable anymore.
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6. Modified Genetic Neighborhood and Performance Evaluation

Dataset DCM DA ACC F1-score P CC

adult
binary dc gn .984 ± .006 .703 ± .055 .695 ± .073

mod gn .983 ± .013 .982 ± .015 .968 ± .026

multiclass dc gn .906 ± .045 .667 ± .039 .814 ± .089
mod gn .905 ± .062 .753 ± .108 .844 ± .090

bank marketing
binary dc gn .996 ± .003 .711 ± .357 .717 ± .361

mod gn .991 ± .007 .987 ± .010 .982 ± .014

multiclass dc gn .931 ± .015 .759 ± .126 .814 ± .089
mod gn .953 ± .021 .888 ± .032 .916 ± .034

credit approval
binary dc gn .983 ± .009 .911 ± .058 .900 ± .044

mod gn .981 ± .014 .980 ± .015 .962 ± .029

multiclass dc gn .979 ± .012 .897 ± .050 .966 ± .015
mod gn .970 ± .015 .926 ± .026 .951 ± .025

Table 6.1: Genetic neighborhood approaches: comparison of the diff-classifier performance
results. The following abbreviations are used: DCM (Diff-Classifier Method), DA (Data
Approach), ACC (Accuracy), PCC (Pearson CC), and the abbrevations for the data
generation approaches gn (local genetic neighborhood), and mod gn (modified local
genetic neighborhood).
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CHAPTER 7
Evaluation of the Detected

Differences

So far, we have already presented our measures regarding RQ 1 (and sub-questions).
Next, we will focus on showing our results concerning RQ 2. To evaluate if the trained
decision tree-based diff-classifier recognizes the actual (true) differences, we manipulate
particular features and verify if the forced differences are found in the resulting decision
tree. We use different settings to show our results. At first, we present our results by
using two-dimensional synthetic datasets. We again use our running example and the
diagonal example. In the case of the diagonal example, we use for black box B a diagonal
boundary to show the effect of a non-orthogonal difference-class boundary between black
box A and B. We use the diagonal example already to explain the difference classification
problem in Chapter 3 (see Figure 3.2). Second, we present our results regarding the
multi-dimensional adult dataset. We run different data manipulation experiments to
force differences between black boxes A and B.

7.1 Synthetic Datasets
In this section, we present the trained diff-classifiers based on two-dimensional synthetic
datasets. We use our running example setting and an additional diagonal example setting.
Using the two-dimensional synthetic datasets, we can better illustrate the resulting
decision boundaries of the trained diff-classifier.

7.1.1 Running Example Dataset

Next, we show our results based on our running example dataset. We want to mention that
the global synthetic data, local genetic neighborhood data, and local modified neighborhood
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7. Evaluation of the Detected Differences

Figure 7.1: Running example of a synthetic classification dataset for black box A and a
manipulated dataset for black box B. The plot of the dataset of black box B shows the
different shifted boundaries of the class membership.

data approach generates the instances with no specified random seed1, which means the
instances of the datasets shown in the plots are not identical. In addition, the presented
datasets are not identical compared to the already presented datasets in earlier chapters.
At first, once again, we show the dataset of black box A and B in Figure 7.1. We also
want to show the decision boundaries of the trained black box classifier A and B using
a CART algorithm in Figure 7.2. And additionally, to compare the different bases for
decision-making of the two black boxes in detail, Figure 7.3a again shows the decision
tree of black box A and Figure 7.3b shows the decision tree of black box B.

Next, we show the decision boundaries of the trained diff-classifiers for the various data
approaches based on the datasets, as shown in Figure 7.1. For the local data approaches,
we use the same to be recognized instance x located at: x1 = − 143.91 and x2 = − 4.53
(Seed 1). For the local data approaches, we also show the trained decision boundaries of
a global diff-classifier trained by a global dataset where the diff-datasets for the already
presented 4 various seeds (cf. Section 6.3) are concatenated.

Global Synthetic Data

Figure 7.4 shows the decision boundaries of the trained diff-classifier based on the global
synthetic data approach. Both diff-classifiers (the binary classifier and the multiclass

1The implementations of the genetic approaches are based on the implementation of LORE. In the
implementation of LORE, the genetic neighborhoods are also generated without a defined random seed.
Furthermore, we have not changed the initialization of the genetic algorithm.
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7.1. Synthetic Datasets

Figure 7.2: Trained black box classifier A and B with the corresponding decision bound-
aries based on the running example dataset.

classifier) recognize the global differences between black boxes A and B. In this two-
dimensional setting, the approach delivers accurate decision boundaries. The approach
recognizes all manipulated areas, also the narrow manipulated area in the middle below.
But, in the case of complex datasets such as the adult dataset, this approach yields poor
results in terms of performance (cf. Chapter 5).

In addition, we also want to show the decision trees of the classifiers (see Figure 7.5).
The conditions for the classification are shown here in detail.

Global Real Data

Figure 7.6 shows the decision boundaries of the trained diff-classifier based on the global
real data approach. Both diff-classifiers (the binary classifier and the multiclass classifier)
recognize not overall the global differences between black boxes A and B. The actual
differences in the middle-lower area are not recognized. In the upper left (red) area, which
is dedicated to the difference-class “01”, the decision boundaries could be determined
almost exactly, whereby there are almost no instances close to the right boundary (to class
“11”). But, in the middle area that is dedicated to the difference-class “10”, the decision
boundaries are not recognized exactly. In that area, the trained decision boundaries are
shifted compared to the actual boundaries. In this two-dimensional setting, the approach
delivers in many areas accurate decision boundaries. However, in the case of complex
benchmark datasets such as the adult dataset, this approach also yields poor results in
terms of performance (cf. Chapter 5).
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7. Evaluation of the Detected Differences

(a) Decision tree of black box classifier A
(b) Decision tree of manipulated black box
classifier B

Figure 7.3: Decision tree of the trained binary black box classifier A and manipulated
binary black box classifier B (Figure 3.5 shows the datasets of the black boxes). If the
condition for a particular node is met, the path on the left of the decision tree is chosen.

(a) Decision boundaries of binary diff-
classifier

(b) Decision boundaries of multiclass diff-
classifier

Figure 7.4: Diff-classifiers trained by the global synthetic data approach based on the
running example dataset.

In addition, we also want to show the decision trees of the classifiers (see Figure 7.7).
The conditions for the classification are shown here in detail.

Local Real Data

For the local real data approach, we present at first the decision boundaries of the trained
diff-classifier for the manually defined Seed 1.
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7.1. Synthetic Datasets

(a) Decision tree of binary diff-classifier (b) Decision tree of multiclass diff-classifier

Figure 7.5: Decision trees of the diff-classifiers trained by the global synthetic data
approach based on the running example dataset.

(a) Decision boundaries of binary diff-
classifier

(b) Decision boundaries of multiclass diff-
classifier

Figure 7.6: Diff-classifiers trained by the global real data approach based on the running
example dataset.

