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Abstract

Hyper-heuristics are a domain-independent problem solving
approach where the main task is to select effective chains of
problem-specific low-level heuristics on the fly for an unseen
instance. This task can be seen as a reinforcement learning
problem, however, the information available to the hyper-
heuristic is very limited, usually leading to very limited state
representations. In this work, for the first time we use the tra-
jectory of solution changes for a larger set of features for
reinforcement learning in the novel hyper-heuristic LAST-
RL (Large-State Reinforcement Learning). Further, we intro-
duce a probability distribution for the exploration case in our
epsilon-greedy policy that is based on the idea of Iterated Lo-
cal Search to increase the chance to sample good chains of
low-level heuristics. The benefit of the collaboration of our
novel components is shown on the academic benchmark of
the Cross Domain Heuristic Challenge 2011 consisting of six
different problem domains. Our approach can provide state-
of-the-art results on this benchmark where it outperforms re-
cent hyper-heuristics based on reinforcement learning, and
also demonstrates high performance on a benchmark of com-
plex real-life personnel scheduling domains.

Introduction
Instead of providing problem-specific solution methods for
different domains, hyper-heuristics aim to stay fully domain-
independent by enforcing a strict domain barrier and only
having access to a set of low-level heuristics (LLHs) to apply
on a given instance. Often hyper-heuristics try to find certain
combinations of LLHs that are beneficial to apply, e.g., a
combination of a perturbation followed by a local search.
However, a combination that is beneficial in the early part of
the search might not work well in a later part of the search.
On the other hand, the solution value and the execution time
are the only information the hyper-heuristic gets back from
the LLH.

Still, the trajectory of solution values can help to draw
conclusions about the current state of the search. Therefore,
we propose to use this information to learn efficient appli-
cations of low-level heuristics and introduce a new set of
15 features to characterize the current state of the search.
Then we use these features for the novel hyper-heuristic
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LAST-RL (Large State Reinforcement Learning) based on
reinforcement learning using the linear state-action value
function approximation method tile coding, the learning
method SARSA-lambda, and an epsilon-greedy policy that
uses probability distributions based on Iterated Local Search
for increased performance. It further uses solution chains
based on the Luby sequence, where we introduce some novel
improvements as well, and a restart strategy.

The method is then evaluated on instances from six dif-
ferent domains from the Cross Domain Heuristic Search
Challenge 2011, where the contributions of the individual
components are evaluated, and where LAST-RL can outper-
form previous approaches based on reinforcement learning,
as well as on a benchmark of three complex real-life person-
nel scheduling domains, providing several improved results
compared to both previous hyper-heuristics and domain-
specific solution methods on two of these domains.

Related Work
The term hyper-heuristics was introduced in 2000 (Cowling,
Kendall, and Soubeiga 2000), even though the general ideas
were used even earlier. In the most common classification
of hyper-heuristics (Burke et al. 2010, 2019), this paper in-
troduces a perturbative selection hyper-heuristic, a class that
perturbs existing solutions by selecting from a set of existing
low-level heuristics.

A review was published in 2013 (Burke et al. 2013) and
2020 (Drake et al. 2020). Much work in the area is related to
the Cross Domain Heuristic Search Challenge 2011 (Burke
et al. 2011), where the framework HyFlex (Ochoa et al.
2012a) was introduced for a uniform implementation of dif-
ferent hyper-heuristics, featuring six different domains and
low-level heuristics in four different categories, which are
local search, mutation, ruin-and-recreate, and crossover. The
challenge was won by Mısır et al. (2012) with a combina-
tion of adaptive mechanisms to manage a set of active low-
level heuristics. A streamlined version of this algorithm was
published by Adriaensen and Nowé (2016). The following
places in the competition were taken by a self-adaptive vari-
able neighbourhood search (Hsiao, Chiang, and Fu 2012),
and an algorithm using cycles of diversification and inten-
sification (Larose 2011). Extensions to the framework have
been provided later (Ochoa et al. 2012b), including several
additional domains (Adriaensen, Ochoa, and Nowé 2015).
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Reinforcement learning (RL) is based on the notion of
executing actions depending on the current state, making
the system transition to a different state and returning a re-
ward (Sutton and Barto 2018). Many hyper-heuristics em-
ploy some kind of learning. Reinforcement learning in the
classical sense is used in the original competition by Larose
(2011) based on work on multiple agents with individ-
ual learning (Meignan, Koukam, and Créput 2010), and by
Di Gaspero and Urli (2012), where an action is to select
the low-level heuristic type. The state-of-the-art approach by
Choong, Wong, and Lim (2018) uses Q-learning to select a
combination of an LLH selection method and a move ac-
ceptance method, together with a simple state aggregation.
They report very good results (only beaten by the winner of
the original competition), closely followed by the new ap-
proach (Mischek and Musliu 2022) using RL with a discrete
state representation based on four features to learn the ap-
plication of individual LLHs. Apart from HyFlex, deep RL
has also recently been used for hyper-heuristics (Zhang et al.
2021). In contrast to the existing work, our approach uses
a rich state representation not previously used in literature,
and an exploration policy with adaptive probabilities based
on Iterated Local Search.

