
Visualisierungsgestützte
Konfliktwahrnehmung in der

verzweigten und projektübergreifenden
Softwareentwicklung

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Christina Greil, BSc
Matrikelnummer 01426862

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 30. November 2021
Unterschrift Verfasserin Unterschrift Betreuung

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Conflict Awareness by Visualisation in
Multi-Branch and Multi-Project

Software Development

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering & Internet Computing

by

Christina Greil, BSc
Registration Number 01426862

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig

Vienna, 30th November, 2021
Signature Author Signature Advisor

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Visualisierungsgestützte
Konfliktwahrnehmung in der

verzweigten und projektübergreifenden
Softwareentwicklung

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Christina Greil, BSc
Matrikelnummer 01426862

ausgeführt am
Institut für Information Systems Engineering
Forschungsbereich Business Informatics
Forschungsgruppe Industrielle Software
der Fakultät für Informatik der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 30. November 2021

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Christina Greil, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. November 2021
Christina Greil

vii

Kurzfassung

Das Zusammenführen von gleichzeitig durchgeführten Softwareänderungen in gleichen
oder verschiedenen Projekten kann zu Konflikten führen, die von den Entwicklern gelöst
werden müssen. Dies kann fehlerhaft und zeitaufwendig sein und die Entwickler bei ihrer
Arbeit stören. Das frühzeitige Auffinden der Konflikte kann diese Probleme minimieren.
Existierende Tools stellen nur Informationen zum Konfliktbewusstsein für die Softwareent-
wicklung innerhalb eines Projektes bereit. Daher wurde eine prototypische Visualisierung
zur verbesserten Wahrnehmung von Konflikten für die Softwareentwicklung innerhalb
eines Projektes, aber auch für die projektübergreifende Softwareentwicklung, erstellt.

Diese Diplomarbeit erforscht, welcher Informationsbedarf bezüglich Konfliktbewusstsein
in Softwareprojekten für Entwickler besteht, wie Entwickler die vorgesehenen Funktionen
priorisieren, wie zielführend Entwickler die vorgeschlagene Visualisierung des Konfliktbe-
wusstseins bewerten, wie sinnvoll die vorgeschlagene Visualisierung des Awareness-Tools
ist und wie effizient das Tool im Vergleich zu modernen Methoden ist.

Zuerst wurde eine Literatur- und Toolrecherche durchgeführt, um den bestehenden
Informationsbedarf der Entwickler festzustellen. Basierend auf diesen Erkenntnissen
und den eigenen Erfahrungen in der Entwicklung wurden einige erste Funktionen und
Mock-ups des Prototyps vorgeschlagen. Diese wurden in semi-strukturieren Interviews
von Entwicklerinnen und Entwickler priorisiert. Anhand dieser Funktionen wurde der
Prototyp entwickelt. Szenariobasierte Expertenbewertungen wurden durchgeführt, um
die Zweckmäßigkeit der Idee selbst, die Zweckmäßigkeit der gewählten Visualisierung
und die Zweckmäßigkeit des Prototypen zu evaluieren.

Die befragten Entwickler sahen Potenzial in der Idee und auch in der gewählten Vi-
sualisierung. Allerdings müssen Performance- und Usability-Probleme behoben werden.
Die Entwickler bewerteten die Funktionen des Prototyps ebenfalls als zweckdienlich,
wünschten sich jedoch eine mehr passive und automatische Informationsbeschaffung und
Möglichkeiten, sie in bestehende Tools zu integrieren.

Schlüsselwörter
Merge Konflikte, Softwarevisualisierung, Verzweigte Softwareentwicklung, Projektüber-
greifende Softwareentwicklung

ix

Abstract

Merging simultaneously implemented software changes in the same project or in different
projects together can create conflicts that must be resolved by the developers by hand.
The changes can be made within a project or in a parent and one of its fork. This can
be erroneous, time-consuming and disrupt the work of software engineers. Finding such
conflicts in an early stage can minimise these merging problems. Although some tools
exist that provide conflict awareness information, they are restricted to multi-branch
software development only. Therefore, a prototypical conflict awareness visualisation for
multi-branch but also multi-project software development was created.

This thesis investigates the conflict awareness information needs that exist in software
projects for developers, how developers prioritise the envisioned features, how purposeful
developers rate the proposed conflict awareness visualisation, how purposeful the proposed
visualisation of the awareness tool is and how efficient the tool is compared to state-of-
the-art methods.

First, a literature and tool research was carried out in order to determine the existing
information needs of the developers. Based on these findings and the own experience in
development, some initial features and mock-ups of the prototype were suggested. These
functionalities were prioritised in semi-structured interviews by developers. Based on
these prioritised features, the prototype was developed. The purposefulness of the idea
itself, the chosen visualisation and the prototype itself were evaluated in scenario-based
expert evaluations.

The interviewed developers saw potential in the idea and in the chosen visualisation.
Performance and usability issues need to be addressed. The developers also rated the
features of the prototype as purposeful, but a more passive and automatic information
gathering and ways to integrate it into existing tools were requested.

Keywords
Merge Conflicts, Software Visualisation, Multi-Branch Software Development, Multi-
Project Software Development

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Description . 1
1.2 Aim of the Work . 2
1.3 Methodology . 3
1.4 Structure of the Work . 4

2 Fundamentals 5
2.1 Version Control System . 5
2.2 Merge . 8
2.3 Fork . 13
2.4 Issue . 17

3 State-of-the-Art 19
3.1 Awareness Tools . 19
3.2 Information Needs . 24

4 Conceptual Design 29

5 Semi-Structured Expert Interviews 43
5.1 Plan . 43
5.2 Results . 44
5.3 Threats to Validity . 53

6 Implementation 55
6.1 Binocular as Base . 55
6.2 Iteration 0: Data Mining . 56
6.3 Iteration 1: Setting up basic visualisation 57
6.4 Iteration 2: Checking for Conflicts . 61

xiii

6.5 Iteration 3: Branch Selection and Dependency Highlighting 65
6.6 Iteration 4: Filtering . 67
6.7 Iteration 5: Compacting the View . 69

7 Scenario-based Expert Evaluation 71
7.1 Plan . 71
7.2 Results . 72
7.3 Threats to Validity . 87

8 Findings 89

9 Conclusion 91

List of Figures 93

List of Tables 97

Acronyms 99

Bibliography 101
Online . 107

Appendix 109
Semistructured Expert Interview Questionnaire 110
Scenario-based Expert Evaluation Questionnaire 122
Scenario-based Expert Evaluation Quick Start Guide 135

CHAPTER 1
Introduction

This chapter provides an overview of the problem tackled by this thesis and the motivation
why this problem is addressed. Additionally, this chapter shows the aim of the work
including the research questions that are answered, the methodology and the structure
of the following chapters.

1.1 Problem Description
Nelson et al. [46] stated that in collaborative software development, merge conflicts can
arise when developers change the same code in isolation without being aware of it. The
authors noted when merging the changes together, the underlying Version Control System
(VCS) may be able to resolve the conflicting parts on its own, although this is not the
case every time. In such cases, the developers need to resolve the created conflict on
their own, which is not always a trivial task. The merge can be time-consuming, can
disrupt the workflow of the developers and can be erroneous.

Merge Conflicts may be still small if detected in an early stage. This reduces the amount
of work that may have to be redone and decreases the time and effort in resolving the
conflicts [53]. Another benefit of finding merge conflicts early is that developers may
still have a better knowledge of why and how the previous changes were made [45, 46].
This knowledge can help in resolving the conflict faster and with less side effects. If this
knowledge is fading away, it may also be harder to find out which impacts these previous
changes had on other code fragments in the project [45].

Current tools only tackle these conflicts by providing an awareness visualisation for
multi-branch environments (see Chapter 3). Multi-project environments are not included
in these visualisations, although fork-based development is often used for contribution
within the GitHub1 community [38, 44]. Nowadays, forks also have a better reputation

1https://github.com/

1

1. Introduction

than in the past [51, 64]. On the contrary, Robles and González-Barahona [52] stated
that merging back into the original project is low. The authors found out that one reason
for this is the complexity of this task. The mentioned tools also do not show the conflict
awareness restricted to specific commits or restricted to commits of a specific feature or
a specific incident. This information can come in handy for cherry picking commits from
another branch within a project or from a fork.

That being said, the increased positive view on forks and the used contribution style in
GitHub makes the conflict awareness interesting research for both multi-branch and multi-
project software development. Further research can help in reducing the above-mentioned
problems of merge conflicts for both environments.

1.2 Aim of the Work
The aim of this work is to develop a prototype for a conflict awareness visualisation for
multi-branch and multi-project software development. The prototype should increase
the efficiency of merges, rebases and cherry picks and provide divergence visibility (for
example when did branches drift apart that much such that they can no longer be merged
without conflicts). The tool should also be able to support non-developers, for instance
release managers should be able to check if a feature is already integrated in a specific
branch (see proposed features below).

The proposed main features of this prototype are:

• Visualisation showing the divergence between two forks

– How much does the fork diverge from its parent?

• Conflict visualisation of branch integration of the same project or of a fork:

– Is it possible to merge or rebase a branch of the same project or from a fork
without possible conflicts?

– Which commits may cause conflicts and what is the cause?

• Conflict visualisation of a cherry pick of a specific commit:

– Is it possible to cherry pick a specific commit (like a bugfix or a feature
integration) from another branch or fork, or is it dependent on other commits?

– Which other commits must also be cherry picked?

• Conflict visualisation of a feature or bugfix integration:

– Which commits must be cherry picked to integrate a feature or a bugfix?

Overall, this thesis will answer the following research questions:

2

1.3. Methodology

RQ1: What conflict awareness information needs exist in software projects for devel-
opers?

RQ2: How do developers prioritise the envisioned features?

RQ3: a) How purposeful do developers rate the proposed conflict awareness visuali-
sation?

b) How purposeful is the proposed visualisation of the awareness tool?
c) How efficient is the tool compared to state-of-the-art methods?

1.3 Methodology
The following section describes the methods that were used for this thesis. Based on the
engineering cycle, described by Wieringa in [60], five methods were selected. For the
problem investigation a literature and tool research (Section 1.3.1) was conducted. The
treatment design phase consisted of a conceptual design phase (Section 1.3.2) and the
treatment validation was done with semi-structured expert interviews (Section 1.3.3). The
treatment implementation consisted of the interactive prototype development (Section
1.3.4) and the scenario-based expert evaluations (Section 1.3.5) were chosen for the
implementation evaluation.

1.3.1 Literature and Tool Research
The literature and tool research provided insights of different information needs of
developers and which studies and tools already exists in this area. For the research mostly
the databases of ACM2 and IEEE Xplore3 was used. Additional papers were also found
by using the cited sources of the found research papers. Afterwards the relevant research
papers were identified and sorted after their subject areas like „tools“ or „information
needs“. The results were then be used to answer RQ1.

1.3.2 Conceptual Design
Based on the findings of the literature and tool research (Section 1.3.1) and the own
experiences in software engineering some initial features of the prototype were proposed.
For these features a concept of the prototype was designed by creating mock-ups of the
potential visualisation. These mock-ups can be seen in Chapter 4.

1.3.3 Semi-Structured Expert Interviews
In order to get an impression on the usefulness of these proposed features and to answer
RQ1 and RQ2, semi-structured expert interviews were conducted. As a guideline and
support, a questionnaire was created via Google Forms4 which was filled during the

2https://dl.acm.org/
3https://ieeexplore.ieee.org/Xplore/home.jsp
4https://www.google.com/intl/de_at/forms/about/

3

1. Introduction

interview. This qualitative method was chosen to combine the simplicity of questionnaires
with the ability to get an insight into the thoughts of the interview participants. This
would not be possible with a quantitative research method like a questionnaire alone.
The results of the interviews should also act as a roadmap for the implementation of the
features and to provide an answer to RQ2. Features which are rated more important
should be implemented earlier than lower rated features. More details about these
interviews, including the results and threats to validity can be found in Chapter 5.

1.3.4 Iterative Prototype Development contributing to Binocular
To provide a possibility to evaluate the predefined ideas to tackle some of the current
information needs of software engineers a prototype with the identified features was
created. The prototype was integrated into the Binocular5 project which already provides
time-oriented information for developers in different visualisations. The implementation
process was structured into multiple iterations (see Chapter 6). In each iteration additional
functionality or improvements of existing features were added.

1.3.5 Scenario-based Expert Evaluations
After completing the implementation phase, the visualisation and the implementation
of the tool were evaluated for their suitability using scenario-based expert evaluations.
During the evaluations, developers had to solve exercises using the prototype. The
results (see Chapter 7) of the evaluations were used to answer RQ3. After each scenario,
the participants were asked about their experiences with the tool (RQ3 b)), about the
purposefulness of the visualisation (RQ3 a)) and how they would have solved the scenario
without the prototype (RQ3 c)). To minimise incorrect results due to incorrect handling
of the prototype, the participants are familiarised with the tool before executing the
scenarios.

1.4 Structure of the Work
Chapter 2 provides an overview of important terms and concepts used for this thesis.
In Chapter 3 existing awareness tools and differences to the implemented prototype
are introduced. The results of the conceptual design can be found in Chapter 4 and
the semi-structured expert interviews that followed afterwards are presented in Chapter
5. Chapter 6 describes the implementation phase in more detail. The structure and
results of the evaluations can be found in Chapter 7 and the defined research questions
are answered in Chapter 8. In the last chapter the conclusion and the future work are
presented.

5https://github.com/INSO-TUWien/Binocular

4

CHAPTER 2
Fundamentals

This chapter gives an overview of important terms and concepts that are used in this
thesis. At first key information about VCSs and elements around them are introduced and
explained. After that details about the merge concept and merge conflicts are covered,
followed by information about forks. Lastly a short overview of issues is provided.

2.1 Version Control System
In [18] VCSs (also called revision control systems [2]) are described as systems which
enable versioning for a file or a set of files. Using such systems, people can keep track of
changes over time, compare these changes and inspect the file’s history, for example to
find out who adapted what. If changes went wrong, it is easy to revert these modifications
and jump back to a previous version of a file or the whole project.

2.1.1 Types
In the book Pro Git [18], VCSs are categorised into three types: Local VCSs, Centralised
Version Control Systems (CVCSs) and Distributed Version Control Systems (DVCSs).
In this thesis the main focus lies on the DVCS Git1.

Local Version Control System

Chacon and Straub [18] described that an easy and common way to control the version
of a project is to just copy the files into another directory. But the authors also noted
that this approach is extremely error prone. If someone accidentally works in the wrong
folder, versions can be overwritten easily. To mitigate this disadvantage local VCSs like
RCS [58] were introduced in the past. The authors describe a local VCS as system with

1https://git-scm.com/

5

2. Fundamentals

(a) Local version control [18] (b) Centralised version control [18]

(c) Distributed version control [18]

Figure 2.1: Version control types

6

2.1. Version Control System

a simple database which revisions all the file changes that are made. The basic principle
of this VCSs type can be seen in Figure 2.1a.

Centralised Version Control System

A problem of local VCSs is that they are not useful in collaborative development [18].
Therefore, CVCSs like Subversion2 and CVS [4, 17] were developed. Several authors ([5,
18, 24]) describe CVCSs as systems that consist of one central server and multiple clients
(see Figure 2.1b). The server stores all the versioned files, and the clients check out these
files from the server which can be changed afterwards. The files represent a snapshot of
the moment on which the checkout was made.

Distributed Version Control System

In [5, 18, 24, 57] it is mentioned that DVCSs like Git and Mercurial3 also have a server
and multiple clients. But the difference to CVCSs is that the whole repository is mirrored
on the client, and not only the latest file snapshots are checked out. Therefore, the
complete history (see Section 2.1.4) will also be copied to the client machine. This
concept is shown in Figure 2.1c. The local repository allows developers to work locally
and in isolation [5, 12, 18, 24].

2.1.2 Commit

A commit bundles changes into one entity [12, 18, 31]. In [18, 25, 31] a commit in Git
is refered to a snapshot of the whole repository, as a particular point in the history.
Therefore, not only the changed files are saved like in Subversion. Additionally, commits
contain metadata like a commit message which describes the changes [18, 31, 37]. Each
commit is linked with its parent commits, which constructs a graph structure, the commit
graph [25, 31].

2.1.3 Hunk

Hunks, as described in [18], are adjacent line changes and are bundled in a commit. If,
for example, two changes are made to a file at different positions, two hunks exist. In
Git it is not only possible to add all hunks in a commit, but also only selected ones.

2.1.4 History

The history of a software is described as the combination of all commits [19, 31]. This
also includes non-committed changes [19]. So basically, the history is the commit graph
(see Section 2.1.2) inclusive all current changes which have not yet been added.

2https://subversion.apache.org/
3https://www.mercurial-scm.org/

7

2. Fundamentals

2.1.5 Branch
In [18, 31] a branch is characterised as a conceptual line of development. It is also stated
that a repository can have multiple branches and that checked out branches are then
called working trees. Additionally, the working tree can contain local changes which are
not committed yet. The head of a branch is the most recent commit of this line [18, 31].
De Rosso and Jackson [25] used a different description of a branch. Technically, a branch
is only a pointer to this specific commit, called the head. Switching branches enables to
work on other tasks. If it is possible, uncommitted changes will be taken to the other
branch. When the changes are conflicting with the new code base, the switch can be
prevented. In order to keep the changes, the developer must stash them which means
saving the current versions to another storage area.

2.1.6 Fetch, Pull and Push
Synchronising repositories is done with fetches, pulls and pushes [18, 25, 31]. A fetch
checks whether the remote repository has commits, which are missing in the local
repository. A pull performs a fetch and, if the local repository has to be updated,
subsequently performs a merge to introduce the updates. A push on the other hand is
used to bring local commits to the remote repository.

2.1.7 Cherry Pick
With a Cherry Pick a specific subset of changes or specific commits are put on top of the
current branch [18, 25, 31]. These changes are introduced as a new commit and will be
the new head of the branch.

2.1.8 Rebase
In a rebase all commits of one branch are re-applied to another branch [18, 25, 31]. It can
be seen as a series of cherry picks of all commits of the selected branch. When rebasing a
branch, the commits can be squashed, meaning that all commits will be combined to
only one commit, or a commit can be split into multiple ones [25].

2.1.9 Pull Request
Pull Requests (PRs) are mechanisms that allow the synchronisation between a fork and
its original project [18, 33, 39, 44]. A PR notifies the maintainers that changes should be
merged into the main line of development.

2.2 Merge
As stated in [18, 25, 31, 45], in collaborative software development developers usually
work in isolation within their own code base. Periodically, these isolated changes are
synchronised into the main line of development or another branch by applying the changes

8

2.2. Merge

(a) Java Method Additions on same Code Lines, but
on different Branches [2]

(b) Resulting Conflict in an unstructured
Merge [2]

Figure 2.2: Unstructured Merge Conflict Example [2]

into it, resulting in a new merge commit. A merge commit has two or more parents
instead of only one like a normal commit [25]. This procedure is called merging. If the
destination branch contains no other commits, Git only needs to update the pointer
without the need of a merge commit which is then called a fast-forward [18, 31].

2.2.1 Types of Merging
Merging can be divided into three types: unstructured merging, structured merging and
semi-structured merging [2]. In this thesis the focus lies in unstructured merging.

Unstructured Merging

Unstructured merging is solely done with plain text and is used by systems like Git,
Subversion and CVS [2]. An advantage, mentioned in [2], of this approach is that it is
typically language independent. However, the authors also state that a disadvantage is
the missing knowledge of the software’s structure. An example can be found in [2]: If
two developers add a Java method on the same code lines (like seen in Figure 2.2a) in
different branches, the merge of these will then result in a conflict (shown in Figure 2.2b).
This is due to the missing knowledge of the language’s structure. For a developer the
merge is quite easy because he/she knows that both elements are Java methods and that
the code fragments just need to be concatenated.

Structured Merging

The authors in [2, 15, 16] state that structured merge tools gain knowledge by Abstract
Syntax Trees (ASTs) or other similar representations. So, they do not rely on the code
lines for the merge. A merge of the modifications in Figure 2.2a would be resolved by a

9

2. Fundamentals

structured merge tool, which is built for Java code. Like the developer the tool knows
that the entities are methods and that they can be merged without a conflict. A downside
of this approach is that the language independence from unstructural merging is lost.

Semi-Structured Merging

Semi-structured merging is a combination of unstructured merging and structured merging
[2, 15, 16]. The authors mentioned that language grammars are used to transform software
artefacts into parse trees, and conflict handlers are used to resolve specific conflict types.
Usually, these grammars do not describe the whole semantics and syntax of the language,
but only partially. For example, method bodies are only represented as plain text. Non-
exploited elements are then merged using unstructured merging. Using this approach, it
is possible to easily add grammars for new languages and handlers for new conflict types.

2.2.2 Merge Conflicts
As in Section 2.2 explained, merging is used to synchronise the individual work of collabo-
rating developers. The commits often can be cleanly merged, but sometimes changes can
overlap, causing a merge conflict, leading to broken code [45, 57]. Zimmermann [66] found
out in a study that about 23% to 46% of the merges results in a merge conflict. These
merge conflicts must be resolved by the developers. Estler et al. [27] stated that there is
no significant difference in the number of conflicts occurring whether the contributors
worked co-located or remote.

Merge Conflict Indicators

Studies [30, 43] show that merge conflicts can be caused by different changes. These
changes involve changes on both code-level and project-level. Code-level changes include
changes of method calls or object creations like parameter value or type adaptations,
changes of assert statement expressions, additions of statements in the same area,
modifications in adjacent, but different statements in the same area and the modification
and removal of statements. Furthermore, changes to IF statement conditions, imports
and comments may cause conflicts. Project-level changes refer to refactorings, feature
introduction and enhancements, test improvements, bug fixes, framework and library
removals and breaking change fixes [43].

There are also studies trying to discover some indicators of merge conflicts. The goal was
to find out, if

• the number of active, diverged branches (instead of inactive, close remaining
branches) [41, 50],

• a high density of commits in a short period of time (instead of a lower commit
density in a larger period) [41, 50],

• the number of files changed simultaneously in both branches [41, 50],

10

2.2. Merge

• the number of changed files in a branch (must not be simultaneously) [50],

• the number of changed lines of code [41, 50],

• the size of the code fragments [41],

• the scattering of the changes across classes or methods [41],

• the number of changes above class level declaration (instead of changes inside a
class declaration) [41],

• the number of commits in one branch [50],

• the frequency of predefined words in commit messages, like fix, bug, feature [50],

• the length of the commit messages [50],

• the development duration of a branch in hours [50]

influence the number of occurring merge conflicts. The results of the studies [41, 50]
indicate that none of the proposed indicators provide an insight of the number of resulting
merge conflicts. However, Owhadi-Kareshk, Nadi, and Rubin [50] also stated that the
machine learning technique Random Forest [11] can be used to predict merge conflicts
for different programming languages.

Accioly et al. [1] also conducted a study for conflict predictors. They wanted to find
out if edits to the same method and changes to directly dependent methods can act as
indicators for merge conflicts (which also includes build and test breaks in this study).
The results of this study show that edits on the same methods indicate merge conflicts
at a precision about 55.51% and that about 82.45% of the conflicts can be found. The
changes of directly dependent methods only have a precision of 8.85% and can identify
about 13.15% of the merge conflicts. Using these results, Accioly et al. suggest that
both indicators may be used, if it is no problem dealing with some false positives. But
if the goal is precision, then only the indicator of the same method editions should be
considered.