Seed 1: Figure 7.8 shows the decision boundaries of the trained diff-classifiers based
on the local real data approach. Each dataset is generated based on the instance x
highlighted in yellow, and both instances are located at: x1 = −143.91 and x2 = −4.53. At
first, we discuss the resulting decision boundaries of the binary diff-classifier. Figure 7.8a
shows the decision boundaries of the binary diff-classifier. It shows that in the left area
(x1 < 8.5), the diff-classifier can classify the differences accurately. In this approach,
however, the classifier is dependent on the existing instances of the real dataset. But in
the more distant (right) areas, the diff-classifier cannot recognize the actual differences.
Figure 7.8b shows the decision boundaries of the multiclass diff-classifier. In the case of
the multiclass setting, we also can see that the differences can be recognized accurately
in the left area (x1 < −8.5). But in the more right area, the trained decision boundaries
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7. Evaluation of the Detected Differences

(a) Decision tree of binary diff-classifier (b) Decision tree of multiclass diff-classifier

Figure 7.7: Decision trees of the diff-classifiers trained by the global real data approach
based on the running example dataset.

(a) Decision boundaries of binary diff-
classifier

(b) Decision boundaries of multiclass diff-
classifier

Figure 7.8: Diff-classifiers trained by the local real data approach based on the running
example dataset (Seed 1).

do not reflect the actual differences between black box A and B. In addition, we also
want to show the decision trees of the classifiers (see Figure 7.9). The conditions for the
classification are shown here in detail.

Next, we present the results for a global binary and multiclass diff-classifier. We use a
concatenated global diff-dataset based on the presented 4 different located seeds. That
means we use the local real data approach for that 4 various located instances to be
recognized and merge the dataset to a global diff-dataset and train the classifier.

Global local real data: Figure 7.10 shows the decision boundaries of the trained
global diff-classifiers based on the local real data approach. The merged global dataset
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7.1. Synthetic Datasets

(a) Decision tree of binary diff-classifier (b) Decision tree of multiclass diff-classifier

Figure 7.9: Decision trees of the diff-classifiers trained by the local real data approach
based on the running example dataset (Seed 1).

(a) Decision boundaries of binary diff-
classifier

(b) Decision boundaries of multiclass diff-
classifier

Figure 7.10: Global diff-classifiers trained by the global local real data approach based
on the running example dataset and various seeds.

is generated based on the instances highlighted in yellow. In that case, the global
diff-classifier can find the differences for each area accurately (except the middle-lower
area). But in principle, it is not an improvement compared to the previously presented
global real data approach. That means the more datasets for different instances are
concatenated to a global dataset, the more instances the dataset contains from the
existing dataset of the black box models.

In addition, we also want to show the decision trees of the classifiers (see Figure 7.11).
The conditions for the classification are shown here in detail.
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7. Evaluation of the Detected Differences

(a) Decision tree of binary diff-classifier (b) Decision tree of multiclass diff-classifier

Figure 7.11: Decision trees of the diff-classifiers trained by the global local real data
approach based on the running example dataset.

Local Genetic Neighborhood Data

For the local genetic neighborhood data approach, we also present at first the trained
decision boundaries of the defined Seed 1.

Seed 1: Figure 7.12 shows the decision boundaries of the trained diff-classifiers based
on the genetic neighborhood data approach. Each dataset is generated based on the
instance x highlighted in yellow, and both instances are located at: x1 = − 143.91
and x2 = − 4.53. At first, we discuss the resulting decision boundaries of the binary
diff-classifier. Figure 7.12a shows the decision boundaries of the binary diff-classifier.
The trained diff-classifier recognizes nearly all difference-areas, except the middle-lower
“diff” area, because in that area, too few instances are generated to recognize the actual
differences. The upper and right, close to instance x, decision boundaries can be recognized
accurately through increased generated instances along the boundaries. We also can
observe that the more distant boundaries can be recognized almost exactly. But for
comparison, not that many instances are generated in the more distant areas (to be seen
in the right part of the middle “diff” area). Figure 7.12b shows the decision boundaries
of the multiclass diff-classifier. We also can observe the same behavior in the multiclass
setting. In summary, the genetic algorithm creates no instances in the lower middle area,
where black box A classifies the “0” class, and black box B classifies the “1” class. In
addition, we also want to show the decision trees of the classifiers (see Figure 7.13). The
conditions for the classification are shown here in detail.

Next, again, we present the results for a global binary and multiclass diff-classifier. We
use a concatenated global diff-dataset based on the presented 4 different located seeds.
That means we use the local real data approach for that 4 various located instances to
be recognized and merge the dataset to a global diff-dataset and train the classifier.
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7.1. Synthetic Datasets

(a) Decision boundaries of binary diff-
classifier

(b) Decision boundaries of multiclass diff-
classifier

Figure 7.12: Diff-classifiers trained by the local genetic neighborhood data approach
based on the running example dataset (Seed 1).

(a) Decision tree of binary diff-classifier (b) Decision tree of multiclass diff-classifier

Figure 7.13: Decision trees of the diff-classifiers trained by the modified genetic neighbor-
hood data approach based on the running example dataset (Seed 1).

Global Genetic Neighborhood: Figure 7.14 shows the decision boundaries of the
trained global diff-classifiers based on the concatenated genetic neighborhood diff-datasets.
Each dataset is generated based on the instances highlighted in yellow. The unbalanced
binary diff-dataset contains 7,499 instances, whereby 5,768 instances are classified into
class “no diff” and 1,731 instances are classified into class “diff”. The multiclass diff-
dataset contains 8,564 instances, whereby 3,104 instances are classified into class “00”,
3,106 instances are classified into class “11”, 1,462 instances are classified into class “10”,
and 892 instances are classified into class “01”. At first, we discuss the resulting decision
boundaries of the binary diff-classifier. Figure 7.14a shows the decision boundaries of the
binary diff-classifier. Now, the global approach generates in all areas (where difference
transitions between black box A and B exist) sufficient enough instances to recognize the
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7. Evaluation of the Detected Differences

(a) Decision boundaries of binary diff-
classifier

(b) Decision boundaries of multiclass diff-
classifier

Figure 7.14: Global diff-classifiers trained by the concatenated local genetic neighborhood
diff-datasets based on the running example dataset.

(a) Decision tree of binary diff-classifier (b) Decision tree of multiclass diff-classifier

Figure 7.15: Decision trees of the global diff-classifiers trained by the concatenated genetic
neighborhood diff-datasets based on the running example dataset.

decision boundaries reliable. Figure 7.14b shows the decision boundaries of the multiclass
diff-classifier. We can also observe that the global differences are recognized accurately.
Furthermore, we can observe that the more instances to be recognized are selected,
the more instances are generated to recognize the global differences. However, when
evaluating the performance of the diff-classifier based on the three complex benchmark
datasets, we can see that the simplistic genetic neighborhood approach performs worse
than the modified approach. In addition, we also want to show the decision trees of the
classifiers (see Figure 7.15). The conditions for the classification are shown here in detail.

Next, we show the detected differences of the diff-classifiers based on the local modified
genetic neighborhood data approach.
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7.1. Synthetic Datasets

(a) Decision boundaries of binary diff-
classifier

(b) Decision boundaries of multiclass diff-
classifier

Figure 7.16: Diff-classifiers trained by the local modified genetic neighborhood data
approach based on the running example dataset (for Seed 1).

Local Modified Genetic Neighborhood Data

For the local modified genetic neighborhood data approach, we also present at first the
trained decision boundaries of the defined Seed 1.