A recent survey (Drake et al. 2020) provides an overview
of current work, updated classification, and different appli-
cation areas for hyper-heuristics. Newer approaches based
on other concepts beside RL include a population-based ap-
proach using Gene Expression Programming (Sabar et al.
2014), a hyper-heuristic based on Monte-Carlo tree search
(Sabar and Kendall 2015), a hyper-heuristic based on a hid-
den Markov model (Kheiri and Keedwell 2015), an iterated
multi-stage hyper-heuristic (Kheiri and Özcan 2016), work
using solution chains (Chuang 2020) based on the Luby se-
quence (Luby, Sinclair, and Zuckerman 1993), and Iterated
Local Search with a learning component based on Adap-
tive Thomson Sampling (Adubi, Oladipupo, and Olugbara
2021).

Introducing LAST-RL
Reinforcement Learning is an iterative process based on the
concept of states, actions, and rewards. The system is in a
current state s, in our case the search state. The learning
agent chooses an action a ∈ A based on a notion of value
for the current state and the expected state after executing
this action. In our case, each low-level heuristic corresponds
to an action. Then the learning agent L receives a reward r
for the action a it chose and the system transfers to the new
state s′. The agent wants to maximize the rewards it collects
and updates its value estimations based on the reward it got.

While the set of actions is clear, many decisions need to be
made regarding the other aspects of a reinforcement learn-
ing system. This paper introduces the novel hyper-heuristic
LAST-RL (Large State Reinforcement Learning), with the
core learning loop as shown in Algorithm 1:

First, the problem domain is initialized for the given in-
stance. The initial state is set up as well as the feature
weights w, which are initially set to 0. Hyper-heuristics can
work on a single solution or on multiple solutions. In our ap-

Algorithm 1: LAST-RL learning loop
Data: Instance I , action set A, and timeout T

1 initialize(I);
2 s← initialState;
3 w← 0⃗;
4 S← initializeSolutions();
5 while time < T do
6 c← chain();
7 for i← 1 to c do
8 x′ ← x(s,A);
9 a← π(x′,A,w);

10 ∆, t← executeLLH(a,S);
11 r ← R(∆, t);
12 s′ ← updateState(s, a,∆, t);
13 w← L(s, a, r, s′,w);
14 s← s′;
15 if newBest(S) then
16 updateBest(S);
17 break;
18 end
19 end
20 gotoBest();
21 if restart(S, time) then
22 reset(s,S);
23 end
24 end

proach, we mainly work on a single solution, but still need
to keep several solutions in S:

• The global best solution found so far for this instance
• The best solution found so far since the previous reset
• The current working solution
• A set of 5 solutions for use with the crossover LLHs is

kept similar to GIHH (Misir et al. 2011). A random one
is replaced each time a new best solution since the previ-
ous reset is found. Each crossover is then applied on the
current working solution and a random solution from this
crossover pool.

At the start the construction heuristic provided by the do-
main is executed 10 times, and the best result is set for all
solutions in S.

Solution Chains
The main loop is executed until the timeout T is reached.
We use episodes which end when either a new best solution
since the last reset is found, or a certain number of heuristic
applications have passed. After each episode, the working
solution is set to the best solution found since the last re-
set. The decision how to choose the lengths of these chains,
represented by the function chain , is a very critical one.