Merge Conflict Life Cycle

Nelson et al. [46] proposed a life cycle model of a merge conflict as seen in Figure 2.3.
On the left side the phases of clean code states are shown, and the right side contains
the phases where the state of the code is conflicting. This proposed model consists of
five phases:

• Development phase: The developer maintains the code by adding features,
implementing bug fixes and so on.

11

2. Fundamentals

Figure 2.3: Merge Conflict Life Cycle Model [46]

• Awareness phase: The developer notices the merge conflict. This can either be
active while, for example, monitoring the code manually or using specific tools,
or passive during a pull or while merging changes. Manual steps can include
holding stand-ups such that everyone knows about what the others are working
on or emailing the colleagues before making breaking changes. For tool-supported
awareness, developers rely on VCSs, Continuous Integration (CI) systems and code
analysis tools.

• Planning phase: The developer became aware of the conflict and plans how
to resolve it. This includes decisions like postponing the resolution or to do it
immediately. It must also be decided to do the merge alone or with other developers
together. The strategy may also be changed due to time limitations, deadlines or
the availability of resources. Reasons for the resolution delay can be the complexity,
size or ownership of the conflicting code, the number of conflicting code lines,
approaching deadlines or work schedule constraints.

• Resolution phase: The developer planned the conflict resolution and is imple-
menting the plan.

• Evaluation phase: The developer resolved the conflict and must evaluate the
result. In order to proof the correctness of the merged code, steps like compiling
the source code or running tests will be performed. Some developers also check if
the code looks correct and if all VCS warnings are gone. Additionally, reviews can
be done before the merged code is accepted. Another success criteria can be the
acceptance into the production code base.

12

2.3. Fork

Merge Conflict Complexity

Studies [45, 46] show that the complexity of a merge conflict is estimated by the
developers by their own experience. Some factors include the complexity and the number
of conflicting code lines, as well as the files in the conflict, the atomicity of hunks in
the conflict, the dependencies of conflicting code and non-functional changes. But also,
the expertise which the developer has in the area of the conflict and the time play a
role in the assessment. If the time period between the changes and the resolution of the
conflict increases, the developer may no longer know exactly why and how the changes
were made which can also increase the complexity of the merge [46]. But it is also worth
mentioning that a merge conflict is not necessarily minor only because it is small [43].

Brindescu et al. [13] studied, if it is possible to rate the complexity of merge conflicts using
machine learning. The authors found out that the Bagging (Bootstrap aggregating) [10]
technique is the best one to do this job. The algorithm classified with a precision of 80%,
21% of the conflicts as severe and the remaining 79% as trivial, although the precision
drops to 60% of cross-project training. The authors also looked for characteristics of a
merge conflict that defines its difficulty using the feature subset selection technique with
RIPPER [20] as a predictive model. They found out that the algorithm also considers
the number and complexity of lines of code, the conflicting code dependencies and the
atomicity of conflicting hunks as metrics for the merge conflict complexity. Additionally,
the algorithm selected the number of developers and development patterns of a developer
or in a branch as suitable metrics.

Nelson et al. [46] found out that the assessment of the complexity of a merge conflict
can have an impact on the resolution strategy of this conflict. If it seems too hard to
solve, then this may lead to a reimplementation of the changes with the current code
base. However, a study in 2020 [30] indicates that mostly one version of conflicting
hunks is used for the conflict resolution, and the other one is thrown away. At the other
times, the two versions must be concatenated, combined, or as already mentioned above,
implemented all over again.

2.3 Fork
A fork is a copy of a repository which belongs entirely to the person who forked it [18,
33, 39, 44, 63, 64]. Using forks, a fork-based development is possible.

„Fork-based development is a lightweight mechanism that allows developers to collaborate
with or without explicit coordination.“ [63] The idea of fork-based development (or also
called pull-based development [33]) is, that contributors simply fork an existing project
and are therefore able to make changes independently [33, 63]. The authors state that
after the work is finished the made changes are merged back into the original project.
Gousios, Pinzger, and Deursen [33] explained that the advantage of this approach is
that each potential contributor can make modifications without the need to gain write
permissions on the original project. This is because the core team, which manages the

13

2. Fundamentals

original, can then decide which changes should be integrated and which should be rejected.
Nowadays, Zhou, Vasilescu, and Kästner [64, 65] state that two types of forking exist, a
hard fork and a social fork.

Hard forks are referred to traditional forks in the past [64, 65]. This means a project was
copied in order to start a new line of development, which often competes with the original
project. A study [56] mentioned that although hard forks may never be integrated back
to the original fully, the two projects may still be exchanging information. For example,
it is possible that the fork needs to integrate important security patches from the original
or vice versa. Several studies [29, 49, 52, 59] indicate multiple reasons for the creation of
hard forks:

• Technical (addition of functionality): There are differences between the main
developer(s) and some other developers whether a new functionality should be
integrated into the project or not. [29, 49, 52, 59]

• More community-driven development: If the community is not considered
enough by the original leaders of the project, the community may open a more
community centred fork. [49, 52, 59]

• Discontinuation of the original project: The end of the maintenance of an
old project may lead to a takeover of new developers. [49, 52, 59]

• Commercial strategy forks: Commercial strategy forks include making a pro-
prietary software version out of an open source version or vice versa. [49, 52,
59]

• Legal issues: Some forks are created due to disagreements on the license, trade-
marks or changes to conform laws like encryption. [29, 49, 52, 59]

• Differences among developer teams: The project can also split apart, if
developers have other disagreements than technical issues. [29, 49, 52, 59]

Other studies [52, 59, 64] found four possible outcomes involving hard forks:

• The discontinuation of the fork: The fork will not be maintained anymore
over a short period of time.

• A re-merging of the fork: The changes of the fork are merged back into the
original project. This may be the case, if the dispute, leading to the hard fork,
could be resolved.

• The discontinuation of the original: The fork is more popular than the original.
This may lead to the end of the maintenance of the original project.

14

2.3. Fork

• Successful branching, typically with differentiation: The original and the
fork are active for a longer period. The community is fragmented over the two
repositories.

Similar findings could also be observed by Duc et al. [26] who researched forking in
multi-platform software. The authors explained that a multi-platform software operates
on multiple platforms with identical or similar functionalities. The term platform can
refer for example to types of operating systems, processors, communication protocols
and hardware systems.

On contrary to hard forks, social forks as described in [38, 64] have no intention to
compete with the original project. They are often created to contribute back to the
original, for example by adding new features. In [38, 39] another reason for social forks
is mentioned. Such a fork can be used to keep a repository without the intention for
contributing changes. For example, it is possible that a fork is only created in order to
implement personal customisations, which should never be merged back to the original.

Zhou, Vasilescu, and Kästner [64] found out that hard forks are sometimes not intentionally
made but evolved out of a social fork. The reasons for such an evolution can be facing
obstacles like unresponsive maintainers or rejected PRs. It is also possible that a social
fork itself gains more popularity before merging back to the original project. In this
case, more people may contribute to this fork, and it may become incompatible with the
original.

In the past forking had a rather negative association [18, 49, 51, 64]. The reasons for this
are the risk of community fragmentation and reduction of communication, the chance to
confuse users, the duplication of effort, and splitting up repositories in competing and
incompatible versions [51, 64]. These days not only social forks but also hard forks have
mostly positive associations [51, 64]. Transparent tooling and a decreased concern that
a hard fork does not have a concrete reason, were likely to boost that shift [64]. Also,
Gamalielsson and Lundell [28] in 2012, and Nyman et al. [49] in 2012 noted that the view
of forks is changing.

Constantino et al. found in a study [21] two main motivations why developers contribute
in fork-based development. The first motivation was that this form of development
enables working collaboratively. This includes knowledge sharing, learning from others,
strengthened teamwork, improved reviewing and increased productivity and code quality.
On the other hand, the second motivation is the independent working style. Reasons
for this can be that developers are able to choose the work on personal interests, there
is no pressure, and it is easier to work in different time zones. Other developers in the
study stated that coding is an independent task and that working collaboratively is time
consuming.

Although forks nowadays have a better reputation, fork-based development also has its
downsides [21, 33, 63, 65]:

15

2. Fundamentals

• Lost contributions [63, 65]: Forks which have no connection to the original
project are hard to find and often lost for the larger community. This leads to the
problem that developers, who are interested in other developers’ activities like new
feature implementation or bug fixes may not be able to follow them proactively,
especially if the number of forks increases.

• Redundant development [63, 65]: Having a decreased overview of existing
forks may lead to redundant development of similar functionalities. Contributors
may start working on a new feature or a bug fix, unaware that the implementation
of this has already started in another fork.

• Rejected PRs [33, 63, 65]: Redundant implementations can lead to rejected
PRs. Gousios, Pinzger, and Deursen stated in a study from 2014 that 27% of PRs
are not merged due to this reason. Another cause for rejection can be that the
expectation of the maintainer’s vision of the project is not met with the changes
done in the PR, which is also shown in the study of Gousios, Pinzger, and Deursen.
A possible reaction of rejected PRs is that developers may become demotivated in
contributing to this project anymore.

• Fragmented communities [21, 63, 65]: Even in social forks community frag-
mentation can be observed. One reason is that secondary forks (forks of forks) may
contribute back to its parent, but no contribution back to the original project takes
place. This often leads to forked projects drifting further and further apart.

• Failing to comply with the project’s contribution guidelines [21]: Projects
usually have a code of conduct and guidelines for contributors in order to keep
them active. But sometimes contributors do not meet these rules. For example,
when implementing a new feature, the tests are missing.

• Knowledge and Time [21]: Knowledge and time are important for repository
maintainers and contributors. Maintainers, for example, need to know how they
prefer to manage their repository and how the knowledge is made available in the
project. Then they also need the time to apply this knowledge. Contributors also
need the technical knowledge and the time to help.

• Documentation [21]: Documentation is needed for new contributors to under-
stand the project. The main problems with the documentation are if it is out of
date or it is lacking in general.

• Work overload [21]: Sometimes contribution to a project includes also a work
overload for the contributors and the maintainers. For instance, if a new feature
should be implemented, but the project does not have any test suites. Then the
contributor must create an issue which requests the test suite creation. This also
involves the maintainers.

16

2.4. Issue

• Collaborators [21]: All the above mentions points may lead to a loss of developers
as contributors due to decreasing motivation. This poses a big problem, because
contributors are the key for a successful open source project.

Beside forking projects within a specific platform, it is also possible to fork projects to
another platform, like forking from GitHub to GitLab4 [7]. Bhattacharjee et al. [7] found
five possible motives for such a fork:

• Forks created using mirroring feature: GitLab provides a mirroring feature
for forking repositories from GitHub. Using this feature the original repository will
be synced every five minutes, keeping it up to date.

• Forks owner are also a contributor of the original project: Bhattacharjee
et al. observed a repository, where the fork in GitLab was the same person as the
contributor in the original. The last commit of the forked project was done by this
contributor. The user did not exist in GitHub any more. The identity was checked
by the username in GitLab and GitHub. The authors suggested that such forks are
created because contributors want to switch platforms, but also want to preserve
their contributions.

• Forks with changed title after forking: Also cross-platform forks exist, where
the name of the repository was changed. The particular reasons for this were not
found out by the authors.

• Forks intended for an individual copy: Another motive for cross-platform
forks may be only for keeping a copy on a different platform without any change.

• Forks intended to continue development with another social coding plat-
form: Cross-platform forks may also occur due to other features in a different
platform. An example is the Continuous Integration/Continuous Delivery (CI/CD)
support provided by GitLab. The contributors fork the repository with the intent
on continuing the development in addition with using the other features.

2.4 Issue
An issue is a request to make improvements to a software system. This can include fixing
bugs, adding new features or improving documentation [6, 9]. Bissyande et al. [9] stated
software programs can contain bugs and may have incomplete features. The authors
wrote that issues are a valuable feedback to the developers in order to improve the quality
of the program. The authors also stated that fork-based development had „a positive
impact on on issue reporting“[9]. They found out that the number of watchers and forks
correlated strongly with the number of reported issues.

4https://about.gitlab.com/

17

2. Fundamentals

Such issues can be maintained with issue trackers [5, 6, 9]. The authors stated that
an issue tracker can be used by managers, developers and other users to manage the
interactions for creating, monitoring and fixing software. Furthermore, the system also
provides a detailed history of these interactions, and an overview of what tasks need to
be done. Common issue tracker software are Jira5 and the integrated issue tracker from
GitHub6.

5https://www.atlassian.com/de/software/jira
6https://guides.github.com/features/issues/

18

CHAPTER 3
State-of-the-Art

This section provides an overview of existing awareness tools and how the prototype
covered by this thesis differs from them. Afterwards current information needs and how
the prototype addresses these are pointed out.

3.1 Awareness Tools
Palantír [53], an Eclipse1 plugin, monitors ongoing local changes of a repository. When a
conflict arises, it shares the changes with developers to whom it is relevant. Each change
contains the information which developers changed which artefact (for example a file)
and to which extend. The conflict notifications are always at the level of a whole artefact.
Palantír can analyse direct and indirect conflicts. An example can be seen in Figure 3.1.
The plugin shows that at least one indirect conflict occurred in the classes DebitCard.java
and Payment.java.

Another Eclipse plugin is called Syde [36]. Syde uses an AST as the basis of the analysis.
Changes in the repository are saved to the ASTs. The plugin can detect merge conflicts
by comparing those ASTs. The tool is able to provide the change detection in real time.

Like Syde, Lighthouse [23] is an Eclipse plugin which uses an AST to provide awareness
to developers. Changes made by developers are shown in an Unified Modeling Language
(UML)-like visualisation of changes done by the developers. These changes will be visible
in all contributing workspaces and will be shown without the need to save those changes.
Therefore, all developers have a common view on how the project changes over time and
are able to detect arising conflicts.

Another plugin for Eclipse is WeCode [35] which detects conflicts by comparing trees
of typed and attributed nodes. A node is either a file, a folder or a program element.

1https://www.eclipse.org/

19

3. State-of-the-Art

Figure 3.1: Conflict detection example of Palantír [53]

WeCode can also detect language conflict by compiling the merged system. This analysis
is done every time the repository is updated. Figure 3.2 shows the User Interface (UI) of
WeCode with the extended package explorer (Figure 3.2 1)), the extended editor (Figure
3.2 2)), the team view (Figure 3.2 3)) and the team merge view (Figure 3.2 4)).

FASTDash [8] (Figure 3.3), a plugin for Visual Studio2, also provides information in real
time. This information can be divided into file information and repository information.
File information gives insights on open files, files which are being edited, a focused file of
a developer and on classes or methods which are currently viewed, edited or debugged.
The repository information gives information about checked out files, checked out files
which are different from the current repository version and potential checkout conflicts
(for example if two developers have the same file checked out). Developers can attach
comments to a file to communicate together.

2https://visualstudio.microsoft.com/de/

20

3.1. Awareness Tools

Figure 3.2: User Interface of WeCode [35]

Levin and Yehudai [42] developed in 2015 a plugin for IntelliJ IDE3 which tries to detect
potential merge conflicts (Figure 3.4) by using semantic path ids. A semantic path id
uniquely identifies elements of the project and is constructed as follows:
„/project/fileName/className/methodName/paramName/“. During the analysis, this
prototype checks local and remote changes of the same semantic path ids. Using this
approach, the computation time only depends on the number of team members (N) and
the average number of changes per team member (M). Therefore, the computation time
is near real-time (O(N · M)).

In contrast to the tools described above, Crystal [14] is a standalone application (Figure
3.5). The tool checks for merge conflicts, but also for compiling and testing conflicts.
Crystal tries to merge the local state of a project and reports back encountered conflicts.
If no such conflicts arose, it tries to compile the merged projects. After a successful
compilation Crystal runs the test suite and checks if the tests fail. The tool shows the
conflict state with relationships and colours (Figure 3.6).

With CloudStudio [48] developers do not work on a personal workspace, but on a shared
one over the web. Changes done by the developers themselves or by others are tracked in
real time (Figure 3.7). Developers can decide on their own if they want to see the changes
from a specific colleague or not and can define the granularity. For example, it is possible
to choose that only changes of a specific colleague should be shown that generate conflicts.
The ownership of uncommitted changes lies with the developers themselves. This means
that the others can see these changes but are not able to edit them. Additionally,

3https://www.jetbrains.com/idea/

21

3. State-of-the-Art

Figure 3.3: User Interface of FastDash [8]

Figure 3.4: Potential conflict provided by awareness tool of [42]

22

3.1. Awareness Tools

Figure 3.5: User Interface of Crystal [14]

Figure 3.6: Relationships of Crystal [14]

CloudStudio provides a built-in chat for communication, the possibility to call colleagues
via Skype and includes verification tools for automatic testing and static verification.

Another web-based approach for providing awareness is Collabode [32]. Collabode is a web
application which enables collaborative development for Java applications. Its frontend
is implemented with JavaScript and HTML. The server uses Eclipse for the project
management and for providing standard IDE services like code formatting, refactoring
and continuous compilation. Code will only be shared if it is not broken. To check for
broken code, signals like compilation errors or failing test cases (Figure 3.8) are used.

TIPMerge [22] is a tool which suggests the best suited developers for a merge. First,
a project must be selected where a merge should take place. After that, two branches
and optionally a hash of the commit are selected which should be merged. If no hash is

23

3. State-of-the-Art

Figure 3.7: Web overview of CloudStudio [48]

provided, the last commit of the branch is used automatically. TIPMerge selects the best
suitable developers with the following steps: First, the data is extracted to the selected
commits of both branches. After that step, frequently co-committed files are detected
and afterwards the developers who edited these files are identified. Finally, the system
provides a ranked list of suitable developers who can perform the merge. Such a result
can be seen in Figure 3.9. It shows the authors (Figure 3.9 a)), the files (Figure 3.9 b))
and the branches in which the changes were made (Figure 3.9 c)).

All the above mentioned tools [8, 14, 22, 23, 32, 35, 42, 48, 53] only focus on intra-project
conflict awareness visualisations. The visualisation prototype of this thesis not only
covers merge conflict visualisations within one project, but also for forked projects.

3.2 Information Needs

Although, as seen in Section 3.1, there are several awareness tools available, developers
are still missing some functionalities [45, 46]. For example, the studies found out that
developers find, it should be able to filter relevant information and that tools have a better
support for exploring a project’s history. Another problem, for example for automatic
merge tools is, that their functionalities are not transparent enough. This may lead
to a mistrust of developers in this tool because they cannot understand how a specific
outcome was achieved. Additionally, a further issue pointed out by some developers in

24

3.2. Information Needs

Figure 3.8: Collabode showing failed test cases [32]

the studies is that tools may have inconsistent terminologies and visual metaphors like
colours or notifications.

The authors in [45] also learned, that in order to resolve merge conflicts tools can help
the developer by providing enough information about the conflict and by presenting
this information in an understandable way. It also helps if the tool is trustworthy, and
it provides a possibility to examine the development history as also stated above. But
the authors stated that there are additional information needs necessary for a conflict
resolution. It is, for example, dependent on the expertise of the developer in the conflicting
code area and how easy the person is able to understand the conflicting code. Also, the
complexity of the project’s structure, the project culture, changing assumptions and the
informativeness of commit messages play a role in merge conflict resolution.

The authors in [56, 64] also stated that resolving merge conflicts while synchronising
the fork with the original or vice versa is harder than fixing conflicts within a project,
especially if the two projects have diverged substantially. Sung et al. [56] found three
reasons for this: 1. The developers from the fork or the original often are not aware of the
changes made by the counterpart. 2. When the fork or the original has a lot of commits,
it is not easy to pinpoint the conflicting commit. 3. The root cause of a conflict may also

25

3. State-of-the-Art

Figure 3.9: Ranked list of developers provided by TIPMerge [22]

be a commit in the fork or the original itself, made a long time ago. In this situation it
can be difficult to find the right person for the fix, for example if the person already left
the project, especially in open source development. This additional complexity might be
the reason, why such synchronisations are still rare in hard forks. The monitoring of the
projects can be overwhelming, such that also small changes can lead to a lot of work [64].

The tools described in Section 3.1 provide only intra-project awareness information which
are only partially useful for fork-based development or for syncing hard forks with their
original or vice versa. As Estler et al. stated [27], this awareness information need not to
be provided in real time by most developers. Developers also have different exceptions
on how much detail this information should provide. The authors recommend providing
as much information as possible, but with a possibility to customise this level of detail.
This enables everyone to decide for themselves, what should be shown and what not.

As mentioned in [45, 46], the software’s history is an important information need for
developers. Codoban et al. [19] also conducted a study in 2015 in order to find out
why and how developers examine it. Figure 3.10 shows the findings on why developer
examine old and new history. The authors also found out that developers mostly look
at the commit messages, the difference between a commit and its parent in order to

26

3.2. Information Needs

Figure 3.10: Developer’s motivation for examining the software history (%) [19]

Traceability to versions 58%
Informative commit messages 48%
Aggregate commits into groups 46%
Ability to filter changes 40%
Support for managing uncommitted changes 28%
Traceability to architecture 26%
Selective change notifications 20%
Other 3%

Table 3.1: Developer’s tool desires [19]

understand this commit. But also, the author and the knowledge of other colleagues
are important for the understanding of commits. Additionally, the study revealed some
challenges developers have to work with. This includes that the commits’ differences are
sometimes hard to understand, for example if white space and line-ending changes are
included. Developers wish for tools to have a better version traceability of code snippets,
especially if files are moved or renamed. Another desire which was found out in the study
is a better traceability to requirements, meaning that it is helpful to find all commits
which are linked to a specific requirement. A full list can be found in Table 3.1.

With the visualisation introduced in this thesis the above-mentioned information needs
are addressed in various ways. Since the project history is a much-used way to collect
information, its representation resemble the characterisation of a Git graph, because

27

3. State-of-the-Art

most developers are familiar with this form of representation. The graph allows to
easily navigate through the history by hovering over commits and by selecting commits
which arouse the interest of the developer. The selection provides useful information
of the commit like its metadata, other commits it depends on and its changes. This
representation not only shows the history of one project, but also the history of a
selected fork or its parent in a way that the common grounds and divergences are easily
spotted. Developers are able to filter this information by providing a compact view of
the history. Interesting commit clusters can be expanded by the user, explored and
afterwards minimised again. Additionally, branches of a project can be faded in and faded
out at will. This provides possibilities to only focus on specific areas in the graph. Not
only the representation of the projects’ history is familiar to most developers who worked
with Git in the past, it is also possible to select the base colours of the visualisation such
that it can be adapted to personal preferences. In order to assess the complexity of merge
conflicts, the prototype shows when a merge, rebase or cherry pick within a project or
from a fork result in a conflict. If a conflict occurs the visualisation provides some data
about the merge conflict like conflicting code sections or authors which are involved in the
changes. This allows the developer to assess, for example, if the merge could take longer
and if it could be wise to invite other developers to the merge session. The prototype
also provides a functionality, which marks the commits of a selected requirement.