Seed 1: Figure 7.16 shows the decision boundaries of the trained diff-classifiers based
on the modified genetic neighborhood data approach. Each dataset is generated based
on the instance x highlighted in yellow, and both instances are located at: x1 = − 143.91
and x2 = − 4.53. At first, we discuss the resulting decision boundaries of the binary
diff-classifier. Figure 7.16a shows the decision boundaries of the binary diff-classifier.
We can confirm that the approach generates in the top left, middle and middle-lower
area too few instances to train rules to be able to differentiate between class “no diff”
and “diff”. But, the approach generates increased instances in the locally closer top “diff”
area. We also can confirm that in all of the more distant areas, few or no instances are
generated to distinguish between the difference-classes. Figure 7.16b shows the decision
boundaries of the multiclass diff-classifier. We can also see here that the differences are
not recognized in the areas mentioned before. Therefore, we also can confirm, increased
instances are generated to recognize the locally closer decision boundary in the top
area between the difference-class “00” and “01”. But not in the top left area. Only a
few instances are generated in the middle area where the difference-class “00” borders
the difference-class“10”. No instances are generated in the middle-lower area where
the difference-class “00” borders the class“01”. As a result, an unbalanced multiclass
diff-dataset is generated. The dataset contains only a few generated instances that are
assigned to the difference-classes “10” and “11”. In addition, we also want to show the
decision trees of the classifiers (see Figure 7.17). The conditions for the classification are
shown here in detail.
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7. Evaluation of the Detected Differences

(a) Decision tree of binary diff-classifier (b) Decision tree of multiclass diff-classifier

Figure 7.17: Decision trees of the diff-classifiers trained by the modified genetic neighbor-
hood data approach based on the running example dataset (for Seed 1).

Listing 7.1: Decision rules - binary diff-classifier (Seed 1)
{ ’ d i f f ’ : ’{x2 > 93 .98 , x1 <= −7.25} ’}

Listing 7.2: Decision rules - multiclass diff-classifier (Seed 1)
{ ’ 1 0 ’ : ’{x2 <= 97 .42 , x1 > −8.163 , x1 <= 103 .08} ’} ,
{ ’ 0 1 ’ : ’{x2 > 97 .42 , x1 <= 22.63} ’}

For the modified genetic neighborhood data approach, we present the derived decision
rules. For each rule, the difference-class to which the conditions apply is displayed first
and then the logical conjunction of conditions (separated by commas). Listing 7.1 shows
the decision rules derived from the binary decision tree (see Figure 7.17a). Each set
of rules represents a path of the decision tree from the root to a “diff” leaf. We only
show the “diff” decision rule paths. Listing 7.2 shows the decision rules derived from the
multiclass decision tree (see Figure 7.17b). Each set of rules represents a path of the
decision tree from the root to a “01” or “10” diff-leaf. Again, we only show the “diff”
decision rule paths.

In that case, the decision rules are comprehensible and can be used to explain the
differences compactly. The problem is that the differences are only accurately recognized
locally close to x. The recognized differences and the decision rules are therefore not
applicable for global explanations. However, the ultimate goal is to recognize the global
differences between black box A and B. Thus, we present again the results for the trained
binary and multiclass diff-classifier using a concatenated global diff-dataset based on the
4 different located seeds.
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(a) Decision boundaries of binary diff-
classifier

(b) Decision boundaries of multiclass diff-
classifier

Figure 7.18: Global diff-classifiers trained by the concatenated local modified genetic
neighborhood diff-datasets based on the running example dataset.

Global Modified Genetic Neighborhood: Figure 7.18 shows the decision bound-
aries of the trained global diff-classifiers based on the concatenated modified genetic
neighborhood diff-datasets. Each dataset is generated based on the instances highlighted
in yellow. At first, we discuss the resulting decision boundaries of the binary diff-classifier.
Figure 7.18a shows the decision boundaries of the binary diff-classifier. Now, we can
observe that the global approach generates instances to recognize the decision boundaries
in all areas, where “difference-class” transitions between black boxes A and B exist. But
compared to the initial genetic neighborhood approach, not that many instances are
generated overall. The reason for this is as follows: The initial genetic neighborhood
approach generates genetic neighborhoods for both black boxes A and B independently
of each other. However, the modified approach generates only one genetic neighborhood,
dependent on each other. Figure 7.18b shows the decision boundaries of the multiclass
diff-classifier. Here, we can observe the same effect that not as many instances are
generated overall. Generally, we can observe, the more instances to be recognized are
selected, the more instances are generated to recognize the global differences reliable.
We want to mention that an optimized approach is required to select the instances to
be recognized. However, this is out of scope for this thesis. In addition, we also want
to show the decision trees of the classifiers (see Figure 7.19). The conditions for the
classification are shown here in detail.

Listing 7.3 shows the decision rules derived from the binary decision tree (see Figure 7.19a)
to explain the global decision differences between black box A and B. Each set of rules
represents a path of the decision tree from the root to a “diff” leaf. We only show the
“diff” decision rule paths. But, in the case of the binary setting, we can observe that the
rules can become very complex, even for a simple two-dimensional dataset. Compared
to the decision tree and the rules of the global diff-classifier based on the initial genetic
neighborhood approach, we can observe that the rules are more complex than necessary.
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(a) Decision tree of binary diff-classifier (b) Decision tree of multiclass diff-classifier

Figure 7.19: Decision trees of the global diff-classifiers trained by the concatenated
modified genetic neighborhood diff-datasets based on the running example dataset.

Listing 7.3: Decision rules - global binary diff-classifier
{ ’ d i f f ’ : ’{x2 <= −106.18 , x2 <= −215.27 , x2 <= −215.57 , x2 <=

−313.47} ’} ,
{ ’ d i f f ’ : ’{x2 <= −106.13 , x2 <= −215.27 , x2 <= −215.57 , x2 >

−313.47 , x1 <= −11.14 , x1 > −19.33} ’} ,
{ ’ d i f f ’ : ’{x2 <= −106.13 , x2 <= −215.27 , x2 > −215.57} ’} ,
{ ’ d i f f ’ : ’{x2 <= −106.13 , x2 > −215.27 , x2 <= −107.98 , x1 <=

−9.02 , x1 > −16.16} ’} ,
{ ’ d i f f ’ : ’{x2 <= −106.13 , x2 > −215.27 , x2 > −107.98 , x2 <=

−107.07} ’} ,
{ ’ d i f f ’ : ’{x2 > −106.13 , x1 > −204.00 , x1 <= 152 .57 , x1 <=

−7.30 , x2 <= 96 .83 , x1 > −9.21} ’} ,
{ ’ d i f f ’ : ’{x2 > −106.13 , x1 > −204.00 , x1 <= 152 .57 , x1 <=

−7.30 , x2 > 96 .83 , x1 <= −8.96} ’} ,
{ ’ d i f f ’ : ’{x2 > −106.13 , x1 > −204.00 , x1 <= 152 .57 , x1 > −7.30 ,

x2 <= 96.85} ’}

Thus, the differences are more difficult to explain and understand. That confirms that an
optimized process must be found to generate local diff-datasets that contains increased
instances close to all decision boundaries. Listing 7.4 shows the decision rules derived
from the multiclass decision tree (see Figure 7.19b). Each set of rules represents a path of
the decision tree from the root to a “01” or “10” diff-leaf. Again, we only show the “diff”
decision rule paths. In the case of the multiclass setting, the differences are depicted
compactly and comprehensibly by using the derived decision rules.
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Listing 7.4: Decision rules - global multiclass diff-classifier
{ ’ 0 1 ’ : ’{x1 <= −8.78 , x2 <= 96 .84 , x1 > −15.05 , x2 <=