Chuang (2020) showed that the Luby sequence (Luby,
Sinclair, and Zuckerman 1993) is optimal regarding the ex-
pected number of operations until an improvement is found,
given that the probability q(ℓ) of finding an improvement
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within at most ℓ heuristic applications is unknown.

L(i) =
{
2k−1 if i = 2k − 1

L(i− 2k−1 + 1) if 2k−1 ≤ i < 2k − 1
(1)

L = 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, . . . (2)

Equation (1) shows the recursive definition of the Luby
sequence, Equation (2) shows the first few values of the se-
quence. Most of the resulting numbers are very small, but
with exponentially increasing distance to the start exponen-
tially larger numbers occur in the sequences.

The good results (Chuang 2020) were further confirmed
recently by Mischek and Musliu (2022), and indeed the se-
quence also showed very good results in our approach. How-
ever, there are two adaptations used in our work based on the
fact that we sometimes do have some insight regarding the
probability distribution q(ℓ).

The first novel adaptation is based on the fact that pre-
dominantly the hyper-heuristic will use cycles of diversifi-
cation and intensification, as explained in the policy section
later. Therefore, the solution value is expected to first in-
crease, followed by a decrease using local search heuristics.
This lead to the adaptation of line 7, continuing the inner
loop beyond c if the previous heuristic was not a local search
heuristic (still in the process of diversification), or the pre-
vious heuristic lead to an objective improvement (still in a
promising phase of intensification). In any case, however,
the chain is aborted if the length reaches 2 · c.

The second novel adaptation is to use information col-
lected from previous chains, more precisely to use the aver-
age length ℓ̄ of successful chains (chains leading to a new
best solution since the last reset). Therefore, c is actually
obtained by multiplying the value returned from the Luby
sequence with max{ℓ̄/2; 1} (the division prevents exces-
sive growth), unless it is already larger than the longest suc-
cessful chain. This approach allows to use longer chains for
problems where longer chains are successful more often.

Reset Behaviour

At the end of each solution chain, the hyper-heuristic sets
the active solution to the best solution found since the last
reset. However, sometimes the search might not find any im-
provements any more for a longer period of time. Therefore,
in line 21 a reset of all solutions except the global best is
performed after either 1000 consecutive chains without im-
provement, or at least 100 consecutive chains without im-
provement and at least time of rs · T since the last reset,
where rs is a parameter. The reason there are two options
is the vast difference in runtime of the individual low-level
heuristics between different domains. While the solutions
are reset to a new initial solution, the weights for reinforce-
ment learning are kept, potentially allowing much faster im-
provements after the reset.

In any case, for the last 2rs · T , the global best solution
is set as the active solution in order to promote further in-
tensification. If there would be a regular reset within the last
3rs ·T , this change to the global best is started immediately.

Reinforcement Learning Components
In each inner loop in Algorithm 1, first the function approx-
imation is calculated from the state s and the action set A
by the function x. The resulting vector x′ is then linearly
weighted by the weight vector w and used to compute an
approximate value for each combination of the current state
s and an action a ∈ A. The policy π uses these values to
chose an action a to execute.

This execution results in a change ∆ in the solution objec-
tive, and a used runtime t. These values are used to calculate
a reward r by using the function R. Further the new state s′

is calculated as the result of the action execution.
Finally the learning agent L uses the data obtained from

the previous state s, the action a, the reward r, and the new
state s′ to update the weight vector w. The system moves
to the new state, updates the solutions in case a new best
solution since the last reset was obtained, otherwise the next
loop continues.

Value Function Approximation. For the value function
approximation we focused on linear value function approx-
imations to try to balance learning and runtime considera-
tions. It starts from the feature vector s of dimension 15, nor-
malizing it according to the bounds for each feature, result-
ing in ŝ. Then x of dimension d is calculated from ŝ based on
the chosen approximation method. x′ of dimension d · |A| is
calculated as a cross-product of the state features x and the
action set A.