28

CHAPTER 4
Conceptual Design

The next step after the literature research was to set up a plan with which features
Binocular [34] (see Section 6.1) should be extended. Based on the literature research
for the state-of-the-art and the own experiences as software developer, features were
planned which the prototype should possibly contain. The proposed features can be
found in Table 4.1. In the following phase, these suggestions were rated and reviewed by
experts in semi-structured interviews on how important they would find such features
in a visualisation. The outcome of these ratings had an influence on the priority of the
implementation order of the features and if they all find enough support by the experts

F1 Show the divergence between two forks
F2 Show if branches within a project can be rebased without conflicts
F3 Show if branches of forks can be rebased without conflicts
F4 Show if branches within a project can be merged without conflicts
F5 Show if branches of forks can be merged without conflicts
F6 Show if commits within a project can be cherry picked without conflicts
F7 Show if commits of forks can be cherry picked without conflicts
F8 Show the code sections of the conflict if one would occur
at the rebase, merge or cherry pick
F9 Show the commits which the selected one depends on
F10 Show the commits of a selected issue
F11 Show the metadata of a selected commit
F12 Provide a compact view of the visualisation
F13 Hide commits of selected branches
F14 Filter commits after a specific timestamp, within a specific time frame,
of a specific author or committer and after a selected commit (subtree)

Table 4.1: Proposed features of the prototype

29

4. Conceptual Design

Figure 4.1: Mock-up: base view of the visualisation (F1)

to be included in the visualisation. The results of these interviews can be seen in Section
5.2. In order to further concretise these ideas, mock-ups were created.

For these mock-ups two main iterations were needed. The first mock-up versions were too
focused on the individual features. Basically, the idea was to provide an own visualisation
for each proposed feature. But this approach did not allow interactions between the
features within the prototype. For the second version an approach was used to think
more out of the box. The prototype should be able to combine the features within
one visualisation in order to provide a better and more intuitive user experience. This
brings more flexibility and a broader coverage of use cases that can be covered with the
prototype extension.

This visualisation should extend the current development state of the Binocular project.
Therefore, the structure of the prototype should be similar than the existing visualisations
within the project. Because of this, the mock-ups were designed with two sections. On
the left side will be the config section containing all configuration settings the user can
adjust. The data visualisation is shown on the right side of the view. This section will
change according to the set settings.

The basic structure of the data in the visualisation should be intuitive for developers
using Git. Therefore, the basic view of the data should resemble a Git graph. The
mock-up of the visualisations base view (Figure 4.1) displays such a possibility. The
nodes in the graph represent the commits. The edges are indicators for parent-child
relationships showing the overall Git history of the repository. Nodes that have labels on

30

Figure 4.2: Mock-up: change the colour of a repository (F1)

top are branch heads with the branch names as label content. The colours in the graph
show in which project the commit is available. In the mock-up, all commits coloured in
green can only be found in the base repository, the orange nodes are only in the parent
or fork of the base repository. All commits which are marked blue can be found in both
projects. This indicates the state from which a project was forked. The colours of the
labels also show the membership in the repositories. In Figure 4.1 branch1 was not
changed by any of the projects and is equal in both repositories. On the contrary, the
members of the base repository worked on the master branch and have pushed three
additional commits which are represented with three green nodes on top of the common
state, the blue nodes. In the other project nobody adapted the master branch. Therefore,
both master labels can be found in different locations with the corresponding colour.
This representation also shows how much forks were diverged over time (F1). This can
provide hints on how easy or complicated a reintegration can get. The parent or a fork,
if existing, can be selected over the drop-down menu in the config section.

Developers found fault with the lack of customisability of used tools. Therefore, it
should be possible to adapt the used colours at will. This allows the users to adapt the
appearance of the prototype more to their likings, preferences and habits. An example
can be seen in Figure 4.2. In the contrary to Figure 4.1, the colour of the base project is
now purple instead of green.

When clicking on a commit, the developer can see metadata of the selected commit (F11,
see Figure 4.3). This includes the hash, the author of the commit and the corresponding
time, the committer of the commit and the corresponding time, as well as the commit

31

4. Conceptual Design

Figure 4.3: Mock-up: click on commit showing metadata (F9, F11)

Figure 4.4: Mock-up: show changes of a commit (F11)

32

Figure 4.5: Mock-up: branch highlighting

message. The visualisation should also provide information on which previous commits
the selected one depends on (F9). For this the functionality of git-deps1 should be
used. This information can come in handy especially when commits should be cherry
picked. The information of a commit’s dependencies can make it easier to identify earlier
commits that have to be picked along with the selected one. This may decrease the
conflict potential of cherry picks. Usually, software engineers are also interested in the
changes which are introduced in the project with a commit. Therefore, the visualisation
should also provide a view of its diffs (F11, Figure 4.4).

When clicking on a branch label, the commits of this branch should be highlighted. An
example can be seen in Figure 4.5. This may help developers in identifying the path and
the commits of a branch faster.

Over time repositories can become large and can hold a lot of information. This can result
in an information overflow for the engineers, and it can get hard to find its way. One way
to mitigate this threat is to allow the user to hide or show specific branches of a repository
at will (F13). The branches of the base project and the selected fork or parent will be
shown in scrollable checkbox lists within the config section of the visualisation. The
user is able to select or deselect branches by checking or unchecking the corresponding
checkboxes in the list. Figure 4.6 shows the commit graph with the branch „branch2“
of the fork „Examplerepository 2“ deselected. Deselecting this branch removes all its
commits that can only be found in the corresponding repository. The other commits will
be recoloured if the deselected branch was the only branch reference of this project for
the commits. When selecting the branch again, the changes will be reverted again. This
means that all the commits which were recoloured would get the „combined“ colour and

1https://github.com/aspiers/git-deps

33

4. Conceptual Design

Figure 4.6: Mock-up: deselect branches of a repository (F13)

the removed commits will be shown again with their original colour. If a repository has
many branches and the user wants to show only one or a few branches of the project,
the prototype should provide a function to select or deselect all branches of the base
project or the other repository. This should enable the user to first deselect the branches
and then select the wanted ones. On default all the branches of the repository should be
visible. This feature will be triggered by the „all“ checkbox above the branches list as
shown in Figure 4.6. If all branches of the repository are selected, this checkbox will also
be checked. Otherwise, if only one or more branches are deselected, the „all“ checkbox
will also get deselected. Then the user must first check this checkbox again or select all
branches individually before deselecting them again at once.

Another way dealing with a big amount of data should provide the feature of a compacted
view (F12). This view should cluster non-branching commits to nodes that only hold
information about how many commits are grouped together. The compacted version of
the example graph can be seen in Figure 4.7. Branching nodes should be commits which
have either multiple parents or multiple children. Those will not be clustered. Branching
nodes can hold valuable information about the structure of the repository, like when a
feature branch was started or when changes were merged. Furthermore, a single commit
between two branching nodes should not be compacted, because this would lead to an
information loss without gaining a more compacted graph. The whole graph should be
able to be compacted or expanded completely using the „Compact View“ checkbox in
the top of the config section on the left.

The feature of compacting or expanding only the whole graph alone would not be as

34

Figure 4.7: Mock-up: compacted view (F12)

Figure 4.8: Mock-up: compacted craph with one expanded section (F12)

35

4. Conceptual Design

Figure 4.9: Mock-up: expanded graph with one collapsed section (F12)

helpful as intended, because then for the developers the situation could occur that they
either have too much information or too little. Therefore, it should be able to expand
collapsed clusters individually and to cluster specific sections which are not of interest of
the software engineer. In order to expand clustered nodes again the user has to right
click on a cluster and select the „Expand“ context menu item. The result of the fully
compacted example graph with one expanded section can be seen in Figure 4.8. It should
also be possible to collapse expanded sections separately. With this the software engineer
can minimise the available information of the specific section without impacting all the
other sections of the graph. Figure 4.9 shows the fully expanded example graph with one
collapsed section. In order to get to this result, the user should select one node within
the section that should be compacted, open the context menu with a right click and has
to select the „Compact“ context menu item.

Other main features of the prototype should be the checks if merges, rebases and cherry
picks will be successful or will result in a conflict. Those checks should be available
for branches or commits of a single project but also across the repositories (F2 - F7).
To check if branches can be merged successfully the idea was, that the user just drags
the branch label over another label and drops it there (F4, F5). This would mean that
the merge of the dragged branched into the branch where it was dropped onto branch
will be checked. Afterwards, the prototype shows a message if a conflict would occur
or not. A possible success message can be seen in Figure 4.10. This would be a simple
message without much additional information other than a reminder, which branches
were used for the merge. If a conflict is detected more information will be shown. A

36

Figure 4.10: Mock-up: check merge - no conflict found (F4, F5)

Figure 4.11: Mock-up: check merge - conflict found (F4, F5, F8)

37

4. Conceptual Design

Figure 4.12: Mock-up: check rebase - conflict found (F2, F3, F8)

modal should be opened with a message displaying which branches were involved in the
merge and the authors of the commits that were involved in the merge. To know who
introduced changes into the repository can help in finding suitable developers who can
provide help with solving the conflict. Additionally, the code snippets of the conflict
should be shown in order to assist in the planning of the conflict resolution (F8). If the
conflict seems big and complex, the merger may decide to postpone the resolution to
gather more information or to look for help for the upcoming task. The information
could also be interpreted as a warning sign that branches will diverge and such that they
can be merged in an early stage before the conflict gets out of hand.

Similar data should be shown for checking a rebase for conflicts (F2, F3). This functionality
should be called in a similar way as the check for merge conflicts. The idea was that the
rebase check will be performed when the user drag and drops a branch label onto another
one while holding the ctrl key. The check itself should also be possible for branches within
a single project but also over the boundaries with branches of different repositories. If the
rebase will be successful a similar success message should be shown as in Figure 4.10, but
with the information which branch can be successfully rebased onto which other branch.
When a conflict is detected, again, the information which branches are involved, and
which code sections are conflicting should be displayed to the user (F8). Additionally, the
developer should get information on which commit the conflict occurred, which commits
could have been rebased successfully and which commits were not analysed due to the
found conflict (Figure 4.12).

The third conflict check, the prototype should provide, is the cherry pick check (F6, F7).

38

Figure 4.13: Mock-up: check cherry picks of conflicts (F6, F7)

Figure 4.14: Mock-up: check cherry picks - conflict found (F6, F7, F8)

39

4. Conceptual Design

For this functionality the software engineers should not only be able to inspect if one
commit can be cherry picked successfully but also if the cherry pick of multiple commits
will be successful (see Figure 4.13). Therefore, the user should be able to choose multiple
commits. Then the selected commits should be sorted after the commit date in ascending
order and cherry picked one after another. Similar as the conflict modal from the rebase
check this modal should also provide the information up to which commit the commits
could have been successfully picked, when the conflict occurred, and which commits were
not analysed because of the conflict (Figure 4.14). Additionally, the conflicting code
sections should be shown (F8).

Often, not all information of the Git history is of interest for system engineers. Therefore,
developers should be able to filter commits (F14) in an additional way as the previous
represented information limitations like compacting the graph or specific sections and to
fade out commits of a specific graph. For these supplement filter methods, the user should
be able to choose if the filtered commits should be highlighted, or if only they should
be visible in the graph. Additionally, the plan was that these filters can be combined
with one another. Two ways of combining the filters came to mind. First, combination
results in a wider search area, which means they will be combined with an „or“ link.
Second, the combination of filters will restrict the search area further, therefore, the
filters will be combined with an „and“ link. Based on the own experiences in the field
most use cases would have required to further restrict the search than the other way
around. For the filters the developers should be able to limit the commits in a timely
manner. This functionality should include to filter commits after a specific date, to filter
commits within a specific time frame but also to filter a specific subtree, which means
showing all children of a specific commit inclusive. In addition, it can also be helpful to
see which commits were made by a specific committer or were integrated from a specific
author.

Developers also stated in the literature that it would be nice to see the commits of a
specific issue (F10). Therefore, the visualisation should provide such a functionality. The
user should be able to select an issue which will then result in the commits of this issue
being marked within the graph (Figure 4.15).

Initially, it was also planned to show the mergeability and rebaseability of the branches
and the cherry pickability of the commits in a passive way (Figure 4.16). However, due
to the increased expenditure of time and complexity of this feature, this idea was not
included in the scope of the thesis. While hovering over a commit the user should see
the cherry pickability of the commit. A cherry pickability of 100% would mean that the
commit can be cherry picked into each branch without conflicts. Otherwise, the branches
would be displayed where a conflict would occur. The mergeability and rebaseability of
branches should be visualised in a similar way. While hovering over a branch label, a
tooltip should show the percentages of the mergeability and the rebaseability as well as
the branches where the merge or result would result in a conflict.

40

Figure 4.15: Mock-up: highlight commits of a specific issue (F10)

Figure 4.16: Mock-up: passive view for cherry pickability, mergeability and rebaseability

41

CHAPTER 5
Semi-Structured Expert

Interviews

This section provides insights of the semi-structured expert interviews for rating and
ranking the proposed features of the conflict awareness visualisation. First the plan of
these interviews will be discussed and afterwards the result of them. Lastly, the threats
of validity will be presented.

5.1 Plan
In order to get an insight of how important software engineers find the proposed features
of the conflict awareness visualisation (Table 4.1) semi-structured expert interviews were
conducted. The results of these interviews were also used to create a ranking in which
order the proposed features were implemented in the prototype. Therefore, three software
engineers were selected as participants for the interviews.

As support and guideline for these interviews a questionnaire was created. The question-
naire was divided into three sections. The first section contained questions about the
person itself. In the second section questions about the experiences of the participant
could be found. The last section contained the questions about the importance rating of
the proposed features. The whole questionnaire can be found in the appendix (9).

All interviews were carried out remotely via Zoom1 due to the COVID-19 pandemic. It
was estimated that each interview will last about an hour. During the interview two
interviewers and the interviewee were present. One interviewer took over the moderation,
and the second interviewer was responsible for taking notes. At the beginning, the
participants received a short overview on what the interview is about. Afterwards, the

1https://zoom.us/

43

5. Semi-Structured Expert Interviews

25-34 35-44

1

age

nu
m

be
r

of
pa

rt
ic

ip
an

ts

male
female

Figure 5.1: Demographics of the participants

outlet of the interview was presented. If the interviewee had no further question, the
display of an interviewer was shared with the attendants showing the open questionnaire.
Then the participant had time to read the questions of the questionnaire, to ask questions
if something was unclear and to explain why he or she chose a specific answer. The
final answer to a question was filled in by an interviewer. This approach was chosen to
mitigate potential technical errors because of different system setups of the participants.

5.2 Results
The results of these expert interviews were used to get an impression on how useful
experts see the proposed features and if the visualisation should contain not mentioned
features. The results also provided an approximate roadmap on what features should
have been implemented first according to their rated importance.

5.2.1 Demographics and Experiences

All participants were asked to provide some information about themselves and their
experiences in the field. The distribution of the participants’ age and gender can be
seen in Figure 5.1. The experiences of the attendees can be found in Figure 5.2 and 5.3.
Participant 1 had about 30 years of experiences in software engineering and about 28
years with VCSs. He used different VCSs before, namely Git, Subversion, Mercurial,
CVS, PVCS, RCVS, TFS, SourceSafe and Patches. Participant 2 had around 14 years
of experiences in both software engineering and working with VCSs. During this time,
he used Git and Subversion as VCSs. Participant 3 had approximately 11 years of
experiences as a software engineer and worked for about 10 years with the VCSs Git

44

5.2. Results

10 12 14 16 18 20 22 24 26 28 30

(a) Participants’ software engineering experience in years

10 12 14 16 18 20 22 24 26 28

(b) Participants’ experience with Version Control System

Figure 5.2: Experiences of the participants

GitMercurial Subversion CVS PVCS RCVS TFS SourceSafe Patches

1

2

3

VCS

nu
m

be
r

of
pa

rt
ic

ip
an

ts

Figure 5.3: Version Control Systems used by the participants

and Subversion. All three respondents knew the principles of forking and PRs and each
participant had also forked a project and merged a PR in the past (Figure 5.4.

5.2.2 Preference between Merging and Rebasing
Each participant had different preferences between merging and rebasing (Figure 5.5).
Participant 1 was neutral towards rebasing and merging and stated that the choice
between those two depends on the context of the task. When integrating features, he
usually merges these changes back. For the integration of bug fixes, a rebase is preferred.
It was also stated, that the commit tree can become confusing if the changes are only
integrated using merges because each merge will create a separate merge commit.

The problematic of additional merge conflicts is also known by participant 2. His
preferred method is the rebase because he tends to commit rather small changes instead

45

5. Semi-Structured Expert Interviews

Yes No

Do you know the principle of forking projects
in version control hosting systems like GitHub?

Have you forked a project in the past?

Do you know the principle of PRs in version
control hosting systems like GitHub?

Have you merged a PR in the past?

Figure 5.4: Forking and Pull Request experiences of the participants

1
Merging

2 3 4 5
Rebasing

Figure 5.5: Participants’ preferences between merging and rebasing

1
not important

2 3 4 5
very important

Figure 5.6: Importance for showing the divergence between forks

of introducing commits with a lot of changes. But if larger commits have to be integrated
a merge will usually be used because the merge commit will document these changes.

On the contrary, the third respondent prefers merging over rebasing. For her, she usually
only rebases when changes have to be integrated into the current branch she is working
on.

5.2.3 Showing the Divergence between Forks (F1)
Participants 1 and 3 find it rather important for the visualisation to show the divergence
between forks and participant 2 finds such feature in general very important (Figure
5.6). Participant 1 stated that he prefers to work with a shell, but he knows that such a

46

5.2. Results

1
not important

2 3 4 5
very important

show if branches can be rebased
without conflicts within a project

show if branches can be rebased
without conflicts between forked
projects

Figure 5.7: Importance for showing the rebaseability

feature would be very important by others. For himself, he is normally not interested in
specific commits, only if he wants to know who did what. In general, this respondent
looks at end to end diffs on the file level.

5.2.4 Showing if Branches can be rebased without Conflicts (F2, F3)

For participant 1 and 2 it was rather important that the conflict awareness visualisation
shows if branches within a project but also from a fork can be rebased without a conflict.
On the other hand, for participant 3 it is more important that the visualisation focuses
on forks rather than on intra project rebases. Therefore, the awareness visualisation
for rebases within a project was rated neutrally. The results can be seen in Figure
5.7. Participant 1 stated that this feature would be interesting, especially with large
community projects if branches from a fork are still integrable or not. Participant 2
noted that such a check would be important, especially working with forks, but due to
his working style, this feature was rated as rather important in both cases.

5.2.5 Showing if Branches can be merged without Conflicts (F4, F5)

For the proposed feature, if the prototype should show whether branches can be merged
without conflicts or not, all three participants rated the interproject check equal to the
check between forks (Figure 5.8). Participants 1 and 3 found these proposed features
rather important and participant 2 very important. For participant 2 the check for merge
conflicts is more important than the check for rebasing due to his working style. He
usually has larger commits to merge than to rebase.

47

5. Semi-Structured Expert Interviews

1
not important

2 3 4 5
very important

show if branches can be merged
without conflicts within a project

show if branches can be merged
without conflicts between forked
projects

Figure 5.8: Importance for showing the mergeability

1
not important

2 3 4 5
very important

show if branches can be cherry
picked without conflicts within a
project

show if branches can be cherry
picked without conflicts between
forked projects

Figure 5.9: Importance for showing the cherry pickability

48

5.2. Results

1
not important

2 3 4 5
very important

Figure 5.10: Importance of showing the code sections of conflicts

1
not important

2 3 4 5
very important

Figure 5.11: Importance of showing dependent commits

5.2.6 Showing if Commits can be cherry picked without Conflicts
(F6, F7)

In case of the cherry pickability of commits, participant 1 rated such a visualisation
as rather important. This interviewee stated that cherry picks are almost every time
possible, except, for example, if a file is missing because it was created in a previous and
not integrated commit. The other two participants were neutral about this feature and
rated it as a nice to have (Figure 5.9). Participant 3 sees cherry picks as antipattern
and that such commits should have been integrated with a merge or a rebase before.
Participant 2 noted that he usually only cherry picks commits with just a few changes.
Therefore, the chance of a conflict would be rather low.

5.2.7 Showing the Code Sections of a found Conflict (F8)

If a conflict in the check for the rebaseability, mergeability or cherry pickablility occurs,
participant 1 and 3 rated it as very important, that the conflict awareness visualisation
displays the code sections of the conflict and for participant 2 this feature is rather
important (Figure 5.10). During the interview participant 1 also stated that it would
be useful to not only see the conflicts, but to also edit these such that this conflict can
be resolved at the time. Participant 2 noted that the code snippets of the conflict are
sometimes too small because it might be possible that the context needed to understand
the conflicting code is missing. For participant 3 it would be interesting to see at which
commit the conflict occurs.

5.2.8 Showing the Commits a selected Commit depends on (F9)

The visualisation of dependent commits is rated by all participants as very important
(Figure 5.11). Participant 3 noted that not only the syntactic code dependencies of the
commits should be shown, but also the semantic dependencies, like missing functions
in another class which was used within the commit. If the semantic dependencies are

49

5. Semi-Structured Expert Interviews

1
not important

2 3 4 5
very important

Figure 5.12: Importance of showing commits of a selected issue

1
not important

2 3 4 5
very important

Figure 5.13: Importance of showing the metadata of a commit

missing, this may raise false hopes in software engineers and he or she thinks that all is
working fine if no conflict was detected.

5.2.9 Showing Commits of a selected Issue (F10)
Participant 1 and 2 stated that a feature that marks the commits of a specific issue
is very important and the other participant rated it as rather important (Figure 5.12).
Participant 1 justifies his choice because he often looks at nearby commits of a specific
one to see, if the selected commit was the last commit which referenced a specific issue
or not. This feature would be helpful in such situations. This participant also stated
that for him it would not be as useful if only issues from GitHub can be selected.

5.2.10 Showing the Metadata of a Commit (F11)
If the conflict awareness visualisation should show the metadata of the commits across the
selected project, the respondents all have a different rating. For participant 2 this feature
is not really significant, while participant 3 rated it as rather important and participant
1 very important (Figure 5.13). Participant 1 stated that especially the commit message
and the author are significant in such a visualisation, because it can be the case that
changes of a specific author should be reviewed more accurately. Participant 2 justifies
the decision that for him the most interesting information would be the code, and not
who is the author of a commit for example. Participant 3 stated that it would be nice to
have such metadata within the tool because then a switch to another tool which provides
this information is not necessary.

5.2.11 Making the Visualisation compact (F12)
All attendees of the interviews marked it as rather important, that the visualisation can
be made compact at will (Figure 5.14). Participant 1 stated that it would be useful when
it is possible to, for example, select an issue and that all commits are shown in a compact
view, except the commits of that specific issue. Participant 3 noted that especially in

50

5.2. Results

1
not important

2 3 4 5
very important

Figure 5.14: Importance of making the visualisation compact

1
not important

2 3 4 5
very important

Figure 5.15: Importance of hiding commits of selected branches

large projects such visualisations can overstimulate the viewers. But she also pointed
out that this feature would only be useful if someone can decide on what should be
compacted and what not. An all or nothing choice would not really make sense.

5.2.12 Hide Commits of selected Branches (F13)
The possibility of hiding commits of selected branches is rated as very important by
participant 3 and as rather important by participant 1 and 2 (Figure 5.15). Participant
2 noted that this feature can be helpful if someone wants to compare more than two
branches.