−111.70} ’} ,
{ ’ 0 1 ’ : ’{x1 <= −8.78 , x2 > 96 .84 , x1 > −203.02} ’} ,
{ ’ 1 0 ’ : ’{x1 > −8.78 , x1 <= 151 .30 , x2 > −108.31 , x2 <= 96 .93} ’} ,

Comparison of the Data Approaches

A crucial advantage of the local genetic methods is that increased instances can be
generated close to the to be recognized instances synthetically, especially around the
closer decision boundaries. That means these approaches are not dependent on existing
instances. In contrast, the real data approaches are depending on the existing data.
In the case of the local approaches, we also show that the selection of different to be
recognized instances can be used to generate various diff-datasets. The concatenation
of the generated diff-datasets to one global dataset helps train a global diff-classifier
that can recognize the global differences between the black boxes. In the case of the
running example dataset, we can show that both genetic neighborhood approaches create
increased instances around the existing boundaries of the difference-classes. That enables
us to illustrate by using plots that the decision boundaries can be trained accurately, and
the genetic approaches can recognize all global differences between the black boxes. Also,
we can observe that for the running example, the initial genetic approach generates more
instances around the boundaries than the modified approach. However, the modified
approach specifically generates increased synthetic instances in the closest possible vicinity
close to a particular instance to be recognized. Also, the performance measurement
shows that the diff-classifier based on the modified approach performs more accurately to
predict differences. That means, to recognize the global differences based on the modified
approach, enough instances to generate various diff-datasets must be selected.

7.1.2 Diagonal Example Dataset
Now, we present the diagonal example dataset for illustrating how the decision tree-
based diff-classifier of DiRo2C can handle a non-orthogonal decision boundary. For this,
we use the two-dimensional synthetic classification dataset2 as seen in Figure 7.20 to
train the black boxes. This example can be compared with the mentioned difference
classification problem diagonal example (see Figure 3.2). For that example, we initially
create the right shown dataset for black box B. The dataset for black box B shows
a two-dimensional dataset with the continuous features x1 and x2. It contains 300
instances (datapoints) with the following properties for feature x1: min = − 126.19,
max = 362.16, µ = 139.14, and σ = 77.79 and with the following properties for feature x2:
min = − 429.45, max = 265.10, µ = 9.98, and σ = 157.80. The instances of the datasets
are classified into two classes “0” and “1”. 150 instances of the dataset of black box B are

2Datasets are available under: https://doi.org/10.5281/zenodo.5701440
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Figure 7.20: Diagonal example of a synthetic classification dataset for black box B and a
manipulated dataset for black box A. The plot of the dataset of black box B shows the
diagonal boundary between class “0” and “1”.

assigned to the class “0”, and 150 instances are assigned to the class “1”. The instances of
the dataset for black box B are generated by the sklearn “make_classification” function
with the following parameters: make_classification(n_samples = 300, n_features = 2,
n_informative = 2, n_clusters_per_class = 2, class_sep = 1.3, random_state = 0, flip_y
= 0, scale = 100). The left dataset for black box A is manipulated on the basis of the
dataset of black box B as follows: (x1 < 100 : y = 0), (x1 >= 100 : y = 1). 86
instances are now assigned to the class “0”, and 214 instances are assigned to the class
“1”. Thus, we only manipulate the outcome classes of the instances of the dataset for
black box B. The properties for the feature x1 and x2 remain unchanged.

Before we present how the decision tree-based diff-classifier handles a non-orthogonal
decision boundary, we show the resulting decision boundaries (indicated by the black
drawn lines) of the trained black box A and B in Figure 7.21. Both plots show how
the instances are differently predicted by black box A and B. In our diagonal example,
we split the generated dataset into a training and test dataset with a ratio of 80 to
20 percent. After that, we train black box A and B using the training dataset and a
scikit-learn integrated Logistic Regression algorithm3 with a defined random state of 0.
The plot shows the resulting decision boundaries of black box A and B. The decision
boundaries represent the learned regression function used for prediction. Black box A
classifies the instances with the following trained decision boundary: (x1 < 100 : y = 0)

3For further details see: https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.LogisticRegression.html
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Figure 7.21: Trained black box classifier A and B with the corresponding decision
boundaries based on the diagonal example dataset.

and (x1 >= 100 : y = 1). The right plot shows the diagonal decision boundary of the
trained black box classifier B.

Global Modified Genetic Neighborhood: Now, we present how the decision tree-
based diff-classifier of DiRo2C can handle a non-orthogonal decision boundary. Therefore,
we use a global diff-classifier trained by a global diff-dataset. Again, we concatenate the
existing test datasets of black box A and B and select 10 instances for which the black
boxes predict a different outcome and 10 instances for which the black boxes predict
the same outcome. Next, we want to present the selected to be recognized instances for
which we create single local diff-datasets and concatenate them to a global one:

• Xtest[2] : [150.53, 220.01]

• Xtest[4] : [115.48, 186.17]

• Xtest[7] : [186.16, 169.81]

• Xtest[10] : [169.92, 165.67]

• Xtest[12] : [−7.69, −221.87]

• Xtest[13] : [48.94, −309.61]

• Xtest[14] : [234.42, 82.90]
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• Xtest[15] : [21.77, 105.81]

• Xtest[17] : [35.35, −429.45]

• Xtest[18] : [92.86, 80.82]

• Xtest[21] : [138.17, −89.86]

• Xtest[22] : [123.77, −184.87]

• Xtest[23] : [117.45, −56.10]

• Xtest[24] : [168.26, 109.62]

• Xtest[27] : [41.39, 68.95]

• Xtest[32] : [60.69, −69.27]

• Xtest[33] : [59.45, 137.44]

• Xtest[35] : [128.21, 119.89]

• Xtest[39] : [78.63, −86.81]

• Xtest[42] : [209.71, 43.13]

Figure 7.22 shows the generated global diff-datasets and the decision boundaries of the
trained global diff-classifiers. The concatenated global binary diff-dataset contains 24,040
instances, whereby 9,672 instances are classified into class “no diff” and 14,368 instances
are classified into class “diff”. Now, we discuss the resulting decision boundaries of the
binary diff-classifier. Figure 7.22a shows the generated global diff-dataset and the decision
boundaries of the binary diff-classifier. The plot shows that not enough instances are
generated in the outer right and left corners close to the decision boundary of black box
B. Therefore, the global diff-classifier can’t recognize in that area the diagonal boundary.
Additionally, we show the data density of the generated global diff-dataset in Figure 7.23.
For the x1-axis, we use 60 bins, and for the x2-axis, we also use 60 bins. The main
problem we can observe is that the trained decision tree of the global diff-classifier is
highly complex since the CART algorithm has to approximate the diagonal boundary,
which leads to an increased generation of rules. Figure 7.24 shows the complex decision
tree of the global binary diff-classifier. We can observe that the differences are difficult
to explain and finally to understand. In Listing 7.5, we show the extracted decision rules
of the binary diff-classifier. Again, we can observe that the diagonal boundary leads to
an explanation that is hard to comprehend. Figure 7.22b shows the generated global
diff-dataset and the decision boundaries of the multiclass diff-classifier. We can observe
in the multiclass setting the same effect as in the binary setting. The diagonal decision
boundary has to be approximated by the CART algorithm by creating increased rules.
The concatenated global multiclass diff-dataset contains 21,904 instances, whereby 3,717

104



7.1. Synthetic Datasets

(a) Decision boundaries of binary diff-
classifier

(b) Decision boundaries of multiclass diff-
classifier

Figure 7.22: Global diff-classifiers trained by the concatenated local modified genetic
neighborhood diff-datasets based on the diagonal example dataset.