Different linear approximations were considered for the
transformation from ŝ to x, resulting in the choice for tile
coding. Here, the state space is partitioned into portions of
equal size, called tiles. nt such tilings, each with rt tiles per
dimension (resolution), and a different offset created with a
random jitter, are used to create a representation of the state
space. Tile coding produces one feature for each tile in each
of the tilings. However, for each tiling, only one feature is
active for any state (features are binary), and many tiles are
never active during the whole learning process. This allows
a sparse representation that only stores active features, and
therefore to use many features while still staying very effi-
cient.

Rewards. Once a certain action a has been chosen, the
corresponding low-level heuristic is executed in a certain
runtime t and results in a change in objective ∆. Since we
use an episodic formulation, a reward is only created at the
end of each solution chain.

The reward for a new best solution is set to
√
maxFC ,

where maxFC is the maximum length of consecutive un-
successful chains since the last reset. This value serves as a
measure of difficulty to escape the current local optimum.

Since the total runtime for the hyper-heuristic is limited,
wasting runtime is a negative aspect and should be penal-
ized. However, putting too much weight on this aspect can
easily lead to problems since every heuristic execution takes
time, generating a negative reward, while even good com-
binations of heuristics only provide a positive reward with
some probability.

For the academic benchmark we use, most LLHs on each
domain show similar behaviour regarding runtime, therefore
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no advantage could be found using runtime as part of the
reward function. However, on the real-life domains differ-
ences are much larger, therefore adding runtime to the re-
ward function was the only adaptation that was done to fit
the hyper-heuristic better for the application on our real-life
domains.

Based on experiments leading to the conclusions pre-
sented above, the following reward r was chosen to be ap-
plied at the end of each solution chain of length c′ with total
execution time t′:

isNewBest =

{
1 if new best solution found
0 otherwise

(3)

r = isNewBest ·
√
maxFC − 100 · t′

T · c′
(4)

Equation (3) distinguishes whether the chain ended due to
a new best solution or reverting to the previous best, Equa-
tion (4) combines the positive reward for new solutions with
the penalty for runtime, which is relative to the total runtime
T and the chain length c′.

Learning Agent. To update the weight vector w, SARSA-
Lambda uses the policy to obtain the action to use for calcu-
lating the estimated value for the next state, and an eligibil-
ity vector e that accumulates the information of the previous
steps of the learning agent for improved learning of longer
sequences of actions that lead to a reward. The updates are
done as follows:

a′ = π(x(s′,A),A,w) (5)

δ = r + γ · q̂(s′, a′,w)− q̂(s, a,w) (6)

e′ = λ · e+∇q̂(s, a,w) (7)

w′ = w + αδ · e′ (8)

Equation (6) calculates δ using the next action obtained by
the current policy in Equation (5) and the discount factor γ.
Equation (7) updates the eligibility vector e using the decay
factor λ. The update to w is done via e in Equation (8) with
the learning rate α. This approach showed to be superior to
Q-learning in preliminary experiments.

Search-state Features
The main issue of finding a suitable representation of the
search state for hyper-heuristics is that not much information
is available in the first place. The hyper-heuristic knows the
number and type of low-level heuristics and the time limit.
From each execution it gets the new solution value and the
time the LLH took to execute.

However, the limited information that is available still
allows the hyper-heuristic to know where in the search
progress it is by the time and the trajectory of the objective
values, and it allows to build a picture of the current state.
Therefore, in total we introduce the following novel set of
15 features to characterize the search state. We present the
definition as well as lower and upper bounds for normaliza-
tion. Some of the following expressions use the following
definition of the magnitude of a real value x based on the

natural logarithm that works both for positive and negative
values and transitions gracefully at x = 0:

mag(x) = sgn(x) · ln(1 + |x|) (9)
• lastHeur: The index of the last heuristic that was ap-

plied. Range: Integer from −1 (first application or re-
set to best known solution) to numHeur − 1 (where
numHeur is the total number of available heuristics).

• lastType: The type of the last heuristic. Range: Inte-
ger from−1 (first application or reset to best known solu-
tion) to 3, as the four categories ruin-recreate, crossover,
mutation, and local search are available.

• lastChangeSign: The sign of the last objective
change. Range: Integer in {−1, 0, 1}, for a coarse dis-
tinction of the current direction of the objective.