5.2.13 Provide Possibilities for filtering (F14)
The interviewees were asked about different possible filter scenarios of the prototype. For
the filtering option, two suggested methods were suggested. A filter which only shows
the filtered commits and one which shows all commits but highlights the filtered ones.
The participants were asked how important they would find such filter for commits:

• after a specific timestamp

• within a specific time frame

• of a specific author

• of a specific committer

• after a selected commit (subtree)

The results can be seen in Figure 5.16.

For participant 1 it is interesting to provide such filter for authors because then it is
possible, for example, to get a brief overview on how much a person worked on the project.

51

5. Semi-Structured Expert Interviews

after a specific
timestamp

within a specific
time frame

of a specific
author

of a specific
committer

after a selected
commit (subtree)

1

2

3 Show filtered commits only
Highlight filtered commits

Figure 5.16: Importance of providing various filter options

On the other hand, a filter for the committer is not important for him. He stated that
the committer often is the same person as the author, or the committer will have many
commits due to a limited number of persons with write permissions on the project for
example. This interviewee also noted that it may be important to see coherences between
commits when filtering for a specific time frame. Therefore, it is not only important to
show only these commits, but also to highlight them and display the others as well. For
the filter after a specific timestamp, such coherences are usually not important.

The participants were also asked if they find other filter options important. New
suggestions included a git bisect like intersection between two commits, a filter for commit
messages and a filter that shows in which commits a specific file was changed.

5.2.14 Roadmap for the iterative Prototype Development

Table 5.1 shows the ranked proposed features of the prototype based on the ratings from
the interviews. This ranking shows the basic roadmap for the implementation. Features
with a higher rating were added sooner than features with a lower rating if reasonable.
For example, it would have not been reasonable to implement the feature „Showing the
divergence between two forks“ in a later step, because the other features were built on
top on it.

The table excludes the filter options (F14) due to a different question style. Based on
their ranking, first, a filter for commits of a specific author was planned. This filter
included an option for highlighting and for showing only the filtered commits. Next, the
implementation of the filters after a specific commit were implemented. Afterwards, the

52

5.3. Threats to Validity

Proposed Feature Mean
F9 Show the commits which the selected one depends on 5,00
F8 Show the code sections of the conflict if one would occur
at the rebase, merge or cherry pick 4,67

F10 Show the commits of a selected issue 4,67
F1 Show the divergence between two forks 4,33
F4 Show if branches within a project can be merged without conflicts 4,33
F5 Show if branches of forks can be merged without conflicts 4,33
F13 Hide commits of selected branches 4,33
F3 Show if branches of forks can be rebased without conflicts 4,00
F2 Show if branches within a project can be rebased without conflicts 3,67
F11 Show the metadata of a selected commit 3,67
F6 Show if commits within a project can be cherry picked without conflicts 3,33
F7 Show if commits of forks can be cherry picked without conflicts 3,33
F12 Provide a compact view of the visualisation 3,00

Table 5.1: Proposed features sorted after the importance rating

filters for commits of a specific committer and for commits within a specific timeframe
were added. Lastly, the filters for commits after a specific timeframe were implemented.

5.3 Threats to Validity
In this section threats to validity of the conducted expert interviews are presented.

5.3.1 Number of Interview Participants

For the semi-structured interviews three experts were selected. This number of partici-
pants could not provide sufficient insights of the importance of the proposed features over
the wide mass. The goal of these interviews was to get a small insight of the opinions
of software engineers. A more detailed analysis would have gone beyond the scope of a
master’s thesis.

5.3.2 Mock-ups as Visualisation Examples

Some questions included mock-ups from the requirements analysis to provide a visual
description as well as a textual description of the feature. This could have led to a rating
of the provided mock-up and not to a rating of the feature directly. For example, it was
possible that a participant would have rated the feature as not important because he or
she disliked the provided image. In order to mitigate this behaviour, the participants
received an explanation that the mock-ups should only provide additional context to the
proposed feature and that the idea itself should be evaluated.

53

5. Semi-Structured Expert Interviews

5.3.3 Wording in the Questionnaire
During the interview some questions were not immediately understood by the participants.
For example, one participant could not answer question 6, if he knows the principle of
forking projects in version control hosting systems. For this attendee it was not clear if
the term forking also includes for example downloading a project from a platform, or
only using forking mechanisms provided by version control hosting systems. Due to the
structure of these interviews the participants were able to ask questions and to clear up
ambiguities.

5.3.4 Preference between Merging and Rebasing
Participants of the survey may have a preference between merging and rebasing. This
could have led to a higher or lower rate of the proposed features related to these two
techniques. To mitigate this threat and to get better insight of the context of their
choices, the attendees were asked about their fondness.

54

CHAPTER 6
Implementation

The following chapter describes the implementation of the prototype, the encountered
problems during this phase and differences between the mock-ups from the conceptual
design (Chapter 4) and the actual implementation. Before going into the implementation
in more detail, Section 6.1 provides a brief overview of Binocular, the program that is
expanded in this thesis. The prototyping was split up in seven iterations. In iteration 0
(Section 6.2) the existing data mining algorithm of Binocular was extended to the needs
of the new visualisation. After iteration 1 (Section 6.3) the basic visualisation was set
up and the commits of a selected issue could have been highlighted. The conflict checks
were implemented in iteration 2 (Section 6.4). In iteration 3 (Section 6.5) the features
to show or hide specific branches and to highlight the commits a selected one depends
on were added to the prototype. Iteration 4 (Section 6.6) included the implementation
of the filters and after iteration 5 (Section 6.7) the user was able to compact or expand
the whole graph or sections of the graph. In the sixth and last iteration, bugfixes and
improvements to the visualisation were made. These improvements are not discussed
in a separate section, but rather in the corresponding sections to provide the complete
picture of the implemented features.

6.1 Binocular as Base
Grabner et al. [34] designed a tool to visualise time-oriented data from different software
engineering tools. The program combines data from VCSs, CI systems and issue tracker
into different visualisation types. The program described in [34] provides three different
visualisations: Change Impact Wheel, Code Ownership River and Activity Peak Dial. The
basis for the new prototype extension has changed slightly since the paper was published.
A new visualisation, a „Dashboard“, was added, the „Activity Peak Dial“ visualisation was
renamed to „HotspotDials“ and the „Change Impact Wheel“ visualisation was renamed

55

6. Implementation

to „Issue Impact“. The names of the current implementations are used for the following
paragraphs.

The authors [34] chose a simple client-server based architecture. For storing data an
ArangoDB database is used. The backend, a Node.js application, is responsible for
the data gathering using different indexers for hosting the frontend and for installing
the GraphQL-service which allows the frontend to query data from the database. The
frontend is a single-page web-application that uses React1, D3.js2 and Redux3.

As described above, three of the four visualisations are introduced in [34]. The „Hotspot-
Dials“ visualisation should provide an overview of when how much work happened. The
„Issue Impact“ visualisation shows impacts of issues on the code base and the „Code
Ownership River“ visualisation summarises how much code a contributor owns. The
„Dashboard“ provides information about issues, changes and continuous integration for
selectable time buckets.

6.2 Iteration 0: Data Mining
Prior to the implementation of the new features discussed in Section 5.2 the mining
algorithm for collecting the needed repository information had to be extended. The
existing implementation allowed the data mining of only one base project. But this
prototype needs information about the base project and additionally data about its forks
and its parent project. This information includes the metadata of commits, information
about branches of a project and the connections between branches and commits.

There were primarily two choices for the data storage of the other repositories. One was
to store the metadata of the other projects in a separate database. The second one was
to store all the data in one database and to put an identifier to the needed collections.
For this prototype the second variant was selected in order to have all the needed data
collected in one spot.

Three additional fields were added to the commit collection: the projects, the author
and the corresponding date. The projects field is an array of strings. It contains all
the projects the commit can be found. The project itself is a unique combination of
the repository owner and the repository name. For example, the key for the Binocular
repository of the GitHub user INSO-TUWien would be „INSO-TUWien/Binocular“. This
combination allows the prototype to uniquely distinguish between forks. The repository
name alone exists multiple times, but in combination with the repositories owner it will
become unique. The proposed features of this prototype also include the author of the
commit and the corresponding time. Like the committer, the author consists of the
username and the e-mail address of the GitHub user. For the data mining of the commits

1https://reactjs.org/
2https://d3js.org/
3https://redux.js.org/

56

6.3. Iteration 1: Setting up basic visualisation

the current implementation was used and extended such that this additional information
is also saved in the database.

Additionally, branch information is needed for this visualisation. Therefore, a new
collection „branches“ was added to the database. This collection contains the following
information: a branch key, the name of the branch and a list of the projects the branch
can be found inclusive the corresponding sha of their head. In order to save or update
the branch data the implementation of the Git indexer was extended. After indexing the
commits, the indexing of the branch data starts. For the index process a bulk creation,
update and deletion was chosen because its more performant than saving, updating and
deleting all entries after another via the database API and because it makes the stopping
and restarting of this algorithm easier to understand. The algorithm searches all branches
that were newly created and each branch which was updated after the last indexing. A
branch will be updated if the sha from the head retrieved from Git is a different one
than the stored sha in the database. Furthermore, the algorithm also gets all branches
that were deleted in Git but are still saved within the database. Afterwards, all new
and updated branches are stored and updated using the „UPSERT“ statement within
one database transaction. Additionally, the connections between the branches and their
commits will also be added to the collection if they do not already exist. At last, for each
deleted branch the entry and their corresponding commit connections are removed from
the database. The deletion consists of two steps. First, all the connections between the
branches and their commits will be deleted and the corresponding entry from the list of
projects and head shas will be removed, all in one transaction. Second, each branch entry
that has no projects and head shas in the list anymore is deleted from the database.

6.3 Iteration 1: Setting up basic visualisation
Before the features of the prototype can be implemented, the basic visualisation of the
projects’ Git histories must be created. The first step was to add a new tab „Conflict
Awareness“ for the visualisation. The configuration section of the visualisation will be
extended for each feature if necessary. For the representation of the Git commits and the
history the plan was to only use the D3.js library for this representation. Unfortunately,
no suitable predefined data structure could have been found. The tree structure for
example lacked in being able for nodes to have multiple parents and the force-directed
graph was not shown in a structured way, which made it impossible to understand the
history in an early time of manner. After another search, the dagre-d34 library was
found. This library uses the directed graph layouts of the dagre5 library and renders
them using D3.js. For the prototype the „tight-tree“ layout fitted the best. Using this, it
was possible to use the functionalities of D3.js in order to manipulate the rendered graph.

At first, only a horizontal view of the graph was implemented from the earliest commit
at the bottom from the latest commits at the top. In the last iteration, other layout

4https://github.com/dagrejs/dagre-d3
5https://github.com/dagrejs/dagre

57

6. Implementation

Figure 6.1: Base view of the new visualisation with vertical layout (earliest to latest)

Figure 6.2: Possible layout selections

possibilities were added to the prototype. On the top of the configuration section the
user can select between four different base layout styles (Figure 6.2). The selected style
can be horizontal where the earliest commit is on the bottom and the latest commits are
on top or vice versa. Another possibility selectable by the user is a vertical representation
where the earliest commit is either on the left or on the right side. An example of a
vertical view can be seen in Figure 6.1.

When the graph is rendered, the user can zoom in and out using the mouse wheel. The
graph can be moved by grabbing the background with the left mouse button and then
moving it to the desired position. After re-rendering the graph, the previous location and
zoom level of the user will be preserved. Especially when switching the layout between
the horizontal and vertical view it is possible that the engineer will not see the graph
anymore. Therefore, a button for resetting the position and zoom level was added to the
layout configuration setting (see Figure 6.2).

As already mentioned in Chapter 4 commits are represented with filled nodes, collapsed
commit sections are shown with ellipses with the number of commits it holds and the
edges describe the parent-child relationships between commits. The graph does not
directly show the timeline of the commits, but rather the relationships between them.

58

6.3. Iteration 1: Setting up basic visualisation

Figure 6.3: Selecting the colour for the main project

This means that it is possible for a newer branch to be behind a branch with older
commits if it has more commits than the newer branch.

The graph also includes the branch references over their head commits which can be
seen in Figure 6.1. At first, the whole branch name was shown in the visualisation. The
problem with this was that this became confusing if more branches shared the same head.
The branch reference consists of the first three letters of the branch name sections split
by „/“. When hovering over a reference the whole branch name is shown in a tooltip.
Additionally, the branch history is highlighted. For this the edges are marked because
there are already different highlighting styles for the commit nodes. Both can also be
seen in Figure 6.1.

Colours are used in order to show the divergence between two repositories (F1). When
the user selects the parent or a fork of the base project, the commits of both repositories
are fetched, and the graph will be re-rendered. During this process, the parent or fork
will be cloned in a preconfigured projects folder in order to prevent unwanted changes in
the main project while checking for conflicts (see Section 6.4). The path to the projects
will be defined in the „.pupilrc“ configuration file of the Binocular project. All commits,
edges and branch references will then be coloured according to the repository they belong
to. There are three types of colours for project differentiations. The colour of branches,
edges and branch references is dependent if the data can only be found in the main
project, the chosen other project or if it exists in both projects. In the example (Figure
6.1) the colour orange belongs to the main project, blue to the chosen other repository
and green to commits, edges and branches that can be found in both projects. Basically,
the colour of the combined view shows the forking point of the repositories. As already
mentioned in Chapter 4 the user should be able to choose the preferred colours. In order
to change a specific colour, the software engineer just needs to click on the corresponding

59

6. Implementation

Figure 6.4: Detailed commit metadata

(a) Issue selection of GitHub

(b) Textual issue selection

coloured square on the right part of the configuration section and then select the colour
using the colour picker (Figure 6.3). The react-color6 library was used for this.

The visualisation also shows metadata of the commits (F11). When hovering over a
commit node its basic metadata is shown using a tooltip. This information includes the
sha of the commit, its author and the timestamp, its committer and the timestamp and
the shortened commit message. Such a tooltip can be seen in Figure 6.6. By double
clicking on the node more detailed information are loaded (see Figure 6.4). This includes
again the sha of the commit, the whole commit message in a shrinkable card and the
changes introduced with this commit.

Another feature implemented in this iteration is the commit highlighting of a specific
issue (F10). A participant of the semi-structured expert interviews stated (see Section

6https://casesandberg.github.io/react-color/

60

6.4. Iteration 2: Checking for Conflicts

Figure 6.6: Highlighted commits of a selected issue

5.2.9) that this feature would be more useful if not only commits from GitHub can be
selected. Therefore, the prototype includes two ways to select an issue. The first one is
that the user can select the issue of the base project ticketed on GitHub (Figure 6.5a).
The issue id will then be searched in all commit messages and the corresponding commits
are highlighted with a dot-dashed border around them. When the graph is compacted,
the number of found commits are shown in the label of the collapsed node as used for the
filters (see Section 6.6). This feature goes hand in hand with the other filters resulting
in a more restrictive filter result. The second option for the user is to provide a textual
representation of the issue selector (Figure 6.5b). With a click on the search button the
input is then again searched within the messages of all commits. Figure 6.6 shows a
textual issue search with the id „#20“. Actually, all commits of this history line should
be marked but for some commits the issue number was forgotten in the commit message.
Therefore, these commits will not be shown by the filter although they are also part of
the issue. Such a finding, the missing link between the commits and the issues, was also
documented in different studies ([3, 12]). Because this is a common problem, several
studies ([40, 47, 54, 55, 61, 62]) have looked at the recovery of missing issue-commit
links.

6.4 Iteration 2: Checking for Conflicts
Having set up the basic structure of the visualisation the next chosen feature to implement
was to show the code sections of the found conflicts (F8). To show these, some lower
ranked features are required, namely the merge checks (F4, F5), the rebase checks (F2,
F3) and the cherry pick checks (F6, F7). Because these features combined can be seen as
one larger feature of the visualisation, these were picked for an earlier iteration than the
highest rated feature.

All three types of conflict checks were implemented one after another, but the basic
algorithm was reused. In order to provide an accurate result whether the operations
can be successfully performed without creating a conflict or which conflict will occur,
each check will perform the actual Git operations. The result will then be presented to
the user. As already mentioned in Section 6.3 all needed repositories will be cloned in a

61

6. Implementation

Figure 6.7: Action tooltips shown when hovering over a branch reference

preconfigured folder to prevent potential side effects within the base project.

A difference between the previously created mock-ups and the actual implementation was
the starting event the engineer must do in order to trigger the check. In the mock-ups
the start was described with a drag and drop event of the commits or branch labels
onto another branch label. In the prototype the user first must select either a branch
or one to multiple commits. If commits are selected and the user clicks on a branch
reference, the software engineer triggers a cherry pick check. If a branch is selected there
are three possibilities. At first, the user can left click onto another branch which will
switch the current selection to this branch. The second possibility is to click on a different
branch with the shift key pressed. This will trigger a check for conflicts of a merge of
the previously selected branch into the currently clicked branch. When the ctrl key is
pressed instead of the shift key a check will be performed if the already selected branch
can be rebased onto the clicked branch without conflicts. It is not possible to have a
branch and commits selected simultaneously. The escape key can be used to reset the
current selection. The reason for this indifference was a better user experience. On the
one hand, the position of the graph can be changed by dragging it which may lead to not
intended repositioning or dragging branches and commits. On the other hand, the graph
can get large over time. If the user must drag and drop the elements for triggering the
checks it can be possible that the destination is not visible on the screen especially if
the graph is fully expanded. The user would have to zoom out to the point where the
destination points are all visible, which can make the graph elements extremely small,
or filters must be used to shrink the visible number of commits and branches. Using
the implemented approach, the software engineer can first choose a selection and then
position the graph easily to the destination point and trigger the desired check. To
further improve the user experience, a tooltip showing the action which is going to be
triggered will be shown when hovering over the branch reference in the visualisation. All
possible tooltips showing the current action can be seen in Figure 6.7.

After the trigger from the frontend, the backend will perform the chosen action and
report the result back to the frontend. The algorithm works as follows: If the branch that
should be checked out is a local one of the base project will be renamed to „root/[name]“.
This is necessary because in the next step the local base repository will be cloned again
into the configured projects folder, the origin remote will be changed to point to the

62

6.4. Iteration 2: Checking for Conflicts

Figure 6.8: Success message for the cherry pick check

GitHub URL of the repository and a new remote „root“ will be created that references
the local repository. This allows to get the latest version of the local remote branches by
pulling from all remotes. In order to quickly reset the done changes after the conflict
check the repository of the branch that should be checked out will be backed up by
creating a local copy. If the repository of the other branch is a different one, another
remote will be created if it does not already exist. A pull from all remotes will update
the references again. The next step is to check out the branch. For the merge and cherry
pick check that branch in which to merge or cherry pick is chosen and for the rebase the
branch that should be rebased onto another is checked out. Subsequently, the merge, the
rebase or the cherry picks are performed. When cherry picking, the commits will first be
sorted after their commit date ascending. If a conflict is found the conflicting data will
be retrieved. The result will then be returned to the frontend.

At first, the entire logic of this algorithm should be made with the nodegit7 library. In
the last iteration, the checks were refactored such that nodegit was only used to retrieve
the conflict data. Instead, scripts are used to prepare the repositories and to carry out
the checks. The reasons for this decision were problems with missing or inadequate
documentation and incomprehensible behaviour of the functions, especially after repeated
checks.

After the check the user would get information if a conflict occurred or not. If the action
could have been done successfully a small green banner will appear. Figure 6.8 shows an
example of successful cherry picks. If a conflict was detected a modal will be shown. In
Figure 6.9 an example for a detected merge conflict can be seen. On the top the modal
shows which action were checked and which branches were used. The modal also includes
a collapsible list of authors of the involved commits. Additionally, a list of the conflicting
files is visible. Each file is displayed as a shrinkable card which contains the filename
as card header and the content including the coloured conflicts as content. The conflict
visualisation for rebase conflicts and cherry pick conflicts are similar. The difference is
that not only the authors of the involved commits are shown but also their shas and
an information if the commits could have been successfully cherry picked or rebased, if
the commit caused the conflict or if the commit was not analysed due to the previously
found conflict. An example can be found in Figure 6.10.

7https://www.nodegit.org/

63

6. Implementation

Figure 6.9: Merge conflict information

Figure 6.10: Rebase conflict information

64

6.5. Iteration 3: Branch Selection and Dependency Highlighting

Figure 6.11: Examples of branch selections

6.5 Iteration 3: Branch Selection and Dependency
Highlighting

In this iteration the two remaining highest rated features were implemented. This included
the hiding and showing the commits of a selected branch (F13) and the highlighting of
commit dependencies (F9).

When the base project and a selected other project is loaded their branches will be
added to the corresponding checkbox list. Other than in the mock-ups the checkbox
labels contain the branch reference shown in the graph and additionally the full name
of the branch. At the beginning all branches are selected and therefore visible in the
visualisation. At this point the user can either deselect single branches or all branches
at once using the „all“ checkbox above the branches list. Deselected branches will be
removed from the visualisation. These branches can be inserted again by selecting the
corresponding checkbox. Multiple faded out branches can be faded in again by checking
the „all“ checkbox again. Examples of different branch selections are available in Figure
6.11. The recolouring of the node and edges was implemented the same way as described
in Chapter 4.

The second feature in this iteration was the highlighting of commit dependencies. When a
commit is selected, the commits on which the selected one directly depends are retrieved

65

6. Implementation

Figure 6.12: Highlighted commits the selected commit depends on

Figure 6.13: Example of filters with an expanded graph

from the backend and highlighted in the visualisation. Such highlighted commits can
be seen in Figure 6.12. The selected commit has a continuous black frame, and the
dependencies have a dashed black frame. For the calculation of the dependencies the
python library git-deps is used. The calculation will only be done for the first level. For
other levels the user must also select the dependencies. This means that the developer
can decide for himself or herself how far the dependencies should be displayed. This
restriction on mock-ups was implemented because the calculation of all levels in large
graphs would take too long. Additionally, developers may only be interested in this
information up to a certain level because earlier commits have already been integrated
into the branches of interest.

66

6.6. Iteration 4: Filtering

Figure 6.14: Set subtree filter

6.6 Iteration 4: Filtering
The filters were added in the fourth iteration of the prototype implementation (F14).
As mentioned in Chapter 4 the filters can be combined which will make the filter more
restrictive. Filters with the show only option set have a higher priority than filters that
should only highlight the commits. For example, a filter that should only show commits
after a specific date will stay faded out even if the commit would have been highlighted
because of another set filter. Figure 6.13 shows such a filter combination.

The prototype has five filters. The „after“ filter shows or highlights all commits that are
committed after a specific date. The „before“ filter works in a similar way but shows
or highlights commits committed before a specific date. The date can either be typed
in or can be selected via a datepicker. The react-datepicker8 library was used for the
datepicker. By combining both filters, commits can be filtered that were created within
a certain period. The subtree filter shows or highlights a specific commit including all
its children (see Figure 6.13). The filter is activated by inserting the sha of the selected
commit into the textbox. For this an additional feature was implemented. This feature
allows the developer to copy the sha of a commit via the context menu opened with a
right click on the node (Figure 6.14). Then the user can easily paste the sha into the
text field of the filter and does not have to type it in manually.