Figure 7.23: Data density of the global modified genetic neighborhood dataset based
on the diagonal example. Figure 7.22b shows the generated global datasets using the
modified approach for various located instances.

instances are classified into class “00”, 5,835 instances are classified into class “11”, 5,467
instances are classified into class “10”, and 6,885 instances are classified into class “01”.
Figure 7.24 shows the decision tree of the global multiclass diff-classifier.
We will come back to the problem described above in Chapter 8.

Listing 7.5: Decision rules - global binary diff-classifier
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 <= −60.12 , x1 <= 99 .33 , x1 <=
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Figure 7.24: Decision tree of the global binary diff-classifiers trained by the concatenated
local modified genetic neighborhood diff-datasets based on the diagonal example.

−42.56 , x2 > −137.26} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 <= −60.12 , x1 <= 99 .33 , x1 > −42.56 ,

x2 <= −61.46 , x1 <= −8.65 , x2 > −82.82} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 <= −60.12 , x1 <= 99 .33 , x1 > −42.56 ,

x2 > −61.46 , x1 <= 7.02} ’ } ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 <= −60.12 , x1 > 99 .33} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 <= −26.95 ,

x1 <= 99 .37 , x1 <= 45 .10 , x2 <= −48.70 , x1 <= 18 .36} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 <= −26.95 ,

x1 <= 99 .37 , x1 <= 45 .10 , x2 > −48.70 , x1 <= 29 .38} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 <= −26.95 ,

x1 <= 99 .37 , x1 <= 45 .10 , x2 > −48.70 , x1 > 29 .38 , x2 >
−44.81 , x2 <= −35.13 , x1 <= 37 .58} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 <= −26.95 ,
x1 <= 99 .37 , x1 <= 45 .10 , x2 > −48.70 , x1 > 29 .38 , x2 >

−44.81 , x2 > −35.13} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 <= −26.95 ,
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x1 > 99 .37} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,

x1 <= 86 .79 , x2 <= −5.79 , x1 <= 67 .15} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,

x1 <= 86 .79 , x2 <= −5.79 , x1 > 67 .15 , x2 > −9.85 , x1 <=
78 .10} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 <= 86 .79 , x2 > −5.79} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 <= 137 .80 , x2 <= 34 .28 , x1 <= 100 .86 , x2 <=
7.88 , x1 <= 99 .20 , x2 > 0.82 , x1 <= 93 .26 , x2 <= 2.68 , x1 <=
89 .18} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 <= 137 .80 , x2 <= 34 .28 , x1 <= 100 .86 , x2 <=
7.88 , x1 <= 99 .20 , x2 > 0.82 , x1 <= 93 .26 , x2 > 2.68} ’ } ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 <= 137 .80 , x2 <= 34 .28 , x1 <= 100 .86 , x2 <=
7.88 , x1 > 99 .20} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 <= 137 .80 , x2 <= 34 .28 , x1 <= 100 .86 , x2 >
7.88 , x1 <= 99 .10 , x1 <= 98 .35} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 <= 137 .80 , x2 <= 34 .28 , x1 <= 100 .86 , x2 >
7.88 , x1 <= 99 .10 , x1 > 98 .35 , x2 > 11 .26} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 <= 137 .80 , x2 <= 34 .28 , x1 <= 100 .86 , x2 >
7.88 , x1 > 99 .10 , x2 <= 11 .03} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 <= 137 .80 , x2 <= 34 .28 , x1 > 100 .86 , x2 <=
24 .14 , x1 <= 102 .71 , x2 <= 11 .26} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 <= 137 .80 , x2 <= 34 .28 , x1 > 100 .86 , x2 <=
24 .14 , x1 > 102 .71} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 <= 137 .80 , x2 <= 34 .28 , x1 > 100 .86 , x2 >
24 .14 , x1 > 116 .74} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 <= 137 .80 , x2 > 34 .28 , x1 <= 99 .40} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 <= 137 .80 , x2 > 34 .28 , x1 > 99 .40 , x2 <= 38 .54 ,

x1 > 130 .62} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,

x1 > 86 .79 , x1 > 137 .80 , x2 <= 61 .23 , x2 <= 53 .56 , x1 <=
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139 .68 , x2 <= 41 .90} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,

x1 > 86 .79 , x1 > 137 .80 , x2 <= 61 .23 , x2 <= 53 .56 , x1 >
139 .68} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 > 137 .80 , x2 <= 61 .23 , x2 > 53 .56 , x1 >
158 .58} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 > 137 .80 , x2 > 61 .23 , x1 <= 177 .67 , x2 <=
65 .12 , x1 > 158 .51} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 > 137 .80 , x2 > 61 .23 , x1 > 177 .67 , x1 <=
183 .67 , x1 <= 181 .14} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 <= 79 .52 , x2 > −26.95 ,
x1 > 86 .79 , x1 > 137 .80 , x2 > 61 .23 , x1 > 177 .67 , x1 >
183 .67} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 > 79 .52 , x1 <=
99 .06} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 > 79 .52 , x1 > 99 .06 , x1
<= 220 .12 , x1 <= 190 .90 , x1 > 188 .83 , x2 <= 84 .87} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 > 79 .52 , x1 > 99 .06 , x1
<= 220 .12 , x1 > 190 .90 , x2 <= 87 .76} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 > 79 .52 , x1 > 99 .06 , x1
<= 220 .12 , x1 > 190 .90 , x2 > 87 .76 , x2 <= 96 .02 , x1 >
200 .17} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 > 79 .52 , x1 > 99 .06 , x1
<= 220 .12 , x1 > 190 .90 , x2 > 87 .76 , x2 > 96 .02 , x2 <= 100 .80 ,

x2 > 100 .60} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 > 79 .52 , x1 > 99 .06 , x1

> 220 .12 , x2 <= 119 .82 , x2 <= 110 .52} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 > 79 .52 , x1 > 99 .06 , x1

> 220 .12 , x2 <= 119 .82 , x2 > 110 .52 , x1 > 228 .61} ’} ,
{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 > 79 .52 , x1 > 99 .06 , x1

> 220 .12 , x2 > 119 .82 , x1 <= 254 .48 , x1 > 244 .76 , x2 <=
130 .37} ’} ,

{ ’ d i f f ’ : ’{x2 <= 159 .62 , x2 > −60.12 , x2 > 79 .52 , x1 > 99 .06 , x1
> 220 .12 , x2 > 119 .82 , x1 > 254 .48 , x2 <= 152 .98} ’} ,

{ ’ d i f f ’ : ’{x2 > 159 .62 , x1 <= 99 .15} ’} ,
{ ’ d i f f ’ : ’{x2 > 159 .62 , x1 > 99 .15 , x1 > 295 .28 , x2 <= 182.05} ’}
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Figure 7.25: Decision tree of the global multiclass diff-classifiers trained by the concate-
nated local modified genetic neighborhood diff-datasets based on the diagonal example.