• lastChangeMag: The magnitude of the change in so-
lution value from the last application mag(∆). Range:
−mag(initial) to mag(initial) (where initial is the
value of the initial solution). Ranges for solution values
differ by orders of magnitude between different domains,
resulting in the focus on the magnitude of the change and
the normalization based on the initial solution value.

• chainProgress: The percentage of the current solu-
tion chain that has been processed so far. Range: [0; 1].

• lastImprMag: The magnitude mag(hL) of the num-
ber of heuristic applications since the last improvement
hL. Range: 0 to 5. Used as a measure of whether the cur-
rent state is in a local optimum that is difficult to escape,
can vary greatly.

• stepsMag: The magnitude mag(hT ) of the total num-
ber of LLH applications since the last reset. Range: 0 to
5. Like for the previous feature, the actual values can also
vary greatly between different domains.

• time: The total runtime since the last reset. Range: 0 to
T . This feature measures time progress intended to help
differentiate between early and later parts of the search.

• relativeImprMag: The magnitude of the relation be-
tween the objective of the current solution and the initial
solution mag(cur/initial). Range: 0 to 2.

• relativeBestMag: The magnitude of the relation be-
tween the objectives of the current and best solution
mag(cur/best) where best is the objective value of the
best solution since the last reset. Range: 0 to 2.

• relImpr: The relative number of improving heuristic
applications hI /hT . Range: 0 to 1.

• rel0: The relative number of heuristic applications that
did not change the objective h0/hT . Range: 0 to 1.

The previous features always capture either a current
change from the last heuristic application or a collective
value for the whole search since the last reset. In contrast,
the last three features capture values only for a recent part of
the search, allowing to put more focus on the recent history.
These features each use the horizon H = 10 for the number
of heuristic applications that are taken into account.
• avgChangeHMag: The magnitude of the average

change in the last H heuristic applications mag(∆̄).
Range: −mag(initial) to mag(initial).

12447



• relImprH: The relative number of improvements in the
last H heuristic applications. Range: 0 to 1.

• rel0H: The relative number of heuristic applications
that did not change the objective in the last H heuristic
applications. Range: 0 to 1.

In contrast to the other features, the first three features are
integer. Therefore, we do not apply tile coding to these di-
mensions of the feature vector, but keep the discrete values.
All other features are continuous and are normalized to the
interval [0; 1] according to their lower and upper bounds.

Exploration with Iterated Local Search
The policy π should favour actions with higher value for ex-
ploitation, but should also return all possible actions with a
non-zero probability to allow exploration. A classical policy
frequently used in reinforcement learning is epsilon-greedy.
The action with the highest current state-action value is cho-
sen with probability 1− ε, while a random action is chosen
with probability ε for a selected value of ε. However, this
did not show to be sufficient to reliably find good chains
of heuristics, as there are too many possibilities how to
build chains of heuristics in relation to the available runtime.
Given the set A and a chain of length c, there are |A|c possi-
bilities for heuristic chains. The domains from CHeSC 2011
have 8 to 15 LLHs, the real-life domains up to 22.

On the other hand, many of the best performing hyper-
heuristics from literature are based on the ideas of Iterated
Local Search (Lourenço, Martin, and Stützle 2003), where
perturbation and intensification phases are repeated. This
lead to the following novel improvement for reinforcement
learning for hyper-heuristics: Instead of using uniform ran-
dom selection with probability ε, in the exploration case the
category of the next LLH is chosen according to probabili-
ties based on ILS. Only within the chosen category the next
LLH is chosen based on a uniform random distribution.

The next heuristic category is therefore chosen according
to the following procedure: The initial category for the very
first heuristic of a chain is chosen according to uniform ran-
dom probabilities (if crossover would have been chosen, but
is not available, ruin-recreate is selected instead). If the pre-
vious heuristic was of type ruin-and-recreate, the next one is
either of the same category with probability pr, or in any of
the others with equal probability 1−pr

3 . After crossover it is
in the same category with probability pc, or in the categories
mutation or local search with equal probability 1−pc

2 . After
mutation it is in same category with probability pm, or in the
category local search with probability 1−pm, and after local
search, the next one will be local search as well.

This way the categories have a fixed order going
through large-scale perturbations first (ruin-and-recreate,
then crossover), followed by mutations and finally local
search until the end of the chain, or until a new best solu-
tion is found. While the order is fixed, every category except
local search can be skipped.