The author and committer filter will display commits of a specific author and committer.
The highlighting option will work the same way as for the other filters described above. But
the show only function of these two filters works differently. With the same functionality,

8https://reactdatepicker.com/

67

6. Implementation

Figure 6.15: Example of an author filter with the show only option set

it would make the history of the commits disappear. Therefore, an improvement was
added in the last implementation iteration. Now the show only option of these filters is
combined with the compact view functionality (see Section 6.7). This means that the
commits of certain authors and committers are treated like branching nodes and are not
clustered together with other nodes. All branching nodes that do not come from the
selected author or committer are treated the same way as normal nodes. Their colour
saturation is reduced. An example of this behaviour can be seen in Figure 6.15. Due to
this special treatment, there are further restrictions when expanding the entire graph
or parts of it. If the author or committer filter is set with the show only option, the
expanding feature of the entire graph and of single sections is disabled and the user will
see an error message when trying.

After adding the compact view feature to the prototype, a problem occurred with the
implemented filters. The filtering did not work for collapsed nodes and for a single
commit node between two branching nodes. The filtering logic had to be adapted in
the improvement iteration later on. Because collapsed nodes should provide minimal
information of the commits they hold, the number of commits that passes the set filter
options are shown within the node labels. Figure 6.16 shows a filter to get all commits
committed after the year 2019. This example shows that the compacted section of branch
„origin/feature/15“ has 13 of its 14 nodes were committed after the set date. When
collapsed nodes only have one number as a label, this means that all its commits meet
the requirements of the filter. If the filters will be set with the show only option, then
the collapsed sections are visible in the graph as long as at least one of its commits to
meet the filter criteria.

68

6.7. Iteration 5: Compacting the View

Figure 6.16: Example of filters with a compacted graph

6.7 Iteration 5: Compacting the View
In this iteration the last feature of the prioritised feature list, the compact view (F12),
was implemented. The integration of this feature at the end of the implementation phase
turned out to be a bit problematic because the basic data structure that was used for the
nodes to be displayed in a graph had to be changed. This resulted in destroying working
functionalities like the filtering as described at the end of the previous section.

As already seen in the mock-ups the compacted view of the graph clusters multiple
commits between branching nodes. In difference to the definition of branching nodes
in Chapter 4, not only commit nodes with multiple parents or children fall within this
definition, but also the heads of branches. This decision was made because the heads of
the branches also provide useful information, such as the last person who committed on
this branch and when the last commit was made. Additionally, the design of the clustered
node was changed a bit. To improve the readability, these nodes are not filled with the
chosen project colour. There is also a difference in expanding or compacting the entire
graph. These functionalities are made available by means of two buttons („Compact
all“ and „Expand all“) in the upper half of the configuration section. This variant is
more intuitive than the checkbox defined in the design phase. By default, the graph is
displayed completely compacted when loaded.

Not only the entire Graph can be expanded or collapsed but also single sections. To
compact the commits between branching nodes the user has to right click on any commit
between these branching nodes and choose the „Compact Section“ context menu item.
When the user chooses this option on a branching node itself, all its child path sections
will be collapsed. In order to expand a compacted section the developer again needs to

69

6. Implementation

right click on the specific clustered node and choose the context menu item „Expand“.
This will show all clustered commits of this section within the graph again as single
nodes.

70

CHAPTER 7
Scenario-based Expert Evaluation

This chapter addresses the evaluation of the conflict awareness idea, the chosen visualisa-
tion and the implemented prototype. This includes the planning phase of the evaluation,
the results and the threats to validity.

7.1 Plan
For answering the defined sub questions of RQ3 scenario-based expert evaluations were
conducted. Due to the COVID-19 pandemic, the scenario-based evaluations were carried
out with the experts via Zoom accompanied by two interviewers. The tool was started
on an interviewer’s computer. The participant was able to operate the prototype by
means of screen transmission and handover of the remote control. This also allowed the
attendee to switch between the visualisation, the questionnaire (appendix 9), the quick
start guide (appendix 9) and the screenshots for the first scenario.

The participants had to solve six scenarios with the implemented visualisation.

1. Scenario: Which forked project diverged at most from the base project?

2. Scenario: On which branch (project INSO-TUWien/Binocular) was feature #20
implemented?

3. Scenario: How many commits committed Maximilian Zenz in 2020 to the repository
INSO-TUWien/Binocular?

4. Scenario: Which commits must be cherry picked as well such that no conflict occurs
when cherry picking commit d249bb8ff7b5904a179006726181160f4bd2ef62 (project
INSO-TUWien/Binocular) into the branch origin/develop (project Meightem/Binoc-
ular)?

71

7. Scenario-based Expert Evaluation

5. Scenario: Who may be able to help solving the conflict when merging branch
origin/feature/branch-fork-visualization (project Meightem/Binocular) into branch
origin/master (project INSO-TUWien/Binocular)?

6. Scenario: A conflict occurs when rebasing branch origin/feature/5 (project INSO-
TUWien/Binocular) onto origin/feature/9 (project INSO-TUWien/Binocular).
Which commit introduced the conflict?

The evaluation sessions were accompanied by a questionnaire in order to keep a common
thread during the conversation. The questionnaire contained questions about the person,
their experiences in the development area and with VCSs, the descriptions of the scenarios
to be solved including follow-up questions and finally questions about the purposefulness
of the conflict awareness, the visualisation and the prototype.

During the pilot evaluation three main problems occurred. One problem was performance
issues of the Zoom session. It was hard for the user to navigate within the prototype
due to screen transfer time delays. Such navigations included scrolling and zooming.
The other problems were performance and usability issues of the tool itself. Because of
the prototypical style of the implemented visualisation, the loading times can be long.
These include for example for the conflict checks and the selection of a fork or parent.
Therefore, screenshots of the divergences between the base projects and its forks were
added to the first scenario. The attendee could then decide if he or she uses the provided
screenshots or the prototype itself for solving this scenario.

At the beginning of the evaluation session, the project was briefly presented, and the
meaning and purpose of this evaluation were explained. Afterwards, the participant was
able to have a look at the quick start guide (appendix 9) and became a short demonstration
of the prototype. The guide contained a brief description of the visualisation’s functionality
explained mostly with graphics and additionally a more detailed textual operation manual.

Because the usability of the tool was out of scope in the sessions, the interviewees
were informed about the usability issues and got help when they were stuck during the
execution of the scenarios. Various pieces of information could have been collected with
this approach. On the one hand, the participant was able to complete the scenario and
provide information about the meaningfulness of the scenario without being blocked by
the prototype. The lack of knowledge about how to use the tool should have influenced
the evaluation of the basic idea as little as possible. On the other hand, possibilities for
improvement of the prototype could have been shown by asking the participant about
their expectations.

7.2 Results
Like in the previous interviews, the participants were asked to provide information about
themselves and their experiences in the field. The participants’ demographics can be
found in Figure 7.1. Most developers had about 10 years of experiences with software

72

7.2. Results

25-34 35-44

1

2

3

4

age

nu
m

be
r

of
pa

rt
ic

ip
an

ts

male
female

Figure 7.1: Demographics of the participants

8 10 12 14 16 18 20 22 24 26 28 30

(a) Participants’ software engineering experience in years

8 10 12 14 16 18 20 22 24 26 28

(b) Participants’ experience with Version Control System

Figure 7.2: Experiences of the participants

engineering and with VCSs (Figure 7.2) and the VCSs Git and Subversions are most
common among them (Figure 7.3). Furthermore, none of the interviewees had a strong
preference for either merging or rebasing only (Figure 7.5).

7.2.1 Scenario 1: Finding out the most diverged Fork (F1)

In the first scenario the attendees had to find the fork which diverged at most from
the main project. Divergences between projects can provide information about possible
conflicts. The further projects diverge, the higher is the chance of conflicts to occur when
integrating back the changes into the other project. The colour-coded affiliation of the
commits in either one or both projects is intended to enable the user to identify potential
conflicting areas more easily.

73

7. Scenario-based Expert Evaluation

GitMercurial Subversion CVS PVCS RCVS TFS SourceSafe Patches

1

2

3

4

5

6

VCS

nu
m

be
r

of
pa

rt
ic

ip
an

ts

Figure 7.3: Version Control Systems used by the participants

Yes No

Do you know the principle of forking projects
in version control hosting systems like GitHub?

Have you forked a project in the past?

Do you know the principle of PRs in version
control hosting systems like GitHub?

Have you merged a PR in the past?

Figure 7.4: Forking and Pull Request experiences of the participants

1
Merging

2 3 4 5
Rebasing

Figure 7.5: Participants’ preferences between merging and rebasing

74

7.2. Results

1
not relevant at all

2 3 4 5
highly relevant

Figure 7.6: Participants’ rating of the purposefulness of scenario 1

Purposefulness of the Scenario

Most of the attendees rated the purposefulness of this scenario with a four or five and one
participant with a score of two (Figure 7.6). Participant 1 stated that he liked the fact
that the colours and the project structure is still visible when zooming out. This allows
to view big parts of large projects. He also noted that GitHub and GitLab also provide a
similar, but more rudimentary approach than the prototype. For participant 2 the feature
can also come in handy for open source projects. The view provides information on who
contributes to the project with what. Manually searching the forks is often considered
difficult and catastrophic by him. Participant 3 and 4 liked the intuitive representation
of the project structures. For participant 5 this scenario was not quite relevant. The
divergences between the projects do not play a major role for the conflict awareness for
him. On the contrary, participant 6 found this feature especially purposeful if the forks
diverge further apart.

Traditional Solutions to solve the Scenario

Figure 7.7 shows with which other tools the participants usually had solved the scenario.
Participant 1 normally uses the tool gitk1 to see differences between projects. The tool
allows him to see the graph of the repository, but not as clear as the prototype. For
him, the coloured affiliation marks and the possibility to construct a compacted view
(F12) help to understand the project structures in an easier and faster way. Participant
2 usually uses a more social approach to find out the divergences between projects. He
makes sure that the developers actively create a PR and analyses the changes manually.
But this approach is not always applicable. The solution is usually more promising in
large projects that are well established than in smaller projects. For small repositories
it is more often the case that software engineers fork the project, try out some code
changes, but throw away the work or leave it be without finishing it. The participant
noted that in these cases the maintainer of the main project can see the time of the last
commit, but he cannot really see if some useful changes were made. Participant 3 would
have used the command line, a graphical UI or the Integrated Development Environment
(IDE). Like this selection participant 5 also chooses the command line or a graphical
UI for solving such scenarios. Participant 4 would have used the GitLab interface and
participant 6 the preferred the IDE.

1https://git-scm.com/docs/gitk/

75

7. Scenario-based Expert Evaluation

Git with
command line

manual via PRs graphical UI
(e.g. GitLab, GitHub, gitk)

IDE

1

2

3

4

other approaches

nu
m

be
r

of
pa

rt
ic

ip
an

ts

Figure 7.7: Participants’ solutions to solve scenario 1

Preferred Way to solve the Scenario

Most attendees would prefer the tool over their traditional toolset. Participant 5 does not
have a preference because for him the divergence between forks with their parent does
not really provide the necessary information for conflict awareness. Participant 2 stated
that he would prefer the prototype if the tool can be automated such that, for example,
the tool actively makes a scan of the different divergences and provides this information.
Another possibility would be the integration in GitHub. Participant 3, participant 4 and
participant 6 stated that the graphical representation with the colours is helpful because
you get a quicker overview of the project structure than with the other tools.

Found Limitations

One found limitation during the sessions was the performance of the tool. The graph took
some time to be loaded and be visible for the user. Another finding was that it would be
more useful if the prototype can show the different divergences all at once for example
one after another. Currently, only one graph is visible, and the user has to remember it or
take a screenshot if the state should be compared with another graph. Participant 3 and
6 stated that it would also be interesting if the tool can compare local repositories and
not only forks or the parent. For participant 2 a local filter is missing in the prototype.
He would like to have a filter of elements in the project structure, like a specific package.
With this the software archaeology would be easier and a developer could see, for example,
in which commits the specific package was changed, which changes were made, and which
part of the package was already in the project since the initial commit and which parts

76

7.2. Results

1
not relevant at all

2 3 4 5
highly relevant

Figure 7.8: Participants’ rating of the purposefulness of scenario 2

were introduced later by a feature. Participant 5 noted that for him it would be better if
the layout of the main project would stay the same when changing the selected fork or
parent. This would improve the comparability of the divergences.

7.2.2 Scenario 2: Finding where a Feature was implemented (F10)
A graphical localisation of the commits based on their messages makes it possible to
determine whether, for example, features or bug fixes have already been integrated into
certain branches or projects. Large changes with many code adjustments and longer
implementation times can have a higher potential for conflicts than small code changes.
This information can help developers to better plan the upcoming integrations. Another
advantage of the graphical representation is that the search takes place across projects and
branches. This means that the developer does not have to check out multiple branches
first or clone forks when performing a manual search via the console.

Purposefulness of the Scenario

All of the participants rated the purposefulness of this scenario with 4 or 5 (Figure
7.8). Participant 3 stated that branch names sometimes are not named after the ticket
number of the bug or feature which will be fixed or implemented in this branch. If
that is the case, she finds it hard to find where the tickets are being processed. For
participant 5 this scenario is highly relevant because it is good to know where changes
were made, especially if the commits were created a longer time ago. Another use case
where the graphical localisation of commits can be important is in projects that work
release dependent. Sometimes the developer does not know or loses the overview when
features are reintegrated into a specific branch, or it is not known if the feature is already
integrated into a release branch or the main branch. Additionally, in this scenario the
user can check who implemented such a feature if questions about it occur.

Traditional Solutions to solve the Scenario

The participants have similar approaches to solve such a task (7.9). Nearly all attendees
stated to search commits of a specific feature or bug fix with the command line, especially
with the git log command. Another widely used tool is the graphical UIs provided by
GitHub, GitLab or gitk. For example, participant 1 usually only uses the issue linking
provided by GitLab to find the commits. Participants 3 and 4 also use the functionalities
provided by the IDE for such a task.

77

7. Scenario-based Expert Evaluation

Git with
command line

git log

graphical UI
(e.g. GitLab, GitHub, gitk)

IDE

1

2

3

4

5

other approaches

nu
m

be
r

of
pa

rt
ic

ip
an

ts

Figure 7.9: Participants’ solutions to solve scenario 2

Preferred Way to solve the Scenario

Although participant 1 rated the purposefulness of this scenario as high, he usually do
not often need to know what and where the commits of a specific issue are. If this
functionality is needed, the GitLab issue linking is sufficient for him. The preferred
solution for participant 2 depends on the use case. If the tool is already in use, he would
use the search in the prototype right away. Otherwise, the possibilities of the other
tools are his preference. Participant 3 would use the prototype additionally as help. If
the project has strict rules with the naming of the branches, such that the branches
must be named after the issue ticket number, then the preference will lie with the other
tools. Otherwise, the graphical search is preferred because of the easier and more visual
localisation of the commits she is looking for. Participant 4 prefers the prototype over
the usually used tools, because the visual approach is clearer for him and provides a
better understanding of the commit locations. This attendee also stated that he liked
the compact view (F12) because the overall structure of the projects becomes clearer
that way. For participant 5 the integration of the GitHub issue list was a plus point for
the conflict awareness visualisation in addition to the graphical clarity. Like participant
2, the preference of participant 6 is use case dependent.

Found Limitations

One common issue was the highlighting of the found commits. All participants needed
help in finding the selected commits. A better highlighting and an autofocus functionality

78

7.2. Results

1
not relevant at all

2 3 4 5
highly relevant

Figure 7.10: Participants’ rating of the purposefulness of scenario 3

would have helped solving this issue. Especially the highlighting of the clustered commits
was not noticeable for the developers. Participant 2 also suggested the possibility to jump
between commits of interest for example with a previous and next button. When the
filter was selected, the tool should first automatically focus on the first or last selected
commit in the history and then the user would be able to navigate through the commit
selection with the two buttons. For participant 3 it would have been helpful if the
clustered commits were automatically expanded if such a node contains a commit of
interest.

7.2.3 Scenario 3: Filtering the Project Structure (F14)
Like the scenarios 1 and 2 the visual filtering provides passive conflict awareness informa-
tion. Developers can easily determine which changes their colleagues or developers of
a fork or parent project are working on and where in the project structure these code
adjustments are located. This gives an overview of which project sections are currently
being worked on and by whom, and which developers are working on similar codes. With
this information potential conflicts can be identified early, and developers can be made
aware of them.

Purposefulness of the Scenario

All participants rated this scenario with a score of 4 out of 5 as purposeful (Figure 7.10).
Participant 2 stated that this information is particularly interesting in large projects to
get an overview what a person has done in the project. For participant 3 this scenario
can be useful when a project member leaves the project. If that iss the case the graphical
filter can help in getting information about where in the project structure this developer
made code changes and in identifying if knowledge exists that only this person knows
about. Participant 6 noted that he faces such scenario daily.

Traditional Solutions to solve the Scenario

For all participants Git commands play a major role in solving such scenarios (7.11).
Participant 1 additionally uses Gitinspector2 to filter the commits. The GitLab UI is
used by participant 3, 4 and 5 and the functionalities of the IDE are being used by
participant 3 and 6.

2https://github.com/ejwa/gitinspector

79

7. Scenario-based Expert Evaluation

Git with
command line

graphical UI
(e.g. GitLab, GitHub,

Gitinspector)

IDE

1

2

3

4

5

6

other approaches

nu
m

be
r

of
pa

rt
ic

ip
an

ts

Figure 7.11: Participants’ solutions to solve scenario 3

Preferred Way to solve the Scenario

Participants 1, 2, 3 and 6 would continue to use their usual methods to solve such
scenarios. For the search after the number of commits, the usual tools already provide
enough functionality, participant 1 stated. But if the scenario would cover the question on
where the filtered commits are in the history, then the prototype would be more helpful.
Participant 2 stated that he can get a sufficient overview with the git log command and
a word count and see how much code lines a person added or deleted. For participant 6
a tabular view of the commits provides enough information. Participant 5 would prefer
the prototype and participant 4 noted that for him the preference would be use case
dependent. For simple searches he would use the usual tools, but for searches with
multiple filter criteria the prototype would be preferred.

Found Limitations

As in scenario 2 the insufficient highlighting of the filtered commits and the missing
autofocus function were problematic. Like participant 2 in the second scenario, participant
1 suggested that the user should be able to traverse between the filtered commits. Another
noticed problem was that the attendees did not make a difference between a committer
and an author. Participant 2 noted that the distinction between committer and author
should not be made. Most developers do not differentiate between those two, although
from the technical point of view this distinction is important. During the interviews
similar findings were recorded. Almost every participant asked what the difference

80

7.2. Results

1
not relevant at all

2 3 4 5
highly relevant

Figure 7.12: Participants’ rating of the purposefulness of scenario 4

between a committer and an author was. For this reason, participant 2 would find it
better if the filter would be combined and finds all commits that have the selected user
as committer or author.

7.2.4 Scenario 4: Finding Commit Dependencies for a Cherry Pick
(F6, F7, F8, F9)

If commits are cherry picked conflicts can arise not only from changes made to the
selected commit, but also if previous changes, on which the commit to be cherry picked
logically depends, are not included in it. Scenario 4 of the evaluation deals with such a
case. The prototype shows direct and logical predecessor commits on which the commit
that should be cherry-picked is based on. This should help to make developers aware
that previous commits must be integrated first.

Purposefulness of the Scenario

Most of the participants rated the purposefulness of this scenario as highly relevant and
therefore with 5 of 5 points. Participant 2 and 3 rated this scenario as relevant (Figure
7.12). Participant 1 often must tackle such a scenario at releases. For participant 2 the
visualisation of depending commits can provide hints of missing commits in a cherry pick
but he would not trust the algorithm alone.

Traditional Solutions to solve the Scenario

There are two ways the participants usually take to find out necessary commits that
need to be cherry picked previously to the desired commit (Figure 7.13). First is the
manual analysis of the commit and its changes to find out possible dependencies to prior
commits. Second is the trial-and-error strategy. The participants try to cherry pick the
selected commit and if it results in a conflict the previous commits in the history are
analysed or also tried to be cherry picked.

Preferred Way to solve the Scenario

Most of the participants would use the prototype in the future to check the dependencies
of commits. But participant 1 and 6 also stated that writing actions should also be
allowed and not only readable actions. With this, the preference would also be the
conflict awareness tool. For participant 2 the tool must provide a diff of the commits that
he would use the prototype for such a scenario. Reason for this is that he checks each

81

7. Scenario-based Expert Evaluation

manually cherry pick
trial-and-error

manually check dependencies

1

2

3

4

5

other approaches

nu
m

be
r

of
pa

rt
ic

ip
an

ts

Figure 7.13: Participants’ solutions to solve scenario 4

changed code line before integrating the changes. Participant 4 stated that he prefers
the visualisation because this way is much faster than the manual analysis.

Found Limitations

Like in the previous two scenarios the highlighting of the necessary commits is too poor.
If the dependencies are far apart some needed commits for the cherry pick may be
overlooked. Therefore, participant 3 suggested to additionally show the number of the
dependencies. Multiple participants stated that they would like to not only check if the
cherry pick is possible but also to perform it within the tool if no conflict occurs. If
a conflict occurs it would be helpful when it can be resolved directly in the prototype.
Switching to another tool to carry out the activity being tested reduces the acceptance of
the prototype. The performance of the dependency check was also a noted issue. It would
be better if the dependencies of commits will be indexed and saved into the database
for a faster information retrieval when needed. Additionally, the usability should be
improved. The mark and click procedure to check a cherry pick is not intuitive. Another
problem is that the user does not get any information that the cherry pick is currently
checked for conflicts.

7.2.5 Scenario 5: Finding Developers who may help in solving a
Merge Conflict (F3, F4, F8)

Scenario 5 includes an active conflict awareness which shows additional metadata about a
conflicting merge. In this scenario the developer is actively advised that the cross-project

82

7.2. Results

1
not relevant at all

2 3 4 5
highly relevant

Figure 7.14: Participants’ rating of the purposefulness of scenario 5

merge of two branches would cause a merge conflict. In addition to the files that contain
a conflict, the authors who have worked on the two branches from the point in time of
the branching to the point of merging are also displayed. This provides the developer
with a more limited list of developers who can help in resolving the conflict.

Purposefulness of the Scenario

The ratings about this scenario are distributed over the scale (Figure 7.14). Participant
5 rated this scenario as highly relevant. For participant 1 and 5 the scenario has a score
of 4 and is seen as relevant. Participant 3 stated that the developer who merges the
changes usually knows who made these. Its rather seldom for him that someone merges
changes and does not know who was involved. Participant 3 rated the scenario as not
relevant and participant 6 rated it as not relevant at all.

Traditional Solutions to solve the Scenario

Most of the time the participants check the involved commits with the command line
or with the IDE to find out who to ask for help when getting stuck with a conflict to
resolve. As seen in Figure 7.15, 5 out of 6 the participants would use the command
line for such an analysis and three of the attendees would look, also additionally, at
the information provided by the IDE. Participant 1 usually first checks with the IDE
which files are conflicting. Afterwards, he uses the git blame command to get further
information. Participants 3 and 6 also make use of both variants. As for participant 2, 4
and 5 the command line is way to retrieve the needed information.

Preferred Way to solve the Scenario

For participant 1, 3 and 6 the usual way of solving such a scenario is preferred. Participant
2 does not have a strong preference. If he would use the prototype at that moment, he
would have used its functionality for the conflict information, but otherwise the manual
search of the authors is preferred. Participant 4 noted that he would prefer the prototype
if it would support writeable Git actions. In this case the developer does not have to
commit or stash the current local changes for the merge. For participant 5 the prototype
provides the information in a more structured way.