7.2 Adult Dataset

This section presents the results of the adult dataset. We have already presented the
adult dataset in detail in Chapter 5. We also use the same pre-processing and black
box training steps as explained in the mentioned chapter. The main difference is that
we carry out two different manipulation scenarios for the following evaluation. Those
scenarios are explained in detail below. Thus, again we use for training black boxes A
and B the decision tree-based CART algorithm. For the evaluation, we select for the local
data approaches various located instances to be recognized, generate for each of them a
particular diff-dataset, and concatenate the resulting diff-dataset to a global one. Finally,
we train a global diff-classifier based on the global diff-dataset. For experimental purposes,
we select 10 instances from the existing (entire) dataset for which the black boxes predict
a different outcome and 10 instances for which the black boxes predict the same outcome.
We use the entire dataset for that experimental setting since otherwise, we cannot select
enough to be recognized instances to show the global effect of the local data approaches.
We present the selected instances for each manipulation scenario below. The decision
tree classifiers for black boxes A and B are trained with a defined maximum tree depth
to evaluate the detected differences more compactly and clearly. However, additionally,
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we present an example of classifiers for black box A and B that are unlimited concerning
the maximum tree depth. We show the different decision trees of the black boxes for
each scenario. For the first scenario, we show the decision trees per data approach. For
the other scenarios, we only show the results of the global diff-classifier based on the
modified genetic neighborhood approach. Now, we present our results using the adult
dataset. To show that the diff-classifier truly recognizes the differences, we use different
manipulation scenarios. We describe each manipulation scenario in detail and present
the results afterward. For each manipulation scenario, all instances for the dataset of
black box B are manipulated by the same factor. Each case contains a hypothesis of how
the manipulation should affect the decision tree of the diff-classifier.

7.2.1 Manipulation of an Influential Feature (DMS1)
To illustrate the effect for that scenario, we manipulate an influential feature by changing
the value for all instances by a certain factor. That manipulation should be reflected and
thus be recognizable and displayed in the decision tree of the diff-classifier. For identifying
an influential feature, we analyze the initial unchanged decision tree of black box A (see
Figure 7.26) trained with a maximum tree depth of 6. We choose the Feature “hours-
per-week” and manipulate it as follows: xhours−per−week = xhours−per−week + 10 ∀x ∈ X.
That means we add the value 10 to the Feature “hours-per-week” for each instance x
of X. Figure 7.27 shows the decision tree of the manipulated black box B. The yellow
marked node shows the changed rule for the Feature “hours-per-week” of the manipulated
black box B. The condition is now shifted by plus 10.

We select the following instances to train the global diff-classifiers for the local data
approaches:

• Features of X: [‘age’, ‘workclass’, ‘education’, ‘marital-status’, ‘occupation’, ‘re-
lationship’, ‘race’, ‘sex’, ‘capital-gain’, ‘capital-loss’, ‘hours-per-week’, ‘native-
country’]

Instances where the black boxes predict the same outcome:

• X[1] : [39, 6, 9, 4, 0, 1, 4, 1, 2174, 0, 40, 38]

• X[2] : [50, 5, 9, 2, 3, 0, 4, 1, 0, 0, 13, 38]

• X[3] : [38, 3, 11, 0, 5, 1, 4, 1, 0, 0, 40, 38]

• X[4] : [53, 3, 1, 2, 5, 0, 2, 1, 0, 0, 40, 38]

• X[5] : [28, 3, 9, 2, 9, 5, 2, 0, 0, 0, 40, 4]

• X[6] : [37, 3, 12, 2, 3, 5, 4, 0, 0, 0, 40, 38]

• X[7] : [49, 3, 6, 3, 7, 1, 2, 0, 0, 0, 16, 22]
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Figure 7.26: Decision tree of black box A using the adult dataset for DMS1 with a
maximum tree depth of 6.

• X[8] : [52, 5, 11, 2, 3, 0, 4, 1, 0, 0, 45, 38]

• X[9] : [31, 3, 12, 4, 9, 1, 4, 0, 14084, 0, 50, 38]

• X[10] : [42, 3, 9, 2, 3, 0, 4, 1, 5178, 0, 40, 38]

Instances where the black boxes predict a different outcome:

• X[382] : [46, 3, 4, 0, 2, 1, 4, 0, 0, 2339, 45, 38]

• X[6126] : [40, 3, 9, 4, 12, 1, 1, 0, 0, 2258, 48, 29]

• X[10503] : [29, 3, 9, 4, 3, 1, 4, 0, 0, 2258, 45, 38]

• X[13329] : [49, 4, 15, 0, 3, 1, 4, 1, 0, 2339, 50, 38]

• X[15037] : [55, 3, 15, 4, 0, 1, 2, 0, 0, 2339, 45, 38]

• X[17628] : [26, 3, 9, 4, 3, 1, 4, 1, 0, 2258, 45, 38]

• X[19536] : [27, 5, 11, 4, 2, 1, 4, 1, 0, 2258, 50, 38]

• X[20970] : [34, 3, 12, 4, 9, 1, 4, 1, 0, 2258, 50, 38]
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Figure 7.27: Decision tree of black box B using the adult dataset for DMS1 with a
maximum tree depth of 6.

• X[28174] : [49, 6, 10, 4, 3, 1, 4, 0, 0, 2258, 50, 38]

• X[31959] : [45, 3, 11, 0, 4, 1, 4, 1, 0, 2258, 44, 38]

Global Modified Genetic Neighborhood Data

Now, we present the recognized differences of the diff-classifiers for DMS1 based on
the modified genetic neighborhood data approach. At first, we discuss the results of
the global binary diff-classifier. The concatenated global diff-dataset contains 21,857
instances, whereby 17,186 instances are classified into class “no diff” and 4,671 instances
are classified into class “diff”. Since we perform an instance unique-check globally, the
result is an unbalanced global diff-dataset. Figure 7.28 shows the decision tree of the
global binary diff-classifier. The tree contains the following two nodes with the rules in
the upper area of the tree: The rule if hours − per − week > 43.5 (right branch) and
the following rule if hours − per − week <= 53.5 (left branch) that lead to a “diff” leaf.
Those two rules are included in the set of rules that explain the recognized differences
between black box A and B (see Listing 7.6). Figure 7.26 shows the decision tree of black
box A, and it contains the following node with the rule: if hours − per − week <= 43.5.
For comparison, Figure 7.27 shows the decision tree of the manipulated black box B, and
it contains the following node with the shifted rule: if hours − per − week <= 53.5. The
decision tree of the diff-classifier shows that the manipulated differences between black
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Figure 7.28: Decision tree of the global binary diff-classifiers trained by the concatenated
local modified genetic neighborhood diff-datasets based on the adult dataset for DMS1.

Listing 7.6: Decision rules - global binary diff-classifier
{ ’ d i f f ’ : ’{ c ap i t a l −l o s s > 2226 .0 , hours−per−week > 43 .5 , hours−

per−week <= 53 .5 , r e l a t i o n s h i p <= 4 . 5 , r e l a t i o n s h i p > 0 . 5 ,
c ap i t a l −l o s s <= 2365 .5 , c ap i t a l −gain <= 7268 .5} ’}

box A and B can be recognized (see Figure 7.28). However, the diff-classifier also contains
various nodes and conditions for features that are not affected by the manipulation.