The probabilities to stay in the same category pr, pc, and
pm are defined based on previous experience collected dur-
ing the execution of the hyper-heuristic so far, and the fact
that if a sequence is stopped at each element with probability

Param Min Max Manual Tuned Mode

α 10−5 0.1 0.001 1.2 · 10−5 log
γ 0.1 1 0.8 0.25
λ 0 1 0.8 0.99
ϵ 0.01 0.9 0.1 0.07
rs 0.01 0.25 0.1 0.09
nt 1 20 10 4 int
rt 1 10 3 6 int

Table 1: Parameter tuning

p, the expected length of the sequence is 1
p :

pr = 1− 1

1 + ar·c
ar+ac+am+al

(10)

pc = 1− 1

1 + ac·c
ac+am+al

(11)

pm = 1− 1

1 + am·c
am+al

(12)

Equations (10), (11), and (12) show the definition based
on the average number of heuristics of type ruin-and-
recreate, crossover, mutation, and local search in successful
chains represented by ar, ac, am, and al respectively. The
reason for this computation is that different domains might
need vastly different ratios of heuristic types.

Using this novel ILS-based selection for epsilon-greedy
allows to greatly focus the hyper-heuristic on sequences of
LLHs that are expected to provide good performance, since
it greatly reduces the chance that a large amount of time is
wasted on very unlikely combinations of LLHs.

Evaluation on the CHeSC Domains
The first evaluation was performed on the six domains from
CHeSC 2011, the Cross Domain Heuristic Search Challenge
2011 (Burke et al. 2011) implemented in the HyFlex frame-
work (Ochoa et al. 2012a), which are MaxSAT (SAT), Bin
Packing (BP), Personnel Scheduling (PS), Flowshop (FS),
Travelling Salesperson Problem (TSP), and Vehicle Rout-
ing Problem (VRP). The implementation of reinforcement
learning is done using the BURLAP library version 3.0.1
(MacGlashan 2016).

The hyper-heuristic1 was implemented in the Java HyFlex
framework and run using OpenJDK 14.0.1. The experiments
were run on a Windows system with an Intel 12th Gen i9-
12900K with 3.19 GHz and 32 GB of RAM, each individual
run was performed single-threaded. The competition bench-
mark script allowed 240 seconds for each run on our setup.
For each of the domains, five instances are run 31 times
each. Then, the median result for each instance is compared
against the other hyper-heuristics using a formula-one-based
system for distributing points: 10 points to the best hyper-
heuristic, followed by 8, 6, 5, 4, 3, 2, 1 points for the follow-
ing ranks. If different approaches provide the same result,

1Available at: https://gitlab.tuwien.ac.at/lucas.kletzander/last-rl
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Version Total SAT BP PS FS TSP VRP

ILS-only 129.25 2 27.85 4 0 14 38.5 1 15.0 6 11.9 8 36 1
RL-only 137.40 2 0.00 15 17 5 36.0 1 30.5 3 17.9 4 36 1

Simple-state 142.10 2 28.20 4 14 5 26.0 3 20.0 5 17.9 4 36 1
LAST-RL 166.50 1 24.10 4 19 4 36.0 1 28.5 4 24.9 3 34 1

Table 2: Evaluation of LAST-RL versions in the original CHeSC 2011

Method Total SAT BP PS FS TSP VRP

LAST-RL 141.97 1 15.93 6 14 6 36.0 1 24.5 4 19.55 4 32 1
GIHH 141.72 2 25.18 3 40 1 7.0 10 30.0 1 31.55 1 8 10
QHH 123.97 3 37.43 1 10 7 0.0 16 28.0 3 27.55 3 21 3
RL 107.68 4 24.18 4 37 2 1.0 13 21.5 6 14.00 6 10 7

VNS-TW 94.22 5 27.18 2 0 16 33.0 2 23.5 5 6.55 11 4 13
ML 92.88 6 4.33 10 5 11 28.5 3 28.5 2 9.55 9 17 5

Table 3: Comparison of LAST-RL against other methods in the original CHeSC 2011

the points for the affected ranks are summed up and shared
between the equal competitors.