83

7. Scenario-based Expert Evaluation

manually going
through the commits

(command line)

checking conflicting
files over IDE

1

2

3

4

5

other approaches

nu
m

be
r

of
pa

rt
ic

ip
an

ts

Figure 7.15: Participants’ solutions to solve scenario 5

Found Limitations

As in scenario 4 some attendees commented that it would be helpful if not only readable
Git actions can be performed, but also writing actions. Also, the interaction to check if a
merge will result in a conflict is not intuitive enough for the participants and a loading
indicator is missing. Participant 4 and 5 noted that the usability may be improved if
the check can be started using drag and drop instead of a mouse and key combination.
Participant 3 whished for a more visual representation of the merge check. This way, the
visual representation does not have an advantage over the other possibilities to solve such
a scenario. Participant 4 also stated that a passive representation of the mergeability of
branches would be particularly helpful with an early conflict detection. In this case the
developers do not need to take an action themselves to check for conflicts. Additionally,
the integration of the tool into existing IDEs was requested. Another problem that was
found is the granularity of the author list the merge conflict information holds. The list
should only include authors of the conflict directly and not the authors of all commits
of the merge. With the current granularity, the list also includes authors that did not
contribute directly to the conflicting code sections.

7.2.6 Scenario 6: Finding the Commit that causes a Conflict in a
Rebase (F2, F3, F8)

As with scenario 5, scenario 6 also provides active conflict awareness information in
addition to further metadata. This scenario was about a rebase, which resulted in a

84

7.2. Results

1
not relevant at all

2 3 4 5
highly relevant

Figure 7.16: Participants’ rating of the purposefulness of scenario 6

conflict. The developers had to find out which of the commits caused the conflict.

Purposefulness of the Scenario

The distribution of the purposefulness of this scenario can be seen in Figure 7.16.
Participant 2 rated it as not relevant, because he does not see the benefit of this
information. When the developer wants to rebase a branch then he will just do it and the
rebase will stop at the conflict which has to be resolved before continuing. If afterwards
another conflict occurs, he still has to resolve it and so on. The only reason why he
may see this scenario as relevant in the field is that someone can quickly judge what is
rebaseable and what not. Participant 3 rated the purposefulness with a 3 and participant
1 and 5 with a 4. For participants 4 and 6 such scenarios are highly relevant.

Traditional Solutions to solve the Scenario

Similar to the other solving ways of the last scenario, the developers would perform the
rebase manually over the command line, the IDE or some graphical UIs (Figure 7.17).
The most preferred tool is the IDE, followed by the command line.

Preferred Way to solve the Scenario

Participants 4 and 5 prefer the prototype because the tool makes the information gathering
more easily with less clicks needed and because the author of the conflicting commit is
visible right away in case help is needed. The other participants prefer the usual way for
checking a rebase of conflicts and retrieving the conflict information. For participant 3
the current implementation is too text based, like in scenario 5. She would like to have a
stronger visual representation of the rebase and its conflict information. Participant 6
stated that the IDE provides a similar representation and with the prototype the user
still must trigger the conflict checks.

Found Limitations

The found limitations are like the limitations of the fourth and fifth scenario. Again, the
usability to carry out the conflict check needs improvement and a more passive approach
would be helpful. Also, the loading indicator for the rebase check and writable actions
are missing. Participant 3 would like to have a more visual representation of the check
and the processing of the information for this scenario as well. Participant 4 would have
expected more metadata of the commits. For example, the commit message may be

85

7. Scenario-based Expert Evaluation

try rebase
(command line)

try rebase (IDE) try rebase with
graphical UI

1

2

3

4

other approaches

nu
m

be
r

of
pa

rt
ic

ip
an

ts

Figure 7.17: Participants’ solutions to solve scenario 6

helpful to get the context of the commit such that other developers can be asked if the
author is not available at the moment. For Participant 6 an indication is missing if other
conflicts would occur when the current conflict is resolved.

7.2.7 Purposefulness
After finishing, the scenarios the participants were asked about their perceived purpose-
fulness of the idea, of the chosen visualisation and of the tool itself. (7.18). For the rating
of the purposefulness of the idea the participants were asked to not include the usability
issues into the evaluation. Solely the potential of the conflict awareness idea should be
rated. Based on the provided rating and the given feedback during the execution of the
scenarios, the participants see a lot of potential in this idea. Participant 1 and 2 rated
the idea as purposeful and the other participants as highly purposeful.

For the purposefulness of the chosen visualisation participant 1 and 2 provided a full
score. Participant 4, 5 and 6 assessed the chosen visualisation with a rating of 4 out of
5 and participant 3 with a 3. Participant 1, for example, stated that the fundamental
graph of the visualisation is known from Git and that he liked the compact view (F12).
The main pain points of the visualisation are the current highlighting and the usability
issues.

For the rating of the prototype the participants were asked to assess the functional scope
and not the current implementation with the already noted usability and performance
issues. The functional scope of the tool was evaluated as purposeful. Participant 5 and 6

86

7.3. Threats to Validity

1
not needed at all

2 3 4 5
highly purposeful

purposefulness of the idea of the
conflict awareness visualisation

purposefulness of the chosen
visualisation

purposefulness of the tool

Figure 7.18: Participants’ rating of the purposefulness of the idea, of the visualisation
and of the tool

provided a rating of 5 and the other participants a score of 4. The participants missed
the more passive view of the active conflict checks, an integration in existing IDEs and
an integration possibility into CIs pipelines.

7.3 Threats to Validity
This section describes the threats to validity of the scenario-based expert evaluations.

7.3.1 Number of Interview Participants

Six developers participated in the evaluation sessions. This number cannot provide a full
evaluation of the conflict awareness visualisation concept. The goal of the evaluation was
to provide an overview of the relevance of the idea of a conflict awareness visualization
not only at branch level, but also at fork level. Additionally, the prototype can act as a
base for improvements of the found limitations.

7.3.2 Performance and Usability Issues

The performance and usability issues may have a negative impact on the assessments of
the general idea and the visualisation itself. Because the usability and the performance
were not in scope of the evaluation sessions, the participants were made aware of the

87

7. Scenario-based Expert Evaluation

problems if they were already known. Additionally, the participants got help during the
tool interaction if needed.

7.3.3 Wording of the Scenarios and Questions
The wording of the scenarios and the post questions may be misleading for some partici-
pants. To counteract this, the attendees were able to ask questions and the misunder-
standing was cleared up if the interviewers noted such a misunderstanding.

7.3.4 Purposefulness of the chosen Scenarios
The overall purposefulness of the conflict awareness visualisation may be rated lower if
the chosen scenarios themselves were not relevant at all in the field. The participants had
to additionally rate the purposefulness of each single scenario to mitigate this threat.

88

CHAPTER 8
Findings

RQ1: What conflict awareness information needs exist in software projects
for developers? The findings of the literature research and the provided expert opinions
from the semi-structured expert interviews gave insight on existing conflict information
needs. One existing information need mentioned was better filtering possibilities in tools.
The participants of the interviews provided recommendations for additional filters for the
tool. The findings of the literature research suggest that a tool should provide as much
awareness information to the user as possible and ensure different ways to filter this infor-
mation such that all the various preferences of developers can be addressed. Additionally,
a better support for exploring the project’s history was labelled as a current information
need in this subject area. Examples for this were for example to mark commits of a
specific feature, a better version traceability of code snippets or of renamed or moved
files. Furthermore, conflict information should be delivered in an understandable way.
The findings also suggest that these information needs exist not only for multi-branch but
also for multi-project environments. Resolving conflicts in forks is often harder because
the projects may have diverged substantially.

RQ2: How do developers prioritise the envisioned features? Based on the find-
ings of the literature and tool research features of the prototype were proposed. During
the semi-structured expert interviews these suggestions were evaluated and prioritised.
The experts found all listed features useful. The top three rated proposed functionalities
of the prototype were showing commit dependencies, showing commits of specific issues
and showing the code sections of the conflict introduced by a merge, rebase or cherry
pick. The complete sorted list of the suggested prototype features can be found in Table
5.1.

RQ3a: How purposeful do developers rate the proposed conflict awareness
visualisation? The purpose of the idea of a conflict awareness visualisation for the

89

8. Findings

multi-branch and multi-project software development was rated high during the scenario-
based expert evaluations. The participants noted that there was a high probability that
they would use this type of visualisation in their everyday work once a certain market
maturity had been achieved. Some participants already suggested that such a visualisa-
tion can include additional active or passive conflict information or that an integration,
for example, in different IDEs and CI pipelines would increase the purposefulness. This
indicates an interest in such awareness information. Another finding was that such a
conflict awareness visualisation should provide the conflict information more passively
as currently implemented. The user should be able to see the states of integrability of
commits and branches of one or more projects without actively checking them one after
another.

RQ3b: How purposeful is the proposed visualisation of the awareness tool?
The chosen visualisation was generally seen as purposeful by the participants. But
they also noted that the usability and performance issues need to be fixed before such
visualisation is widely accepted. The biggest issues were the inadequate highlighting
of commits the user filtered for, the missing autofocus on points of interest and the
unintuitive checks for conflicts in cherry picks, merges and rebases. To improve the
usefulness of the divergence visibility between forks and their parent, the user should
be able to see different graphs at once such that he or she can compare the structures
without the need to switch between them. But not only the usability issues need to
be addressed, also the performance problems. For example, an indexing of the commit
dependencies can help in such matter.

RQ3c: How efficient is the tool compared to state-of-the-art methods? For
showing divergences of the project structures, the prototype was rated better than the
functionalities of the existing tools. The combined view of the project structures with
the different colours provides a quick overview of similarities and differences. In addition,
the compact view was well received by the participants, as it makes the general project
structure clearer. The prototype was also able to convince the developers in terms of the
representation of commit dependencies in comparison to the methods previously used.
In comparison, the respondents rated the presentation of metadata of a merge or rebase
as neutral. Above all, the possibility to also carry out writing actions and a more passive
display of conflicts would encourage the participants to use the prototype rather than
the tools previously used.

90

CHAPTER 9
Conclusion

This thesis examined the information needs of developers for conflict awareness in multi-
branch and multi-project software development to prevent or minimise the costs and time
to resolve merge conflicts and to make merges, rebases and cherry picks more efficient.
A literature research and semi-structured expert interviews were conducted in order to
get insight of the current information needs of the software engineers. Existing conflict
awareness tools provide conflict information for multi-branch environments but for the
multi-project software development, although the fork-based development is becoming
increasingly popular, especially in the GitHub community.

The results of the literature research were used to create a conceptual design of a possible
awareness visualisation. The mock-ups were then used for the semi-structured interviews
as possible examples. During the interviews the participants were asked to rate the
envisioned features. The received feedback showed an information deficit in the area.

In order to be able to evaluate the purposefulness of the envisioned idea of the conflict
awareness visualisation, a prototype was developed. The prototype visualises the project
structure of the main project, its forks and its parent and provides an overview of
divergences between them. Additionally, the visualisation provides a compacted view of
the project structures, as well as different filters and conflict checks.

Afterwards, scenario-based expert interviews were conducted. Six software engineers
were asked to solve predefined scenarios with the prototype. The purposefulness of the
idea, the chosen visualisation and the current features of the prototype were recognised
by the interviewees. The participants suggested various improvement possibilities and
feature extensions for the prototype which can be used as a base for further research.

One of them is to improve the performance of the prototype. The loading times for the
initial graph to show up and for the graph to be constructed when selecting another
project in the view are quite long and can be improved. Also, performance issues with
the commit dependency calculation were identified. Indexing the dependencies in the

91

9. Conclusion

start-up phase can help with this issue. When the information is needed, it only needs to
be retrieved from the database.

Additionally, usability issues were found. Filtered commits and clustered nodes need
to be highlighted in a more prominent way. An additional help would be an autofocus
functionality such that the tool automatically focuses on some points of interest like the
first filtered commit. A possibility for the user to travel back and forth between filtered
nodes was seen as additional improvement for this issue. For the commit dependencies,
not only the highlighting should be improved, but also the number of how many commits
the selected one depends on should be shown. This helps to prevent marked commits to
be overlooked, especially if they are far apart. It was also desired that the tool provides
an option that clustered node automatically expand if they hold filtered commits in
them. Most of the developers also had problems with the difference between a committer
and an author. For this reason, the explicit distinction between those filters should be
removed. When interacting with the visualisation, for example by expanding clustered
commits or loading the view with a fork of the main project, the graph should be more
stable. Currently, the user gets lost on the last focus point he set. The colour-based
divergence between the main project and one of its forks or its parent was rated as good,
but in order to compare different projects the user has to manually save the view with a
screenshot for example or the divergences have to be remembered. A possibility to show
more projects at once will improve the opportunities to compare the project structures.
An often-requested improvement was to allow also writing actions within the tool and
not only read actions. Currently, the user must switch tools and can use the prototype
only for the purpose of conflict checking. The possibility to perform cherry picks, merges
and rebases and to solve conflicts when they are detected right away would improve the
general usability and acceptance. During the checks the missing loading indications were
misleading to the users. In this state they did not know if the tool is currently working
or not. Additionally, the checks should be made available with a more intuitive approach
like a drag and drop feature. Another noted issue was the granularity of the author list
which is provided when a merge conflict is detected. This list contains too many authors
and should only include those that change the conflicting code sections.

The functionality of the prototype should be adapted so that the merge and rebase checks
are more passive. The participants wished for a passive overview which branches are still
integrable and which not. Without the need of an active action to see this information, a
greater benefit can be drawn from it. It would be more likely to detect conflicts earlier
when they are still small to resolve. The integration in existing IDEs and possibilities
to integrate automate the visualisations and to integrate the tool into a CI pipeline
was a frequently requested feature. Furthermore, the conflict awareness visualisation
is currently only compatible with GitHub projects. But many participants during the
evaluation session stated that their current projects are hosted in GitLab. Therefore, the
prototype should be extended such that also GitLab projects are supported. Additionally,
not only forks or parents should be supported. The tool should also be able to show the
divergences between local repositories.

92

List of Figures

2.1 Version control types . 6
2.2 Unstructured Merge Conflict Example [2] 9
2.3 Merge Conflict Life Cycle Model [46] . 12

3.1 Conflict detection example of Palantír [53] 20
3.2 User Interface of WeCode [35] . 21
3.3 User Interface of FastDash [8] . 22
3.4 Potential conflict provided by awareness tool of [42] 22
3.5 User Interface of Crystal [14] . 23
3.6 Relationships of Crystal [14] . 23
3.7 Web overview of CloudStudio [48] . 24
3.8 Collabode showing failed test cases [32] 25
3.9 Ranked list of developers provided by TIPMerge [22] 26
3.10 Developer’s motivation for examining the software history (%) [19] 27

4.1 Mock-up: base view of the visualisation (F1) 30
4.2 Mock-up: change the colour of a repository (F1) 31
4.3 Mock-up: click on commit showing metadata (F9, F11) 32
4.4 Mock-up: show changes of a commit (F11) 32
4.5 Mock-up: branch highlighting . 33
4.6 Mock-up: deselect branches of a repository (F13) 34
4.7 Mock-up: compacted view (F12) . 35
4.8 Mock-up: compacted craph with one expanded section (F12) 35
4.9 Mock-up: expanded graph with one collapsed section (F12) 36
4.10 Mock-up: check merge - no conflict found (F4, F5) 37
4.11 Mock-up: check merge - conflict found (F4, F5, F8) 37
4.12 Mock-up: check rebase - conflict found (F2, F3, F8) 38
4.13 Mock-up: check cherry picks of conflicts (F6, F7) 39
4.14 Mock-up: check cherry picks - conflict found (F6, F7, F8) 39
4.15 Mock-up: highlight commits of a specific issue (F10) 41
4.16 Mock-up: passive view for cherry pickability, mergeability and rebaseability 41

5.1 Demographics of the participants . 44
5.2 Experiences of the participants . 45

93

5.3 Version Control Systems used by the participants 45
5.4 Forking and Pull Request experiences of the participants 46
5.5 Participants’ preferences between merging and rebasing 46
5.6 Importance for showing the divergence between forks 46
5.7 Importance for showing the rebaseability 47
5.8 Importance for showing the mergeability 48
5.9 Importance for showing the cherry pickability 48
5.10 Importance of showing the code sections of conflicts 49
5.11 Importance of showing dependent commits 49
5.12 Importance of showing commits of a selected issue 50
5.13 Importance of showing the metadata of a commit 50
5.14 Importance of making the visualisation compact 51
5.15 Importance of hiding commits of selected branches 51
5.16 Importance of providing various filter options 52

6.1 Base view of the new visualisation with vertical layout (earliest to latest) 58
6.2 Possible layout selections . 58
6.3 Selecting the colour for the main project 59
6.4 Detailed commit metadata . 60
6.6 Highlighted commits of a selected issue . 61
6.7 Action tooltips shown when hovering over a branch reference 62
6.8 Success message for the cherry pick check 63
6.9 Merge conflict information . 64
6.10 Rebase conflict information . 64
6.11 Examples of branch selections . 65
6.12 Highlighted commits the selected commit depends on 66
6.13 Example of filters with an expanded graph 66
6.14 Set subtree filter . 67
6.15 Example of an author filter with the show only option set 68
6.16 Example of filters with a compacted graph 69

7.1 Demographics of the participants . 73
7.2 Experiences of the participants . 73
7.3 Version Control Systems used by the participants 74
7.4 Forking and Pull Request experiences of the participants 74
7.5 Participants’ preferences between merging and rebasing 74
7.6 Participants’ rating of the purposefulness of scenario 1 75
7.7 Participants’ solutions to solve scenario 1 76
7.8 Participants’ rating of the purposefulness of scenario 2 77
7.9 Participants’ solutions to solve scenario 2 78
7.10 Participants’ rating of the purposefulness of scenario 3 79
7.11 Participants’ solutions to solve scenario 3 80
7.12 Participants’ rating of the purposefulness of scenario 4 81
7.13 Participants’ solutions to solve scenario 4 82

94

7.14 Participants’ rating of the purposefulness of scenario 5 83
7.15 Participants’ solutions to solve scenario 5 84
7.16 Participants’ rating of the purposefulness of scenario 6 85
7.17 Participants’ solutions to solve scenario 6 86
7.18 Participants’ rating of the purposefulness of the idea, of the visualisation and

of the tool . 87

95

List of Tables

3.1 Developer’s tool desires [19] . 27

4.1 Proposed features of the prototype . 29

5.1 Proposed features sorted after the importance rating 53

97

Acronyms

AST Abstract Syntax Tree. 11, 21

CI Continuous Integration. 14, 57, 89, 92, 94

CI/CD Continuous Integration/Continuous Delivery. 20

CVCS Centralised Version Control System. 7, 9

DVCS Distributed Version Control System. 7, 9

IDE Integrated Development Environment. 77–82, 85–89, 92, 94

PR Pull Request. 10, 17, 18, 47, 48, 76–78, 96

UI User Interface. 22–25, 77–82, 87, 88, 95

UML Unified Modeling Language. 21

VCS Version Control System. xiii, 1, 7, 9, 14, 15, 46, 47, 57, 74–76, 96

99

Bibliography

[1] Paola Accioly et al. „Analyzing conflict predictors in open-source Java projects“.
In: Proceedings - International Conference on Software Engineering. Vol. 11. ACM,
2018, pp. 576–586. isbn: 9781450357166. doi: 10.1145/3196398.3196437.
url: https://doi.org/10.1145/3196398.3196437.

[2] Sven Apel et al. „Semistructured merge: Rethinking merge in revision control
systems“. In: SIGSOFT/FSE 2011 - Proceedings of the 19th ACM SIGSOFT
Symposium on Foundations of Software Engineering. 2011, pp. 190–200. isbn:
9781450304436. doi: 10.1145/2025113.2025141.

[3] Adrian Bachmann and Abraham Bernstein. „Software process data quality and
characteristics - A historical view on open and closed source projects“. In: Interna-
tional Workshop on Principles of Software Evolution (IWPSE). New York, New
York, USA: ACM Press, 2009, pp. 119–128. isbn: 9781605586786. doi: 10.1145/
1595808.1595830. url: http://www.eclipse.org/.

[4] Brian Berliner. „CVS II : Parallelizing Software Development“. In: Proceedings
of the Winter 1990 USENIX Conference (1990), pp. 341–352. url: http://
www.tiffe.de/Robotron/PDP-VAX/rtVAX300/NetBSD6.0/usr/src/
external/gpl2/xcvs/dist/doc/cvs-paper.pdf.

[5] Nic Bertino. „Modern Version Control: Creating an efficient development ecosystem“.
In: SIGUCCS’12 - ACM Proceedings of the SIGUCCS Annual Conference (2012),
pp. 219–222. doi: 10.1145/2382456.2382510.

[6] Dane Bertram et al. „Communication, collaboration, and bugs: The social nature of
issue tracking in small, collocated teams“. In: Proceedings of the ACM Conference
on Computer Supported Cooperative Work, CSCW (2010), pp. 291–300. doi: 10.
1145/1718918.1718972.

[7] Avijit Bhattacharjee et al. „An Exploratory Study to Find Motives Behind Cross-
platform Forks from Software Heritage Dataset“. In: Proceedings of the 17th Inter-
national Conference on Mining Software Repositories. ACM, 2020, pp. 11–15. isbn:
9781450375177. doi: 10.1145/3379597.3387512. arXiv: 2003.07970. url:
https://doi.org/10.1145/3379597.3387512.

101

https://doi.org/10.1145/3196398.3196437
https://doi.org/10.1145/3196398.3196437
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/1595808.1595830
https://doi.org/10.1145/1595808.1595830
http://www.eclipse.org/
http://www.tiffe.de/Robotron/PDP-VAX/rtVAX300/NetBSD6.0/usr/src/external/gpl2/xcvs/dist/doc/cvs-paper.pdf
http://www.tiffe.de/Robotron/PDP-VAX/rtVAX300/NetBSD6.0/usr/src/external/gpl2/xcvs/dist/doc/cvs-paper.pdf
http://www.tiffe.de/Robotron/PDP-VAX/rtVAX300/NetBSD6.0/usr/src/external/gpl2/xcvs/dist/doc/cvs-paper.pdf
https://doi.org/10.1145/2382456.2382510
https://doi.org/10.1145/1718918.1718972
https://doi.org/10.1145/1718918.1718972
https://doi.org/10.1145/3379597.3387512
https://arxiv.org/abs/2003.07970
https://doi.org/10.1145/3379597.3387512

[8] Jacob T. Biehl et al. „FASTDash: A visual dashboard for fostering awareness
in software teams“. In: Conference on Human Factors in Computing Systems -
Proceedings (2007), pp. 1313–1322. doi: 10.1145/1240624.1240823.

[9] Tegawende F. Bissyande et al. „Got issues? Who cares about it? A large scale
investigation of issue trackers from GitHub“. In: 2013 IEEE 24th International
Symposium on Software Reliability Engineering, ISSRE 2013 (2013), pp. 188–197.
doi: 10.1109/ISSRE.2013.6698918.

[10] Leo Breiman. „Bagging predictors“. In: Machine learning 24.2 (1996), pp. 123–140.
[11] Leo Breiman. „Random Forests“. In: Machine learning 45.1 (2001), pp. 5–45.
[12] Caius Brindescu et al. „How do centralized and distributed version control systems

impact software changes?“ In: Proceedings - International Conference on Software
Engineering. CONFCODENUMBER. 2014, pp. 322–333. isbn: 9781450327565.
doi: 10.1145/2568225.2568322. url: http://dx.doi.org/10.1145/
2568225.2568322.