Now, we show the resulting decision tree of the global multiclass diff-classifier. The
multiclass diff-dataset contains 22,471 instances, whereby 11,469 instances are classified
into class “00”, 6,256 instances are classified into class “11”, 4,746 instances are classified
into class “10”, and 0 instances are classified into class “01”. Figure 7.29 shows the
decision tree of the multiclass diff-classifier. Again, the tree contains the following two
nodes with the rules in the upper area of the tree: The rule if hours − per − week > 43.5
(right branch) and the following rule if hours − per − week <= 53.5 (left branch) that
lead to a “10” leaf. Compared to the decision tree of the binary diff-classifier, there
are much more recognized non-diff (difference-class “00” and “11”) paths. Apart from
the poorer performance of the multiclass diff-classifier, the advantage of the multiclass
approach is that the exactly predicted results of black box A and B can be determined.
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Figure 7.29: Decision tree of the global multiclass diff-classifiers trained by the concate-
nated local modified genetic neighborhood diff-datasets based on the adult dataset for
DMS1

Listing 7.7: Decision rules - global multiclass diff-classifier
{ ’ 1 0 ’ : ’{ c ap i t a l −l o s s > 2252 .0 , hours−per−week > 43 .5 , hours−

per−week <= 53 .5 , r e l a t i o n s h i p > 0 . 5 , r e l a t i o n s h i p <= 4 . 5 ,
c ap i t a l −l o s s <= 2365 .5 , c ap i t a l −gain <= 13450 .0} ’}

Unlimited Maximum Depth Tree

We also want to show an example where black box A and B are trained without limitation
concerning the depth tree. In that case, we manipulate again the Feature “hours-per-week”
and manipulate it again as follows:
xhours−per−week = xhours−per−week + 10 ∀x ∈ X. That means we add the value 10 to the
Feature “hours-per-week” for each instance x of X. Figure 7.30 shows the decision tree
of black box A and Figure 7.31 shows the decision tree of black box B. Now, the decision
trees contain many nodes depending on the Feature “hours-per-week”. In principle, all
conditions depending on the Feature “hours-per-week” of the decision tree for black box
B are shifted by plus 10.
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Figure 7.30: Unlimited decision tree of black box A using the adult dataset for DMS1
with no defined maximum tree depth.

Global Modified Genetic Neighborhood Data: Now, we present in Figure 7.32
the recognized differences of the global binary diff-classifier for DMS1. We generate the
single diff-datasets again with the mentioned above instances to recognize. Then, we
concatenate the diff-dataset to a global one and train the global binary diff-classifier.
With this example, we want to show how complex the decision tree can become even
though a forced targeted manipulation of a specific influential feature is performed. The
decision tree shows that the recognized differences are no longer easy to comprehend for
a human. We only present the results of the global binary diff-classifier since the decision
tree of the global multiclass diff-classifier is also not comprehensible.

7.2.2 Manipulation of an Irrelevant Feature (DMS2)
In the next scenario, we manipulate the dataset for black box B as follows. Across all
data points, we manipulate an irrelevant feature by changing the value by a specific
factor. Therefore, those particular manipulations shouldn’t be reflected and thus not be
recognizable and displayed in the decision tree of the diff-classifier. we analyze again the
initial unchanged decision tree of black box A for DMS1 (see Figure 7.26) trained with a
maximum tree depth of 6 to identify an irrelevant feature. We choose the Feature “marital-
status” and manipulate it as follows: xmarital−status = (xmarital−status +1) mod 7 ∀x ∈ X.
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Figure 7.31: Unlimited decision tree of black box B using the adult dataset for DMS1
with no defined maximum tree depth.

The discrete Feature “marital-status” contains 7 different values, which are encoded
as “0”, “1”, ..., and “6”. To shift the value of the Feature “marital-status” by one for
each x, xmarital−status plus 1, and then modulo the number of the possible values of
xmarital−status is performed. Therefore, we shift the label encoded values plus 1 except
the last encoded value, which is shifted from “6” to “0”. Figure 7.33 shows the decision
tree of the manipulated black box B. Now, no differences exist between the initial decision
tree of black box A (see Figure 7.26) and black box B since the Feature “marital-status”
is irrelevant for the classification.

We select the following instances to train the global diff-classifiers for the local data
approaches:

• Features of X: [‘age’, ‘workclass’, ‘education’, ‘marital-status’, ‘occupation’, ‘re-
lationship’, ‘race’, ‘sex’, ‘capital-gain’, ‘capital-loss’, ‘hours-per-week’, ‘native-
country’]

Instances where the black boxes predict the same outcome:

• X[1] : [39, 6, 9, 4, 0, 1, 4, 1, 2174, 0, 40, 38]
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Figure 7.32: Decision tree of the global binary diff-classifiers trained by the concatenated
local modified genetic neighborhood diff-datasets based on the unlimited adult dataset
for DMS1.

• X[2] : [50, 5, 9, 2, 3, 0, 4, 1, 0, 0, 13, 38]

• X[3] : [38, 3, 11, 0, 5, 1, 4, 1, 0, 0, 40, 38]

• X[4] : [53, 3, 1, 2, 5, 0, 2, 1, 0, 0, 40, 38]

• X[5] : [28, 3, 9, 2, 9, 5, 2, 0, 0, 0, 40, 4]

• X[6] : [37, 3, 12, 2, 3, 5, 4, 0, 0, 0, 40, 38]

• X[7] : [49, 3, 6, 3, 7, 1, 2, 0, 0, 0, 16, 22]

• X[8] : [52, 5, 11, 2, 3, 0, 4, 1, 0, 0, 45, 38]

• X[9] : [31, 3, 12, 4, 9, 1, 4, 0, 14084, 0, 50, 38]

• X[10] : [42, 3, 9, 2, 3, 0, 4, 1, 5178, 0, 40, 38]

Since there are no differences between black box A and B, we cannot select any instances
where the black boxes predict a different outcome.
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Figure 7.33: Decision tree of black box B using the adult dataset for DMS2 with a
maximum tree depth of 6.

Figure 7.34: Decision tree of the global binary diff-classifiers trained by the concatenated
local modified genetic neighborhood diff-datasets based on the adult dataset for DMS2.

Global Modified Genetic Neighborhood Data

Now, we present the recognized differences of the diff-classifiers for DMS2. At first, we
discuss the results of the global binary diff-classifier. The concatenated global diff-dataset
contains 11,400 instances, whereby all instances are classified into class “no diff” and 0
instances are classified into class “diff”. Figure 7.34 shows the decision tree of the global
binary diff-classifier. The trained diff-classifier recognizes no differences as expected.

Next, we show the resulting decision tree of the global multiclass diff-classifier. The
multiclass diff-dataset contains 11,742 instances, whereby 8,511 instances are classified
into class “00”, 3,231 instances are classified into class “11”, 0 instances are classified
into class “10”, and 0 instances are classified into class “01”. Figure 7.35 shows the
decision tree of the multiclass diff-classifier. Again, as expected, the trained diff-classifier
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Figure 7.35: Decision tree of the global multiclass diff-classifiers trained by the concate-
nated local modified genetic neighborhood diff-datasets based on the adult dataset for
DMS2

recognizes no differences. Although the decision tree contains more nodes than the binary
decision tree, all paths lead to a non-difference outcome class.