Based on thorough initial experimentation, we validated
our modifications for the solution chains and came up with a
manually tuned set of parameters. Next we also used param-
eter tuning with SMAC 3 version 1.1.1 (Lindauer et al. 2021)
allowing 1 million seconds using the additional CHeSC in-
stances not used for the competition for training. Both sets
of parameters are shown in Table 1. The tuned configura-
tion performed slightly, but not significantly better than the
manually tuned one on the CHeSC benchmark, but general-
ized worse to the real-life domains. First, the similar perfor-
mance despite considerable difference in parameters shows
that our method is robust in this regard and not dependent on
a very narrow parameter setting. Second, the degrading per-
formance on the real-life instances indicates overfitting on
the training domains, therefore we continued using the man-
ual configuration for maximum generality, using the same
configuration for all domains. For maximum performance,
domain-based tuning could be considered in the future.

Comparison of Different Versions
To highlight the contributions of the most important aspects
of LAST-RL, which are rich state reinforcement learning
and the ILS-based epsilon-greedy policy, we compare the
following versions:

• ILS-only: Setting ε = 1, this version only uses the ILS
heuristic type selection, ignoring reinforcement learning.

• RL-only: Using the default epsilon-greedy procedure,
this version lacks the influence of the ILS-based heuristic
type selection.

• Simple-state: The state representation is reduced to just
the previous heuristic in order to investigate the effect of
the rich state representation. The previous heuristic still
allows to learn good chains of heuristics, but without tak-
ing into account the current position in the search space.

• LAST-RL: The full final version of the hyper-heuristic.

The following comparison is done evaluating each ver-
sion individually against the 20 participants in the original
CHeSC 2011. Table 2 shows the points achieved in total and
in the individual domains, and the rank among the 21 hyper-
heuristics. The results clearly show that the full version per-
forms significantly better than the other versions.

Reinforcement learning is especially important for BP
where a score of 0 is reached using just the ILS selection,
but also for FS and TSP, while top results can be achieved
for SAT, PS, and VRP without reinforcement learning. On
the other hand, the results for RL-only show that without the
ILS component, SAT ends up with a score of 0, and TSP is
also still at a low score. Replacing the rich state representa-
tion with a simple state had a significant negative effect on
four domains. Only SAT and VRP stay at the same levels as
LAST-RL, while especially PS, FS, and TSP are affected.

Regarding the individual domains, all variants perform
very well on the VRP domain, constantly achieving the first
place in the competition. For most of the other domains,
at least one of the versions lacking a core component per-
formed at a similar level as LAST-RL. For TSP, however,
only the combination of all core components was able to get
good results, showing the benefit in the combination.

Comparison Against Other Methods
To compare against other methods, we add the two state-of-
the-art hyper-heuristics based on reinforcement learning to
the competition, which are QHH (Choong, Wong, and Lim
2018) and RL (Mischek and Musliu 2022), and present the
top six results on now 23 competitors in Table 3. Both for
the total and the individual domains the table shows points
and rank. From the original competition, these include the
winner GIHH (Misir et al. 2011), VNS-TW (Hsiao, Chiang,
and Fu 2012), and an original entry based on reinforcement
learning (Larose 2011).

The evaluation shows that our approach can reach the first
place slightly before GIHH, and clearly ahead of the re-
cent reinforcement learning methods QHH and RL. LAST-

12449



Inst SA CH-PR GIHH L-GIHH LAST-RL

10 14717 14806 14787 14774 14779.8
20 30861 30671 30732 30694 30669.4
30 50947 50904 50766 50854 50890.0
40 69120 68848 68640 68645 68478.2
50 87013 87034 86762 86730 86681.8
60 103968 103465 103139 103150 102935.8
70 122754 122026 121672 121661 121916.2
80 140482 139209 139123 139042 139250.2
90 156385 154972 155094 155113 154915.0

100 173524 171182 171278 171325 171589.4

Table 4: Best results for BSD with different solution meth-
ods

RL also achieves the best overall results in two of the do-
mains. While the ranking for individual domains varies, our
approach is never worse than rank 6, and never achieves less
than 14 points in any domain, while no other competitor has
a value of at least 10 in each domain. This highlights that
LAST-RL is indeed very general and can adapt to many very
different domains without problems.