[13] Caius Brindescu et al. „Planning for untangling: predicting the difficulty of merge
conflicts“. In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. Vol. 11. 20. ACM, 2020, pp. 801–811. isbn: 9781450371216.
doi: 10.1145/3377811.3380344. url: https://doi.org/10.1145/
3377811.3380344.

[14] Yuriy Brun et al. „Crystal: Precise and unobtrusive conflict warnings“. In: SIG-
SOFT/FSE 2011 - Proceedings of the 19th ACM SIGSOFT Symposium on Foun-
dations of Software Engineering (2011), pp. 444–447. doi: 10.1145/2025113.
2025187.

[15] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. „Evaluating and improving
semistructured merge“. In: Proceedings of the ACM on Programming Languages
1.OOPSLA (2017), pp. 1–27. issn: 2475-1421. doi: 10.1145/3133883. url:
https://doi.org/10.1145/3133883.

[16] Guilherme Cavalcanti et al. „The impact of structure on software merging: Semistruc-
tured versus structured merge“. In: Proceedings - 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2019. 2019, pp. 1002–
1013. isbn: 9781728125084. doi: 10.1109/ASE.2019.00097. url: https:
//git.io/fjneH.

[17] Per. Cederqvist. Version management with CVS : for CVS 1.11. 2002, p. 204. isbn:
0954161718.

[18] Scott Chacon and Ben Straub. Pro Git. Vol. 2. Springer Nature, 2014, p. 441. url:
https://git-scm.com/book/en/v2.

[19] M Codoban et al. „Software history under the lens: A study on why and how
developers examine it“. In: 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 2015, pp. 1–10. doi: 10.1109/ICSM.2015.
7332446.

102

https://doi.org/10.1145/1240624.1240823
https://doi.org/10.1109/ISSRE.2013.6698918
https://doi.org/10.1145/2568225.2568322
http://dx.doi.org/10.1145/2568225.2568322
http://dx.doi.org/10.1145/2568225.2568322
https://doi.org/10.1145/3377811.3380344
https://doi.org/10.1145/3377811.3380344
https://doi.org/10.1145/3377811.3380344
https://doi.org/10.1145/2025113.2025187
https://doi.org/10.1145/2025113.2025187
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3133883
https://doi.org/10.1109/ASE.2019.00097
https://git.io/fjneH
https://git.io/fjneH
https://git-scm.com/book/en/v2
https://doi.org/10.1109/ICSM.2015.7332446
https://doi.org/10.1109/ICSM.2015.7332446

[20] William W Cohen. „Fast Effective Rule Induction“. In: Machine Learning Proceed-
ings 1995. 1995, pp. 115–123. doi: 10.1016/b978-1-55860-377-6.50023-2.

[21] Kattiana Constantino et al. „Understanding collaborative software development“.
In: Proceedings of the 15th International Conference on Global Software Engineering.
ACM, 2020, pp. 55–65. isbn: 9781450370936. doi: 10.1145/3372787.3390442.
url: https://doi.org/10.1145/3372787.3390442.

[22] Catarina Costa et al. „TIPMerge: Recommending developers for merging branches“.
In: Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering. Vol. 13-18-Nove. 2016, pp. 998–1002. isbn: 9781450342186. doi: 10.
1145/2950290.2983936. url: http://dx.doi.org/10.1145/2950290.
2983936.

[23] Isabella A Da Silva et al. „Lighthouse: Coordination through emerging design“. In:
Proceedings of the 2006 OOPSLA Workshop on Eclipse Technology eXchange, ETX
2006. 2006, pp. 11–15. isbn: 1595936211. doi: 10.1145/1188835.1188838.

[24] Brian De Alwis and Jonathan Sillito. „Why are software projects moving from
centralized to decentralized version control systems?“ In: Proceedings of the 2009
ICSE Workshop on Cooperative and Human Aspects on Software Engineering,
CHASE 2009. 2009, pp. 36–39. isbn: 9781424437122. doi: 10.1109/CHASE.
2009.5071408. url: www.selenic.com/mercurial/;.

[25] Santiago Perez De Rosso and Daniel Jackson. „Purposes, concepts, misfits, and
a redesign of git“. In: ACM SIGPLAN Notices 51.10 (2016), pp. 292–310. issn:
15232867. doi: 10.1145/2983990.2984018. url: http://dx.doi.org/10.
1145/2983990.2984018.

[26] Anh Nguyen Duc et al. „Forking and coordination in multi-platform development:
A case study“. In: International Symposium on Empirical Software Engineering and
Measurement. 2014. isbn: 9781450327749. doi: 10.1145/2652524.2652546.
url: http://dx.doi.org/10.1145/2652524.2652546.

[27] H. Christian Estler et al. „Awareness and merge conflicts in distributed software
development“. In: Proceedings - 2014 IEEE 9th International Conference on Global
Software Engineering, ICGSE 2014 (2014), pp. 26–35. doi: 10.1109/ICGSE.
2014.17.

[28] Jonas Gamalielsson and Björn Lundell. „Long-term sustainability of open source
software communities beyond a fork: A case study of LibreOffice“. In: IFIP Advances
in Information and Communication Technology 378 AICT (2012), pp. 29–47. issn:
18684238. doi: 10.1007/978-3-642-33442-9_3.

[29] Mehmet Gençer and Bülent Özel. „Forking the commons: Developmental tensions
and evolutionary patterns in open source software“. In: IFIP Advances in Informa-
tion and Communication Technology 378 AICT (2012), pp. 310–315. issn: 18684238.
doi: 10.1007/978-3-642-33442-9_27.

103

https://doi.org/10.1016/b978-1-55860-377-6.50023-2
https://doi.org/10.1145/3372787.3390442
https://doi.org/10.1145/3372787.3390442
https://doi.org/10.1145/2950290.2983936
https://doi.org/10.1145/2950290.2983936
http://dx.doi.org/10.1145/2950290.2983936
http://dx.doi.org/10.1145/2950290.2983936
https://doi.org/10.1145/1188835.1188838
https://doi.org/10.1109/CHASE.2009.5071408
https://doi.org/10.1109/CHASE.2009.5071408
www.selenic.com/mercurial/;
https://doi.org/10.1145/2983990.2984018
http://dx.doi.org/10.1145/2983990.2984018
http://dx.doi.org/10.1145/2983990.2984018
https://doi.org/10.1145/2652524.2652546
http://dx.doi.org/10.1145/2652524.2652546
https://doi.org/10.1109/ICGSE.2014.17
https://doi.org/10.1109/ICGSE.2014.17
https://doi.org/10.1007/978-3-642-33442-9_3
https://doi.org/10.1007/978-3-642-33442-9_27

[30] Gleiph Ghiotto et al. „On the Nature of Merge Conflicts: A Study of 2,731 Open
Source Java Projects Hosted by GitHub“. In: IEEE Transactions on Software
Engineering 46.8 (2020), pp. 892–915. issn: 19393520. doi: 10.1109/TSE.2018.
2871083.

[32] Max Goldman, Greg Little, and Robert C Miller. „Collabode: Collaborative coding
in the browser“. In: Proceedings - International Conference on Software Engineering.
2011, pp. 65–68. isbn: 9781450305761. doi: 10.1145/1984642.1984658. url:
http://dx.doi.org/10.1145/1984642.1984658http://hdl.handle.
net/1721.1/79662http://creativecommons.org/licenses/by-nc-
sa/3.0/.

[33] Georgios Gousios, Martin Pinzger, and Arie Van Deursen. „An exploratory study
of the pull-based software development model“. In: Proceedings - International
Conference on Software Engineering. 1. 2014, pp. 345–355. isbn: 9781450327565.
doi: 10.1145/2568225.2568260. url: http://dx.doi.org/10.1145/
2568225.2568260.

[34] Johann Grabner et al. „Combining and Visualizing Time-Oriented Data from the
Software Engineering Toolset“. In: Proceedings - 6th IEEE Working Conference
on Software Visualization, VISSOFT 2018. 2018, pp. 76–86. isbn: 9781538682920.
doi: 10.1109/VISSOFT.2018.00016.

[35] Mário Luís Guimarães and António Rito Silva. „Improving early detection of
software merge conflicts“. In: Proceedings - International Conference on Software
Engineering (2012), pp. 342–352. issn: 02705257. doi: 10.1109/ICSE.2012.
6227180.

[36] Lile Hattori and Michele Lanza. „Syde: A tool for collaborative software devel-
opment“. In: Proceedings - International Conference on Software Engineering 2
(2010), pp. 235–238. issn: 02705257. doi: 10.1145/1810295.1810339.

[37] Yuan Huang et al. „Mining Version Control System for Automatically Generating
Commit Comment“. In: International Symposium on Empirical Software Engineer-
ing and Measurement 2017-November (2017), pp. 414–423. issn: 19493789. doi:
10.1109/ESEM.2017.56.

[38] Jing Jiang et al. „Why and how developers fork what from whom in GitHub“.
In: Empirical Software Engineering 22.1 (2017), pp. 547–578. issn: 15737616. doi:
10.1007/s10664-016-9436-6.

[39] Eirini Kalliamvakou et al. „An in-depth study of the promises and perils of mining
GitHub“. In: Empirical Software Engineering 21.5 (2016), pp. 2035–2071. issn:
15737616. doi: 10.1007/s10664-015-9393-5. url: https://github.
com/features.

[40] Tien Duy B. Le et al. „RCLinker: Automated Linking of Issue Reports and Commits
Leveraging Rich Contextual Information“. In: IEEE International Conference on
Program Comprehension 2015-Augus (2015), pp. 36–47. doi: 10.1109/ICPC.
2015.13.

104

https://doi.org/10.1109/TSE.2018.2871083
https://doi.org/10.1109/TSE.2018.2871083
https://doi.org/10.1145/1984642.1984658
http://dx.doi.org/10.1145/1984642.1984658http://hdl.handle.net/1721.1/79662http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.1145/1984642.1984658http://hdl.handle.net/1721.1/79662http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.1145/1984642.1984658http://hdl.handle.net/1721.1/79662http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.1145/2568225.2568260
http://dx.doi.org/10.1145/2568225.2568260
http://dx.doi.org/10.1145/2568225.2568260
https://doi.org/10.1109/VISSOFT.2018.00016
https://doi.org/10.1109/ICSE.2012.6227180
https://doi.org/10.1109/ICSE.2012.6227180
https://doi.org/10.1145/1810295.1810339
https://doi.org/10.1109/ESEM.2017.56
https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1007/s10664-015-9393-5
https://github.com/features
https://github.com/features
https://doi.org/10.1109/ICPC.2015.13
https://doi.org/10.1109/ICPC.2015.13

[41] Olaf Leßenich et al. „Indicators for merge conflicts in the wild: survey and empir-
ical study“. In: Automated Software Engineering 25.2 (2018), pp. 279–313. issn:
15737535. doi: 10.1007/s10515-017-0227-0.

[42] Stanislav Levin and Amiram Yehudai. „Alleviating Merge Conflicts with Fine-
grained Visual Awareness“. In: (2015). arXiv: 1508.01872. url: http://
arxiv.org/abs/1508.01872.

[43] Wardah Mahmood et al. „Causes of merge conflicts: A case study of elasticsearch“.
In: ACM International Conference Proceeding Series (2020). doi: 10.1145/
3377024.3377047.

[44] Nora McDonald and Sean Goggins. „Performance and Participation in Open Source
Software on GitHub“. In: Conference on Human Factors in Computing Systems -
Proceedings 2013-April (2013), pp. 139–144. doi: 10.1145/2468356.2468382.

[45] Shane McKee et al. „Software practitioner perspectives on merge conflicts and
resolutions“. In: Proceedings - 2017 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2017 (2017), pp. 467–478. doi: 10.1109/
ICSME.2017.53.

[46] Nicholas Nelson et al. The life-cycle of merge conflicts: processes, barriers, and
strategies. Vol. 24. 5. Empirical Software Engineering, 2019, pp. 2863–2906. isbn:
1066401896. doi: 10.1007/s10664-018-9674-x.

[47] Anh Tuan Nguyen et al. „Multi-layered approach for recovering links between
bug reports and fixes“. In: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE 2012. New York, New
York, USA: ACM Press, 2012. isbn: 9781450316149. doi: 10.1145/2393596.
2393671. url: http://www.prismaindustriale.com.

[48] Martin Nordio et al. „Collaborative Software Development on the Web“. In: (2011).
arXiv: 1105.0768. url: http://arxiv.org/abs/1105.0768.

[49] Linus Nyman et al. „Perspectives on code forking and sustainability in open source
software“. In: IFIP Advances in Information and Communication Technology 378
AICT (2012), pp. 274–279. issn: 18684238. doi: 10.1007/978-3-642-33442-
9_21.

[50] Moein Owhadi-Kareshk, Sarah Nadi, and Julia Rubin. „Predicting Merge Conflicts
in Collaborative Software Development“. In: International Symposium on Empirical
Software Engineering and Measurement 2019-Septe (2019). issn: 19493789. doi:
10.1109/ESEM.2019.8870173. arXiv: 1907.06274.

[51] Antoine Pietri, Guillaume Rousseau, and Stefano Zacchiroli. „Forking Without
Clicking“. In: Proceedings of the 17th International Conference on Mining Software
Repositories. Vol. 11. 2020. ACM, 2020, pp. 277–287. isbn: 9781450375177. doi:
10.1145/3379597.3387450. url: https://doi.org/10.1145/3379597.
3387450.

105

https://doi.org/10.1007/s10515-017-0227-0
https://arxiv.org/abs/1508.01872
http://arxiv.org/abs/1508.01872
http://arxiv.org/abs/1508.01872
https://doi.org/10.1145/3377024.3377047
https://doi.org/10.1145/3377024.3377047
https://doi.org/10.1145/2468356.2468382
https://doi.org/10.1109/ICSME.2017.53
https://doi.org/10.1109/ICSME.2017.53
https://doi.org/10.1007/s10664-018-9674-x
https://doi.org/10.1145/2393596.2393671
https://doi.org/10.1145/2393596.2393671
http://www.prismaindustriale.com
https://arxiv.org/abs/1105.0768
http://arxiv.org/abs/1105.0768
https://doi.org/10.1007/978-3-642-33442-9_21
https://doi.org/10.1007/978-3-642-33442-9_21
https://doi.org/10.1109/ESEM.2019.8870173
https://arxiv.org/abs/1907.06274
https://doi.org/10.1145/3379597.3387450
https://doi.org/10.1145/3379597.3387450
https://doi.org/10.1145/3379597.3387450

[52] Gregorio Robles and Jesús M. González-Barahona. „A comprehensive study of
software forks: Dates, reasons and outcomes“. In: IFIP Advances in Information
and Communication Technology 378 AICT (2012), pp. 1–14. issn: 18684238. doi:
10.1007/978-3-642-33442-9_1.

[53] Anita Sarma, David F. Redmiles, and André Van Der Hoek. „Palantír: Early
detection of development conflicts arising from parallel code changes“. In: IEEE
Transactions on Software Engineering 38.4 (2012), pp. 889–908. issn: 00985589.
doi: 10.1109/TSE.2011.64.

[54] Yan Sun, Qing Wang, and Ye Yang. „FRLink: Improving the recovery of missing
issue-commit links by revisiting file relevance“. In: Information and Software
Technology 84 (2017), pp. 33–47. issn: 09505849. doi: 10.1016/j.infsof.
2016.11.010.

[55] Yan Sun et al. „Improving missing issue-commit link recovery using positive and
unlabeled data“. In: ASE 2017 - Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (2017), pp. 147–152. doi: 10.
1109/ASE.2017.8115627.

[56] Chungha Sung et al. „Towards understanding and fixing upstream merge induced
conflicts in divergent forks“. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Practice. Vol. 20.
2020, pp. 172–181. isbn: 9781450371230. doi: 10.1145/3377813.3381362.
url: https://doi.org/10.1145/3377813.3381362.

[57] Wouter Swierstra and Andres Löh. „The semantics of version control“. In: Onward!
2014 - Proceedings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, Part of SPLASH 2014
(2014), pp. 43–54. doi: 10.1145/2661136.2661137.

[58] Walter F. Tichy. „Rcs — a system for version control“. In: Software: Practice
and Experience 15.7 (1985), pp. 637–654. issn: 1097024X. doi: 10.1002/spe.
4380150703.

[59] R Viseur. „Forks impacts and motivations in free and open source projects“. In:
International Journal of Advanced Computer Science and Applications 3.2 (2012),
pp. 1–6. issn: 2158107X. doi: 10.14569/ijacsa.2012.030221.

[60] Roel Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Jan. 2014, pp. 1–332. isbn: 978-3-662-43838-1. doi: 10.1007/978-
3-662-43839-8.

[61] Rongxin Wu et al. „ReLink: Recovering links between bugs and changes“. In:
SIGSOFT/FSE 2011 - Proceedings of the 19th ACM SIGSOFT Symposium on
Foundations of Software Engineering. New York, New York, USA: ACM Press,
2011, pp. 15–25. isbn: 9781450304436. doi: 10.1145/2025113.2025120. url:
http://code.google.com/p/zxing/issues/detail?id=18.

106

https://doi.org/10.1007/978-3-642-33442-9_1
https://doi.org/10.1109/TSE.2011.64
https://doi.org/10.1016/j.infsof.2016.11.010
https://doi.org/10.1016/j.infsof.2016.11.010
https://doi.org/10.1109/ASE.2017.8115627
https://doi.org/10.1109/ASE.2017.8115627
https://doi.org/10.1145/3377813.3381362
https://doi.org/10.1145/3377813.3381362
https://doi.org/10.1145/2661136.2661137
https://doi.org/10.1002/spe.4380150703
https://doi.org/10.1002/spe.4380150703
https://doi.org/10.14569/ijacsa.2012.030221
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1145/2025113.2025120
http://code.google.com/p/zxing/issues/detail?id=18

[62] Rui Xie et al. „DeepLink: A Code Knowledge Graph Based Deep Learning Approach
for Issue-Commit Link Recovery“. In: SANER 2019 - Proceedings of the 2019 IEEE
26th International Conference on Software Analysis, Evolution, and Reengineering
(2019), pp. 434–444. doi: 10.1109/SANER.2019.8667969.

[63] Shurui Zhou. „Improving collaboration efficiency in fork-based development“. In:
Proceedings - 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2019 (2019), pp. 1218–1221. doi: 10.1109/ASE.2019.
00144.

[64] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. „How Has Forking Changed
in the Last 20 Years? A Study of Hard Forks on GitHub“. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering 12 (2020),
pp. 445–456. doi: 10.1145/3377811.3380412. url: https://doi.org/10.
1145/3377811.3380412.

[65] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. „What the fork: A study
of inefficient and efficient forking practices in social coding“. In: ESEC/FSE 2019 -
Proceedings of the 2019 27th ACM Joint Meeting European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2019,
pp. 350–361. isbn: 9781450355728. doi: 10.1145/3338906.3338918. url:
https://doi.org/10.1145/3338906.3338918.

[66] Thomas Zimmermann. „Mining workspace updates in CVS“. In: Proceedings - ICSE
2007 Workshops: Fourth International Workshop on Mining Software Repositories,
MSR 2007 (2007), pp. 7–10. doi: 10.1109/MSR.2007.22.

Online
[31] Git - gitglossary Documentation. url: https://git-scm.com/docs/gitglossary

(visited on 10/15/2020).

107

https://doi.org/10.1109/SANER.2019.8667969
https://doi.org/10.1109/ASE.2019.00144
https://doi.org/10.1109/ASE.2019.00144
https://doi.org/10.1145/3377811.3380412
https://doi.org/10.1145/3377811.3380412
https://doi.org/10.1145/3377811.3380412
https://doi.org/10.1145/3338906.3338918
https://doi.org/10.1145/3338906.3338918
https://doi.org/10.1109/MSR.2007.22
https://git-scm.com/docs/gitglossary

Appendix

109

1.

2.

Mark only one oval.

Other:

Male

Female

3.

4.

General
Please provide some information about your person.

Experiences
Please provide some information about your experiences in the field.

Con�ict Awareness Visualisation -
Ranking
This questionaire is used to evaluate the importance of proposed features of a conflict
awareness visualisation by importance.
The questionnaire has three sections: General, Experiences and Importance Evaluation
*Required

How old are you (in years)? *

What is your gender? *

How much experience do you have in software engineering (in years)? *

How much experiences do you have with Version Control Systems (in years)? *

Semistructured Expert Interview Questionnaire

110

5.

Other:

Tick all that apply.

None

Git

Mercurial

Subversion

CVS

6.

Mark only one oval.

Yes

No

Which Version Control Systems have you used before? *

Do you know the principle of forking projects in version control hosting systems like
GitHub? *
Example of a Fork

111

7.

Mark only one oval.

Yes

No

8.

Mark only one oval.

Yes

No

9.

Mark only one oval.

Yes

No

Have you forked a project in the past? *

Do you know the principle of pull requests in version control hosting systems like
GitHub? *
Example of a Pull Request

Have you merged a pull request in the past? *

112

10.

Mark only one oval.

Preference Merging

1 2 3 4 5

Preference Rebasing

11.

Mark only one oval.

not important

1 2 3 4 5

very important

Importance
Evaluation

Please rate, how important you consider the proposed features of the
visualisation.

Do you have a preference between Merging and Rebasing?

How important do you find a visualisation that shows the 𝐝𝐢𝐯𝐞𝐫𝐠𝐞𝐧𝐜𝐞 𝐛𝐞𝐭𝐰𝐞𝐞𝐧
𝐟𝐨𝐫𝐤𝐬? *
Example of a possible visualisation showing divergences (𝐠𝐫𝐞𝐞𝐧: commits of original project; 𝐨𝐫𝐚𝐧𝐠𝐞:
commits of a selected fork; 𝐛𝐥𝐮𝐞: commits of both projects)

113

12.

Mark only one oval.

not impotant

1 2 3 4 5

very important

13.

Mark only one oval.

not important

1 2 3 4 5

very important

How important do you find a visualisation that shows, if branches can be
𝐫𝐞𝐛𝐚𝐬𝐞𝐝 without conflicts 𝐰𝐢𝐭𝐡𝐢𝐧 𝐚 𝐩𝐫𝐨𝐣𝐞𝐜𝐭? *
Rebase example showing Git history 𝐛𝐞𝐟𝐨𝐫𝐞 rebasing the 𝐞𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭 branch to the 𝐦𝐚𝐬𝐭𝐞𝐫
branch, and 𝐚𝐟𝐭𝐞𝐫 the rebase

How important do you find a visualisation that shows, if branches can be
𝐫𝐞𝐛𝐚𝐬𝐞𝐝 without conflicts 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐟𝐨𝐫𝐤𝐞𝐝 𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬? *

114

14.

Mark only one oval.

not important

1 2 3 4 5

very important

15.