7.3 Summary and Findings
We have evaluated the data approaches using a synthetic two-dimensional dataset. We
could show that a global diff-classifier trained based on the modified genetic neighborhood
approach can adequately recognize the (global) manipulated differences between black
boxes A and B. However, we could observe that the initial genetic neighborhood approach
can generate more instances in the relevant areas than the modified approach by evaluating
the two-dimensional running example setting. The multiclass diff-classifier has the decisive
advantage that every single possible difference-class combination can be determined.
However, the modified genetic neighborhood data generation approach is a local data
generation method. Therefore, the approach is dependent on a particular to be recognized
instance x. That means instances are generated locally as close as possible compared to
x. Hence, we also show the impact of generating for different located instances, local
neighborhood diff-datasets, and concatenate them to a global one. We also evaluate
our approach using the well-known benchmark adult dataset. Therefore, we train a
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global explainer using the global approach of generating diff-datasets for different located
instances. We could observe that, in our described settings, this approach can explain
the global differences between two black boxes adequately. Thus, we could confirm the
stated hypothesis of the data manipulation scenarios. However, we also observe that
the decision tree-based diff-classifier of DiRo2C can hardly explain differences when the
difference decision boundary is non-orthogonal. We will take up this problem in the next
chapter and suggest a potential solution.
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CHAPTER 8
Conclusion and Future Work

In that last chapter, we summarize the most important findings of this work. In addition,
we discuss the contributions compared to the state of the art. Finally, we give an outlook
on future work and suggest potential solutions to known problems.

8.1 Conclusion
This master thesis has proposed an approach to provide an interpretable decision tree-
based diff-classifier that explains the differences between two binary black box classifiers.
That diff-classifier is interpretable by any model-agnostic method like LORE or LIME.
DiRo2C trains that classifier by generating a diff-dataset ZDiff . We present a modified
genetic neighborhood data generation approach to provide multiple diff-dataset depending
on a instance x to be recognized. That data generation approach performs best for
training the predictor to recognize the difference compared to other data approaches.
The modified genetic neighborhood approach provides a diff-dataset to train a local
interpretable classification model. That means it is generating the data points depending
on an instance x. By applying a genetic algorithm, it computes and creates artificially
instances that are similar to the feature (value) characteristics of x. The modified
approach produces a balanced dataset where roughly 50 percent instances show different
results and 50 percent instances where the black boxes predict the same target class. Thus,
it is (before the unique-check is performed) guaranteed that the data approach generates
a balanced diff-dataset, and the trained diff-classifier recognizes the differences close to
x. DiRo2C supports training a binary or a multiclass diff-classifier. The binary model
predicts 0 for recognizing no difference and 1 for a difference. The multiclass predictor
returns each possible decision combination of the two binary black box classifiers. For our
evaluation, we measured the Accuracy, F1-score, and PearsonCC metric for comparing
the performance. According to the RQ, we show that the binary diff-classifier trained by
the modified genetic neighborhood approach outperforms every other proposed method.
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We also present how accurately the binary diff-classifier recognizes (depending on instance
x) the local differences using manipulated datasets. The dataset was manipulated by
applying different data manipulation scenarios to evaluate if the forced differences can
be found in the resulting decision tree of the diff-classifier.

Contribution compared to the State of the Art

Therefore, compared to the State of the Art, we find a way to recognize accurately local
differences between two black boxes. Hence, we modify the genetic neighborhood approach
of LORE and change the fitness functions that the instances are created dependent on
both black boxes. Furthermore, the local modified genetic neighborhood approach initially
generates a balanced dataset ZDiff . With this generated diff-dataset, we can train an
accurate binary diff-classifier that predicts the local differences between the black boxes
for a particular instance x. It is also possible to provide a multiclass diff-classifier that
predicts every possible combination of the results of the black boxes. We also have
shown that the local modified approach can be used to generate various diff-datasets
for different located instances. That local diff-datasets can be concatenated to a global
diff-dataset to train a global explainer for the differences between the black boxes. Since
we provide a decision tree-based diff-classifier, we also enable the interpretation of the
recognized differences by any model-agnostic method. Additionally, since we use the
CART algorithm for our diff-classifier model, the predictor is up to a certain complexity
inherently interpretable by analyzing the decision tree.

8.2 Future Work
This section is intended to provide an outlook for further work. First of all, we discuss
the evaluated modified genetic neighborhood data generation approach of DiRo2C to
name further improvements or extensions. We also discuss the “from local to global
explanation” problem and the needed optimization concerning the local modified genetic
neighborhood approach. Furthermore, we discuss further work in terms of combining of
DiRo2C with model-agnostic methods, decision tree rule extraction, concept (data) drift
detection, and recognition of differences between multiple binary black boxes.

Modified Genetic Neighborhood

The diff-classifier based on the local modified genetic neighborhood data generation
approach can recognize local differences around a given instance x. Therefore, an
optimization could be implemented in the future that guarantees that a balanced diff-
dataset with no redundant instances is generated. However, the local modified genetic
neighborhood is designed for generating a diff-dataset to recognize the local differences
close to an instance x to recognized. But the modified approach can also be used to detect
all the differences between the black boxes globally: As already mentioned in Section 5.1
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the existing dataset is used to select the instances for which the differences are to be
recognized. Therefore, a subsample of the dataset that covers the entire feature value
space can be determined. But it would also be possible to generate generic instances for
that black box A and B predict different results. That would guarantee independence from
an existing data set. For each of those selected instances, a diff-dataset can be generated
and combined to a global diff-dataset. Finally, a global explainer can be trained to
recognize the overall differences between black box A and B. This approach can represent
a potential solution to the generic problem of global explainable artificial intelligence by
local explainers. Additionally, to generate for each instance of the subsample a diff-dataset
ZDiff , the method of data generation could be parallelized to reduce the run time.

Generalization of the Difference Classification Problem

DiRo2C can currently only detect the differences between two binary black box classifier.
It could be extended, so that the difference between black box classifiers with cn different
classes can be detected.

Recognition of Non-Orthogonal Decision Boundaries

DiRo2C uses for the recognition of the differences a particular Decision Tree Classification
algorithm called CART. The problem is that such algorithm have to approximate a
non-orthogonal decision boundary. Therefore, it must train many rules to be able to map
the boundaries. Other interpretable ML models can be tested that map appropriately
non-orthogonal decision boundaries. Oblique Decision Trees could offer a potential
solution.

Combining of DiRo2C with Model-Agnostic Methods

DiRo2C provides a diff-classifier that enables the interpretation by any model-agnostic
method like LORE or LIME. Providing a framework where the resulting diff-classifier of
DiRo2C is combined with different model-agnostic methods would make it possible to
interpret the diff-classifier using different explanatory approaches.

Rule Extraction from Decision Tree

Since the DiRo2C method trains a decision tree-based diff-classifier, the model is inherently
interpretable. As already mentioned in Section 2.2, decision rules are another approach
to explain why a predictor decided for a specific result. Therefore, the decision rules can
be derived from the decision tree of the diff-classifier. The resulting rules can then be
provided for better explainability (comprehensibility).
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Concept (Data) Drift Detection

Regarding concept (data) drift detection, when deploying ML tools, it turns out that the
input data could change over time. DiRo2C could be integrated into a concept (data)
drift detection environment. If drifts are detected, a new classifier must be trained to
solve the problem. After that, the differences between the old and the new classifier
can be recognized by DiRo2C. This way you can understand the differences between the
classifiers and decide whether you want to deploy and release the newly trained classifier.

Recognition of Differences between Multiple Binary Black Boxes

Currently it is only possible to recognize the differences between two binary black
boxes with the help of DiRo2C. A difference detection of various versions of a classifier
would also make sense with regard to concept (data) drift detection. For example, one
approach could be to display the changes similar to a version history control. That
means the changes for an instance x are made available in chronological order. In this
context, DiRo2C can be combined with a model-agnostic method to display appropriate
explanations.
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