Evaluation on Real-Life Scheduling Domains
Beside the academic benchmark CHeSC 2011, we also eval-
uate LAST-RL on several real-life personnel scheduling do-
mains where recently results with hyper-heuristics were pre-
sented (Kletzander and Musliu 2022), and investigate how
well the reinforcement learning approach transfers to these
domains, which have more constraints, longer runtime, and
more low-level heuristics with more differences in their run-
times up to a gap from milliseconds to more than three min-
utes for some calls to best improvement heuristics. The prob-
lem domains are implemented in Python and run using PyPy
7.3.5, the hyper-heuristics are run using OpenJDK 8u292.
All evaluations were performed with one hour of runtime
(same as the previous results) on a computing cluster run-
ning Ubuntu 16.04.1 LTS with Intel Xeon CPUs E5-2650
v4 (max. 2.90GHz, 12 physical cores, no hyperthreading),
but each individual run was performed single-threaded. Each
method was run on each instance 5 times.

The first domain in this comparison is Bus Driver
Scheduling according to laws of an Austrian collective
agreement (Kletzander and Musliu 2020). The benchmark
data set includes 5 instances each for 10 size categories
(10 to 100). Table 4 shows the average of the best results
per instance category for Simulated Annealing, all hyper-
heuristics that could achieve a best result in any size category
from previous work, and the new hyper-heuristic LAST-RL.
This comparison shows very strong results of LAST-RL on
this difficult real-life domain, with a clear majority of 5 out
of the 10 size categories being won by LAST-RL. It can
further provide the best average objective for 16 of the in-
stances, compared to 14 for L-GIHH (Adriaensen and Nowé
2016) and less then 10 for every other hyper-heuristic in
comparison on this problem.

The second domain deals with optimization variants of
Rotating Workforce Scheduling (Kletzander et al. 2019),

0 20 40 60 80
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GIHH
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HAHA
LAST-RL

Figure 1: Best result deviations for full MSD

where the goal is the assignment of shifts to employees ac-
cording to rules for consecutive assignments. In case of this
domain, LAST-RL could not provide improved results com-
pared to GIHH and L-GIHH.

The third domain is Minimum Shift Design (Musliu,
Schaerf, and Slany 2004), where new shifts need to be de-
signed such that a given demand is covered as well as possi-
ble, the number of different shifts is kept to a minimum, and
the average shift length is within given boundaries. LAST-
RL was applied to both the reduced problem (objectives 1
to 3) and the full problem (objectives 1 to 4) on the realis-
tic data sets 3 and 4 (33 instances). On the reduced problem
LAST-RL can reach the second place after L-GIHH.

Figure 1 shows the deviations from a given lower bound
for Minimum Shift Design with all 4 objectives in compar-
ison to the other hyper-heuristics from previous work. In
this comparison, LAST-RL can outperform all other hyper-
heuristics, reaching the best values for lower quartile, me-
dian, upper quartile, and maximum.

Conclusion
This paper presented the new hyper-heuristic LAST-RL
based on reinforcement learning using a novel large state
representation. It combines this approach with an new ex-
ploration strategy using probabilities based on Iterated Local
Search and expands the ideas using solution chains based on
the Luby sequence.

The evaluation of the individual components shows that
their strengths on different domains combine favourably to
provide very good performance and generality of the over-
all method. The comparison against competitors in CHeSC
2011 as well as recent hyper-heuristics based on reinforce-
ment learning shows that LAST-RL can outperform state-
of-the-art RL-based hyper-heuristics. Further the evaluation
on a recent real-life set of benchmark domains shows high
performance on these more complex domains, and therefore
high potential for further applications of LAST-RL to real-
world problems.

In future work we want to further investigate components
of LAST-RL, including a detailed analysis of the contribu-
tions of individual features and the exploration of different
function approximation methods including deep reinforce-
ment learning.
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ated local search. In Handbook of metaheuristics, 320–353.
Springer.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms. Information Processing
Letters, 47(4): 173–180.
MacGlashan, J. 2016. Burlap: Brown-UMBC reinforcement
learning and planning. http://burlap.cs.brown.edu/index.
html. Accessed: 2022-01-26.
Meignan, D.; Koukam, A.; and Créput, J.-C. 2010.
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