Mark only one oval.

not important

1 2 3 4 5

very important

How important do you find a visualisation that shows, if branches can be
𝐦𝐞𝐫𝐠𝐞𝐝 without conflicts 𝐰𝐢𝐭𝐡𝐢𝐧 𝐚 𝐩𝐫𝐨𝐣𝐞𝐜𝐭? *
Merge example showing Git history 𝐛𝐞𝐟𝐨𝐫𝐞 merging the 𝐞𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭 branch into the 𝐦𝐚𝐬𝐭𝐞𝐫
branch, and 𝐚𝐟𝐭𝐞𝐫 the merge

How important do you find a visualisation that shows, if branches can be
𝐦𝐞𝐫𝐠𝐞𝐝 without conflicts 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐟𝐨𝐫𝐤𝐞𝐝 𝐩𝐫𝐨𝐣𝐞𝐜𝐭𝐬? *

115

16.

Mark only one oval.

not important

1 2 3 4 5

very important

17.

Mark only one oval.

not important

1 2 3 4 5

very important

How important do you find a visualisation that shows, if commits can be
𝐜𝐡𝐞𝐫𝐫𝐲 𝐩𝐢𝐜𝐤𝐞𝐝 without conflicts in a branch 𝐰𝐢𝐭𝐡𝐢𝐧 𝐚 𝐩𝐫𝐨𝐣𝐞𝐜𝐭? *
Cherry Pick example showing Git history 𝐛𝐞𝐟𝐨𝐫𝐞 cherry picking the 𝟓𝐝𝐝𝐚𝐞 commit to the 𝐦𝐚𝐬𝐭𝐞𝐫
branch, and 𝐚𝐟𝐭𝐞𝐫 the cherry pick

How important do you find a visualisation that shows, if commits can be
𝐜𝐡𝐞𝐫𝐫𝐲 𝐩𝐢𝐜𝐤𝐞𝐝 without conflicts 𝐟𝐫𝐨𝐦 𝐨𝐧𝐞 𝐩𝐫𝐨𝐣𝐞𝐜𝐭 𝐢𝐧𝐭𝐨 𝐚𝐧𝐨𝐭𝐡𝐞𝐫? *

116

18.

Mark only one oval.

not important

1 2 3 4 5

very important

19.

Mark only one oval.

not important

1 2 3 4 5

very important

How important do you find a visualisation that shows the 𝐜𝐨𝐝𝐞 𝐬𝐞𝐜𝐭𝐢𝐨𝐧𝐬 𝐨𝐟
𝐚 𝐜𝐨𝐧𝐟𝐥𝐢𝐜𝐭, if one was found? *

How important do you find a visualisation that shows the commits which the selected
one 𝐝𝐞𝐩𝐞𝐧𝐝𝐬 on? *
Example of a possible visualisation showing dependent commits (𝐰𝐡𝐨𝐥𝐞 𝐜𝐢𝐫𝐜𝐥𝐞𝐝: selected commit; 𝐝𝐨𝐭𝐭𝐞𝐝
𝐜𝐢𝐫𝐜𝐥𝐞𝐝: previous commits which the selected one depends on (e.g. they have code snippets that are needed
in the selected commit))

117

20.

Mark only one oval.

not important

1 2 3 4 5

very important

How important do you find a visualisation that shows 𝐜𝐨𝐦𝐦𝐢𝐭𝐬 𝐨𝐟 𝐚 𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝
𝐢𝐬𝐬𝐮𝐞? *
Example of a possible visualisation showing commits of a selected issue

118

21.

Mark only one oval.

not important

1 2 3 4 5

very important

How important do you find a visualisation that shows 𝐦𝐞𝐭𝐚𝐝𝐚𝐭𝐚 of a selected
commit 𝐚𝐜𝐫𝐨𝐬𝐬 𝐟𝐨𝐫𝐤𝐬? (commit hash, author, committer, commit message,
changes) *
Example of a possible visualisation showing metadata of a specific commit across forks

119

22.

Mark only one oval.

not important

1 2 3 4 5

very important

23.

Mark only one oval.

not important

1 2 3 4 5

very important

How important do you find a possibility to make the visualisation 𝐜𝐨𝐦𝐩𝐚𝐜𝐭? *
Example of a possible visualisation showing a compact view of the projects representation

How important do you find a possibility to 𝐡𝐢𝐝𝐞 𝐜𝐨𝐦𝐦𝐢𝐭𝐬 𝐨𝐟 𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝
𝐛𝐫𝐚𝐧𝐜𝐡𝐞𝐬 in the visualisation? *

120

24.

Tick all that apply.

25.

This content is neither created nor endorsed by Google.

Which 𝐟𝐢𝐥𝐭𝐞𝐫 𝐨𝐩𝐭𝐢𝐨𝐧𝐬 do you find important in such a visualisation for
𝐜𝐨𝐦𝐦𝐢𝐭𝐬?

Show
filtered

commits
only

Highlight
filtered

commits

after a
specific
timestamp

after a
specific
timestamp

within a
specific
time
frame

of a
specific
author

of a
specific
committer

after a
selected
commits
(subtree)

Do you find 𝐨𝐭𝐡𝐞𝐫 𝐟𝐢𝐥𝐭𝐞𝐫 𝐨𝐩𝐭𝐢𝐨𝐧𝐬 important in such a visualisation?

121

1.

Mark only one oval.

< 25

25 - 34

35 - 44

45 - 54

55 - 64

>= 65

2.

Mark only one oval.

Other:

Male

Female

3.

4.

General
Please provide some information about your person.

Experiences
Please provide some information about your experiences in the field.

Scenario-based Expe� Evaluations
*Required

How old are you (in years)?

What is your gender?

How much experience do you have in software engineering (in years)?

How much experiences do you have with Version Control Systems (in years)?

Scenario-based Expert Evaluation Questionnaire

122

5.

Other:

Tick all that apply.

None

Git

Mercurial

Subversion

CVS

6.

Mark only one oval.

Yes

No

Which Version Control Systems have you used before?

Do you know the principle of forking projects in version control hosting systems like
GitHub?
Example of a Fork

123

7.

Mark only one oval.

Yes

No

8.

Mark only one oval.

Yes

No

9.

Mark only one oval.

Yes

No

Have you forked a project in the past?

Do you know the principle of pull requests in version control hosting systems like
GitHub?
Example of a Pull Request

Have you merged a pull request in the past?

124

10.

Mark only one oval.

Preference Merging

1 2 3 4 5

Preference Rebasing

11.

Divergence INSO-TUWien/Binocular - IsuDev/Binocular (Fork)

Scenario 1/6

Do you have a preference between Merging and Rebasing?

Which 𝐟𝐨𝐫𝐤𝐞𝐝 𝐩𝐫𝐨𝐣𝐞𝐜𝐭 𝐝𝐢𝐯𝐞𝐫𝐠𝐞𝐝 𝐚𝐭 𝐦𝐨𝐬𝐭 from the base project?

125

Divergence INSO-TUWien/Binocular - Meightem/Binocular (Fork)

Divergence INSO-TUWien/Binocular - juliankotrba/Binocular (Fork)

126

12.

Mark only one oval.

not relevant at all

1 2 3 4 5

highly relevant

13.

14.

15.

Scenario 2/6
𝐇𝐢𝐧𝐭: The project uses feature branches.

How relevant and practical did you find this scenario?

Which tools would you normally have used and how would you have solved
this scenario?

Which approach would you prefer in comparison and why?

On which branch (project INSO-TUWien/Binocular) was 𝐟𝐞𝐚𝐭𝐮𝐫𝐞 #𝟐𝟎
implemented?

127

16.

Mark only one oval.

not relevant at all

1 2 3 4 5

highly relevant

17.

18.

19.

Scenario 3/6

𝐂𝐨𝐦𝐦𝐢𝐭𝐭𝐞𝐫: Maximilian Zenz (e1633058@student.tuwien.ac.at)
𝐘𝐞𝐚𝐫: 2020
𝐏𝐫𝐨𝐣𝐞𝐜𝐭: INSO-TUWien/Binocular

How relevant and practical did you find this scenario?

Which tools would you normally have used and how would you have solved
this scenario?

Which approach would you prefer in comparison and why?

𝐇𝐨𝐰 𝐦𝐚𝐧𝐲 commits 𝐜𝐨𝐦𝐦𝐢𝐭𝐭𝐞𝐝 𝐌𝐚𝐱𝐢𝐦𝐢𝐥𝐢𝐚𝐧 𝐙𝐞𝐧𝐳 in 𝟐𝟎𝟐𝟎 to the
repository 𝐈𝐍𝐒𝐎-𝐓𝐔𝐖𝐢𝐞𝐧/𝐁𝐢𝐧𝐨𝐜𝐮𝐥𝐚𝐫?

128

20.

Mark only one oval.

not relevant at all

1 2 3 4 5

highly relevant

21.

22.

Scenario
4/6

𝐂𝐨𝐦𝐦𝐢𝐭 𝐒𝐡𝐚: d249bb8ff7b5904a179006726181160f4bd2ef62
𝐂𝐨𝐦𝐦𝐢𝐭 𝐌𝐞𝐬𝐬𝐚𝐠𝐞: visualize co-change direction with graph edges
𝐂𝐨𝐦𝐦𝐢𝐭 𝐏𝐫𝐨𝐣𝐞𝐜𝐭: INSO-TUWien/Binocular
𝐂𝐨𝐦𝐦𝐢𝐭 𝐁𝐫𝐚𝐧𝐜𝐡: origin/feature/15
𝐂𝐨𝐦𝐦𝐢𝐭 𝐏𝐨𝐬𝐢𝐭𝐢𝐨𝐧: 3rd Commit

𝐂𝐡𝐞𝐫𝐫𝐲 𝐏𝐢𝐜𝐤 𝐏𝐫𝐨𝐣𝐞𝐜𝐭: Meightem/Binocular
𝐂𝐡𝐞𝐫𝐫𝐲 𝐏𝐢𝐜𝐤 𝐁𝐫𝐚𝐧𝐜𝐡: origin/develop

𝐇𝐢𝐧𝐭: use the subtree filter to find the required commit (copy the commit sha
above)

𝐇𝐨𝐰 𝐭𝐨 𝐜𝐡𝐞𝐜𝐤 𝐜𝐡𝐞𝐫𝐫𝐲 𝐩𝐢𝐜𝐤:
1. select commits (right click on node, incl. strg-key for multi selection)
2. select (right-click) on branch-reference in the graph
3. wait for modal window

How relevant and practical did you find this scenario?

Which tools would you normally have used and how would you have solved
this scenario?

Which approach would you prefer in comparison and why?

129

23.

24.

Mark only one oval.

not relevant at all

1 2 3 4 5

highly relevant

25.

26.

𝐌𝐞𝐫𝐠𝐞 𝐏𝐫𝐨𝐣𝐞𝐜𝐭: Meightem/Binocular

𝐖𝐡𝐢𝐜𝐡 𝐜𝐨𝐦𝐦𝐢𝐭𝐬 must be 𝐜𝐡𝐞𝐫𝐫𝐲 𝐩𝐢𝐜𝐤𝐞𝐝 𝐚𝐬 𝐰𝐞𝐥𝐥 such that no conflict
occurs when cherry picking commit
𝐝𝟐𝟒𝟗𝐛𝐛𝟖𝐟𝐟𝟕𝐛𝟓𝟗𝟎𝟒𝐚𝟏𝟕𝟗𝟎𝟎𝟔𝟕𝟐𝟔𝟏𝟖𝟏𝟏𝟔𝟎𝐟𝟒𝐛𝐝𝟐𝐞𝐟𝟔𝟐 (project 𝐈𝐍𝐒𝐎-
𝐓𝐔𝐖𝐢𝐞𝐧/𝐁𝐢𝐧𝐨𝐜𝐮𝐥𝐚𝐫) into the branch origin/develop (project
𝐌𝐞𝐢𝐠𝐡𝐭𝐞𝐦/𝐁𝐢𝐧𝐨𝐜𝐮𝐥𝐚𝐫)?

How relevant and practical did you find this scenario? *

Which tools would you normally have used and how would you have solved
this scenario?

Which approach would you prefer in comparison and why?

130

27.

28.

Mark only one oval.

not relevant at all

1 2 3 4 5

highly relevant

29.

Scenario
5/6

𝐌𝐞𝐫𝐠𝐞 𝐁𝐫𝐚𝐧𝐜𝐡: origin/feature/branch-fork-visualization

𝐈𝐧𝐭𝐨 𝐏𝐫𝐨𝐣𝐞𝐜𝐭: INSO-TUWien/Binocular
𝐈𝐧𝐭𝐨 𝐁𝐫𝐚𝐧𝐜𝐡: origin/master

𝐇𝐨𝐰 𝐭𝐨 𝐜𝐡𝐞𝐜𝐤 𝐦𝐞𝐫𝐠𝐞:
1. select (right-click) branch reference in the graph that should be merged into
another branch
2. select branch reference in the graph into which should be merged
3. wait for modal window

𝐖𝐡𝐨 may be able to help 𝐬𝐨𝐥𝐯𝐢𝐧𝐠 𝐭𝐡𝐞 𝐜𝐨𝐧𝐟𝐥𝐢𝐜𝐭 when 𝐦𝐞𝐫𝐠𝐢𝐧𝐠 branch
𝐨𝐫𝐢𝐠𝐢𝐧/𝐟𝐞𝐚𝐭𝐮𝐫𝐞/𝐛𝐫𝐚𝐧𝐜𝐡-𝐟𝐨𝐫𝐤-𝐯𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 (project
𝐌𝐞𝐢𝐠𝐡𝐭𝐞𝐦/𝐁𝐢𝐧𝐨𝐜𝐮𝐥𝐚𝐫) into branch 𝐨𝐫𝐢𝐠𝐢𝐧/𝐦𝐚𝐬𝐭𝐞𝐫 (project 𝐈𝐍𝐒𝐎-
𝐓𝐔𝐖𝐢𝐞𝐧/𝐁𝐢𝐧𝐨𝐜𝐮𝐥𝐚𝐫)?

How relevant and practical did you find this scenario?

Which tools would you normally have used and how would you have solved
this scenario?

131

30.

31.

32.

Mark only one oval.

not relevant at all

1 2 3 4 5

highly relevant

Scenario
6/6

𝐑𝐞𝐛𝐚𝐬𝐞 𝐏𝐫𝐨𝐣𝐞𝐜𝐭: INSO-TUWien/Binocular
𝐑𝐞𝐛𝐚𝐬𝐞 𝐁𝐫𝐚𝐧𝐜𝐡: origin/feature/5

𝐎𝐧𝐭𝐨 𝐏𝐫𝐨𝐣𝐞𝐜𝐭: INSO-TUWien/Binocular
𝐎𝐧𝐭𝐨 𝐁𝐫𝐚𝐧𝐜𝐡: origin/feature/9

𝐇𝐨𝐰 𝐭𝐨 𝐜𝐡𝐞𝐜𝐤 𝐫𝐞𝐛𝐚𝐬𝐞:
1. select (right-click) branch reference in the graph that should be rebased onto
another branch
2. select branch reference in the graph onto which should be rebased
3. wait for modal window

Which approach would you prefer in comparison and why?

A conflict occurs when 𝐫𝐞𝐛𝐚𝐬𝐢𝐧𝐠 branch 𝐨𝐫𝐢𝐠𝐢𝐧/𝐟𝐞𝐚𝐭𝐮𝐫𝐞/𝟓 (project
"𝐈𝐍𝐒𝐎-𝐓𝐔𝐖𝐢𝐞𝐧/𝐁𝐢𝐧𝐨𝐜𝐮𝐥𝐚𝐫") onto 𝐨𝐫𝐢𝐠𝐢𝐧/𝐟𝐞𝐚𝐭𝐮𝐫𝐞/𝟗 (project 𝐈𝐍𝐒𝐎-
𝐓𝐔𝐖𝐢𝐞𝐧/𝐁𝐢𝐧𝐨𝐜𝐮𝐥𝐚𝐫). 𝐖𝐡𝐢𝐜𝐡 𝐜𝐨𝐦𝐦𝐢𝐭 introduced the conflict?

How relevant and practical did you find this scenario?

132

33.

34.

35.

Mark only one oval.

not needed at all

1 2 3 4 5

highly purposeful

36.

Mark only one oval.

not needed at all

1 2 3 4 5

highly purposeful

Evaluation of the Visualisations Purposefulness

Which tools would you normally have used and how would you have solved
this scenario?

Which approach would you prefer in comparison and why?

How 𝐩𝐮𝐫𝐩𝐨𝐬𝐞𝐟𝐮𝐥 would you rate the 𝐢𝐝𝐞𝐚 𝐨𝐟 𝐭𝐡𝐞 𝐜𝐨𝐧𝐟𝐥𝐢𝐜𝐭 𝐚𝐰𝐚𝐫𝐞𝐧𝐞𝐬𝐬
𝐯𝐢𝐬𝐮𝐚𝐥𝐢𝐬𝐚𝐭𝐢𝐨𝐧 in general?

How 𝐩𝐮𝐫𝐩𝐨𝐬𝐞𝐟𝐮𝐥 would you rate the 𝐜𝐡𝐨𝐬𝐞𝐧 𝐯𝐢𝐬𝐮𝐚𝐥𝐢𝐬𝐚𝐭𝐢𝐨𝐧 in general?

133

37.

Mark only one oval.

not needed at all

1 2 3 4 5

highly purposeful

This content is neither created nor endorsed by Google.

How 𝐩𝐮𝐫𝐩𝐨𝐬𝐞𝐟𝐮𝐥 would you rate the 𝐭𝐨𝐨𝐥 in general?

134

Quick Start Guide

The visualisation shows divergences between parent repositories and their forks. It also provides conflict checks for merges, rebases

and cherry picks within a repository or across forks. Additionally, different filter mechanisms are available across repositories.

General

1) Commit

2) Parent-Child Relationship

3) Branch-Reference

4) Clustered Commits: shows number of

commits it holds

5) Colours: shows in which repository the

element can be found

6) Branches of the Repository:

checked ones shown in the graph

7) Layout Options:

earliest = initial commit

latest = branch heads

Reset Location resets zoom and graph

position

8) Compact all: compact whole

graph(seen in the figure on the right)

 Expand all: expand the whole graph

(clustered commits expanded)

Highlightings

Interactions

Hover over Commit: show basic metadata (sha, author & time, committer & time, short

message)

Double Click on Commit: show detailed metadata (sha, commit message, diff)

Left Click on Commit: select a commit

Left Click on Commit + Strg Key: multi-select commits

Right Click on Commit: copy sha

collapse section

Right Click on Clustered Commits: expand section

Hover over Branch-Reference: show action + highlight history path

Click on Branch-Reference (nothing selected): select branch

Click on Branch-Reference + Commit(s) selected: start conflict check: cherry pick(s)

Click on Branch-Reference + Strg Key + Branch selected: start conflict check: rebase

Click on Branch-Reference + Shift Key + Branch selected: start conflict check: merge

General Visualisation Structure

Clustered Commits -

all Commits within
meet the set Filters

Clustered Commits -

some Commits within
meet the set Filters

Commit which

meet all set
Filters

Commit which

not meet all set
Filters

selected Commit
Dependency of a

selected Commit
Commit of a
selected Issue

Scenario-based Expert Evaluation Quick Start Guide

135

Detailed Description
Graph

The graph consists of nodes (= commits) and edges (= parent-child relationships of the commits). A commit which is a head of at
least one branch has the corresponding branch-references floating around. The references including the full name of the branches

can be found in the checkbox lists of the corresponding project sections in the configuration. Checked branch entries are shown in
the visualisation, unchecked ones are not shown and not considered for the graph colouring.

The colour of these elements shows in which repository they can be found. There are three possibilities: 1) The element only exists
in the Main Project. 2) The element only exists in the selected Parent/Fork. 3) The element can be found in both. This shows the

forking point of the repositories.
The layout of the graph can be changed to four different settings. The earliest commit is the initial commit. The latest commits are

the branch heads. The „Reset Location“ Button can help in finding the graph again when lost. This can happen especially when
changing the layout.

Issue Selection

When selecting an issue the linked commits are highlighted with an dot-dashed black border. Issue commits in collapsed sections
are handled like filtered commits. The compacted commits show the number of commits which meet the set filter criteria (including

the selected issue) and the number of all commits it holds.

Selections

Branch-references and nodes are selectable with a left click. Selected branches are marked with a black border around its

reference. Hovering over a branch will highlight its path. Only one branch can be selected at once.

Selected commits also get a black border as highlighting. When selecting a commit its immediate dependencies are highlighted

with a dashed black border. Its possible to select multiple commits at once by pressing the ctrl key. Hovering over a commit will
show its shortened commit message, its committer and the time of the commit and its author with the timestamp. By double clicking

on the node the detailed commit message and its diff is loaded. To reset all selections press the escape key.

Conflict Checks

There are three types of conflict checks. The specific action that will be done is shown when hovering into the branch-reference.

1. Check if cherry picks can be done without conflicts:
a) Select the commit(s) to cherry pick.

b) Select the branch-reference onto which to cherry pick from.
c) Wait for a success message (green modal on top) or a conflict message (modal over the screen with conflict details).

2. Check if a merge can be done without conflicts:
a) Select the branch-reference which should be merged into another.

b) Select the branch-reference that should be the base of the merge while pressing the shift key.
c) Wait for a success message (green modal on top) or a conflict message (modal over the screen with conflict details).

3. Check if a rebase can be done without conflicts:
a) Select the branch-reference which should be rebased onto another.

b) Select the branch-reference that should be the base of the rebase while pressing the ctrl key.
c) Wait for a success message (green modal on top) or a conflict message (modal over the screen with conflict details).

Compacting/Expanding

Compacting the graph can make the history structure clearer but this will lead to an information loss. The whole graph can be
compacted by clicking the “Compact all” button and can be expanded by clicking the “Expand all” button on top of the

configuration section.

Expanded sections can be compacted one by one by right clicking on a commit from its section and selecting the “Compact
Section” menu item. When compacting from a branching node all its child paths will get compacted.

Collapsed sections can be expanded again by right clicking on the collapsed commits and by selecting the “Expand” menu item.

Filter

There are five different filters in the filter section of the configuration. For each filter two options can be chosen: “highlight” or
“show only”. Highlight filters show all commits that are not covered by the set filters with less saturation.

Show only filters only show nodes that are covered by the set filters.
Exception: show only filter option with Author and Committer Filter:

In this case the whole graph will be compacted except those commits with the specific author or committer. The expansion feature
does not work with both filter options.

For the subtree filter the sha of the commit is needed. It can be copied by right clicking on the commit and selecting the “Copy Sha
to Clipboard” menu item.

• After Filter: commits after a selected date (inclusive)
• Before Filter: commits before a selected date (inclusive)

• Author Filter: commits with a selected author
• Committer Filter: commits with a selected committer

• Subtree Filter: commit children of a specific commit (inclusive)

136

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Description
	Aim of the Work
	Methodology
	Structure of the Work

	Fundamentals
	vcs
	Merge
	Fork
	Issue

	State-of-the-Art
	Awareness Tools
	Information Needs

	Conceptual Design
	Semi-Structured Expert Interviews
	Plan
	Results
	Threats to Validity

	Implementation
	Binocular as Base
	Iteration 0: Data Mining
	Iteration 1: Setting up basic visualisation
	Iteration 2: Checking for Conflicts
	Iteration 3: Branch Selection and Dependency Highlighting
	Iteration 4: Filtering
	Iteration 5: Compacting the View

	Scenario-based Expert Evaluation
	Plan
	Results
	Threats to Validity

	Findings
	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Online

	Appendix
	Semistructured Expert Interview Questionnaire
	Scenario-based Expert Evaluation Questionnaire
	Scenario-based Expert Evaluation Quick Start Guide

